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Abstract

The Higgs boson discovery took place as late as 2012, after decades of long search. Its detection

was challenging, since it is produced from very rare processes with tiny cross sections around

2.2fb to be covered with huge amounts of background noise, to instantly into new constituents.

In this thesis, the main objective is to enhance that tiny signal, meaning finding the region

in the phase space where the Higgs signal is more dominant. Thanks to datasets provided

by ATLAS opendata, we are able to find an optimal model architecture to boost the Higgs

signal, by training different optimization techniques, where we adjust their parameters and add

non correlated variables. To do so we start by using traditional techniques, but since they are

not that effective in increasing the signal, we are obligated to use machine learning methods

in the form of artificial neural networks and boosted decision trees algorithms as they can

adjust several parameters simultaneously. After multiple training sessions, we achieve optimal

architectures to enhance the Higgs signal from the real data with reasonable value. Keywords:

Higgs boson, Machine Learning, Artificial Neural Networks, Boosted Decision Trees.
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Introduction

One of the techniques used today to study physical phenomena is the collision of particles

in particle accelerators, such as the LHC, high-level mathematical analysis methods are used

to study the products of the collisions that can indicate signs of the presence of some stealthy

particles like the Higgs boson or particles beyond the standard model, like the graviton or

the supersymmetric particles. The physics program of the large Hadron Collider (LHC) has

the potential to address and to unravel many of the most fundamental questions in modern

physics, such as: the origin of mass, the particle nature of dark matter, and the missing pieces

associated with the comprehension of the theory of fundamental interactions. One of the main

objectives of the LHC is to prove the experimental consistency of the Standard Model (SM), an

essential aspect to understand the mechanism that breaks electroweak symmetry which gives

mass to elementary particles.

The data generated by high energy physics (HEP) experiments from the proton-proton

collisions at the center of mass energy
√
s = 13 TeV is very huge with high dimensions resulting

from approximately 1 billion collision per second which would exceed today’s technological

storage capabilities by far [1]. The digitized summary is recorded as collision events. Since, it

is not possible to read out all these events, a ”trigger” system is used to filter the collected

data and select the rare events with a very small cross section around 2.2fb (2.2 ∗ 10−43 m2)

for further analysis.

Traditional data analysis techniques in HEP use a sequence of boolean decisions followed

by statistical analysis on the selected data [2]. The techniques that consisted of changing one

parameter at the time used to work perfectly on small data and were able to study all the simple

1



particles. But eventually, we had to go further as an attempt to detect particles resulting from

rare processes, so big data needed to be introduced where these techniques became insufficient.

Typically, both the individual cuts decisions and the subsequent statistical analysis are based on

the distribution of a single observed quantity motivated by physics considerations, which is not

easily extended to higher dimensions. Hence, all this complexity leads physicists to search for

new methods to improve their analysis by employing machine learning algorithms that utilize

multiple variables simultaneously. Even though, all this variety of machine learning techniques

are applied in high energy physics until lately in 2012, it provides an important boost in the

environments of data analysis and multivariate classifications, saving countless human-hours of

design and analysis work.

In our thesis, we are interested in the H −→ ZZ∗ −→ 4l channel to enhance the Higgs

signal from the simulated and experimental datasets. The procedure we follow to unravel the

tiny signals like the Higgs’, is to put several cuts on the phase space surrounding the region

in which the Higgs signal is higher than the background noise and ignoring other regions. We

started by applying traditional cuts on the data, before we concluded that those methods are

no longer effective when facing a huge size of high dimensional data. The thing that takes us

to the main aim of this master degree thesis is: to show how we can amplify the Higgs signal

buried inside a huge background by applying machine learning methods (ANN and BDT).

We then confront the problem of optimization and how to handle it for better results. The

optimization (adjustment) of parameters works as magnifying glass as they both make objects

appear bigger. Another target of our work is to evaluate machine learning models with the new

unlabeled experimental data.

This thesis is divided into three chapters :

Chapter 1 We explain how the data is generated for the golden decay process in two part:

1- The experimental data from the LHC experiments, and particle identification and recon-

struction.

2- The simulated data generated by CERN softwares with all the steps required in particle

2



identification and reconstruction.

Chapter 2 We start with a small generalization of concepts of machine learning, confront

the optimization problems in machine learning with some solutions, and also explain how

the machine learning models we use (ANN and BDT) work for the signal and background

classification.

Chapter 3 The chapter is devoted to present and discuss the results we obtain from adding

cuts and modifying some parameters in the machine learning models, in order to obtain the

best architecture which leads to enhance the Higgs signal over the background ratio, while

dealing with the data provided by ATLAS open source.

3
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Chapter 1

Generating data for the

pp −→ H −→ ZZ −→ 4lep process

1.1 Experimental Data

1.1.1 Large Hadron Collider

The Large Hadron Collider (LHC) is the most powerful particle accelerator ever built. It

was constructed by the European Council of Nuclear Research (CERN) between 1998 and 2008,

in collaboration with over 10,000 scientists and hundreds of universities and laboratories in more

than 100 countries, on the franco-swiss border near Geneva, Switzerland, inside a tunnel over

100 metres below CERN. Ever since, the LHC is pushing the limits of human knowledge, in

cosmology, astrophysics and high energy physics, enabling physicists to go beyond the Standard

Model, and understand the fundamental nature of the universe. Such as the famous discovery

of the Higgs boson that was announced by CERN on 4th of July 2012, at about 125 GeV, to be

the first fundamental discovery at the LHC. In addition to that, the LHC is expected to have

the key answers to some of the most controversial questions of the age: supersymmetry; dark

matter; dark energy; extra dimensions.

Inside the LHC, proton-proton collisions are performed with a 13 TeV centre-of-mass energy,

4



where bunches of protons (1011 each bunch) are accelerated every second at very high speed,

nearly the speed of light, to collide into each other, where each single proton-proton collision

can decay into 100 resulting particles or more, including electrons, photons, and less familiar

particles such as muons. The new particles are detected by either the ATLAS detector or the

CMS detector. These detectors study the trajectory of the particles and their energy, so that we

can re-illustrate what happened in the collision, so that eventually we understand how physics

works on the lowest level and to search for new particles. [3]

Figure 1.1: Schematic of CERN’s LHC starring accelerator complex. Colors denote accelerated
particle type. (*).

1.1.2 ATLAS Detector

ATLAS is one of two general-purpose detectors at the LHC. It has a cylindrical shape of

46 meters long, 25 m high and 25 m wide, the ATLAS detector weights over 7000 tonne and is

the largest volume particle detector ever constructed [4]. Every second, the LHC sends beams

5
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of particles with high energy up to 6.5 TeV, or at 99.99999 % the speed of light, where one

billion collision take place at the center of the ATLAS detector, the detector then, track and

identify only one million collision, the ones that are considered interesting to help in the current

scientific studies.

ATLAS is composed mainly out of six different detecting subsystems to detect the different

particles, wrapped in layers around the collision point to record the trajectory, momentum,

and energy of the particles, and identify them as precisely as possible. There is a huge magnet

system bends the paths of the charged particles to measure their momenta. The inner tracking

detector (ID) is made out of a silicon pixel detector, a silicon microstrip detector (SCT), and

a straw tube transition radiation tracker (TRT). The ID is enclosed by a thin superconducting

solenoid that provides a 2 T magnetic field, and by high granularity liquid Argon (LAr) sam-

pling electromagnetic calorimetry. The electromagnetic calorimeter is divided into a central

barrel with a pseudorapidity of |η| < 1.475, an end-cap regions on either end of the detector,

the outer wheel 1.375 < |η| < 2.5, and 2.5 < |η| < 3.2 for the inner wheel. In the range paired

to the ID ( |η| < 2.5), it is radially divided into three layers, the first one has a fine sectionali-

sation in η to ease e / γ separation and to ameliorate the resolution of the shower position and

direction measurements. In the region |η| < 1.8, the electromagnetic calorimeter is preceded

by a presampler detector to correct for upstream energy losses. An iron-scintillator calorimeter

gives hadronic coverage in the central rapidity range |η| < 1.7, while a LAr hadronic end-cap

calorimeter provides coverage over 1.5 < |η| < 3.2. The forward regions (3.2 < |η| < 4.9)

are instrumented with LAr calorimeters for both electromagnetic and hadronic measurements.

The muon spectrometer (MS) surrounds the calorimeters and consists of three large air-core

superconducting magnets providing a toroidal field, each with eight coils, a system of precision

tracking chambers, and fast detectors for triggering. The blend of all these systems provides

charged particle measurements together with efficient and precise lepton and photon measure-

ments in the pseudorapidity range |η| < 2.5. [5]
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Figure 1.2: ATLAS detector and its sub-detectors (*).

1.1.3 Proton Proton collision

The goal of colliding particles is to answer questions such as what is all matter made of,

and what creates the interactions of matter, in the most fundamental level. By discovering new

particles and phenomenon we can find answers to these questions. Particle production, the

concept of mass-energy relationship, has been always one of the selected topics to investigate in

high energy nuclear reactions over several decades. This type of research probably started by

the time scientists wanted to accelerate particles up to relativistic speeds and to smash them

into other particles and see what may turn out. Passing over the techniques of acceleration and

particle detection, scientists observed that in proton-proton (pp) collisions at relativistic energy,

more particles came out than those went in. The extra came out particles were, principally,

created pions and/or heavier particles at higher interaction energies. [6]

The protons which collide in LHC origin from hydrogen atom. A simple bottle of hydrogen
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gas provides H2 molecules to a duoplasmatron (ion source in which a cathode filament emits

electrons into a vacuum chamber) which uses electric field to strip hydrogen atoms of their

electrons to obtain protons. These protons are then accelerated by the chain of accelerators

before they are injected into the LHC where dedicated particle detectors may detect products

of the collisions. The corresponding collision data represent very important experimental input

for studying the structure and interaction of protons and also atoms, including mainly the

simplest atom - the hydrogen from which the protons originated. [7]

In most proton collisions the quarks and gluons inside the two protons interact to form a

wide array of low-energy, ordinary particles. Occasionally, heavier particles are produced, or

energetic particles paired with their anti-particles. Very occasionally, these collisions produce

new particles for us to find. Through this process of colliding particles, scientists discovered

top-quarks, bottom and charm-quarks, and the W and Z bosons. Acceleration is necessary

because the faster the particles are, the higher energy they obtain, opening up the possibility

to produce previously unknown phenomena. Most recently, the Higgs boson, which holds the

secret of the origin of mass, was discovered at the LHC. [8]

Higgs Boson Production at the LHC

This part shows diagrams of the four main Higgs production channels in pp collisions at

the LHC: [9], [10], [11]

gg fusion −→ H Resulting from direct process via the fusion of two gluons pp −→ gg −→

Higgs, this is the dominant mechanism for Higgs production at LHC, because on the experi-

mental side, the gluon-fusion process has the biggest cross section. And on the theoretical side,

it is the most challenging process to compute because of the top-loop.

Vector boson fusion (VBF) The vector boson fusion process is the second most dominant

production mode at the LHC. It typically takes to 10% of the total Higgs cross section for low

masses and up to 50% for the very Higgs boson fusion channel pp −→ qq(qq̄) −→ qqV V −→

qqH, which is useful for the Higgs discovery over a large range of Higgs mass at the LHC.
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Pair fusion associated production (bb̄, tt̄) A top anti-top (or a bottom antibottom) quark

pair is emitted simultaneously by two gluons. The pair then annihilates to produce a Higgs

boson pp −→ ggtt̄ −→ Htt̄. This mode has a cross section of two magnitude orders inferior to

the direct production. Thus it’s not easily exploitable unless there’s a very high luminosity.

Electroweak boson associated production (WH,ZH) The associated production of a

Higgs boson with a Z vector boson, pp −→ ZH, also known as Higgs − Strahlung, is one of

the most prominent paths towards an accurate understanding of the Higgs boson couplings.

Figure 1.3: Feynman diagrams of the four major partonic Higgs production processes at the
LHC (*).

1.1.4 Charged Particles Identification and Reconstruction

The physical processes of interest in high energy physics experiments occur on times scales

too short to be observed directly by particle detectors, like the Higgs boson produced at the

LHC will decay within approximately 10−22 seconds, thus decays essentially at the point of
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production. However, the decay products of the initial unstable particle, which are observed

in the detector, can be used to deduce its properties. A better knowledge of the properties

(for example type, energy, momentum, direction) of the decay products permits more accurate

reconstruction of the initial physical process.

Particle identification Inside the LHC, both ATLAS and CMS detectors are based on

the concept of cylindrical detection layers, interlaced around the beam axis, starting from

the beam interaction region, particles resulting from the proton proton collisions first enter a

tracker, in which charged particle trajectories (tracks) and origins (vertices) are reconstructed

from signals (hits) in the sensitive layers. Particles are observed in a detector through the

energy they deposit when traversing material, which is subsequently digitized and stored at

CERN Data center. The traker is immersed in a magnetic field that bends the trajectories

and allows the electric charges and momenta of charged particles to be measured. Electrons

and photons are then absorbed in an electromagnetic calorimeter (ECAL), The corresponding

electromagnetic showers are detected as clusters of energy recorded in neighbouring cells, from

which the energy and direction of the particles can be determined. Charged and neutral hadrons

may initiate a hadronic shower in the (ECAL) as well, which is subsequently fully absorbed in

the hadron calorimeter (HCAL). The corresponding clusters are used to estimate their energies

and directions, muon and neutrinos penetrate further inside the detector they traverse the

calorimeters with little or non interactions, while neutrinos escape undetected, Muons produce

hits in additional tracking layers called muon detectors (silicon tracker), located outside the

calorimeter. [12], [13], [14].
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Figure 1.4: Particles identification at ATLAS detector (*).

A significantly improved event description can be achieved by exploits information from

the experiment observables as :

• transverse momentum PT

• pseudo rapidity η

• energy ET

• azimuthal angle φ

• Leptons charge

• Leptons type

Particle reconstruction Reconstruction is the process of converting the raw digital signals

in the detector into the physical properties of particles. Particle physics detectors are usually
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composed of several sub-detectors, each taking advantage of specific interaction mechanisms to

detect the passage of a specific type of particle and measure its properties. Parameters extracted

from the detectors’ layers are gathered to identify each individual particle, called traditional

identification method, and by combining the corresponding measurements to reconstruct the

particle’s properties on the basis of this identification.

Another method is invented by CERN called particle-flow (PF) reconstruction algorithm,

this algorithm identifies and reconstructs each final state particle immediately. The algorithm

attempts to estimate the energy, momentum, and the identity of each particle. Algorithm

reconstruction or (PF) typically involves several steps that turn the data from the detector

electronics raw measurements into higher level data objects corresponding to the physical par-

ticles that were detected (features) [15]:

• Feature Extraction : The signal from the passage of particles through a detector element,

e.g calorimeter cell, is observed in the raw electronic output associated with the element. This

signal is then characterized.

• Pattern Recognition : The pattern of signals in geometrically adjacent detector elements

is associated with the passage of a signal or group of particles. In calorimeters, this step is

commonly referred to as clustering.

• Object Characterization : Properties of the objects are measured in tracking detectors, this

step means fitting a pattern of “hits” to a helix. In calorimeters, this step extracts the energy,

location, and other properties of the cluster that for example characterize the shape of the

cluster.

• Combined reconstruction : Objects in different detectors are associated together to create a

refined particle candidate.

Electrons and Muons reconstruction and identification

Electrons and Muons are employed to reconstruct the Higgs decay final state in the H −→

ZZ −→ 4lep channel. Good identification and reconstruction performance is decisive for this

search and is achieved using the various features of the ATLAS detector systems. The Final
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state 4lep particles must satisfy some requirements. Electron reconstruction algorithms in the

ATLAS detector start from energy deposits in the EM calorimeter (cluster energies) that are

matched to reconstructed tracks of charged particles in the inner detector. Electrons with

P e
T > 7 GeV are reconstructed within the geometrical acceptance defined by a pseudorapidity

η < 2.5, and Muons within the geometrical acceptance η < 2.4 and pµT > 5 GeV are recon-

structed by combining information from silicon tracker and the muon system. By applying

those requirements on the data collected at “data CERN center”, physicists ensure that lep-

tons (electrons and muons) coming from the decay of the golden channel are reconstructed with

high quality, avoiding a huge fraction of background events. [16]

1.1.5 Expected level of Background for the H → ZZ∗ → 4lep process

The expected background yield is not distinguishable from the golden decay process. There-

fore, it contribute by a huge fraction in the collected data :

• pp −→ ZZ∗(γ) −→ 4lep

• pp −→ tt̄ −→ 4lep

• pp −→ Z + jets −→ 4lep (where jets = c c̄ or b b̄ quarks)

These background expectations within a mass window about the specific SM Higgs mass. For

Higgs masses just above the LEP limit(120 − 130) GeV. The Z + jets contribute with a sig-

nificant fraction, about 30% of the ZZ∗ irreducible background. The tt̄ channel is practically

negligible. The reducible backgrounds Z + jets and tt̄ become negligible for masses above 150

GeV. [17]

NOTICE : ATLAS uses a right-handed coordinate system with its origin at the nominal

interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-

axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical

coordinates (r,φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis.

The pseudorapidity is defined in terms of the polar angle Θ as η = −lntan(Θ
2

). The transverse

momentum pT and other transverse variables, are defined as the variables component in the
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x − y plane, the transverse energy ET is defined as
√
m2 + p2

T , where m represents the mass

of a considered object. The distance in the pseudorapidity-azimuthal-angle space is defined as

∆R =
√

∆η2 + ∆φ2.

Tableau 1.1: Some particles properties detected by ATLAS sub-detectors.

Basic particles reconstructed in the ATLAS detector and their properties.
Particle Summary
Electron Electrically charged, detected as a trajectory in the

tracking system ending in the electromagnetic calorime-
ter.

Muon Electrically charged and able to penetrate through the
calorimeter system. Detected as a trajectory in the
tracking system extending into the muon chambers.

Pion,kaon Electrically charged, detected as trajectories in the
tracking system ending in the hadronic calorimeter.
These two particle types are distinguished by the hadron
calorimeter (HCAL) to their trajectories and measuring
the opening angle of the light cone.

Photon Electrically neutral, identified by an energy deposit in
the electromagnetic calorimeter with no nearby charged
particle trajectory.

1.1.6 Max storage and Trigger system

At its design operation, the LHC delivers collision events to each of its experiments at a

rate of up to 40 MHz. The amount of raw data, prior to any further data processing steps,

is typically of the order of ≥ 1MB per recorded collision event. Therefore, if the readout

systems allowed to record all collision events, the total amount of data to be stored would

rise up to more than 40 TB per second, this would exceed today’s technological capabilities

by far. [18] For the purpose of studies, only a very tiny fraction of the initially collected data

contains the rare signatures of events, which may be actually relevant to the Higgs process

pp −→ H −→ ZZ∗ −→ 4lep. Filtering the data and recording only such events of interest

allows reducing the rate to manageable levels of a few hundred Hz. To this end, the Trigger

and Data Acquisition (TDAQ system) is employed. This preprocessing system comprises three

stages which are called level 1 (L1), and level 2 (L2) and Event filter (EF) as is illustrated in

figure [1.5].
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LEVEL 1 The hardware trigger : Level 1 of trigger is an extremely fast and automatic

process that looks for simple signs of interesting physics, e.g particles with a large amount

of energy or unusual combination. This is like a reader simply scanning the headlines of a

newspaper to see if anything catches their eye , this level works on a subset of information from

the calorimeter and muon detectors. The decision to keep the data from an event is made less

than two-and-half microseconds after the event occurs. This is the way through which we select

the best 100,000 events each second from the billion available.

LEVEL 2 The HLT CPUs analysis : Level 2 is based on the HLT large CPUs analysis

which refines the previous analysis done by the level 1 trigger, it either takes information

from sub-detector layers (calorimeters, trackers, muon detectors), it conducts a very detailed

analysis. The HLT analysis can select about 1000 events per second, these events are passed

on to a data storage system for further offline analysis.

Figure 1.5: ATLAS Trigger and Data-Acquisition system (*).
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1.2 Simulated Data

1.2.1 Proton Proton Simulated Collision

1. When the two beams of protons collide at the interaction points (vertex). Each re-

sulted parton from the hadrons collisions carry a fraction of its momentum and follows Parton

Distribution Functions (PDFs), which are models in terms of energy sharing and flavor [1.6].

2. The partons inside the colliding hadrons emit radiation, initiating a succession of decays

q → qg, g → qq̄, g → gg. Since the strong coupling constant αs has a large value, these

branching processes have a high probability to happen.

3. At a momentum transfer scale Q2, two partons enter the hard interaction process. The

products of the hard scattering are the final state elementary particles, partons, leptons and

bosons, that characterizes the event topology. Even though this hard process is not observable

it determines the main properties of the collision event.

4. The resulting partons (quarks and gluons) start branching and initiate the final state

for the hard process.

5. After branching in the initial and final state showers, the momentum scale decreases

down to the cutoff scale ΛQCD v 1 GeV , where the perturbative theory is no longer valid.

6. Below ΛQCD, the strong interaction confines the partons into colourless hadrons, which

is followed by the decay of the unstable particles. Therefore, through fragmentation and decay,

the parton cascades evolve into jets of stable and meta-stable particles which are observable in

particle physics detectors. [19]

There is a main approach which is adopted in the Monte Carlo generators, in order to

describe and reproduce the phenomenology at the hadronic collider. This approach is called

factorization theorem which allows the independent treatment of perturbative and nonpertu-

bative phenomena. For a proton proton collision pApB −→ X, where X is a generic final state,

this theorem can be expressed by the formula:
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σAB =

∫
dxadxbfa(xa, Q

2)fb(xb, Q
2).σ̄ab−→X =


fa(xa, Q

2)fb(xb, Q
2) non perturbative factor

σ̄ab−→X perturbative factor

(1.1)

Where σAB is the total cross-section. xa and xb are the fractions of the parton momentum

carried by the two partons a and b involved in the interaction. and σ̄ab−→X is the hard partonic

scattering cross section.

Figure 1.6: Schematic description of the Hard proton proton collision (*).
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Parton shower distribution functions In the equation 1.1 we’ve seen the parton distribu-

tion functions (PDFs) describe the dynamics of the partons participating in the hard process

in relation with the protons colliding They represent the probability of a parton to carry a

fraction x of the proton momentum. The PDF estimations uncertainties need to be taken

into consideration in any theoretical prediction. There are many PDF sets available, the most

common ones : QTEQ [20], MSTW [21], NNPDF [22].

1.2.2 Steps in Event generation process

Simulated data, commonly called Monte Carlo (MC), is a key feature of the LHC exper-

iments, these events are simulated with machines using theoretical models and are used to

compare theory with real data in order to search for new physics phenomena. [19] [23] The full

simulation requires the following steps :

1. The compilation of the hard subprocess The first step in the event generation is

the simulation of the hard process which is defined by the collision of two bunch of protons

constituents at high momentum scale.

2. The parton shower and hadronization step After the hard collision a parton shower

is used to evolve the event further. Due to the large momentum transfers during the hard

subprocess step, the final state particles obtained have a high energy. During the parton

shower, the involved partons lose energy.

3. Pile-up simulation In the same bunch crossing there are multiple pp interactions, most

of them are not frontal and collide with low energy. Those interactions constitute the so-called

pile-up. The pile-up is reproduced adding to the underlying event additional simulated events.

4. Detector Simulation Interaction of the generated particles inside the ATLAS detector

is simulated, including the propagation of each particle in the different detector layers. For the
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active detector elements, the simulated energy deposits are processed through a simulation of

readout electronics for each sub-detector, including effects such as simulated noise.

5. Digitization The detector response is derived from the particle interactions and it is

written in a format compatible with the real output of the detector. In addition to that,

because of the high rate of collisions in the LHC, digitised signals from several simulated events

can be piled-up to create samples with realistic experimental background.

6. Reconstruction and identification Particle trajectories and energies from the detector

are reconstructed by applying reconstruction algorithms which make use of the specific prop-

erties of different particle types. In the last step, the obtained information is gathered and the

particle objects are identified as particles.

1.2.3 Generating data for H → ZZ∗ → 4lep process with Madgraph5

MadGraph is a Monte Carlo event generator. Nowadays, this software is widely used

to simulate events at the LHC, and was used before the LHC era for obtaining future pre-

diction in new physics models. This section shows how to generate collision evens with

MadGraph5/ aMC@NLO for the golden decay pp −→ H −→ ZZ∗ −→ 4lep in order to

compare the simulated data to the experimental data for deep studies. The software is free and

available from the following website https://launchpad.net/mg5amcnlo. Madgraph allows

us also to control the cross sections, the luminosity and the energy for the events we want to

generate. It can be extended to incorporate several programs.

The required packages for generating the pp process are:

• Delphes : a C+ + framework, performing a fast multipurpose detector response simulation.

• Pythia : used for parton showering. The Pythia main program reads the file pythia card.dat

with Pythia run parameters, opens the LHE file unweighted events.lhe and passes it to event

simulation. The output is written in the form of StdHep files, which store all the Pythia event

information in HEPEV T common block format.
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• MadAnalysis : a Fortran based program, used for simple analysis of events and making

plots.

• ExRootAnalysis : a package designed to simplify ROOT tree production and analysis.

After installing all required packages on Madgraph, we follow the next steps [24] :

• The first step is to open Madgraph software by ./bin/mg5 aMC as shown in [1.7] :

Figure 1.7: Homepage of Madgraph

• The second step is to generate the following H −→ ZZ∗ −→ 4lep process by typing :

generate pp > h > l + l − l + l−

• The third step is to create a folder to contain the generating process results by typing : output

h4lep.

• The fourth step is to set all installed packages ON, with modification on the run card. The

energy used is 8 TeV (4000 GeV for each beam), with a luminosity of 10 fb−1.

• Finally plotting the histogram out of each delphes output file (signal, background, data).

The produced histogram with reconstructed Higgs mass in this events is illustrated in the

figure[1.8] below :
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Figure 1.8: Histogram plotted with Madgraph with Higgs boson mass peak arround 126 GeV.

1.2.4 Systematic uncertainties

The uncertainties on the lepton reconstruction and identification efficiencies [16] and the

momentum scale and resolution are determined using samples of W, Z and J/ψ decays as

following:

Electon reconstruction and identification The relative uncertainty on the signal ac-

ceptance due to the uncertainty on the electron reconstruction and identification efficiency is

2.6±% (±1.7%/±1.8%) for the 4e (2e2µ/2µ2e) channel for m4l = 600 GeV and reaches ±8.0%

(±2.3%/± 7.6%) for m4l = 115 GeV respectively.

Muon reconstruction and identification The relative uncertainty on the signal accep-

tance due to the uncertainty on the muon reconstruction and identification efficiency is ±0.7%

(±0.5%/ ± 0.5%) for the 4µ (2e2µ/2µ2e) channel for m4l = 600 GeV and increase to ±0.9%

(±0.8%/± 0.5%) for m4l = 115 GeV respectively.

Electron energy scale The uncertainty on the electron energy scale results in an uncertainty

of ±0.7% (±0.5%/ ± 0.2%) on the mass scale of the m4l distribution for the 4e (2e2µ/2µ2e)
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final state channel respectively.

Muon energy scale The uncertainty on the muon energy scale is ±0.04% (±0.015%/ ±

0.02%) on the mass scale of the m4l distribution for the 4e (2e2µ/2µ2e) final state channel

respectively.

Total uncertainty The uncertainties associated with the Higgs signal is estimated from the

MC simulation is as following:

• The uncertainty on the total yield due to the QCD scale uncertainty is 5%, while the effect of

the PDF and αs uncertainty is 4% to 8% for processes associated initially by quarks (gluons).

• The numbers of expected Higgs signal (mH = 125 GeV) and background events with the

numbers of observed events in the data, in a window of size 50 GeV around 125 GeV is illustrated

in the table below :

Tableau 1.2: The numbers of expected signal (mH = 125 GeV) and background events, together
with the numbers of observed events in the data, in a window of size 5 GeV around 125 GeV,
for the combined

√
s = 7 TeV and

√
s = 8 TeV data.

signal ZZ∗ Z + jets,tt̄ Observed

4µ 2.09± 0.30% 1.12± 0.05% 0.13± 0.04% 6
2e 2 µ / 2 µ 2e 2.29± 0.33% 0.80± 0.05% 1.27± 0.19% 5

4e 0.90± 0.14% 0.44± 0.04% 1.09± 0.20% 2
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Chapter 2

Machine Learning methods for

enhancing Higgs signal

2.1 General Machine Learning concepts

Machine learning (ML) integrates different technologies whose ultimate goal is to elicit

meaningful information from a data sample. A machine learning algorithm (in the following

multivariate analysis method or MVA method) is a mathematical model that contains param-

eters. Those parameters are optimized so that the model can describe the data efficiently. The

phase in which the best values for the parameters are found is known as training : it is when the

algorithm learns from the data. After the phase of learning, the algorithm can make predictions

on unknown data and this phase is often referred to as application and is known as testing. [25]
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Figure 2.1: A schematic representation of a machine learning algorithm. N input features are
provided, and the multivariate method assigns each event in the sample to one of three classes
(*).

Algorithms take as inputs a set of variables for each data point, these variables are com-

monly referred to as features, they carry information about the properties of each data point.

These features can be, for example, the energy and momenta of particles, where each data

represents a single event detected at the LHC experiment.

The initial sub-division among machine learning algorithms is whether they implement

supervised or unsupervised learning. The supervised algorithm requires each data point to be

labeled with the desired output, which should produce that particular event once trained. The

multivariate method learns by adjusting its parameters in order to minimise the error between

its outputs and the labeled data (actual output). Unsupervised learning on the other hand,

is used when there is no labeling available for the data, where events are grouped based on

similarities in their features. Unsupervised learning methods are often used to preprocess the

data before using supervised algorithms. These methods are sometimes referred to as clustering

methods.

Machine learning can perform different tasks depending on the required outputs. The

simplest one is when the data belong to two different classes like the data for the pp −→ H −→

ZZ∗ −→ 4lep (explained in chapter 1), the data is mixed between two classes Higgs signal

and background. This case is called binary classification because we have two categories of
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features, and this is the case discussed in this master thesis for Higgs signal and background

classification. Another task is to classify data according to more than two classes as is shown

in figure [2.1] above. This kind of multi-class classification is not conceptually different from

the binary classification since any k-class problem can be divided into k two-class problems. It

is, however, generally simpler to directly implement a multi-class algorithm instead of relying

on this theoretical fact. The third task a machine learning algorithm can perform is regression,

when the output is continuous. Generally, the output of a classifier is also continuous, and can

be interpreted as the probability of a data point to belong to a class. The user can then perform

a cut on the output that maximises the performance of the classifier according to some criteria

of choice. During our work, we will face optimization problems with some solutions discussed

in the next section, since everything comes down to an optimization problem in the machine

learning field.

2.2 What is Optimization ?

In machine learning techniques there is always the goal of coming up with mathematical

models that best fit a set of observations, to then possibly be able to make principled predictions

of similar outcomes. Given a model parameterized by weights w, and a data set of random

variables (x, y) v Pdata (x, y), learning is actually the task of maximizing or minimizing a

function with respect to some of its parameters and this function is often called a “loss” or

“cost” function. Optimality is defined in the context of updating the set values for the model

parameters that occurs in the lowest possible value of the loss function or conversely in the

highest value depending on the type of the problem. The loss is interpreted in terms of target

labels in the supervised learning settings [26]. The typical formulation of an optimization

problem can be phrased as follows :


Minimize f(θ).....(*)

subject to w ∈ Θ

(2.1)
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Where f is the loss function parametrized by a real vector of parameters θ that can take one

value in the feasible set Θ. In the case where θ is a subset of Rd, where d is the dimensionality of

the parameter vector θ, our optimization problem is constrained. Such optimization problems

can be solved with high precision even by hand if the number of parameters is very small. But,

the majority of the problems are not analytically solvable. Fortunately, optimization offers an

approximate solution.

Once the optimization problem has been interpreted into mathematical form, the types of

algorithms that can be used to solve it are known as optimizers. These optimization methods

can be divided into groups according to the level of used information and the complexity to

calculate it. Zero-order methods only use the value of the fonction f(θ). First-order methods

also require the value of the first derivative f ′(θ). Second-order methods require the second

derivative f ′′(θ). There are many ways for optimizing the parameters of a model, by minimizing

the loss function with respect to the parameters, like the gradient based method and the

maximum likelihood estimator algorithms that are discussed below:

2.2.1 Gradient based Optimization method

The gradient based or gradient descent, is one of the most popular algorithms to perform

optimization, by minimizing an objective function parameterized by a model’s parameter. For

the problem described in equation (*) [2.1] above with a sub-differentiable function f . A

solution can be found iteratively by initializing the weights to θ0 and updating them at each

iteration i according to the rule:

θi+1 = θi − λi∇θf(wθ) (2.2)

where λi is the step size, or learning rate in Figure [2.2]. The learning rate can prevent

convergence if too large, or slow it down if too small. Its magnitude can be held constant

during the optimization procedure, or adjusted at each iteration using various methods.
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Figure 2.2: The way how gradient descent works, w in the graph is the parameter θ that we
need to optimize it (*).

2.2.2 Maximum Likelihood Estimator (MLE)

Often when building statistical machine learning models, there are several parameters that

we need to optimize, let’s call them θ. The approach of optimizing θ is known as Maximum

Likelihood Estimation (MLE), with a given sample Pdata(x), x is the vector of our sample inputs

x = x1, x2, ......xn. We construct a parametric model Pmodel(x|θ) and build the likelihood (LH):

L(θ|x1, ........, xn) (2.3)

L(θ|x1, ........, xn) = p(x1, ....xn|θ) = p(x1|θ)p(x2|θ)......p(xn|θ) (2.4)

We can replace the probability distribution function PMF (p) (statistical term describes the

probability distribution of the discrete random variable) by PDF (f) (statistical term describes

the probability distribution of the continuous random variable) functions, since PDF is ap-

plicable for continues random variable while PMF is applicable for discrete random variable

:

L(x) = p(a 6 x 6 b) =

b∫
a

f(x)dx (2.5)

L(θ|x1, ........, xn) =
n∏
i=1

f(xi|θ) (2.6)
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The objective is to get the maximum value of likelihood, the higher it is, the more likely that

the parameter value gives the data that we have observed. The parameter θ that corresponds

to the higher LH function is called maximum likelihood estimator (MLE) as is illustrated in

figure [2.3].

Figure 2.3: Maximum likelihood Estimator (MLE) (*).

In order to get this maximum likelihood estimator, we need to find the maximizer of our

likelihood function. Fortunately, we know that the logarithm is a monotone function (function

that preserves or reverses the given order), like the (LH). This means that maximizing the log

function is similar to maximizing the LH function, as it is illustrated in the equation below:

log(θ|x1....xn) = logL(θ|x1, ........, xn) (2.7)

θ∗ = argmaxθlog(θ|x1....xn) = argmaxθlogL(θ|x1, ........, xn) (2.8)

The goal of the optimization is to maximize the likelihood to find the best values for parameters,

therefore, the best machine learning model to classify our data. Since the product of several

terms that are < 1 tends to be numerically unstable to compute, it is, instead preferred to

minimize the negative log-likelihood function :

θ∗ = argminθ(− logL(θ|x)) (2.9)

28

https://www.probabilitycourse.com/chapter8/8_2_3_max_likelihood_estimation.php


2.3 Kinematic cuts on pp −→ H −→ ZZ∗ −→ 4lep Signal

and background distribution and their optimization

2.3.1 Theoretical description

Let’s take a signal to background distribution. Suppose we try to measure some parameter

x which can be any discriminating variable that allows us to distinguish between signal (S) and

background (B) events. The expected distribution for x to be S and B respectively, as it is

shown in the figure [2.4] below :

Figure 2.4: Schematic representation of a cut decision (*).

The objective here is to put the cut in the best region that allows it to take the highest

quantity of the signal with just a tiny contribution of backgrounds, in order to maximize or

enhance the Higgs signal to the background ratio. If we choose the cut as shown in the Figure

[2.4], then we accept all events after x = xcut and we reject all those below. This means losing

a fraction α of the Higgs signal, this is called type 1 error and α is known as the significance,

and admitting a fraction of background β what is called the type 2 error and 1−β is the power.

The actual problem is how we know exactly where to put the cut for minimizing the loss of the

α fraction as possible inversely, in another hand, maximizing the loss of the background β, but

unfortunately we can’t know exactly where. Typically, the cut is placed in the region where

the signal intersect with the background, in the simplest case like our example in the figure

[2.4], we start moving the cut around the x axis in the direction where the signal is expected

29

https://arxiv.org/abs/1905.12362


to be higher than the background, until we get the best region that gives (S/B) > max or

∂(1−α)
∂β

> max. This traditional method causes a huge loss of the signal. All these difficulties

are only confronted when choosing one discriminating variable as a cut parameter. Imagine

having to separately optimize more than one variable where each variable could change the

distribution of another. In this case the optimization is impossible and even if it is possible it

would take a very long time, here the ML is off rescue. [27]

2.3.2 Experimental description

In the largest hadron collider after the pp collisions we can measure a variety of experimental

observables:

• Transverse momentum PT

• Energy E

• Pseudo rapidity η

• Azimuthal angle φ

• Leptons type and leptons charge

And others for each particle resulting from the pp collision, which play the role of discriminating

variables that allow distinguishing between signal and background events. The final state of

the collected data with 4 leptons (4 Electrons or 4 Muons or 2 Electrons and 2 Muons) is

constituted of signal events and background events. In order to reduce the contribution of the

background for best signal to background ratio, we apply a variety of cuts on the collected

data, for example:

In the golden process, the transverse momentum pT for Electrons is required to be higher

than 6 GeV and higher than 7 GeV for Muons, the pseudorapidity η is required to be lower

than 2.47 for Electrons and 2.70 for Muons. Also, the data required to verify the sum of leptons

charge is equal to zero. [5] When we apply these cuts criterions on the data a huge fraction of

background (zz∗, tt̄ and also z + jets) is thrown away, because the majority of background 4

leptons final state don’t verify the required criterions, but even by applying a number of cuts

there is always fractions of background contribute in the data. It is coming from the 4 leptons
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background process which verifies the criterions cuts.

2.3.3 The need of machine learning for powerful optimization

The data collected from the ATLAS detector is complex with high dimensions and the

correlation is not visible. The traditional analysis techniques used by physicists is a sequence of

boolean cut decisions followed by statistical analysis on the selected data. Typically, both the

individual cuts decisions and the subsequent statistical analysis are based on the distribution of

a single observed quantity motivated by physics consideration, which is not easily extended to

higher dimensions. Fortunately, the ML algorithms, like Artificial Neural Network (ANN) and

Boosted Decision tree (BDT), can optimize a set of variables at the same time that will give

a better classification (Higgs signal or background events) results than individual traditional

cuts. [28], [29]

2.4 Artificial Neural Network in High Energy Physics

Artificial neural networks are an important tool in high energy physics [30], playing a major

role in data analysis. It performs complex tasks, learns and memorises all at the same time,

as it is an attempt to imitate the human brain and its magnificent abilities. There are several

types of neural networks that form the basis for most pre-trained models in deep learning:

• Artificial Neural Networks (ANN).

• Convolution Neural Networks (CNN).

• Recurrent Neural Networks (RNN).

Here, we will be discussing the ANN which is the simplest.

2.4.1 How does Artificial Neural Network work?

Artificial Neural Network is formed out of layers of artificial neurons, one input layer,

one output layer and one or more hidden layers in-between. Each neuron is connected fully

or partially to the neurons in the next layer, just like in the biological neurons. Two-class
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classification problems are among the tasks most frequently encountered in high energy physics

data analysis, usually in the form of separating interesting data (signal) from unwanted noise

(background). Each neuron in the network receives inputs from either the input variables

(input layer) or from the previous layer, and provides an output either of the entire network

(output layer) or it is used as an input to the next layer. Within a neuron, inputs are combined

linearly with proper weights that are different for each of the neurons. Each output is then

transformed using an activation function as the logistic function (sigmoid), with this function

the output values are bound between 0 and 1 (see Figure [2.5]). We can also use the rectified

linear activation function (ReLU) (see Figure [2.6]). [2]

Sigmoid(x) =
1

1 + exp(−x)
, (2.10)

Figure 2.5: Graphical representation of the Sigmoid function (Logistic).

ReLU(x) =


0 for x < 0

x for x ≥ 0

(2.11)
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Figure 2.6: Graphical representation of the rectified linear activation function (ReLU).

An artificial neuron receives a set of inputs (x1, x2, ..., xn). They can be any measured

variables resulting from the golden proton proton collision that allows us to distinguish between

the Higgs signal and background events. A weight wi (i = 1,..., n) is associated with each input.

If the weight is positive, then the signal is excited. Otherwise the signal is inhibited. Artificial

Neurons collect all the input signals, calculate a net signal and transmit an output signal as it

is illustrated in figures [2.7] and [2.8].

Figure 2.7: Schematic representation of an Artificial neural network with multiple hidden layers
(*).
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Figure 2.8: A multilayer perceptron with a hidden layer made up by 3 neurons and a bias node
(*).

The outputs y resulting from the process of artificial neurons in the figure[2.8] is given by:

y = W
(2)
01 +

3∑
j=1

W
(2)
j1 zj = W

(2)
01 +

3∑
j=1

W
(2)
j1 Sigmoid(w

(1)
01 +

d∑
i=1

W
(1)
ij xi) (2.12)

2.4.2 Training Neural Network

In a neural network, the space of functions searched is defined by the structure of the

network, which defines a series of transformations. In a simple case, the first embedding is

simply the input vector, and the final embedding is the output of the network. The elements of

the matrix W are referred to as weights and those of vectors as biases. The general structure

of these transformations, such as the dimensionality of each W and the choice of activation

function is referred to as the network architecture, which, taken together with the training

parameters constitute the hyperparameters of the network. The weights and biases of the

network are initialized randomly. Finding the hyperparameters that minimize the loss function

is done through an iterative process called training. Conceptually, this uses the labeled training

examples and calculates the gradient of the loss function with respect to the model parameters.

In practice, the calculations are done through a technique called backpropagation, which is an

efficient process of computing this gradient.

Artificial neural networks start by assigning random values to the weights. The key for

the ANN to perform its task correctly and accurately is to adjust these weights to the right
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numbers. But finding the right weights is not very easy, especially when you’re dealing with

multiple layers and thousands of neurons.

Basically, what happens during training is that the network adjusts itself to glean specific

patterns from the data. In our case for example, the Higgs signal and background noise event

classification, when you train the Artificial Intelligence (AI) model with a set of data, each

layer detects a specific class of features. Further down the network, deeper layers will start

to pick out more and more advanced features, for when you run a new data through the

well-trained neural network, the adjusted weights of the neurons will be able to extract the

right features and determine with accuracy to which output class the event belongs. One of

the challenges of training neural networks is to find the right amount and quality of training

examples. Also, training large AI models requires vast amounts of computing resources. To

overcome this challenge, many engineers use transfer learning as a training technique where

you take a pre-trained model and fine-tune it with new, domain-specific examples. Transfer

learning is especially efficient when there’s already an AI model that is close to your use case.

Also, it is required to use GPU (Graphics processing unit) for parallel tasks, and a huge RAM

(random access memory) for fast processes.

2.4.3 Backpropagation

Back-propagation is the essence of neural network training. It is the method of fine-tuning

the weights of a neural network based on the error rate obtained in the previous epoch (i.e.,

iteration). In order to minimize the classification error. The mean square error is defined as :

E(x1, x2,−, xN |W ) =
N∑
a=1

Ea(xa|W ) =
1

2

N∑
a=1

(ya − y∗a)2 (2.13)

Where the sum is taken over the whole training batch, with ya and y∗a are respectively the

neural network output for the event xa and its label. Through ya, the error depends on the

network’s weights.

Once the whole dataset inputs, has passed through the network the weights are updated
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by minimizing the error (E) using gradient descent technique, which indicates the direction of

steepest increase for E, the weights are then changed by a quantity defined as :

∆W = −η∇WE → ∆Wi = −η ∂E
∂Wi

(2.14)

This modification decreases the training error. η is called learning rate, it is one of the most

important hyperparameters in neural networks. If it is too small, convergence to the global

minimum as is illustrated in figure[2.9], might take too long or not happen at all. Conversely,

if it is too large the convergence will be very fast but with bad predicted outputs, which leads

to weak classification.

Figure 2.9: Illustration of Gradient Descent (where J is the error) (*).

The gradient of E is calculated through the chain rule. It is as the error propagates back

from the outputs to the inputs, hence, the name backpropagation. As an example, the weights

in the second layer are updated via :

∆W
(2)
j1 = −η

N∑
a=1

∂Ea

∂W
(2)
j1

= −η
N∑
a=1

(ya − y∗a)Zja (2.15)

where zja is the output of the j − th hidden neuron for event xa. One more step back, and

the update for the weights in the first layer is :
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∆W
(1)
ij = −η

N∑
a=1

∂Ea

∂W
(2)
j1

= −η
N∑
a=1

(ya − y∗a)W
(2)
j1 Zja(1− Zja)xia (2.16)

With all the discussed steps of backpropagation, we will be able to minimize the error

to the smallest value, given by that a very good classification which is similar to the actual

classification data 1 for the Higgs signal and 0 for the background events.

2.4.4 ANN overtraining

The major challenge in training neural networks is how long to train them in order to

obtain the best output possible after ending the training process. But the problem occurs

when neural networks are too little trained. This results in a model that underfits the train

and the test sets. Conversely, too much training will mean that the model overfit the training

dataset and have poor performance on the dataset. Thus, having too many iterations may

cause too much variance on training data. Fortunately, there is a widely used method to avoid

this problem called “early stopping”. The strategy behind this technique is simple. We need

to split the training data from the validation dataset, this validation data is unseen data in

the model training, and by checking accuracy against the validation dataset on every epoch. If

train accuracy goes higher and the validation accuracy goes lower in this point we stop training

in order to avoid the overfitting, as is illustrated in the figure [2.10] [31].

Figure 2.10: Illustration of neural network’s early stopping (the blue curve represents vallidation
dataset) (*).
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2.5 Boosted Decision Tree

The boosting algorithm is one of the most powerful learning techniques for optimization,

implemented in the software package TMVA, introduced during the past decade. As a tree it

is high and it has branches and leaves. The decision tree is similar, it has branches and leaves.

Decision tree is a generalization of rectangular cuts boosted by several algorithm techniques.

The boosting algorithm is a procedure that combines many weak classifiers to achieve a final

powerful classifier. [32], [33]

2.5.1 Working principle of a Decision Tree

A decision tree works by repeatedly operating cuts into the dataset collected. Hence,

separating it into smaller subsets that exhibit a better class separation than the original dataset.

It is a supervised learning algorithm. At the end of the training process, the features space

(dataset) is divided into smaller blocks, and previously unseen data are classified according to

the block they fall in.

In a simple example with only two input features, x1 and x2, the data can be represented

in a scatter plot as illustrated in Figure [2.11a]. The decision tree applies univariate cuts to

the data. These cuts have the general expression.

xi − cij = 0 (2.17)

Where xi denotes the i-th feature and cij the j-th cut on xi. In our two dimensional

example, the applied cut is a straight line parallel to one of the axes, and at the first iteration

the dataset is split into two subsets. In a simple decision tree with one node, for example with

a single cut on x2, the simulation might look like figue [2.11b], as we see the data points with x2

larger than the cut value all belong to the same class, therefore, no more cuts are needed. For

the other subset, the one that falls below c21, the data is still heavily mixed between the two

classes. Applying another cut on x1, as illustrated in figure [2.11c] can significantly improve

the separation.
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After these cuts, the resulting subsets are not mixed as before. In order to reach optimal

separation on the data, one could continue cutting until each region only contains data belonging

to the same class, but is not always desirable because it can lead to overtraining the model.

(a) Scatter plot of two class
data in a two-dimention.

(b) The first cut on the
dataset.

(c) The second cut on the sub-
set.

Figure 2.11: Illustration of Boosted Decision Tree cuts (*).

2.5.2 Training and Optimisation Strategy

In our data for the process pp −→ H −→ ZZ∗ −→ 4lep the training monte-carlo samples,

it consists of both Higgs signal that we want to optimize and background events. For each

event, supposedly there is a set of PID (particle identification) variables or what is often called

discriminating variables, useful for distinguishing between signal and background like (trans-

verse momentum PT , pseudo rapiditiy η, radial position ∆R, energy Emiss
T , hit multiplicity,

and others......). Decision tree algorithms try to find the best cut on one of the discriminating

variables that splits the phase space into two parts, one of which is enriched in signal and the

other one in background. The algorithm loops over all discriminating variables and for each of

them tests all possible cut values. Initially there is a sample of events at a “root node”. Now

there are two samples called “branches”, for each branch we repeat the same splitting process

until a given number of final pure branches, called leaves are obtained, or until each leaf is pure

signal or pure background like is illustrated in figure [2.12].
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Figure 2.12: Schematic illustration of a decision tree (S for signal, B for background). Terminal
nodes called leaves are shown in boxes. If signal events are dominant in one leaf, then this leaf
is a signal leaf, otherwise, it is background leaf.

In figure [2.12], 3 discriminating variables are used for signal and background separation :

Transverse momentum PT , Energy E, and Pseudo rapidity η. [34]

The best splitting is defined on the basics of what is called “splitting index” as :

•Gini index (GI) : Gini = (
∑n

i Wi)P (1−P ) where n is the number of events in Monte-Carlo

sample and P is the purity.

• Cross entopy : −Plog(P )− (1− P )log(1− P ).

• Miss classification error : 1−max(P, 1− P ).

Every splitting index has to be a good measure of inequality because we want to measure the

inequality of background populations in each block of phase space. We define the purity of the

sample in a branch by p =
∑

sWs∑
sWs+

∑
bWb

where
∑

s is the sum over signal events, and
∑

b is the

sum over background events.

Let’s pick the common one, “Gini index”, the first split that decision tree start with it is

the split that has the minimum value of Gini index, because the lower value of GI means high

information gain (GI) with :
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IG = 1−
∑
i

piGI (2.18)

At the end, if a leaf has purity greater than 1
2

then it is called a signal leaf, and if the purity

is less than 1
2

it is a background leaf. Events are classified as signals if they land on signal leaf

and background if they land on background leaf. The resulting tree is a Decision Tree.

2.5.3 BDT overtraining

Decision tree would be highly overtained. There are many blocks containing just one event,

as is mentioned above they are called leaves. To avoid splitting leaves, we need to define some

stopping criterions that save a leaf block from split, the common criteria are :

• Require signal purity in the block: for example, if there are events just from one type.

• Minimum number of events in the block: for example, the block might be required to contain

at least 5% of the total sample and this is what is called leaf node size in TMVA.

• Maximum number of cuts in the sequence defining the block: for example, no more than

three branching are allowed, and this is called tree depth in TMVA.

But unfortunately the decision tree is very sensitive to statistical fluctuations in the training

monte-carlo sample. If two discriminant variables have similar performance somewhere at the

top of the tree, a statistical fluctuation might lead to a usage of one or the other. From that

point however, the tree trained on the fluctuated sample will evolved completely different. As a

result, its classification performance will be very weak, which leads to very weak classifiers. For

solving this problem and increasing the efficiency of the tree, we need what is called boosting

and AdaBoost techniques described below.

2.5.4 Combining multiple classifiers (boosting or bagging algorithm)

The root node contains a dataset. Boosting algorithm creates basic learners sequentially.

Initially, a bunch or a subset from the data sample records (signal and background events)

is picked at random form, then gets passed the first base learner that can be any model.
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Typically, the base learner is a tree with one depth (one depth means the root block and two

son blocks). Once it is trained, the algorithm checks where the incorrectly classified events are

in the base learner and puts it in the second base learner with a new subset from the data,

which is created sequentially in order to correct the incorrectly classified events. This operation

is called sampling with replacement. What happens in the second base learner is also to check

the incorrect classified events and put them in the third base learner. This is generally how

boosting techniques work for enhancing the power of the decision tree, and the complet process

is called ”Boosted Decision Tree” [35]. If there is a total Nl base-learners the classification of

a previously unseen data (signal and background events) is the average of the responses of the

single classifiers :

y(x) =
1

Nl

Nl∑
i=1

yi(x) (2.19)

where yi(x) is the output of the i− th classifier and x is the average of the responses of the

single classifiers. The score in some BDT leaves block is very high, so to get a binary answer

(+1 for signal, -1 for background) in this case, it is required to normalize the BDT output score

using the following formula :

NB −NS

NB +NS

(2.20)

For boosted decision tree :

yi(x) =


+1 for signal

−1 for background

(2.21)
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Figure 2.13: BDT score (response) distribution for an exemplary BDT training and testing.

The overall outputs or what is called the score of the Boosted decision tree will be close to

+1 for signal events, and to -1 for background events. This process of averaging the response of

multiple classifiers is known as voting. The better the classification, the more the background

and Higgs signal distribution are separated as is illustrated in figure [2.13].

2.5.5 Adaboost algorithm

Adaboost is not much different than how boosting techniques work. However, there is

something new in Adaboost: sample weight. Each event in the dataset has a weight value.

Initially all events are basically assigned the same weights ω = 1
n

where n is the number of

events recorded in the dataset, this is the first step. In the second step, we create sequentially

a set of base learners starting from the first one. All these base learners are decision trees

with one depth and we call each base learner a ”stump”. After the training, the first stump is

classified correctly, some records form the first bunch of data set with some incorrectly classified

events because it is a weak learner model. In this case we calculate the total error (TE) with :

TE =
Number(incorrectly classified)

Number(total Events)
(2.22)

The third step is that we try to find the performance of the stump (PS), and that basically

means how the stump has classified the Higgs signal or background events. In order to do

that, we have the following formula :
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PS =
1

2
log

1− Total Error
Total Error

(2.23)

We calculate the Total Error and the performance of the stump in order to update the

weights of the incorrectly classified events, because only those wrongly classified events will be

passed to the next stump. The fourth step is to increase the weights for the incorrect classified

events so that the second stump take it in consideration and inversely decrease the weights for

the correct classified events by using the simple formulas :


ωnew = ω expperformance for incorrect classified events

ωnew = ω exp−performance for correct classified events

(2.24)

After applying the updating formula, we divide each single updated weight by the sum of

all updated wights in order to normalize them.

In the next step, we will create a new bunch dataset for the second stump with the incorrect

classified events from the first stump. Similarly, we apply all the previous steps on the second

stump by updating the event weights for the incorrect classified events in the second stump,

that will go on the third stump with another new bunch of data. This will be going continuously

until we specify some numbers of stumps (in Figure [2.14]). In the boosting algorithm the score

of this process will be the averaging response of the multiple weak classifiers stumps and is

known as voting with +1 for Higgs signal and -1 for background.

Figure 2.14: Illustration of Adaboost algorithm (Model means stump with depth 1) (*).
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Chapter 3

Enhancing Higgs signal in ATLAS

opendata

3.1 ATLAS opendata visualization and analysis

ATLAS Opendata [http://opendata.atlas.cern/] provides the public with data from

the proton-proton collisions at the LHC (experimental data). The data is accompanied by MC

simulated samples describing both several Standard Model processes and hypothetical Beyond

Standard Model signal production for educational purposes. Associated computing tools are

also provided to make the analysis of the dataset accessible. The general aim of releasing the

datasets and the tools is to provide the user-friendly and straightforward interactive interface to

replicate the procedure used by high energy physics researchers, and enable users to experience

the analysis of particle physics data in an educational environment. The released samples are

provided in a simplified data format, that contains just 4lep final state. The resulting format

is a ROOT tuple with more than 80 branches.

3.1.1 Experimental sample

The experimental data is taken from the pp collision process at the LHC, and collected

by the ATLAS detector at
√
s = 13 TeV during 2016, after applying quality criteria on the
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beam of the protons, the detector and the data. The publicly released data corresponds to

an integrated luminosity of 10 fb−1, contains approximately 270 million collision events [36],

and it is of a manageable size with just 4 final state of leptons (4 Electrons or 4 Muons or 2

Electrons and 2 Muons). Experimental data doesn’t have many events, because as we know

the process H −→ 4lep is very rare, so just a few hundred are detected and stored for further

analysis.

The experimental sample contains the following observables:

• Transverse momentum with (MeV) unit for each lepton pT (lep pt)

• The pseudorapidity for each lepton η (lep eta)

• The azimuthal angle for each lepton φ (lep phi)

• The energy of the lepton E (lep E)

• The type of each lepton (lep type) (11 for Electron and 13 for Muon, this convention is taken

by CERN collaboration )

• The charge of each lepton (lep charge)

Each line from the list represents an event (Higgs signal or backgrounds) for the process

pp −→ H −→ ZZ∗ −→ 4lep, as shown in the figure[3.1] below :

Figure 3.1: Experimental data provided by ATLAS opendata visualized with jupyter notebook.
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3.1.2 Simulated sample

The Monte-Carlo simulated samples from ATLAS describe several SM processes, which

are used to model the expected distributions of different signal and background events. For

the process pp −→ H −→ ZZ∗ −→ 4lep, the simulated data are generated using PYTHIA 8

+ POEHEG-BOX V2 or Madgraph aMC@NLO + PYTHIA 8 with 343981 channel that gives

4lep final state. The simulated dataset contains:

• Monte-carlo Weight (mc Weight)

• Scale factor for pileup (scaleFactor PILEUP )

• Scale factor electron efficiency (scaleFactor ELE)

• Scale factor muon efficiency (scalFactor MUON)

• Scale factor lepton Trigger efficiency (scaleFactor LepTRIGGER)

When visualizing the MC dataset by jupyter notebook, we obtain the results shown in the

figure [3.2]:

Figure 3.2: Simulated ATLAS data features visualized with jupyter notebook.

3.2 Enhancing Higgs signal using ATLAS opendata

The data source provided by ATLAS collaboration is accompanied by a set of jupyter

notebook documents, they can be analysed directly from the browser, either online or locally
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by downloading the dataset from the CERN website. In our thesis, we work locally with python

notebooks codes applying Machine Learning Models in the search to enhance the Higgs boson.

We are dealing with two kinds of machine learning models, “Artificial Neural Network”

(ANN) and “Boosted Decision Tree” (BDT). We are interested in the machine learning models

because they have the ability to do many analyses with high quality, saving countless human-

hours of design and analysis work, and they are of a great help with our problem : “the Higgs

signal and background noise classification”.

In this work, we add a lot of improvements to the original jupyter notebooks provided by

CERN and introduce several cuts to the dataset. We then study the impact of the parameters

on our machine learning models. By doing so, we aim to get a good separation between the

Higgs signal (S) and background (B), therefore “enhance the Higgs boson signal”.

The python libraries and tools we use in this work are :

• Uproot : a reader and a writer of the ROOT file format, typically used in particle physics.

• pandas : a software library for storing data as dataframes, a format widely used in Machine

Learning.

• NumPy : a library that provides numerical calculations such as histogramming.

• Matplotlib : a plotting library, common for making plots, figures, images, visualisations.

• Scikit-learn : a software machine learning library, easy and efficient tools for predictive data

analysis with machine learning model.

3.2.1 Optimization with machine learning methods

Throughout our work, we are using machine learning methods (ANN and BDT) as efficient

tools that allow us to enhance the Higgs signal from the monte-carlo simulated dataset. In

order to achieve that, we apply various changes on the codes to find the region in the multi-

dimensional phase space where the Higgs signal is more dominant than the background noise,

and get the maximum signal over background ratio. We also add the experimental dataset

to the ML models to see their results. We are also going to illustrate why those methods are

convenient and powerful than the traditional method that is based on data cuts.
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3.2.2 Traditional cuts and optimization

Beside the original code, we introduce a number of numerical cuts just on lep pt 1 and

lep pt 2 (cuts on leptons transverse momentum, pseudo-rapidity, and charge) in the data that

contains the Higgs signal and the background events, in order to reduce the contribution of the

background. Those cuts are as following:

• Selecting two pairs of isolated leptons, each of which is composed of two leptons with the

same flavour and opposite charge.

• Each Electron must satisfy pT > 7000 MeV and be measured in the pseudorapidity range

|η| < 2.47.

• Each Muon must satisfy pT > 6000 MeV and be measured in the pseudorapidity range |η| <

2.7.

The additional cuts are made by adding a new cells in jupyter notebook as is illustrated in the

figures [3.3] and [3.4]:

Figure 3.3: Cells from Jupyter Notebook showing the applied cuts on two isolated pairs of
leptons with the same flavour and opposite charge (11 for electron and 13 for muon).
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Figure 3.4: Cells from Jupyter Notebook showing the applied cuts on leptons lep pt1 and leptons
lep eta (11 for electron and 13 for muon).

In the next step which is the cuts optimization, we noticed that there is a difference between

the results of the original code and our modified code in the S/B ratio. After adding a number

of cuts on the data the contribution of the background is reduced which gives a better S/B

ratio as is illustrated in the figures [3.7]. Although adding cuts can boost the Higgs signal a

bit but it is insufficient.

Let’s set a cut at 8 GeV in the distributions of signal and background (1st plot) [3.5], this

means keeping all events above 8 GeV in the signal and background histograms, we then take

the ratio of signal and background events that pass this cut. This gives us a starting value for

S/B ratio (2nd plot) [3.6].

We then increase the value of cuts from 8 GeV to 13 GeV, whereat these values the cuts

are throwing away more background than signal, therefore the S/B ratio increases, but around

14 GeV a point comes where we start throwing away too much signal, thus, S/B ratio starts

to decrease.

Imagine having to separately optimize about 4 variables, since applying a cut on one variable

could change the distribution of another, which means being obligated to re-optimise, this is

where Machine Learning algorithms (ANN and BDT detailed [2]) come in handy. Machine

learning models can optimise all variables at the same time what gives a better signal over

background classification than the individual cuts ever could.
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Figure 3.5: S and B lep pt 2 distribution
(1st plot) after introducing cuts on lep 2.

Figure 3.6: S and B lep pt 1 distribution
(2st plot) after introducing cuts on lep 1.

(a) S/B ratio before introducing cuts on
lep PT 1 (PT > 7GeV ).

(b) S/B ratio after introducing cuts on
lep PT 1 (PT > 7GeV ).

(c) S/B ratio before introducing cuts on
lep PT 2 (PT > 7GeV ).

(d) S/B ratio after introducing cuts on
lep PT 2 (PT > 7GeV ).

Figure 3.7: S/B ratio results after applying cuts on 3.3 and 3.4 variables.
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3.2.3 Covariance and Correlation

Correlation is a dimensionless measure used to represent how strong two random variables

are related to each other. It refers to the scaled form of covariance and measures both the

strength and direction of the linear relationship between two variables. Correlation ranges

between −1 and +1 and it is not influenced by the change in scale.

Since the data collected for the process pp −→ H −→ ZZ∗ −→ 4lep contains more than

two observables (x1, x2, x3, x4......, xn), we can form the covariance between those variables as

follow:

Vij = 〈xixj〉 − 〈xi〉〈xj〉 (3.1)

If there is a tendency for positive fluctuations in xi to be associated with positive fluctuations

in xj (and therefore negative with negative) then the product (xi−x̄)(xj−x̄) tends to be positive

and the covariance is greater than 0.

If the variables are independent, then a positive variation in xi is likely to be associated

with a positive or a negative variation in xj, in this case the covariance is zero.

Covariance is useful, but it has dimensions. Often one uses the correlation, which is just :

ρij =
Vij
σiσj

(3.2)

ρii = 1 for i=j (3.3)

It is easy to show that ρ lies between 1 (complete correlation) and−1 (complete anticorrelation),

ρ = 0 corresponds to xi and xj independent.

We can show the heatmap by applying the following commands on jupyter notebook :

Figure 3.8: Part from the code with commands to get heatmap that shows the correlation
between experimental data.

The diagonal of V is σ2
i . The diagonal of ρ is 1 as it is shown in figure [3.10] for our collected
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data.

We can see that there is a strong correlation in the diagonal of the heatmap, what means

each variable is correlated to itself. Also there are some variables that don’t correlate very well,

on the othere hand, there are data variables that don’t correlate at all, those information on

correlation between data variables can be used later in our work in order to choose the best

input variables for best optimization that lead us to enhance the Higgs signal to background

ratio.

Figure 3.9: Correlation between experimental data variables.

53



(a) Correlation between Higgs signal variables for simulated
data.

(b) Correlation between background variables for simulated
data.

Figure 3.10: Heatmaps show correlation factor for higgs events and background events.
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Both correlation and covariance are closely related to each other and they still differ a lot:

Tableau 3.1: Correlation vs covariance characteristics

Covariance Correlation

Indicates the change scale of random Indicates how strongly random variables are
variables. related.

Covariance is a measure of Correlation refers to the scaled form of
correlation. covariance.

Indicates the direction of linear Measures strength and direction of linear
relationship between variables. relationship between variables.

Varies between −∞ and +∞ Varies between -1 and +1

Affected by the change in scale. Not affected by the change in scale.

Gets its units from the unit product of two Dimensionless.
variables.

3.2.4 Optimization with Artificial Neural Network

Since the traditional cuts don’t give us maximum signal to background ratio, we choose ar-

tificial neural network as a modern alternative way that can take correlations between features

for more information in multidimensional space data, and optimize all variables at the same

time. Therefore, gives best signal and background classification which is more powerful than

individual cuts (traditional method).

The Training phase We feed our ANN the parameters or “the kinematic variables” lep PT 1

and lep PT 2 both at the same time as inputs from the labeled simulated data (0 for background

events and 1 for signal events) as training set. We use MLPClassifier (the multilayer

perceptron classifier) as our neural network model, since we have a classification between

Higgs signal and background noise events, we will train our ANN model with 66% from the

data, while the other 33% is preserved for the testing phase.
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Inputs Data Preprocessing for Neural Network The multilayer perceptron is very sen-

sitive to features scaling. The neural network in python may have difficulties to converge before

the allowed maximum number of iterations if the data is not normalized. It is the case for our

features for the ANN lep PT 1 and lep PT 2 that contain a high scale value. So we normalize

our inputs with a tool from sklearn library called ”StandardScaler” for scaling inputs to small

values.

Effect of changing ANN parameters in optimization

In this part we change a number of parameters in the code exactly in our neural network

model MLPClassifier respectively:

• First we change number of hidden layers from 1 with 2 neurons to 2 hidden layers (the first

hidden layer with 2 neurons and the second hidden layer with 10 neurons), and we fix 200

iteration with a learning rate =0.001, we put ”sigmoid” or what is called ”logistic” as an

activation function.

• In the second modification, we change the neural network parameter again but this time we

create an ANN with 3 hidden layers (the first hidden layer contains 5 neurons, the second hid-

den layer contains 20 neurons, the third hidden layer contains 50 neurons), with 200 iteration,

learning rate = 0.001 and ”Relu” as activation function.

• For the third modification, we keep our ANN with three hidden layers but we change the

learning rate to 0.1 and for the number of iteration we use this time 400 iteration.

The modifications we tried while experiencing the ANN model, helped us pick the best combi-

nations of parameters to show the evolution of ANN model performance from the lowest to a

higher efficiency.

Figure 3.11: Cell from the code showing the change of parameters for the ANN.

After processing we will pay attention to three following illustrations representing the results
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:

• The ANN outputs (separation of signal and background events).

• The ROC curve.

• The Higgs signal to background ratio.

The results after training the neural networks is illustrated in the figures below:

(a) 2 hidden layers and logistic as
activation function, learning rate =0.001,

max iteration =200.

(b) 3 hidden layers and relu as activation
function, learning rate =0.001, max

iteration =200.

(c) 3 hidden layers and relu as activation
function, learning rate 0.1, max

iteration = 400.

Figure 3.12: Higgs signal and Background ANN output distribution with different parameters.

After analyzing the results of the ANN experiments with different hidden layers, we can

clearly see that the ANN with 2 hidden layers (with logistic activation function, learning

rate =0.001, max iteration =200.) has a very bad classification between the values 0.6 and 0.7

[3.12]. There is a huge number of background events (represented by arbitrary units) incorrectly

classified as Higgs signal with a probability of 60% and 70%. Which is very bad as performance

for our ANN model. When adding another hidden layers with more neurons to our ANN and
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changing the activation function from logisctic to ReLU , the number of background events

classified as background decrease a little bit, and the separation between the Higgs signal and

background events become apparent. Then, when keeping the number of hidden layers and

the activation function while changing the learning rate and max iteration, we notice how the

background detected as signal is reduced comparing to the previous tries, and the separation

become even more apparent.

(a) 2 hidden layers and logistic as
activation function, max iteration =200,

learning rate =0.001.

(b) 3 hidden layers and relu as activation
function, max iteration =200, learning

rate =0.001.

(c) 3 hidden layers and relu as activation
function, max iteration = 400, learning

rate 0.1.

Figure 3.13: Roc curve with different parameters.

We can clearly see that the area under the curve [3.13] for the ANN with 3 hidden layers is

bigger than the ANN with 2 hidden layers, which means that the model with 3 hidden layers

is more capable of signal and background separation task than the 2 hidden layers model. The

true positive rate is higher than the false positive rate which leads to high sensitivity to Higgs
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signal classification. Also, the same change in the results from the signal to the background

ratio in curve [3.14] is noticeable. Adding more hidden layers and changing the activation

function to ReLU gives high S/B ratio.

(a) 2 hidden layers and logistic as
activation function, learning rate =0.001,

max iteration =200.

(b) 3 hidden layers and relu as activation
function, max iteration =200, learning

rate =0.001.

(c) 3 hidden layers and relu as activation
function, max iteration = 400, learning

rate 0.1.

Figure 3.14: Higgs signal over background ratio for different parameters.

Checking Overtraining After finding the optimal architecture, we have to assure that our

model does not face overtraining problems (discussed in [2.4.4]). Fortunately, the code has a

prepared part for this, it uses the 33% of the data preserved for testing. What permit the

illustration of figure [3.15], thus confirming that our ANN did not overtrain.
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Figure 3.15: Artificial neural network overtraining check.

As it is clear in the Figure [3.15], the testing results represented by the dots match perfectly

the training results represented by the histograms, thus, the ANN can preserve a good efficiency

of classification when confronted with unknown data (testing data).

Effect of adding more variables into the neural network

In this part, we add a number of new dynamical variables (kinematic) in the neural network

beside the lep pt 1 and lep pt 2 that have a correlation factor ρ=0.54 as inputs. First, we change

the input variables to “lep pt 1” and “lep eta 2” that have a correlation factor of ρ=-0.003,

then we change again the inputs to “lep eta 1” and “lep E 2” where ρ =-0.005 according to

the heatmap [3.10], in order to see the effect of correlation and anticorrelation on our Artificial

neural networks performance. As a final modification, we add respectively one by one the

variables from the set: lep pt 1, lep pt 2, lep eta 1, lep E 2, lep eta 2, and lep phi 1, some of

them are decorrelated and others are correlated. The modifications are illustrated in the next

figures:
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(a)

(b)

Figure 3.16: Cells from the code showing the modifications of adding different variables.

The results are represented as following:

(a) lep pt 1,lep pt 2 ρ=0.54. (b) lep pt 1,lep eta 2 ρ=-0.003.

(c) lep eta 1,lep E 2 ρ=-0.005. (d)
lep pt 1,lep pt 2,lep eta 1,lep E 2,lep eta 2,lep phi 1.

Figure 3.17: Higgs signal over the background ratio after testing the correlated and decorrelated
variables on the ANN model.

We can see that the optimization with decorrelated inputs variables gives better results for

the signal to background ratio than the correlated variables. This case of decorrelation is more
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discussed in [37]. For this reason the heatmap is very important in machine learning models to

get the maximum efficiency.

3.2.5 Optimization with Boosted Decision Tree

Another alternative optimization method is the “Boosted decision tree”. Here, the model

we used is DecisionTreeClassifier from sklearn.tree for decision tree, and AdaBoostClassifier

from sklearn.ensemble for boosting. In our first tries, we set the variables as lep PT 1 and

lep PT 2, both correlated extracted from the labeled simulated data, as we attempt to get the

best optimization by updating model’s parameters.

Note Just like the ANN, we are going to check the results from :

• The BDT score (signal and background) distribution,

• ROC curve,

• and signal to background ratio.

Updating BDT parameters

In the BDT optimization method we are modifying the following parameters: maximum

depth of the tree, max number of estimators, and learning rate.

Figure 3.18: Cell from jupyter notebook showing the parameters of BDT.

Since every parameter has an impact on our results, we try to find out about their effect,

by updating them one by one, to fit with the best possible results. We started by changing the

Maximum Depth of the tree which would allow the BDT model to seperate more data, starting

by 2, 10, 15, 20, 25, to finally decide to work with 20. Technically we could use bigger numbers

but it wouldn’t give us any different and/or better results. We then started modifying the
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number of estimators to get acceptable results. We began with 12 until we got to 100, which

gave us the best results. We couldn’t change it to a bigger number since our devices started

taking a really long time (up to 30 min). The last thing we had to check was the learning rate.

We set it to various values, from 0.01 to 1 but the only usable results we got were when we set

the learning rate at 0.5, which makes sense since it was the value set by default in the original

code file. Eventually, the best parameters we found are:

• Maximum Depth = 20.

• Number of Estimators = 100.

• Learning rate = 0.5.

In the figures [3.19] extracted from the code, we can clearly see the evolution in the results,

from the first try to the best.

(a) Maximum Depth = 2, Number of
Estimators = 10, Learning rate = 0.5

(b) Learning rate as 0.05, Maximum
Depth = 20, Number of Estimators = 100

Figure 3.19: Optimized BDT parameters for an efficient Signal-Background Separation.

(a) Maximum Depth = 2, Number of
Estimators = 10, Learning rate = 0.5

(b) Learning rate as 0.05, Maximum
Depth = 20, Number of Estimators = 100

Figure 3.20: Optimized BDT parameters for an efficient ROC Curves.
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(a) Maximum Depth = 2, Number of
Estimators = 10, Learning rate = 0.5

(b) Learning rate as 0.05, Maximum
Depth = 20, Number of Estimators = 100

Figure 3.21: Optimized BDT parameters for an efficient Signal/Background Ratio.

Now that we have done our experiments, while applying a change in various parameters. It

becomes apparent how each of them affect the results. We have seen how the more we increase

the depth of the tree and add the number of estimators (base learners), the algorithm would

explore more from -1 to +1, while the background detected as signal decreases. Also in terms

of S/B ratio we got up to 14 % with tree depth equals 20 or more. The same applies for the

ROC curve. The only exception we found was with the learning rate where only 0.5 gave good

results, which means whenever we increase or decrease the learning rate it would give worst

results.

Checking Overtraining Now that we have the combination of the best parameters, we have

to confirm that the BDT model is not overtraining (explained in [2.5.3]). Just like in the ANN,

by using the 33% of the data preserved for testing we can illustrate the figure [3.22] and deduce

that the model indeed doesn’t overtrain. As it is clear, the testing results represented by the

dots match perfectly the training results represented by the histograms, hence, when the BDT

model is faced with unknown data (testing data), it can preserve a good efficiency of prediction.
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Figure 3.22: Boosted decision tree overtraining check.

Updating optimization variables on BDT

Here, we start by adding some variables with positive correlation (meaning positive between

variables of the same type of variables corresponding different particles) represented in the

heatmap: “lep pt 1”, “lep pt 2”, “lep eta 1”, “lep eta 2”, “lep E 1”, “lep E 2”. Then, we

continue by adding variables with negative correlation or as called decorrelation: “lep pt 1”,

“lep pt 2”, “lep eta 1”, “lep E 2”, “lep eta 2”, “lep phi 1”. The modifications we made in the

code are as following:

(a) Correlation.

(b) Decorrelartion.

Figure 3.23: Cells from the code showing the modifications in the variables.

The outputs show us the apparent change represented in the signal to background ratio:
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(a) Correlation. (b) Decorrelartion.

Figure 3.24: Higgs signal over the background ratio after testing the correlated variables and
decorrelated variables on the BDT model.

The results showed obvious differences between the optimization with correlated and decor-

related variables. Here decorrelated variables gave much better results in terms of the signal to

background ratio.

3.3 Dealing with experimental data

Using the labeled simulated data, we found a good architecture and trained models that

we trust. The architecture is represented by the best combination of parameters to give the

best possible results. Now, we can take our experiments to the next level, and challenge the

ML models with the real data “experimental data” which is harder to classify since its events

do not carry labels.
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Figure 3.25: Cell from the code to show where we added the experimental data samples.

The results from dealing with the experimental data are shown in the figures [3.26].

(a) ANN output with adding
experimental data.

(b) BDT score with adding experimental
data.

(c) ANN signal to background ratio with
adding experimental data.

(d) BDT signal to background ratio with
adding experimental data.

Figure 3.26: Results of testing machine learning models on experimental data.

We can see that our models make a good classification (ANN and BDT output), even though
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we added the non-labeled experimental data. The same applies with the signal to background

ratio.

3.4 Discussion

Since the traditional method does not exactly give a good optimization comparing to the

other machine learning methods we used, hence, we won’t be discussing it. Over our encounter

with ANN and BDT, we observed how the slightest change on the inputs have a great impact

on the outputs. This impact is not only in term of the performance (Signal over background

ratio, ROC curve, and signal background separation) but also on the needed time to obtain

the results. Of course, it is worth mentioning that all of this would much differ between the

methods, whether we used the simulated or the experimental data, and also the capacity of our

used devices.

3.4.1 Discussing Artificial Neural Network results

After testing our Artificial neural network model (MLPClassifier) with different param-

eters and experiencing it with new samples and variables, we noticed the following results :

• Adding more hidden layers for our neural network means increasing the number of neurons

which means a deeper processing for our inputs dataset, therefore leads to a good classification

whether the event is Higgs signal or background event.

• Putting ReLU as activation function is faster to compute than the sigmoid function, and

its derivative is faster to compute. Meaning ReLU converge faster to the global minima where

the weights get updated throughout the optimization process [2.9]. This makes a significant

difference to training and inference time for neural networks.

• Increasing the iterations number means increasing the number of back and forth in the

back-propagation process in order to update the weights, given by that a very good result in

classification task.

• Since the learning rate may be the most important hyperparameter when configuring the
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ANN, adapting our ANN model with the right learning rate decreases the processing time, and

updates the weights get very well.

• Adding decorrelated variables into our artificial neural network increases its efficiency because

using non interconnected variables means giving more information to the ML models, which

means more features that help to recognize each data event (Higgs signal or background noise).

3.4.2 Discussing Boosted Decision Tree results

In the BDT optimization method we are modifying the following parameters : maximum

depth of the tree, max number of estimators, and learning rate.

• Maximum Depth gives better splits for signal and background therefore reduces error.

• Number of estimators (base learners, also called weak classifiers) decreases the number of

incorrectly classified events.

• Using gini index (GI) criterion purity gives the best first split in the root node, also good

decision tree classification, and S/B ratio, better than entropy criterion.

• Fixing the Learning rate reduces the misclassified events and also those incorrectly classified.

3.4.3 Discussing dealing with experimental data

As we saw in the previous section, artificial neural network and boosted decision tree

machine learning models were trained using the labeled simulated data, before we applied

on them the experimental dataset. As we can see in the figures [3.26], the results are not

similar between the two models. The difference between the models is not caused by the lack

of efficiency but could be the result of many problems, such as a conflict between the best

parameters and the capacity of the used computer, or the imbalance in the efficiency of the

used parameters. Regardless of that, it is very important to mention that we challenged the

machine learning models to classify unknown experimental data, and it was indeed successful.

Therefore, our goal was fulfilled, to enhance Higgs signal.
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Conclusion

The Higgs boson signal existence is naturally insignificant in the ATLAS data, since it

is produced from rare events. In this Master thesis, we used Machine Learning optimization

methods, in the form of Artificial Neural Network and Boosted Decision Tree, as alternative

modern ways that allow us to explore the multidimensional phase space and extract the region

where the Higgs signal is more dominant.

We began by exploring some background knowledge about the Higgs boson, starting by

the process of how it is generated experimentally at the LHC, passing by the detection and

identification processes at the ATLAS detector, and the difficulties of detecting the Higgs

which is buried in a huge fraction of background events. We then explored the trigger system

that allows us to reduce the huge amount of data to a manageable size, to be easily handled

using the capacity of our computers. We then introduced about the simulated dataset and

how it is generated. After assembling all the needed theoretical notions, it was time to apply

them on a live code. Fortunately, we had access to ATLAS opendata source, the one that not

only contained the prepared machine learning codes that we based our models on, but also the

datasets (simulated and experimental) we used in our work.

We had started our experiments with the simulated dataset that allowed us to construct

an optimal architecture that found the best region which is enriched with the Higgs signal.

We achieved that by adjusting different parameters simultaneously. This optimal adjustment

is represented by extending the depth of the neural network and boosting the decision tree

with the Adaboost algorithm. We can simplify the way optimization methods work with the

Higgs signal to be pretty similar to the way microscopes work to amplify the tiny objects
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and make them more visible. Using decorrelated variables for our machine learning models

increases efficiency because adding the decorrelated variables means adding more information

to the model. Then we repeated the procedure with the experimental dataset but working

the optimal architecture. To finally conclude that both artificial neural networks and boosted

decision trees are efficient at their job with a reasonable value, and as a small criticism, both

models cannot have efficient optimization and quick processing all at the same time.

Beside the methods that we used there are plenty others which are used in parallel in the

research area, such as: CNN, RNN, QBDT, and more, some of them can be more efficient. The

procedure we took using machine learning methods to enhance the higgs signal is similar to

the one used today in high energy physics research, which may be the gate to unravel a new

physics that goes beyond the Standard Model. It is promising that the Higgs particle discovery

is the first of many to come, among which signals are even more rare, with higher energy and

bigger masses.
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Appendix A

The Standard Model of Particle

Physics

Theories and discoveries of many physicists over the past century have provided under-

standing of the fundamental structure of matter, to conclude that our universe is made up of

a number of fundamental particles and governed by four fundamental forces, where the SM of

particles help us to understand the basics of these particles and which three of the four forces

of nature are interconnected. It was made to explain with high accuracy the results of a large

number of experiments and to predict a wide variety of phenomena. The SM was tested by

numerous experiments since it first appeared and has been shown to successfully describe high

energy particle interactions.

The Standard Model is the name given in the 1970s to a theory of fundamental particles

and how they interact. It incorporated all that was known about subatomic particles at the

time and predicted the existence of additional particles as well.

There are seventeen named particles in the Standard Model, organized into the chart shown

below. The last particles discovered were the W and Z bosons in 1983, the top quark in 1995,

the tau neutrino in 2000, and the Higgs boson in 2012.

The mechanism that breaks electroweak symmetry in the standard model which gives mass

to elementary particles, implies the existence of a scalar particle was called the Higgs boson,
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it is produced by the quantum excitation of the Higgs field with zero spin, no electric charge, no

colour charge. For many years, the big problem was that no experiment had observed the higgs

boson, which would have confirmed the theory that explains the origin of mass, it wasn’t until

july 4th ,2012, that the ATLAS and CMS experiments at the LHC announced that they had

both observed a new particle which exhibits the same characteristics with those of the Higgs

boson predicted by the theory, with a mass in the 126 Gev region.

Figure A.1: Standard model of elementary particles (*).
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Appendix B

Machine Learning overview

Machine Learning techniques are making a huge leap in the scientific field, and becoming

much easier allowing anyone to put it in use to achieve their purposes, not like until recent

years where it was only available to large companies and institutions.

Figure B.1: Machine Learning and Classical Models (*).

Machine Learning is divided into two main areas: supervised learning and unsupervised

learning. Although it may seem that the first refers to prediction with human intervention and

the second does not, these two concepts are more related with what we want to do with the

data.
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• One of the most common uses of supervised learning is to make future predictions based on

behaviors or characteristics that have been already seen in the data (historical data). Supervised

learning makes it possible to search for patterns in historical data. For example, e-mails are

labeled as “spam” or “legitimate” by users. The prediction process begins with an analysis of

which characteristics or patterns the marked emails have. It can be determined, for example,

that spam email is the one that comes from certain IP addresses, has a certain text and/or

images, and more. Once all patterns have been determined, that means the learning phase is

done, new mails that have never been marked as spam or legitimate are compared with patterns

to be classified based on their characteristics.

• On the other hand, unsupervised learning uses historical data that has no target field. The

aim is to explore the data and find some structure or to organize it. For example, it is often

used to group customers with characteristics or behaviors similar to those of highly segmented

marketing campaigns.

Figure B.2: Supervised vs Unsupervised Learning (*).

B.1 Learning and training

It is the process in which the patterns of a data set are detected, that is the heart of machine

learning. Once patterns are identified, predictions can be made with new data entered into the

system. For example, historical data from book purchases on an online website can be used
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to analyze customer behavior in their purchasing processes (titles visited, categories, purchase

history. . . ), group them into behavioral patterns, and make purchase recommendations to new

customers who follow known or learned patterns.

Figure B.3: Learning and training (*).
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Appendix C

Illustratif example of Neural network

technique

The term Artificial Neural Network is derived from Biological neural networks that form

the structure of a human brain. Similar to the human brain, artificial neural networks have

neurons that are interconnected to one another in various layers of the network. These neurons

are known as nodes. Typically Artificial Neural Network looks something like in the figure

below.

Figure C.1: Structure of simple neuron (*).
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C.1 What does a neuron do ?

The operations done by each neurons are pretty simple :

Figure C.2: Simple neuron.

First, it adds up the value of every neuron from the previous column it is connected to. On

the Figure C.2, there are 3 inputs (X1 =0.43, X2 =0.23, X3 =0.60) coming to the neuron, so 3

neurons of the previous column are connected to our neuron.

before being added, this value is multiplied, by another variable called weight (w1 = −0.2,

w2 = 0.54, w3 = 1) which decides the connection between the 3 neurons, where each connection

has its own weight. The weights are the only values that will be modified during the learning

process, also a bias value may be added to the total value calculated. The bias is chosen before

the learning phase and is not a value coming from a specific neuron, but can be useful to fire

the performance of the network. After all those summations, the neuron finally applies a func-

tion called activation function to the obtained value transforming by the inputs to a binary

distribution. The so-called activation function usually serves to turn the total value calculated

before to a number between 0 and 1. There is other functions exist and may change the limits

of our function, but keep the same aim of limiting the value as :

• sigmoid : 1
1+exp(−x)

The function takes any real value as input and outputs values in the range

0 to 1

• The hyperbolic tangent activation function (Tanh): exp(x)−exp(−x)
exp(x)+exp(−x)

The function takes any real

value as input and outputs values in the range -1 to 1
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• Linear rectfill function (ReLU) :max(x, 0) The function takes any real value as input and

outputs values in the range 0 if x ≤ 0 and x if x >0

Figure C.3: Schematic representation of multiple activation functions and their limits.

That’s all what a neuron does. Take all values from connected neurons multiplied by their

respective weight, add them, and apply an activation function. Then, the neuron is ready to

send its new value to other neurons.

How does a neural network learn ? Neural networks generally perform supervised learning

tasks, building knowledge from data sets where the right answer is provided in advance. The

networks then learn by tuning themselves to find the right answer on their own, increasing the

accuracy of their predictions.

The most common supervised learning method is based on the gradient descent learning rule.

The method optimises the network weights such that a certain objective error function E is

minimised by calculating the gradient of E in the weight space and moving the weight vector

along the negative gradient. For a single Artificial Neuron AN the objective function is
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usually an error function which measures the AN‘s error in approximating the target vector y:

E =
∑n

i=1(ypredected − yactual)2

The weights of the AN are adjusted by exposing it more times to the training data set. For a

single training pattern the weights of an AN are adjusted with the formula : Wnew = Wold −

η dE
dWold

where η is the learning rate which represents the size of the steps taken in the negative

direction of the gradient.

C.2 Simple Artificial neural networks

Figure C.4: Example of simple artificial network with 1 hidden layer.

Input Layer: As the name suggests, it accepts inputs in several different formats in ou simple

networks we provide 3 inputs x1 = 0.34, x2 = 0.70, x3 = 1, with a bias=1

Hidden Layer: The hidden layer presents in− between input and output layers. It performs

all the calculations to find hidden features Z1, Z2, Z3, by the following steps :

• The first step is to calculate x =
∑3

i=1 xiwi , where Wi are the weights represented by colored

rectangles with different values.

• The second step is to apply them on a non linear transformation by using sigmoid function
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as activation function : sigmoid = 1
1+exp(−x)

sigmoid = 1
1+exp(−

∑3
i=1 xiwi

Zi = 1
1+exp(−

∑3
i=1 xiwi+bias)

Z1 = 1
1+exp(−(0.3∗0.3+0.7∗0.2+1∗0.3)+1)

= 0.82

Z2 = 1
1+exp(−(0.3∗0.5+0.7∗0.1+1∗0.8)+1)

= 0.88

Z3 = 1
1+exp(−(0.3∗0.7+0.7∗0.8+1∗0.3)+1)

= 0.88

Output Layer: The input goes through a series of transformations using the hidden layer,

which finally results in output that is conveyed using this layer. The artificial neural network

takes input and computes the weighted sum of the inputs and includes a bias. This computation

is represented in the form of a transfer function. It determines the weighted total is passed as

an input to an activation function to produce the output. Activation functions choose whether

a node should fire or not. Only those who are fired make it to the output layer. There are

distinctive activation functions available that can be applied upon the sort of task we are

performing.

y = 1
1+exp(−

∑3
j=1 xjwj)

+ bias

y = 1
1+exp(−(0.82∗0.33+0.88∗0.23+0.88∗0.87))

=0.77

Neuron representation in python

In this example we try to predict target y. all the steps from learning to updating the

weights are implemented in the code.

1 import numpy as np

2 def sigmoid(x):

3 return 1/(1+ np.exp(-x))

4 def sigmoid_derivative(x):

5 return x*(1-x)

6 inputs = np.array ([[0,0,1],

7 [1,1,1],

8 [1,0,1],
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9 [0,1 ,1]])

10 outputs=np.array ([[0 ,1 ,1 ,0]]).T

11 np.random.seed (1)

12 weights=np.random.random ((3 ,1))-1

13 bias =0.3

14 for i in range (100000):

15 inputs_layer = inputs

16 first_outputs = sigmoid(np.dot(inputs_layer , weights)+bias)

17 error = outputs -first_outputs

18 adjustment=error*sigmoid_derivative(first_outputs)

19 weights +=np.dot(inputs_layer.T, adjustment)

20 print(first_outputs)

21 [[0.00301772]

22 [0.99753714]

23 [0.99799165]

24 [0.00246107]]

Listing C.1: Python simple neuron example to predict the maping of the vector target y
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Appendix D

Illustratif example of boosted decision

tree

To solve classification problems with mixed data, it is only possible to cut over and over

again and apply more conditions in order to get a good classification.

Figure D.1: Exemple of mixed data.

A decision tree is a type of probability algorithm tree that makes a decision about some

process that contains conditional control statements, and it is represented by a diagram or

chart that determines the course of the action or the statistical probability. Boosting a decision

tree reduces error mainly by reducing bias. The algorithm of Boosting decision trees learns by

fitting the residual of the trees that preceded it. Thus, boosting in a decision tree ensemble

tends to improve accuracy with some small risk of less coverage.
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As an example, we can create a decision tree that predicts whether a particle is a Fermion

or a Boson, using the following data;

Tableau D.1: Table of data for classification

Name Type Antiparticle Spin Label

Antitau Lepton yes 1
2

0

Muon Lepton no 1
2

0

Gluon Gauge Boson no 1 1

Z Gauge Boson no 1 1

Muon neutrino Lepton no 1
2

0

Photon Gauge Boson no 1 1

W Gauge Boson no 1 1

Positron Lepton yes 1
2

0

Where 1 is assigned to bosons and 0 to fermions. The decision tree for this classification

would look something like that:

Figure D.2: Simple decision tree that classify particles.
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Starting from a node or called interior nodes if it is preceded by a branch : where the data is

splitted based on an input feature. The branch of the decision tree represents a possible decision

or outcome, here, the features are: particle’s type, spin, and whether it is an antiparticle or

not. Leaves are the terminal nodes that represent a class label or probability, containing the

final classified outputs. A decision tree learns by taking a set of input features and splits the

data based on those features. Each split is meant to maximize information gain and minimize

entropy, where the gain is the difference in entropy before and after the split.

Boosted decision tree representation in python

We can create the previous decision tree using python programming language,

1 import pandas as pd

2

3 df = pd.read_csv("bosons.csv")

4 df.head()

5

6 inputs = df.drop('Label ',axis='columns ')

7

8 target = df['Label ']

9

10 from sklearn.preprocessing import LabelEncoder

11 le_Name = LabelEncoder ()

12 le_Type = LabelEncoder ()

13 le_Antiparticle = LabelEncoder ()

14 le_Spin = LabelEncoder ()

15

16 inputs['Name_n '] = le_Name.fit_transform(inputs['Name'])

17 inputs['Type_n '] = le_Type.fit_transform(inputs['Type'])

18 inputs['Antiparticle_n '] = le_Antiparticle.fit_transform(inputs['

Antiparticle '])

19 inputs['Spin_n '] = le_Spin.fit_transform(inputs['Spin'])

20

21 inputs
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22

23 inputs_n = inputs.drop(['Name', 'Type', 'Antiparticle ', 'Spin'],axis='

columns ')

24

25 inputs_n

26

27 target

28

29 from sklearn.tree import DecisionTreeClassifier

30 from sklearn.ensemble import AdaBoostClassifier

31

32 dt = DecisionTreeClassifier(criterion='gini', max_depth =10)

33 model = AdaBoostClassifier(dt,

34 algorithm='SAMME ',

35 n_estimators =10,

36 learning_rate =0.5)

37

38 model.fit(inputs_n , target)

39

40 model.score(inputs_n ,target)

Listing D.1: Python example of particles classification

This code assigns for each of the input a number using the command LabelEncoder to classify

them, then by using sklearn and AdaBoostClassifier we boost the tree and minimize the

errors. Also the code can predict whether another particle is a boson or fermion using the

following code line:

1 model.predict ([[2 ,0 ,1 ,1]])

Listing D.2: Python example of particles classification

and the output give array([0]) meaning it assigned the number 0 to it, and classified it as a

Fermion
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Appendix E

Scikit-learn toolkit

Scikit-learn is a Python module integrating a wide range of machine learning algorithms

for medium-scale supervised and unsupervised problems. It was initially developed by David

Cournapeau as a Google summer of code project in 2007. This package focuses on bringing

machine learning to non-specialists using a general purpose high-level language. Emphasis is put

on ease of use, performance, documentation, and API consistency. It has minimal dependencies

and is distributed under the simplified BSD license,encouraging its use in both academic and

commercial settings. Source code, binaries, and documentation can be downloaded from http:

//scikit-learn.sourceforge.net.

The library is built upon the SciPy (Scientific Python) that must be installed before you

can use scikit-learn. This stack that includes:

• NumPy: Base n-dimensional array package;

• SciPy: Fundamental library for scientific computing;

• Matplotlib: Comprehensive 2D/3D plotting;

• IPython: Enhanced interactive console;

• Sympy: Symbolic mathematics;

• Pandas: Data structures and analysis.
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Appendix F

The ROC curves

A ROC curve (receiver operating characteristic curve) is a graph showing the performance

of a classification model at all classification thresholds. This curve plots two parameters:

• True Positive Rate

• False Positive Rate

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

TPR =
TP

TP + FN
(F.1)

False Positive Rate (FPR) is defined as follows:

FPR =
FP

FP + TN
(F.2)

• TP : True Positive is the number of higgs signal events classified as higgs signal events after

a certain threshold value

• TN : True negative is the number of background events classified as background events after

a certain threshold value

• FP : False positive is the number of background events classified as higgs signal events after

a certain threshold value
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• FN : False negative is the number of higgs signal events classified as background events after

a certain threshold value

A ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the clas-

sification threshold classifies more items as positive, thus increasing both False Positives and

True Positives. The following figure shows a typical ROC curve. To compute the points in an

Figure F.1: TP vs. FP rate at different classification thresholds (*).

ROC curve, we could evaluate a logistic regression model many times with different classifi-

cation thresholds, but this would be inefficient. Fortunately, there’s an efficient, sorting-based

algorithm that can provide this information for us, called AUC.

F.1 AUC

AUC stands for “Area under the Curve”.It measures the entire two-dimensional area un-

derneath the ROC curve (think integral calculus) from (0,0) to (1,1) and provides an aggregate

measure of performance across all possible classification thresholds. One way of interpreting

AUC is as the probability that the model ranks a random positive example more highly than

a random negative example. The bigger the AUC is the better our ML model is.
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F.1.1 How does sklearn.metrics draw ROC curves in the case of

Higgs signal and background classification

In the case of Higgs signal and background classification in high energy physics, the number

of events is divided into two types (higgs boson events and background events), then we have in

this case a binary classification task. Let’s take any machine learning model (ML) for example

(ANN or BDT) in order to solve the classification task between higgs signal and the background

events with two different values for y as target value (1 when we have higgs signal and 0 for

background) that our machine learning model try to predict it. We import the ROC curve

model from sklearn with the following command :

Figure F.2: Commands to plot the ROC curve to show performance of the used machine
learning model in the classification (higgs signal or background task).

For example, suppose our machine learning model had predicted a number of target values

shown in the table.
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y target list
actual target y y predicted by

ML model
y predicted for
threshold (0)

y predicted for
threshold (0.2)

1 0.8 1 1
0 0.96 1 1
1 0.4 1 1
1 0.3 1 1
0 0.2 1 0
1 0.7 1 1

The model sklearn.metrics takes the first threshold value as 0 (y predicted for threshold

(0)). As we can see the first y=0.8 predicted by our Machine Learning model y=0.8 is greater

than 0 so definitely is going to become 1 as is illustrated in the table, and others values become

1 also. Starting from this operation we calculate the TPR= 4
4+0

= 1 since we have 4 true

positive and 0 false negative. For the FPR= 2
2+0

= 1 since we have 2 false positive and 0 true

negative. Also the same operation to calculate TPR and FPR for the threshold value 0.2 and

others 0.3,0.4....1.

sklearn.metrics model takes those TPR and FPR as coordinates (TPR,FPR) to draw the

ROC curve starting from (1,1) that we found for the threshold 0 to the (0,0). After connecting

all the dots together we will get the curve shown in the figure below :

Figure F.3: ROC is the blue curve, AUC (Area Under Curve) is the area under the choppy
curve .

The ROC curve should always be greater than the discrete line, it should never be less than

(0.5,0.5), or else the model is weak with random predictions.
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