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Abstract

A barley crop (Hordeum distichum L., cv. Corgi) was grown in sandy loam soil in lysimeters. The

lysimeter installation was placed in the field and automatically protected from rain by a mobile glass
roof. During the grain filling period, the plants were exposed to different levels of water stress
expressed as the number of stress days (SD) calculated from the evapotranspiration of the water
stressed and the fully irrigated crop. During this period, net photosynthesis of flag leaves and ears was
measured between 1000 h and 1500 h. When the crop had utilized 2/3 of the available soil water con-
tent net photosynthesis began to decrease. With further decrease in soil water content, the relationship
between photosynthesis of fully irrigated plants (Pr) and water stressed plants (Pa) decreased by 3 per
cent for a decrease of 1 per cent in relative soil water content. When SD exceeded 1.8, Pa/Pr decreased
by 7.1 per cent per SD. Relative grain dry matter and relative total dry matter yield decreased by 2.2

and 1.9 per cent per SD, respectively.

Key-words : water stress, grain yield, stress days, soil water.

INTRODUCTION

Net photosynthesis of ears and flag leaves between
ear emergence and maturity accounts for the major
part of the final grain dry weight of field grown bar-
ley and wheat (Thorne, 1965). For a wheat crop
grown in lysimeters Brar et al. (1990) found a
decreasing photosynthetic rate with increasing soil
water deficit. In a growth chamber experiment
Johnson et al. (1974) found decreasing photosynthetic
rates and transpiration of flag leaves and spikes of
barley with decreasing leaf water potential of the flag
leaves. In wheat and barley the decrease in stomatal
conductance is probably the main cause of reduction
in photosynthesis and transpiration at low leaf or ear
water potentials.

Drought or water stress can be defined in various
ways. For a barley crop Mogensen (1980) found that
relative evapotranspiration was a sensitive expression
of water stress. The term stress days as defined by
Hiler and Clark (1971) combines the effect of the
severity and the duration of water stress.

ISSN 1161-0301/94/02/$8 4.00/ © Gauthier-Villars - ESAg

In earlier studies under field conditions we found
that drought during the grain filling period decreased
the grain yield in proportion to the number of stress
days (Mogensen, 1980). Thus, these results suggest
that the reduction in photosynthesis in ears and flag
leaves is proportional to the severity and duration of
water stress.

The purpose of the present study was to investigate
how drought, imposed during the grain filling period
of a barley crop, influenced the rate of photosynthe-
sis of awned ears and flag leaves, grain yield, and
total dry matter yield.

MATERIALS AND METHODS

The experiment was conducted in a lysimeter
installation situated 20 km west of Copenhagen
(55°40’ N; 12° 18’ E ; 28 m above MSL). The lysim-
eter facility (Kristensen and Aslyng, 1971) consists of
36 tanks, each 2x 2 m by | m in depth. In the field,
the lysimeter tanks are positioned in two rows divided
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by a drainage tunnel. A mobile glass roof automati-
cally protects the crop against rain and when rain
ceases the roof is automatically removed. Each tank
is supplied with an individually operated trickle irri-
gation system. The present investigation was con-
ducted in 18 tanks containing sandy loam soil with 33
per cent (clay + silt) in the topsoil. Soil water content
in the tanks was 260 mm at field capacity (FC :
pF=2) and 115 mm at permanent wilting (PW:
pF =4.2), thus the amount of available water was
145 mm. The weather conditions during the growing
seasons were recorded at the climate station situated
close to the lysimeter installation.

The crop, two-rowed awned spring barley
(Hordeum distichum L., cv. ‘Corgi’) was sown on
April 3, 1989 and on March 27, 1990. Both years the
seed rate was equivalent to 230 kg ha™' and the dis-
tance between rows was 11 cm. In both years, ferti-
lizer was applied as top dressing to provide, in
kg ha™', 117 N, 37 P and 88 K. The crop emerged on
16 April, 1989 and on 14 April, 1990 and the num-
bers of days after emergence, DAE, were counted
from these dates. The weather conditions during the
growing seasons are given in Figure | as weekly
means. In both years heading began on DAE 62 and
terminated on DAE 70.

Soil water content was measured twice a week by
the neutron moderation method at depths of 10, 20,
30, 40, 50, 70 and 90 cm. The calculated water defi-
cit was restored at weekly intervals to the fully irri-
gated reference treatment (A). The drought treatments
B, C, D, and E were irrigated with 2/3, 1/2, 1/3, and
1/4,/ respectively, of the amount applied to treat-
ment A. Actual evapotranspiration (Ea) was calculated
from change in soil water content, and the supplied
and drained water. Evapotranspiration (Er) from the
fully irrigated treatment was taken as the reference.
The number of stress days (Hiler and Clark, 1971)
was calculated from equation | :
SD; =[1 — Ea/Er] N, (1)
where Er, and Ea; are evapotranspiration from the
fully irrigated treatment and the drought treatment,
respectively, and N; is the number of days in the
period j between two measurements of soil water con-
tent. The number of stress days (SD,) in the drought
period corresponding to the development stage of i
18 :

SD; = Z SD;

j=1
where n; is the number of periods in which SD, is
calculated.

(2)

Relative available soil water content (RASW) was
calculated from actual soil water content (SW), the
soil water content at field capacity (FC) and at per-
manent wilting (PW) :

Per cent
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Figure 1. Weather conditions during the two growing seasons.
A, relative humidity ; B, solar radiation ; C, mean air tempera-
ture ; D, evapotranspiration. All values are weekly means.

May Aug

RASW = (SW — PW)/(FC — PW) x 100 (3)
In 1989 relative available soil water content
(RASW) of the reference treatment decreased to
50 per cent at the end of the grain filling period. In
1990, it did not decrease below 67 per cent. Decrease
of RASW during the drought treatments (Figure 2)
resulted in a decrease in the evapotranspiration rate
and consequently the number of stress days (SD)
increased, as formulated in equation | (Figure 3).

The photosynthetic rate was measured during the
grain filling period in flag leaves and ears. In the
field, measurements were carried out on intact plants
between 1000 h and 1500 h using a LI-6200 portable

Eur. J. Agron.




Photosynthesis of barley during drought

June July
120 {7989 e A 2y
E 100 ] \!‘x\ x\x a ] B Qs D
o a !.‘_’_ / \l
a8 BOJ nun\ )“Xu \‘\ #E
Eoo| NN
- % \n‘mn XeXeX-X-X-5% R:9:9:q-
% 40 4 % =
< 20 4 @ c.: 4-a. A/ o S d-as Bea = ol i
< iy (o.o_&n a g/c-o.g -0-0-9:479-6:3:8:8:0:6
04, : ) i
= 80 90 100
June July
120 1 1990 |
= 100 A n-:::§ B
5 ;4 l-..u‘.\ x-x.,‘.'_*‘ / K‘x‘x
o 801 "u. Z" *0-g & e
a g 7 mu‘c\ Ko xay
. 60 - -
> 222704 2
@ 018 AR m
< , + e G ‘Q.Q:S-A-A-A-O-A'A’A
T 20l b SO ‘OO—O-OOO’O‘O °8:8:4-0-0-8.0 |
++¢++*"""+§~Q'QQ‘O'°
04, : ' :
= 80 90 100

Days after emergence

Figure 2. Relative available soil water content (RASW) in the
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photosynthesis system with a | litre chamber (LI-COR
Inc. Lincoln, NE). The photosynthetic rate (Pa) of the
drought treatments was compared to that of the fully
irrigated plants (Pr). Individual ears were fully
exposed and held in an approximately ‘normal position
to the direction of the sun. Flag leaves were placed
across the chamber, so that only part of the leaves
were measured, whereas whole ears were enclosed
lengthwise in the chamber.

Because of overcast weather with frequent showers
during the grain filling stage in 1989 and technical
problems, it was only possible to obtain measure-
ments of net photosynthesis on four days, 5-8 July. In
1990 net photosynthesis was measured between
26 June and 13 July, only with few interruptions.
However, in the period between 27 June and 9 July
there were scattered clouds and great variation in
radiation intensity.

RESULTS AND DISCUSSION

On DAE 76-90 in non-senescent plants net photo-
synthesis of flag leaves was increasing with photosyn-
thetically active radiation (PAR) until 1200 umol pho-
tons m~*s~! in the fully irrigated treatment (A). For
the ears, photosynthesis continued to increase up to
2400 umol m~? s~'. However, there was only a slight

N
o

Fllag leaves 1990

- N
o o
a

Photosynthesis, umol m™2 s°!
o

5 4
0 500 1000 1500 2000 2500
257 : i éars 1996

Photosynthesis, gmol m2 s-1
o

1000 1500 2000 2500

PAR, umol m2 s1

0 500

Figure 4. Photosynthesis of flag leaves and ears in relation to
photosynthetically active radiation intensity, PAR (400-
700 Nm), in non-senescent plants of the fully irrigated treat-
ment A.
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increase from 1200 to 2400 (Figure 4). For spring
wheat, Hurry and Huner (1991) found no increase in
net photosynthesis for PAR above 500. For the third
leaf of wheat, Lawlor et al. (1987) found results sim-
ilar to those in the present investigation.

Midday net photosynthesis for PAR values above
500 umol m~s~! in ears and flag leaves are shown in
Figure 5 for the fully irrigated treatment. On DAE 76-
88 the photosynthesis of flag leaves was measured at
low intensity of PAR between 500-700 pmol m=*s~!
due to scattered clouds. It should be mentioned that,
based on the relations given in Figure 4, a correction
of the photosynthesis for the days 76-88 to a PAR
value of 1200 umol m~%s~' gives a photosynthesis of
approximately 14 umol CO, m~2s~'. Correspondingly,
net photosynthesis of the ears on DAE 88 would be
18 umol CO, m~?s~". Due to senescence the net pho-
tosynthetic rate decreased with time (Figure 5). For
the fully irrigated treatment the decrease began on
DAE 90, three weeks after heading had terminated. A
corresponding decrease in photosynthesis as an effect
of senescence as found in this experiment was found
to be proportional to the carboxylation efficiency
(Lawlor et al., 1989).

e June July

~ 2°1 1990 o Flag leaves

= . v Ears

_g 20‘ "\v-v/v\

S 151 3 A

7 \ 7 A\k

8 101 \ R A .

: : W

2 91 8‘3“;;'\, -
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2 0% ; . -
i 70 80 90 100

Days after emergence

Figure 5. Photosynthesis of flag leaves and ears in relation to
age for the fully irrigated treatment A.

To allow for the effect of senescence, when ana-
lyzing the effect of water stress on photosynthesis,
relative photosynthesis (Pa/Pr) was calculated. Water
stress was increasing during the later part of the grain
filling period (Figure 3). For RASW less than 33 per
cent, the relative photosynthesis (Pa/Pr) of flag leaves
and ears was decreasing with decreasing RASW
(Figure 6). Below a critical value of 33 per cent
(RASW,) the decrease in photosynthesis was analysed
by applying linear regression analysis, with RASW as
the independent and 100 x Pa/Pr as the dependent
variable. The decrease was found to be 3 per cent for
a decrease of | per cent in RASW. Similarly, the
relationship between relative photosynthesis (Pa/Pr)

V. 0. Mogensen et al. -
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Figure 6. Relative photosynthesis (PalPr) in relation to relative
available soil water content (RASW).

and the number of stress days (SD) was analyzed by
linear regression with SD as the independent and
100 x Pa/Pr as the dependent variable. No significant
difference was found between years, nor between flag
leaves and ears (Table 1 and Figure 7). For both
years, the calculated regression for leaves and ears
showed that the linear decrease in Pa/Pr began when
the water stress exceeded a critical number of stress
days (SD,) equal to 1.8 stress days. Beyond SD,,
Pa/Pr decreased 7.1 per cent per SD.

When comparing relative evapotranspiration (Ea/Er)
and leaf water potential for a barley crop at heading,
Mogensen (1980) found a critical leaf water potential
of — 1.5 MPa measured on leaf 4. At this time the
number of SD was 0.5. Correspondingly, Gupta et al.
(1989) found no decrease in net photosynthesis of
wheat leaves until the leaf water potential decreased
below — 1.5 MPa, whereas Johnson er al. (1974) did
not find any critical value.

The yield was greater in 1989 than in 1990. In
both years, the grain dry matter yield as well as the
total dry matter yield decreased with decreasing water

Table 1. Regression of relative photosynthesis on the number
of stress days (SD) and relative available soil water content
(RASW). Regression coefficients b, intercepts a, and their
standard deviations s are given. SD_ is the critical number of
stress days.

b Sy a S, SD,
Flag leaves 1989 = 8.9 0.8 100 7 0.1
Flag leaves 1990 =79 k2 5 o} 8 1.9
Ears 1989 - 6.4 0.6 109 5 1.4
Ears 1990 =17 0.7 119 5 2.4
Ears and leaves gty 54 0.4 113 3 1.8
1989 and 1990
RASW (*) 3.0 0.1
* for RASW < 33 per cent.
Eur. J. Agron.
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supply (Table 2). Linear regression was applied with
SD as the independent and relative dry matter yield
in per cent as the dependent variable. As the inter-
cepts (a) did not differ significantly from 100 per cent
(Table 3), no critical values of SD could be deter-
mined and the model y = 100 + bx was applied. When
calculated with this model, relative grain yield
decreased by 2.2 per cent per SD (Table3 and
Figure 7) and relative dry matter yield decreased by
1.9 per cent per SD (Table 3 and Figure 7).

For a grain filling period of 25 days (Gallagher et
al.,~1976 ; Mogensen, 1991) the daily grain produc-
tion is 4 per cent of the final grain yield. In the
present study, the relative grain yield decreased by
2.2 per cent per SD whereas Mogensen and Jensen
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Table 2. Dry matter vields, g m™*.

1989 1990
)
Treatment * | Grain Straw Total | Grain  Straw  Total

A 815 7135 1530 711 634 1345
B 138 634 1369 642 933 1195
& 632 581 1213 597 593 1190
D 615 527 1142 534 568 1102
E 590 546 1136 465 493 958

* See text for details.

Table 3. Regression of relative dry matter yield (per cent) on
the number of stress days (SD). Regression coefficients b,

" intercepts a, and their standard deviations s, are given.

b Sy a 8,
Model y = a + bx
Total dry matter n T 0.3 97 z
Grain dry matter =01 0.2 98 2
Model y = 100 + b
Total dry matter ) 0.1
Grain dry matter =202 0.1

(1989) found a decrease of 3.7 per cent per SD and
concluded that one SD corresponds to one day with-
out grain growth. The possible reason for the smaller
decrease found in this experiment was a slower devel-
oping drought because some irrigation was applied in
the drought period, in contrast to the experiment by
Mogensen and Jensen (1989).

In the present study, drought occurred mainly dur-
ing the grain filling period. During this period 1/4-1/3
of the total dry matter is accumulated (Andersen et
al., 1992, and unpublished data from the crops
reported by Mogensen, 1991). Therefore, the effect of
drought on photosynthesis during grain filling may be
expected to be between 4 and 3 times that on total
dry matter production. The Pa/Pr decreased 7.1 per
cent per SD (Table 1) and the relative dry matter
yield decreased 1.9 per cent per SD (Table 3). Thus,
in the present investigation the ratio is found to be
7.1/1.9 = 3.7 which is within the range mentioned
above. Furthermore, during grain filling between 13
and 28 per cent of the net photosynthesis is lost by
dark respiration (Mogensen, 1977 ; Morgan and
Austin, 1983 ; Araus et al., 1993). However, as dark
respiration has an effect on both Pa and Pr it was not
taken into account when calculating the ratio of rela-
tive photosynthesis to relative dry matter yield.
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Abstract

Stem growth of the short-day plant fibre hemp (Cannabis sativa L.) decreases after flowering. In
the Netherlands, the hemp cultivars currently available flower in August. In 1990 and 1991 the ambi-
ent daylength was compared with a 24-hour daylength in field experiments on two cultivars. Crop
development, interception of photosynthetically active radiation, dry matter accumulation, stem yield
and stem composition were recorded. The 24-hour daylength did not totally prevent flowering, but did
greatly reduce the allocation of dry matter to floral parts. It enhanced the efficiency of post-flowering
radiation use, and increased stem dry matter yield by 2.7 tha™'. The continued stem growth resulted
in higher yields, which in one cultivar were accompanied by a lower bark content of the stem. At final
harvest, the 1 per cent NaOH solubility indicated a lower fibre content in the bark of plants from the
24-hour daylength. Breeding late-flowering hemp may be a promising strategy to improve the poten-
tial stem yield of hemp in the Netherlands, but the stem quality of such cultivars may be slightly

poorer.

Key-words : Cannabis sativa L., fibre hemp, photoperiod, daylength, flowering, stem yield,

stem quality, radiation use efficiency.

INTRODUCTION

Photoperiodic induction of flowering was first
shown by Tournois (1912) in hemp (Cannabis sativa
L) and Japanese hop (Humulus japonicus L.).
Tournois demonstrated that flowering in hemp was
hastened by short days and delayed by long days :
thus hemp is a short-day plant.

Hemp is dioecious, but monoecious cultivars have
been bred. The two sexes are morphologically indis-
tinguishable before flowering. The first sign of a tran-
sition to flowering is the formation of undifferentiated
flower primordia, which is accelerated by decreasing
photoperiod, but occurs even under continuous illumi-
nation (Borthwick and Scully, 1954 ; Heslop-Harrison
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and Heslop-Harrison, 1969). In this respect hemp is a
quantitative short-day plant. To produce open fertile
flowers some cultivars require short days ; in other
cultivars flowering occurs in continuous light, but
only after a protracted period of growth (Schaffner,
1926 ; Borthwick and Scully, 1954 ; Heslop-Harrison
and Heslop-Harrison, 1969). According to Borthwick
and Scully (1954) the critical daylength may be
longer for male plants than for female plants of the
same cultivar.

In young hemp plants phyllotaxis is opposite, but
as flowering begins phyllotaxis changes from oppo-
site to alternate (Heslop-Harrison and Heslop-
Harrison, 1958). This change is considered to be the
result of flower primordia interacting with leaf pri-
mordia at the apex (Bernier, 1988).
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