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Abstract 

 

Solving fluid dynamics problems mainly rely on experimental methods and CFD 

(Computational Fluid Dynamics) based numerical simulations. However, in experimenta l 

methods it is difficult to simulate the physical problems in reality and there is also a high-cost 

to the economy, while CFD simulation are sensitive about meshing a complicated structure. It 

is also time-consuming due to the billion degrees of freedom in relevant spatial-temporal flow 

fields. Therefore, constructing a cost-effective model to settle fluid dynamics problems is of 

significant meaning. Physics-informed machine learning has drawn tremendous interest in 

recent years to solve computational physics problems, whose basic concept is to embed physical 

laws to constrain/inform neural networks, with the need of less data for training a reliable 

model. This can be achieved by incorporating the residual of physics equations into the loss 

function. Through minimizing the loss function, the network could approximate the solution.  

In this report, we propose a physics-informed neural network (PINN) to solve fluid flows 

problems governed by the Navier-Stokes equations. We apply the proposed PINN to simulate 

steady incompressible laminar flows at low Reynolds numbers. The predicted velocity and 

pressure fields by the proposed PINN approach are also compared with the reference numerica l 

solutions. Simulation results demonstrate great potential of the proposed PINN for fluid flow 

simulation with a high accuracy. 

Keywords: Machine Learning, neural network, Physics-informed neural network (PINN), 

Computational Fluid Dynamics (CFD), Navier-Stokes equations, numerical simulation, fluid 

flow. 

  



 

 

 
Résumé 

 

La résolution de problèmes de dynamique des fluides repose principalement sur des méthodes 

expérimentales et des simulations numériques basées sur la CFD (Computational Fluid 

Dynamics). Cependant, dans les méthodes expérimentales, il est difficile de simuler les 

problèmes physiques dans la réalité et il y a aussi un coût élevé pour l'économie, tandis que la 

simulation CFD est sensible au maillage d'une structure complexe. Cela prend également du 

temps en raison des milliards de degrés de liberté dans les champs d’écoulement spatio-

temporels pertinents. Par conséquent, la construction d'un modèle rentable pour résoudre les 

problèmes de dynamique des fluides est d'une importance significative. L'apprentissage 

automatique basé sur la physique a suscité un vif intérêt ces dernières années pour résoudre des 

problèmes de physique computationnelle, dont le concept de base est d'intégrer des lois 

physiques pour contraindre/informer les réseaux de neurones, avec le besoin de moins de 

données pour former un modèle fiable. Ceci peut être réalisé en incorporant le résidu des 

équations physiques dans la fonction de perte. En minimisant la fonction de perte, le réseau 

pourrait se rapprocher de la solution. Dans ce rapport, nous proposons un réseau neuronal basé 

sur la physique (PINN) pour résoudre les problèmes d'écoulement de fluides régis par les 

équations de Navier-Stokes. Nous appliquons le PINN proposé pour simuler des écoulements 

laminaires incompressibles stationnaires à de faibles nombres de Reynolds. Les champs de 

vitesse et de pression prédits par l'approche PINN proposée sont également comparés aux 

solutions numériques de référence. Les résultats de simulation démontrent le grand potentiel du 

PINN proposé pour la simulation d'écoulement de fluide avec une grande précision. 

Mots clés : apprentissage automatique, réseau de neurones, réseau de neurones informés par la 

physique (PINN), Computational Fluid Dynamics (CFD), équations de Navier-Stokes, 

simulation numérique, écoulement des fluides. 

  



 

 
 ملخص

 

 ديناميكا السوائل) CFD على القائمة العددية والمحاكاة التجريبية الطرق على أساسي بشكل الموائع ديناميكا مشاكل حل يعتمد

 عالية تكلفة أيضًا وهناك الواقع في فزيائيةال المشكلات محاكاة الصعب من التجريبية، الأساليب في ذلك، ومع(. الحسابية

 الحرية من درجة لمليار نظرًا طويلاً  وقتاً تستغرق أنها كما. المعقدة البنية لشبكة حساسة CFD محاكاة أن حين في للاقتصاد،

 الموائع ديناميكيات مشاكل لحل التكلفة حيث من فعال نموذج بناء فإن لذلك، .الصلة ذات والزماني المكاني التدفق مجالات في

ً  بالفيزياء المستنير الآلي التعلم ولدّ لقد. كبيرة أهمية له ً  قدرا  الفيزياء مشاكل لحل الأخيرة السنوات في الاهتمام من كبيرا

 لتشكيل أقل بيانات إلى الحاجة مع العصبية، الشبكات إعلام/  لتقييد الفيزيائية القوانين دمج هو لها الأساسي والمفهوم بية،ساالح

 للشبكة يمكن الخسارة، دالة بتقليل. الخسارة دالة في فزيائيةال المعادلات بقايا دمج خلال من ذلك تحقيق يمكن. موثوق نموذج

 تحكمها التي السوائل تدفق مشاكل لحل( PINN) الفيزياء على قائمة عصبية شبكة نقترح التقرير، هذا في. الحل من تقترب أن

 رينولدز أرقام عند للضغط القابلة غير الثابتة الصفائحية التدفقات لمحاكاة المقترح PINN نطبق. ستوكس-نافيير معادلات

 توضح. الرقمية المرجعية بالحلول المقترح PINN نهج بها تنبأ التي والضغط السرعة مجالات مقارنة أيضًا تتم. المنخفضة

 .عالية بدقة السوائل تدفق لمحاكاة المقترح PINN لـ الكبيرة الإمكانات المحاكاة نتائج

 السوائل ديناميكيات ،( PINN) للفيزياء المستنيرة العصبية الشبكة ، العصبية الشبكة ، الآلي التعلم  :المفتاحية الكلمات

 .السوائل تدفق ، العددية المحاكاة ، ستوكس نافيير معادلات ،( CFD) الحاسوبية
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CHAPTER 

1 
Introduction 

 

 

 

1.1. Thesis Overview 

Fluid dynamics is an engineering field and a subdiscipline of fluid mechanics that describes the 

behaviour of fluid (liquid as water or gas as air) flow. This field is omnipresent in many 

disciplines such as aerospace, mechanical, chemistry, environmental, biology, biomedica l, 

nuclear, etc. Let us take examples to illustrate the ubiquity of fluid dynamics, from the air flow 

around a wing that provides lift for the airplane to the flow of a coolant in an automobile radiator 

or air-conditioning system to the unsteady, turbulent, compressible flow of air or steam in 

turbomachinery used to produce aeronautical propulsion and electrical power [18]. All of these 

examples show the importance of fluid dynamics and the need to understand it. 

Any physical phenomena (e.g. fluid flow) can be described with a mathematical model, for 

example, by using a set of partial differential equations (PDEs), and then the model can be 

solved analytically to obtain the quantities of interest (e.g. velocity and pressure fields).  

Fluid dynamics problems such as cavity flow, pipeline flow, and flow around bluff body, is 

typically governed by the Navier-Stokes (N-S) equations, which is a highly nonlinear PDEs 

system [15]. Due to this nature of N-S equations, finding an analytical solution for them remains 

a daunting and complicated task. That is why, solving fluid flow problems mainly rely on 

experimental methods and numerical simulations [40]. 

An experimental study begins by reproducing the physical problem in a laboratory, and then 

using instrumentation (e.g. sensors), the physical quantities can be determined. Wind tunnel 

experiments are an example, where aerodynamicists test models of proposed aircraft and engine
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components [56]. During a test, the model is placed in the test section of the tunnel and air is 

made to flow past the model. In this way, aerodynamicists can visualize the air flow, visualizing 

structure of the boundary layer, measure pressures and velocity, determine forces and moments 

(lift, drag, and pitch) on the model, etc. 

Despite the usefulness of the experimental methods, the latter have major drawbacks: the 

difficulty to simulate the physical problems in reality, high-cost to the economy, time-

consuming process, etc. These constraints forced engineers to find a new method of studying 

physical problems. 

After years of research and with the considerable development of computers, a new field has 

emerged, which is Computational Fluid Dynamics (CFD). 

CFD simulation is based on discretization and approximation of the underlying differentia l 

equations that govern the behaviour of fluids (i.e. N-S equations) using a computational grid 

(discretization of computational domain) and numerical methods such as finite difference, finite 

volume, or finite element methods [16], then, linear algebra is used to solve the discretized 

equations [6]. 

Nowadays, CFD is heavily applied in many engineering areas and play an important role in 

modelling various physical phenomena, such as weather, climate, aerodynamics, etc [44]. It can 

also replace cost and time intensive experiments and even reduce the need for prototypes. 

However, CFD simulations are often computationally cumbersome, especially for the flows 

with turbulence and complex geometries, and when dealing with billion degrees of freedom in 

relevant spatial-temporal flow fields. Moreover, mesh generation also usually incurs a huge 

burden, in particular when moving boundary or large geometric variation is considered [15]. 

Furthermore, the CFD method has significant limitations in dealing with special mesh (e.g., 

moving mesh) which is difficult to converge. 

Faced with constraints encountered with both experimental study and CFD approach, it is no 

wonder that researchers are always looking for new and better ways to solve physical problems. 

In the last years, they are interested with a field that is currently getting a lot of attention which 

is Machine Learning (ML), more specific, Artificial Neural Networks (ANNs). 

ML is a type of Artificial Intelligence (AI) that provides computers with the ability to learn 

(through experience and by the use of data) without being explicitly programmed [10]. It 

facilitates automation of tasks and augment human domain knowledge [30].  
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In the past decade, ML has given us self-driving cars, practical speech recognition, effective 

web search, and a vastly improved understanding of the human genome. ML is so pervasive 

today that you probably use it dozens of times a day without knowing it [45]. 

ML is based on several algorithms, one of particular interest is the Artificial Neural Networks 

(ANNs) which are a computing system inspired by the biological neural networks that 

constitute human brain [10]. ANNs are one of the core technologies in the rapidly growing field 

of ML and are widely used in various complex cognitive tasks such as visual object recognit ion, 

video analysis, mathematical optimization, etc [8]. 

All of these successes of ML, in particular ANNs, explain the increasing attention from the 

scientific community on the capabilities of such methods, and their possible applications to 

diverse research fields. 

In recent years, the field of numerical computation known a major breakthrough thanks to 

ANNs, especially with the creation of the field of Physics-Informed Neural Networks (PINNs) 

by the authors Raissi et al. in 2019 [1]. These latter had an ingenious idea by combining ANNs 

and physical principle constraints in the form of PDEs, thus forming the PINNs field. 

PINNs are a new class of numerical methods for solving PDEs [29]. Compared to conventiona l 

methods (finite difference, finite volume, finite element), they have enormous advantages: 

PINNs are totally mesh-free methods which allow him to solve accurately and efficient ly 

differential equation defined on complex domain where classical methods are inefficient [7]. 

PINNs have potential to solve high-dimensional equations while the classical methods have 

rapidly increasing complexity with increasing dimension of problem [3] (and many others 

advantages that we will cite in Chapter 2). 

In the CFD field, the appearance of the new PINNs solvers triggered a real enthusiasm, “we 

even think of replacing the commercial solvers based on classical numerical methods with 

Machine Learning solvers”.  

1.2. Thesis Objectives 

The main objective of this thesis is to employ PINNs for solving fluid dynamics problems 

governed by the N-S equations. The fluid problems for which the PINNs framework will be 

tested on, are the steady two-dimensional incompressible laminar viscous flow around NACA 

0012 airfoil with different angle of attack. 
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To validate the PINNs results, we will make a comparative study with reference solutions based 

on finite volume method (given by CFD solvers). 

1.3. Thesis Outline 

Chapter 2 Machine Learning Applied to CFD 

Presents a theoretical background and fundaments of both CFD, Machine 

Learning approach, and subsequently Artificial Neural Network, then, the step 

to Physics-Informed Neural Networks is made. 

Chapter 3 Preliminary Examples 

Presents two preliminary examples to understand the Physics-Informed Neural 

Networks approach. 

Chapter 4 Implementation and Results 

An implementation of Physics-Informed Neural Networks framework to solve 

the Navier-Stokes equations is presented, then, to validate the PINNs results, 

we compare them with a reference solution. 

Chapter 5 Summary and Conclusions 

Presents the summary and conclusions found during the present study, along 

with future works. 
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CHAPTER 

2 
Machine Learning Applied to CFD 

 

 

 

2.1. Fundamentals of CFD 

2.1.1. Introduction 

Methods in Computational Fluid Dynamics (CFD) aim to find numerical solutions to the 

differential equations governing the behavior of fluids. Depending on the concrete problem, 

this includes finding valid solution to field quantities such as fluid velocity, pressure, density 

and inner energy [16]. Since analytical solutions to the governing equations can only be found 

for a very small subset of problems, the goal of a CFD simulation, in general, is to find 

approximate solutions to those physical quantities using numerical methods. In theory, with 

unlimited computing power, numerically obtained solutions can be arbitrarily accurate [18]. In 

practice, however, the limits of even today’s most performant supercomputers limit the 

accuracy of CFD simulations [38]. 

2.1.2. Equations of fluid flow 

The motion of fluids can be described by three conservation laws: continuity equation, 

momentum equation, and the energy equation. In combination, these equations describe the 

state of the fluid in its entirety. In order to find a closed solution to these equations, additiona l 

constraints are needed. These constraints can be enforced by an additional equation of state (i.e. 

the ideal gas law) [63]. 

The continuity equation (conservation of mass) in differential form is defined as follows: 

( )
0i

i

u

t x

 
+ =

 
                                                       (2.1)
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The variable   denotes the fluid density, and 
iu  denotes the velocity component in direction 

ix . The continuity equations enforce that the rate of change of mass within a control volume 

must be equal to the mass flux through the surfaces of the control volume [64]. 

For incompressible fluids (i.e. liquid water can be approximated to be incompressible) the 

density   is constant and does not change over time, which simplifies the continuity equation 

to: 

0i

i

u

x


=


 

The fluid flow is divergence free and contains no sinks or sources. 

The momentum equation (conservation of momentum) enforces that the rate of change in 

momentum of a control volume must be equal to the momentum flux through the surfaces of 

the control volume [64]. The conservation of momentum equation can be expressed as follows: 

( ) ( )( )
0

i j ij iji
i

j j j

u u pu
f

t x x x

  


  
+ + − − =

   
                                (2.2) 

Note that equation (2.2) yields three independent equations for the three spatial dimensions. 

The variable   denotes the density, iu  denotes the flow velocity component in direction ix , 

p denotes the pressure and ij  denotes the viscous stress tensor. The viscous stress tensor has 

9 entries for three-dimensional fluid flow. The variable ij  denotes the Kronecker delta which 

equals 1 for i j= , and equals 0 otherwise. The variable if  denotes the external forces acting 

on the control volume in direction i [74]. In this work, transient flow phenomena will be 

neglected, meaning that time derivatives of field quantities can be assumed to be equal to zero. 

The remaining equations describe the behavior of a steady-state fluid flow problem. 

An additional equation, the energy equation measures the flux of energy through the control 

volume. For non-reacting flows without phase changes and without heat conduction, this 

equation can be omitted [63]. 

In general, the values of the stress tensor are not known rendering finding solutions to equations 

(2.1) and (2.2) impossible. However, for many liquid and gaseous fluids the stress tensor can 

be expressed in terms of partial derivatives of the velocity field [64]. Such fluids are called 

Newtonian fluids. For such fluids, the stress tensor can be defined as follows: 
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1 1
2

2 3

ji k
ij ij

j i k

uu u

x x x
  

   
= + −        

                                       (2.3) 

Equation (2.3) is a so-called constitutive equation that relates the stress tensor to the velocity 

field and a material parameter  , the shear viscosity, which is specific to each kind of liquid. 

Combining the continuity, momentum and the material equation for Newtonian fluids yields 

the infamous Navier-Stokes (N-S) equations. Solving a CFD problem means finding valid 

solutions to the N-S equations.  

• Note: we can also express the N-S equations using the gradient or the projected forms 

as follow: 

o Gradient-Form: 

Conservation of mass: 

( ) 0
t





+  =


u  

Conservation of momentum: 

( )
1

( ) 0
3

T
p

t


 

  
+  + −   + −  = 

  

u
uu u u u  

For an incompressible flow, these equations become: 

0 =u  

( ) 2 0p
t

  


+  + −  =


u
u u u  

Where u  denotes the velocity vector  , ,u v w=u . 

o Projected-Form: for steady two-dimensional incompressible flow, the N-S equations 

are written: 

2 2

2 2

2 2

2 2

0
u v

x y

u u p u u
u v

x y x x y

v v p v v
u v

x y y x y

 

 

 
+ =

 

      
+ = − + +  

       

      
+ = − + +  

       
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2.1.3. CFD Process 

The use of CFD techniques to solve a fluid flow and heat transfer problem is split into three 

discrete parts: pre processing, processing, and post processing. In general, different computer 

programs that form the CFD code must undertake each of the three tasks [62]. 

• Definition of a CFD Problem (Preprocessor) 

The first stage in solving a CFD problem is to define all the relevant parameters required by the 

CFD code prior to the numerical solution process, as follows: 

 

Figure 2.1 Definition of computational domain and boundary conditions [53]. 

 

Figure 2.2 Construction of a computational grid [53]. 

 

a. Definition of the physical geometry of the environment in which the fluid flows, which 

is normally done by building up a geometric representation of the environment. “Create 

the shape of the problem domain that needs to be analysed”. 

b. Definition of flow parameter (such as the density, viscosity of the fluid flow). 

c. Declaration of the boundary conditions of the physical environment. These boundary 

conditions will include defining certain areas such as the inlets and outlets for the fluid 

flow and the boundary areas of solids where heat transfer from or to the fluid can occur.  
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d. Construction of a mesh or grid as a geometric representation of the physical 

environment. This mesh or grid will form the computational grid that will be used in the 

solution of the problem by the powerful mathematical techniques around which CFD is 

based. 

• Solution of the Problem (Processor) 

The solution of the problem by the CFD code is where a host of mathematical techniques is 

used to approximate the differential equations into algebraic form, which can be solved directly 

or iteratively [16]. Different CFD codes employ different solution techniques, but the physics 

is the same if it can be well defined and understood. The solution of the transport equations for 

the geometry under study is not a trivial matter and cannot be solved readily, if at all, by 

analytical techniques. CFD uses numerical techniques (such as finite difference, finite volume, 

and finite element) to solve discretized representations of the transport equations [68]. 

Direct or explicit numerical methods, which can be both extremely accurate and rapid, may be 

used if sufficient computing power is available. Many codes use iterative methods to solve the 

equations because they tend to be more robust, although they can take longer to converge [64]. 

• Analysis of the Results (Postprocessor) 

The results can be analyzed both numerically and graphically. The postprocessor takes the 

numerical results and displays them as a visual representation. It displays a visual image of the 

physical geometry through which the fluid flows, with the option of printing a hard copy of all 

the results as tables of numbers and other means [62]. 

 

Figure 2.3 Example of Post processing results [62]. 
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2.1.4. Summary 

The momentum equation and the continuity equation in combination with the Newtonian 

material equation leads to the Navier-Stokes equations, which describes the motion of fluids. 

Computational Fluid Dynamics (CFD) is the simulation of fluids engineering systems using 

modeling (mathematical physical problem formulation) and numerical methods (discretiza t ion 

methods, solvers, numerical parameters, and grid generations, etc.). The process is as figure 

2.4. 

 

 

 

 

 

 

 

Figure 2.4 Process of Computational Fluid Dynamics [55]. 

A great amount of research has been conducted to find simplified versions the equations under 

certain conditions and to build software to solve them efficiently and robustly. Highly optimized 

and parallelized software libraries for Linear Algebra and partial differential equations in 

combination with high-performance computer hardware allows engineers to find solutions to 

practical problems in the area of computational fluid dynamics. While effects such as turbulence 

cannot be modeled explicitly in all detail even with today’s high-performance computing 

systems, CFD solvers are essential in trying to understand the complex behavior of fluid under 

many conditions and deliver numerical results very close to experimental measurements [26]. 

CFD solvers and the software implementing the solvers are complex but powerful tools for 

solving the equations governing the behavior of fluids. Due to their complexity, CFD solvers 

remain difficult to use, even for engineers with experience in the field of numerical simulatio ns. 
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Despite the advances of CFD solvers, a tradeoff between solution accuracy, computationa l 

requirements and time-to-solution must be made. 

2.2. Machine Learning Fundamentals 

2.2.1. Introduction 

Machine Learning (ML) is a field of research that concern techniques and algorithms that allow 

computers to "learn" how to solve specific problems, rather than having the solution explicit ly 

programmed [66]. To learn and develop, however, machine need data to analyze, understand, 

extract knowledge (or information) from them. In other words, ML uses data to feed an 

algorithm that can understand the relationship between the input and the output [72]. When the 

machine finished learning, it can predict the value or the class of new data point. 

Within ML, a commonly employed model is the Artificial Neural Network (ANN). Just like a 

biological brain, the idea behind the ANN is to arrange multiple artificial neurons (Section 

2.2.2.2) in layers to form a neural network (Section 2.2.2.3). Once the network structure built, 

it will be trained (Section 2.2.2.4) to perform a specific task. 

2.2.2. Artificial Neural Networks (ANNs) 

2.2.2.1. Biological Inspiration 

The human brain is built up with neurons (figure 2.5). The neurons found in human brains 

consist out of three components: the dendritic tree, the cell body, and the axon [6]. The dendritic 

tree forms the connection with other neurons and collects signals from them. The cell body 

integrates the signals and generates an output signal. Subsequently, the output is passed on to 

other neurons through the branching axon [8]. A human neuron is depicted in figure 2.6. 

 

 
Figure 2.5 Human brain [10]. Figure 2.6 Human neuron [6]. 
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The most prominent theory on how learning happens in the human brain is known as Hebbian 

learning [31]. This is a theory which postulates that learning is the result of connections between 

biological neurons strengthening and weakening with use, often summarized as "neurons that 

fire together, wire together" [10]. Inspired by this, ANNs consist of artificial neurons that 

imitate the functioning of biological neurons. They receive an input in the form of an electrica l 

signal from other neurons or sensory cells and if the sum of these inputs is sufficiently strong, 

the neuron fires its own action potential. 

2.2.2.2. Artificial Neurons 

The artificial neuron or perceptron works similarly to the biological one. Inputs are fed through 

the computing node through connections with other neurons, which are then processed through 

summation and an activation function to form an output [21]. This output can then be distributed 

to other neurons (Figure 2.7). 

 

(a) 

 

(b) 

Figure 2.7 (a) Biological neuron. (b) Artificial neuron [18]. 
 

The neuron receives inputs ix  that are weighted with weights iw  and an additional bias term 

0w . The inner state of the neuron is calculated by adding all weighted inputs and the bias term: 

0

1

N

i i

i

s x w w
=

= +  

Based on the inner state of the neuron, the neuron’s activation is calculated with an activation 

function f ; maps the inner state of the neuron to an activation state. The activation state of a 
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neuron in one layer is used as an input for a neuron in the subsequent layer [31]. Thus, a 

neuron’s activation can be calculated by the following equation: 

0

1

( )
N

i i

i

y f s f x w w
=

 
= = + 

 
  

An overview of common activation functions can be found in figure 2.8. 

Hyperbolic tangent function 

( ) tanh( )f s s=  
 

Sigmoid function 

1
( )

1 s
f s

e−
=

+
 

 

Step function 

1 0
( )

0 0

s
f s

s


= 


 

 

Sign function 

1 0
( )

1 0

s
f s

s


= 

− 
 

 

Figure 2.8 Common artificial neuron activation functions [9]. 

Some functions are non-linear or discontinuous. Generally, the magnitude of the output is 

( ) 1f s  . Activation functions are sometimes also referred to as squashing functions or limiters 

since they have the ability to limit/convert large input values to smaller output values. The most 

common activation functions are the sigmoid function and the hyperbolic tangent (tanh), due to 

their smooth and non-decreasing properties. Because of their inherent smoothness, these 

activation functions are also occasionally referred to as being soft limiters, where discontinuous 

activation functions are referred to as hard limiters [23]. 

The next step is to add neurons in layers and connect them to form an artificial neural network.  

2.2.2.3. Network 

Neural network consists of multiple connected layers. There are three types of layers, namely, 

the input layer, hidden layer, and output layer. There can be multiple hidden layers, depending 

on the complexity of the neural network. Each layer contains a certain number of neurons, as 
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for each layer, all the artificial neurons are connected to all the ones in the next layer (figure 

2.9), where each connection contains a weight that tells the neuron how much it should take 

over from the previous neurons, and each artificial neuron has a bias and a predefined activation 

function [18]. 

 

Figure 2.9 Neural network with an input layer with n  neurons, a hidden layer with m

neurons, and an output layer with k  neurons. Each neuron is indicated with a 

circle, and each connection between neurons is indicated with an arrow [27]. 

The input layer is just for the inputs and does not contain any activation (it takes the data that 

is fed into the network). The hidden layers contain weights and biases and the artificial neurons 

have activation functions ( )f s [22]. After performing all the calculations layer by layer, the 

neural network outputs prediction through the output layer. The output nodes have also 

activation functions and contain weights and biases [20]. 

The mathematical expressions for calculations process in the ANN are shown in equations 

below, and are in vector-form, where W are tensors, the inputs are vectors x  as well as the 

outputs y  and the biases b . The superscript in front of the symbols denotes the layer l . The 

weight tensor entries represent the weight between connecting nodes. The subscript indices of 

( )l

ijW , i  and j  denote the node it is pointing to and coming from respectively. So, for the 

connection between the input node for 2x  and the first node in the first hidden layer, the weight 

is 
(1)

12W . For the biases, the subscript just denotes the bias for their respective nodes.  

Furthermore, for each layer, the summation and bias step yield s . The application of the 
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activation function f  to s (element-wise), will yield a , which is the output of the artific ia l 

neurons in that layer and is what will be used for weighting and addition of the bias for the next 

layer. 

 

Figure 2.10 Detailed architecture of ANN [27]. 

The process calculation in the ANN is formalised as follow: 

• Input layer: 

This layer receives inputs ( )1 2x x=x  and then fed them to the 1st hidden layer. 

•  1st hidden layer: 

- Weighting and Summation: incoming signals x  from input neurons are each weighted 

by 
( )1

W , then, the weighted linear combination of incoming signals is formed, as follow: 

( )( )1(1)
T

W=s x  

- Biasing: an additional constant factor is added to the linear combination: 

( )1(1) (1)= +s s b  

- Activation: the scalar quantity resulting is then fed through the activation function 

which then forms the output: 

( )(1) (1)f=a s  

• 2nd hidden layer: 

- Weighting and Summation: incoming signals 
(1)

a  from 1st hidden layer neurons are 

each weighted by 
( )2

W , then, the weighted linear combination of incoming signals is 

formed: 

( )( )2(2) (1)
T

W=s a  

1y  

2y  
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- Biasing: 

( )2(2) (2)= +s s b  

- Activation: 

( )(2) (2)f=a s  

• Output layer: 

- Weighting and Summation: incoming signals (2)
a  from 2nd hidden layer neurons are 

each weighted by ( )3
W , then, the weighted linear combination of incoming signals is 

formed: 

( )( )3(2)
T

W=y a  

- Biasing: 

( )3
= +y y b  

- Activation: 

( )f=y y  

Where: 

• 

(1) (1)

11 12

(1) (1) (1)

21 22

(1) (1)

31 32

W W

W W W

W W

 
 

=  
 
 

,

(2) (2) (1)

11 12 13

(2) (2) (2) (2)

21 22 23

(2) (2) (2)

31 32 33

W W W

W W W W

W W W

 
 

=  
 
 

,

(3) (3) (3)

(3) 11 12 13

(3) (3) (3)

21 22 23

W W W
W

W W W

 
=  
 

 

represent respectively the weights of connections between: input and 1st hidden layer, 

1st and 2nd hidden layer, output and 2nd hidden layer. 

• ( )(1) (1) (1) (1)

1 2 3b b bb= , ( )(2) (2) (2) (2)

1 2 3b b b=b , ( )(3) (3) (3) (3)

1 2 3b b b=b , represent 

respectively the biases added in 1st, 2nd hidden layers and output layer. 

• ( )(1) (1) (1) (1)

1 2 3s s s=s , ( )(2) (2) (2) (2)

1 2 3s s s=s , ( )(3) (3) (3) (3)

1 2 3s s s=s , vectors 

resulting from weighting, summation, and biasing process, at respectively 1st, 2nd hidden 

layers and output layer. 

• ( )(1) (1) (1) (1)

1 2 3a a a=a , ( )(2) (2) (2) (2)

1 2 3a a a=a , ( )(3) (3) (3) (3)

1 2 3a a a=a , vectors 

resulting from activation process at 1st, 2nd hidden layers and output layer. 
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Now that we have determined the structure of the neural network and how it works, we need to 

train it on a set of data, so it can learn from them, and then, make accurate predictions for a new 

giving examples. 

2.2.2.4. Training the Network 

Suppose we assign random values to all the weights. Then with a certain input, the output will 

most likely be nothing like the output we desire. This is why we first need to train the neural 

network. For this training, training data is required. This training data is comprised of inputs, 

that we already know the answer (output) for [6]. 

During the training of the neural network, all weights and biases of all neurons are being 

updated for every iteration using an optimizer algorithm. This is done by iteratively changing 

the weights and biases of the neurons starting in the last layer and ending with the first layer in 

order to minimize an error measurement of the network (How wrong was the prediction of the 

network) called loss, which is typically measured by the squared distance between the network 

output y  and the expected output y [17]. The goal of the learning algorithm is to minimize this 

loss by changing the weights and biases according to the gradient of the loss, which is dependent 

on all weights and biases of all neurons in the network [6]. This algorithm is called the 

backpropagation algorithm since errors are propagated backward through the network in order 

to iteratively find optimal values for the weights and biases in the network [14]. 

 

Figure 2.11 Training process [8]. 

2.2.2.4.1.   Loss function 

To train the model, a scalar variable that quantifies the fitness of the model is required. The 

functional that governs the performance or fit of the artificial neural network to some target 

data is referred to as the loss function. An artificial neural network can represent a function or 

a mapping :N x y . The mapping is dependent on the artificial neural network parameters 

(weights and biases). By computing the difference between the output of the neural network y  
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and the data y  and summing those, a scalar function can be obtained, that represents the 

discrepancy of the neural network to the data. There are different ways for representing the 

discrepancy, or the loss function. The most common one is the mean-squared error (MSE) [6]. 

This loss function is shown in equation: 

( )
2

1

1
Mean-squared error:    

N

i i

i

MSE y y
N =

= −  

For which 
iy  and 

iy  is the ANN output and the target output respectively for 1,...,i N=  data 

points. Each output of the artificial neural network is governed by the combination of weights 

and biases of the artificial neurons in the preceding layers that form the particular output. 

Therefore, the weights and biases have to be trained in order to minimize the loss function.  

Moreover, the weights and biases form the parameter space and the loss function defines the 

error surface. The error surface can contain global, local minima and saddle points wherein the 

first one is sought for and the last two can cause difficulty when training an ANN [3]. To make 

the idea clearer behind the loss function and how it can be minimized, we give the mathematica l 

formulation of the literature above: 

( ) ( )
2

1

1 N

i i

i

L y y
N


=

= −  

Here   is the set of all parameters in the network, which is the set of all weights along with the 

set of all biases. The parameters are initialized in some random manner. Let Θ be the parameter 

space. The problem at hand is simply to find the values for   such that the loss function is 

minimal, that is, to approximate ( )arg min L  [3]. 

 

 

 

 

 

 

 

 

Figure 2.12 Loss function minima. 
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2.2.2.4.2.   Backpropagation Process 

In Calculus, when confronted with the task to determine a minimum of a function, the task is 

clear. Simply calculate the gradient and determine where it is equal to zero. 

*

* arg min ( )

0

L

L

 

 

 =

=


=



 

The backpropagation algorithm operates as computing the gradient of loss function with respect 

to parameters (weights and biases) of a neural network based on the chain rule, that is, 

computing the gradient at one layer and recursively backward from the last layer. An optimizer 

algorithm adjusts each parameter of the neural network until we satisfy the equations above and 

then obtain the optimum parameters *  of the ANN (at this stage, the network makes accurate 

predictions) [21]. 

 

Figure 2.13 Feedforward and Backpropagation process [8]. 

2.2.2.4.3.   Optimizer Algorithms 

As illustrated in figure 2.11 optimizer is used after the comparison between target values and 

outputs of the network and the goal is to minimize the loss function by adjusting model 

parameters (weights and biases). The optimization is crucial for the learning process. The 

choice of optimizer over another one can lead to a better optimization. This can result in a 

faster learning and/or in a better final prediction [10]. 
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There are different types of optimisers. Each type of optimiser has its own merits. The most 

common optimizers are Adam and the L-BFGS-B (Limited-memory Broyden-Fletche r-

Goldfarb-Shanno Bound) [66]. When training the network, we prefer starting with Adam 

optimizer rather than L-BFGS-B, because this latter have more probability to stuck on a local 

minimum. 

2.2.2.4.4.   Model Hyper-parameter 

Machine learning models and the algorithms to train them on data have so-called 

hyperparameters which are parameters set (by programmer) before optimizing the model’s 

parameters (the network weights and biases). Network hyper-parameters describe the 

concrete model of the neural network and have a profound impact on the actual performance 

of the model [9]. The parameters can be chosen manually, based on experience or guidelines . 

Model hyper-parameters are the following [6]: 

• Number of hidden layers 

• Number of units (neurons) in each layer 

• Activation function 

• Optimizer 

• Loss function 

• Learning rate: controls model’s update step size with respect to the accuracy 

achieved with the present model. It’s an important parameter. A value too small may 

result in a slow training and danger of getting stuck in a local. Instead a large value 

may result in risk of non-converting to any minimum, since the optimizer jumps out 

a minimum rather than descending to it. 

• Number of iterations: refers to the number of times that the whole data-set arranged 

for the training phase is feed into the model. For example, if a number of iterations is 

equal to 10, during the training phase the model "sees" 10 times the whole data-set. 

We now know the basics of how an artificial neural network works. The next step is to make 

the neural network a physics-informed neural network: get the physical model in the neural 

network. 
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2.3. Physics-Informed Neural Networks 

In this section, we introduce the physics-informed neural networks (PINNs) and related settings 

in this study. Traditional neural networks are based entirely on a data-driven approach that does 

not take into account the physical laws (i.e. governing PDEs and initial/boundary conditions 

I/BCs). Therefore, a large amount of data is often required to train the neural networks to obtain 

a reasonable model. In contrast, PINNs introduce physical information into the network by 

forcing the network output to satisfy the corresponding physics equations (PDEs, I/BCs) [3]. 

Specifically, by encoding these equations in the loss function, the model is made to consider 

physical laws during the training process. This processing makes the training process require 

less data and speeds up the training process. 

 

Figure 2.14 Physics-driven, Data-driven Neural Network [39]. 

PINNs can be used to solve not only the forward problem, i.e., obtaining approximate solutions 

to PDEs, but also the inverse problem, i.e., obtaining the parameters of PDEs from training 

data. In the following, the PINNs modified and used in this study is introduced for the forward 

problem of PDEs. 

In this study, consider the partial differential equation defined on the domain   with the 

boundary  . 

0    in  

0    on  

Du

Bu

= 

= 
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where (x, )u u t=  (for x n , t + ) is the unknown solution and D  denotes a linear or 

nonlinear N  differential operator (e.g., / x  , / t  , /u x  , 2 2/u x  , etc.), and the 

operator B  denotes the boundary condition of a partial differential Equation (e.g., Dirichlet 

boundary condition, Neumann boundary condition, Robin boundary condition, etc.). Let 

X (x, )t=  for convenience. At this point, the initial condition can be treated as a special 

type of Dirichlet boundary condition on the spatio-temporal domain [6]. 

First, we construct a neural network for approximating the solution ( )Xu  of a partial 

differential equation. This neural network is denoted by ( )ˆ X;u  , which takes the X  as input 

and outputs a vector of the same dimension as ( )Xu .   represent the neural network 

parameters (weights and biases) [11]. These parameters will be continuously optimized during 

the training phase. The neural network û  should satisfy the physics equations, thus, we fulfil l 

this requirement by defining a residual network: 

( ) ( )ˆX; : X;f N u =     

To build this neural network, we need to use automatic differentiation (AD) [15]. This represent 

all the differential operators (e.g.  , 2 ) in the PDEs; then the equations can be formulated by 

the neural network.  

In this study, for the surrogate network û , we derive the neural network by the AD. Moreover, 

since the network f  has the same parameters as the network û , both networks are trained by 

minimizing a loss function. Specifically, Figure 2.15 shows a schematic diagram of a physics-

informed neural network. 

The next main task is to find the best neural network parameters that minimize the defined loss 

function [3]. In a physics-informed neural network, the loss function is defined, as follows:  

 ( ) u fJ MSE MSE = +  (2.4) 

Where: 

 
( )

2

1

1
ˆ ,

uN
i i i

u u u

iu

MSE u u x t
N =

= −  (2.5) 

 
( )

2

1

1
,

fN

i i

f f f
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MSE f x t
N =
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Where ( i

ut , i

ux , ( ),i i

u uu x t ) are the given initial and boundary conditions. Equation 2.5 is taken 

over all the boundary and initial points and equation 2.6 is taken over all the points in the 

domain. So 
uMSE  ensures the boundary and initial conditions are met and fMSE  ensures the 

given differential equations are satisfied [6]. 

It should be noted here that while 
uMSE  can be calculated fairly easily, determining ( ),i i

f ff x t

and thus fMSE is more difficult. However, as discussed above, automatic differentiation is one 

of the qualities of a neural network. So, we can use this same technique to compute the 

derivatives, without the need of making grids as in classical numerical methods. So, f  can also 

be determined relatively easily (albeit with a longer computing time then 
uMSE ). 

Next, the optimization problem for equation 2.4 is addressed by optimizing the parameters in 

order to find the minimum value of the loss function, i.e., we seek the following parameters: 

( )( )

( )( )

*

*

arg min

arg min

w

b

w J w

b J b









=

=
 

In the last step, we use gradient optimizers to minimize the loss function, such as Adam, and L-

BFGS-B. It is found that, for smooth PDE solutions, L-BFGS-B can find a good solution faster 

than Adam, using fewer iterations. This is because Adam optimizer relies only on the first order 

derivative, whereas L-BFGS-B uses the second order derivative of the loss function [10]. 

However, one problem with L-BFGS-B is that it is more likely to get stuck on a bad local 

minimum [31]. Considering their respective advantages, in this study we end up using a 

combination of L-BFGS-B and Adam optimizer to minimize the loss function. By the above 

method, we will obtain trained neural networks that can be used to approximate the solutions 

of partial differential equations. 
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Figure 2.15 The schematic of physics-informed neural network (PINN) for solving partial 

differential equations [3]. 

In the next chapter, we will use the above method to study two important partial differentia l 

equations: the one-dimensional wave equation and the Burgers equation. 

2.3.1. Advantages of PINNs 

The classical numerical methods for PDEs, such as finite differences, finite volumes, and finite 

element methods, are very commonly used for flow simulation and also other computationa l 

physics. These methods require discretizing computational domain into many small meshes, 

and evaluate approximation of function value at each mesh point. The mesh-based processes 

are computationally expensive and difficult for large systems, high-dimensional equations, or 

complex geometries, and evaluating the value at each point has some limits in terms of post-

calculation.  

On the other hand, numerical methods based on neural networks have several advantages 

compared to the classical methods. The advantages are: 

• Memory complexity: the neural network methods require low memory cost due to less 

parameters to be calculated [9]. 
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• Closed form: the solutions obtained by neural networks have a closed form. They have 

capabilities to perform subsequent calculation, such as differentiation or integration of 

the solutions [7]. 

• Transfer learnability: by the generalization property of a neural network, the obtained 

solution of a problem is reusable and able to be generalized, which means that the 

solution may be applied to a class of similar problems with the given problem [31]. 

• Complex shape: if the shape of domain where a differential equation is defined on is 

complex, the neural network method are relatively more efficient than the classical 

method because neural network methods are totally mesh-free methods [28]. 

• Dimensionality: the neural network method has a potential to efficiently solve high-

dimensional equations. In other words, the computational complexity of neural network 

method is linear with the dimension of problem, while the classical methods have 

rapidly increasing complexity with increasing dimension of problem [40]. 
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In this Chapter, we study the one-dimensional wave equation and the Burgers equation using 

PINNs. The neural network models are constructed for these two equations, respectively, based 

on the given initial and boundary conditions. The approximation results of the neural networks 

are compared with the true solutions to test the PINNs. We will present the experimental design 

and results of these two equations, respectively. 

3.1. Wave Equation 

This section presents an experimental study of the wave equation using the PINN. The wave 

equation is a typical hyperbolic PDE and it contains second-order partial derivatives about the 

independent variable. In physics, the wave equation describes the path of a wave propagating 

through a medium and is used to study the various types of wave propagation phenomena. It 

appears in many fields of science, such as acoustic wave propagations, radio communications, 

and seismic wave propagation. The study of wave equations is of great importance, as they are 

widely used in many fields. In this study, we choose a one-dimensional wave equation for our 

experiments. In mathematical form, this wave equation is defined, as follows: 

   0,     0,  1 ,     0,  1tt xxu cu x t− =    

where u  is a function of the spatial variables x  and time t . In the equation, the value of c  

represents the wave propagation velocity, which is given as 1 in this study. Besides, for this 

wave equation, its initial conditions and the homogeneous Dirichlet boundary conditions are 

given, as follows:
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( ) ( )

( ) ( )

1
0, sin

2

(0, ) sin(3 )

,0 ,1 0

t

u x x

u x x

u t u t



 

=

=

= =

 

The true solution of the above equation is: 

( ) ( ) ( ) ( )
1 1

( , ) sin cos sin 3 sin 3
2 3

u t x x t x t   = + , 

The initial conditions, boundary conditions, and some random data in the space-time domain 

are used as training data to train the neural network model. In order to test the performance of 

the training model, we use the neural network model to make multiple predictions and compare 

it with the true solution of the PDE. The specific experimental setup and procedure are as 

follows. 

First, a neural network is designed for approximating the solutions of PDEs, denoted as ˆ( , )u t x . 

For the architecture of the neural network, it contains six hidden layers, each with 100 neurons, 

and a hyperbolic tangent tanh is chosen as the activation function. Besides, a physics-info rmed 

neural network ( , )f t x  is constructed for introducing control information of the equation: 

( , ) : tt xxf t x u u= −  

The next main task is to train the parameters of the neural network ˆ( , )u t x  and ( , )f t x . We 

continuously optimize the parameters by minimizing the mean square error loss to obtain the 

optimal parameters: 

( ) u fJ MSE MSE = +  

Where:  

( )
2

1

1
ˆ ,

uN
i i i

u u u

iu

MSE u u x t
N =

= −  

( )
2

1

1
,

fN

i i

f f f

if

MSE f x t
N =

=   

uMSE  is a loss function constructed using observations of initial and boundary conditions. 

fMSE  is a loss function that is based on partial differential equations for introducing physical 
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information. Specifically,  
1

, ,
uN

i i i

u u i
t x u

=
 corresponds to the initial and boundary training data of 

( , )u t x , and 
uN  is the number of data provided. In addition, ( , )f fu t x and  

1
,

fN
i i

f f i
t x

=
 

corresponds to the training data of the spatio-temporal domain, and 
fN  is the corresponding 

number of training data. In this work, to fully consider the physical information embedded in 

the equations, we select the data in the spatio-temporal domain to train the neural network. The 

training data of the spatio-temporal domain is selected randomly, and the amount of training 

data 
fN  is 40,000. Besides, the total number of training data of the initial and boundary 

conditions is relatively small, and the expected effect can be achieved when 
uN  is 300. 

Similarly, the selection of training data for the initial and boundary conditions is also random. 

During the optimization procedure, we set the learning rate to 0.001, and in order to balance 

convergence speed and global convergence, we ran L-BFGS 30,000 epochs and then continued 

the optimization using Adam until convergence. In addition, we used the Glorot normal 

initializer for initialization. In this experiment, the time to train the model was approximate ly 

fifteen minutes. We tested the effect of the model after completing the training of the neural 

network model. Figure 3.1 is the prediction of the neural network model obtained from the 

training, and it can be seen that the prediction obtained is quite complex. We choose different 

moments to compare the prediction with the exact solution to test the accuracy of this 

prediction. Figure 3.2 shows the comparison between the exact solution and the prediction at 

different times   0.2,  0.5,  0.8t = . From Figure 3.2, it can be seen that the predictions of the 

neural network model and exact solutions are very consistent, indicating that the constructed 

neural network model has a good ability to solve partial differential equations. In addition, the 

relative L2 error of this example was calculated to be 
45.16 10− , which further validates the 

effectiveness of this method. Although the solution of the selected partial differential equations 

is complex, the neural network model can still approximate a result very close to the true 

solution from the training data, indicating that the neural network with physical information has 

great potential and value, and is worthy of further research. 
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Figure 3.1 Solution of the wave equation given by physics-informed neural networks [3]. 

 

Figure 3.2 Comparison of the prediction given by physics-informed neural networks with 

the exact solution [3]. 

3.2. Burgers Equation 

Let us consider the Burgers equation. This equation arises in various areas of applied 

mathematics, including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. It 

is a fundamental partial differential equation and can be derived from the Navier-Stokes 

equations for the velocity field by dropping the pressure gradient term. For small values of 4the 

viscosity parameters, Burgers equation can lead to shock formation that is notoriously hard to 

resolve by classical numerical methods. In one space dimension, the Burger’s equation along 

with Dirichlet boundary conditions reads as: 

   (0.01/ ) 0,     1,1 ,    0,1

(0, ) sin( )

( , 1) ( ,1) 0

t x xxu uu u x t

u x x

u t u t





+ − =  − 

= −

− = =
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Let us define ( , )f t x  to be given by: 

: (0.01/ )t x xxf u uu u= + −  

Similar to the previous experiment, we train the parameters of the neural network ˆ( , )u t x  and 

( , )f t x . We continuously optimize the parameters by minimizing the mean square error loss to 

obtain the optimal parameters: 

( ) u fJ MSE MSE = +  

Where:  

( )
2

1

1
ˆ ,

uN
i i i

u u u

iu

MSE u u x t
N =

= −  

( )
2

1

1
,

fN

i i

f f f

if

MSE f x t
N =

=   

The training data of the spatio-temporal domain is selected randomly, and the amount of 

training data 
fN  is 10,000. Besides, the total number of training data of the initial and boundary 

conditions is relatively small, and the expected effect can be achieved when uN  is 100. 

Similarly, the selection of training data for the initial and boundary conditions is also random. 

During the optimization procedure, we set the learning rate to 0.001, and in order to balance 

convergence speed and global convergence, we ran L-BFGS 20,000 epochs and then continued 

the optimization using Adam until convergence. In addition, we used the Glorot normal 

initializer for initialization. In this experiment, the time to train the model was approximate ly 

fifteen minutes. We tested the effect of the model after completing the training of the neural 

network model. Figure 3.3 is the prediction of the neural network model obtained from the 

training, and it can be seen that the prediction obtained is quite complex. We choose different 

moments to compare the prediction with the exact solution to test the accuracy of this 

prediction. Figure 3.4 shows the comparison between the exact solution and the prediction at 

different times   0.25,  0.5,  0.75t = . From Figure 3.4, it can be seen that the predictions of the 

neural network model and exact solutions are very consistent, indicating that the constructed 

neural network model has a good ability to solve partial differential equations. In addition, the 

relative L2 error of this example was calculated to be 
46.7 10− , which further validates the 

effectiveness of this method.  
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Figure 3.3 Solution of the Burgers equation given by physics-informed neural networks. 

 

Figure 3.4 Comparison of the prediction given by PINNs with the exact solution [2]. 

Although the solution of the selected partial differential equations is complex, the neural 

network model can still approximate a result very close to the true solution from the training 

data, indicating that the neural network with physical information has great potential and value, 

and is worthy of further research. 
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CHAPTER 

4 
Implementation and Results 

 

In this Chapter, we implement a physics-informed neural network (PINN) scheme to solve fluid 

dynamics problems governed by the Navier-Stokes equations. We first introduce the 

methodology of the proposed PINN and the mathematical formulation for fluid dynamics 

(Section 4.1). Subsequently in Section 4.2, the steady two-dimensional viscous incompress ib le 

flow at low Reynolds number passing a NACA 0012 airfoil will be modeled using the proposed 

PINN scheme. A comparison study with a reference numerical solutions is made to validate our 

PINN results. We summarize our finding in Section 4.3. 

 

4.1. Solution Methodology 

Navier–Stokes equations describe the physics of many phenomena of scientific and engineer ing 

interest. They may be used to model the weather, ocean currents, air flow around a wing, etc. 

The Navier–Stokes equations in their full and simplified forms help with the design of aircrafts 

and cars, the study of blood flow, and many other applications. 

Let us consider the steady incompressible Newtonian flow governed by the following Navier-

Stokes equations (in the velocity-pressure form): 

 ( ) 2p in  = − +  v v v       (4.1a) 

 0 in = v        (4.1b) 

 Don= v v        (4.1c) 

 0 Non
n


= 



v
       (4.1d) 

Where   is the Nabla operator, ( ),u v=v  is the velocity vector, p is the pressure,   is the 

viscosity of the fluid,  is the density of fluid. The boundary conditions are required in order 
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to solve Eq. (4.1). Here, 
D  and 

N  denote the Dirichlet and Neumann boundaries, 

respectively.  

In this study, instead of using conventional computational fluid dynamics (CFD) methods, we 

investigate the possibility of using neural networks (NNs) for solving the aforementioned partial 

differential equations (PDEs) (see Eqs. 4.1a and 4.1b). In other words, the solutions of Navier-

Stokes equations are approximated by a neural network, which takes spatial coordinates as 

inputs and predicts the corresponding velocity and pressure fields, i.e., ( , ) ( , )x y pv . To 

ensure the divergence free condition of the flow we use the stream function  . In this way, the 

continuity equation (Eq. 4.1b) will be satisfied automatically. For a two-dimensional problem, 

the velocity components can be computed by    , ,0 0,0,u v = , i.e., u
y


=


, v
x


= −


. 

First, we construct the architecture of the proposed PINN for fluid dynamics simulation (Figure 

4.1), which consist of a fully-connected network and the residual networks. Here, the nonlinear 

activation function  is the hyper tangent function tanh . For the residuals, these include the 

errors of the momentum equations (4.1a). In order to compute these residuals 1res  and 2res , 

the partial differential operators are computing by using automatic differentiation (AD), which 

leads to very high computational efficiency compared to numerical differentiation. However, it 

does not require grids (mesh), and avoids the classical artificial dispersion and diffusion errors.  

AD can be directly formulated in the machine learning framework, e.g., using “tf.gradients ()” 

in TensorFlow.   
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Figure 4.1 Architecture of the physics-informed neural network for fluid dynamics. Note that w and b are weights and biases for the ANN. The 

left part of the NN is an uninformed network, while the right part implements the physical laws using Automatic Differentiation (AD). The 

constraint of governing equations and boundary conditions can be converted as residuals adding to the loss function. 
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 
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Now, we apply the main idea of PINNs method, i.e., embed physics laws (governing equations 

and boundary conditions) into the loss function of the PINNs. This can be achieved by 

incorporating the residual of physics equations into the loss function. 

Let define ( ),w bpL  a physics loss function for training the parameters of PINN to obtain the 

solutions of Eq. (4.1) as follow: 

 p e bL L L= +  (4.2a) 

 
2

2

1 1

1 eN
n

e i

i ne

L res
N = =

=   (4.2b) 

 
2

1

1
v v

bN
n n

b b

nb

L
N =

= −  (4.2c) 

Where eL  and bL  represent loss function components corresponding to the residual of the 

momentum equations and the boundary conditions, respectively; bN  and eN  denote the number 

of training data for different terms; ,v
T

n n n

b b bu v =    is the given velocity for the n  th data point 

on the boundaries; n

ires  represents the residual of the i  th equation at the n  th data point. We 

consider the boundary conditions as supervised data-driven parts, and the residual of the 

momentum equations as the unsupervised physics-informed part in the loss function. 

The next task is to find the best neural network parameters that minimize the defined loss 

function, for that, we use two optimization algorithms, Adam and L-BFGS-B. 

 
 

 * *

,

, arg min ( ,
w b

w b w b)pL=  

The solutions are obtained when the training of the PINN converges, i.e., the total loss function

pL  reaches some very small value. 

4.2. Results 

In this section, we apply the proposed PINN to model the steady two-dimensional viscous 

incompressible flow at low Reynolds number passing a NACA 0012 airfoil at different angle 

of attack ( 0 ,3 ,9 ,12    ). We present comparisons between the PINN solutions and reference 

solution obtained from the ANSYS Fluent 19.0 package (finite volume-based) in order to 

investigate the accuracy of the solutions inferred by the PINN framework. 
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We consider a computational domain of width 2L m=  and height 1H m= with an NACA 0012 

airfoil of chord length  1c m= , the leading edge of the airfoil is placed at the spatial coordinate 

(0.2, 0.5) (Fig. 4.2). For the boundary conditions of the problem, we define a parabolic velocity 

 

 

 

 

 

 

 

 

Figure 4.2 Diagram of the computation model. 

profile on the inlet with the following expression:  

U
Inlet

Inlet

Inlet

u

v

 
=  
 

 

with: 

2

max

2

max

4U (H ) / H cos

4U (H ) / H sin

Inlet

Inlet

u y y

v y y





 = − 

 = − 

 

where  is the angle of attack and maxU 1 /m s=  which results in a small Reynolds number so 

that the flow is dominated by laminar flow. On the outlet the zero pressure condition is applied. 

Nonslip conditions are enforced on the wall and airfoil boundaries. The gravity is ignored. For 

the material properties of the fluid flow, the dynamic viscosity and density is 310 / ( )kg m s−   

and 31 /kg m  respectively.  

Now, we solve the defined problem using the PINN scheme, following the methodology made 

in the previous section. We define a computational domain (same as seen in Figure 4.2) by 

sampling spatial points in the domain, as shown in Figure 4.3. A total number of 50000 spatial 

scattered points are generated in the whole domain using Latin hypercube sampling (LHS) for 

the training the network. This include 3085 Dirichlet boundary (airfoil, wall, inlet) points and 

201 Neumann boundary (outlet) points, such that we have 3286 training data for the boundary 

L=2 m 

H=1 m 

Wall 

Wall 

Outlet Inlet 

x  

y  

0.2 m 

0.5 m 

c 
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conditions, i.e., 3286bN = . Inside the domain, we use 46714 points to compute the residuals 

(or the equation loss), i.e., 46714eN = . It should be noted that the collocation points are refined 

near and behind the airfoil to better capture the details of the flow. 

 

Figure 4.3 Sampling points using LHS. 

The PINN is assessed after a two-step training: we first use the Adam optimizer for 30000 

iterations with learning rate of 31 10− , then apply the L-BFGS-B to finetune the results. The 

training process of L-BFGS-B is terminated automatically based on the increment tolerance. 

We first investigate the influence of the neural network architecture. We employ different sizes 

of network by varying the number of hidden layers and the number of neurons per layer. This 

strategy allows to find an optimal combination of depth and width for the network. The loss 

(error) function is used as the metric for comparison (Table 4.1). 

 

NN size Loss pL  

4 50  11.8 10−  

6 40  25.3 10−  

7 40  39.7 10−  

8 40  34.4 10−  

8 100  53.7 10−  

Table 4.1 Loss value pL  for PINN with different sizes (NN size is the number of hidden 

layers × the number of neurons per layer). 
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We can observe from Table 4.1 that the performance of the PINN is improved as the network 

size increases, in other words, PINN provides more accurate solutions when using large 

networks. PINN are able to attain the solutions with high accuracy using a deep neural network 

of 8 × 100. The loss value (error) are in order of 510− . The network of 8 × 100 achieves the best 

result among all the configurations. 

After this assessment, we select the more accurate PINN architecture, i.e., 8 × 100 to compare 

it with a reference solution obtained from the ANSYS Fluent 19.0 package (finite volume -

based). The predicted velocity and pressure fields by the PINN are shown in Fig. 4.4(a), 4.7(a), 

4.10(a) and 4.13(a) for 0 = , 3 = , 9 =  and 12 = , respectively. The reference solution 

is obtained from the CFD solver ANSYS Fluent (see Fig. 4.4(b), 4.7(b), 4.10(b) and 4.13(b) for 

0 = , 3 = , 9 =  and 12 = , respectively). 

 

                        (a)                                                                              (b) 

Figure 4.4 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 0 = : 

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent. 
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Figure 4.5 Distribution of p and pC  on an airfoil at 0 = . Network of 8 × 100 are used. 

 
Figure 4.6 Convergence of the physics loss function curve pL . Adam optimizer is used before 

the dashed green line, and L-BFGS-B optimizer is used after the dashed green line. The NN 

size is 8 × 100. (case 0 = ) 
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We observe from the Figures 4.4, 4.7, 4.10 and 4.13 that the steady velocity and pressure fields 

are well reproduced by the PINN. We obtain good accuracy of the PINN simulation results 

upon the convergence of the loss function (see Fig. 4.6, 4.9, 4.12 and 4.15). From these figures, 

we also observe that applying a two-step optimization yields more consistent results. 

 

                        (a)                                                                                (b) 

Figure 4.7 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 3 = : 

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent. 
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Figure 4.8 Distribution of p and pC  on an airfoil at 3 = . Network of 8 × 100 are used. 

It is worth mentioning that the pressure distribution on the airfoil surface is typically of interest 

for computing the resultant drag and lift forces and subsequently the aerodynamics coefficients 

(lift LC and drag DC  coefficients). Therefore, we compare the pressure distributions and the 

pressure coefficient distributions obtained by PINN and ANSYS Fluent as shown in Fig. 4.5, 

4.8, 4.11 and 4.14 for 0 = , 3 = , 9 =  and 12 = , respectively. The overall agreement 

between the PINN and ANSYS Fluent is very good. 

 

Figure 4.9 Convergence of the physics loss function curve pL . Adam optimizer is used 

before the dashed green line, and L-BFGS-B optimizer is used after the dashed green line. 

The NN size is 8 × 100. (case 3 = ) 
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                        (a)                                                                                (b) 

Figure 4.10 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 9 =

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent. 
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Figure 4.11 Distribution of p and pC  on an airfoil at 9 = . Network of 8 × 100 are used. 

 

Figure 4.12 Convergence of the physics loss function curve pL . Adam optimizer is used 

before the dashed green line, and L-BFGS-B optimizer is used after the dashed green line. 

The NN size is 8 × 100. (case 9 = ) 

We obtained good agreement between the Fluent results and the PINN simulation results upon 

convergence of the loss function. 
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                        (a)                                                                                (b) 

Figure 4.13 Velocity and pressure fields of the flow around an NACA 0012 airfoil at 12 =

(a) PINN solution with 8 × 100 network; (b) Reference solution from ANSYS Fluent. 
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Figure 4.14 Distribution of p and pC  on an airfoil at 12 = . Network of 8 × 100 are used. 

 

Figure 4.15 Convergence of the physics loss function curve pL . Adam optimizer is used 

before the dashed green line, and L-BFGS-B optimizer is used after the dashed green line. 

The NN size is 8 × 100. (case 12 = ) 

We obtain good accuracy of the PINN simulation results upon convergence of the loss function, 

verifying that PINN can effectively simulate complex incompressible flows. Thus, the PINN 

approach enables us to develop Navier-Stokes solvers that do not require mesh generation and 

achieve higher accuracy. 
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4.3. Summary 

In this study, we explored the effectiveness of PINNs to simulate fluid dynamics problems. We 

have formulated PINN scheme based on the governing Navier-Stokes equations. The spatial 

coordinates are the inputs of the PINN, and the velocity and pressure fields are the outputs. We 

used automatic differentiation to represent all the differential operators in the momentum 

equations; then the equations can be formulated by the neural networks. We regard the 

boundary conditions as supervised data-driven part, and the residual of the momentum 

equations as the unsupervised physics-informed part in the loss function of PINN. Convergence 

of PINN was monitored using the loss function. We used the PINN framework to simulate the 

steady two-dimensional viscous incompressible flow at low Reynolds number around an 

NACA 0012 airfoil at different angle of attack. We obtained good agreement between the 

ANSYS Fluent results and the PINN simulation results upon convergence of the loss function. 
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Summary and Conclusions 
 

In this thesis, we explored a new method for solving computational physics problems to 

surrogate existing Computational Fluid dynamics (CFD) solvers that they present major 

drawbacks: mesh-generation is complex, cannot tackle high-dimensional problems, time-

consuming, etc. This new method as known as Physics-Informed Neural Network (PINN) is 

based on Machine Learning approach, more specific, artificial neural network. The basic 

concept of PINN is to embed physical laws to constrain/inform neural networks, with the need 

of less data for training a reliable model. This can be achieved by incorporating the residual of 

physics equations into the loss function. Through minimizing the loss function, the network 

could approximate the solution. PINN has shown great abilities to tackle limitat ions 

encountered with CFD solvers. In the implementation part of the thesis, we developed a PINN 

framework to solve fluid dynamics problems governed by the Navier-Stokes equations. We 

tested our PINN on the two-dimensional steady incompressible viscous laminar flow around an 

NACA 0012 airfoil at different angle of attack. We also compared the predicted velocity and 

pressure fields by the proposed PINN approach with the reference numerical solutions.  

Simulation results demonstrate great potential of the proposed PINN for fluid flow simula t ion 

with a high accuracy.  

To conclude, we have shown the efficiency and robustness of the PINN approach by developing 

our framework (solver) to solve the Navier-Stokes equations. Our future work aims to extend 

the application of the PINN approach to: 

- Solve the compressible Navier-Stokes equations that model several fluid flows, e.g., the 

flow through converging-diverging nozzles; 

- Model turbulence and simulate flows at high Reynolds number; 

- Solve acoustics and aeroacoustics problems. 
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