
SAAD DAHLEB UNIVERSITY OF BLIDA

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

MASTER’S THESIS

In Computer Science

Option: Software Engineering

TOPIC :

Software Product line for Healthcare

Platforms compatible with IoMT

Produced by

Gherab Radouane

Supervised by

:Mme.Nesrine Lahiani

June 2023

II

ACKNOWLEDGEMENTS

I first thank Allah who has given me the strength and courage to complete my studies and develop

this modest work.

My sincere thanks go to my supervisor: Mrs.Lahiani Nesrine, for her unwavering support,

expertise, and invaluable insights. Her guidance and mentorship have been instrumental in

shaping this thesis and pushing me to explore new perspectives.

I would like to express my gratitude to all the people without whom these years of study would

have been a pale reflection of the ones we have spent.

I would like to express my gratitude to my parents for their unconditional love, support and

constant encouragement throughout this endeavor. Their belief in my abilities and their sacrifices

have been the driving force behind my success.

III

Abstract

The rapid advancement of healthcare technologies and the emergence of the Internet of Medical

Things (IoMT) have introduced new challenges and opportunities in the development of health-

care platforms. Software product lines (SPLs) have gained significant attention as an effective

approach for managing variability and complexity in software systems. In this thesis, we propose

a Software Product Line for Healthcare Platforms compatible with IoMT.

By adopting SPL principles and techniques, we were able to achieve reuse, efficient manage-

ment of variability, and customization. We present a comprehensive analysis of the healthcare

domain and the IoMT landscape to identify commonalities and variabilities. Based on this

analysis, we develop a feature model and a set of reusable assets that encapsulate the common

and variable components of healthcare platforms.

After that, we created our ontology based on this feature model to reduce complexity of SPL

approach. At the end, we derive an e-health platform from our product line to highlight the steps

followed and how all these three big subjects work together.

Key words:

 Software Product Line, Variability,Feature Model,Ontology,IoMT, healthcare.

IV

Resumé

Les avancées rapides des technologies de santé et l’émergence de l’Internet des Objets Médicaux

(IoMT) ont introduit de nouveaux défis et opportunités dans le développement de plates-formes

de santé. Les lignes de produits logiciels (SPL) ont suscité une attention considérable en tant

qu’approche efficace pour gérer la variabilité et la complexité des systèmes logiciels (SPL).

Dans cette thèse, nous proposons une ligne de produits logiciels pour les plateformes de santé

compatibles avec l’IoMT. En adoptant les principes et techniques des SPL, nous avons pu réaliser la

réutilisation, la gestion efficace de la variabilité et la personnalisation. Nous présentons une

analyse complète du domaine de la santé et du paysage de l’IoMT afin d’identifier les similarités

et les variabilités. Sur la base de cette analyse, nous développons un modèle de fonctionnalités et un

ensemble d’éléments réutilisables qui encapsulent les composants communs et variables des

plates-formes de santé.

Ensuite, nous avons créé notre ontologie basée sur ce modèle de fonctionnalités pour réduire

la complexité de l’approche SPL.

À la fin, nous dérivons une plateforme de santé électronique à partir de notre ligne de produits

pour présenter les étapes suivies et comment ces trois grands sujets fonctionnent.

Mot clés:

Ligne de produits logiciels,variabilité, modèle de caractéristiques , Ontologie,IoMT, Santé.

V

 ملخص

تطورت تكنولوجيا الرعاية الصحية بسرعة هائلة وظهور إنترنت الأشياء الطبية قد أدى إلى تحديات وفرص جديدة في

التنوع (SPLsتطوير منصات الرعاية الصحية. حققت سلاسل منتجات البرمجيات) اهتمامًا كبيرًا كنهج فعال لإدارة

والتعقيد في أنظمة البرمجيات. في هذه الأطروحة، نقترح سلسلة منتجات برمجية لمنصات الرعاية الصحية متوافقة مع

الطبية. من خلال اعتماد مبادئ وتق نيات إنترنت الأشياء SPL الفعالة التنوع تمكنا من تحقيق إعادة الاستخدام وإدارة ،

والتخصيص. نقدم تحليلاً شاملاً لمجال الرعاية الصحية والمشهد العام لـإنترنت الأشياء الطبية لتحديد ما هو مشترك ومتغير.

تي تجمع بين المكونات المشتركة تخدام البناءً على هذا التحليل، نطوّر نموذج ميزة ومجموعة من الأصول القابلة لإعادة الاس

. في SPLوالمتغيرة لمنصات الرعاية الصحية. بعد ذلك، قمنا بإنشاء أونتولوجيا قائمة على نموذج الميزة لتقليل تعقيد نهج

تفاعل النهاية، استخلصنا منصة الرعاية الصحية الإلكترونية من سلسلة المنتجات لتعرض الخطوات التي تم اتباعها وكيفية

 هذه المواضيع الثلاثة معًا.

 كلمات مفتاحية:

 سلسلة المنتجات البرمجية،, التغير، نموذج الميزة، علم الأونتولوجيا، الرعاية الصحية.

VI

Contents

List of Figures

List of Tables

Introduction

VIII

X

1

Context: . 1

Problématique . 2

Objectives . 2

Thesis Organisation . 3

1 State of art 4

1.1 Software product line . 4

1.1.1 Introduction . 4

1.1.2 Definition . 4

1.1.3 Software product line engineering . 5

1.1.3.1 Domain engineering . 5

1.1.3.2 Application engineering . 6

1.1.4 Variability . 7

1.1.4.1 Variability management . 7

1.1.4.2 Representing variability . 8

1.1.5 Benefits and inconvenient . 10

1.1.5.1 Benefits . 10

1.1.5.2 Inconvenients . 10

1.2 Internet of things . 11

1.2.1 Introduction . 11

1.2.2 Definition . 11

1.2.3 Sensors . 12

1.2.3.1 Definition . 12

VII

1.2.3.2 Types of sensors .. 12

1.2.4 IOT COMMUNICATION TECHNOLOGIES ... 13

 1.2.4.1 Radio Frequency Identification (RFID) 13

1.2.4.2 Wireless Sensor Network (WSN) 13

1.2.4.3 WI-FI . 13

1.2.4.4 Bluetooth . 13

1.2.4.5 M2M . 13

1.2.5 Different process of : . 13

 1.2.5.1 Identification: . 14

 1.2.5.2 Sensing (Collection): . 14

 1.2.5.3 Communication: . 14

 1.2.5.4 Computation: . 14

 1.2.5.5 Services (Function): . 14

 1.2.5.6 Semantics: . 14

1.2.6 Internet of Things domain Applications ... 15

1.2.6.1 Smart Urban Cities .. 15

1.2.6.2 Smart Home System .. 15

1.2.6.3 Wearables .. 16

1.2.6.4 e-Health and IoMT .. 17

1.2.7 Application of IOT in Healthcare domain: .. 17

1.2.8 Benefits And inconvenient .. 20

1.2.8.1 Benefits ... 20

1.2.8.2 Inconvenient .. 20

1.3 Different applications of SPL in IOT .. 20

1.3.1 Work of: Angel Cañete , Mercedes Amor, Lidia Fuentes[12] 20

1.3.2 Work of: Inmaculada Ayala, Mercedes Amor, Lidia Fuentes and José.Troya[7] 20

1.3.3 Work of: ASAD ABBAS, ISMA FARAH SIDDIQUI, SCOTT UK-JIN

LEE[3] ... 21

1.3.4 Work of: Angel Cañete, Mercedes Amor, and Lidia Fuentes[13] 21

1.4 Analysis: .. 22

1.5 Conclusion: .. 22

2 Domain Engineering 23

2.1 Introduction ... 23

2.2 Healthcare platforms in Algeria ? .. 23

2.3 SPL Development Process for the IoT .. 24

2.3.1 Domain Analysis ... 24

2.3.1.1 Use case Diagram: .. 25

2.3.2 Variability Modelling .. 26

VIII

2.3.3 Mapping Feature Model to Ontology .. 30

2.3.3.1 Transformation Rules: Converting Feature Model to Ontologie 31

2.3.3.2 Classes: ... 32

2.3.3.3 Relations: .. 32

2.3.4 Domain design: ... 33

2.3.5 Domain Implementation ... 34

2.4 Architecture IoT... 34

2.4.1 Data collection: ... 36

2.4.2 Data evaluation: .. 37

2.5 Conclusion: .. 38

3 Implementation 39

3.1 Introduction: .. 39

3.2 Development tools: .. 39

3.2.1 Used Tools: ... 39

3.2.2 Back end:... 40

3.2.3 Front end: .. 41

3.3 Application: ... 41

3.3.1 Analyses: ... 41

3.3.2 Home Page: ... 45

3.3.3 Patient Dashboard: .. 47

3.3.4 Risk Factors: ... 48

3.3.5 Patients’s Profile: .. 50

3.3.6 Doctor Dashboard: .. 51

3.3.7 Book an Appointment with a doctor: .. 51

3.3.8 Appointment Room: .. 52

3.4 Conclusion: .. 53

Conclusion and perspectives 54

3.5 Conclusion: .. 54

Bibliography 55

IX

List of Figures

1 Development processes in SPLE[11] . 5

2 Sample Car Model Feature Model . 8

3 Sample Cardinality Based Feature Model [31] . 9

4 Sample Orthogonal Variability Mode [27] . 9

5 Economics of software product line engineering [4] .. 10

6 IoT sensors .. 12

7 IOT elements [6] ... 15

8 Smart Home [32] ... 16

9 Smart Home [16] ... 17

10 SPL developing process. ... 24

11 Patient’s use case. .. 25

12 Doctor’s use case. .. 26

13 E-health Feature model. .. 27

14 Software Feature Model .. 27

15 API Feature Model .. 28

16 UserManagement Feature Model .. 28

17 Diagnostic Feature Model ... 28

18 Appointment Feature Model ... 28

19 Dashboard Feature Model ... 28

20 Prescription Feature Model ... 28

21 Data Feature model. .. 29

22 Hardware Feature model. .. 30

23 Classes of the proposed ontology .. 32

24 Relations of the proposed ontology ... 33

25 Class Diagram ... 34

26 Component Diagram ... 34

27 IoMT Architecture ... 35

28 Data Collection phase .. 37

29 Data Evaluation phase ... 38

X

30 E-Health Feature model... 41

31 Data Feature model ... 42

32 Software Feature model... 42

33 API Feature model... 42

34 UserManagement Feature model... 42

35 Diagnostic Feature model .. 42

36 Appointment Feature model .. 43

37 Dashboard Feature model .. 43

38 PrescriptionManagement Feature model ... 43

39 Hardware Feature model ... 44

40 Home Page .. 45

41 Patient Register Interface .. 46

42 Doctor Register Interface .. 47

43 Login Interface .. 47

44 Patient Dashboard ... 48

45 Count Risk Factors .. 49

46 Evaluate Patient ... 50

47 Update Patient’s medical information .. 50

48 Doctor Dashboard .. 51

49 Patient book an appointment ... 52

50 e.g.: example of date in the past ... 52

51 Appointment’s Room ... 53

XI

List of Tables

1. Medical Sensors ... 19

2. Comparison of Papers on Variability Management in IoT ... 21

3. From Feature model to Ontology .. 30

4. Cardiovascular evaluation risk factors .. 46

1

Introduction

Context

A Software Product Line (SPL) is useful for improving a family of software that shares common

and differ in features and increasing the reusability of existing code. The reusability of these features

makes it easier to control and update future software programs. In the healthcare industry,

software programs focused on health require constant changes and enhancements due to the rapid

advancement of technology. In the health sector, real-time data processing and communication

between multiple devices enhance the efficiency of patient care.

Software engineering solutions in e-Healthcare architecture take advantage of the Internet of

Medical Things (IoMT) to collect and integrate sensory data. Updating IoMT-based software

applications to meet environmental requirements, such as installing heat sensors at various

hospital branches (for patients receiving care both indoors and outdoors), should be done with

minimal effort, expense, and loss of productivity. Feature modeling is the ideal paradigm for

selecting feature requirements based on end-user specifications. Feature modeling involves

managing SPL’s core assets to ensure high reusability of existing features, which contributes to

low-cost and rapid development of software applications. Feature models are tree-like structures

composed of common and variable features (alternative, optional, and OR groups). Feature

modeling improves the reusability of features[15] and facilitates data interchange, thereby

enhancing the effectiveness of patient care and essential clinical activities, such as blood pressure

monitoring.

Organizations use different strategies to develop IoT applications, one of which is the

sequential strategy. This strategy requires developing each IoT application from scratch, leading

to increased costs, time requirements, and quality issues. Additionally, if minor updates or

modifications are needed, the entire application must be altered[14]. Therefore, this strategy is

not suitable for situations where applications need to be produced quickly and cheap, such as in

e-Health scenarios that require both indoor and outdoor sensors.

2

Problematic

IoMT (Internet of medical things) is a promising paradigm due to the growing range of connected

devices, defined as “things”. Managing and modelling these “things” continues to be taken into

consideration a s an assignment. Tackling this problem can be easier with the aid of software

product line (SPL) paradigm and the variability Management (VM) activities. SPL engineering

consists of mechanisms that offer identity, illustration, and traceability, which may be helpful to

“things” management supported by using VM organizational and technical activities.

Thorough review of existing studies in the fields of SPL and IoMT In order to draw some

conclusions about the limits of this area. This leads us to ask ourselves some crucial questions,

which are:

1. How are software product lines (SPL) being applied in the context of the Internet of

Medical Things (IoMT) applications?

2. How is the variability management (VM) of the SPL is adopted in IoMT devices?

3. Which processes, frameworks or platforms use SPL in IoMT structures?

Objectives

The goal of our work is to design and develop a product line that allows for:

• Analyze and identify possible procedures, frameworks, or systems that apply SPL

standards across exclusive IoMT structures domains.

• Identify similarities and variability between Health applications.

• Develop the domain core assets (reusable element):

– A domain ontology

– The domain modeling diagrams.

– The reusable component.

• Develop e-Health applications based on core assets.

• Increase the reusability of software elements based on a component-oriented approach.

• Develop specific components for final applications if available.

3

Thesis Organization

To carry out our thesis, we have organized our work into three chapters.

• State of Art: In this chapter, we provide an overview of the SPL approach and IoMT

(Internet of Medical Things). We explore the con cept, benefits, challenges, and best

practices of software product lines. It also discusses the role of IoT and IoMT in domains like

healthcare, smart homes, and industrial automation. The chapter highlights few studies that

build IoT applications and the challenges they faced.

• Domain Engineering: In this chapter, we provide a comprehensive overview of the

analysis and design process employed in developing our application. We break down the

steps involved, from requirements gathering to system architecture design. By following

this systematic approach, we ensure a well-planned and structured application that aligns

with the intended objectives.

• Implementation: In the final chapter, we specifically describe the environment in which

we programmed our application, the programming languages used, and we conclude with

the description of the main interfaces of the application.

4

Chapter 1

State of art

1.1 Software product line

1.1.1 Introduction

Healthcare has undergone significant transformations in recent years, largely due to the emer-

gence of the Internet of Medical Things (IoMT). This technology enables the collection of vast

amounts of health data from various devices and platforms, allowing healthcare providers to offer

more personalized and effective treatment options. However, developing software solutions that

are compatible with the diverse healthcare platforms and devices can pose significant challenges.

One promising approach to address this challenge is the concept of a software product line

(SPL). In this context, an SPL can be utilized to develop a suite of software products that are

compatible with IoMT devices and platforms. The aim of this thesis is to explore the application

of an SPL in the healthcare and IoMT context, and to investigate its potential benefits in terms

of reducing development costs, improving time-to-market, and ensuring consistency across

software products. This introduction provides an overview of the topic and sets the stage for the

subsequent chapters, which will delve deeper into the specifics of the software product line for

healthcare platforms compatible with IoMT.

1.1.2 Definition

A software product line is a group of software that shares some core assets while differing in

implemented features. The term was first proposed in 1976 by David L. Parnas, who defined it

as sets of programs whose common properties are so extensive that it is advantageous to study

the common properties of the programs before analyzing individual members [25]. This

definition highlights the presence of both commonality and variability, which are two important

aspects of a software product line. Identifying commonality is a crucial phase in the SPL

approach. If the software are completely different, it is difficult to refer to them as a family of

software, and we cannot reap the benefits of applying a software product line. Clement defined

5

The software product line as a set of software-intensive systems that share a common, managed

set of features satisfying the specific needs of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed way[14]. Software product line

engineering allows a company to shift its focus from the development and evolution of individual

software to the entire software product family. One advantage of this approach is that it becomes

easier to identify relationships between software, their commonalities, and variabilities. This is

essential for meeting market needs and facilitating the reuse of development artifacts.

1.1.3 Software product line engineering

Software Product Line Engineering (SPLE) is a software engineering paradigm that guides

companies in developing software applications from core assets, rather than starting each

development process from scratch. The life cycle of SPL development typically involves two main

processes: domain engineering and application engineering [22].

Figure 1: Development processes in SPLE[11]

1.1.3.1 Domain engineering

During this phase, our primary objective is to discern the shared characteristics and differences

within the system and generate the corresponding domain artifacts that manifest them.

6

These domain artifacts comprise requirements artifacts, such as Use case diagrams,

architectural artifacts like class diagrams, implementation artifacts encompassing source code,

files, and libraries, as well as test artifacts, including test cases. The domain requirements and

product line architecture are pivotal elements of the product line platform, with the latter serving

as the reference architecture. The objectives of this phase encompass precisely defining the

shared characteristics and differences present in the software product line, identifying potential

variations and creating reusable artifacts that facilitate the construction of the desired

applications[22].

• Product management: The main purpose of product management in SPLE is product

line scoping. One aspect of product line scoping is the definition of a set of applications

offered by organizations for a certain market. Other aspects usually include the reusable

features and artifacts. If the domain is large, the effort to realize domain artifacts may

increase because they become generic. On the other hand, if the domain is narrow, the

desired features by customers may not be covered. Due to the importance of this phase, it

has to be taken care of by technical experts and senior developers.

• Domain requirements engineering: Domain requirements engineering sub process has

all the activities of extracting and documenting the commonalities and variabilities of the

product line. In addition, we define constraints to achieve stability and flexibility.

• Domain design: Domain design sub-process defines the reference architecture of the

software product line. Numerous methods are available for modeling variability. It

provides high-level structure for all product line applications.

• Domain realization: Domain realization sub process handles how to design and

implement reusable software components.

• Domain testing: Domain testing sub process is responsible for verification and validations

of reusable components. The validations are done by testing the components with their

specifications. In addition, it develops reusable test artifacts for application testing.

1.1.3.2 Application engineering

The goal of application engineering phase is to derive objects from domain artifacts, thereby defining

the specific features and requirements for the application. In a broader sense, the applications should

fulfill their intended purposes by leveraging variability and capitalizing on commonalities. In

practical terms, it is not always feasible to completely achieve end-user-specific requirements by

reusing domain artifacts alone. In such cases, these specific application requirements must be

characterized as application-specific variations and documented within the application

variability model. The primary objectives of this phase encompass the development of an

application that optimizes the reuse of domain assets and maximizes the utilization of

7

commonalities and variabilities throughout the development process[34].

• Application requirement engineering: Application requirement engineering sub process

include all the specifications to analyze, develop and validate the requirement application.

• Application design: Application design selects and configures the required parts of the

reference architecture and combines it with the specifications.

• Application realization: Application realization creates the application taking into con-

sideration the configuration of reusable software parts and the application specific assets.

• Application testing: In this step, we verify and validate the application against its specifica-

tion.

1.1.4 Variability

Variability is a critical aspect in any SPL approach, Rommes and al said: It covers the whole

life cycle. It starts with the early steps of scoping, covering all the way to implementation and

testing and finally going into evolution.[29]. Variability is the main reason why two products

from the same product line look different, for example in terms of properties, features, and

functions. Variability enables the development of customized products by reusing predefined and

adjustable artifacts. It is defined by Bachmann and Clements as: variability means the ability of a

core asset to adapt to usages in the different product contexts that are within the product line

scope.[9] by this definition we see that the variations in a product line are predicted. The

developers of core assets have thought about the consequences of the variations and obliged them

in a way that the results of core assets support the requirements taking into consideration the

time and budget. When dealing with variability in software product line engineering we can

identify 3 main types: Commonality: common features in all the software product family.

Variability: features that distinguish applications of the same family. Product-specific: elements

that are unique to a particular software. These types are not constant during the SPL life cycle.

They may change but no matter how do they vary they will always be one of these three.

1.1.4.1 Variability management

Managing variability becomes easier by answering the following questions: What does vary?

Why does it vary? And how does it vary? The first question, “what does vary” is used to

identify the specific points of variability in the software product line. The second question, “why

does it vary” highlight the reason and the cause. The third question “how does it vary” is used

to enumerate variations of a specific variability point. By answering these questions, software

product line engineers can understand and manage variability in a product line more effectively.

These are the four main activities involved in variability management:

1. Variability identification: Involves identifying the product differences and their location

8

within the Product Line artifacts.

2. Variability delimitation: Defines the binding time and multiplicity.

3. Variability implementation: Involves the selection of implementation mechanisms.

4. Variant management: Controls the variants and variation points.

1.1.4.2 Representing variability

Several modeling techniques exist to support and assist developers in representing variability within

a product line. Each technique is suitable for specific situations, and while there is no single

optimal technique, one popular approach is “Feature Model”. Feature model is based on the

Feature-Oriented Domain Analysis (FODA) analysis method.

• Feature-Oriented Domain Analysis: is a popular method for domain analysis, the

Software Engineering Institute (SEI) develops it. In 1990, Kang et al introduced FODA

concepts and introduced feature modeling. Feature model models variabilities and com-

monalities using feature diagrams of a software product family.[21]

• Feature model (FM) is a simple method compared to other complex techniques such as

unified modeling language (UML). Feature model represents all software systems in a

product family in terms of features. Feature model is a tree graph (tree of features). In

which, we identify features as nodes and edges representing relations between features.

Figure 2: Sample Car Model Feature Model

• Cardinality-Based Feature Modeling (CBFM): Cardinality-based Feature Modeling is

a hierarchical feature model. It comes as a way to optimize the reuse of features and

commonalities (core assets). CBFM extends feature model by adding the following:

1. Cardinality: shows how many variations a feature can have.

2. Feature groups: helps to organize features and shows group members.

3. Attribute types: allows specifying values during configuration.

9

4. Feature model references: allows tackling big feature models by splitting them to

small models.

5. Object Constraint Language (OCL): enables the description of constraints.

Figure 3: Sample Cardinality Based Feature Model [31]

Orthogonal variability model (OVM): Orthogonal variability model is a language that mainly

focuses on variability and documents it using Variation Points, Variant and Dependency.

Commonalities are expressed as variation points with only one variant, which means that all

products in the product line share the same value for that variation point.

Figure 4: Sample Orthogonal Variability Mode [27]

10

1.1.5 Benefits and inconvenient

Despite all the benefits and advantages SPL promises. It is not a perfect approach, it still has its

own downside and inconveniences that makes it costly if used improperly. In this section we will

talk a little bit about the two faces of SPL coin.

1.1.5.1 Benefits

✓ Higher Quality: Because numerous projects can use the same core assets. Core assets are

required to be of higher quality and with more tests, each project provides they continue to

improve their quality.

✓ Reduced Cost: Developing applications using the SPL approach relies heavily on the re-

usage of the shared core assets (commonalities), which decrease the costs of maintenance.

✓ Improved Time to Market: By taking advantage of the pre-built components and just

adding the specific features, we can speed up the time to enter a market.

✓ Flexible Staffing and Productivity: When working on big projects it is much easier to

assign different employees to the project because all the projects share the same core assets.

Which leads to more flexibility inside the organizations and it helps employees to be more

productive.

1.1.5.2 Inconvenients

Developing cost: The initial budget needed to start is expensive compared to single

products. This is why developers and organizations must have a big picture of the result.

Slow start: The initial phase yields no benefits, but after reaching the break-even point,

the benefits outweigh the investment.

Figure 5: Economics of software product line engineering [4]

11

1.2 Internet of things

1.2.1 Introduction

Internet of things (IOT) is a growing topic and an important field due to the massive potential of

it controlling how we live and how we work. With the wide availability and the low cost of

connecting many devices created with built-in WIFI and sensors. Many organizations invested

in this field and most of them have already started to grow thanks to it.

1.2.2 Definition

Internet of things is defined as : “The concept of basically connecting any device with an on and

off switch to the Internet (and/or to each other).This includes everything from cell phones, coffee

makers, washing machines, headphones, lamps, wearable devices and almost anything else you

can think of ”.[23] It also extends to machine components, such as a jet engine of an airplane or

the drill of an oil rig.

Somayya, M et al highlight few critical aspects about IoT “An open and comprehensive network

of intelligent objects that have the capacity to auto-organize, share information, data and

resources, reacting and acting in face of situations and changes in the environment” [35].
The internet no longer concerns computers only, it has evolved to include mostly every object in

life no matter what type is it. If we can attach a device to this object, then it is part of the internet

of things. These connected devices communicate and share information with the help of certain

techniques and protocols. The Internet of things simply put is any object with an on and off

switch allowing it to connect and disconnect from the internet as well as share and communicate

with other objects. The Internet of things mainly focuses on connecting the world using multiple

devices.

12

1.2.3 Sensors

1.2.3.1 Definition

A sensor is a device that sends and receives signals or stimuli in the form of electrical signals.

The input signals can be anything from physical, chemical or biological signals and convert them

to electrical signals.

1.2.3.2 Types of sensors

Sensors differ from each other based on applications, input signal, conversion mechanism,

material used sensor characteristics such as cost, accuracy or range. There are two types of

sensors: passive and active sensors.

Passive sensors: A passive sensor does not need an energy source. It transforms input energy

to output signal energy. Example of passive sensor: electric field sensing.

Active sensors: Active Sensors require an external source of power to operate. To produce

the output signals, active sensors detect and respond to input signals. The active sensors also

known as parametric sensors (sensors with properties). These properties can be modified in

response to environmental input then changed into electrical signals. Active sensors mostly used

in places not observable by naked eye or in harsh environments.

 Different types of sensors are used in IoT applications are given in Figure 6.

Figure 6: IoT sensors

13

1.2.4 IOT COMMUNICATION TECHNOLOGIES

The internet of things enabled users to bring physical objects into the sphere of cyber world.

This is possible thanks to various tagging technologies like RFID, NFC and 2D barcode, which

permits physical objects to be identified and referred over the internet [26] in this phase we will

mention a few communication technologies:

1.2.4.1 Radio Frequency Identification (RFID):

RFID is a form of wireless communication to uniquely identify an object. It uses electromagnetic

fields to automatically identify and track tags even if far away and not in line-of-sight of the

reader.

1.2.4.2 Wireless Sensor Network (WSN):

Wireless Sensor network is a network of devices transmitting information collected from a

monitored field through wireless links. These monitored fields usually are vibration, temperature,

pressure and vital body functions. WSN is an important aspect in the IOT paradigm. Due to the huge

number of nodes (sensors), some sensors may not have a unique ID. WSN attracted many eyes

in many fields such as healthcare.

1.2.4.3 WI-FI:

Wi-Fi is a type of wireless network used to connect to the internet. Wi-Fi is radio waves diffused

from a Wi-Fi router, a device detects and deciphers the waves then replies with data to the router.

Nearby radio, TV antenna, and two-way radios can interrupt these waves.

1.2.4.4 Bluetooth:

Bluetooth allows short-range communication between devices. The main purpose of Bluetooth

is to get rid of cables that usually connect computers, devices . . . etc. While keeping the data

transmission between them.

1.2.4.5 Machine to Machine (M2M):

M2M uses point-to-point communications between machines. IoT systems use IP to send

collected data to gateways or middleware platforms.

1.2.5 Different process of Internet of things (IoT):

The Internet of Things (IoT) encompasses a multitude of interconnected devices and systems

that collaborate seamlessly to enhance our daily lives. Various processes play crucial roles in

enabling the seamless flow of data and information.

14

From identification and data collection to communication, computation, and semantics, each

process contributes to the overall functionality of IoT as is shown in figure 7.

1.2.5.1 Identification:

The way a “thing” identifies in the world. Usage of IP (internet protocol) comes in hand to help

achieve this task. There are plenty of ways to identify a device, for example IPV6.

1.2.5.2 Sensing (Collection):

Once a device connects to the Internet, sensors connected to the devices give the ability to

collect data from the environment.

1.2.5.3 Communication:

Collected data is sent using different communication technologies such as RFID, Wi-Fi or

Bluetooth.

1.2.5.4 Computation:

After collecting and transmitting the data, it is important to make it treatable to use it. Most

devices have built-in microcontrollers for such a process.

1.2.5.5 Services (Function):

Function or operation simply put is how the device is going to react after processing data. For

example, gas leaking raises an alarm

1.2.5.6 Semantics:

Having the same model of data is critical to have a common ground between devices or devices

and computers. Because it makes sharing and reusing data easy and simple.

15

Figure 7: IOT elements [6]

1.2.6 Internet of Things domain Applications

The Internet of Things (IoT) represents a network where various smart objects are interconnected and

can be individually identified. This intricate infrastructure opens up a plethora of fascinating

applications across a broad spectrum. The domains of IoT applications cover a wide range, en-

compassing smart environment, smart metering, security, emergencies, retail, logistics, industrial

control, smart agriculture, smart animal farming, domestic and home automation, as well as

eHealth [10].

1.2.6.1 Smart Urban Cities

Smart cities leverage the capabilities of the Internet of Things (IoT) [24]. These cities incorporate

various IoT applications such as automated transportation, urban security systems, smart energy

management, surveillance, water supply management, and environmental tracking [19]. The

implementation of IoT in smart urban environments aims to enhance the quality of life for

residents. For instance, IoT solutions address challenges like traffic congestion, reduce noise

pollution, and improve overall urban security. By harnessing the potential of IoT, smart cities

offer promising solutions to enhance the living standards in urban communities today.

1.2.6.2 Smart Home System

Smart homes are gaining popularity due to two primary reasons. Firstly, advancements in sensor

technology, along with wireless sensor systems, have become more accessible. Secondly, people

16

nowadays rely on technology to enhance their comfort and home security [33]. Figure 8

illustrates an example of a smart home system.

In smart homes, various sensors are deployed to provide intelligent and automated services

to the residents [8]. These sensors assist in automating daily tasks and maintaining routines for

individuals who may forget. They contribute to energy conservation by automatically turning off

lights and electronic devices. Motion sensors are commonly used for this purpose and can also

be employed for security purposes.

Figure 8: Smart Home [32]

1.2.6.3 Wearables

Wearable technology has witnessed a surge in demand in recent years [17]. This tech product

has garnered a diverse user base, including teenagers, middle-aged individuals, and even older

adults, owing to its user-friendly nature and associated health benefits such as sleep tracking,

heartbeat sensors, oximeter, and pulse calculation, among others. Prominent technology giants

like Google, Apple, and Samsung have made substantial investments in the development of such

wearable devices [20]. These devices cater to the domains of health, fitness, and entertainment.

Beneath their sleek exteriors, wearables are equipped with a range of sensors, complemented by

a user-friendly display. Typically, they come bundled with the manufacturer’s software, offering

users an exceptional user experience.

17

1.2.6.4 E-Health and IoMT

Internet of medical things (IOMT) is an IOT-based solution to improve the relation between

patients and healthcare facilities. Basically IoMT is a connected infrastructure of health system

such as medical devices, software applications and services as shown in Figure 9.

E-Health refers to the integration of medical devices with the Internet to enable various

remote medical services. These services include remote monitoring of patients, supervision of

elderly individuals, online medical consultations, and even control of robotic arms for surgical

interventions. These connected devices play a crucial role in continuously measuring medical pa-

rameters such as ECG, blood pressure, and temperature. They also facilitate activity recognition

and monitoring, as well as remote medical evaluations.

 In this thesis, we are mainly interested by E-Health application domain

Figure 9: Smart Home [16]

1.2.7 Application of IOT in Healthcare domain:

IOT technologies can bring many benefits to the healthcare domain, and the way these technolo-

gies applies is grouped into tracking, identification and authentication, automatic data collection

and finally sensing. [30].

• Tracking: Tracking aims at the real time position tracking and identification of the device.

For example to prevent left-ins during surgery.

18

• Identification and authentication: With patient identification, it is more like every patient

has an id. This id can prevent incidents such as wrong drugs, dose and procedure.

• Data collection: Automatic data collection and transfer aims at reducing processing time,

process automation (including data entry and collection and errors), automated care and

procedure auditing, and medical inventory management.

• Sensing: Sensor devices provide real-time information on a patient’s health, which plays a

major role in identifying diseases as well as finding solutions [5].

19

Feature

Temperature

Sensor

Sensor Description

DS18B20 is Temperature sensor manufactured by Dallas Semi-

conductor Corp, One of the easiest and inexpensive sensors to

sense temperature

Pulse sensor A pulse sensor is a device that is utilized to measure heart rate.

It can be attached to a person’s finger or earlobe, and then con-

nected via a cable to an Arduino or similar device. The sensor

incorporates an integrated optical amplification circuit and a cir-

cuit designed to eliminate noise that is commonly associated with

heart rate monitoring.

Blood Pressure

Breathing rate

sensor

Oxygen satura-

tion sensor

In simple terms, blood pressure is the force exerted by the circu-

lating blood against the arterial walls as it is pumped by the heart

throughout the body. Blood pressure is expressed as two values:

the systolic pressure, which is the pressure during a heartbeat,

and the diastolic pressure, which is the pressure when the heart

is in a resting phase between beats.

A nasal/mouth airflow sensor is a medical device that is utilized

to monitor a patient’s breathing rate. This device typically com-

prises a flexible thread that fits behind the ears, as well as a pair

of prongs that are inserted into the patient’s nostrils. The prongs

detect airflow during breathing, allowing the device to accurately

measure the respiratory rate.

oxygen saturation is determined through the detection of two dif-

ferent forms of hemoglobin: hemoglobin and deoxyhemoglobin.

To make this measurement, two different wavelengths of light

are utilized to detect the difference in the absorption spectra

of these two forms of hemoglobin. Specifically, deoxygenated

hemoglobin (Hb) absorbs more light at 660 nm, while oxygenated

hemoglobin (HbO2) absorbs more light at 940 nm. The concen-

tration of Hb and HbO2 in the bloodstream affects their absorp-

tion coefficients at these two wavelengths. The non-absorbed

light from the LEDs is then detected by a photo-detector, allow-

ing for the calculation of arterial oxygen saturation

Glucometer

sensor

CCGM measure glucose levels in the interstitial fluid, which

is the fluid that surrounds the cells in the body. The sensor is a

small, flexible and it is inserted just under the skin using a tiny

needle. The sensor contains a small electrode that measures

glucose levels in the interstitial fluid. As glucose levels change,

the sensor generates an electrical signal that is transmitted to the

CGM device. The device then converts this signal into a glucose

reading.

Table 1: Medical Sensors

20

1.2.8 Benefits and Inconvenient

1.2.8.1 Benefits

✓ IoT and big data: IOT and big data are relatable, since iot devices generate huge data that

can be stored, processed and analyzed to make it meaningful and accurate in the eyes of

experts to perform and make precise decisions.

✓ Intelligent IOT: Researchers start applying artificial intelligence to IOT use cases. Machine

Learning can come in handy in image processing if well optimized. Even though it is still

a possibility, the future of utilization of machine learning in iot systems is not far away.

✓ Smart devices: Smart devices refers to the ability to use real time data to support people in

their everyday activities through the hidden built in intelligence in the devices.

1.2.8.2 Inconvenient

 Energy efficiency: is crucial for IoT. Majority of the IoT devices rely on batteries to

operate. Many IoT systems demand devices that are energy efficient to run for many years.

Efficient techniques are required to achieve the accurate motes synchronization along with the

RDC.

 Security: New technologies are always threatened by new attacks, such attacks can affect

availability or integrity of data sent to the clinic in case of healthcare systems. Therefore,

security has, is and will always be a crucial aspect. In any new technology.

 Rapid growth of data: IOT devices will generate huge data that can be hard to store it all

with limited space. Some devices will generate as much as a gigabyte a minute for

example high quality camera recording, storing all the data can be expensive. This is why

some centers filter what data to store and what data to get rid of.

1.3 Different applications of SPL in IOT

1.3.1 Work of: Angel Cañete , Mercedes Amor, Lidia Fuentes[12]

The goal of this study is to propose a framework to support the deployment of Internet of Things

(IoT) applications on edge-based infrastructures using multi-layer feature model. The feature

model captures the different aspects of an IoT application, including the functional requirements,

non-functional requirements, and deployment requirements.

1.3.2 Work of: Inmaculada Ayala, Mercedes Amor, Lidia Fuentes

and José.Troya[7]

The authors proposed a software product line process for developing software agents for IOT

applications and demonstrated its effectiveness. They tackled the challenges of heterogeneity

21

and scalability for IoT systems.

1.3.3 Work of: ASAD ABBAS, ISMA FARAH SIDDIQUI, SCOTT

UK-JIN LEE[3]

The authors aim to address the challenges of managing the variability by developing a feature

model that captures the different features and their dependencies in an IoT application. They

proposed an approach involves defining a set of features and their relationships, and then using

XML to represent the feature model.

1.3.4 Work of: Angel Cañete, Mercedes Amor, and Lidia

Fuentes[13]

The authors proposed an SPL approach for deploying energy-efficient IoT (Internet of Things)

applications in edge-based infrastructures. The method involves using energy-aware deployment

strategies that take into account the specifications of the edge-based infrastructure, such as

energy consumption of the devices and available resources

Table 2: Comparison of Papers on Variability Management in IoT

Approach Key Concepts Variability

Management

Case Study Advantages Limitations

Angel

Cañete et al

(2022)[12]

Multi Layer

Feature Model

4 Layer FM:

Application

Function

Service

Infrastructure

Methods and pro-

cedures to help de-

ploy an IoT app

Ensure effi-

ciency

Does not sup-

port/consider

medical devices

Limited scalabil-

ity and flexibility

Inmaculada

Ayala Et al

(2015) [7]

Software prod-

uct line.

IoT Agents.

Variability

Modeling.

Feature model.

Architecture

model.

Common

variability

language

(CVL).

Automated

Vehicule systems.

Improved

reliability of

the developed

agents.

Increased

productivity

and quality of

agents.

No flexibility to

satisfy all client

requirement.

Limited scalabil-

ity.

Asad Abbas

et al (2017)

[3]

XML based

feature model.

IoT applica-

tion.

Feature model

based on

XML.

Manage Tempera-

ture and lighting

based on user’s

preferences and

patterns.

Managing

and control-

ling variability

becomes easier

Not suitable for

all IoT applica-

tions.

Limited Scalabil-

ity and reusabil-

ity.

Angel

Canete et al

(2021) [13]

Edge based in-

frastructure

Feature model.

Software Prod-

uct line.

Set of rules to bet-

ter deploy IoT ap-

plications

Energy effi-

ciency.

Scalibility.

Reusability.

Comlex to Imple-

ment.

Limited computa-

tional.

22

1.4 Analysis:

Developing IoT applications with the software product line approach is popular, but yet each

study lack the guidance and the right plan to reduce the complexity of this approach, as shown

in the previous studies, each study used the spl approach in its own way which makes it even

more complex than it already is. However, with the right guidance this complexity can be reduced

to a certain point, this is where ontologies come in handy to provide just that.

1.5 Conclusion:

In this chapter, we explored two key technologies: SPL (Software Product Lines) and IoT

(Internet of Things) and what benefits they provide. We saw how SPL can enable the development

of highly configurable software systems, while IoT brings these highly configurable systems into the

world. We also introduced the concept of ontology, which plays the role of a guidance to

represent knowledge and relationships within a domain, and how it can be used to enhance the

interoperability and adaptability of SPL and IoT systems.

23

Chapter 2

Domain Engineering

2.1 Introduction

After having seen the main domains of our system starting with product lines, Internet of Things

and ontology, it is now time to move on to the design of our SPL. In other words, it is about

determining how to use these domains to achieve our objective. In this chapter, we will present

both the reasons that prompted us to undertake this work and our proposed solution. We will

also provide an overview of the design process, illustrated by a schema detailing the different

stages involved.

2.2 Healthcare platforms in Algeria ?

In Algeria, the utilization of IoT devices and sensors to gather real-time patient data in healthcare

platforms is not widespread, and the e-health platforms existing are too specific and unique to

one clinic. These type of platforms suffer from scalability and maintenance problems, which is

why it is a good idea to use the software product line approach in the healthcare scene:

1. Telmedic: Telemedic allows patients to consult with healthcare professionals online.

Patients can book appointments with healthcare professionals, and receive medical advice

and prescriptions through the platform[36].

2. Tasshilat: Tasshilat is an e-health platform that provides online medical consultations,

appointment booking, and medical records management. The platform also allows users

to purchase health insurance policies and make online payments for healthcare services.

Few healthcare platforms integrate IoT devices and sensors for real-time patient data collection,

which can offer valuable insights to doctors for informed decision-making.

24

2.3 SPL Development Process for the IoT

Our goal is to design and develop a Software Product Line (SPL) in the context of the Internet of

Things (IoT). The process manages an SPL as a whole rather than considering each product as a

separate entity. Thus, the SPL must consider the needs of all targeted user categories. Defining

the members of the planned product line helps to identify and plan for the implementation of

reusable common elements and the differences between them. In this phase w e w i l l adopt

the SPL development process and enhance it to satisfy our end goal.

The different parts of our process are:

• Domain Analysis.

• Variability Modeling.

• Mapping Feature to Ontology.

• Domain Design.

• Domain Implementation.

The details of each phase will be shown in the following subsections, a diagram summarizing

these various points is illustrated in the figure below:

Figure 10: SPL developing process.

2.3.1 Domain Analysis

The first step in the development process is to conduct a domain analysis to understand the

problem domain and identify the commonalities and variabilities of the IoT domain. The domain

analysis should focus on the requirements, stakeholders, and technologies involved in the IoT

domain.

To further facilitate this understanding, we will utilize use case diagram. By using a use case

diagram, we can effectively capture and communicate the fundamental functionalities and

relationships present within the IoT domain.

25

2.3.1.1 Use case Diagram:

Identifying the actors and the functionalities of our product is crucial before building our feature

model, we split the use case diagram into two parts

Patient’s use case:

Figure 11: Patient’s use case.

26

Doctor’s use case:

Figure 12: Doctor’s use case.

2.3.2 Variability Modelling

Variability modeling is a crucial aspect of software product line engineering.Linden et al defines

it variability: “It covers the whole life-cycle. It starts with the early steps of scoping, covering

all the way to implementation and testing and finally going into evolution.”[22] It involves

identifying and representing the common and varying features of a product line. The purpose

of variability modeling is to facilitate the efficient and effective management of product line

variability. In SPL, variability modeling involves defining a set of features that can be included

or excluded from individual products within the product line. These features can be described in

terms of their characteristics, dependencies, and relationships with other features. The variability

model captures the commonalities and variabilities among the products in the product line, which

can be used to generate product configurations.

There are several approaches to variability modeling, the most commonly used approach is

feature modeling, and it involves representing the features of the product line as a hierarchical

structure of feature models. In our project, we will be using feature modeling as our approach to

variability modeling.

27

With feature modeling, we will represent the features of the product line as a hierarchical

structure of feature models. Each feature model captures the commonalities and variabilities

among the products in the product line, allowing us to efficiently manage product line variability.

In our feature model, we will define a set of features that can be included or excluded from

individual products within the product line. We will describe the characteristics, dependencies,

and relationships of each feature, and specify any constraints on valid product configurations.

The established Feature model consists of three models, which are distinguished according to

the types of features it contains.

a. E-Health Feature Model: The feature model for our E-Health application is divided into

three main sections: data, software, and Hardware. The data feature model contains

features related to the data itself (collect, storage. . .) . The software feature model includes

features related to user interface and patient management. Lastly the hardware feature

model includes features that are related to the sensors used, the physical devices.

Figure 13: E-health Feature model.

b. Software Feature Model: The software feature model is a crucial part in our application,

due to its direct connection with the end user(user interface) and it plays the role of a

middleware between the hardware and data

Figure 14: Software Feature Model

28

 Figure 15: API Feature Model

 Figure 16: UserManagement Feature Model

Figure 17: Diagnostic Feature Model

Figure 18: Appointment Feature Model

Figure 19: Dashboard Feature Model

 Figure 20: PrescriptionManagement Feature Model

29

Constraints:

REST and SOAP requires WIFI or Cellular Data

Login requires Register User

Login requires Authentication

Verify roles requires Login

Register User requires WIFI or Cellular Data

Get User requires Login

Delete User requires Login and Verify roles

Update User requires Login and Authentication

Appointment requires User Disponibility

Display Data hasSensor Monitor.

c. Data Feature Model: Data feature model includes features related to how we collect

data, how we send the data from the device to the final endpoint, how we receive it and

where we store it.

Figure 21: Data Feature model.

Constraints:

Remote requires WIFI or Cellular Data

30

d. Hardware Feature Model: Data feature model contains features related to the physical

devices and sensors used to capture data and how they differ from each other plus what

they use to operate internally.

Figure 22: Hardware Feature model.

Constraints:

Sensors requires Processing.

2.3.3 Mapping Feature Model to Ontology

The third step involves the development of an ontology, which encompasses a collection of

classes, properties, and relationships that accurately represent the concepts and their interconnec-

tions within a specific domain. This ontology should also possess the necessary flexibility to

accommodate new concepts and relationships as the domain evolves over time.

In our work, we build upon and expand the ontology proposed by Tenório et al. [28] to

illustrate the feature model. Additionally, we enhance the work of Filho [18] by incorporating

ontologies to depict the feature model. To construct our ontology, we utilize Protégé [Sta]. We

define the concepts and relationships within the ontology to formalize the functionalities and

their potential associations.

Both the feature model and ontology operate at the same level of abstraction, providing

meta-information about the knowledge within a given domain [15]. The ontology serves as a

representation of the knowledge within the domain in a network-like model. It captures the

relationships between concepts through triple statements consisting of a subject, predicate, and

object. However, the ontology can be formally represented using the 2, which is an ontology

language based on description logic. In OWL, the subject of a statement corresponds to a class,

while the predicate can be categorized as an object property if it relates to another class

membership, or a datatype property if it pertains to data values. Additionally, the OWL ontology can

be extended with rules (e.g., Semantic Web Rule Language3) that can be executed to derive

further knowledge.

31

2.3.3.1 Transformation Rules: Converting Feature Model to Ontology

In order to convert the Feature Model into an ontology, a series of key transformations need to

be applied. The main transformations are defined and illustrated in Table 3. The first column

indicates the symbol in the Feature Model, the second contains the meaning of the symbol, and

the third is the corresponding axiom in the logical description.

Table 3: From Feature model to Ontology.

Feature model Signification Ontology Notation

Root Feature F F:Feature

Mandatory Feature F : MandatoryFeature

Optional Feature F : OptionalFeature

F1 is the parent of F2 and F3 isParentOf(F1, F2)

isParentOf(F1, F3)

Or decomposition F2 :OrFeature

F3 :OrFeature

hasOrFeature(F1,F2)

hasOrFeature(F1, F3)

 Xor decomposition F2 :AlternativeFeature

F3 :AlternativeFeature

hasAlternativeFeature(F1,

F2)
 hasAlternativeFeature(F1,
 F3)

// Feature has sensor hasSensor(F1, F2)

// F1 requires F2 Requires(F1, F2)

// F1 excludes F2 Excludes(F1, F2)

32

2.3.3.2 Classes:

Mapping features to classes is a crucial step in connecting our feature model with our ontology.

Features, representing the application functionalities, correspond to classes in the ontology. This

alignment creates a structured representation of the system’s capabilities within the ontology, fa-

cilitating a comprehensive understanding of the system’s components and relationships. Mapping

features to classes bridges the gap between feature modeling and ontology.

Figure 23: Classes of the proposed ontology

2.3.3.3 Relations:

Object properties play a fundamental role in ontology modeling, representing relationships

between classes and instances within a domain. These properties capture the connections and

interactions among entities, enabling rich and expressive knowledge representation. In our

ontology we added hasSensor relation, which enables connecting the software part responsible

for processing, treating or displaying the health sensor in our ontology.

33

Figure 24: Relations of the proposed ontology.

2.3.4 Domain design:

Once the Feature model is complete, the next step is to develop a product line architecture based

on common and variable features of the IoT products. The architecture should be designed to

accommodate the variabilities in the IoT domain, such as the differences in hardware platforms,

communication protocols, and data formats.

In our case we use UML (Unified Modeling Language) to create clear and precise visual

representations of the SPL. UML provides a standard notation for modeling software systems,

and supports various types of diagrams that can be used to capture different aspects of the system. In

the context of domain design for software product lines, UML can be used to create models that

capture the commonalities and variabilities across a family of related software systems.

a. Class Diagram: The class diagram shows the internal structure of the system. It provides

an abstract representation of system objects that will interact to make use cases. The

purpose of a class diagram is to model the entities of an information system, which

can represent all the final informations managed by the domain. These informations

is structured (grouped into classes). After the previous analysis, we obtained the class

diagram, as the shows the following Figure

34

Figure 25: Class Diagram

2.3.5 Domain Implementation

This step involves developing the software artifacts that will constitute the IoT SPL, including

the core components, the domain-specific components, and the configuration and customization

tools. The input for this step may include different UML Diagrams and the output may include

source code, binary packages, and documentation.

2.4 Architecture IoT

The architecture consists of three layers: data collection, data storage and data analysis and

processing (Figure 27).

• Data collection: The Data collection phase encompasses the acquisition of diverse health-

related parameters, including but not limited to heart rate, blood pressure, and temperature.

The collection of this data can occur either continuously or intermittently, depending on

the specific requirements outlined in the product’s specifications.

35

• Data normalization: The data obtained from these devices cannot be directly accessed

and utilized; it necessitates initial cleansing and formatting procedures.

• Data storage: The phase of data storage assumes a pivotal role in the overall process, as

it bears the responsibility of securely and reliably housing all the amassed health data. One

of the paramount considerations is to ascertain the scalability of the data storage

mechanism, which can be achieved through the meticulous design of an apt database

schema. Typically, the collected data is stored in a structured format to ensure efficient

organization and retrieval.

• Data Treatments: Data applies the sophisticated algorithms, data mining techniques, and

machine learning methodologies to effectively process and analyze real-time data. Such

endeavors aim to enhance decision- making processes and deliver personalized care to

patients.

Figure 27: IOmT Architecture

36

2.4.1 Data collection:

Before diving into the sequence diagram illustrating the data collection process from the different

sensors, it is crucial to understand the underlying objective and context. Data collection from

sensors plays a vital role in gathering real-time information and providing valuable insights for

our patient’s health details. The sequence diagram (Figure 28) will showcase the step-by-step

interactions and flow of events between each sensor and our application. By examining this

diagram, we can gain a comprehensive understanding of how the data is captured and transmitted,

enabling us to make informed decisions based on the collected information.

The following algorithm outlines the steps taken by the sender side (sensor) in order to

transmit data efficiently:

Algorithm 1 Sender Side (Sensor)

1: Post request with patientID

2: Subscribe to topic

3: while NEW DATA AVAILABLE do

4: Collect the data from the sensor

5: Send data to broker

6: Terminate the connection

Then, the sender side (broker) employs the following algorithm to receive and process data

from the sensor before forwarding it to the appropriate API endpoint:

Algorithm 2 Sender Side (Broker)

1: while RECEIVE DATA FROM SENSOR do

2: if SENSOR IS SUBSCRIBED then

3: Format the received data

4: encode the formatted data

5: Send to API endpoint

6: else

7: Subscribe sensor to certain topic

Finally, the receiver side (server) utilizes the following algorithm to securely receive, decode,

and store data while providing acknowledgment of successful reception:

Algorithm 3 Receiver Side (Server)

1: while DATA IS RECEIVED do

2: Decrypt the received data

3: Decode the decrypted data

4: Store the decoded data

5: Send an acknowledgment

37

Figure 28: Data Collection phase

2.4.2 Data evaluation:

Before diving into the intricate details of the sequence diagram for data evaluation, it is essential

to grasp the overall context of this process. The data evaluation stage plays a pivotal role in

extracting meaningful insights from the data gathered, aiding in informed decision-making. This

sequence diagram (Figure 29) display the interactions and flow of information between

various components involved in the evaluation process. By carefully analyzing the incoming sensor

data, the system can identify the cardiovascular risk.

38

2.5 Conclusion:

Figure 29: Data Evaluation phase

In this chapter, we have introduced the design of our software product line and the role of

ontology in guiding and representing our feature model. Next, we discuss how to derive an

application example based on specific requirements.

39

Chapter 3

Implementation

3.1 Introduction:

In this chapter, our objective is to implement a practical application that demonstrates the concept of

a software product line within an e-Health platform that supports the Internet of Medical Things

(IoMT). The purpose of this application is to collect and utilize data for the betterment of

healthcare. The data we aim to capture is primarily associated with a patient’s vital signs, such

as heart rate and blood sugar levels. However, due to resource constraints, we have simulated

blood pressure and sugar levels sensors. We have chosen to mimic these sensors based on widely

adopted protocols in the market, specifically the MQTT protocol. By utilizing these simulated

values, we can showcase how our application processes and handles real patient data in a broader

sense.

3.2 Development tools:

3.2.1 Used Tools:

• VS Code: Visual Studio Code is a streamlined code editor with support for development

operations, it also know as VS Code made by Microsoft and runs on Mac-Os, Linux, and

Windows. [1]

• Node JS: Node.js is an open-source, cross-platform, back-end JavaScript run time

environment that runs on the V8 engine and executes JavaScript code outside a web

browser. A Node.js app runs in a single process, without creating a new thread for every

request.

• PostgreSQL: PostgreSQL, also known as Postgres, is a free and open-source relational

database management system emphasizing extensibility and SQL compliance.

40

• Protégé: Protégé is a free, open source ontology editor and a knowledge management

system. The Protégé meta-tool was first built by Mark Musen in 1987 and has since been

developed by a team at Stanford University. The software is the most popular and widely

used ontology editor in the world.

• Eclipse: Eclipse is an integrated development environment used in computer program-

ming. It contains a base workspace and an extensible plug-in system for customizing the

environment.

• Eclipse Mosquitto: Eclipse Mosquitto is an open source (EPL/EDL licensed) message

broker that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1.

3.2.2 Back end:

• PG: PG is a node package that stands for "PostgreSQL." It is a small and lightweight

package that provides a simple and efficient way to interact with PostgreSQL databases

using JavaScript or Node.js.

• Express: back end web application framework for building RESTful APIs with Node.js,

released as free and open-source software under the MIT License. It is designed for

building web applications and APIs.

• Express session: An Express session refers to the use of session management in web

applications built with the Express.js framework. It allows the server to store and maintain

user-specific data across multiple HTTP requests, such as user authentication details or

custom preferences.

• Method-Override: Method-Override provides a way to simulate HTTP methods such as

PUT or DELETE, which are not supported by HTML forms.

• WebSocket (WS): WebSocket is a JavaScript-based node package that enables real-time,

bidirectional communication between a web browser and a server.

• Multer: Multer is a node.js middleware for handling multipart/form-data, which is

primarily used for uploading files. It is written on top of busboy for maximum efficiency.

• Passport: Passport is a small Node.js package that simplifies the process of authenticat-

ing users and managing sessions, making it a popular choice for adding authentication

functionality to Node.js applications.

41

3.2.3 Front end:

• Java Script (JS): Java script is a programming language that is one of the core technologies

of the World Wide Web, alongside HTML and CSS. As of 2022, most of websites use

JavaScript on the client side for webpage behavior, often incorporating third-party

libraries.

• EJS: EJS is a simple templating language that lets you generate HTML markup with plain

JavaScript. No religiousness about how to organize things. No reinvention of iteration and

control-flow. It’s just plain JavaScript.

• Full Calendar: FullCalendar is a flexible and customizable JavaScript library that allows

you to create interactive calendars on web pages. It includes displaying events, managing

time slots and handling drag-and-drop interactions.

• bootstrap: Bootstrap is a free and open-source CSS framework directed at responsive,

mobile-first front-end web development.

• CSS: Cascading Style Sheets is a style sheet language used for describing the presentation

of a document written in a markup language such as HTML or XML.

3.3 Application:

In this section, we will take a general look of the web application as well as a deep look to

highlight the important stages in order to explain the complicated parts.

3.3.1 Analyses:

The application derived from our product line handles the majority of the feature model func-

tionalities of e-health feature model from the previous chapter. It authenticates users using a

username and password and utilizes a relational database.

E-Health Feature model:

Figure 30: E-Health Feature model

42

Data Feature model:

Figure 31: Data Feature model

Constraints: Remote requires Wireless.

Software Feature model:

Figure 32: Software Feature model

 Figure 33: API Feature model

 Figure 34: UserManagement Feature model

 Figure 35: Diagnostic Feature model

43

 Figure 36: Appointment Feature model

 Figure 37: Dashboard Feature model

 Figure 38: Prescription Feature model

Constraints:

• API requires Wireless.

• Login requires Authentication.

• Get User requires Login and Verify Roles.

• Update User requires Login and Verify Roles.

• Delete User requires Login.

• Diagnostic requires Medical Informations.

• Display Data hasSensor Blood Pressure.

• Display Data hasSensor Sugar Level.

• Prescription Management requires Login.

44

Hardware Feature model:

Figure 39: Hardware feature model

Constraints:

• Sensors requires Processing.

• MicroController requires Wireless.

45

3.3.2 Home Page:

In beginning, when a visitor tries to access our application through their web browser, they land

on the website’s homepage.

Figure 40: Home Page

If the visitor is not already registered, they can create an account by clicking on the ’Register’

button on top or the ’Be Our Patient’ and ’Be Our Doctor’ buttons found on the homepage. These

buttons will redirect them to the registration interface where they need to enter their information

as shown in next Figures. They must also specify whether they want to join as a Patient or a

Doctor. Otherwise, he can be redirected to login page via the login button.

46

Figure 41: Patient Register Interface

47

Figure 42: Doctor Register Interface

Figure 43: Login Interface

3.3.3 Patient Dashboard:

The patient dashboard is comprised of three distinct sections that are designed to enhance the

patient’s experience. Positioned on the far left, patients are provided with the capability to engage in

real-time conversations with their doctors, enabling them to seek assistance and guidance as

needed. The middle section is further divided into three parts, where patients can access their

health data, which is transmitted by various sensors. They can also stay informed about

upcoming appointments and gain access to their comprehensive medical history, empowering

them to actively participate in their own care. The right portion of the dashboard consists of two

sections: the first section provides an overview of the patient’s cardiovascular risk factors, thereby

aiding in the understanding of potential cardiovascular health concerns, while the second section

48

comprises a chat box. With these distinct divisions, the patient dashboard offers a comprehensive

and user-friendly platform for personalized healthcare management.

Figure 44: Patient Dashboard

3.3.4 Risk Factors:

This section pertains to the assessment of cardiovascular risk and serves as a significant informa-

tional asset. Within this section, both patients and medical professionals can acquire valuable

knowledge regarding the diverse elements that influence the emergence of cardiovascular risk. A

comprehensive presentation of these factors is provided in the table below.

Table 3: Cardiovascular evaluation risk factors

Parameters Points

Gender == male +1

Male and age > 50 +1

Female and age > 60 +1

History of Disease +1

Cigarettes > 10/day +1

Alcohol > 3cups/day +1

Workout < 30min/day +1

Sugar level > 1.2g/dl +1

By visualizing these risk factors, patients can develop a comprehensive understanding of

their cardiovascular health and it helps doctors to make informed decisions to mitigate potential

risks. With this valuable information readily available, patients can take steps towards adopting

healthier habits, seeking appropriate medical interventions, and ultimately reducing their risk of

cardiovascular diseases.

49

Evaluate patient: The evaluate patient function calculates the cardiovascular risk of a

patient based on their risk factors, categorizes them into risk classes, and returns an object with

the relevant information. From the previous explication we can identify two phases:

Count risk factors: The count risk factors function calculates the cardiovascular risk of a

patient based on their risk factors, categorizes them into risk classes, and returns an object with

the relevant information.

Figure 45: Count Risk Factors

Evaluate patient: Evaluate patient function classify the factors into three classes. LOW RISK,

MODERATE RISK and HIGH RISK. The figure below highlights how this classification work.

50

Figure 46: Evaluate Patient

3.3.5 Patient’s Profile:

The “My Profile” page helps patients to update their crucial medical information. This user-friendly

interface includes a comprehensive form where patients can input essential data relevant to their

health. The form covers a range of factors, such as the number of cigarettes smoked per day,

alcohol consumption habits, weight, and more. These details play a crucial role in counting the

individual’s cardiovascular risk. By allowing patients to update their medical information, they

contribute to the evaluation of their overall heart health and enable healthcare professionals to

provide tailored recommendations and interventions to mitigate potential risks.

Figure 47: Update Patient’s medical information

51

3.3.6 Doctor Dashboard:

The doctor’s dashboard is divided into three distinct sections. The leftmost section serves as

a communication hub where doctors can chat with their patients. This chat interface allows

for real-time interactions, enabling doctors to provide prompt advice, address concerns, and

discuss treatment options. The doctor’s appointments are in the middle part. Here, doctors can

manage appointments and make necessary adjustments. It also provides an organized overview

of upcoming consultations, ensuring doctors can effectively manage their time and resources.

Finally, the rightmost section contains the chat box, providing a convenient space for doctors to

communicate with their patients.

Figure 48: Doctor Dashboard

3.3.7 Book an Appointment with a doctor:

Patients have access to a comprehensive calendar displaying the availability of a certain doctor

if they desire to book an appointment with him. This calendar allows patients to conveniently

view the open slots for their preferred doctor. On the left side of the page. Patients can navigate

through different dates and view the availability for each day. The right side of the page has two

sections. The first section consists of essential details about the selected doctor, such as their

name, specialty, and phone number. This card serves as a quick reference for patients seeking

information about the doctor. The second part on the right side of the page is where patients can

book their appointment. A user-friendly form prompts patients to provide the reason for their

visit and select a desired date. As patients enter the date, our app checks if the selected date is in

the past, not available, or available for booking. Small messages appear beneath the date field,

providing helpful feedback to the patient. This streamlined process ensures that patients can

easily schedule appointments with their preferred doctors, while minimizing any potential

confusion or errors.

52

Figure 49: Patient book an appointment

In case where a patient picks a wrong date (a date in the past or an occupied date)

Figure 50: e.g.: example of date in the past

3.3.8 Appointment Room:

The “Visit Room” button, located within each appointment in the dashboard, serves as a

gateway to a dedicated page where doctors and patients can conduct their appointments

seamlessly. Upon clicking the button, a new page opens with two distinct sections. The first

section presents the patient’s medical history, providing valuable insights for the doctor to

reference during the appointment. Additionally, patients can conveniently add any treatments

or medications they have received since their last visit, doctor can add treatments as well. The

second section features a user-friendly chat box, facilitating real-time communication between

the doctor and patient. This chat function fosters a dynamic and interactive environment, allowing

both parties to discuss concerns, ask questions, and exchange information effectively.

53

3.4 Conclusion:

Figure 51: Appointment’s Room

In this chapter, we tried to demonstrate how the software product line approach is applied with

medical sensors, which can be really time consuming at the start but so beneficial in terms of

scalability and reusability when many users derive their application. We have chosen the case of

cardiovascular for our final year project and it does not stop here it can be extended to include

more diseases.

54

Conclusion and perspectives

3.5 Conclusion:

In this work we conducted a literature review on software product line approaches and ontologies

to acquire the basic concepts to build IoMT applications.

The principle of product lines itself is a challenge because you first think about components

each member in the software product line, classify them into core assets and variables and then

focus on how to abstract your code base to a point where it can be reused for the entire product

line. Due to the vast medical sensors in the market the SPL approach becomes even more

complex. The use of an ontology helps guide the derivation of applications which and

implemening it is a challenge itself.

Our contributions in the domain engineering process included separating the software,

hardware, and data components from each other to enhance their independence and reusability

within the feature model representation of the software product line. Additionally, we introduced the

"hasSensor" property in our feature model to establish connections between physical sensors and

our application logic.

Then, we mapped the feature model to an ontology, using it as a guide to exclude complexities

and ensure logical and contradiction-free derivations. The implementation process is a showcase

of how to derive an application.

Finally,we can continue this work by adopting other perspectives such as:

• Automate the process of mapping from Feature Model to Ontology.

• Aim to cover a variety of evaluation with the help of deep learning algorithms. Process

scanner, radios and analyses automatically.

• Automate the process of generating the features code.

• Introduce the concept of dynamic software product line to support adaptation and reconfig-

uration at runtime.

• Test our product line in a real-life scenario in order to test the performance.

55

Bibliography

[1] Microsoft Visual Studio Code Official Website. https://code.visualstudio. com/.

Accessed: June 1, 2023.

[2] Protégé project. http://protege.stanford.edu.

[3] Abbas, A., Siddiqui, I., and Lee, S. U.-J. (2017). Contextual variability management of iot

application with xml-based feature modelling. Journal of Theoretical and Applied Information

Technology, 95:1300.

[4]Alam, M. M., Khan, A., and Zafar, A. (2016). A comprehensive study of software product

line frameworks. International Journal of Computer Applications, 115:11–17.

[5] Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer

Networks, 54(15):2787–2805.

[6] Author, A. and Author, B. (2021). Title of the article. Advances in Intelligent Systems and

Computing, 114011.

[7]Ayala, I., Pinilla, M., Fuentes, L., and Troya, J. (2015). A software product line process to

develop agents for the iot. Sensors (Basel, Switzerland), 15:15640–15660.

[8]Babangida, L., Perumal, T., Mustapha, N., and Yaakob, R. (2022). Internet of things (iot)

based activity recognition strategies in smart homes: A review. IEEE Sensors Journal.

[9]Bachmann, F. and Clements, P. C. (2005). Variability in software product lines. Technical

report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING

INST.

[10] Buyya, A. V. D. R. and Green, T. (2016). Internet of Things Principles and Paradigms.

Morgan Kaufmann.

[11] Böckle, G., Pohl, K., and Linden, F. (2005). A Framework for Software Product Line

Engineering, pages 19–38.

https://code.visualstudio.com/
https://code.visualstudio.com/
http://protege.stanford.edu/

56

[12] Caete, A., Amor, M., and Fuentes, L. (2022). Supporting iot applications deployment on

edge-based infrastructures using multi-layer feature models. Journal of Systems and Software,

183:111086.

[13] Cañete, A., Amor, M., and Fuentes, L. (2021). Energy-efficient deployment of iot appli-

cations in edge-based infrastructures: A software product line approach. IEEE Internet of

Things Journal, 8(22):16427–16439.

[14] Clements, P. and Northrop, L. (2002). Software product lines. Addison-Wesley Boston.

[15] Czarnecki, K., Hwan, C., Kim, P., and Kalleberg, K. (2006). Feature models are views on

ontologies. In 10th International Software Product Line Conference (SPLC’06), pages 41–51.

IEEE.

[16] Dilawar, N., Rizwan, M., Ahmad, F., and Akram, S. (2019). Blockchain: securing internet

of medical things (iomt). International Journal of Advanced Computer Science and

Applications, 10(1).

[17] Fernández-Caramés, T. and Fraga-Lamas, P. (2018). Towards the internet of smart cloth-

ing: a review on iot wearables and garments for creating intelligent connected e-textiles.

Electronics, 7(12):405.

[18] Filho, J. B. F., Barais, O., Baudry, B., Viana, W., and Andrade, R. M. (2012). An approach for

semantic enrichment of software product lines. In Proceedings of the 16th International

Software Product Line Conference-Volume 2, pages 188–195.

[19] González, G., Meana-Llorián, D., Pelayo, G-Bustelo, B., Lovelle, J., and Garcia-Fernandez,

N. (2017). Midgar: detection of people through computer vision in the internet of things

scenarios to improve the security in smart cities, smart towns, and smart homes. Future

Generation Computer Systems, 76:301–313.

[20] Indrakumari, R., Poongodi, T., Suresh, P., and Balamurugan, B. (2020). The growing role

of internet of things in healthcare wearables, pages 163–194. Academic Press.

[21] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-oriented domain

analysis (foda) feasibility study.

[22] Linden, F., Schmid, K., and Rommes, E. (2007). Software Product Lines in Action: The

Best Industrial Practice in Product Line Engineering.

[23] Morgan, J. (2014). A simple explanation of ’the internet of things’.

[24] Nina, C., Trilar, J., Kos, A., Volk, M., and Duh, E. S. (2020). The use of iot technology

in smart cities and smart villages: similarities, differences, and future prospects. Sensors,

20(14):3897.

57

[25] Parnas, D. (1976). On the design and development of program families. IEEE Transactions on

Software Engineering, SE-2(1):1–9.

[26] Razzak, F. (2012). Spamming the internet of things: A possibility and its probable solution.

Procedia Computer Science, 10:658–665. ANT 2012 and MobiWIS 2012.

[27] Simmonds, J. and Bastarrica, M. (2023). Modeling variability in software process lines.

[28] Tenório, T., Dermeval, D., and Bittencourt, I. (2014). On the use of ontology for dynamic

reconfiguring software product line products. In Proceedings of the ninth international

conference on software engineering advances, pages 545–550.

[29] Van der Linden, F. J., Schmid, K., and Rommes, E. (2007). Software product lines in action:

the best industrial practice in product line engineering. Springer Science & Business Media.

[30] Vilamovska, A.-M., Hatziandreu, E., Schindler, H. R., van Oranje-Nassau, C., de Vries,

H., and Krapels, J. (2009). Study on the requirements and options for RFID application in

healthcare: Identifying areas for Radio Frequency Identification deployment in health care

delivery: A review of relevant literature. RAND Corporation, Santa Monica, CA.

[31] Wahyudianto, Budiardjo, E., and Zamzami, E. (2014). Feature modeling and variability

modeling syntactic notation comparison and mapping. Journal of Computer and Communica-

tions, 02:101–108.

[32] Yang, H., Lee, W., and Lee, H. (2018). Iot smart home adoption: The importance of proper

level automation. J. Sensors, 2018:6464036:1–6464036:11.

[33] Zaidan, A. and Zaidan, B. (2020). A review on intelligent process for smart home applica-

tions based on iot: coherent taxonomy, motivation, open challenges, and recommendations.

Artificial Intelligence Review, 53(1):141–165.

[34] Pohl, Klaus & Böckle, Günter & Linden, Frank. (2005). Software Product Line

Engineering: Foundations, Principles, and Techniques. 10.1007/3-540-28901-1.

[35] Madakam, S. , Ramaswamy, R. and Tripathi, S. (2015) Internet of Things (IoT):

A Literature Review. Journal of Computer and Communications, 3, 164-173.

doi: 10.4236/jcc.2015.35021.

[36] https://play.google.com/store/apps/details?id=com.mytelemed.android&hl=en_US&pli=1

http://dx.doi.org/10.4236/jcc.2015.35021

