
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Blida 1 University

Institute of Aeronautics and Space Studies

MASTER REPORT

In Partial Fulfillment of the Requirements for the

Degree of Master in Aeronautics

Specialty: Propulsion

A Machine Learning Approach for Simulation of

Fluid Flow

by

Anis TCHERAK

Supervisors: Mr. Tahar REZOUG

 Mr. Abderrahmane BELKALLOUCHE

Academic Year 2020 - 2021

Acknowledgements

In the Name of Allah, the Most Merciful, the Most Compassionate all
praise be to Allah, the Lord of the world, and prayers and peace be upon

Mohamed His servant and messenger.

First and foremost, I must acknowledge my limitless thanks to Allah,
the Ever Magnificent, the Ever Thankful, for His help and bless. I am

totally sure that this work would have never become truth, without His
guidance.

I thank you very much my supervisor, Professor Tahar REZOUG who

helped me and being with me during my work, who guides me while I'm
working by making the hardest steps easier on me and brought my work

to a higher level by teaching me all what I need and make me learn
from my mistakes by his precious advices. That Professor who believes

in my talents and makes it real in my project.

I thank you very much too, my co-supervisor, Professor Abderrahmane

BELKALLOUCHE for encouraging and helping me in my research and
for allowing me to take a step forward and for your precious advices. I

also want to acknowledge you for your patient support and for your
valuable guidance during this project.

I would like to thank the members of the jury for agreeing to judge my

work while assuring them of my sincere gratitude and deep respect. I
wish, however, their patience and indulgence in my modest work.

My thanks go also to all my teachers who shared their knowledge and

experiences with me throughout my university studies and who allowed
me to reach the level of expertise necessary for the realization of this

thesis and the accomplishment of myself. I address my thanks to all
those who directly or indirectly contributed to the development of this

thesis without forgetting my parents, all my relatives and friends, who

have always supported and encouraged me during all these years.

Thank's everyone.

Anis TCHERAK

Dedications

With a blissful joy and a big happiness, I dedicate this humble work,

fruit of moments of pain and glory,

To all those who are dear to me:

To the memory of my dear uncle LAMINE SALIM

To my dear parents “Samia” and “M’hamed” for their unwavering
love, their support, their encouragement, their enormous sacrifices,

they have always helped and supported me during all these years.

To my brother "Amine" for their encouragement, support, help and

availability.

To all my family: Grandparents, aunts and uncles, cousins and cousins
and all my friends.

Anis TCHERAK

Abstract

Solving fluid dynamics problems mainly rely on experimental methods and CFD

(Computational Fluid Dynamics) based numerical simulations. However, in experimenta l

methods it is difficult to simulate the physical problems in reality and there is also a high-cost

to the economy, while CFD simulation are sensitive about meshing a complicated structure. It

is also time-consuming due to the billion degrees of freedom in relevant spatial-temporal flow

fields. Therefore, constructing a cost-effective model to settle fluid dynamics problems is of

significant meaning. Physics-informed machine learning has drawn tremendous interest in

recent years to solve computational physics problems, whose basic concept is to embed physical

laws to constrain/inform neural networks, with the need of less data for training a reliable

model. This can be achieved by incorporating the residual of physics equations into the loss

function. Through minimizing the loss function, the network could approximate the solution.

In this report, we propose a physics-informed neural network (PINN) to solve fluid flows

problems governed by the Navier-Stokes equations. We apply the proposed PINN to simulate

steady incompressible laminar flows at low Reynolds numbers. The predicted velocity and

pressure fields by the proposed PINN approach are also compared with the reference numerica l

solutions. Simulation results demonstrate great potential of the proposed PINN for fluid flow

simulation with a high accuracy.

Keywords: Machine Learning, neural network, Physics-informed neural network (PINN),

Computational Fluid Dynamics (CFD), Navier-Stokes equations, numerical simulation, fluid

flow.

Résumé

La résolution de problèmes de dynamique des fluides repose principalement sur des méthodes

expérimentales et des simulations numériques basées sur la CFD (Computational Fluid

Dynamics). Cependant, dans les méthodes expérimentales, il est difficile de simuler les

problèmes physiques dans la réalité et il y a aussi un coût élevé pour l'économie, tandis que la

simulation CFD est sensible au maillage d'une structure complexe. Cela prend également du

temps en raison des milliards de degrés de liberté dans les champs d’écoulement spatio-

temporels pertinents. Par conséquent, la construction d'un modèle rentable pour résoudre les

problèmes de dynamique des fluides est d'une importance significative. L'apprentissage

automatique basé sur la physique a suscité un vif intérêt ces dernières années pour résoudre des

problèmes de physique computationnelle, dont le concept de base est d'intégrer des lois

physiques pour contraindre/informer les réseaux de neurones, avec le besoin de moins de

données pour former un modèle fiable. Ceci peut être réalisé en incorporant le résidu des

équations physiques dans la fonction de perte. En minimisant la fonction de perte, le réseau

pourrait se rapprocher de la solution. Dans ce rapport, nous proposons un réseau neuronal basé

sur la physique (PINN) pour résoudre les problèmes d'écoulement de fluides régis par les

équations de Navier-Stokes. Nous appliquons le PINN proposé pour simuler des écoulements

laminaires incompressibles stationnaires à de faibles nombres de Reynolds. Les champs de

vitesse et de pression prédits par l'approche PINN proposée sont également comparés aux

solutions numériques de référence. Les résultats de simulation démontrent le grand potentiel du

PINN proposé pour la simulation d'écoulement de fluide avec une grande précision.

Mots clés : apprentissage automatique, réseau de neurones, réseau de neurones informés par la

physique (PINN), Computational Fluid Dynamics (CFD), équations de Navier-Stokes,

simulation numérique, écoulement des fluides.

 ملخص

 ديناميكا السوائل) CFD على القائمة العددية والمحاكاة التجريبية الطرق على أساسي بشكل الموائع ديناميكا مشاكل حل يعتمد

 عالية تكلفة أيضًا وهناك الواقع في فزيائيةال المشكلات محاكاة الصعب من التجريبية، الأساليب في ذلك، ومع(. الحسابية

 الحرية من درجة لمليار نظرًا طويلاً وقتاً تستغرق أنها كما. المعقدة البنية لشبكة حساسة CFD محاكاة أن حين في للاقتصاد،

 الموائع ديناميكيات مشاكل لحل التكلفة حيث من فعال نموذج بناء فإن لذلك، .الصلة ذات والزماني المكاني التدفق مجالات في

ً بالفيزياء المستنير الآلي التعلم ولدّ لقد. كبيرة أهمية له ً قدرا الفيزياء مشاكل لحل الأخيرة السنوات في الاهتمام من كبيرا

 لتشكيل أقل بيانات إلى الحاجة مع العصبية، الشبكات إعلام/ لتقييد الفيزيائية القوانين دمج هو لها الأساسي والمفهوم بية،ساالح

 للشبكة يمكن الخسارة، دالة بتقليل. الخسارة دالة في فزيائيةال المعادلات بقايا دمج خلال من ذلك تحقيق يمكن. موثوق نموذج

 تحكمها التي السوائل تدفق مشاكل لحل(PINN) الفيزياء على قائمة عصبية شبكة نقترح التقرير، هذا في. الحل من تقترب أن

 رينولدز أرقام عند للضغط القابلة غير الثابتة الصفائحية التدفقات لمحاكاة المقترح PINN نطبق. ستوكس-نافيير معادلات

 توضح. الرقمية المرجعية بالحلول المقترح PINN نهج بها تنبأ التي والضغط السرعة مجالات مقارنة أيضًا تتم. المنخفضة

 .عالية بدقة السوائل تدفق لمحاكاة المقترح PINN لـ الكبيرة الإمكانات المحاكاة نتائج

 السوائل ديناميكيات ،(PINN) للفيزياء المستنيرة العصبية الشبكة ، العصبية الشبكة ، الآلي التعلم :المفتاحية الكلمات

 .السوائل تدفق ، العددية المحاكاة ، ستوكس نافيير معادلات ،(CFD) الحاسوبية

Table of Contents

List of Figures

1 Introduction 1

 1.1 Thesis Overview 1

 1.2 Thesis Objectives 3

 1.3 Thesis Outline 4

2 Machine Learning Applied to CFD 5

 2.1 Fundamentals of CFD 5

 2.1.1 Introduction 5

 2.1.2 Equations of fluid flow 5

 2.1.3 CFD Process 8

 2.1.4 Summary 10

 2.2 Machine Learning Fundamentals 11

 2.2.1 Introduction 11

 2.2.2 Artificial Neural Networks (ANNs) 11

 2.2.2.1 Biological Inspiration 11

 2.2.2.2 Artificial Neurons 12

 2.2.2.3 Network 13

 2.2.2.4 Training the Network 17

 2.2.2.4.1 Loss function 17

 2.2.2.4.2 Backpropagation Process 19

 2.2.2.4.3 Optimizer Algorithms 19

 2.2.2.4.4 Model Hyper-parameter 20

 2.3 Physics-Informed Neural Networks 21

 2.3.1 Advantages of PINNs 24

3 Preliminary Examples 26

 3.1 Wave Equation 26

 3.2 Burgers Equation 29

4 Implementation and Results 32

 4.1 Solution Methodology 32

 4.2 Results 35

 4.3 Summary

Summary and Conclusions

Bibliography

List of Figures

2.1 Definition of computational domain and boundary conditions 8

2.2 Construction of a computational grid 8

2.3 Example of Post processing results 9

2.4 Process of Computational Fluid Dynamics 10

2.5 Human brain 11

2.6 Human neuron 11

2.7 (a) Biological neuron. (b) Artificial neuron 12

2.8 Common artificial neuron activation functions 13

2.9 Neural network with an input layer with n neurons, a hidden layer with m

neurons, and an output layer with k neurons. Each neuron is indicated with a

circle, and each connection between neurons is indicated with an arrow

14

2.10 Detailed architecture of ANN 15

2.11 Training process 17

2.12 Loss function minima 18

2.13 Feedforward and Backpropagation process 19

2.14 Physics-driven, Data-driven Neural Network 21

2.15 The schematic of physics-informed neural network (PINN) for solving partial

differential equations

24

3.1 Solution of the wave equation given by physics-informed neural networks 29

3.2 Comparison of the prediction given by physics-informed neural networks with

the exact solution

29

3.3 Solution of the Burgers equation given by physics-informed neural networks 31

3.4 Comparison of the prediction given by PINNs with the exact solution 31

4.1 Architecture of the physics-informed neural network for fluid dynamics. Note

that w and b are weights and biases for the ANN. The left part of the NN is an

uninformed network, while the right part implements the physical laws using

Automatic Differentiation (AD). The constraint of governing equations and

boundary conditions can be converted as residuals adding to the loss function

34

4.2 Diagram of the computation model 36

4.3 Sampling points using LHS 37

4.4 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 0 =

: (a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS

Fluent

38

4.5 Distribution of p and pC on an airfoil at 0 = . Network of 8 × 100 are used 39

4.6 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed

green line. The NN size is 8 × 100. (case 0 =)

39

4.7 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 3 =

: (a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS

Fluent

40

4.8 Distribution of p and pC on an airfoil at 3 = . Network of 8 × 100 are used 41

4.9 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed

green line. The NN size is 8 × 100. (case 3 =)

41

4.10 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 9 =

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS

Fluent

42

4.11 Distribution of p and pC on an airfoil at 9 = . Network of 8 × 100 are used 43

4.12 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed

green line. The NN size is 8 × 100. (case 9 =)

43

4.13 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 12 =

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS

Fluent

44

4.14 Distribution of p and pC on an airfoil at 12 = . Network of 8 × 100 are used 45

4.15 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed

green line. The NN size is 8 × 100. (case 12 =)

45

1

CHAPTER

1
Introduction

1.1. Thesis Overview

Fluid dynamics is an engineering field and a subdiscipline of fluid mechanics that describes the

behaviour of fluid (liquid as water or gas as air) flow. This field is omnipresent in many

disciplines such as aerospace, mechanical, chemistry, environmental, biology, biomedica l,

nuclear, etc. Let us take examples to illustrate the ubiquity of fluid dynamics, from the air flow

around a wing that provides lift for the airplane to the flow of a coolant in an automobile radiator

or air-conditioning system to the unsteady, turbulent, compressible flow of air or steam in

turbomachinery used to produce aeronautical propulsion and electrical power [18]. All of these

examples show the importance of fluid dynamics and the need to understand it.

Any physical phenomena (e.g. fluid flow) can be described with a mathematical model, for

example, by using a set of partial differential equations (PDEs), and then the model can be

solved analytically to obtain the quantities of interest (e.g. velocity and pressure fields).

Fluid dynamics problems such as cavity flow, pipeline flow, and flow around bluff body, is

typically governed by the Navier-Stokes (N-S) equations, which is a highly nonlinear PDEs

system [15]. Due to this nature of N-S equations, finding an analytical solution for them remains

a daunting and complicated task. That is why, solving fluid flow problems mainly rely on

experimental methods and numerical simulations [40].

An experimental study begins by reproducing the physical problem in a laboratory, and then

using instrumentation (e.g. sensors), the physical quantities can be determined. Wind tunnel

experiments are an example, where aerodynamicists test models of proposed aircraft and engine

CHAPTER 1 Introduction

2

components [56]. During a test, the model is placed in the test section of the tunnel and air is

made to flow past the model. In this way, aerodynamicists can visualize the air flow, visualizing

structure of the boundary layer, measure pressures and velocity, determine forces and moments

(lift, drag, and pitch) on the model, etc.

Despite the usefulness of the experimental methods, the latter have major drawbacks: the

difficulty to simulate the physical problems in reality, high-cost to the economy, time-

consuming process, etc. These constraints forced engineers to find a new method of studying

physical problems.

After years of research and with the considerable development of computers, a new field has

emerged, which is Computational Fluid Dynamics (CFD).

CFD simulation is based on discretization and approximation of the underlying differentia l

equations that govern the behaviour of fluids (i.e. N-S equations) using a computational grid

(discretization of computational domain) and numerical methods such as finite difference, finite

volume, or finite element methods [16], then, linear algebra is used to solve the discretized

equations [6].

Nowadays, CFD is heavily applied in many engineering areas and play an important role in

modelling various physical phenomena, such as weather, climate, aerodynamics, etc [44]. It can

also replace cost and time intensive experiments and even reduce the need for prototypes.

However, CFD simulations are often computationally cumbersome, especially for the flows

with turbulence and complex geometries, and when dealing with billion degrees of freedom in

relevant spatial-temporal flow fields. Moreover, mesh generation also usually incurs a huge

burden, in particular when moving boundary or large geometric variation is considered [15].

Furthermore, the CFD method has significant limitations in dealing with special mesh (e.g.,

moving mesh) which is difficult to converge.

Faced with constraints encountered with both experimental study and CFD approach, it is no

wonder that researchers are always looking for new and better ways to solve physical problems.

In the last years, they are interested with a field that is currently getting a lot of attention which

is Machine Learning (ML), more specific, Artificial Neural Networks (ANNs).

ML is a type of Artificial Intelligence (AI) that provides computers with the ability to learn

(through experience and by the use of data) without being explicitly programmed [10]. It

facilitates automation of tasks and augment human domain knowledge [30].

CHAPTER 1 Introduction

3

In the past decade, ML has given us self-driving cars, practical speech recognition, effective

web search, and a vastly improved understanding of the human genome. ML is so pervasive

today that you probably use it dozens of times a day without knowing it [45].

ML is based on several algorithms, one of particular interest is the Artificial Neural Networks

(ANNs) which are a computing system inspired by the biological neural networks that

constitute human brain [10]. ANNs are one of the core technologies in the rapidly growing field

of ML and are widely used in various complex cognitive tasks such as visual object recognit ion,

video analysis, mathematical optimization, etc [8].

All of these successes of ML, in particular ANNs, explain the increasing attention from the

scientific community on the capabilities of such methods, and their possible applications to

diverse research fields.

In recent years, the field of numerical computation known a major breakthrough thanks to

ANNs, especially with the creation of the field of Physics-Informed Neural Networks (PINNs)

by the authors Raissi et al. in 2019 [1]. These latter had an ingenious idea by combining ANNs

and physical principle constraints in the form of PDEs, thus forming the PINNs field.

PINNs are a new class of numerical methods for solving PDEs [29]. Compared to conventiona l

methods (finite difference, finite volume, finite element), they have enormous advantages:

PINNs are totally mesh-free methods which allow him to solve accurately and efficient ly

differential equation defined on complex domain where classical methods are inefficient [7].

PINNs have potential to solve high-dimensional equations while the classical methods have

rapidly increasing complexity with increasing dimension of problem [3] (and many others

advantages that we will cite in Chapter 2).

In the CFD field, the appearance of the new PINNs solvers triggered a real enthusiasm, “we

even think of replacing the commercial solvers based on classical numerical methods with

Machine Learning solvers”.

1.2. Thesis Objectives

The main objective of this thesis is to employ PINNs for solving fluid dynamics problems

governed by the N-S equations. The fluid problems for which the PINNs framework will be

tested on, are the steady two-dimensional incompressible laminar viscous flow around NACA

0012 airfoil with different angle of attack.

CHAPTER 1 Introduction

4

To validate the PINNs results, we will make a comparative study with reference solutions based

on finite volume method (given by CFD solvers).

1.3. Thesis Outline

Chapter 2 Machine Learning Applied to CFD

Presents a theoretical background and fundaments of both CFD, Machine

Learning approach, and subsequently Artificial Neural Network, then, the step

to Physics-Informed Neural Networks is made.

Chapter 3 Preliminary Examples

Presents two preliminary examples to understand the Physics-Informed Neural

Networks approach.

Chapter 4 Implementation and Results

An implementation of Physics-Informed Neural Networks framework to solve

the Navier-Stokes equations is presented, then, to validate the PINNs results,

we compare them with a reference solution.

Chapter 5 Summary and Conclusions

Presents the summary and conclusions found during the present study, along

with future works.

5

CHAPTER

2
Machine Learning Applied to CFD

2.1. Fundamentals of CFD

2.1.1. Introduction

Methods in Computational Fluid Dynamics (CFD) aim to find numerical solutions to the

differential equations governing the behavior of fluids. Depending on the concrete problem,

this includes finding valid solution to field quantities such as fluid velocity, pressure, density

and inner energy [16]. Since analytical solutions to the governing equations can only be found

for a very small subset of problems, the goal of a CFD simulation, in general, is to find

approximate solutions to those physical quantities using numerical methods. In theory, with

unlimited computing power, numerically obtained solutions can be arbitrarily accurate [18]. In

practice, however, the limits of even today’s most performant supercomputers limit the

accuracy of CFD simulations [38].

2.1.2. Equations of fluid flow

The motion of fluids can be described by three conservation laws: continuity equation,

momentum equation, and the energy equation. In combination, these equations describe the

state of the fluid in its entirety. In order to find a closed solution to these equations, additiona l

constraints are needed. These constraints can be enforced by an additional equation of state (i.e.

the ideal gas law) [63].

The continuity equation (conservation of mass) in differential form is defined as follows:

()
0i

i

u

t x

 
+ =

 
 (2.1)

CHAPTER 2 Machine Learning Applied to CFD

6

The variable  denotes the fluid density, and
iu denotes the velocity component in direction

ix . The continuity equations enforce that the rate of change of mass within a control volume

must be equal to the mass flux through the surfaces of the control volume [64].

For incompressible fluids (i.e. liquid water can be approximated to be incompressible) the

density  is constant and does not change over time, which simplifies the continuity equation

to:

0i

i

u

x


=



The fluid flow is divergence free and contains no sinks or sources.

The momentum equation (conservation of momentum) enforces that the rate of change in

momentum of a control volume must be equal to the momentum flux through the surfaces of

the control volume [64]. The conservation of momentum equation can be expressed as follows:

() ()()
0

i j ij iji
i

j j j

u u pu
f

t x x x

  


  
+ + − − =

   
 (2.2)

Note that equation (2.2) yields three independent equations for the three spatial dimensions.

The variable  denotes the density, iu denotes the flow velocity component in direction ix ,

p denotes the pressure and ij denotes the viscous stress tensor. The viscous stress tensor has

9 entries for three-dimensional fluid flow. The variable ij denotes the Kronecker delta which

equals 1 for i j= , and equals 0 otherwise. The variable if denotes the external forces acting

on the control volume in direction i [74]. In this work, transient flow phenomena will be

neglected, meaning that time derivatives of field quantities can be assumed to be equal to zero.

The remaining equations describe the behavior of a steady-state fluid flow problem.

An additional equation, the energy equation measures the flux of energy through the control

volume. For non-reacting flows without phase changes and without heat conduction, this

equation can be omitted [63].

In general, the values of the stress tensor are not known rendering finding solutions to equations

(2.1) and (2.2) impossible. However, for many liquid and gaseous fluids the stress tensor can

be expressed in terms of partial derivatives of the velocity field [64]. Such fluids are called

Newtonian fluids. For such fluids, the stress tensor can be defined as follows:

CHAPTER 2 Machine Learning Applied to CFD

7

1 1
2

2 3

ji k
ij ij

j i k

uu u

x x x
  

   
= + −        

 (2.3)

Equation (2.3) is a so-called constitutive equation that relates the stress tensor to the velocity

field and a material parameter  , the shear viscosity, which is specific to each kind of liquid.

Combining the continuity, momentum and the material equation for Newtonian fluids yields

the infamous Navier-Stokes (N-S) equations. Solving a CFD problem means finding valid

solutions to the N-S equations.

• Note: we can also express the N-S equations using the gradient or the projected forms

as follow:

o Gradient-Form:

Conservation of mass:

() 0
t





+  =


u

Conservation of momentum:

()
1

() 0
3

T
p

t


 

  
+  + −   + −  = 

  

u
uu u u u

For an incompressible flow, these equations become:

0 =u

() 2 0p
t

  


+  + −  =


u
u u u

Where u denotes the velocity vector  , ,u v w=u .

o Projected-Form: for steady two-dimensional incompressible flow, the N-S equations

are written:

2 2

2 2

2 2

2 2

0
u v

x y

u u p u u
u v

x y x x y

v v p v v
u v

x y y x y

 

 

 
+ =

 

      
+ = − + +  

       

      
+ = − + +  

       

CHAPTER 2 Machine Learning Applied to CFD

8

2.1.3. CFD Process

The use of CFD techniques to solve a fluid flow and heat transfer problem is split into three

discrete parts: pre processing, processing, and post processing. In general, different computer

programs that form the CFD code must undertake each of the three tasks [62].

• Definition of a CFD Problem (Preprocessor)

The first stage in solving a CFD problem is to define all the relevant parameters required by the

CFD code prior to the numerical solution process, as follows:

Figure 2.1 Definition of computational domain and boundary conditions [53].

Figure 2.2 Construction of a computational grid [53].

a. Definition of the physical geometry of the environment in which the fluid flows, which

is normally done by building up a geometric representation of the environment. “Create

the shape of the problem domain that needs to be analysed”.

b. Definition of flow parameter (such as the density, viscosity of the fluid flow).

c. Declaration of the boundary conditions of the physical environment. These boundary

conditions will include defining certain areas such as the inlets and outlets for the fluid

flow and the boundary areas of solids where heat transfer from or to the fluid can occur.

CHAPTER 2 Machine Learning Applied to CFD

9

d. Construction of a mesh or grid as a geometric representation of the physical

environment. This mesh or grid will form the computational grid that will be used in the

solution of the problem by the powerful mathematical techniques around which CFD is

based.

• Solution of the Problem (Processor)

The solution of the problem by the CFD code is where a host of mathematical techniques is

used to approximate the differential equations into algebraic form, which can be solved directly

or iteratively [16]. Different CFD codes employ different solution techniques, but the physics

is the same if it can be well defined and understood. The solution of the transport equations for

the geometry under study is not a trivial matter and cannot be solved readily, if at all, by

analytical techniques. CFD uses numerical techniques (such as finite difference, finite volume,

and finite element) to solve discretized representations of the transport equations [68].

Direct or explicit numerical methods, which can be both extremely accurate and rapid, may be

used if sufficient computing power is available. Many codes use iterative methods to solve the

equations because they tend to be more robust, although they can take longer to converge [64].

• Analysis of the Results (Postprocessor)

The results can be analyzed both numerically and graphically. The postprocessor takes the

numerical results and displays them as a visual representation. It displays a visual image of the

physical geometry through which the fluid flows, with the option of printing a hard copy of all

the results as tables of numbers and other means [62].

Figure 2.3 Example of Post processing results [62].

CHAPTER 2 Machine Learning Applied to CFD

10

2.1.4. Summary

The momentum equation and the continuity equation in combination with the Newtonian

material equation leads to the Navier-Stokes equations, which describes the motion of fluids.

Computational Fluid Dynamics (CFD) is the simulation of fluids engineering systems using

modeling (mathematical physical problem formulation) and numerical methods (discretiza t ion

methods, solvers, numerical parameters, and grid generations, etc.). The process is as figure

2.4.

Figure 2.4 Process of Computational Fluid Dynamics [55].

A great amount of research has been conducted to find simplified versions the equations under

certain conditions and to build software to solve them efficiently and robustly. Highly optimized

and parallelized software libraries for Linear Algebra and partial differential equations in

combination with high-performance computer hardware allows engineers to find solutions to

practical problems in the area of computational fluid dynamics. While effects such as turbulence

cannot be modeled explicitly in all detail even with today’s high-performance computing

systems, CFD solvers are essential in trying to understand the complex behavior of fluid under

many conditions and deliver numerical results very close to experimental measurements [26].

CFD solvers and the software implementing the solvers are complex but powerful tools for

solving the equations governing the behavior of fluids. Due to their complexity, CFD solvers

remain difficult to use, even for engineers with experience in the field of numerical simulatio ns.

C

F

D

Physics of Fluid

Navier-Stokes equations

Discretized Form Grids

Computer Program

Simulation Results

Fluid

Problem

Geometry

Programming

Language

Computer

Fluid Mechanics

Mathematics

Numerical

Methods

Comparison & Analysis

CHAPTER 2 Machine Learning Applied to CFD

11

Despite the advances of CFD solvers, a tradeoff between solution accuracy, computationa l

requirements and time-to-solution must be made.

2.2. Machine Learning Fundamentals

2.2.1. Introduction

Machine Learning (ML) is a field of research that concern techniques and algorithms that allow

computers to "learn" how to solve specific problems, rather than having the solution explicit ly

programmed [66]. To learn and develop, however, machine need data to analyze, understand,

extract knowledge (or information) from them. In other words, ML uses data to feed an

algorithm that can understand the relationship between the input and the output [72]. When the

machine finished learning, it can predict the value or the class of new data point.

Within ML, a commonly employed model is the Artificial Neural Network (ANN). Just like a

biological brain, the idea behind the ANN is to arrange multiple artificial neurons (Section

2.2.2.2) in layers to form a neural network (Section 2.2.2.3). Once the network structure built,

it will be trained (Section 2.2.2.4) to perform a specific task.

2.2.2. Artificial Neural Networks (ANNs)

2.2.2.1. Biological Inspiration

The human brain is built up with neurons (figure 2.5). The neurons found in human brains

consist out of three components: the dendritic tree, the cell body, and the axon [6]. The dendritic

tree forms the connection with other neurons and collects signals from them. The cell body

integrates the signals and generates an output signal. Subsequently, the output is passed on to

other neurons through the branching axon [8]. A human neuron is depicted in figure 2.6.

Figure 2.5 Human brain [10]. Figure 2.6 Human neuron [6].

CHAPTER 2 Machine Learning Applied to CFD

12

The most prominent theory on how learning happens in the human brain is known as Hebbian

learning [31]. This is a theory which postulates that learning is the result of connections between

biological neurons strengthening and weakening with use, often summarized as "neurons that

fire together, wire together" [10]. Inspired by this, ANNs consist of artificial neurons that

imitate the functioning of biological neurons. They receive an input in the form of an electrica l

signal from other neurons or sensory cells and if the sum of these inputs is sufficiently strong,

the neuron fires its own action potential.

2.2.2.2. Artificial Neurons

The artificial neuron or perceptron works similarly to the biological one. Inputs are fed through

the computing node through connections with other neurons, which are then processed through

summation and an activation function to form an output [21]. This output can then be distributed

to other neurons (Figure 2.7).

(a)

(b)

Figure 2.7 (a) Biological neuron. (b) Artificial neuron [18].

The neuron receives inputs ix that are weighted with weights iw and an additional bias term

0w . The inner state of the neuron is calculated by adding all weighted inputs and the bias term:

0

1

N

i i

i

s x w w
=

= +

Based on the inner state of the neuron, the neuron’s activation is calculated with an activation

function f ; maps the inner state of the neuron to an activation state. The activation state of a

CHAPTER 2 Machine Learning Applied to CFD

13

neuron in one layer is used as an input for a neuron in the subsequent layer [31]. Thus, a

neuron’s activation can be calculated by the following equation:

0

1

()
N

i i

i

y f s f x w w
=

 
= = + 

 


An overview of common activation functions can be found in figure 2.8.

Hyperbolic tangent function

() tanh()f s s=

Sigmoid function

1
()

1 s
f s

e−
=

+

Step function

1 0
()

0 0

s
f s

s


= 



Sign function

1 0
()

1 0

s
f s

s


= 

− 

Figure 2.8 Common artificial neuron activation functions [9].

Some functions are non-linear or discontinuous. Generally, the magnitude of the output is

() 1f s  . Activation functions are sometimes also referred to as squashing functions or limiters

since they have the ability to limit/convert large input values to smaller output values. The most

common activation functions are the sigmoid function and the hyperbolic tangent (tanh), due to

their smooth and non-decreasing properties. Because of their inherent smoothness, these

activation functions are also occasionally referred to as being soft limiters, where discontinuous

activation functions are referred to as hard limiters [23].

The next step is to add neurons in layers and connect them to form an artificial neural network.

2.2.2.3. Network

Neural network consists of multiple connected layers. There are three types of layers, namely,

the input layer, hidden layer, and output layer. There can be multiple hidden layers, depending

on the complexity of the neural network. Each layer contains a certain number of neurons, as

CHAPTER 2 Machine Learning Applied to CFD

14

for each layer, all the artificial neurons are connected to all the ones in the next layer (figure

2.9), where each connection contains a weight that tells the neuron how much it should take

over from the previous neurons, and each artificial neuron has a bias and a predefined activation

function [18].

Figure 2.9 Neural network with an input layer with n neurons, a hidden layer with m

neurons, and an output layer with k neurons. Each neuron is indicated with a

circle, and each connection between neurons is indicated with an arrow [27].

The input layer is just for the inputs and does not contain any activation (it takes the data that

is fed into the network). The hidden layers contain weights and biases and the artificial neurons

have activation functions ()f s [22]. After performing all the calculations layer by layer, the

neural network outputs prediction through the output layer. The output nodes have also

activation functions and contain weights and biases [20].

The mathematical expressions for calculations process in the ANN are shown in equations

below, and are in vector-form, where W are tensors, the inputs are vectors x as well as the

outputs y and the biases b . The superscript in front of the symbols denotes the layer l . The

weight tensor entries represent the weight between connecting nodes. The subscript indices of

()l

ijW , i and j denote the node it is pointing to and coming from respectively. So, for the

connection between the input node for 2x and the first node in the first hidden layer, the weight

is
(1)

12W . For the biases, the subscript just denotes the bias for their respective nodes.

Furthermore, for each layer, the summation and bias step yield s . The application of the

CHAPTER 2 Machine Learning Applied to CFD

15

activation function f to s (element-wise), will yield a , which is the output of the artific ia l

neurons in that layer and is what will be used for weighting and addition of the bias for the next

layer.

Figure 2.10 Detailed architecture of ANN [27].

The process calculation in the ANN is formalised as follow:

• Input layer:

This layer receives inputs ()1 2x x=x and then fed them to the 1st hidden layer.

• 1st hidden layer:

- Weighting and Summation: incoming signals x from input neurons are each weighted

by
()1

W , then, the weighted linear combination of incoming signals is formed, as follow:

()()1(1)
T

W=s x

- Biasing: an additional constant factor is added to the linear combination:

()1(1) (1)= +s s b

- Activation: the scalar quantity resulting is then fed through the activation function

which then forms the output:

()(1) (1)f=a s

• 2nd hidden layer:

- Weighting and Summation: incoming signals
(1)

a from 1st hidden layer neurons are

each weighted by
()2

W , then, the weighted linear combination of incoming signals is

formed:

()()2(2) (1)
T

W=s a

1y

2y

CHAPTER 2 Machine Learning Applied to CFD

16

- Biasing:

()2(2) (2)= +s s b

- Activation:

()(2) (2)f=a s

• Output layer:

- Weighting and Summation: incoming signals (2)
a from 2nd hidden layer neurons are

each weighted by ()3
W , then, the weighted linear combination of incoming signals is

formed:

()()3(2)
T

W=y a

- Biasing:

()3
= +y y b

- Activation:

()f=y y

Where:

•

(1) (1)

11 12

(1) (1) (1)

21 22

(1) (1)

31 32

W W

W W W

W W

 
 

=  
 
 

,

(2) (2) (1)

11 12 13

(2) (2) (2) (2)

21 22 23

(2) (2) (2)

31 32 33

W W W

W W W W

W W W

 
 

=  
 
 

,

(3) (3) (3)

(3) 11 12 13

(3) (3) (3)

21 22 23

W W W
W

W W W

 
=  
 

represent respectively the weights of connections between: input and 1st hidden layer,

1st and 2nd hidden layer, output and 2nd hidden layer.

• ()(1) (1) (1) (1)

1 2 3b b bb= , ()(2) (2) (2) (2)

1 2 3b b b=b , ()(3) (3) (3) (3)

1 2 3b b b=b , represent

respectively the biases added in 1st, 2nd hidden layers and output layer.

• ()(1) (1) (1) (1)

1 2 3s s s=s , ()(2) (2) (2) (2)

1 2 3s s s=s , ()(3) (3) (3) (3)

1 2 3s s s=s , vectors

resulting from weighting, summation, and biasing process, at respectively 1st, 2nd hidden

layers and output layer.

• ()(1) (1) (1) (1)

1 2 3a a a=a , ()(2) (2) (2) (2)

1 2 3a a a=a , ()(3) (3) (3) (3)

1 2 3a a a=a , vectors

resulting from activation process at 1st, 2nd hidden layers and output layer.

CHAPTER 2 Machine Learning Applied to CFD

17

Now that we have determined the structure of the neural network and how it works, we need to

train it on a set of data, so it can learn from them, and then, make accurate predictions for a new

giving examples.

2.2.2.4. Training the Network

Suppose we assign random values to all the weights. Then with a certain input, the output will

most likely be nothing like the output we desire. This is why we first need to train the neural

network. For this training, training data is required. This training data is comprised of inputs,

that we already know the answer (output) for [6].

During the training of the neural network, all weights and biases of all neurons are being

updated for every iteration using an optimizer algorithm. This is done by iteratively changing

the weights and biases of the neurons starting in the last layer and ending with the first layer in

order to minimize an error measurement of the network (How wrong was the prediction of the

network) called loss, which is typically measured by the squared distance between the network

output y and the expected output y [17]. The goal of the learning algorithm is to minimize this

loss by changing the weights and biases according to the gradient of the loss, which is dependent

on all weights and biases of all neurons in the network [6]. This algorithm is called the

backpropagation algorithm since errors are propagated backward through the network in order

to iteratively find optimal values for the weights and biases in the network [14].

Figure 2.11 Training process [8].

2.2.2.4.1. Loss function

To train the model, a scalar variable that quantifies the fitness of the model is required. The

functional that governs the performance or fit of the artificial neural network to some target

data is referred to as the loss function. An artificial neural network can represent a function or

a mapping :N x y . The mapping is dependent on the artificial neural network parameters

(weights and biases). By computing the difference between the output of the neural network y

CHAPTER 2 Machine Learning Applied to CFD

18

and the data y and summing those, a scalar function can be obtained, that represents the

discrepancy of the neural network to the data. There are different ways for representing the

discrepancy, or the loss function. The most common one is the mean-squared error (MSE) [6].

This loss function is shown in equation:

()
2

1

1
Mean-squared error:

N

i i

i

MSE y y
N =

= −

For which
iy and

iy is the ANN output and the target output respectively for 1,...,i N= data

points. Each output of the artificial neural network is governed by the combination of weights

and biases of the artificial neurons in the preceding layers that form the particular output.

Therefore, the weights and biases have to be trained in order to minimize the loss function.

Moreover, the weights and biases form the parameter space and the loss function defines the

error surface. The error surface can contain global, local minima and saddle points wherein the

first one is sought for and the last two can cause difficulty when training an ANN [3]. To make

the idea clearer behind the loss function and how it can be minimized, we give the mathematica l

formulation of the literature above:

() ()
2

1

1 N

i i

i

L y y
N


=

= −

Here  is the set of all parameters in the network, which is the set of all weights along with the

set of all biases. The parameters are initialized in some random manner. Let Θ be the parameter

space. The problem at hand is simply to find the values for  such that the loss function is

minimal, that is, to approximate ()arg min L  [3].

Figure 2.12 Loss function minima.

()L 

Local Minima

G
lo

b
a
l

M
in

im
a

* arg min ()L =

CHAPTER 2 Machine Learning Applied to CFD

19

2.2.2.4.2. Backpropagation Process

In Calculus, when confronted with the task to determine a minimum of a function, the task is

clear. Simply calculate the gradient and determine where it is equal to zero.

*

* arg min ()

0

L

L

 

 

 =

=


=



The backpropagation algorithm operates as computing the gradient of loss function with respect

to parameters (weights and biases) of a neural network based on the chain rule, that is,

computing the gradient at one layer and recursively backward from the last layer. An optimizer

algorithm adjusts each parameter of the neural network until we satisfy the equations above and

then obtain the optimum parameters * of the ANN (at this stage, the network makes accurate

predictions) [21].

Figure 2.13 Feedforward and Backpropagation process [8].

2.2.2.4.3. Optimizer Algorithms

As illustrated in figure 2.11 optimizer is used after the comparison between target values and

outputs of the network and the goal is to minimize the loss function by adjusting model

parameters (weights and biases). The optimization is crucial for the learning process. The

choice of optimizer over another one can lead to a better optimization. This can result in a

faster learning and/or in a better final prediction [10].

CHAPTER 2 Machine Learning Applied to CFD

20

There are different types of optimisers. Each type of optimiser has its own merits. The most

common optimizers are Adam and the L-BFGS-B (Limited-memory Broyden-Fletche r-

Goldfarb-Shanno Bound) [66]. When training the network, we prefer starting with Adam

optimizer rather than L-BFGS-B, because this latter have more probability to stuck on a local

minimum.

2.2.2.4.4. Model Hyper-parameter

Machine learning models and the algorithms to train them on data have so-called

hyperparameters which are parameters set (by programmer) before optimizing the model’s

parameters (the network weights and biases). Network hyper-parameters describe the

concrete model of the neural network and have a profound impact on the actual performance

of the model [9]. The parameters can be chosen manually, based on experience or guidelines .

Model hyper-parameters are the following [6]:

• Number of hidden layers

• Number of units (neurons) in each layer

• Activation function

• Optimizer

• Loss function

• Learning rate: controls model’s update step size with respect to the accuracy

achieved with the present model. It’s an important parameter. A value too small may

result in a slow training and danger of getting stuck in a local. Instead a large value

may result in risk of non-converting to any minimum, since the optimizer jumps out

a minimum rather than descending to it.

• Number of iterations: refers to the number of times that the whole data-set arranged

for the training phase is feed into the model. For example, if a number of iterations is

equal to 10, during the training phase the model "sees" 10 times the whole data-set.

We now know the basics of how an artificial neural network works. The next step is to make

the neural network a physics-informed neural network: get the physical model in the neural

network.

CHAPTER 2 Machine Learning Applied to CFD

21

2.3. Physics-Informed Neural Networks

In this section, we introduce the physics-informed neural networks (PINNs) and related settings

in this study. Traditional neural networks are based entirely on a data-driven approach that does

not take into account the physical laws (i.e. governing PDEs and initial/boundary conditions

I/BCs). Therefore, a large amount of data is often required to train the neural networks to obtain

a reasonable model. In contrast, PINNs introduce physical information into the network by

forcing the network output to satisfy the corresponding physics equations (PDEs, I/BCs) [3].

Specifically, by encoding these equations in the loss function, the model is made to consider

physical laws during the training process. This processing makes the training process require

less data and speeds up the training process.

Figure 2.14 Physics-driven, Data-driven Neural Network [39].

PINNs can be used to solve not only the forward problem, i.e., obtaining approximate solutions

to PDEs, but also the inverse problem, i.e., obtaining the parameters of PDEs from training

data. In the following, the PINNs modified and used in this study is introduced for the forward

problem of PDEs.

In this study, consider the partial differential equation defined on the domain  with the

boundary  .

0 in

0 on

Du

Bu

= 

= 

CHAPTER 2 Machine Learning Applied to CFD

22

where (x,)u u t= (for x n , t +) is the unknown solution and D denotes a linear or

nonlinear N differential operator (e.g., / x  , / t  , /u x  , 2 2/u x  , etc.), and the

operator B denotes the boundary condition of a partial differential Equation (e.g., Dirichlet

boundary condition, Neumann boundary condition, Robin boundary condition, etc.). Let

X (x,)t=  for convenience. At this point, the initial condition can be treated as a special

type of Dirichlet boundary condition on the spatio-temporal domain [6].

First, we construct a neural network for approximating the solution ()Xu of a partial

differential equation. This neural network is denoted by ()ˆ X;u  , which takes the X as input

and outputs a vector of the same dimension as ()Xu .  represent the neural network

parameters (weights and biases) [11]. These parameters will be continuously optimized during

the training phase. The neural network û should satisfy the physics equations, thus, we fulfil l

this requirement by defining a residual network:

() ()ˆX; : X;f N u =   

To build this neural network, we need to use automatic differentiation (AD) [15]. This represent

all the differential operators (e.g.  , 2) in the PDEs; then the equations can be formulated by

the neural network.

In this study, for the surrogate network û , we derive the neural network by the AD. Moreover,

since the network f has the same parameters as the network û , both networks are trained by

minimizing a loss function. Specifically, Figure 2.15 shows a schematic diagram of a physics-

informed neural network.

The next main task is to find the best neural network parameters that minimize the defined loss

function [3]. In a physics-informed neural network, the loss function is defined, as follows:

 () u fJ MSE MSE = + (2.4)

Where:

()

2

1

1
ˆ ,

uN
i i i

u u u

iu

MSE u u x t
N =

= − (2.5)

()

2

1

1
,

fN

i i

f f f

if

MSE f x t
N =

=  (2.6)

CHAPTER 2 Machine Learning Applied to CFD

23

Where (i

ut , i

ux , (),i i

u uu x t) are the given initial and boundary conditions. Equation 2.5 is taken

over all the boundary and initial points and equation 2.6 is taken over all the points in the

domain. So
uMSE ensures the boundary and initial conditions are met and fMSE ensures the

given differential equations are satisfied [6].

It should be noted here that while
uMSE can be calculated fairly easily, determining (),i i

f ff x t

and thus fMSE is more difficult. However, as discussed above, automatic differentiation is one

of the qualities of a neural network. So, we can use this same technique to compute the

derivatives, without the need of making grids as in classical numerical methods. So, f can also

be determined relatively easily (albeit with a longer computing time then
uMSE).

Next, the optimization problem for equation 2.4 is addressed by optimizing the parameters in

order to find the minimum value of the loss function, i.e., we seek the following parameters:

()()

()()

*

*

arg min

arg min

w

b

w J w

b J b









=

=

In the last step, we use gradient optimizers to minimize the loss function, such as Adam, and L-

BFGS-B. It is found that, for smooth PDE solutions, L-BFGS-B can find a good solution faster

than Adam, using fewer iterations. This is because Adam optimizer relies only on the first order

derivative, whereas L-BFGS-B uses the second order derivative of the loss function [10].

However, one problem with L-BFGS-B is that it is more likely to get stuck on a bad local

minimum [31]. Considering their respective advantages, in this study we end up using a

combination of L-BFGS-B and Adam optimizer to minimize the loss function. By the above

method, we will obtain trained neural networks that can be used to approximate the solutions

of partial differential equations.

CHAPTER 2 Machine Learning Applied to CFD

24

Figure 2.15 The schematic of physics-informed neural network (PINN) for solving partial

differential equations [3].

In the next chapter, we will use the above method to study two important partial differentia l

equations: the one-dimensional wave equation and the Burgers equation.

2.3.1. Advantages of PINNs

The classical numerical methods for PDEs, such as finite differences, finite volumes, and finite

element methods, are very commonly used for flow simulation and also other computationa l

physics. These methods require discretizing computational domain into many small meshes,

and evaluate approximation of function value at each mesh point. The mesh-based processes

are computationally expensive and difficult for large systems, high-dimensional equations, or

complex geometries, and evaluating the value at each point has some limits in terms of post-

calculation.

On the other hand, numerical methods based on neural networks have several advantages

compared to the classical methods. The advantages are:

• Memory complexity: the neural network methods require low memory cost due to less

parameters to be calculated [9].

CHAPTER 2 Machine Learning Applied to CFD

25

• Closed form: the solutions obtained by neural networks have a closed form. They have

capabilities to perform subsequent calculation, such as differentiation or integration of

the solutions [7].

• Transfer learnability: by the generalization property of a neural network, the obtained

solution of a problem is reusable and able to be generalized, which means that the

solution may be applied to a class of similar problems with the given problem [31].

• Complex shape: if the shape of domain where a differential equation is defined on is

complex, the neural network method are relatively more efficient than the classical

method because neural network methods are totally mesh-free methods [28].

• Dimensionality: the neural network method has a potential to efficiently solve high-

dimensional equations. In other words, the computational complexity of neural network

method is linear with the dimension of problem, while the classical methods have

rapidly increasing complexity with increasing dimension of problem [40].

26

CHAPTER

3
Preliminary Examples

In this Chapter, we study the one-dimensional wave equation and the Burgers equation using

PINNs. The neural network models are constructed for these two equations, respectively, based

on the given initial and boundary conditions. The approximation results of the neural networks

are compared with the true solutions to test the PINNs. We will present the experimental design

and results of these two equations, respectively.

3.1. Wave Equation

This section presents an experimental study of the wave equation using the PINN. The wave

equation is a typical hyperbolic PDE and it contains second-order partial derivatives about the

independent variable. In physics, the wave equation describes the path of a wave propagating

through a medium and is used to study the various types of wave propagation phenomena. It

appears in many fields of science, such as acoustic wave propagations, radio communications,

and seismic wave propagation. The study of wave equations is of great importance, as they are

widely used in many fields. In this study, we choose a one-dimensional wave equation for our

experiments. In mathematical form, this wave equation is defined, as follows:

   0, 0, 1 , 0, 1tt xxu cu x t− =  

where u is a function of the spatial variables x and time t . In the equation, the value of c

represents the wave propagation velocity, which is given as 1 in this study. Besides, for this

wave equation, its initial conditions and the homogeneous Dirichlet boundary conditions are

given, as follows:

CHAPTER 3 Preliminary Examples

27

() ()

() ()

1
0, sin

2

(0,) sin(3)

,0 ,1 0

t

u x x

u x x

u t u t



 

=

=

= =

The true solution of the above equation is:

() () () ()
1 1

(,) sin cos sin 3 sin 3
2 3

u t x x t x t   = + ,

The initial conditions, boundary conditions, and some random data in the space-time domain

are used as training data to train the neural network model. In order to test the performance of

the training model, we use the neural network model to make multiple predictions and compare

it with the true solution of the PDE. The specific experimental setup and procedure are as

follows.

First, a neural network is designed for approximating the solutions of PDEs, denoted as ˆ(,)u t x .

For the architecture of the neural network, it contains six hidden layers, each with 100 neurons,

and a hyperbolic tangent tanh is chosen as the activation function. Besides, a physics-info rmed

neural network (,)f t x is constructed for introducing control information of the equation:

(,) : tt xxf t x u u= −

The next main task is to train the parameters of the neural network ˆ(,)u t x and (,)f t x . We

continuously optimize the parameters by minimizing the mean square error loss to obtain the

optimal parameters:

() u fJ MSE MSE = +

Where:

()
2

1

1
ˆ ,

uN
i i i

u u u

iu

MSE u u x t
N =

= −

()
2

1

1
,

fN

i i

f f f

if

MSE f x t
N =

= 

uMSE is a loss function constructed using observations of initial and boundary conditions.

fMSE is a loss function that is based on partial differential equations for introducing physical

CHAPTER 3 Preliminary Examples

28

information. Specifically,  
1

, ,
uN

i i i

u u i
t x u

=
 corresponds to the initial and boundary training data of

(,)u t x , and
uN is the number of data provided. In addition, (,)f fu t x and  

1
,

fN
i i

f f i
t x

=

corresponds to the training data of the spatio-temporal domain, and
fN is the corresponding

number of training data. In this work, to fully consider the physical information embedded in

the equations, we select the data in the spatio-temporal domain to train the neural network. The

training data of the spatio-temporal domain is selected randomly, and the amount of training

data
fN is 40,000. Besides, the total number of training data of the initial and boundary

conditions is relatively small, and the expected effect can be achieved when
uN is 300.

Similarly, the selection of training data for the initial and boundary conditions is also random.

During the optimization procedure, we set the learning rate to 0.001, and in order to balance

convergence speed and global convergence, we ran L-BFGS 30,000 epochs and then continued

the optimization using Adam until convergence. In addition, we used the Glorot normal

initializer for initialization. In this experiment, the time to train the model was approximate ly

fifteen minutes. We tested the effect of the model after completing the training of the neural

network model. Figure 3.1 is the prediction of the neural network model obtained from the

training, and it can be seen that the prediction obtained is quite complex. We choose different

moments to compare the prediction with the exact solution to test the accuracy of this

prediction. Figure 3.2 shows the comparison between the exact solution and the prediction at

different times 0.2, 0.5, 0.8t = . From Figure 3.2, it can be seen that the predictions of the

neural network model and exact solutions are very consistent, indicating that the constructed

neural network model has a good ability to solve partial differential equations. In addition, the

relative L2 error of this example was calculated to be
45.16 10− , which further validates the

effectiveness of this method. Although the solution of the selected partial differential equations

is complex, the neural network model can still approximate a result very close to the true

solution from the training data, indicating that the neural network with physical information has

great potential and value, and is worthy of further research.

CHAPTER 3 Preliminary Examples

29

Figure 3.1 Solution of the wave equation given by physics-informed neural networks [3].

Figure 3.2 Comparison of the prediction given by physics-informed neural networks with

the exact solution [3].

3.2. Burgers Equation

Let us consider the Burgers equation. This equation arises in various areas of applied

mathematics, including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. It

is a fundamental partial differential equation and can be derived from the Navier-Stokes

equations for the velocity field by dropping the pressure gradient term. For small values of 4the

viscosity parameters, Burgers equation can lead to shock formation that is notoriously hard to

resolve by classical numerical methods. In one space dimension, the Burger’s equation along

with Dirichlet boundary conditions reads as:

   (0.01/) 0, 1,1 , 0,1

(0,) sin()

(, 1) (,1) 0

t x xxu uu u x t

u x x

u t u t





+ − =  − 

= −

− = =

CHAPTER 3 Preliminary Examples

30

Let us define (,)f t x to be given by:

: (0.01/)t x xxf u uu u= + −

Similar to the previous experiment, we train the parameters of the neural network ˆ(,)u t x and

(,)f t x . We continuously optimize the parameters by minimizing the mean square error loss to

obtain the optimal parameters:

() u fJ MSE MSE = +

Where:

()
2

1

1
ˆ ,

uN
i i i

u u u

iu

MSE u u x t
N =

= −

()
2

1

1
,

fN

i i

f f f

if

MSE f x t
N =

= 

The training data of the spatio-temporal domain is selected randomly, and the amount of

training data
fN is 10,000. Besides, the total number of training data of the initial and boundary

conditions is relatively small, and the expected effect can be achieved when uN is 100.

Similarly, the selection of training data for the initial and boundary conditions is also random.

During the optimization procedure, we set the learning rate to 0.001, and in order to balance

convergence speed and global convergence, we ran L-BFGS 20,000 epochs and then continued

the optimization using Adam until convergence. In addition, we used the Glorot normal

initializer for initialization. In this experiment, the time to train the model was approximate ly

fifteen minutes. We tested the effect of the model after completing the training of the neural

network model. Figure 3.3 is the prediction of the neural network model obtained from the

training, and it can be seen that the prediction obtained is quite complex. We choose different

moments to compare the prediction with the exact solution to test the accuracy of this

prediction. Figure 3.4 shows the comparison between the exact solution and the prediction at

different times 0.25, 0.5, 0.75t = . From Figure 3.4, it can be seen that the predictions of the

neural network model and exact solutions are very consistent, indicating that the constructed

neural network model has a good ability to solve partial differential equations. In addition, the

relative L2 error of this example was calculated to be
46.7 10− , which further validates the

effectiveness of this method.

CHAPTER 3 Preliminary Examples

31

Figure 3.3 Solution of the Burgers equation given by physics-informed neural networks.

Figure 3.4 Comparison of the prediction given by PINNs with the exact solution [2].

Although the solution of the selected partial differential equations is complex, the neural

network model can still approximate a result very close to the true solution from the training

data, indicating that the neural network with physical information has great potential and value,

and is worthy of further research.

32

CHAPTER

4
Implementation and Results

In this Chapter, we implement a physics-informed neural network (PINN) scheme to solve fluid

dynamics problems governed by the Navier-Stokes equations. We first introduce the

methodology of the proposed PINN and the mathematical formulation for fluid dynamics

(Section 4.1). Subsequently in Section 4.2, the steady two-dimensional viscous incompress ib le

flow at low Reynolds number passing a NACA 0012 airfoil will be modeled using the proposed

PINN scheme. A comparison study with a reference numerical solutions is made to validate our

PINN results. We summarize our finding in Section 4.3.

4.1. Solution Methodology

Navier–Stokes equations describe the physics of many phenomena of scientific and engineer ing

interest. They may be used to model the weather, ocean currents, air flow around a wing, etc.

The Navier–Stokes equations in their full and simplified forms help with the design of aircrafts

and cars, the study of blood flow, and many other applications.

Let us consider the steady incompressible Newtonian flow governed by the following Navier-

Stokes equations (in the velocity-pressure form):

 () 2p in  = − +  v v v (4.1a)

 0 in = v (4.1b)

 Don= v v (4.1c)

 0 Non
n


= 



v
 (4.1d)

Where  is the Nabla operator, (),u v=v is the velocity vector, p is the pressure,  is the

viscosity of the fluid,  is the density of fluid. The boundary conditions are required in order

CHAPTER 4 Implementation and Results

33

to solve Eq. (4.1). Here,
D and

N denote the Dirichlet and Neumann boundaries,

respectively.

In this study, instead of using conventional computational fluid dynamics (CFD) methods, we

investigate the possibility of using neural networks (NNs) for solving the aforementioned partial

differential equations (PDEs) (see Eqs. 4.1a and 4.1b). In other words, the solutions of Navier-

Stokes equations are approximated by a neural network, which takes spatial coordinates as

inputs and predicts the corresponding velocity and pressure fields, i.e., (,) (,)x y pv . To

ensure the divergence free condition of the flow we use the stream function  . In this way, the

continuity equation (Eq. 4.1b) will be satisfied automatically. For a two-dimensional problem,

the velocity components can be computed by    , ,0 0,0,u v = , i.e., u
y


=


, v
x


= −


.

First, we construct the architecture of the proposed PINN for fluid dynamics simulation (Figure

4.1), which consist of a fully-connected network and the residual networks. Here, the nonlinear

activation function  is the hyper tangent function tanh . For the residuals, these include the

errors of the momentum equations (4.1a). In order to compute these residuals 1res and 2res ,

the partial differential operators are computing by using automatic differentiation (AD), which

leads to very high computational efficiency compared to numerical differentiation. However, it

does not require grids (mesh), and avoids the classical artificial dispersion and diffusion errors.

AD can be directly formulated in the machine learning framework, e.g., using “tf.gradients ()”

in TensorFlow.

34

Figure 4.1 Architecture of the physics-informed neural network for fluid dynamics. Note that w and b are weights and biases for the ANN. The

left part of the NN is an uninformed network, while the right part implements the physical laws using Automatic Differentiation (AD). The

constraint of governing equations and boundary conditions can be converted as residuals adding to the loss function.

 

 

 

 

y  

x

 

 



p

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

x


−


y





(,)v x y

(,)p x y
x





y





I

x





I

y





2 2

1 2 2

u u p u u
res u v

x y x x y
 

      
= + + − +  

       

2 2

2 2 2

v v p v v
res u v

x y y x y
 

      
= + + − +  

       

Automatic Differentiation

Physical Laws

ANN (unknown parameters  ,w b)

1. Residuals of the Governing equations

2. Boundary conditions

Physics Loss Function: (,)w bpL

 
 

 * *

,

, arg min (,
w b

w b w b)pL=

CHAPTER 4 Implementation and Results

35

Now, we apply the main idea of PINNs method, i.e., embed physics laws (governing equations

and boundary conditions) into the loss function of the PINNs. This can be achieved by

incorporating the residual of physics equations into the loss function.

Let define (),w bpL a physics loss function for training the parameters of PINN to obtain the

solutions of Eq. (4.1) as follow:

 p e bL L L= + (4.2a)

2

2

1 1

1 eN
n

e i

i ne

L res
N = =

=  (4.2b)

2

1

1
v v

bN
n n

b b

nb

L
N =

= − (4.2c)

Where eL and bL represent loss function components corresponding to the residual of the

momentum equations and the boundary conditions, respectively; bN and eN denote the number

of training data for different terms; ,v
T

n n n

b b bu v =   is the given velocity for the n th data point

on the boundaries; n

ires represents the residual of the i th equation at the n th data point. We

consider the boundary conditions as supervised data-driven parts, and the residual of the

momentum equations as the unsupervised physics-informed part in the loss function.

The next task is to find the best neural network parameters that minimize the defined loss

function, for that, we use two optimization algorithms, Adam and L-BFGS-B.

 
 

 * *

,

, arg min (,
w b

w b w b)pL=

The solutions are obtained when the training of the PINN converges, i.e., the total loss function

pL reaches some very small value.

4.2. Results

In this section, we apply the proposed PINN to model the steady two-dimensional viscous

incompressible flow at low Reynolds number passing a NACA 0012 airfoil at different angle

of attack (0 ,3 ,9 ,12   ). We present comparisons between the PINN solutions and reference

solution obtained from the ANSYS Fluent 19.0 package (finite volume-based) in order to

investigate the accuracy of the solutions inferred by the PINN framework.

CHAPTER 4 Implementation and Results

36

We consider a computational domain of width 2L m= and height 1H m= with an NACA 0012

airfoil of chord length 1c m= , the leading edge of the airfoil is placed at the spatial coordinate

(0.2, 0.5) (Fig. 4.2). For the boundary conditions of the problem, we define a parabolic velocity

Figure 4.2 Diagram of the computation model.

profile on the inlet with the following expression:

U
Inlet

Inlet

Inlet

u

v

 
=  
 

with:

2

max

2

max

4U (H) / H cos

4U (H) / H sin

Inlet

Inlet

u y y

v y y





 = − 

 = − 

where  is the angle of attack and maxU 1 /m s= which results in a small Reynolds number so

that the flow is dominated by laminar flow. On the outlet the zero pressure condition is applied.

Nonslip conditions are enforced on the wall and airfoil boundaries. The gravity is ignored. For

the material properties of the fluid flow, the dynamic viscosity and density is 310 / ()kg m s− 

and 31 /kg m respectively.

Now, we solve the defined problem using the PINN scheme, following the methodology made

in the previous section. We define a computational domain (same as seen in Figure 4.2) by

sampling spatial points in the domain, as shown in Figure 4.3. A total number of 50000 spatial

scattered points are generated in the whole domain using Latin hypercube sampling (LHS) for

the training the network. This include 3085 Dirichlet boundary (airfoil, wall, inlet) points and

201 Neumann boundary (outlet) points, such that we have 3286 training data for the boundary

L=2 m

H=1 m

Wall

Wall

Outlet Inlet

x

y

0.2 m

0.5 m

c

CHAPTER 4 Implementation and Results

37

conditions, i.e., 3286bN = . Inside the domain, we use 46714 points to compute the residuals

(or the equation loss), i.e., 46714eN = . It should be noted that the collocation points are refined

near and behind the airfoil to better capture the details of the flow.

Figure 4.3 Sampling points using LHS.

The PINN is assessed after a two-step training: we first use the Adam optimizer for 30000

iterations with learning rate of 31 10− , then apply the L-BFGS-B to finetune the results. The

training process of L-BFGS-B is terminated automatically based on the increment tolerance.

We first investigate the influence of the neural network architecture. We employ different sizes

of network by varying the number of hidden layers and the number of neurons per layer. This

strategy allows to find an optimal combination of depth and width for the network. The loss

(error) function is used as the metric for comparison (Table 4.1).

NN size Loss pL

4 50 11.8 10−

6 40 25.3 10−

7 40 39.7 10−

8 40 34.4 10−

8 100 53.7 10−

Table 4.1 Loss value pL for PINN with different sizes (NN size is the number of hidden

layers × the number of neurons per layer).

CHAPTER 4 Implementation and Results

38

We can observe from Table 4.1 that the performance of the PINN is improved as the network

size increases, in other words, PINN provides more accurate solutions when using large

networks. PINN are able to attain the solutions with high accuracy using a deep neural network

of 8 × 100. The loss value (error) are in order of 510− . The network of 8 × 100 achieves the best

result among all the configurations.

After this assessment, we select the more accurate PINN architecture, i.e., 8 × 100 to compare

it with a reference solution obtained from the ANSYS Fluent 19.0 package (finite volume -

based). The predicted velocity and pressure fields by the PINN are shown in Fig. 4.4(a), 4.7(a),

4.10(a) and 4.13(a) for 0 = , 3 = , 9 = and 12 = , respectively. The reference solution

is obtained from the CFD solver ANSYS Fluent (see Fig. 4.4(b), 4.7(b), 4.10(b) and 4.13(b) for

0 = , 3 = , 9 = and 12 = , respectively).

 (a) (b)

Figure 4.4 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 0 = :

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent.

CHAPTER 4 Implementation and Results

39

Figure 4.5 Distribution of p and pC on an airfoil at 0 = . Network of 8 × 100 are used.

Figure 4.6 Convergence of the physics loss function curve pL . Adam optimizer is used before

the dashed green line, and L-BFGS-B optimizer is used after the dashed green line. The NN

size is 8 × 100. (case 0 =)

CHAPTER 4 Implementation and Results

40

We observe from the Figures 4.4, 4.7, 4.10 and 4.13 that the steady velocity and pressure fields

are well reproduced by the PINN. We obtain good accuracy of the PINN simulation results

upon the convergence of the loss function (see Fig. 4.6, 4.9, 4.12 and 4.15). From these figures,

we also observe that applying a two-step optimization yields more consistent results.

 (a) (b)

Figure 4.7 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 3 = :

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent.

CHAPTER 4 Implementation and Results

41

Figure 4.8 Distribution of p and pC on an airfoil at 3 = . Network of 8 × 100 are used.

It is worth mentioning that the pressure distribution on the airfoil surface is typically of interest

for computing the resultant drag and lift forces and subsequently the aerodynamics coefficients

(lift LC and drag DC coefficients). Therefore, we compare the pressure distributions and the

pressure coefficient distributions obtained by PINN and ANSYS Fluent as shown in Fig. 4.5,

4.8, 4.11 and 4.14 for 0 = , 3 = , 9 = and 12 = , respectively. The overall agreement

between the PINN and ANSYS Fluent is very good.

Figure 4.9 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed green line.

The NN size is 8 × 100. (case 3 =)

CHAPTER 4 Implementation and Results

42

 (a) (b)

Figure 4.10 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 9 =

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent.

CHAPTER 4 Implementation and Results

43

Figure 4.11 Distribution of p and pC on an airfoil at 9 = . Network of 8 × 100 are used.

Figure 4.12 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed green line.

The NN size is 8 × 100. (case 9 =)

We obtained good agreement between the Fluent results and the PINN simulation results upon

convergence of the loss function.

CHAPTER 4 Implementation and Results

44

 (a) (b)

Figure 4.13 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 12 =

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent.

CHAPTER 4 Implementation and Results

45

Figure 4.14 Distribution of p and pC on an airfoil at 12 = . Network of 8 × 100 are used.

Figure 4.15 Convergence of the physics loss function curve pL . Adam optimizer is used

before the dashed green line, and L-BFGS-B optimizer is used after the dashed green line.

The NN size is 8 × 100. (case 12 =)

We obtain good accuracy of the PINN simulation results upon convergence of the loss function,

verifying that PINN can effectively simulate complex incompressible flows. Thus, the PINN

approach enables us to develop Navier-Stokes solvers that do not require mesh generation and

achieve higher accuracy.

CHAPTER 4 Implementation and Results

46

4.3. Summary

In this study, we explored the effectiveness of PINNs to simulate fluid dynamics problems. We

have formulated PINN scheme based on the governing Navier-Stokes equations. The spatial

coordinates are the inputs of the PINN, and the velocity and pressure fields are the outputs. We

used automatic differentiation to represent all the differential operators in the momentum

equations; then the equations can be formulated by the neural networks. We regard the

boundary conditions as supervised data-driven part, and the residual of the momentum

equations as the unsupervised physics-informed part in the loss function of PINN. Convergence

of PINN was monitored using the loss function. We used the PINN framework to simulate the

steady two-dimensional viscous incompressible flow at low Reynolds number around an

NACA 0012 airfoil at different angle of attack. We obtained good agreement between the

ANSYS Fluent results and the PINN simulation results upon convergence of the loss function.

47

Summary and Conclusions

In this thesis, we explored a new method for solving computational physics problems to

surrogate existing Computational Fluid dynamics (CFD) solvers that they present major

drawbacks: mesh-generation is complex, cannot tackle high-dimensional problems, time-

consuming, etc. This new method as known as Physics-Informed Neural Network (PINN) is

based on Machine Learning approach, more specific, artificial neural network. The basic

concept of PINN is to embed physical laws to constrain/inform neural networks, with the need

of less data for training a reliable model. This can be achieved by incorporating the residual of

physics equations into the loss function. Through minimizing the loss function, the network

could approximate the solution. PINN has shown great abilities to tackle limitat ions

encountered with CFD solvers. In the implementation part of the thesis, we developed a PINN

framework to solve fluid dynamics problems governed by the Navier-Stokes equations. We

tested our PINN on the two-dimensional steady incompressible viscous laminar flow around an

NACA 0012 airfoil at different angle of attack. We also compared the predicted velocity and

pressure fields by the proposed PINN approach with the reference numerical solutions.

Simulation results demonstrate great potential of the proposed PINN for fluid flow simula t ion

with a high accuracy.

To conclude, we have shown the efficiency and robustness of the PINN approach by developing

our framework (solver) to solve the Navier-Stokes equations. Our future work aims to extend

the application of the PINN approach to:

- Solve the compressible Navier-Stokes equations that model several fluid flows, e.g., the

flow through converging-diverging nozzles;

- Model turbulence and simulate flows at high Reynolds number;

- Solve acoustics and aeroacoustics problems.

48

Bibliography

[1] RAISSI, Maziar, PERDIKARIS, Paris, et KARNIADAKIS, George E. Physics-

informed neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. Journal of Computational

Physics, 2019, vol. 378, p. 686-707.

[2] RAISSI, Maziar, PERDIKARIS, Paris, et KARNIADAKIS, George Em. Physics

informed deep learning (part i): Data-driven solutions of nonlinear partial differentia l

equations. arXiv preprint arXiv:1711.10561, 2017.

[3] GUO, Yanan, CAO, Xiaoqun, LIU, Bainian, et al. Solving partial differentia l

equations using deep learning and physical constraints. Applied Sciences, 2020, vol.

10, no 17, p. 5917.

[4] RAISSI, Maziar, WANG, Zhicheng, TRIANTAFYLLOU, Michael S., et al. Deep

learning of vortex-induced vibrations. Journal of Fluid Mechanics, 2019, vol. 861, p.

119-137.

[5] KADEETHUM, Teeratorn, JØRGENSEN, Thomas M., et NICK, Hamidreza M.

Physics-informed neural networks for solving nonlinear diffusivity and Biot’s

equations. PloS one, 2020, vol. 15, no 5, p. e0232683.

[6] BOUMA, Jort. Using a Physics-Informed Neural Network to solve the Ideal

Magnetohydrodynamic Equations. 2020.

[7] JIN, Xiaowei, CAI, Shengze, LI, Hui, et al. NSFnets (Navier-Stokes flow nets):

Physics-informed neural networks for the incompressible Navier-Stokes equations.

Journal of Computational Physics, 2021, vol. 426, p. 109951.

[8] YADAV, Neha, YADAV, Anupam, KUMAR, Manoj, et al. An introduction to neural

network methods for differential equations. Berlin : Springer, 2015.

[9] CHAKRAVERTY, Snehashish et MALL, Susmita. Artificial neural networks for

engineers and scientists: solving ordinary differential equations. CRC Press, 2017.

 Bibliography

49

[10] RASHID, Tariq. Make your own neural network . CreateSpace Independent Publishing

Platform, 2016.

[11] KARALI, Hasan, DEMIREZEN, Umut M., YUKSELEN, Mahmut A., et al. A Novel

Physics Informed Deep Learning Method for Simulation-Based Modelling. In : AIAA

Scitech 2021 Forum. 2021. p. 0177.

[12] LAGARIS, Isaac E., LIKAS, Aristidis, et FOTIADIS, Dimitrios I. Artificial neural

networks for solving ordinary and partial differential equations. IEEE transactions on

neural networks, 1998, vol. 9, no 5, p. 987-1000.

[13] BAI, Xiaodong et ZHANG, Wei. Machine Learning for Vortex Induced Vibration in

Turbulent Flow. arXiv preprint arXiv:2103.05818, 2021.

[14] SHIN, Yeonjong, DARBON, Jerome, et KARNIADAKIS, George Em. On the

convergence of physics informed neural networks for linear second-order elliptic and

parabolic type PDEs. arXiv preprint arXiv:2004.01806, 2020.

[15] SUN, Luning, GAO, Han, PAN, Shaowu, et al. Surrogate modeling for fluid flows

based on physics-constrained deep learning without simulation data. Computer

Methods in Applied Mechanics and Engineering, 2020, vol. 361, p. 112732.

[16] ZAWAWI, Mohd Hafiz, SALEHA, A., SALWA, A., et al. A review: Fundamenta ls

of computational fluid dynamics (CFD). In : AIP Conference Proceedings. AIP

Publishing LLC, 2018. p. 020252.

[17] WIGHT, Colby. Numerical Approximations of Phase Field Equations with Physics

Informed Neural Networks. 2020.

[18] TERLETH, Niels. Artificial Neural Networks for Flow Field Inference: A machine

learning approach. 2019.

[19] BRUNTON, Steven L. et KUTZ, J. Nathan. Data-driven science and engineering:

Machine learning, dynamical systems, and control. Cambridge University Press, 2019.

[20] EL-AMIR, Hisham et HAMDY, Mahmoud. Deep learning pipeline: building a deep

learning model with TensorFlow. Apress, 2019.

[21] RUNGTA, Krishna. TensorFlow in 1 Day: Make your own Neural Network . 2018.

[22] CHOLLET, Francois. Deep learning with Python. Simon and Schuster, 2017.

[23] HOPE, Tom, RESHEFF, Yehezkel S., et LIEDER, Itay. Learning tensorflow: A guide

to building deep learning systems. " O'Reilly Media, Inc.", 2017.

 Bibliography

50

[24] SINGH, Pramod et MANURE, Avinash. Learn TensorFlow 2.0: Implement Machine

Learning and Deep Learning Models with Python. Apress, 2020.

[25] JI, Weiqi, QIU, Weilun, SHI, Zhiyu, et al. Stiff-pinn: Physics-informed neural network

for stiff chemical kinetics. arXiv preprint arXiv:2011.04520, 2020.

[26] SIRIGNANO, Justin, MACART, Jonathan F., et FREUND, Jonathan B. DPM: A deep

learning PDE augmentation method with application to large-eddy simulation. Journal

of Computational Physics, 2020, vol. 423, p. 109811.

[27] MENG, Xuhui, LI, Zhen, ZHANG, Dongkun, et al. PPINN: Parareal physics-informed

neural network for time-dependent PDEs. Computer Methods in Applied Mechanics

and Engineering, 2020, vol. 370, p. 113250.

[28] RAO, Chengping, SUN, Hao, et LIU, Yang. Physics-Informed Deep Learning for

Computational Elastodynamics without Labeled Data. Journal of Engineering

Mechanics, 2021, vol. 147, no 8, p. 04021043.

[29] WASEI, E. A. A. Investigating Physics-Informed Neural Networks for solving PDEs.

2020.

[30] BRUNTON, Steven L., NOACK, Bernd R., et KOUMOUTSAKOS, Petros. Machine

learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, vol. 52, p. 477-

508.

[31] ELTVIK, Audun. Deep Learning for the Classification of EEG Time-Frequency

Representations. 2018. Thèse de maîtrise. NTNU.

[32] WESSELS, Henning, WEIßENFELS, Christian, et WRIGGERS, Peter. The neural

particle method–an updated Lagrangian physics informed neural network for

computational fluid dynamics. Computer Methods in Applied Mechanics and

Engineering, 2020, vol. 368, p. 113127.

[33] NASCIMENTO, Renato G., FRICKE, Kajetan, et VIANA, Felipe AC. A tutorial on

solving ordinary differential equations using Python and hybrid physics-informed

neural network. Engineering Applications of Artificial Intelligence, 2020, vol. 96, p.

103996.

[34] BEKELE, Yared W. Deep learning for one-dimensional consolidation. arXiv preprint

arXiv:2004.11689, 2020.

[35] MISYRIS, George S., VENZKE, Andreas, et CHATZIVASILEIADIS, Spyros.

Physics-informed neural networks for power systems. In : 2020 IEEE Power & Energy

Society General Meeting (PESGM). IEEE, 2020. p. 1-5.

 Bibliography

51

[36] KHARAZMI, Ehsan, ZHANG, Zhongqiang, et KARNIADAKIS, George Em.

Variational physics-informed neural networks for solving partial differentia l

equations. arXiv preprint arXiv:1912.00873, 2019.

[37] YUCESAN, Yigit A. et VIANA, Felipe AC. A physics-informed neural network for

wind turbine main bearing fatigue. International Journal of Prognostics and Health

Management, 2020, vol. 11, no 1.

[38] MAO, Zhiping, JAGTAP, Ameya D., et KARNIADAKIS, George Em. Physics -

informed neural networks for high-speed flows. Computer Methods in Applied

Mechanics and Engineering, 2020, vol. 360, p. 112789.

[39] PANG, Guofei, LU, Lu, et KARNIADAKIS, George Em. fPINNs: Fractional physics -

informed neural networks. SIAM Journal on Scientific Computing, 2019, vol. 41, no

4, p. A2603-A2626.

[40] RAO, Chengping, SUN, Hao, et LIU, Yang. Physics-informed deep learning for

incompressible laminar flows. Theoretical and Applied Mechanics Letters, 2020, vol.

10, no 3, p. 207-212.

[41] RABAULT, Jean et KUHNLE, Alexander. Accelerating deep reinforcement learning

strategies of flow control through a multi-environment approach. Physics of Fluids,

2019, vol. 31, no 9, p. 094105.

[42] VIQUERAT, Jonathan et HACHEM, Elie. A supervised neural network for drag

prediction of arbitrary 2D shapes in laminar flows at low Reynolds number. Computers

& Fluids, 2020, vol. 210, p. 104645.

[43] ISKHAKOV, Arsen S. et DINH, Nam T. Physics-integrated machine learning:

embedding a neural network in the Navier-Stokes equations. Part I. arXiv preprint

arXiv:2008.10509, 2020.

[44] KOCHKOV, Dmitrii, SMITH, Jamie A., ALIEVA, Ayya, et al. Machine learning–

accelerated computational fluid dynamics. Proceedings of the National Academy of

Sciences, 2021, vol. 118, no 21.

[45] SADREHAGHIGHI, Ideen. Artificial Neutral Networks (ANNs) Applied as CFD

Optimization Techniques.

[46] LYE, Kjetil O., MISHRA, Siddhartha, et RAY, Deep. Deep learning observables in

computational fluid dynamics. Journal of Computational Physics, 2020, vol. 410, p.

109339.

 Bibliography

52

[47] BAYMANI, Mojtaba, EFFATI, Sohrab, NIAZMAND, Hamid, et al. Artificial neural

network method for solving the Navier–Stokes equations. Neural Computing and

Applications, 2015, vol. 26, no 4, p. 765-773.

[48] CHENG, Chen et ZHANG, Guang-Tao. Deep learning method based on physics

informed neural network with resnet block for solving fluid flow problems. Water,

2021, vol. 13, no 4, p. 423.

[49] PANWAR, Vishwanath, VANDRANGI, Seshu Kumar, et EMANI, Sampath.

Artificial intelligence-based computational fluid dynamics approaches. In : Hybrid

Computational Intelligence. Academic Press, 2020. p. 173-190.

[50] MCCRACKEN, Megan F. Artificial neural networks in fluid dynamics: A novel

approach to the navier-stokes equations. In : Proceedings of the Practice and

Experience on Advanced Research Computing. 2018. p. 1-4.

[51] BAI, Xiao-dong, WANG, Yong, et ZHANG, Wei. Applying physics informed neural

network for flow data assimilation. Journal of Hydrodynamics, 2020, vol. 32, no 6, p.

1050-1058.

[52] FALLER, William E. et SCHRECK, Scott J. Unsteady fluid mechanics applications

of neural networks. Journal of aircraft, 1997, vol. 34, no 1, p. 48-55.

[53] LUNDSTRÖM, Robin. Machine Learning for Air Flow Characterization: An

application of Theory-Guided Data Science for Air Fow characterization in an

Industrial Foundry. 2019.

[54] HARYANTO, Ismoyo, UTOMO, Tony Suryo, SINAGA, Nazaruddin, et al.

Optimization of maximum lift to drag ratio on airfoil design based on artificial neural

network utilizing genetic algorithm. In : Applied Mechanics and Materials. Trans Tech

Publications Ltd, 2014. p. 123-128.

[55] OBIOLS-SALES, Octavi, VISHNU, Abhinav, MALAYA, Nicholas, et al. CFDNet:

A deep learning-based accelerator for fluid simulations. In : Proceedings of the 34th

ACM International Conference on Supercomputing. 2020. p. 1-12.

[56] SECCO, Ney R. et MATTOS, Bento S. Artificial neural networks applied to airplane

design. In : 53rd AIAA Aerospace Sciences Meeting. 2015. p. 1013.

[57] ZHU, Linyang, ZHANG, Weiwei, KOU, Jiaqing, et al. Machine learning methods for

turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 2019, vol.

31, no 1, p. 015105.

 Bibliography

53

[58] WANG, Zheng, XIAO, Dunhui, FANG, Fangxin, et al. Model identification of

reduced order fluid dynamics systems using deep learning. International Journal for

Numerical Methods in Fluids, 2018, vol. 86, no 4, p. 255-268.

[59] XIE, Chenyue, XIONG, Xiangming, et WANG, Jianchun. Artificial neural network

approach for turbulence models: A local framework. arXiv preprint arXiv:2101.10528,

2021.

[60] PAWAR, Suraj, SAN, Omer, AKSOYLU, Burak, et al. Physics guided machine

learning using simplified theories. Physics of Fluids, 2021, vol. 33, no 1, p. 011701.

[61] HARYANTO, Ismoyo, UTOMO, Tony Suryo, SINAGA, Nazaruddin, et al.

Optimization of maximum lift to drag ratio on airfoil design based on artificial neural

network utilizing genetic algorithm. In : Applied Mechanics and Materials. Trans Tech

Publications Ltd, 2014. p. 123-128.

[62] ASHGRIZ, Nasser et MOSTAGHIMI, Javad. An introduction to computational fluid

dynamics. Fluid flow handbook, 2002, vol. 1, p. 1-49.

[63] LOMAX, Harvard, PULLIAM, Thomas H., et ZINGG, David W. Fundamentals of

computational fluid dynamics. Springer Science & Business Media, 2013.

[64] HIRSCH, Charles. Numerical computation of internal and external flows: The

fundamentals of computational fluid dynamics. Elsevier, 2007.

[65] KELLEHER, John D., MAC NAMEE, Brian, et D'ARCY, Aoife. Fundamentals of

machine learning for predictive data analytics: algorithms, worked examples, and

case studies. MIT press, 2020.

[66] DU, Ke-Lin et SWAMY, M. N. S. Fundamentals of machine learning. In : Neural

Networks and Statistical Learning. Springer, London, 2014. p. 15-65.

[67] FRANK, Michael, DRIKAKIS, Dimitris, et CHARISSIS, Vassilis. Machine-learning

methods for computational science and engineering. Computation, 2020, vol. 8, no 1,

p. 15.

[68] EROĞLU, Muhammet Yusuf. PREDICTION OF DRAG FORCE USING

COMPUTATIONAL FLUID DYNAMICS BASED ARTIFICIAL NEURAL

NETWORK MODEL. 2019.

[69] MIYANAWALA, Tharindu P. et JAIMAN, Rajeev K. An efficient deep learning

technique for the Navier-Stokes equations: Application to unsteady wake flow

dynamics. arXiv preprint arXiv:1710.09099, 2017.

 Bibliography

54

[70] RANADE, Rishikesh, HILL, Chris, et PATHAK, Jay. DiscretizationNet: A machine -

learning based solver for Navier–Stokes equations using finite volume discretizat ion.

Computer Methods in Applied Mechanics and Engineering, 2021, vol. 378, p. 113722.

[71] SEONG, Yongho, PARK, Changhyup, CHOI, Jinho, et al. Surrogate Model with a

Deep Neural Network to Evaluate Gas–Liquid Flow in a Horizontal Pipe. Energies,

2020, vol. 13, no 4, p. 968.

[72] BRUNTON, Steven L., HEMATI, Maziar S., et TAIRA, Kunihiko. Special issue on

machine learning and data-driven methods in fluid dynamics. 2020.

[73] PEREIRA, Francisco Câmara et BORYSOV, Stanislav S. Machine learning

fundamentals. In : Mobility Patterns, Big Data and Transport Analytics. Elsevier,

2019. p. 9-29.

[74] ANDERSON, J. D. Basic philosophy of CFD. In : Computational Fluid Dynamics.

Springer, Berlin, Heidelberg, 2009. p. 3-14.

[75] ZHAO, Yaomin, AKOLEKAR, Harshal D., WEATHERITT, Jack, et al. RANS

turbulence model development using CFD-driven machine learning. Journal of

Computational Physics, 2020, vol. 411, p. 109413.

