

1

Republic Democratic Algeria of People

Ministry of Higher Education and Scientific Research

University of Saad Dahleb – BLIDA 1

Faculty of Sciences

Department of Informatics

Report submitted for the fulfillment of the Master‟s degree

Domain: MI

Affiliation: Informatics

Specialization: Computer systems and networks

Design and implementation of a Simulator for performance evaluation

of WSN using vacation policies

KOUADRI Maria and HENNI MANSOUR Yousra Yasmine

Supervisors:

Mme BOUTOUMI Bachira and Prof. Ould-Khaoua Mohamed

The jury:

Mr. KAMECHE Abdallah and Mme AROUSSI Sanaa

The academic year: 2022/2023

2

Acknowledgments
We are overwhelmed in all humbleness and gratefulness to acknowledge our depth to all

those who have helped us to put these ideas, well above the level of simplicity and into

something concrete.

Firstly, we would like to express our deepest gratitude and appreciation to Madame Boutoumi

Bachira for her invaluable assistance and support. Her extensive knowledge in the field, as

well as her willingness to provide guidance and clarification, have been instrumental in

overcoming various challenges encountered during the research process. Her patience,

encouragement, and commitment to excellence have been a source of inspiration. We would

also like to extend our heartfelt thanks to Professor Ould-Khaoua Mohamed, whose

unwavering support and guidance have been invaluable throughout our journey in completing

this master’s project. His profound knowledge, expertise, and teaching dedication have

tremendously impacted our academic growth and personal development. Professor

Mohamed's commitment to excellence, his willingness to share his wisdom, and try to

challenge and inspire his students have made him an exceptional teacher. His continuous

encouragement, insightful feedback, and patience have played a crucial role in shaping the

direction of this research. We are truly grateful for his mentorship and the time he invested in

us.

We would like to express our sincere appreciation to the jury members for their interest in

this report and for taking the time to review and evaluate our work. We are truly grateful for

their expertise and for recognizing the importance of our research.

We would like to express our deepest appreciation to our families for their unwavering love,

support, and understanding throughout this academic endeavor. To our dear parents, who

have been our pillars of strength, thank you for instilling the values of hard work,

determination, and perseverance in us. Your constant encouragement and belief in our

abilities have been a driving force behind our success. To our sisters, thank you for your

continuous support and for being our sounding boards. Your words of encouragement and the

unwavering faith you have in us have been invaluable.

To our friends, thank you for always being there to listen, offer advice, and provide a much-

needed break from the demands of our research. Your unwavering belief in our abilities and

your words of encouragement have been invaluable in keeping us motivated and focused.

Your presence in our lives has made this academic journey more enjoyable and memorable.

Thank you all.

3

Abstract
Sensor networks are widely used for various applications but are constrained by limited

energy resources, which necessitates the development of energy-efficient network designs.

The use of vacation policies is a promising approach for reducing energy consumption while

maintaining network performance. This project presents the design and implementation of a

simulator for the performance evaluation of sensor nodes using vacation policies for energy

saving.

The proposed simulator is designed using discrete-event simulation techniques. The

simulation model allows us to investigate the impact of various parameters such as arrival

rates, service times, and threshold values used in vacation policies. The simulator also enables

the comparison of different vacation policies and provides insights into the trade-off between

energy conservation and system performance.

The report describes the underlying system dynamics, and the methods used for data

collection and analysis, and provides examples of simulation studies to illustrate the

usefulness of the simulator in evaluating the performance of a sensor node and guiding the

design of energy-efficient sensor network systems.

Based on our analysis we demonstrate the interplay between arrival rate, buffer size, and

service policies in determining system performance. By considering these factors and their

trade-offs, it is possible to optimize queuing systems to achieve desired outcomes and

improve overall efficiency.

Keywords

Performance evaluation, Discrete-time simulation, Sensor network, Vacation disciplines,

Service differentiation, Energy conservation, Energy saving, Latency

4

Résumé
Les réseaux de capteurs sont largement utilisés pour diverses applications, mais sont limités

par des ressources énergétiques limitées, ce qui nécessite le développement de conceptions de

réseau économes en énergie. L'utilisation de politiques de vacances est une approche

prometteuse pour réduire la consommation d'énergie tout en maintenant les performances du

réseau. Ce projet présente la conception et la mise en œuvre d'un simulateur pour l'évaluation

des performances des nœuds capteurs utilisant des politiques de vacances pour économiser

l'énergie.

Le simulateur proposé est conçu à l'aide de techniques de simulation à événements discrets.

Le modèle de simulation nous permet d'étudier l'impact de divers paramètres tels que les taux

d'arrivée, les temps de service et les valeurs de seuil utilisées dans les politiques de vacances.

Le simulateur permet également la comparaison de différentes politiques de vacances et

fournit des informations sur le compromis entre la conservation de l'énergie et les

performances du système.

Le rapport décrit la dynamique sous-jacente du système, les méthodes utilisées pour la

collecte et l'analyse des données, et fournit des exemples d'études de simulation pour illustrer

l'utilité du simulateur dans l'évaluation des performances d'un nœud capteur et guider la

conception de systèmes de réseaux de capteurs économes en énergie.

Sur la base de notre analyse, nous démontrons l'interaction entre le taux d'arrivée, la taille du

tampon et les politiques de service dans la détermination des performances du système. En

tenant compte de ces facteurs et de leurs compromis, il est possible d'optimiser les systèmes

de file d'attente pour atteindre les résultats souhaités et améliorer l'efficacité globale.

Mots clés

Évaluation des performances, Simulation en temps discret, Réseau de capteurs, Disciplines de

vacances, Différenciation des services, Économie d'énergie, Économie d'énergie, Latence.

5

 ملخص

يسخهضو حسُخخذو شبكاث الاسخشؼاس ػهٗ َطاق ٔاسغ في انؼذيذ يٍ انخطبيماث ٔنكُٓا يميذة بًصادس انطالت انًسذٔدة، يًا

حطٕيش حصًيًاث شبكاث يٕفشة نهطالت. يؼذ اسخخذاو سياساث الإخاصاث َٓدًا ٔاػذاً نخمهيم اسخٓلان انطالت يغ انسفاظ ػهٗ

أداء انشبكت. يمذو ْزا انًششٔع حصًيى ٔحُفيز خٓاص يساكاة نخمييى أداء ػمذ الاسخشؼاس باسخخذاو سياساث الإخاصة نخٕفيش

 انطالت.

اكاة انًمخشذ باسخخذاو حمُياث يساكاة الأزذاد انًُفصهت. يسًر نُا ًَٕرج انًساكاة بانخسميك في حأثيش حى حصًيى خٓاص انًس

انًؼهًاث انًخخهفت يثم يؼذلاث انٕصٕل ٔأٔلاث انخذيت ٔليى انؼخبت انًسخخذيت في سياساث الإخاصة. يخير انًساكي أيضًا

ضهت بيٍ انسفاظ ػهٗ انطالت ٔأداء انُظاو.يماسَت سياساث انؼطلاث انًخخهفت ٔيٕفش سؤٖ زٕل انًفا

يصف انخمشيش ديُاييكياث انُظاو الأساسيت، ٔانطشق انًسخخذيت ندًغ انبياَاث ٔحسهيهٓا، ٔيمذو أيثهت نذساساث انًساكاة

 نخٕضير فائذة انًساكي في حمييى أداء ػمذة انًسخشؼش ٔحٕخيّ حصًيى أَظًت شبكاث الاسخشؼاس انًٕفشة نهطالت.

ػهٗ حسهيهُا، َٕضر انخفاػم بيٍ يؼذل انٕصٕل ٔزدى انًخضٌ انًإلج ٔسياساث انخذيت في حسذيذ أداء انُظاو. يٍ بُاءً

خلال انُظش في ْزِ انؼٕايم ٔانًفضالاث انخاصت بٓا، يٍ انًًكٍ حسسيٍ أَظًت لائًت الاَخظاس نخسميك انُخائح انًشخٕة

 ٔحسسيٍ انكفاءة انؼايت.

 الكلمات الدالة

لأداء، يساكاة انٕلج انًُفصم، شبكت انًسخشؼشاث، حخصصاث الإخاصاث، حًايض انخذيت، انسفاظ ػهٗ انطالت، حٕفيش حمييى ا

 انطالت، صيٍ انٕصٕل

6

Contents

General Introduction .. 13

Chapter 1: Fundamentals of Wireless Sensor Networks and Queueing Systems. 15

1. Wireless sensor networks ... 15

2. WSN Applications .. 15

3. Sensor networks components and architecture ... 16

3.1 sensor node component .. 16

3.2 Layered architecture network ... 16

4. Communication protocol in WSN .. 17

4.1 Medium access control ... 18

5. IEEE 802.15.4 standard .. 18

6. Energy efficiency in WSN .. 19

7. Queueing Systems .. 20

8.1 Queueing System Structure .. 20

7.2 Characteristics of Queueing System ... 20

7.3 Queueing Notation ... 21

8. Queuing performance measures ... 24

9. Steady state... 24

10. Queues with Vacation... 24

10.1 Threshold vacations .. 24

10.2 Delayed Idle State... 25

11. Why use queues with vacation and not classic queues ... 25

12. State of art on the application of queues with Vacation for energy conservation in sensor

networks ... 25

conclusion .. 28

Chapter 2: Simulation modeling ... 29

1. Justification of the method of Study ... 29

2. Steps of Simulation Study .. 29

3. Discrete Event Simulation .. 30

4. Event Scheduling in discrete-event simulation ... 31

4.1 System state variables ... 31

5.Method used to collect steady-state observation data during a simulation 31

6. Model verification .. 32

7. Model validation .. 32

7

Conclusion ... 33

Chapter 3: Implementation of the simulation model... 34

1. Simulation Environment ... 34

2. Basic Simulation Model (M/M/1 Queue) ... 34

2.1 Data Structures ... 34

2.2 Assumptions for the basic model .. 35

2.3. Simulation parameters ... 36

2.4 Simulation Clock and Time-Advancing Mechanism .. 36

2.5 The process of generating arrival and service rates .. 36

2.6 Simulation events ... 37

3. Performance metrics ... 40

4.1 Overall Packets served.. 40

3.2 Mean waiting time .. 40

3.3 Mean response time .. 40

3.4 Throughput ... 41

3.5 Total Energy Consumption ... 41

3.6 Blockage ... 41

3.7 Loss Rate .. 42

3.8 Probability of being in the idle state (PI) .. 42

3.9 Average number of packets in the queue (Q) .. 42

3.10 number of cycles .. 43

5. Methods to collect the simulation results.. 43

4. Extension of the Simulation Model .. 44

4.1 M/M/1 Queue Model with N-Policy ... 44

4.2 M/M/1 queue Model with T-Policy (Timer policy) .. 45

4.3 M/M/1 queue Model with min (N, T) Policy .. 45

4.4 M/M/1 Queue Model with D-Policy ... 46

4.5 M/M/1 queue Model with Hybrid Policy .. 46

4.6 Implementation of delayed idle state .. 47

Conclusion ... 47

Chapter 4: Experimental Study .. 48

1. Experimental Study .. 48

2. System parameters values ... 48

3. Arrival rate Lambda (λ) variation ... 48

3.1 M/M/1 with infinite buffer ... 48

3.2 M/M/1/K queue (finite buffer) .. 49

8

3.3 Performance evaluation of different policies .. 51

4.Threshold N variation .. 58

5.Service rate mu (µ) variation ... 61

6.Overall Discussion .. 62

Conclusion ... 62

Conclusions and future directions .. 63

References .. 65

9

List of abbreviations
ADCs Analog to Digital Converters

BMAP Batch Markovian Arrival Process

CSMA/CA Carrier-sense multiple access with collision

avoidance

D Deterministic

DES Discrete Event Simulation

ECI Energy Consumption during Idle State

ECb Energy Consumption during Busy State

ECd Energy Consumption during Delayed Idle State

ECs Energy Wasted During State Transitions

ECTx Energy Consumption per Packet in Queue

ESNs Environmental Sensor Networks

FIFO First-In, First-Out

GI General Independent

IEEE Institute of Electrical and electronics engineers

IDE Integrated Development Environment

LLC Logical Link Control

LR-WPANs Low-Rate Wireless Personal Area Networks

MAC Medium access control

MAP Markovian Arrival Process

M Markov or Memoryless

PHY Physical Layer

PDF Probability Density Function

PORT Portable Operating System Interface (possible

expansion)

PR Priority Service

PSFQ Packet-Scale Feedback Queueing

QoS Quality of Service

RNG Random Number Generation

SIRO Service in Random Order

SPT Shortest Processing Time First

SSCS Service Specific Convergence

STCP Sensor Transport Control Protocol (possible

expansion)

TCP Transmission Control Protocol

TDMA Time division multiple access

Tnow Current Time in the Simulation

WSN Wireless Sensor Network

ADCs Analog to Digital Converters

10

List of Figures
Figure 1. Sensor network architecture [5]

Figure 2. The elements of a sensor node [8]

Figure 3. Wireless Sensor Network Architecture [10]

Figure 4. Communication protocols wireless sensor network [11]

Figure 5. A Single Node, One Server, and a limited buffer [19]

Figure 6. Representation of state variable based on time in discrete event simulation [27]

Figure 7. The Subinterval Method or The Method of Batch Means [31]

Figure 8. Simulator Project Structure

Figure 9. Transition diagram of a sensor node with N-Policy.

Figure 10. Transition diagram of a sensor node with T-Policy

Figure 11. Transition diagram of a sensor node with min (N, T) Policy

Figure 12. Transition diagram of a sensor node with D-Policy

Figure 13. State transition diagram of a sensor node with Hybrid Policy.

Figure 14. Transition diagram of a sensor node with Delayed Idle server state and N-Policy.

Figure 15. Performance Results from M/M/1/K Simulation Model and Analytic Equations (i) Mean Waiting

Time (ii) Throughput (iii) Mean Response Time (iv) Idel Probability (v) Mean Number of Customers in the

Buffer.

Figure 16. Performance Results from M/M/1 Simulation model with different Policies Measuring Mean Waiting

Time vs Arrival Rate lambda.

Figure 17. Performance Results from M/M/1/K Simulation Model with Different Policies Measuring Mean

Waiting Time.

Figure 18. Performance Results from M/M/1/K Simulation model, M/M/1/K Simulation model with N Policy,

and M/M/1/K Simulation model with N Policy and Idle Delayed server state Measuring Mean Waiting Time.

Figure 19. Performance Results from M/M/1/K with different Policies and Delayed Idle state Simulation Models

Measuring Throughput vs. arrival rate variation.

Figure 20. Performance Results from M/M/1 with different policies Simulation models Measuring Mean

Response Time vs arrival rate variation.

Figure 21. Performance Results from M/M/1/K with N Policy and Idle Delayed state Simulation models

Measuring Mean Response Time based on arrival rate variation.

Figure 22. Performance Results from M/M/1 with different policies Measuring Idle Probability with finite buffer

vs. arrival rate variation.

Figure 23. Performance Results from M/M/1 with different policies Measuring the Mean number of customers

in the buffer for finite and infinite simulation models based on arrival rate variation.

Figure 24. Performance Results from M/M/1, with Threshold Policies Simulation Models Measuring Mean

Cycles Number vs. Arrival Rate Variation.

Figure 25. Performance Results from M/M/1, M/M/1 with N Policy, M/M/1/K, and M/M/1/K with N Policy

Simulation models Measuring Total Energy Consumption based on arrival rate variation.

Figure 26. Performance Results from M/M/1 and M/M/1/K with different Policies Simulation models giving the

number of overall Packets served vs. arrival rate variation.

Figure 27. Performance Results from M/M/1 with different Policies Simulation models giving the Mean Waiting

Time vs Thresholds N variation in finite and infinite buffer cases.

Figure 28. Performance Results from M/M/1 with T and min (N, T) Policies Simulation models giving the Mean

Waiting Time vs Threshold T variation in finite and infinite buffer cases.

Figure 29. Performance Results from N Policy and Hybrid Policy Simulation Models Measuring Energy

Consumption based on Threshold N.

Figure 30. Performance Results from Hybrid Policy Simulation Model Measuring Energy Consumption vs.

Threshold N and mean vacation rate ζ Variation.

Figure 31. Performance Results from M/M/1 with different Policies Simulation models giving the Mean Energy

Consumption vs Thresholds N variation in finite and infinite buffer cases.

Figure 32. Performance Results from T Policy Simulation Model Measuring Energy Consumption vs. Threshold

T.

11

Figure 33. Performance Results from D Policy Simulation Model Measuring Energy Consumption vs. Threshold

D.

Figure 34. Performance Results from Different Policy Simulation Model Measuring Mean Waiting Time vs.

service rate µ.

Figure 35. Performance Results from Different Policy Simulation Models Measuring Average Energy

Consumption vs. service rate µ.

12

List of tables
Table 1. Queueing Notation.

Table 2. A comparison between the 3 technics for performance evaluation.

Table 3. A comparison between the 3 technics for performance evaluation.

Table 4. System parameter values used in the simulation.

Table 5. Performance Results from M/M/1 Simulation model vs Analytic Equations for

different performance metrics.

List of Routines
Routine 3-1 generating arrival and service rates……………………………………………
Routine 3-2 arrival…………………………………………………..

Routine 3-3 start service……………………………………………………

Routine 3-4 Departure…………………………………………………..

Routine 3-5 start service…………………………………….

Routine 3-6 Initialization…………………………………………………….

13

General Introduction

Similar to any living being, the smart environment relies first and foremost on sensory data

from the real world, a wireless sensor network (WSN) consists of a large number of sensor

nodes that are deployed over an area to perform local computations based on information

gathered from the surroundings [1]. Sensors are expected to run autonomously for long

periods. However, they are occupied with batteries and it‟s almost difficult to change or

recharge batteries. Therefore, [2] the fundamental query is “How to extend the lifespan of a

battery?”

In order to address this matter, researchers have been prompted to explore ways to conserve

battery life and maximize usage in sensor networks. Energy-efficient routing protocols can be

designed to reduce the energy consumed during data transmission [1], taking into account the

limited resources of sensor nodes. Additionally, energy harvesting techniques, such as solar or

thermal energy, can be used to recharge the sensor nodes‟ batteries. However, in this project,

we are simulating the performance of such a system Using vacation policies.

 A single node can be modeled as a queue that receives data packets and serves them. This

phenomenon is observed in everyday life as waiting queues, and it is an important area of

research. Classic queues can be modeled according to various parameters; queuing with

vacancies is a type of classic queue that is more representative of reality. Server idleness is

restricted by vacation policies, which are a set of rules that determine when the server goes

idle and when it resumes operation. In this project, we will simulate the performance of such a

system using discrete event simulation to evaluate its performance under different conditions.

By analyzing the simulation results, we can gain insights into the system's behavior and

identify areas for improvement.

To achieve the following objectives

- Energy Efficiency Evaluation: The assessment of energy efficiency in WSNs with

the aim of extending the battery life of sensor nodes while simultaneously enhancing

their performance.

- System Performance Analysis: The utilization of discrete-event simulation models to

analyze the performance of queueing systems under various conditions.

- Sensor Node Resource Optimization: An investigation into methods that involve

exploring various vacation policies within queueing systems, with a primary emphasis

on achieving a balance between energy conservation and system efficiency.

- Policy Implication Examination: An analysis and comparison of different vacation

policies, particularly threshold-based policies, in order to comprehend their impact on

system behavior.

- Exploration of Future Directions: Providing suggestions for potential future

research directions that can contribute to the advancement of the wireless sensor

networks field.

14

The rest of the report is organized as follows:

 Chapter 1: Provides background on wireless sensor networks, covering applications,

architecture, components, communication protocols, and energy efficiency in WSNs.

 Chapter 2: Focuses on queues with vacations, explaining their structure,

characteristics, notation, Little's Law, steady-state system, threshold-based policies,

and comparing queues with vacations to classic queues.

 Chapter 3: Gives an overview of discrete-event simulation, covering its purpose, steps,

data collection methods, measurement and analysis of simulation performance, model

verification, and validation, and the application of queues with vacation for energy

conservation in sensor networks.

 Chapter 4: Discusses the implementation of the simulation model, including the

simulation environment, basic model, different simulation models (M/M/1, M/M/1/K,

etc.), implementation of the delayed idle state, performance metrics, and methods for

collecting simulation results.

 Chapter 5: Focuses on the experimental study, presenting numerical results, discussing

steady state and system parameter values, analyzing variations in arrival rate,

threshold, and service rate, and drawing overall conclusions from the experimental

study.

 The general conclusion summarizes the findings of the project and restates the

objectives. It highlights the contributions and insights gained from the simulation

study. The conclusion also discusses the implications of the research and provides

recommendations for future work in the field.

15

Chapter 1: Fundamentals of Wireless Sensor Networks and

Queueing Systems.

Wireless sensor networks are crucial for real-time monitoring, enabling data collection

from remote areas. They enhance decision-making, resource management, and productivity

across industries.

In this chapter, we will be exploring the fascinating world of wireless sensor networks

(WSNs). We explore their fundamental aspects, including their components, architecture, and

communication protocols.

1. Wireless sensor networks

The wireless sensor network is a kind of network composed of nodes associated with

sensors, and these nodes have characteristics such as small size, low computation power,

limited power, and wireless access [3] . A node that generates data is called a source node,

while a node that requests data is called a sink or sink node [4]. So, all these sensor nodes are

responsible for collecting and delivering data over the wireless network, and these data should

be kept confidential along the wireless transmission path from one node to another [3]. The

below Figure 1 illustrates the sensor network model, which includes a single sink node, also

known as the base station, and numerous sensor nodes deployed across a vast geographic

area, referred to as the sensing field.

Figure 1. Sensor network architecture [5].

2. WSN Applications

the various conceivable applications of WSNs to every sector globally are essentially

boundless, which is why they gained great admiration because of their flexibility in resolving

issues in different application fields such as in:

-military communication, frontline surveillance, investigation and targeting systems,

and other more… [6]

-agriculture it is also beneficial to farmers in tasks such as wiring in challenging

environments, optimizing irrigation practices for efficient water use, and minimizing

waste [6].

16

-Environmental sensor networks (ESNs), are used in a lot of environmental and earth

science research. They also aid in agricultural and environmental sustainability. Key

applications include air pollution, forest fires, greenhouse management, and landslide

detection [6].

Even though sensor networks are used in different domains but they face a lot of challenges

because they do not fit into any regular topology, due to [7]:

-their scattering during deployment

-their resources such as memory, computation, and power are really limited

-Maintenance is challenging due to fewer infrastructures.

-Unreliable communication and data transfer.

-Sensor nodes rely solely on batteries, which cannot be recharged or replaced easily.

-Dealing with node failures, changes in network structure, and adding or removing

nodes can be difficult.

3. Sensor networks components and architecture

3.1 sensor node component

A sensor node comprises several essential components, as depicted in Figure 3. These

components include a sensing unit, a processing unit, a transceiver unit, and a power unit.

Additionally, depending on the specific application, there may be additional components such

as location finding system, a power generator, and a mobilizer. The sensing unit typically

consists of sensors and analog-to-digital converters (ADCs). The sensors capture analog

signals related to the observed phenomenon, which are then converted to digital signals by the

ADCs. These digital signals are then processed by the processing unit, which is equipped with

a small storage unit. The processing unit manages the necessary procedures for the sensor

node to collaborate with other nodes performing assigned sensing tasks. The transceiver unit

facilitates the node‟s connection to the network. One crucial component of a sensor node is

the power unit, which may be supplemented by a power scavenging unit like solar cells.

Additionally, there may be other application-dependent subunits included [8].

Figure 2. The elements of a sensor node [8]

3.2 Layered architecture network

This network utilizes numerous sensor nodes and a base station. The nodes can be organized

into concentric layers, including five main layers and three cross layers as depicted in Figure

2

17

The five layers in the architecture are

i. Application Layer

ii. Transport Layer

iii. Network Layer

iv. Data Link Layer

v. Physical Layer

The next three cross-layers are employed to control the network and synchronize the

sensors, resulting in improved network efficiency, as compared to the above-mentioned

five layers [9]

i. Power Management Plane

ii. Mobility Management Plane

iii. Task Management Plane

The following figure provides a visual representation that highlights the layers:

Figure 3. Wireless Sensor Network Architecture [10]

4. Communication protocol in WSN

There are three layers and several protocols used in Wireless Sensor Networks (WSNs), as

illustrated in Figure 4. But the data link layer, specifically the MAC (Media Access Control)

layer, is the primary focus when studying energy conservation in a sensor node using vacation

policies and simulation methods. This layer controls access to the wireless medium and

manages communication, making it a critical point for optimizing energy consumption. By

implementing vacation policies at the MAC layer, the sensor node can intelligently schedule

its active and sleep periods, leading to efficient energy usage. Simulation-based studies at the

MAC layer allow for evaluating the effectiveness of different policies and scheduling

mechanisms, enabling researchers to assess energy conservation and performance metrics.

Therefore, focusing on the data link layer provides a targeted approach to enhance energy

efficiency in sensor networks.

18

Figure 4. Communication protocols wireless sensor network [11]

4.1 Medium access control

The Medium Access Control (MAC) layer is a sublayer of the data link layer in the OSI

model, its main function is frame delimiting and recognition, addressing, data transfer

between upper layers, error protection using frame check sequences, and managing access to a

shared channel among all nodes.

Overall, it plays a crucial role in managing access to the shared channel and ensuring efficient

and reliable communication within a WSN using the CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance) mechanisms. [11]

 CSMA/CA The IEEE 802.11 MAC layer operates based on Carrier-sense multiple

access with collision avoidance (CSMA/CA) protocols. In CSMA/CA, a node that

wants to transmit a packet first check if there is an ongoing transmission. If there is,

the node waits until the current transmission is complete. Afterward, it waits for a

specific period called the short interframe space. If the medium is still not busy during

this time, the node proceeds with its transmission. However, if there is traffic on the

medium, the node must wait once again for the medium to become clear [12]

Energy efficiency and adaptability are the key considerations in designing MAC protocols for

WSNs to prolong the network‟s lifespan. [11]

5. IEEE 802.15.4 standard

The IEEE 802.15.4 standard, designed in 2003, specifically targets Low-Rate Wireless

Personal Area Networks (LR-WPANs) with low data throughput and limited power and

computation resources. It addresses issues associated with existing standards like Wi-Fi and

Bluetooth. The standard defines the PHY and MAC layers for LR-WPANs, providing

specifications for physical layer communication and medium access control. It defines

network topologies such as star and peer-to-peer.

The architecture of the IEEE 802.15.4 standard consists of a PHY layer (radio transceiver and

low-level control) and a MAC layer (data transfer definitions). The service-specific

convergence (SSCS) and IEEE 802.2TM Type 1 logical link control (LLC) provide a standard

mechanism for upper layers to access the PHY and MAC layers. The simplicity of the IEEE

802.15.4 architecture allows developers to design low-level application software that interacts

directly with data transfer. This simplicity is desirable for wireless sensor network

19

applications due to their limited resources, while more traditional standards based on the OSI

model are too complex for WSN development. [12]

6. Energy efficiency in WSN

The primary focus of this exploration is on energy-efficient management techniques, as they

play a pivotal role in extending the operational lifespan of sensor nodes, especially in mission-

critical applications. Energy consumption in sensor nodes can be categorized into two main

types: "useful" energy consumption and "wasteful" energy consumption. Useful energy

consumption encompasses activities such as data transmission, query processing, and data

forwarding to neighboring nodes. On the other hand, wasteful energy consumption results

from various inefficiencies, including idle listening, collisions, overhearing, control-packet

overhead, and over-emitting. It is imperative to address these wasteful energy consumption

factors through well-designed protocols to prevent unnecessary energy depletion [1] Table.1

summarizes the technologies used for improving energy efficiency in WSNs.

 Table 1. Classification of Existing Technologies.

Technology Objective

Power-Conscious Protocols Reduce energy usage in sensor nodes.

Energy Harvesting Replenish energy supplies from the

environment.

Data Aggregation Compress data to conserve energy

during transmission.

Routing Protocols Find energy-efficient pathways while

ensuring reliable data transfer.

Dynamic Power Management Adjust power usage based on network

and application conditions.

Sleep Modes in Sensor Nodes Reduce energy consumption during idle

periods in our project.

 Types of Sleep Modes in Sensor Nodes

Duty cycling

takes place when nodes alternate between active and sleep states regularly. This implies that

the node is active for a certain length of time, known as the active period, during which it

detects or communicates data, and then goes into sleep mode for a set amount of time, known

as the sleep period, during which it conserves power. The duty cycle ratio is the ratio of the

active period to the entire cycle period (active and sleep periods combined). The duty cycle

ratio can be changed depending on the application and network conditions [1].

Sleep scheduling

the fundamental approach to sleep scheduling involves choosing a subset of nodes to be active

in a given time interval while the remaining nodes enter a sleep state, thereby minimizing

power consumption and reducing overall energy usage. Existing research on sleep scheduling

in Wireless Sensor Networks (WSNs) primarily concentrates on two objectives point

coverage and node coverage. Point coverage aims to ensure that the awake nodes in each time

slot cover every point in the deployed field, with different algorithms focusing on minimizing

20

energy consumption or average event detection latency. On the other hand, node coverage

focuses on constructing a globally connected network where each sleeping node is near at

least one active node. However, these studies typically concentrate on the medium access

layer of static WSNs with stationary nodes [13].

In our project, we will be focusing on the implementation and optimization of sleep modes in

sensor nodes, specifically duty cycling. This technique is critical to reducing energy

consumption during idle periods, which aligns with our project's goal of improving energy

efficiency in WSNs. By effectively managing the duty cycles of a sensor node, we aim to

extend their operational lifespan and enhance the overall performance and reliability of the

network.

7. Queueing Systems

Queueing theory, initially introduced by Agner Erlang in 1909, is a widely studied theory that

finds applications in various fields such as telecommunication and computer science.

Queueing systems, which are at the core of this theory, have garnered significant attention

from both academic institutions and industry [14].

A basic queueing system is a service system where “customers” arrive at a bank of “servers”

and require some service from one of them. It‟s important to understand that a “customer” is

whatever entity is waiting for service and does not have to be a person. For example, in a

“back-office” situation such as the reading of radiologic images, the “customers” might be the

images waiting to be read. Similarly, a “server” is the person or thing that provides the service

[15].

8.1 Queueing System Structure

Within a queueing system, entities arrive and wait for service, proceed to single or

multiple stations to receive the service, and subsequently have the option to either exit the

system or continue within it [16].

Arenales (2007) identifies that a queuing system can be classified into 4 types [16]

a) single queue and a server

b) single queue and multiple servers in parallel

c) multiple queues and multiple servers in parallel

d) single queue and multiple servers in series

7.2 Characteristics of Queueing System

A queuing system is composed of entities (packets –or anything that arrives in a

system and needs a service) and servers (any resource that provides a service)

To evaluate a queueing system and measure its inputs and outputs, it becomes essential to

define specific characteristics that aid in modeling the system effectively.

These characteristics are [16].

1- The arrival pattern of customers represents the rate at which customers arrive,

indicating the distribution of time intervals between the arrival of one entity and the

next.

21

2- The service pattern of servers is the measurement of service time. It is crucial to

understand the sequence of services and the total number of services provided by the

system.

3- The number of servers is a characteristic that impacts the service time. It determines

whether the system will incur higher costs or have more delays. Additionally, it is

important to define the type of queue, whether it is a single queue or multiple queues

within the system

4- System capacity is a measure or rate, that defines the space for the entrance of

entities. In certain situations, this capacity must be limited, while in many cases, it

remains unknown, resulting in an unlimited rate.

5- Queue discipline This refers to queue behavior based on customer actions when

entering the server and waiting for service. The most commonly observed queue

discipline is First-In, First-Out (FIFO), although others such as Last-In, First-Out

(LIFO), Service in Random Order (SIRO), Shortest Processing Time First (SPT), and

Priority Service (PR) exist.

6- The number of service stages is a characteristic that can either involve a single stage,

or multiple stages, where there are queueing networks and the servers need to

communicate between them.

7- The service discipline indicates the rules that determine how the system serves

customers in the Classic queue.

- Exhaustive service the server will continue to work with a customer until their

service is completed under this form of service discipline. This implies that the

consumer will not leave the system until they have gotten complete service, no

matter how long it takes. This form of service discipline is frequent in instances

when the Packet has a specific demand that the server must address [17].

- Non-exhaustive service even if the service is incomplete, the server will only

work with a Packet for a set length of time before moving on to the next

customer. This implies that if the customer's service was not finished during the

initial conversation, they may need to return to the line. This service discipline is

prevalent in instances when the server must handle a large number of Packets fast

and cannot devote too much time to each consumer [17].

7.3 Queueing Notation

In the fundamental queueing model, individuals referred to as "customers" arrive to

request service, wait if necessary for an available "server" to provide the required service, and

eventually depart. Therefore, this model comprises three key elements (i) the stochastic

arrival process, (ii) the stochastic service requirements, and (iii) the physical arrangement of

servers and their operational guidelines. The primary goal of this theory is to comprehend the

interplay among these components and the system's behavior, as measured by its performance

metrics [18].

In a now-classic 1953 paper, D.G. Kendall [18] proposed the queueing notation to

describe how a queue system is classified [16], The presented table illustrates the key and

widely used notations that are crucial for classifying and categorizing this study.

22

In this context, the notations used are as follows A represents the distribution of interarrival

times, B represents the distribution of service times, c represents the number of servers, Y

represents the system capacity, and Z represents the queue discipline [16].

It is important to introduce the shorthand notation explicitly when using Kendall-like

notation to describe a specific model, rather than assuming the reader's understanding.

Caution must be exercised when interpreting such notation to ensure a comprehensive grasp

of the underlying model. Keeping this caution in mind, we will now proceed with an

explanation of Kendall's notation [18].

Here are the conventions [18].

- G general (no particular assumption)

- GI general independent (the random variables in question are mutually independent and

identically distributed)

- M Markov or memoryless (exponential random variables)

- D deterministic (the same constant value for each realization of the random variable)

- Ek k-phase Erlangian (sum of k independent, identical, exponentially distributed

„„phases‟‟)

- PH phase-type (sum of a (possibly random) number of independent, exponentially

distributed phases)

- MAP Markovian arrival process

- BMAP batch Markovian arrival process

Some examples may help to better understand

 The queuing system M/M/1/∞/FIFO represents a queueing system with a single server and

unlimited capacity. In this system, both the interarrival times and service times follow

exponential distributions, and the queue discipline is first-in, first-out (FIFO) [16].

 M/G/1 The interarrival time distribution (A) follows an exponential distribution (M) with a

constant rate. The service time distribution (B) follows a general distribution (G), which can

be any arbitrary distribution.

Table 2. Queueing Notation. [16]

Characteristic Symbol Explanation

Interarrival-time distribution

(A)

Service-time distribution (B)

M

D

EK

HK

PH

Markov Exponential

Deterministic

Erlang type k (k= 1, 2, …)

Mixture of k exponentials

Phase type

23

Parallel servers (c)

System capacity (Y)

Queue discipline (Z)

MAP

BMAP

G

GI

1,2,…..,∞

1,2,…..,∞

FIFO

LCFS

RSS

PR

GD

Markovian arrival process

Batch Markovian arrival

process

General

General Independent

First in, First out

Last come, first served

Random selection for

service

Priority

General discipline

In the queuing system M/M/1/K, the system capacity or the maximum number of

customers that the queue can accommodate simultaneously is K. When a customer arrives at

the queue and finds all K positions occupied, it means that the buffer is full, and the customer

is unable to enter the system. In this case, the customer will leave the system without joining

the queue. This occurs when the system capacity is already reached. The probability of

rejection can be calculated based on the arrival rate and the system capacity, as shown as

rejected arrivals in figure 6

Figure 5. A Single Node, One Server, and a limited buffer [19].

 In the context of the M/M/1 queuing model, the "M" represents Markovian, which is

related to the use of exponential distributions. Specifically, it signifies that the arrival and

service times in the model follow exponential distributions. This type of distribution is often

employed for models that involve distinct and unrelated events. For example, the arrival time

between a large number of customers happens independently of one another. The exponential

24

distribution is a continuous probability distribution that has a probability density function

(PDF) [16].

8. Queuing performance measures

Little’s Law One of the most important theorems in queuing theory that we used in our

implementation is Little‟s law. Little's Law is an equation that states L = λW, where L

represents the expected number of customers in the "system," W represents the expected time

spent by a customer in the system, and λ is the rate at which the customers enter the system.

Initially, L represented the length of the queue, W represented the wait time in the queue, and

λ represented the frequency of customer arrivals [18].

9. Steady state

In the context of queuing systems, a steady state refers to a situation where the system has

reached a stable condition in terms of its performance measures. A steady state system implies

that the system's behavior remains consistent over time, and its statistical properties do not

change, one way to ensuring system stability is calculating traffic Intensity.

- Traffic Intensity (Server Utilization) Assuming λ, is the average rate of customers

entering the system and μ, is the average rate of serving customers and c is the number of

servers in the system, then the quantity ρ = λ / c μ is called the traffic intensity (also

called the utilization factor or server utilization), ρ gives the fraction of time that the

server is busy.

 For the steady-state conditions to exist it is required that λ < μ (ρ < 1). This is the

stability condition for the M/M/c systems.

 When the average number of arrivals into the system is more than the maximum

number of customers the system can serve, i.e., ρ > 1 this means that the queue size

never settles down, and there is no steady state.

 When the arrival rate equals the maximum average service rate of the system, i.e., ρ =

1, the randomness will prevent the queue from ever emptying and allowing the server

to catch up, and this causes the unbounded growth of the queue. In this case, the

steady state does not exist unless arrivals and services are deterministic and perfectly

scheduled. [20]

10. Queues with Vacation

A vacation queueing model is an expanded version of the classic queueing system,

where the server may occasionally become unavailable for a certain duration due to reasons

such as maintenance checks, server damage, or personal breaks. This absence of the server is

referred to as a "server vacation." Queueing models incorporating server vacations are

important in understanding the queueing dynamics, as the server can utilize the idle period for

various purposes, such as economizing energy in our case [21].

10.1 Threshold vacations

Also known as threshold-based vacation policies, are a concept used in queueing

systems to manage the server's idle periods based on specific thresholds or conditions. In

threshold vacations, the server remains idle until a certain condition is met, triggering a

25

vacation period. These conditions can be based on various factors such as queue length,

accumulated work, or arrival rate [22].

During a threshold vacation, the server does not process any incoming requests and

remains idle. The purpose of threshold vacations is to optimize system performance, resource

utilization, and energy efficiency. By allowing the server to enter a vacation state during

periods of low demand or when specific criteria are not met, unnecessary energy consumption

can be minimized, reducing operational costs. Threshold vacations can be implemented with

different policies, depending on the specific objectives and requirements of the system. These

policies determine the specific conditions and thresholds for entering or ending a vacation

period, ensuring that the server remains idle or resumes service at appropriate times.

10.2 Delayed Idle State

In the context of queueing systems, the idle delayed state is an extension of the

traditional M/M/1 queue model. It introduces an additional state called the "delayed idle"

state, which occurs when the server transitions to an idle state but remains in that state for a

certain delay period before accepting new arrivals. This delay is known as the "idle delayed

time" or "delayed vacation time."

The idle delayed state aims to address the impact of frequent transitions between the

idle and busy states in traditional queueing systems. These transitions can lead to energy

inefficiency and increased overhead due to the setup and teardown processes associated with

each transition.

In the idle delayed state, when the server becomes idle, it enters the delayed idle state instead

of immediately accepting new arrivals. During this delayed idle period, the server remains

idle for a fixed duration known as Θ. If no arrivals occur during this delay period, the server

transitions back to the idle state. However, if an arrival occurs before the delay expires, the

server transitions to the busy state and serves the arriving packet.

11. Why use queues with vacation and not classic queues

Queueing systems with vacations can be advantageous over classic queues when it

comes to energy-saving considerations. By incorporating scheduled breaks for servers,

vacations allow for planned periods of non-service, which can be leveraged to conserve

energy during low-demand periods. The server can be powered down or put into a low-power

mode during these vacations, resulting in reduced energy consumption. This approach

optimizes energy usage by aligning server availability with the actual demand, offering

energy-saving benefits that are not possible in classic queues, where the server remains

continuously active.

12. State of art on the application of queues with Vacation for energy

conservation in sensor networks

Much of the prior research has been primarily focused on the development of mathematical

node models, often neglecting the significant impact of real-world constraints on the

performance of WSNs. Moreover, the available simulators in the field tend to either be

26

proprietary or designed with a broader focus on the entire WSN, rather than addressing the

intricacies of practical limitations. The following are some related work descriptions

Biplab Sikdar and Mounir Hamdi [23] introduced an adaptive N-policy queueing system

design to address the energy-delay tradeoff in wireless sensor networks. The authors propose

an analytical model to characterize the tradeoffs between energy saving and latency in

wireless devices. They argue that increasing the N-policy does not necessarily result in more

energy savings. Based on analytical and simulation results, they present a scheme for the

optimal selection of N considering arrival and service rates. The proposed system design is

shown to save energy while meeting delay requirements. The paper highlights the importance

of power management schemes in sensor systems and discusses the dynamic selection of N to

adapt to real-time traffic, aiming to save energy without violating delay constraints. The work

contributes by providing a practical approach to optimizing energy usage and system

performance in wireless networks.

Goswami Veena and G. B. Mund [24] proposed a queue-based technique to enhance the

lifespan of wireless sensor networks (WSNs). They investigate the effect of queueing schemes

on node power consumption and suggest a modified N threshold queueing system to minimize

energy usage. The model considers three node states (sleep, idle, and busy) and employs an

M/M/1 queueing system. Once the packet threshold N is reached, packets are served in a

single batch, reducing waiting time. The paper analyzes power consumption and its

dependence on system parameters, presenting performance indices such as average queue

length, expected periods, probabilities, and energy consumption rate. The authors discuss

numerical results and the influence of the threshold value N on system behavior. They

conclude by offering insights into optimal decisions based on the model, improving

understanding of the proposed technique for prolonging WSN lifetimes.

Messous Ali and Mameche Mohamed [25] in their report provided a study utilizes a

queuing system with a vacation policy N and multiple priority classes, which is considered an

effective approach for modeling the problem at hand. Discrete event simulation was employed

to gain a deeper understanding and analysis of the targeted system, allowing them to focus on

important events. The developed simulation tool enables the testing and evaluation of various

performance measures for a WSN, examining the impact of vacation policies, priority classes,

and service preemption on system behavior and performance metrics. The tool facilitates the

comparison of results between systems with/without priority classes and preemption.

The objective of their work was to design and implement a simulation tool that can analyze

the behavior of an WSN based on different customer treatment scenarios, considering factors

such as priority order, service preemption, and queue size limitations. Discrete event

simulation is identified as the most suitable method due to its ability to prioritize critical

system events.

Boutoumi Bachira and Nawel Gharbi [26] proposed an energy-saving and latency delay

efficiency scheme for wireless sensor networks (WSNs) based on Generalized Stochastic Petri

Nets (GSPNs). their goal was to optimize energy consumption by extending the duration of

sleeping states of sensor nodes. The authors first model networked nodes‟ sleep/wakeup

27

pattern with different vacation policies using GSPNs. They introduce the N-policy as a

queued wakeup scheme and propose a new vacation policy called the Hybrid-policy to

minimize latency. They provide formulas for performance measures and analyze the impact of

the two vacation policies on network performance. The paper concludes with numerical

calculations using GSPN models and presents the potential benefits of the proposed schemes.

A concise summary of the research works discussed in the preceding sections represented in

the following table

Table 3. Summary of the existing work

Authors Key Contributions Methodology Findings

Biplab Sikdar

and Mounir

Hamdi [23]

- Introduced an adaptive

N-policy queueing system

design for wireless sensor

networks

-Analyzed the energy-

saving and latency

tradeoffs

-Proposed optimal N

selection scheme based on

analytical and simulation

results

Analytical

modeling and

simulation

Increasing the N-policy does not

necessarily result in more energy

savings.

Goswami

Veena and G.

B. Mund [24]

- Proposed a modified N

threshold queueing system

to enhance the lifespan of

wireless sensor networks

- Analyzed the effect of

queueing schemes on

power consumption

- Presented performance

indices and energy

consumption rate

Queue-based

technique

with an

M/M/1

queueing

system

The modified N threshold

queueing system effectively

reduced waiting time and

minimized energy usage in

wireless

Messous Ali

and Mameche

Mohamed [25]

- Provided an overview of

WSNs and their challenges

- Developed a simulation

tool to analyze the

behavior of WSN

- Analyzed the impact of

vacation policies and

priority classes

Discrete

event

simulation

with vacation

policy N and

multiple

priority

classes

Utilizing a queuing system with a

vacation policy N and multiple

priority classes was an effective

approach for modeling energy

conservation in WSNs

28

Boutoumi

Bachira and

Nawel Gharbi

[26]

- Presented an analytical

model based on priority

vacation queueing theory

for WSNs

-Addressed energy

consumption and latency

reduction

-Demonstrated the

efficiency of the proposed

Hybrid policy

Generalized

Stochastic

Petri Nets

(GSPNs).

modeling and

analysis

The Hybrid-policy surpasses the

N-policy by achieving significant

reductions in both energy

consumption and latency delay.

conclusion

In this chapter, we've explored the essential aspects of WSNs, ranging from their applications

and components to communication protocols and energy efficiency. we have also explored the

theory of classical queues and found that standard models do not accurately capture the

behavior of packets and servers. However, the presence of vacancies complicates queue

analysis, and analytical solutions are only feasible for a few models with specific

assumptions. As a result, researchers often rely on numerical approaches, approximations, or

simulations to overcome these limitations. The state-of-the-art on energy conservation in

sensor networks were also explored. These insights set the stage for further analysis, which is

why we aimed to develop our own simulation tool. In the next chapter, we will delve into

simulation concepts and techniques as valuable tools for studying waiting lines and surpassing

the constraints of analytical methods.

29

Chapter 2: Simulation modeling
In this Chapter, we will be exploring the intriguing realm of discrete-time simulation, a vital

tool for modeling and evaluating dynamic systems. Discrete-time simulation is the process of

portraying systems as sequences of events or states that change across discrete time intervals.

This chapter gives an in-depth look at this powerful simulation approach, delving into its

underlying concepts, and many components.

1. Justification of the method of Study

Performance evaluation is vital in computer system design and decision-making. It allows for

comparing design options and finding the best solution. System administrators depend on

performance evaluation to assess and select systems for specific applications. Even without

alternatives, evaluating the existing system provides insights into efficiency and areas for

improvement [27].

And there are 3 technics for performance evaluation analytical modeling, simulation, and

measurement, we choose which one to use based on several considerations, listed in Table 3

that show different criteria for each technic.

Table 4. A comparison between the 3 technics for performance evaluation. [27]

Criterion Analytical

Modeling

Simulation Measurement

1. Stage Any Any Post prototype

2. Time required Small Medium Varies

2. Tool Analysts Computer languages Instrumentation

3. Accuracy Low Moderate Varies

5.Trade-off

evaluation

Easy Moderate Difficult

6.Cost Small Medium High

7. Salability Low Medium High

In our case, we used simulation over analytic modeling even though both can be used in

designing an improved version of a product because Simulations are better at reflecting real-

world situations because they include more details and make fewer assumptions compared to

analytical modeling. Analytical modeling simplifies and assumes a lot, so when the results

turn out to be accurate, even the analysts are surprised. On the other hand, simulations provide

a more comprehensive and realistic picture of the system, making them valuable for

understanding complex phenomena and obtaining accurate insights [27].

2. Steps of Simulation Study

The steps involved in developing a “simulation model”, designing a simulation experiment,

and performing simulation analysis are

Step 1. Identify the Problem List the issues present in the system and outline the desired

features and requirements for the proposed system [28].

30

Step 2. Formulate the Problem specify the system boundaries (the problem to be studied),

define the objective of this simulation, define performance metrics, and decide the time of this

study and the end-user of the simulation model [28].

Step 3. Collect and Process Real System Data, gather data on the specification of the system,

input variables, as well as the performance of the existing system [28].

Step 4. Formulate and Develop a Model, create system schematics and network diagrams,

convert them to simulation software format, and validate the model through techniques like

trace analysis, parameter testing, output evaluation, constant substitution, manual verification,

and animation [28].

Step 5. Validate the Model Evaluate model‟s performance against real system performance in

known conditions. Seek expert evaluation, asses user confidence, and address problems if any

[28].

Step 6. Document Model for Future Use Document objective, assumptions and input

variables, and the experimental design [28].

Step 7. Select Appropriate Experimental Design Define the measure of performance and input

variables along with their levels. Decide whether to use terminating or nonterminating

simulation runs. Select the appropriate run length and the appropriate starting conditions,

including any required warm-up period. Determine the number of independent runs based on

desired confidence levels. Consider using common random numbers for comparing different

configurations. Identify correlated output data [28].

Step 8. Establish Experimental Conditions for Runs Address the question for obtaining

precise information from each run, and determine if the system exhibits stationary behavior

(performance measure does not change over time) or non-stationary (performance measure

changes over time) [28].

Step 9. Perform Simulation Runs Perform runs according to steps 7-8 above.

Step 10. Interpret and Present Results calculate numerical estimates of the desired

performance measure for each configuration of interest. Test hypotheses about system

performance, and create visual representations, such as pie charts or histograms, to illustrate

the output data. Document results and conclusions [28].

Step 11. Recommend Further Courses of Action like experiments to increase the precision

and reduce the bias of estimators, to perform sensitivity analyses, etc. [28]

- While this sequence of steps provides a logical framework for a simulation study, multiple

iterations, and adjustments may be necessary to achieve the study's objectives. Not all steps

may be feasible or necessary, while additional steps may be required.

3. Discrete Event Simulation

Discrete event simulation (DES) is a powerful tool for studying real-life processes and

systems. It models events occurring over time, such as packet arrivals and departures,

enabling a realistic representation of individual components. DES allows us to evaluate the

performance of vacation policies in sensor networks, considering metrics like packet delay,

throughput, energy consumption, and service differentiation. By adjusting parameters and

simulating different scenarios, we can assess the impact of policies on network performance.

DES also provides methods for collecting observation data and analyzing performance

31

metrics, ensuring accurate and reliable results. Simulation allows decision-makers to test and

explore alternative policies and make informed decisions [29].

4. Event Scheduling in discrete-event simulation

In Event Scheduling the basic building block is the event, the model program's code contains

event routines that are waiting to be executed. Event routines associated with each event type

in a simulation system perform the specific operations or tasks required for that event type

when it occurs during the simulation. Simulation moves from one event to another executing

their corresponding event routine [30].

In a “discrete-event model” the state variables don‟t change till a defined point called event

times [27].

4.1 System state variables

- Entities & Attributes entity is an object its whose can be static or dynamic, while

Attribute are local values used by the entity in our case they are

 Entities packet, Event.

 Attributes Time, Type, ID, etc...

- Resources is an entity that provides service to one or multiple dynamic entities at a

time, this last one can request one or more resources, if it‟s approved, she can use this

resource and when she finishes release it, or if rejected, the entity can join a queue. In

our case, it‟s the s Server.

- Lists are the queue

- Delay is an indefinite duration that is caused by some combination of system

conditions.

Figure 6. Representation of state variable based on time in discrete event simulation [27]

5.Method used to collect steady-state observation data during a simulation

The Mean Batch Method involves running a single, long simulation that is divided into

different parts an initial transient period, and several batches. Each batch is treated as a

separate simulation run, while no observations are made during the transient period, which is

like a warm-up phase. Figure 7.10 provides an example of this process. The goal is to estimate

confidence in the results. One advantage is that only the transient period needs to be

accounted for and removed when recording observations. However, a drawback is that the

32

batches may not be fully independent, as high values tend to follow high values and low

values tend to follow low values. This can affect the accuracy of confidence estimation if the

batch sizes are not large enough [31].

Figure 7. The Subinterval Method or The Method of Batch Means. [31]

6. Model verification

Model verification techniques ensure the correctness and reliability of a simulation model. We

employ the following techniques:

 Top-down, modular design: Breaking the model into smaller components for easier

verification. Assertions can be used to check specific conditions or equations during

the simulation.

 Tracing techniques: Using print statements or a

debugger to track execution flow and inspect

variable values, aiding in error identification.

 Consistency tests: Comparing outputs of similar

inputs to ensure consistency in results.

 Seed independence: Verifying that the initial state

of the random number generator doesn't

significantly impact simulation conclusions,

avoiding bias or dependency on a specific starting

point.

 Figure 8: Simulator Project Structure

7. Model validation

Model validation is crucial for ensuring that a simulation accurately represents the real

system. Key aspects to consider include assumptions, input parameters, output values, and

conclusions. Theoretical results can be useful for comparing simplified systems with

simulation outcomes, but they should be complemented by measurements and expert

intuition. Fully validating a model may be impractical, so validation is typically demonstrated

in select cases to build confidence. One technique we use is comparing simulated results with

analytical solutions, which helps assess the accuracy and reliability of the model. While slight

differences may occur due to system stochasticity and the finite number of simulations runs,

the general trend and magnitude of response time values should match between the two

approaches.

33

Conclusion

In this chapter, we've laid the groundwork for our exploration of simulation modeling. We

began by justifying the use of simulation as a crucial method for our study, followed by an

overview of the steps involved in conducting a simulation study. We delved into discrete

event simulation, emphasizing the importance of event scheduling and system state variables.

Additionally, we discussed methods for collecting steady-state observation data during

simulations, which is essential for drawing meaningful conclusions. Model verification and

validation processes were also highlighted as critical steps in ensuring the accuracy and

reliability of our simulation models. This chapter has equipped us with the necessary concepts

and principles to embark on our simulation journey, providing a solid foundation for the

practical applications and analyses we'll undertake in the subsequent chapters.

34

Chapter 3: Implementation of the simulation model
This chapter provides a comprehensive overview of our simulation model for performance

evaluation using vacation policies. The model consists of various components that simulate

the behavior of the node. We present the pseudo-code for the main program and describe the

key events and their interactions within the model. We also explore different simulation

models, extensions, and policies for scenarios with finite and infinite buffer capacities,

discussing their advantages, limitations, and trade-offs. Additionally, we discuss the methods

used to collect and analyze simulation results, ensuring accuracy and reliability.

1. Simulation Environment

The simulation model is created and executed using Java programming language in the

Eclipse Integrated Development Environment. The development environment is configured

on a Windows 10 computer with 16 GB of RAM. The Javac compiler is used for the project.

Additional details about the version of Eclipse, Java, and the compiler used are listed below:

Eclipse IDE for Enterprise Java and Web Developers (includes Incubating components)

Version: 2022-06 (4.24.0)

Build id: 20220609-1112

OS: Windows 10, v.10.0, x86_64 / win32

Java vendor: Oracle Corporation

Java runtime version : 13.0.1+9

Java version: 13.0.1

 Justification of the programming language choice

We chose Java and Eclipse for several reasons, including its object-oriented

programming nature that aligns well with simulation modeling concepts, the availability of

rich Java libraries and frameworks for simulation development, and the robust debugging and

testing capabilities offered by Eclipse, providing a powerful and flexible environment for

building robust and scalable simulation models.

2. Basic Simulation Model (M/M/1 Queue)

To lay the groundwork for the subsequent models, we begin by establishing a basic

model. This model serves as the building block upon which more complex and advanced

models will be developed. It forms the fundamental framework for the rest of the simulation

models and sets the stage for further exploration and analysis.

The node model represents a network node that follows the characteristics of the M/M/1

queue. It receives packets from an external source. The packets are then processed by the

node's single server with an exponentially distributed service time. The node disposes of a

buffer to hold incoming packets when the server is busy, and the queue length and waiting

times of the packets can be analyzed to evaluate the performance of the node and the overall

system.

2.1 Data Structures

 LinkedList (Packet queue): Used to store and manage packets waiting to be processed

by the server. The queue follows specific policies based on the simulated model, the

35

following code illustrates the implementation of the queue structure in the simulation

model taking into account the case where the queue size has to be finite.

Queue<Client> clients_queue;

clients_queue = new LinkedList<Client>() {

@Override

 public boolean add(Client client) {

 if (size() < K)

 return super.add(client);

 return false;

}

};

 Priority queues (Event queue): Arrange elements based on their priority values, which

in our case is time. Events are inserted in ascending order of priority, where lower

priority values have higher priority. If two events have the same priority, they are served

according to their order in the queue. When dequeuing an event, it is removed from the

queue and returned to the simulation. The event comparator class ensures the structure

above since it‟s responsible for event ordering within the queue.

2.2 Assumptions for the basic model

We assume that:

 The sensor node can only switch between the idle and the busy state.

 Single Server The system assumes the presence of a single server responsible for

serving packets. The server can handle one packet at a time and follows a first-

come-first-serve discipline.

 Service rate and arrival rate follows an exponential distribution

 Single Packet Queue The system utilizes a single packet queue to hold incoming

packets or packets awaiting service. Packets enter the queue upon arrival and are

served in the order of their arrival.

 Deterministic Energy Consumption The energy consumption values for different

system states and events are assumed to be deterministic and fixed. This simplifies

the energy calculation process by assuming known and constant energy

consumption values.

 Fixed Simulation Time The simulation is designed to run for a fixed time duration

of 10,000 units. This assumption limits the simulation to a specific time interval

and does not consider dynamic simulation termination based on certain conditions

or convergence criteria.

PriorityQueue<Event> events_queue ;

events_queue= new PriorityQueue<Event>(100, new EventComparator());

36

2.3. Simulation parameters

λ (Lambda): The arrival rate parameter, ensures that the arrival of packets into the

system per unit of ime, follows a passion process.

μ (Mu): Service rate parameters, controlling how quickly the server can process

packets per unit of time, following an exponential distribution.

ECI (Energy Consumption during Idle State): Energy consumed by the server when

idle and not serving any packets or events.

ECb (Energy Consumption during Busy State): Energy consumed by the server when

actively serving a packet or event.

ECTx (Energy Consumption per Packet in Queue): Energy consumed for holding

each packet in the queue, accounting for energy wastage due to packet buffering.

ECs (Energy Wasted during State Transitions): Energy wasted as the server transitions

between idle and busy states, capturing energy inefficiencies during state changes.

K (Buffer Size): Maximum capacity of the queue or buffer, determining the

maximum number of packets that can be accommodated before new arrivals are

rejected.

N (Threshold): Number of packets required in the queue to trigger the server to start

processing, transitioning from idle to busy state.

Number of Batches: Number of iterations or separate simulation runs with their own

packets and events.

Simulation Time: Duration for which the simulation runs.

2.4 Simulation Clock and Time-Advancing Mechanism

The simulation clock represents the current time in the simulation (Tnow). It is

advanced by processing events and determining the next event based on its time. The time-

advancing mechanism ensures that events are processed in chronological order, and the

simulation progresses according to the event timeline.

2.5 The process of generating arrival and service rates

Both arrival rate and service rate are generated using the exponential distribution, for

the traffic rate, the passion process can be obtained by setting the outcomes of the exponential

distribution process for the inter-arrivals. In the other hand, for the service rate of the server,

the values are assigned directly. Here‟s a detailed explanation of exponential distribution

Its formula is given by P (T ≤ t) = 1-e
-

λt

We will be using this formula to generate random periods of time

The first step is to extract the value of time t from the formula:

R= 1- e
-

λt

e
-

λt

= 1-R

- λt
 =

 log(1-R)

t

= log(1-R) / (-λ)

Note: that the same process is done with the parameter μ (mu) instead of λ (lambda) to

generate the service rate.

37

the obtained values “t” are assigned to the inter-arrivals and the service time of the packets at

each iteration.

The following routine illustrate the implementation of process above in the simulation model:

Routine 3-1 generating arrival and service rates
double exponential_distribution (double parameter) {

 Random rand = new Random();

 double R = rand.nextDouble();

 return Math.log(1-R)/(-parameter);

 }

- The said parameter, represent both parameters (λ) for the arrival time or (µ) for service

rate.

- This function generates a random number R using the next Double () method of the

Random class. This method returns a random double value between 0 (inclusive) and

1 (exclusive).

- The expression Math.log (1 - R) calculates the natural logarithm of 1 - R.

- The function returns the calculated value Math.log (1 - R) / (-parameter), which is a

random number drawn from the exponential distribution with the specified rate

parameter.

By using this function, we were able to generate random numbers that follow an exponential

distribution with a given average rate.

Now, let's discuss the concept of the seed in random number generation

The seed is a starting point or initial value used by a random number generator algorithm to

generate a sequence of random numbers. By setting the seed, we can reproduce the same

sequence of random numbers each time the program runs.

However, in our implementation, the seed is not explicitly set for the Random class. As a

result, the default behavior of the Random class is used, which sets the seed based on the

current system time. This means that each time the program runs, a different sequence of

random numbers will be generated.

2.6 Simulation events

In our simulator, we encounter three different types of events: arrival, start service, and

departure. Each of these events corresponds to a specific procedure that outlines how the

event impacts the state variables, progresses time, and generates additional events. Apart from

these procedures, we also have initialization and the gathering of statistics.

 Process arrival

The process arrival event represents the arrival of a new packet to the system. It

creates a new packet with a service time following an exponential distribution (µ) and adds it

to the packet queue. If the server is idle, it schedules the start of service at the current time

(Tnow). It also schedules the next arrival event at Tnow + exponential distribution(λ).

Routine 3-2 arrival

38

Process arrival () {

create new Packet given service time as exponential distribution(µ);

 add the packet to the queue;

 if (server is idle) {

 schedule start service at Tnow;

 }

 schedule arrival at Tnow + exponential distribution(λ));

}

 process start service

This event occurs when the server begins serving a packet. It changes the server state

to busy, retrieves the next packet from the queue using the First-In-First-Out (FIFO) policy,

records the time at which service starts (Tnow), and schedules the departure of the packet at

Tnow + Packet.service_time. This event represents the initiation of processing for a packet by

the server.

Routine 3-3 start service

Packet process start service () {

 Server state = busy;

 Get the packet from the queue; (FIFO)

 Packet time of starting service = Tnow;

 schedule departure at Tnow + Packet.service_time;

 return packet;

}

 Process Departure

The departure signifies the completion of service for a packet. It updates the server state to

idle, increments the count of packets served, removes the processed packet from the system,

and checks if there are any remaining packets in the queue. If packets are waiting, this event

schedules the start of service for the next packet at the current time (Tnow). It represents the

moment when a packet finish being serviced and leaves the system.

Routine 3-4 departure

Process departure (packet) {

Server state = idle;

 packet served ++;

 delete packet;

 if (packets queue size > 0)

 schedule start service at Tnow;

}

 Main program
The main program controls the simulation and consists of the following steps

- Outer Loop Iterate over variations (λ or N) to analyze different scenarios.

- Inner Loop Simulate multiple batches of the system.

39

- Initialization Set up the initial state of the system.

- Batch Simulation Loop Simulate a certain number of packets/customers are

served.

- Get Event and Time Retrieve the next event and its time.

- Event Processing Call the appropriate event function based on the event type.

- Delete Event Remove the processed event from the queue.

- Report Statistics Summarize and display the collected data.

- Statistical Calculations and Results Display Analyze and present batch means

and results.

Routine 3-5 main program

main () {

for (variation of λ or N) {

for (each batch) {

initialization ();

while (number of served in each batch < 10000) {

 event = get event from the event queue;

 Tnow = event time;

 switch (event type) {

 case arrival process arrival ();

case start service Packet = process start service ();

 case departure process departure(Packet);

 }

 Delete event;

}

 Report statistics ();

}

Stat Calculations of batch means & results display (batch Means);

}

 Initialization

the initial setup phase of a simulation where the system's state is configured. The

server is set to idle, and the packet and events queues are initialized. The current time is set to

0, and statistic variables are initialized. A new packet ID is assigned, and the first arrival event

is scheduled to start the simulation. Initialization prepares the system's initial conditions and

data structures for the simulation.

Routine 3-6 initialization

 Initialization () {

server state = idle;

Initialize packet queue;

Initialize events queue;

Tnow = 0;

Initialize Statistic Variable;

New packet id = 0;

40

schedule arrival at Tnow;

}

}

 Report Statistics

Reporting statistics involves collecting and presenting performance metrics (measurements)

that offer insights into the system's behavior. It includes displaying the calculated results in a

readable format (numerical values).

3. Performance metrics

Here are some commonly used measurements [27]:

Note: that in the following, we will be explaining how we calculated performance metrics for

both analytic and simulation model.

And we will be using Traffic Intensity (load factor) ρ which is calculated by ρ = λ/µ.

4.1 Overall Packets served

It represents the total number of packets served in the entire simulation, which is the sum of

Packets served in each batch. This metric provides an overall count of the Packets that have

been successfully served.

Overall Packets served += Packets served in each batch;

3.2 Mean waiting time

 It is the average time a Packet spends waiting in the queue before it starts receiving service.

The mean waiting time is calculated by dividing the cumulative waiting time of all served

Packets by the number of Packets served in each batch.

Mean waiting time += packet.t start service - packet.t arrival;

Batch Means of mean waiting time[i]=mean waiting for time/packets served in each batch;

The batch Means of mean waiting time array stores the mean waiting time for each batch,

assuming “i” represents the current batch index.

The mean waiting time is also calculated analytically using the formula ρ/(µ*(1-ρ)).

3.3 Mean response time

It is the average time a Packet spends in the system from the moment it arrives until it departs,

including both waiting time and service time. The mean response time can be calculated in

two ways

Analytical calculation: The mean response time can be analytically calculated using the

formula 1/(µ-λ) + 1/µ. This formula takes into account the arrival rate (λ) and the service rate

(µ) of the system.

Simulation calculation: The mean response time can also be calculated by the simulation

model. This involves summing up the response time for each served packet, which is

calculated as the difference between the current time (Tnow) and the arrival time of the packet

41

(packet arrival time). The total response time is then divided by the number of packets served

in each batch.

Mean response time += Tnow – packet arrival time;

Batch Means of mean response time [i]= mean response time/packets served in each batch;

3.4 Throughput

 It represents the average number of Packets served per unit of time. It is calculated by

dividing the number of Packets served in each batch by the total simulation time (Tnow).

analytically is equal to the arrival rate lambda and by simulation:

throughput = Packets served in each batch / Tnow;

3.5 Total Energy Consumption

 It represents the total energy consumed by the system during the simulation. The formula

given in calculates the total energy consumption by considering different components such as

idle energy consumption (ECI), busy energy consumption (ECb), energy wasted during state

transitions (ECs), and energy consumption for holding each packet in the buffer (ECTx). The

formula accounts for the probability of being in the idle state (vacation prob) and the average

number of cycles (Nc)

EC = vacation prob * ECI + ((1 – vacation prob) * ECb) + (ECs/Nc) + Q * ECTx;

3.6 Blockage

 represents the proportion of time the server is busy (in a saturated state) compared to the total

simulation time. It indicates the level of congestion or utilization of the server. The blockage

can be calculated using the formula

Simulation calculation The simulation-based blockage can be calculated by dividing the

saturation time (the time when the server is busy) by the total simulation time.

Within the arrival event

if (packets queue size() == K) {

start of saturation time = Tnow;

saturated = true;}

within the departure event

if (packets_queue.size() < K && saturated == true) {

 saturation_time += Tnow – start_of_saturation_time;

 saturated = false;}

at the end of the simulation

batchMeans_of_blockage[i] = saturation_time/Tnow ;

Analytical calculation the analytical blockage can be calculated using the formula

 ((1-ρ) * ρ^K) / (1 – ρ^(K+1)), where ρ is the traffic intensity and K is the buffer size.

42

3.7 Loss Rate

 The loss rate represents the rate of rejected Packets in each batch, indicating the proportion of

Packets that were not served due to queue limitations or other constraints. The loss rate can be

calculated in two ways

Analytical calculation The analytical loss rate can be calculated using the formula λ *

blocking_prob. The blocking probability (blocking_prob) represents the probability that a

Packet is blocked or rejected due to queue limitations.

Simulation calculation The simulation-based loss rate can be calculated by dividing the

number of rejected Packets by the total number of Packets that arrived in each batch.

Within the arrival event

 Number of arrived packets ++;

if (packet size () > K) then don’t add it to the packets queue

 // The packet was rejected

 Number of rejected packets ++;

At the end of the simulation

Loss rate = number rejected Packet / Packets arrived in each batch;

3.8 Probability of being in the idle state (PI)

The probability of being in the idle state calculates the likelihood of the server being idle. It is

determined by measuring the total time the server is idle (idle Time) and dividing it by the

total simulation time.

within the Initialization

 idle Time=0; idle prob=0; idle start = Tnow;

if (server was idle)

add (Tnow – idle start) to idle Time;

Then set the server busy;

if (server was busy)

idle start = Tnow;

then set the server idle;

At the end of the simulation idle prob = idle Time / Tnow;

Analytically: for an infinite buffer, the probability of being in the idle state can be calculated

as (1-ρ), where ρ is the traffic intensity.

For a finite buffer of size K, the probability of being in the idle state can be calculated as (1-ρ)

/ (1-ρ^K), where ρ is the traffic intensity and K is the buffer size.

3.9 Average number of packets in the queue (Q)

It represents the average number of packets or Packets present in the queue. It is calculated in

the simulation by dividing the cumulative number of packets in the queue by the total number

of events processed. Analytically calculated by the formula (ρ / (1-ρ)) – (ρ * (1 + K* ρ^ K) /

(1- ρ^ K+1), and in our simulation model:

43

Within each event we extract and accumulate the number of packets in the

queue:

Number of packets in buffer += packets_queue.size();

Number of events++;

Mean no packets in buffer = number of packets in buffer /number of events;

3.10 number of cycles

which represents the count of cycles that occur during the simulation. A cycle in this context

refers to the time interval between two consecutive arrivals that find an empty system. It

consists of a busy period (BP), during which the server is actively serving customers,

followed by an idle period (IP), during which the system remains empty.

To calculate the average number of cycles (Nc), the code divides the total number of cycles

by the total simulation time (Tnow).

Within the departure event

If (packets queue is Empty ()) {

server state = idle;

 number of cycles ++;

Nc = number of cycles / Tnow;

By measuring the number of cycles and normalizing it by the simulation time, we can get an

understanding of how frequently the system transitions between busy and idle states. This

metric can provide insights into the utilization and efficiency of the server and help analyze

the behavior of the queuing system.

5. Methods to collect the simulation results

We have been using the mean batch method as a method for gathering simulation results by

averaging several simulation runs.

 Compute means for each batch

The mean batch method is used to collect simulation results by averaging multiple simulation

runs, increasing the accuracy and reliability of the findings. This approach involves

conducting simulations with randomized inputs for each batch, producing a set of outcomes.

Performance metrics of interest are gathered during each batch run, and the batch mean is

computed by averaging the results. This process is repeated for multiple batches to capture

system variability.

 Compute overall mean

The overall mean is then calculated by summing the batch means, providing a more accurate

depiction of the simulation findings.

 Calculate the standard deviation

The standard deviation is also calculated to quantify the variability and uncertainty in the data,

offering insights into data distribution and reliability. Various statistical techniques, such as

confidence intervals.

 Calculate the confidence interval

44

The confidence interval is a statistical measure that provides an estimate of the range within

which the true value of a population parameter is likely to fall.

confidence Level = 0.95; // Desired confidence level

Critical Value = 1.96; // For a 95% confidence level

if (confidenceLevel > 0.95) {

Critical Value = 2.576; // For a 99% confidence level

}

 standard Error = √ (variance/number of batches);

 critical Value = get Critical Value (confidence Level, number of batches - 1);

margin Of Error = critical Value * standard Error;

lower Bound = mean Of Means- margin Of Error;

upper Bound = mean Of Means + margin Of Error;

4. Extension of the Simulation Model

This elaboration focuses on exploring different simulation models with vacation policies in

the context of M/M/1 queue models

For infinite buffer ∞ and finite buffer (size K)

 For infinite buffer ∞ where there is no buffer size restriction, all arriving packets are

accepted regardless of the queue size.

 and a finite buffer (size K) Contrarily, a finite buffer with a specific size, denoted as

"K," implies that the maximum number of packets that can be accommodated is

limited to K. In this case, packets are accepted as long as the buffer is not full.

4.1 M/M/1 Queue Model with N-Policy

One of the most intuitive methods is to postpone service until a fixed number (N > 1) of

customers has accumulated in the queue. Once the server becomes active, it stays active until

the system becomes empty again. [32] as it shows in Figure 14

Figure 9: Transition diagram of a sensor node with N-Policy. [33]

Implementation

The N-Policy threshold condition is checked within the "process arrival " method

if the packets queue. Size () >= N

45

This condition checks if the number of packets in the queue is greater than or equal to the

threshold N. If this condition is satisfied, a new event for starting the service is created.

4.2 M/M/1 queue Model with T-Policy (Timer policy)

if no packets arrive during a vacation period, the server extends its vacation and remains idle.

This policy introduces the concept of vacations, which can help save energy or reduce costs

during periods of low demand.

Figure 10: Transition diagram of a sensor node with T-Policy

After all the customers are served in the queue exhaustively, the server deactivates and takes

at most J vacations of constant time length T repeatedly until at least one customer is found

waiting in the queue upon returning from a vacation. If at least one customer presents in the

system when the server returns from a vacation, then the server reactivates and requires a

startup time before providing the service. On the other hand, if no customers arrive by the end

of the Jth vacation, the server remains dormant in the system until at least one customer

arrives [34].

Implementation

Setting up a variable T (max Time of a vacation)

Initialize the vacation timer at Tnow

Within the arrival process

If (the vacation timer is over)

start service;

Within the departure

if (queue becomes empty)

start a new vacation;

4.3 M/M/1 queue Model with min (N, T) Policy

The addition of timer T avoids endless waiting that may happen in some applications with a

sparse arrival scenario. For example, in habitat monitoring, there‟s no traffic on the network

for long periods, which are followed by short periods of network traffic, referred to as bursts.

If the total number of arriving packets in a specific burst cannot reach N, then T -policy would

save those stale queued packets and trigger the radio server to transmit them in due course.

[35]

46

Figure 11: Transition diagram of a sensor node with min (N, T) Policy

Implementation

By incorporating the 'OR' operation in the condition check, we ensure that the server is

activated when either of the policies is satisfied

if (server state = idle & (vacation time >= T || packet queue size () >= N))

 then start service;

4.4 M/M/1 Queue Model with D-Policy

The server is turned off at the end of a busy period and turned on when the cumulative

amount of work first exceeds some fixed value D [36]

This policy helps manage the workload of the server and ensures timely service delivery

based on the accumulated work.

Figure 12: Transition diagram of a sensor node with D-Policy

4.5 M/M/1 queue Model with Hybrid Policy

the sensor node can switch from idle to busy state either

_ At the instant of the Nth packet arrival.

_ Or at the end of a vacation period which is an exponentially distributed random duration

with the parameter ζ, even if the number of packets in the buffer is less than N. [33]

Figure 13: State transition diagram of a sensor node with Hybrid Policy. [33]

47

Implementation

After introducing the parameter zeta, we apply it to generate random vacation times as

follows

Vacation time ≥ exponential distribution(ζ)

4.6 Implementation of delayed idle state

To simulate the delayed idle state in a queueing system, an extended version of the M/M/1

queue model is utilized. The implementation involves maintaining an additional state variable

to track the server's state (idle, busy, or delayed idle), and the Θ parameter.

Figure 14: Transition diagram of a sensor node with Delayed Idle server state and N-Policy.

 if (packet queue is Empty () then Server state= is delayed idle;

 If (Server state = delayed idle) {

 if (Tnow – delayed idle start >= Θ)

 then server = Server state idle;

By simulating the idle delayed state and analyzing the resulting performance metrics, it

becomes possible to evaluate the effectiveness of this extension in improving energy

efficiency, reducing overhead, and optimizing system behavior in queueing systems.

Conclusion

In conclusion, this chapter provided a comprehensive overview of implementing a simulation

model for evaluating WSN node performance using vacation policies. It covered key aspects

such as pseudo-code, simulation events, environment details, data structures, M/M/1 queueing

system, service processes, state variables, exponential distribution, main program structure,

statistics reporting, and assumptions. This chapter laid the foundation for subsequent analysis

and discussions on WSN performance evaluation.

48

Chapter 4: Experimental Study
Chapter 4 of this report presents a comprehensive examination of the system's behavior and

performance through the execution of controlled experiments and the utilization of a

simulation model. The primary objective of this chapter is to provide an in-depth analysis of

the experimental results and discuss the findings in detail. To evaluate the effectiveness of our

simulation model, we compare its numerical outcomes with the corresponding analytical

results. Furthermore, we employ visually appealing graphs to effectively present the collected

data, leveraging their ability to simplify complex information. Through this rigorous

examination, we aim to gain valuable insights into the system's functionality and

performance, paving the way for further improvements and optimizations.

1. Experimental Study

the process of conducting controlled experiments using the simulation model to investigate

and analyze the behavior and performance of a system. It involves designing and executing a

series of experiments by manipulating various input parameters or configurations of the

simulation model and observing the corresponding output results.

2. System parameters values

The system parameters values used in the simulation are as follows:

Table 5: system parameters values used in the simulation

The capacity of Buffer (K) 10

Queue Threshold ranges from 1 to 9

The mean data arrival rate (λ) ranges from 0,25 to 2

Mean service rate (µ) 2

The mean Vacation rate (ζ) ranges from 0,1 to 0,5

ECi 50

ECd 100

ECb 500

ECTx 5

ECs 300

Number of Batches 1000

Simulation Time 10000

3. Arrival rate Lambda (λ) variation

In this scenario, we will explore the impact of varying lambda values on the metric, assuming

fixed values for the other parameters. We will consider a lambda range from 0.1 to 1.9 and

µ=2. By analyzing this range, we can observe how the metric changes with different lambda

values.

3.1 M/M/1 with infinite buffer provided by our model beside analytical results

49

Table 6: Performance Results from M/M/1 Simulation model vs Analytic Equations for

different performance metrics.

λ mean
waiting time

analytic
mean
waiting
time

throughput analytic
throughput

mean
response
time

analytic
mean
response
time

Idle Proba analytic
Idle
Proba

Mean no
customer
in buffer

analytic
Mean no
customer
in buffer

cycles
numbers

energy
concumption

overall
clients
served

0,1 0,026183901 0,026316 0,099949708 0,1 0,526118162 0,526316 0,947064508 0,95 0,00259 0,002632 0,094953829 63,906923 1001538

0,2 0,055460479 0,055556 0,199962301 0,2 0,554692798 0,555556 0,898031479 0,9 0,011148 0,011111 0,179763888 113,410853 2003002

0,3 0,087779081 0,088235 0,299574796 0,3 0,588826692 0,588235 0,848515655 0,85 0,026307 0,026471 0,254587266 160,200129 3002900
0,4 0,125075249 0,125 0,399550105 0,4 0,624596272 0,625 0,798885354 0,8 0,049804 0,05 0,319736138 204,203592 4000303

0,5 0,167011515 0,166667 0,499364364 0,5 0,665858784 0,666667 0,748817988 0,75 0,083142 0,083333 0,374448198 245,307215 4997783

0,6 0,214318668 0,214286 0,598998501 0,6 0,712926926 0,714286 0,699280463 0,7 0,128004 0,128571 0,419665044 283,448931 6000603

0,7 0,268635548 0,269231 0,699109571 0,7 0,768523944 0,769231 0,648865185 0,65 0,187536 0,188462 0,454867832 318,75835 7000848
0,8 0,333176187 0,333333 0,799485588 0,8 0,83218321 0,833333 0,599163322 0,6 0,265669 0,266667 0,479576293 351,147503 8005772

0,9 0,40851953 0,409091 0,898594158 0,9 0,907728994 0,909091 0,549706701 0,55 0,367772 0,368182 0,494579645 380,491725 8998523

1 0,499237864 0,5 0,999050752 1 0,999271012 1 0,49966442 0,5 0,496712 0,5 0,499465731 407,266971 10002414

1,1 0,609912824 0,611111 1,098953869 1,1 1,109618533 1,111111 0,449794137 0,45 0,67136 0,672222 0,494779609 430,853497 10994200

1,2 0,749080249 0,75 1,198477761 1,2 1,249275589 1,25 0,399439056 0,4 0,898321 0,9 0,479296454 451,873323 12001325

1,3 0,925790993 0,928571 1,298344407 1,3 1,427121985 1,428571 0,349934891 0,35 1,204986 1,207143 0,454004899 470,682323 13002343

1,4 1,161668434 1,166667 1,398554108 1,4 1,66441727 1,666667 0,299821631 0,3 1,62726 1,633333 0,41932132 486,753348 13999860

1,5 1,498716896 1,5 1,498033502 1,5 1,997433174 2 0,25020406 0,25 2,240114 2,25 0,375405818 500,792339 14999094
1,6 1,998229601 2 1,597449116 1,6 2,494545981 2,5 0,200557652 0,2 3,193912 3,2 0,318815331 513,44468 15994604

1,7 2,809334656 2,833333 1,697973628 1,7 3,339614187 3,333333 0,150409395 0,15 4,764931 4,816667 0,255094863 526,538197 16997366

1,8 4,455374757 4,5 1,798016338 1,8 4,94296522 5 0,100452929 0,1 8,009443 8,1 0,181101407 544,61527 17992871

1,9 9,46430069 9,5 1,895983523 1,9 9,787403418 10 0,050575197 0,05 17,580285 18,05 0,096417976 590,504446 18982623

The results obtained from our simulator are very similar to the analytical ones based on the

previously mentioned equations. When the difference between the simulated results and the

analytical ones is small, often within a few decimal numbers, it suggests that our simulator is

providing mostly correct results.

our simulator can accurately reproduce analytical results which is an important validation step

in ensuring the reliability of the simulation. It indicates that our simulator is correctly

implementing the underlying equations and models, and can be trusted to provide accurate

predictions or outputs for similar scenarios.

From now on we will be using graphs instead of tables for results presentation because graphs

are visually appealing and capture attention more effectively, they simplify complex data

making it easier to understand and interpret trends and patterns, they present information

concisely and avoid information overload.

Next, we will be presenting the difference between our simulation results and analytical

results for some metrics in the case where the buffer size is limited.

3.2 M/M/1/K queue (finite buffer) K= 10;

50

51

Figure 15: Performance Results from M/M/1/K Simulation model and from Analytic

Equations (i) Mean Waiting Time (ii) Throughput (iii) Mean Response Time (iv) Idel

Probability (v) Mean Number of Customers in the Buffer.

Again, the values we obtained are very close, with only minor differences in the decimal

places. This suggests that our simulation model is effectively capturing the behavior of the

M/M/1/K queueing system.

Although there might be slight differences due to the inherent stochasticity in the system and

the finite number of simulations runs, the general trend and magnitude of the metrics values

match between the two approaches.

It's important to note that small variations can be expected due to the random nature of the

system and the finite number of simulation runs. However, as long as the overall trend and

magnitude of the results match the analytical values, it indicates that our simulation model is

providing a reasonable approximation of the system's behavior.

3.3 Performance evaluation of different policies

Now for each metric, we will be discussing the difference between each policy model and

why the results may differentiate from one case to another

o Mean waiting time

- Infinite buffer N =4; D= 1; T= 1;

Figure 16: Performance Results from M/M/1 Simulation model with different Policies

Measuring Mean Waiting Time vs arrival rate lambda.

52

 Finite buffer K= 10; ζ = 0.2; //Mean Vacation rate

Figure 17: Performance Results from M/M/1/K Simulation model with different Policies

Measuring Mean Waiting Time.

The waiting time values appear to decrease gradually at first and then start to stabilize or

increase slightly. This behavior suggests that the waiting time reaches a minimum point and

then starts to level off or slightly increase as the arrival rate continues to rise. This can be

attributed to the fact that at higher arrival rates, the server may experience more congestion

and longer queues, leading to slightly increased waiting times.

the T Policy, min (N, T) Policy, and Hybrid Policy tend to provide better performance in

terms of waiting time compared to the N and D Policies. Among them, the min (N, T) Policy

takes into account both capacity limitations and time constraints, making it a favorable choice

in many scenarios. However, the specific choice of policy may depend on the specific

requirements and priorities of the system under consideration.

Figure 18: Performance Results from M/M/1/K Simulation model, M/M/1/K Simulation

model with N Policy, and M/M/1/K Simulation model with N Policy and Idle Delayed server

state Measuring Mean Waiting Time.

53

In the N Policy scenario, when new arrivals are not served immediately, and they must wait in

the queue, resulting in longer overall waiting times. But once the arrival rate increases the

number of customers in the buffer reaches N faster and the waiting time decreases.

Introducing the idle delayed state in the M/M/1/K system helps reduce the waiting time

compared to the N Policy scenario. The idle delayed state means that when the buffer is

empty, the server switch to a delayed idle state that is faster to switch from back to the busy

state again so one arriving customer triggers the server back to busy and the waiting time

becomes less. This reduces the long queuing time of customers and improves the overall

waiting time, although it is still higher than the standard M/M/1/K system.

o Throughput

 Finite buffer

Figure 19: Performance Results from M/M/1/K with different Policies and Delayed Idle state

Simulation Models Measuring Throughput vs. arrival rate variation.

The D policy consistently shows lower throughput values compared to other policies. The

Hybrid Policy shows competitive throughput values, often performing well compared to other

policies. This indicates that combining different policies can lead to improved system

performance and better throughput. The introduction of the idle delayed state reduces the

overall throughput as the server spends more time in the delayed idle state, resulting in slower

customer service.

o Mean response time

-infinite buffer case

54

Figure 20: Performance Results from M/M/1 with different policies Simulation Models

Measuring Mean Response Time vs arrival rate variation.

 In the N Policy the mean response time is significantly higher compared to the M/M/1

system. This is because customers have to wait longer before their service begins, leading to

increased overall response times.

The response time first decreases as the arrival rate (λ) increases. This is expected because a

higher arrival rate means more customers entering the system, resulting in longer queues and

faster threshold reaching

But higher and higher arrival rates lead to more customers entering the system, resulting in

longer queues and increased response times.

Mm1 system without policy consistently has the lowest response time. This is because it

represents a basic M/M/1 queueing system without any optimization or control mechanisms.

Figure 21: Performance Results from M/M/1/K with N Policy and Idle Delayed State

Simulation Models Measuring Mean Response Time based on arrival rate variation.

In the M/M/1/K system with N Policy and Delayed Idle, the mean response time decreases

compared to the M/M/1/K with N Policy system.

By incorporating the idle delayed state, the waiting time for customers is minimized, leading

to enhanced response times.

The probability that the server is idle

55

Figure 22: Performance Results from M/M/1 with different policies Measuring Idle

Probability with finite buffer vs. arrival rate variation.

The idle probability represents the likelihood of the server being idle, or not serving any

customers, at a given time. A lower idle probability indicates that the server is more likely to

be busy and actively serving customers, while a higher idle probability suggests that the

server is more likely to be idle and waiting for customers.

with Threshold Policies the idle probability is slightly higher compared to the basic system.

This is because customers have to wait in the queue before their service begins, which can

lead to brief periods of server idleness.

In the M/M/1/K with N Policy, the idle probability increases further compared to the

M/M/1/K system. Both the buffer size limitation and the delayed service policy contribute to

potential periods of server idleness.

o Mean number of customers in the buffer

Figure 23: Performance Results from M/M/1 with different policies Measuring the Mean

number of customers in the buffer for finite and infinite simulation models vs. arrival rate

variation.

with the N Policy system, the mean number of customers in the buffer is higher compared to

the M/M/1 system. This is because customers have to wait in the queue before their service

56

begins, resulting in a larger number of customers in the buffer. Both the buffer size limitation

and the delayed service policy contribute to a larger number of customers in the buffer.

In the M/M/1/K system with N Policy and Idle Delayed server state, the mean number of

customers in the buffer decreases compared to the M/M/1/K with N Policy system.

Incorporating the idle delayed state helps reduce the waiting time for customers in the queue,

resulting in a smaller number of customers in the buffer.

The mean number of customers in the buffer values provides insights into the average queue

length and the amount of work the server handles in different queuing scenarios, considering

factors such as arrival rate, buffer size, and service policies.

Mean number of cycles

Figure 24: Performance Results from M/M/1, with Threshold Policies Simulation Models

Measuring Mean Cycles number vs. arrival rate variation.

The Threshold Policies delay the start of service until the number of customers in the queue

reaches the threshold N, which reduces the occurrence of cycles.

The mean number of cycles provides insights into the frequency of system utilization and idle

periods in different queuing scenarios. It helps analyze the efficiency and utilization of the

server and the impact of buffer size and service policies on the system's behavior.

Energy consumption

Figure 25: Performance Results from M/M/1, M/M/1 with N Policy, M/M/1/K, and M/M/1/K

with N Policy Simulation models Measuring Total Energy Consumption based on arrival rate

variation.

57

as the arrival rate increases, energy consumption also increases. This is because a higher

arrival rate leads to more frequent arrivals, which require the server to be active for longer

periods, resulting in higher energy consumption.

With threshold policies, energy consumption decreases compared to the basic system. Their

delays at the start of the service reduce the overall energy consumption.

Overall Packets served

Figure 26: Performance Results from M/M/1 and M/M/1/K with different Policies Simulation

models giving the number of overall Packets served vs. arrival rate variation.

As the arrival rate (lambda) increases in the queuing system, the number of Packets served

tends to increase. This relationship is intuitive because a higher arrival rate means more

customers entering the system, resulting in a greater number of Packets being served.

However, it's important to consider the system capacity, which in this case is limited. The

buffer can hold a maximum of 10 packets in the waiting queue at any given time. When the

buffer is full, any additional arriving packets will be rejected or blocked from entering the

system.

As lambda continues to increase, the buffer will fill up faster, leading to more Packets being

rejected or blocked. Consequently, the total number of Packets served by the system will start

to decline as the rejection or blocking of Packets becomes more frequent.

Conclusions for lambda variation

the numerical results and discussions demonstrate the following key findings:

58

 Arrival rate has a significant impact on system performance, with higher arrival rates

leading to longer queues, increased waiting times, and decreased Idle probability.

 The buffer size limitation plays a crucial role in controlling system behavior. It helps

maintain stability in mean waiting time, response time, and idle state probability.

 The idle delayed state helps reduce waiting times and improves response times

compared to the N Policy scenario.

 As the arrival rate increases, the number of Packets served initially increases, but it

eventually declines due to the rejection or blocking of Packets when the buffer is full.

These findings highlight the trade-offs between system performance metrics such as waiting

times, throughput, energy consumption, and the impact of buffer size limitations and service

policies.

4.Threshold N variation

Mean Waiting Time

Figure 27: Performance Results from M/M/1 with different Policies Simulation models giving

the Mean Waiting Time vs Thresholds N variation in finite and infinite buffer cases.

As the threshold (N) increases, the waiting time generally increases across all policies. This is

expected, as a higher threshold allows more customers to accumulate in the system before

service begins, resulting in longer waiting times.

The Hybrid Policy shows relatively lower waiting times compared to other policies for

smaller threshold values (e.g., N = 2 or N = 3) but the N Policy with Delayed Idle server state

provides better performance for all threshold values.

59

Figure 28: Performance Results from M/M/1 with T and min (N, T) Policies Simulation

models giving the Mean Waiting Time vs Threshold T variation in finite and infinite buffer

cases.

These results show that the mean waiting time varies significantly between the two policies as

the threshold value changes. The min (N, T) Policy generally yields lower mean waiting times

compared to the T-Policy for most threshold values. This suggests that the min (N, T) Policy

is more effective in reducing waiting times in the queue.

Energy consumption

Figure 29: Performance Results from N Policy and Hybrid Policy Simulation Models

Measuring Energy Consumption based on Threshold N.

 We can observe the following:

The Hybrid Policy generally yields lower energy consumption compared to the N Policy for

most threshold values and arrival rates. This suggests that the Hybrid Policy is more effective

in reducing energy consumption in the system.

Figure 30: Performance Results from Hybrid Policy Simulation Model Measuring Energy

Consumption vs. Threshold N and mean vacation rate ζ Variation.

Higher values of the mean vacation rate ζ indicate more frequent vacations taken by the

server, the server undergoes more transitions between the idle and busy states. Each transition

requires activation energy, resulting in higher overall energy consumption. This switching

energy contributes to the increase in average energy consumption with a higher mean vacation

rate.

60

Figure 31: Performance Results from M/M/1 with different Policies Simulation models giving

the Mean Energy Consumption vs Thresholds N variation in finite and infinite buffer cases.

Figure 32: Performance Results from T Policy Simulation Model Measuring Energy

Consumption vs. Threshold T.

Increasing the threshold value tends to reduce the average energy consumption in the

considered policies. It indicates that allowing more work to accumulate in the queue before

the server becomes active can lead to energy savings. However, the specific impact of

threshold values on energy consumption may vary depending on the policy used.

61

Figure 33: Performance Results from D Policy Simulation Model Measuring Energy

Consumption vs. Threshold D.

As D increases, it takes longer for the workload to accumulate to that level, resulting in longer

idle periods for the server. During these idle periods, the server consumes energy at the idle

state energy consumption rate (ECI). Each transition from the idle state to the busy state or

vice versa incurs an energy cost (ECs). Since increasing the threshold value D leads to longer

idle periods and more transitions between states, it results in higher energy consumption.

5.Service rate mu (µ) variation

Mean Waiting Time

Figure 34: Performance Results from Different Policy Simulation Models Measuring Mean

Waiting Time vs. service rate µ.

Figure 35: Performance Results from Different Policy Simulation Models Measuring Average

Energy Consumption vs. service rate µ.

As the service rate (µ) increases, the mean waiting time and average energy consumption

decrease for all systems. This is expected since a higher service rate allows customers to be

served more quickly, reducing their waiting time and overall energy consumption.

62

6.Overall Discussion

This analysis reveals the interplay of various factors in the performance of queuing systems.

The arrival rate (lambda) emerges as a critical determinant affecting system metrics such as

waiting times, response times, throughput, and the number of packets served. These metrics,

in turn, are influenced by the buffer size limitation (K), which plays a crucial role in

maintaining system stability and preventing congestion.

The impact of the arrival rate becomes evident as it increases. Initially, more packets are

served due to the higher influx, but the number eventually declines due to packet rejection or

blocking when the buffer reaches its capacity. This highlights the trade-offs involved in

system performance metrics, such as the potential for lower waiting times leading to higher

average waiting times overall.

One notable policy, the N Policy, introduces a delay in starting service until the queue reaches

a predefined threshold. While this policy leads to higher waiting times and response times, it

can effectively reduce energy consumption. However, incorporating the idle delayed state into

the system helps alleviate waiting times and enhances response times.

The min (N, T) Policy presents a favorable choice by considering both capacity limitations

and time constraints, aiming to strike a balance between immediate access and queueing while

accounting for system capacity. Additionally, the Hybrid Policy showcases competitive

performance compared to other policies and can be considered for overall system

optimization.

To sum up, determining the best policy for a queuing system necessitates evaluating specific

requirements and priorities. By carefully considering different factors, queuing systems can be

tailored to achieve efficient and effective performance.

Conclusion

In conclusion, this chapter presented a comprehensive experimental study to examine the

behavior and performance of the system. In this chapter, we used controlled experiments and

our simulation model to analyze the system's performance. The findings demonstrated the

impact of various parameters, such as arrival rate and buffer size, on system performance

metrics. The study highlighted the trade-offs between different performance metrics and the

influence of service policies. Eventually, the experimental study provided valuable insights

into the system's functionality and performance, laying the foundation for further

improvements and optimizations.

63

Conclusions and future directions
In conclusion, this project has provided a comprehensive study of wireless sensor networks

(WSNs), focusing on energy efficiency and the use of vacation policies in queueing systems.

Throughout the report, we have explored the background of WSNs. We have also delved into

the concept of queues with vacation, which offers a more realistic representation of real-world

queueing systems. By implementing discrete-event simulation models, we were able to

evaluate the performance of such systems under various conditions. This allowed us to

analyze and compare different policies, such as threshold-based policies, and assess their

impact on system behavior and energy consumption.

Through our simulation studies, we aimed to achieve several objectives. First and foremost,

energy efficiency was a key focus. By considering limited sensor node resources, we sought

to extend its battery life. We also aimed to improve the sensor node performance while

reducing energy consumption, striking a balance between energy conservation and waiting

delay.

The numerical results presented a deeper understanding of the system's behavior. We

analyzed the system parameter variations. By measuring performance metrics, we gained

insights into the system's performance and efficiency under different conditions. We were

able to fine-tune the system design and gain valuable insights and guidelines for designing

energy-efficient sensor networks.

The findings from our research have significant implications for the whole wireless sensor

network not only a single node. They provide valuable knowledge and guidelines for

designing energy-efficient systems, optimizing parameters, and striking the right balance

between energy conservation and performance. The exploration of queues with vacation has

provided a deeper understanding of system dynamics and behavior. By incorporating one or

two vacation policies, we can achieve improved results, and the Hybrid policy stands out as

the best example of this.

Moving forward, several future directions can build upon this research. One important aspect

to consider is the implementation of quality of service (QoS) mechanisms in wireless sensor

networks. This would enhance the overall efficiency and reliability of the network,

particularly in scenarios where real-time or mission-critical data is being transmitted.

As technology advances, new communication protocols and networking architectures may

emerge in the field of wireless sensor networks. Future research could investigate the

integration of emerging technologies. These advancements have the potential to further

enhance the performance, scalability, and adaptability of WSNs while optimizing energy

consumption and system behavior.

Finally, this research has laid a solid foundation for understanding energy-efficient WSNs and

the use of vacation policies in queueing systems. By exploring future directions such as

implementing quality of-service mechanisms and considering different packet types,

researchers and practitioners can continue to advance the field and contribute to the

development of highly efficient and reliable wireless sensor networks.

64

65

References

[1] Z. Rezaei, "Energy Saving in Wireless Sensor Networks," International Journal of
Computer Science & Engineering Survey, vol. 3, pp. 23-37, 2012.

[2] T. &. Rault, A. &. Bouabdallah and Y. Challal, "Energy Efficiency in Wireless Sensor
Networks a top-down survey," Computer Networks, no. 67, pp. 104-122, 2014.

[3] "Buratti, C., Dardari, D., Verdone, R., and Conti, A," An Overview on Wireless Sensor
Networks Technology and Evolution, vol. 9, pp. 6869-6896, 2009.

[4] M. &. Mcgrath and C. Ni Scanaill, Sensor Network Topologies and Design
Considerations., 2013.

[5] M. C. M. D. F. A. P. Giuseppe Anastasi, "Energy conservation in wireless sensor networks
A survey," Ad Hoc Networks, vol. 7, no. 3, pp. 537-568, 2009.

[6] K. E. O. I. T. S. K. R. G. O. A. S. &. Ukhurebor and A. Bobadoye, "Wireless Sensor
Networks Applications and Challenges," in IntechOpen eBooks, 2020.

[7] V. J. R. ,. S. S. S. Aiswariya, "Challenges, Technologies and Components of Wireless
Sensor Networks," INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH &
TECHNOLOGY (IJERT) NCICCT, vol. 6, no. 3, 2018.

[8] I. &. Akyildiz, S. &. WY, Y. &. Sankarasubramaniam and E. Cayirci, "Wireless Sensor
Networks: A Survey," Computer Networks, no. 38, pp. 393-422, 2002.

[9] T. Agarwal, "Wireless Sensor Network Architecture  Types, Working & Its Applications,"
ElProCus - Electronic Projects for Engineering Students, 2021, January 25.

[10] M. &. Matin and M. Islam, "Overview of Wireless Sensor Network," 2012.

[11] M. J. Abdirahman, "Communication Protocols for Wireless Sensor Networks," 2022.

[12] S.-H. Yang, "Hardware Design for WSNs," Signals and Communication Technology, p. 49–
72, Oct. 24, 2013.

[13] L. T. Y. L. S. L. W. a. T. H. C. Zhu, "Sleep scheduling towards geographic routing in duty-
cycled sensor networks with a mobile sink," pp. 158-160, 2011.

[14] L. d. Smet, "Queue Mining Combining Process Mining and Queueing Analysis to
Understand Bottlenecks, to Predict Delays, and to Suggest Process Improvements,"
Eindhoven University of Technology, 28 September 2014.

[15] L. Green, QUEUEING THEORY AND MODELING, New York: Graduate School of Business,
Columbia University.

[16] Janaina Cristina Ferreira, "Queueing System Analysis A case study," Escola Superior de
Tecnologia e Gestão of Instituto Politécnico de Bragança, may 2020.

[17] T. &. Naishuo and Z. G. Zhang, "Vacation QueueingModelsTheory and Applications,"
2006.

[18] R. Cooper, Queueing Notation, 2011.

[19] D. Bouallouche, Congestion Control in the Context of Machine Type Communication in
Long Term Evolution Networks: a Dynamic Load Balancing Approach, 2012.

[20] R. KHALAF, "On some queueing systems with server vacations, extended vacations,
breakdowns, delayed repairs and stand-bys," Thèse de doctorat. Brunel University,

66

School of Information Systems, Computing, and Mathematics, 2012.

[21] S. &. Yuvarani and M. C. Saravanarajan, "Analysis of preemptive priority retrial queue
with two types of customers, balking, optional re-service, single vacation, and service
interruption," IOP Conference Series.Materials Science and Engineering, no. 4, p. 263.

[22] S. J. F. Khodadadi, "A fuzzy-based threshold policy for a single server retrial queue with
vacations," Cent Eur J Oper Res, no. 20, p. 281–297, 2012.

[23] J. &. Chen, B. &. Sikdar and M. Hamdi, "An Adaptive N-Policy Queueing System Design
for Energy Efficient and Delay Sensitive Sensor Network," 2018.

[24] V. &. M. G. Goswami, "Prolonging Lifetime of Wireless Sensor Networks Using Modified
N Policy Queueing Model," 2022.

[25] M. A. a. M. Mohamed, "Performance evaluation of an energy-saving mechanism in a
wireless sensor network Presented," 2021.

[26] B. &. Boutoumi and N. Gharbi, "N-policy Priority Queueing Model for Energy and Delay
Minimization in Wireless Sensor Networks Using Markov Chains," pp. 1-6, 2023.

[27] R.jain, The Art of Computer Systems Performance Analysis Technique for Experimental,
New York : NY Wiley Computer Publishing, John Wiley & Sons, Inc, April 1991.

[28] "Simulation Modeling Steps," acqnote, 21 July 2021. [Online]. Available:
https://acqnotes.com/acqnote/tasks/simulation-modeling-steps.

[29] S. A. G. A. e. a. Allen M, "What is discrete event simulation, and why use it?," in Right
cot, right place, right time: improving the design and organisation of neonatal care
networks – a computer simulation study, Southampton (UK), NIHR Journals Library, May
2015.

[30] J. M. Garrido, "chapter 3," in Practical Process Simulation Using Object-oriented
Techniques and C++, the University of Virginia, Artech House computer science library,
1999, p. 219 .

[31] I. i. d. t. d. Kanpur, Data Collection in Steady State Conditions CH1.

[32] B. &. D. V. S. &. B. H. &. W. S. Feyaerts, "The impact of the NT policy on the behavior of
a discrete-time queue with general service times.," Journal of Industrial and
Management Optimization. , no. 10, 2014.

[33] B. B. a. N. Gharbi, "An energy saving and latency delay efficiency scheme for wireless
sensor networks based on GSPNs," in 4th International Conference on Control, Decision
and Information Technologies (CoDIT), Barcelona, Spain, 2017.

[34] J.-C. Ke, "Modified T vacation policy for an M/G/1 queueing system with an unreliable
server and startup," Mathematical and Computer Modelling, vol. 41, no. 11–12, pp.
1267-1277, 2005.

[35] S. G. a. S. Unnikrishnan, "Min (N, T) Policy M/G/1 Queue based Reduction of Power
Consumption in Wireless Sensor Networks," International Conference on Advances in
Computing, Communication and Control (ICAC3), pp. 1-6, 2019.

[36] J. Artalejo, " On the M/G/1 queue with D-policy," Applied Mathematical Modelling, vol.
25, no. 12, pp. 1055-1069, 2001.

