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Abstract 
Sensor networks are widely used for various applications but are constrained by limited 

energy resources, which necessitates the development of energy-efficient network designs. 

The use of vacation policies is a promising approach for reducing energy consumption while 

maintaining network performance. This project presents the design and implementation of a 

simulator for the performance evaluation of sensor nodes using vacation policies for energy 

saving.  

The proposed simulator is designed using discrete-event simulation techniques. The 

simulation model allows us to investigate the impact of various parameters such as arrival 

rates, service times, and threshold values used in vacation policies. The simulator also enables 

the comparison of different vacation policies and provides insights into the trade-off between 

energy conservation and system performance.  

The report describes the underlying system dynamics, and the methods used for data 

collection and analysis, and provides examples of simulation studies to illustrate the 

usefulness of the simulator in evaluating the performance of a sensor node and guiding the 

design of energy-efficient sensor network systems. 

Based on our analysis we demonstrate the interplay between arrival rate, buffer size, and 

service policies in determining system performance. By considering these factors and their 

trade-offs, it is possible to optimize queuing systems to achieve desired outcomes and 

improve overall efficiency. 

Keywords 

Performance evaluation, Discrete-time simulation, Sensor network, Vacation disciplines, 

Service differentiation, Energy conservation, Energy saving, Latency 
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Résumé 
Les réseaux de capteurs sont largement utilisés pour diverses applications, mais sont limités 

par des ressources énergétiques limitées, ce qui nécessite le développement de conceptions de 

réseau économes en énergie. L'utilisation de politiques de vacances est une approche 

prometteuse pour réduire la consommation d'énergie tout en maintenant les performances du 

réseau. Ce projet présente la conception et la mise en œuvre d'un simulateur pour l'évaluation 

des performances des nœuds capteurs utilisant des politiques de vacances pour économiser 

l'énergie. 

Le simulateur proposé est conçu à l'aide de techniques de simulation à événements discrets. 

Le modèle de simulation nous permet d'étudier l'impact de divers paramètres tels que les taux 

d'arrivée, les temps de service et les valeurs de seuil utilisées dans les politiques de vacances. 

Le simulateur permet également la comparaison de différentes politiques de vacances et 

fournit des informations sur le compromis entre la conservation de l'énergie et les 

performances du système. 

Le rapport décrit la dynamique sous-jacente du système, les méthodes utilisées pour la 

collecte et l'analyse des données, et fournit des exemples d'études de simulation pour illustrer 

l'utilité du simulateur dans l'évaluation des performances d'un nœud capteur et guider la 

conception de systèmes de réseaux de capteurs économes en énergie. 

Sur la base de notre analyse, nous démontrons l'interaction entre le taux d'arrivée, la taille du 

tampon et les politiques de service dans la détermination des performances du système. En 

tenant compte de ces facteurs et de leurs compromis, il est possible d'optimiser les systèmes 

de file d'attente pour atteindre les résultats souhaités et améliorer l'efficacité globale. 

Mots clés 

Évaluation des performances, Simulation en temps discret, Réseau de capteurs, Disciplines de 

vacances, Différenciation des services, Économie d'énergie, Économie d'énergie, Latence. 
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 ملخص

 
يسخهضو حسُخخذو شبكاث الاسخشؼاس ػهٗ َطاق ٔاسغ في انؼذيذ يٍ انخطبيماث ٔنكُٓا يميذة بًصادس انطالت انًسذٔدة، يًا 

حطٕيش حصًيًاث شبكاث يٕفشة نهطالت. يؼذ اسخخذاو سياساث الإخاصاث َٓدًا ٔاػذاً نخمهيم اسخٓلان انطالت يغ انسفاظ ػهٗ 

أداء انشبكت. يمذو ْزا انًششٔع حصًيى ٔحُفيز خٓاص يساكاة نخمييى أداء ػمذ الاسخشؼاس باسخخذاو سياساث الإخاصة نخٕفيش 

 انطالت.

اكاة انًمخشذ باسخخذاو حمُياث يساكاة الأزذاد انًُفصهت. يسًر نُا ًَٕرج انًساكاة بانخسميك في حأثيش حى حصًيى خٓاص انًس

انًؼهًاث انًخخهفت يثم يؼذلاث انٕصٕل ٔأٔلاث انخذيت ٔليى انؼخبت انًسخخذيت في سياساث الإخاصة. يخير انًساكي أيضًا 

ضهت بيٍ انسفاظ ػهٗ انطالت ٔأداء انُظاو.يماسَت سياساث انؼطلاث انًخخهفت ٔيٕفش سؤٖ زٕل انًفا  

يصف انخمشيش ديُاييكياث انُظاو الأساسيت، ٔانطشق انًسخخذيت ندًغ انبياَاث ٔحسهيهٓا، ٔيمذو أيثهت نذساساث انًساكاة 

 نخٕضير فائذة انًساكي في حمييى أداء ػمذة انًسخشؼش ٔحٕخيّ حصًيى أَظًت شبكاث الاسخشؼاس انًٕفشة نهطالت.

ػهٗ حسهيهُا، َٕضر انخفاػم بيٍ يؼذل انٕصٕل ٔزدى انًخضٌ انًإلج ٔسياساث انخذيت في حسذيذ أداء انُظاو. يٍ بُاءً 

خلال انُظش في ْزِ انؼٕايم ٔانًفضالاث انخاصت بٓا، يٍ انًًكٍ حسسيٍ أَظًت لائًت الاَخظاس نخسميك انُخائح انًشخٕة 

 ٔحسسيٍ انكفاءة انؼايت.

  الكلمات الدالة

لأداء، يساكاة انٕلج انًُفصم، شبكت انًسخشؼشاث، حخصصاث الإخاصاث، حًايض انخذيت، انسفاظ ػهٗ انطالت، حٕفيش حمييى ا

 انطالت، صيٍ انٕصٕل
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General Introduction 

Similar to any living being, the smart environment relies first and foremost on sensory data 

from the real world, a wireless sensor network (WSN) consists of a large number of sensor 

nodes that are deployed over an area to perform local computations based on information 

gathered from the surroundings [1]. Sensors are expected to run autonomously for long 

periods. However, they are occupied with batteries and it‟s almost difficult to change or 

recharge batteries. Therefore, [2] the fundamental query is “How to extend the lifespan of a 

battery?” 

In order to address this matter, researchers have been prompted to explore ways to conserve 

battery life and maximize usage in sensor networks. Energy-efficient routing protocols can be 

designed to reduce the energy consumed during data transmission [1], taking into account the 

limited resources of sensor nodes. Additionally, energy harvesting techniques, such as solar or 

thermal energy, can be used to recharge the sensor nodes‟ batteries. However, in this project, 

we are simulating the performance of such a system Using vacation policies. 

 A single node can be modeled as a queue that receives data packets and serves them. This 

phenomenon is observed in everyday life as waiting queues, and it is an important area of 

research. Classic queues can be modeled according to various parameters; queuing with 

vacancies is a type of classic queue that is more representative of reality. Server idleness is 

restricted by vacation policies, which are a set of rules that determine when the server goes 

idle and when it resumes operation. In this project, we will simulate the performance of such a 

system using discrete event simulation to evaluate its performance under different conditions. 

By analyzing the simulation results, we can gain insights into the system's behavior and 

identify areas for improvement. 

To achieve the following objectives 

- Energy Efficiency Evaluation: The assessment of energy efficiency in WSNs with 

the aim of extending the battery life of sensor nodes while simultaneously enhancing 

their performance. 

- System Performance Analysis: The utilization of discrete-event simulation models to 

analyze the performance of queueing systems under various conditions. 

- Sensor Node Resource Optimization: An investigation into methods that involve 

exploring various vacation policies within queueing systems, with a primary emphasis 

on achieving a balance between energy conservation and system efficiency. 

- Policy Implication Examination: An analysis and comparison of different vacation 

policies, particularly threshold-based policies, in order to comprehend their impact on 

system behavior. 

- Exploration of Future Directions: Providing suggestions for potential future 

research directions that can contribute to the advancement of the wireless sensor 

networks field. 
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The rest of the report is organized as follows: 

 Chapter 1: Provides background on wireless sensor networks, covering applications, 

architecture, components, communication protocols, and energy efficiency in WSNs. 

 Chapter 2: Focuses on queues with vacations, explaining their structure, 

characteristics, notation, Little's Law, steady-state system, threshold-based policies, 

and comparing queues with vacations to classic queues. 

 Chapter 3: Gives an overview of discrete-event simulation, covering its purpose, steps, 

data collection methods, measurement and analysis of simulation performance, model 

verification, and validation, and the application of queues with vacation for energy 

conservation in sensor networks. 

 Chapter 4: Discusses the implementation of the simulation model, including the 

simulation environment, basic model, different simulation models (M/M/1, M/M/1/K, 

etc.), implementation of the delayed idle state, performance metrics, and methods for 

collecting simulation results. 

 Chapter 5: Focuses on the experimental study, presenting numerical results, discussing 

steady state and system parameter values, analyzing variations in arrival rate, 

threshold, and service rate, and drawing overall conclusions from the experimental 

study.  

 The general conclusion summarizes the findings of the project and restates the 

objectives. It highlights the contributions and insights gained from the simulation 

study. The conclusion also discusses the implications of the research and provides 

recommendations for future work in the field. 
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Chapter 1: Fundamentals of Wireless Sensor Networks and 

Queueing Systems. 
 

Wireless sensor networks are crucial for real-time monitoring, enabling data collection 

from remote areas. They enhance decision-making, resource management, and productivity 

across industries. 

In this chapter, we will be exploring the fascinating world of wireless sensor networks 

(WSNs). We explore their fundamental aspects, including their components, architecture, and 

communication protocols. 

1. Wireless sensor networks 

The wireless sensor network is a kind of network composed of nodes associated with 

sensors, and these nodes have characteristics such as small size, low computation power, 

limited power, and wireless access [3] . A node that generates data is called a source node, 

while a node that requests data is called a sink or sink node [4]. So, all these sensor nodes are 

responsible for collecting and delivering data over the wireless network, and these data should 

be kept confidential along the wireless transmission path from one node to another [3]. The 

below Figure 1 illustrates the sensor network model, which includes a single sink node, also 

known as the base station, and numerous sensor nodes deployed across a vast geographic 

area, referred to as the sensing field. 

Figure 1. Sensor network architecture [5]. 

 

2. WSN Applications 

the various conceivable applications of WSNs to every sector globally are essentially 

boundless, which is why they gained great admiration because of their flexibility in resolving 

issues in different application fields such as in: 

-military communication, frontline surveillance, investigation and targeting systems, 

and other more… [6] 

-agriculture it is also beneficial to farmers in tasks such as wiring in challenging 

environments, optimizing irrigation practices for efficient water use, and minimizing 

waste [6]. 
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-Environmental sensor networks (ESNs), are used in a lot of environmental and earth 

science research. They also aid in agricultural and environmental sustainability. Key 

applications include air pollution, forest fires, greenhouse management, and landslide 

detection [6]. 

Even though sensor networks are used in different domains but they face a lot of challenges 

because they do not fit into any regular topology, due to [7]: 

-their scattering during deployment   

-their resources such as memory, computation, and power are really limited 

-Maintenance is challenging due to fewer infrastructures. 

-Unreliable communication and data transfer. 

-Sensor nodes rely solely on batteries, which cannot be recharged or replaced easily. 

-Dealing with node failures, changes in network structure, and adding or removing 

nodes can be difficult. 

3. Sensor networks components and architecture  

3.1 sensor node component 

A sensor node comprises several essential components, as depicted in Figure 3. These 

components include a sensing unit, a processing unit, a transceiver unit, and a power unit. 

Additionally, depending on the specific application, there may be additional components such 

as location finding system, a power generator, and a mobilizer. The sensing unit typically 

consists of sensors and analog-to-digital converters (ADCs). The sensors capture analog 

signals related to the observed phenomenon, which are then converted to digital signals by the 

ADCs. These digital signals are then processed by the processing unit, which is equipped with 

a small storage unit. The processing unit manages the necessary procedures for the sensor 

node to collaborate with other nodes performing assigned sensing tasks. The transceiver unit 

facilitates the node‟s connection to the network. One crucial component of a sensor node is 

the power unit, which may be supplemented by a power scavenging unit like solar cells. 

Additionally, there may be other application-dependent subunits included [8].  

 
Figure 2. The elements of a sensor node [8] 

3.2 Layered architecture network 

This network utilizes numerous sensor nodes and a base station. The nodes can be organized 

into concentric layers, including five main layers and three cross layers as depicted in Figure 

2 
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The five layers in the architecture are 

  

i. Application Layer 

ii. Transport Layer 

iii. Network Layer 

iv. Data Link Layer 

v. Physical Layer 

 

The next three cross-layers are employed to control the network and synchronize the 

sensors, resulting in improved network efficiency, as compared to the above-mentioned 

five layers [9] 

 

i. Power Management Plane 

ii. Mobility Management Plane 

iii. Task Management Plane 

 

The following figure provides a visual representation that highlights the layers: 

 

 
Figure 3. Wireless Sensor Network Architecture [10] 

4. Communication protocol in WSN 

There are three layers and several protocols used in Wireless Sensor Networks (WSNs), as 

illustrated in Figure 4. But the data link layer, specifically the MAC (Media Access Control) 

layer, is the primary focus when studying energy conservation in a sensor node using vacation 

policies and simulation methods. This layer controls access to the wireless medium and 

manages communication, making it a critical point for optimizing energy consumption. By 

implementing vacation policies at the MAC layer, the sensor node can intelligently schedule 

its active and sleep periods, leading to efficient energy usage. Simulation-based studies at the 

MAC layer allow for evaluating the effectiveness of different policies and scheduling 

mechanisms, enabling researchers to assess energy conservation and performance metrics. 

Therefore, focusing on the data link layer provides a targeted approach to enhance energy 

efficiency in sensor networks. 
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Figure 4. Communication protocols wireless sensor network [11] 

4.1 Medium access control 

The Medium Access Control (MAC) layer is a sublayer of the data link layer in the OSI 

model, its main function is frame delimiting and recognition, addressing, data transfer 

between upper layers, error protection using frame check sequences, and managing access to a 

shared channel among all nodes. 

Overall, it plays a crucial role in managing access to the shared channel and ensuring efficient 

and reliable communication within a WSN using the CSMA/CA (Carrier Sense Multiple 

Access with Collision Avoidance) mechanisms. [11] 

 CSMA/CA The IEEE 802.11 MAC layer operates based on Carrier-sense multiple 

access with collision avoidance (CSMA/CA) protocols. In CSMA/CA, a node that 

wants to transmit a packet first check if there is an ongoing transmission. If there is, 

the node waits until the current transmission is complete. Afterward, it waits for a 

specific period called the short interframe space. If the medium is still not busy during 

this time, the node proceeds with its transmission. However, if there is traffic on the 

medium, the node must wait once again for the medium to become clear [12] 

Energy efficiency and adaptability are the key considerations in designing MAC protocols for 

WSNs to prolong the network‟s lifespan. [11] 

5. IEEE 802.15.4 standard 

The IEEE 802.15.4 standard, designed in 2003, specifically targets Low-Rate Wireless 

Personal Area Networks (LR-WPANs) with low data throughput and limited power and 

computation resources. It addresses issues associated with existing standards like Wi-Fi and 

Bluetooth. The standard defines the PHY and MAC layers for LR-WPANs, providing 

specifications for physical layer communication and medium access control. It defines 

network topologies such as star and peer-to-peer. 

The architecture of the IEEE 802.15.4 standard consists of a PHY layer (radio transceiver and 

low-level control) and a MAC layer (data transfer definitions). The service-specific 

convergence (SSCS) and IEEE 802.2TM Type 1 logical link control (LLC) provide a standard 

mechanism for upper layers to access the PHY and MAC layers. The simplicity of the IEEE 

802.15.4 architecture allows developers to design low-level application software that interacts 

directly with data transfer. This simplicity is desirable for wireless sensor network 
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applications due to their limited resources, while more traditional standards based on the OSI 

model are too complex for WSN development. [12] 

6. Energy efficiency in WSN 

The primary focus of this exploration is on energy-efficient management techniques, as they 

play a pivotal role in extending the operational lifespan of sensor nodes, especially in mission-

critical applications. Energy consumption in sensor nodes can be categorized into two main 

types: "useful" energy consumption and "wasteful" energy consumption. Useful energy 

consumption encompasses activities such as data transmission, query processing, and data 

forwarding to neighboring nodes. On the other hand, wasteful energy consumption results 

from various inefficiencies, including idle listening, collisions, overhearing, control-packet 

overhead, and over-emitting. It is imperative to address these wasteful energy consumption 

factors through well-designed protocols to prevent unnecessary energy depletion [1] Table.1 

summarizes the technologies used for improving energy efficiency in WSNs. 

                                        Table 1. Classification of Existing Technologies. 

Technology Objective 

Power-Conscious Protocols Reduce energy usage in sensor nodes. 

Energy Harvesting Replenish energy supplies from the 

environment. 

Data Aggregation Compress data to conserve energy 

during transmission. 

Routing Protocols Find energy-efficient pathways while 

ensuring reliable data transfer. 

Dynamic Power Management Adjust power usage based on network 

and application conditions. 

Sleep Modes in Sensor Nodes Reduce energy consumption during idle 

periods in our project. 

 

 Types of Sleep Modes in Sensor Nodes 

Duty cycling 

takes place when nodes alternate between active and sleep states regularly. This implies that 

the node is active for a certain length of time, known as the active period, during which it 

detects or communicates data, and then goes into sleep mode for a set amount of time, known 

as the sleep period, during which it conserves power. The duty cycle ratio is the ratio of the 

active period to the entire cycle period (active and sleep periods combined). The duty cycle 

ratio can be changed depending on the application and network conditions [1]. 

Sleep scheduling 

the fundamental approach to sleep scheduling involves choosing a subset of nodes to be active 

in a given time interval while the remaining nodes enter a sleep state, thereby minimizing 

power consumption and reducing overall energy usage. Existing research on sleep scheduling 

in Wireless Sensor Networks (WSNs) primarily concentrates on two objectives point 

coverage and node coverage. Point coverage aims to ensure that the awake nodes in each time 

slot cover every point in the deployed field, with different algorithms focusing on minimizing 
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energy consumption or average event detection latency. On the other hand, node coverage 

focuses on constructing a globally connected network where each sleeping node is near at 

least one active node. However, these studies typically concentrate on the medium access 

layer of static WSNs with stationary nodes [13]. 

 

In our project, we will be focusing on the implementation and optimization of sleep modes in 

sensor nodes, specifically duty cycling. This technique is critical to reducing energy 

consumption during idle periods, which aligns with our project's goal of improving energy 

efficiency in WSNs. By effectively managing the duty cycles of a sensor node, we aim to 

extend their operational lifespan and enhance the overall performance and reliability of the 

network. 

7. Queueing Systems 

Queueing theory, initially introduced by Agner Erlang in 1909, is a widely studied theory that 

finds applications in various fields such as telecommunication and computer science. 

Queueing systems, which are at the core of this theory, have garnered significant attention 

from both academic institutions and industry [14]. 

A basic queueing system is a service system where “customers” arrive at a bank of “servers” 

and require some service from one of them. It‟s important to understand that a “customer” is 

whatever entity is waiting for service and does not have to be a person. For example, in a 

“back-office” situation such as the reading of radiologic images, the “customers” might be the 

images waiting to be read. Similarly, a “server” is the person or thing that provides the service 

[15]. 

8.1 Queueing System Structure 

Within a queueing system, entities arrive and wait for service, proceed to single or 

multiple stations to receive the service, and subsequently have the option to either exit the 

system or continue within it [16]. 

Arenales (2007) identifies that a queuing system can be classified into 4 types [16] 

a) single queue and a server 

b) single queue and multiple servers in parallel 

c) multiple queues and multiple servers in parallel  

d) single queue and multiple servers in series  

7.2 Characteristics of Queueing System 

A queuing system is composed of entities (packets –or anything that arrives in a 

system and needs a service) and servers (any resource that provides a service)  

To evaluate a queueing system and measure its inputs and outputs, it becomes essential to 

define specific characteristics that aid in modeling the system effectively. 

These characteristics are [16]. 

1- The arrival pattern of customers represents the rate at which customers arrive, 

indicating the distribution of time intervals between the arrival of one entity and the 

next. 
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2- The service pattern of servers is the measurement of service time. It is crucial to 

understand the sequence of services and the total number of services provided by the 

system. 

3- The number of servers is a characteristic that impacts the service time. It determines 

whether the system will incur higher costs or have more delays. Additionally, it is 

important to define the type of queue, whether it is a single queue or multiple queues 

within the system 

4- System capacity is a measure or rate, that defines the space for the entrance of 

entities. In certain situations, this capacity must be limited, while in many cases, it 

remains unknown, resulting in an unlimited rate. 

5- Queue discipline This refers to queue behavior based on customer actions when 

entering the server and waiting for service. The most commonly observed queue 

discipline is First-In, First-Out (FIFO), although others such as Last-In, First-Out 

(LIFO), Service in Random Order (SIRO), Shortest Processing Time First (SPT), and 

Priority Service (PR) exist. 

6- The number of service stages is a characteristic that can either involve a single stage, 

or multiple stages, where there are queueing networks and the servers need to 

communicate between them. 

7- The service discipline indicates the rules that determine how the system serves 

customers in the Classic queue.  

- Exhaustive service the server will continue to work with a customer until their 

service is completed under this form of service discipline. This implies that the 

consumer will not leave the system until they have gotten complete service, no 

matter how long it takes. This form of service discipline is frequent in instances 

when the Packet has a specific demand that the server must address [17]. 

- Non-exhaustive service even if the service is incomplete, the server will only 

work with a Packet for a set length of time before moving on to the next 

customer. This implies that if the customer's service was not finished during the 

initial conversation, they may need to return to the line. This service discipline is 

prevalent in instances when the server must handle a large number of Packets fast 

and cannot devote too much time to each consumer [17]. 

7.3 Queueing Notation 

In the fundamental queueing model, individuals referred to as "customers" arrive to 

request service, wait if necessary for an available "server" to provide the required service, and 

eventually depart. Therefore, this model comprises three key elements (i) the stochastic 

arrival process, (ii) the stochastic service requirements, and (iii) the physical arrangement of 

servers and their operational guidelines. The primary goal of this theory is to comprehend the 

interplay among these components and the system's behavior, as measured by its performance 

metrics [18]. 

In a now-classic 1953 paper, D.G. Kendall [18] proposed the queueing notation to 

describe how a queue system is classified [16], The presented table illustrates the key and 

widely used notations that are crucial for classifying and categorizing this study. 
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In this context, the notations used are as follows A represents the distribution of interarrival 

times, B represents the distribution of service times, c represents the number of servers, Y 

represents the system capacity, and Z represents the queue discipline [16]. 

It is important to introduce the shorthand notation explicitly when using Kendall-like 

notation to describe a specific model, rather than assuming the reader's understanding. 

Caution must be exercised when interpreting such notation to ensure a comprehensive grasp 

of the underlying model. Keeping this caution in mind, we will now proceed with an 

explanation of Kendall's notation [18]. 

Here are the conventions [18]. 

- G general (no particular assumption) 

-  GI general independent (the random variables in question are mutually independent and 

identically distributed) 

-  M Markov or memoryless (exponential random variables) 

-  D deterministic (the same constant value for each realization of the random variable) 

- Ek k-phase Erlangian (sum of k independent, identical, exponentially distributed 

„„phases‟‟) 

-  PH phase-type (sum of a (possibly random) number of independent, exponentially 

distributed phases)  

- MAP Markovian arrival process 

-  BMAP batch Markovian arrival process 

Some examples may help to better understand 

     The queuing system M/M/1/∞/FIFO represents a queueing system with a single server and 

unlimited capacity. In this system, both the interarrival times and service times follow 

exponential distributions, and the queue discipline is first-in, first-out (FIFO) [16]. 

   M/G/1 The interarrival time distribution (A) follows an exponential distribution (M) with a 

constant rate. The service time distribution (B) follows a general distribution (G), which can 

be any arbitrary distribution. 

Table 2. Queueing Notation. [16] 

Characteristic Symbol Explanation 

Interarrival-time distribution 

(A) 

Service-time distribution (B) 

 

 

 

M 

D 

EK 

HK 

PH 

Markov Exponential 

Deterministic 

Erlang type k (k= 1, 2, …) 

Mixture of k exponentials 

Phase type 
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Parallel servers (c) 

System capacity (Y) 

Queue discipline (Z) 

MAP 

BMAP 

G 

GI 

1,2,…..,∞ 

1,2,…..,∞ 

FIFO 

LCFS 

RSS 

PR 

GD 

Markovian arrival process 

Batch Markovian arrival 

process 

General 

General Independent 

 

 

First in, First out 

Last come, first served 

Random selection for 

service 

Priority 

General discipline 

In the queuing system M/M/1/K, the system capacity or the maximum number of 

customers that the queue can accommodate simultaneously is K. When a customer arrives at 

the queue and finds all K positions occupied, it means that the buffer is full, and the customer 

is unable to enter the system. In this case, the customer will leave the system without joining 

the queue. This occurs when the system capacity is already reached. The probability of 

rejection can be calculated based on the arrival rate and the system capacity, as shown as 

rejected arrivals in figure 6 

 
Figure 5. A Single Node, One Server, and a limited buffer [19]. 

 

    In the context of the M/M/1 queuing model, the "M" represents Markovian, which is 

related to the use of exponential distributions. Specifically, it signifies that the arrival and 

service times in the model follow exponential distributions. This type of distribution is often 

employed for models that involve distinct and unrelated events. For example, the arrival time 

between a large number of customers happens independently of one another. The exponential 
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distribution is a continuous probability distribution that has a probability density function 

(PDF) [16]. 

8. Queuing performance measures 

Little’s Law One of the most important theorems in queuing theory that we used in our 

implementation is Little‟s law. Little's Law is an equation that states L = λW, where L 

represents the expected number of customers in the "system," W represents the expected time 

spent by a customer in the system, and λ is the rate at which the customers enter the system. 

Initially, L represented the length of the queue, W represented the wait time in the queue, and 

λ represented the frequency of customer arrivals [18]. 

9. Steady state 

In the context of queuing systems, a steady state refers to a situation where the system has 

reached a stable condition in terms of its performance measures. A steady state system implies 

that the system's behavior remains consistent over time, and its statistical properties do not 

change, one way to ensuring system stability is calculating traffic Intensity. 

- Traffic Intensity (Server Utilization) Assuming λ, is the average rate of customers 

entering the system and μ, is the average rate of serving customers and c is the number of 

servers in the system, then the quantity ρ = λ / c μ is called the traffic intensity (also 

called the utilization factor or server utilization), ρ gives the fraction of time that the 

server is busy. 

            For the steady-state conditions to exist it is required that λ < μ (ρ < 1). This is the 

stability condition for the M/M/c systems.  

 When the average number of arrivals into the system is more than the maximum 

number of customers the system can serve, i.e., ρ > 1 this means that the queue size 

never settles down, and there is no steady state. 

 When the arrival rate equals the maximum average service rate of the system, i.e., ρ = 

1, the randomness will prevent the queue from ever emptying and allowing the server 

to catch up, and this causes the unbounded growth of the queue. In this case, the 

steady state does not exist unless arrivals and services are deterministic and perfectly 

scheduled. [20] 

10. Queues with Vacation 

A vacation queueing model is an expanded version of the classic queueing system, 

where the server may occasionally become unavailable for a certain duration due to reasons 

such as maintenance checks, server damage, or personal breaks. This absence of the server is 

referred to as a "server vacation." Queueing models incorporating server vacations are 

important in understanding the queueing dynamics, as the server can utilize the idle period for 

various purposes, such as economizing energy in our case [21]. 

10.1 Threshold vacations 

Also known as threshold-based vacation policies, are a concept used in queueing 

systems to manage the server's idle periods based on specific thresholds or conditions. In 

threshold vacations, the server remains idle until a certain condition is met, triggering a 
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vacation period. These conditions can be based on various factors such as queue length, 

accumulated work, or arrival rate [22]. 

During a threshold vacation, the server does not process any incoming requests and 

remains idle. The purpose of threshold vacations is to optimize system performance, resource 

utilization, and energy efficiency. By allowing the server to enter a vacation state during 

periods of low demand or when specific criteria are not met, unnecessary energy consumption 

can be minimized, reducing operational costs. Threshold vacations can be implemented with 

different policies, depending on the specific objectives and requirements of the system. These 

policies determine the specific conditions and thresholds for entering or ending a vacation 

period, ensuring that the server remains idle or resumes service at appropriate times. 

10.2 Delayed Idle State 

In the context of queueing systems, the idle delayed state is an extension of the 

traditional M/M/1 queue model. It introduces an additional state called the "delayed idle" 

state, which occurs when the server transitions to an idle state but remains in that state for a 

certain delay period before accepting new arrivals. This delay is known as the "idle delayed 

time" or "delayed vacation time." 

The idle delayed state aims to address the impact of frequent transitions between the 

idle and busy states in traditional queueing systems. These transitions can lead to energy 

inefficiency and increased overhead due to the setup and teardown processes associated with 

each transition. 

In the idle delayed state, when the server becomes idle, it enters the delayed idle state instead 

of immediately accepting new arrivals. During this delayed idle period, the server remains 

idle for a fixed duration known as Θ. If no arrivals occur during this delay period, the server 

transitions back to the idle state. However, if an arrival occurs before the delay expires, the 

server transitions to the busy state and serves the arriving packet. 

11. Why use queues with vacation and not classic queues 

Queueing systems with vacations can be advantageous over classic queues when it 

comes to energy-saving considerations. By incorporating scheduled breaks for servers, 

vacations allow for planned periods of non-service, which can be leveraged to conserve 

energy during low-demand periods. The server can be powered down or put into a low-power 

mode during these vacations, resulting in reduced energy consumption. This approach 

optimizes energy usage by aligning server availability with the actual demand, offering 

energy-saving benefits that are not possible in classic queues, where the server remains 

continuously active. 

12. State of art on the application of queues with Vacation for energy 

conservation in sensor networks 

Much of the prior research has been primarily focused on the development of mathematical 

node models, often neglecting the significant impact of real-world constraints on the 

performance of WSNs. Moreover, the available simulators in the field tend to either be 
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proprietary or designed with a broader focus on the entire WSN, rather than addressing the 

intricacies of practical limitations. The following are some related work descriptions 

Biplab Sikdar and Mounir Hamdi [23] introduced an adaptive N-policy queueing system 

design to address the energy-delay tradeoff in wireless sensor networks. The authors propose 

an analytical model to characterize the tradeoffs between energy saving and latency in 

wireless devices. They argue that increasing the N-policy does not necessarily result in more 

energy savings. Based on analytical and simulation results, they present a scheme for the 

optimal selection of N considering arrival and service rates. The proposed system design is 

shown to save energy while meeting delay requirements. The paper highlights the importance 

of power management schemes in sensor systems and discusses the dynamic selection of N to 

adapt to real-time traffic, aiming to save energy without violating delay constraints. The work 

contributes by providing a practical approach to optimizing energy usage and system 

performance in wireless networks.  

Goswami Veena and G. B. Mund [24] proposed a queue-based technique to enhance the 

lifespan of wireless sensor networks (WSNs). They investigate the effect of queueing schemes 

on node power consumption and suggest a modified N threshold queueing system to minimize 

energy usage. The model considers three node states (sleep, idle, and busy) and employs an 

M/M/1 queueing system. Once the packet threshold N is reached, packets are served in a 

single batch, reducing waiting time. The paper analyzes power consumption and its 

dependence on system parameters, presenting performance indices such as average queue 

length, expected periods, probabilities, and energy consumption rate. The authors discuss 

numerical results and the influence of the threshold value N on system behavior. They 

conclude by offering insights into optimal decisions based on the model, improving 

understanding of the proposed technique for prolonging WSN lifetimes. 

Messous Ali and Mameche Mohamed [25] in their report provided a study utilizes a 

queuing system with a vacation policy N and multiple priority classes, which is considered an 

effective approach for modeling the problem at hand. Discrete event simulation was employed 

to gain a deeper understanding and analysis of the targeted system, allowing them to focus on 

important events. The developed simulation tool enables the testing and evaluation of various 

performance measures for a WSN, examining the impact of vacation policies, priority classes, 

and service preemption on system behavior and performance metrics. The tool facilitates the 

comparison of results between systems with/without priority classes and preemption. 

The objective of their work was to design and implement a simulation tool that can analyze 

the behavior of an WSN based on different customer treatment scenarios, considering factors 

such as priority order, service preemption, and queue size limitations. Discrete event 

simulation is identified as the most suitable method due to its ability to prioritize critical 

system events.  

Boutoumi Bachira and Nawel Gharbi [26] proposed an energy-saving and latency delay 

efficiency scheme for wireless sensor networks (WSNs) based on Generalized Stochastic Petri 

Nets (GSPNs). their goal was to optimize energy consumption by extending the duration of 

sleeping states of sensor nodes. The authors first model networked nodes‟ sleep/wakeup 
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pattern with different vacation policies using GSPNs. They introduce the N-policy as a 

queued wakeup scheme and propose a new vacation policy called the Hybrid-policy to 

minimize latency. They provide formulas for performance measures and analyze the impact of 

the two vacation policies on network performance. The paper concludes with numerical 

calculations using GSPN models and presents the potential benefits of the proposed schemes. 

A concise summary of the research works discussed in the preceding sections represented in 

the following table 

Table 3. Summary of the existing work 

Authors Key Contributions Methodology Findings  

 

Biplab Sikdar 

and Mounir 

Hamdi [23] 

 

- Introduced an adaptive 

N-policy queueing system 

design for wireless sensor 

networks 

-Analyzed the energy-

saving and latency 

tradeoffs 

-Proposed optimal N 

selection scheme based on 

analytical and simulation 

results 

 

Analytical 

modeling and 

simulation 

 

Increasing the N-policy does not 

necessarily result in more energy 

savings.  

 

 

 

Goswami 

Veena and G. 

B. Mund [24] 

 

- Proposed a modified N 

threshold queueing system 

to enhance the lifespan of 

wireless sensor networks 

- Analyzed the effect of 

queueing schemes on 

power consumption 

- Presented performance 

indices and energy 

consumption rate 

 

Queue-based 

technique 

with an 

M/M/1 

queueing 

system 

 

The modified N threshold 

queueing system effectively 

reduced waiting time and 

minimized energy usage in 

wireless 

 

Messous Ali 

and Mameche 

Mohamed [25] 

 

- Provided an overview of 

WSNs and their challenges 

- Developed a simulation 

tool to analyze the 

behavior of WSN 

- Analyzed the impact of 

vacation policies and 

priority classes 

 

Discrete 

event 

simulation 

with vacation 

policy N and 

multiple 

priority 

classes 

 

Utilizing a queuing system with a 

vacation policy N and multiple 

priority classes was an effective 

approach for modeling energy 

conservation in WSNs 
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Boutoumi 

Bachira and 

Nawel Gharbi 

[26] 

- Presented an analytical 

model based on priority 

vacation queueing theory 

for WSNs 

-Addressed energy 

consumption and latency 

reduction 

-Demonstrated the 

efficiency of the proposed 

Hybrid policy 

Generalized 

Stochastic 

Petri Nets 

(GSPNs). 

modeling and 

analysis 

 

The Hybrid-policy surpasses the 

N-policy by achieving significant 

reductions in both energy 

consumption and latency delay. 

conclusion 

In this chapter, we've explored the essential aspects of WSNs, ranging from their applications 

and components to communication protocols and energy efficiency. we have also explored the 

theory of classical queues and found that standard models do not accurately capture the 

behavior of packets and servers. However, the presence of vacancies complicates queue 

analysis, and analytical solutions are only feasible for a few models with specific 

assumptions. As a result, researchers often rely on numerical approaches, approximations, or 

simulations to overcome these limitations. The state-of-the-art on energy conservation in 

sensor networks were also explored. These insights set the stage for further analysis, which is 

why we aimed to develop our own simulation tool. In the next chapter, we will delve into 

simulation concepts and techniques as valuable tools for studying waiting lines and surpassing 

the constraints of analytical methods. 
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Chapter 2: Simulation modeling 
In this Chapter, we will be exploring the intriguing realm of discrete-time simulation, a vital 

tool for modeling and evaluating dynamic systems. Discrete-time simulation is the process of 

portraying systems as sequences of events or states that change across discrete time intervals. 

This chapter gives an in-depth look at this powerful simulation approach, delving into its 

underlying concepts, and many components. 

1. Justification of the method of Study  

Performance evaluation is vital in computer system design and decision-making. It allows for 

comparing design options and finding the best solution. System administrators depend on 

performance evaluation to assess and select systems for specific applications. Even without 

alternatives, evaluating the existing system provides insights into efficiency and areas for 

improvement [27]. 

And there are 3 technics for performance evaluation analytical modeling, simulation, and 

measurement, we choose which one to use based on several considerations, listed in Table 3 

that show different criteria for each technic. 

 

Table 4. A comparison between the 3 technics for performance evaluation. [27] 

Criterion Analytical 

Modeling 

Simulation Measurement 

1. Stage Any Any Post prototype 

2. Time required Small Medium Varies 

2. Tool Analysts Computer languages Instrumentation 

3. Accuracy Low Moderate Varies 

5.Trade-off 

evaluation 

Easy Moderate Difficult 

6.Cost Small Medium High 

7. Salability Low Medium High 

 

In our case, we used simulation over analytic modeling even though both can be used in 

designing an improved version of a product because Simulations are better at reflecting real-

world situations because they include more details and make fewer assumptions compared to 

analytical modeling. Analytical modeling simplifies and assumes a lot, so when the results 

turn out to be accurate, even the analysts are surprised. On the other hand, simulations provide 

a more comprehensive and realistic picture of the system, making them valuable for 

understanding complex phenomena and obtaining accurate insights [27]. 

2. Steps of Simulation Study 

The steps involved in developing a “simulation model”, designing a simulation experiment, 

and performing simulation analysis are 

Step 1. Identify the Problem List the issues present in the system and outline the desired 

features and requirements for the proposed system [28]. 
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Step 2. Formulate the Problem specify the system boundaries (the problem to be studied), 

define the objective of this simulation, define performance metrics, and decide the time of this 

study and the end-user of the simulation model [28]. 

Step 3. Collect and Process Real System Data, gather data on the specification of the system, 

input variables, as well as the performance of the existing system [28]. 

Step 4. Formulate and Develop a Model, create system schematics and network diagrams, 

convert them to simulation software format, and validate the model through techniques like 

trace analysis, parameter testing, output evaluation, constant substitution, manual verification, 

and animation [28]. 

Step 5. Validate the Model Evaluate model‟s performance against real system performance in 

known conditions. Seek expert evaluation, asses user confidence, and address problems if any 

[28]. 

Step 6. Document Model for Future Use Document objective, assumptions and input 

variables, and the experimental design [28]. 

Step 7. Select Appropriate Experimental Design Define the measure of performance and input 

variables along with their levels. Decide whether to use terminating or nonterminating 

simulation runs. Select the appropriate run length and the appropriate starting conditions, 

including any required warm-up period. Determine the number of independent runs based on 

desired confidence levels. Consider using common random numbers for comparing different 

configurations. Identify correlated output data [28]. 

Step 8. Establish Experimental Conditions for Runs Address the question for obtaining 

precise information from each run, and determine if the system exhibits stationary behavior 

(performance measure does not change over time) or non-stationary (performance measure 

changes over time) [28]. 

Step 9. Perform Simulation Runs Perform runs according to steps 7-8 above. 

Step 10. Interpret and Present Results calculate numerical estimates of the desired 

performance measure for each configuration of interest. Test hypotheses about system 

performance, and create visual representations, such as pie charts or histograms, to illustrate 

the output data. Document results and conclusions [28]. 

Step 11. Recommend Further Courses of Action like experiments to increase the precision 

and reduce the bias of estimators, to perform sensitivity analyses, etc. [28] 

- While this sequence of steps provides a logical framework for a simulation study, multiple 

iterations, and adjustments may be necessary to achieve the study's objectives. Not all steps 

may be feasible or necessary, while additional steps may be required. 

3. Discrete Event Simulation 

Discrete event simulation (DES) is a powerful tool for studying real-life processes and 

systems. It models events occurring over time, such as packet arrivals and departures, 

enabling a realistic representation of individual components. DES allows us to evaluate the 

performance of vacation policies in sensor networks, considering metrics like packet delay, 

throughput, energy consumption, and service differentiation. By adjusting parameters and 

simulating different scenarios, we can assess the impact of policies on network performance. 

DES also provides methods for collecting observation data and analyzing performance 
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metrics, ensuring accurate and reliable results. Simulation allows decision-makers to test and 

explore alternative policies and make informed decisions [29]. 

4. Event Scheduling in discrete-event simulation  

In Event Scheduling the basic building block is the event, the model program's code contains 

event routines that are waiting to be executed. Event routines associated with each event type 

in a simulation system perform the specific operations or tasks required for that event type 

when it occurs during the simulation. Simulation moves from one event to another executing 

their corresponding event routine [30]. 

In a “discrete-event model” the state variables don‟t change till a defined point called event 

times [27]. 

4.1 System state variables   

- Entities & Attributes entity is an object its whose can be static or dynamic, while 

Attribute are local values used by the entity in our case they are  

       Entities packet, Event. 

      Attributes Time, Type, ID, etc... 

- Resources is an entity that provides service to one or multiple dynamic entities at a 

time, this last one can request one or more resources, if it‟s approved, she can use this 

resource and when she finishes release it, or if rejected, the entity can join a queue. In 

our case, it‟s the s Server. 

- Lists are the queue  

- Delay is an indefinite duration that is caused by some combination of system 

conditions. 

 

 
Figure 6. Representation of state variable based on time in discrete event simulation [27] 

5.Method used to collect steady-state observation data during a simulation 

The Mean Batch Method involves running a single, long simulation that is divided into 

different parts an initial transient period, and several batches. Each batch is treated as a 

separate simulation run, while no observations are made during the transient period, which is 

like a warm-up phase. Figure 7.10 provides an example of this process. The goal is to estimate 

confidence in the results. One advantage is that only the transient period needs to be 

accounted for and removed when recording observations. However, a drawback is that the 
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batches may not be fully independent, as high values tend to follow high values and low 

values tend to follow low values. This can affect the accuracy of confidence estimation if the 

batch sizes are not large enough [31]. 

 
Figure 7. The Subinterval Method or The Method of Batch Means. [31] 

6. Model verification 

Model verification techniques ensure the correctness and reliability of a simulation model. We 

employ the following techniques: 

 Top-down, modular design: Breaking the model into smaller components for easier 

verification. Assertions can be used to check specific conditions or equations during 

the simulation. 

 Tracing techniques: Using print statements or a 

debugger to track execution flow and inspect 

variable values, aiding in error identification. 

 Consistency tests: Comparing outputs of similar 

inputs to ensure consistency in results. 

 Seed independence: Verifying that the initial state 

of the random number generator doesn't 

significantly impact simulation conclusions, 

avoiding bias or dependency on a specific starting 

point. 

 Figure 8: Simulator Project Structure  

7. Model validation 

Model validation is crucial for ensuring that a simulation accurately represents the real 

system. Key aspects to consider include assumptions, input parameters, output values, and 

conclusions. Theoretical results can be useful for comparing simplified systems with 

simulation outcomes, but they should be complemented by measurements and expert 

intuition. Fully validating a model may be impractical, so validation is typically demonstrated 

in select cases to build confidence. One technique we use is comparing simulated results with 

analytical solutions, which helps assess the accuracy and reliability of the model. While slight 

differences may occur due to system stochasticity and the finite number of simulations runs, 

the general trend and magnitude of response time values should match between the two 

approaches. 
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Conclusion 

In this chapter, we've laid the groundwork for our exploration of simulation modeling. We 

began by justifying the use of simulation as a crucial method for our study, followed by an 

overview of the steps involved in conducting a simulation study. We delved into discrete 

event simulation, emphasizing the importance of event scheduling and system state variables. 

Additionally, we discussed methods for collecting steady-state observation data during 

simulations, which is essential for drawing meaningful conclusions. Model verification and 

validation processes were also highlighted as critical steps in ensuring the accuracy and 

reliability of our simulation models. This chapter has equipped us with the necessary concepts 

and principles to embark on our simulation journey, providing a solid foundation for the 

practical applications and analyses we'll undertake in the subsequent chapters. 
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Chapter 3: Implementation of the simulation model 
This chapter provides a comprehensive overview of our simulation model for performance 

evaluation using vacation policies. The model consists of various components that simulate 

the behavior of the node. We present the pseudo-code for the main program and describe the 

key events and their interactions within the model. We also explore different simulation 

models, extensions, and policies for scenarios with finite and infinite buffer capacities, 

discussing their advantages, limitations, and trade-offs. Additionally, we discuss the methods 

used to collect and analyze simulation results, ensuring accuracy and reliability. 

1. Simulation Environment 

The simulation model is created and executed using Java programming language in the 

Eclipse Integrated Development Environment. The development environment is configured 

on a Windows 10 computer with 16 GB of RAM. The Javac compiler is used for the project. 

Additional details about the version of Eclipse, Java, and the compiler used are listed below:  

Eclipse IDE for Enterprise Java and Web Developers (includes Incubating components) 

Version: 2022-06 (4.24.0) 

Build id: 20220609-1112 

OS: Windows 10, v.10.0, x86_64 / win32 

Java vendor: Oracle Corporation 

Java runtime version : 13.0.1+9 

Java version: 13.0.1 

 Justification of the programming language choice 

We chose Java and Eclipse for several reasons, including its object-oriented 

programming nature that aligns well with simulation modeling concepts, the availability of 

rich Java libraries and frameworks for simulation development, and the robust debugging and 

testing capabilities offered by Eclipse, providing a powerful and flexible environment for 

building robust and scalable simulation models. 

2. Basic Simulation Model (M/M/1 Queue) 

To lay the groundwork for the subsequent models, we begin by establishing a basic 

model. This model serves as the building block upon which more complex and advanced 

models will be developed. It forms the fundamental framework for the rest of the simulation 

models and sets the stage for further exploration and analysis. 

The node model represents a network node that follows the characteristics of the M/M/1 

queue. It receives packets from an external source. The packets are then processed by the 

node's single server with an exponentially distributed service time. The node disposes of a 

buffer to hold incoming packets when the server is busy, and the queue length and waiting 

times of the packets can be analyzed to evaluate the performance of the node and the overall 

system. 

2.1 Data Structures 

 LinkedList (Packet queue): Used to store and manage packets waiting to be processed 

by the server. The queue follows specific policies based on the simulated model, the 
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following code illustrates the implementation of the queue structure in the simulation 

model taking into account the case where the queue size has to be finite. 

Queue<Client> clients_queue; 

clients_queue = new LinkedList<Client>() { 

@Override 

 public boolean add(Client client) { 

     if (size() < K)  

         return super.add(client); 

     return false; 

} 

}; 

 

 Priority queues (Event queue): Arrange elements based on their priority values, which 

in our case is time. Events are inserted in ascending order of priority, where lower 

priority values have higher priority. If two events have the same priority, they are served 

according to their order in the queue. When dequeuing an event, it is removed from the 

queue and returned to the simulation. The event comparator class ensures the structure 

above since it‟s responsible for event ordering within the queue. 

 

2.2 Assumptions for the basic model  

We assume that: 

 The sensor node can only switch between the idle and the busy state. 

 Single Server The system assumes the presence of a single server responsible for 

serving packets. The server can handle one packet at a time and follows a first-

come-first-serve discipline. 

 Service rate and arrival rate follows an exponential distribution  

 Single Packet Queue The system utilizes a single packet queue to hold incoming 

packets or packets awaiting service. Packets enter the queue upon arrival and are 

served in the order of their arrival. 

 Deterministic Energy Consumption The energy consumption values for different 

system states and events are assumed to be deterministic and fixed. This simplifies 

the energy calculation process by assuming known and constant energy 

consumption values. 

 Fixed Simulation Time The simulation is designed to run for a fixed time duration 

of 10,000 units. This assumption limits the simulation to a specific time interval 

and does not consider dynamic simulation termination based on certain conditions 

or convergence criteria. 

PriorityQueue<Event> events_queue ;  

events_queue= new PriorityQueue<Event>(100, new EventComparator() ); 
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2.3. Simulation parameters  

λ (Lambda): The arrival rate parameter, ensures that the arrival of packets into the 

system per unit of ime, follows a passion process. 

μ (Mu): Service rate parameters, controlling how quickly the server can process 

packets per unit of time, following an exponential distribution. 

ECI (Energy Consumption during Idle State): Energy consumed by the server when 

idle and not serving any packets or events. 

ECb (Energy Consumption during Busy State): Energy consumed by the server when 

actively serving a packet or event. 

ECTx (Energy Consumption per Packet in Queue): Energy consumed for holding 

each packet in the queue, accounting for energy wastage due to packet buffering. 

ECs (Energy Wasted during State Transitions): Energy wasted as the server transitions 

between idle and busy states, capturing energy inefficiencies during state changes. 

K (Buffer Size): Maximum capacity of the queue or buffer, determining the 

maximum number of packets that can be accommodated before new arrivals are 

rejected. 

N (Threshold): Number of packets required in the queue to trigger the server to start 

processing, transitioning from idle to busy state. 

Number of Batches: Number of iterations or separate simulation runs with their own 

packets and events. 

Simulation Time: Duration for which the simulation runs. 

2.4 Simulation Clock and Time-Advancing Mechanism 

The simulation clock represents the current time in the simulation (Tnow). It is 

advanced by processing events and determining the next event based on its time. The time-

advancing mechanism ensures that events are processed in chronological order, and the 

simulation progresses according to the event timeline. 

2.5 The process of generating arrival and service rates 

Both arrival rate and service rate are generated using the exponential distribution, for 

the traffic rate, the passion process can be obtained by setting the outcomes of the exponential 

distribution process for the inter-arrivals. In the other hand, for the service rate of the server, 

the values are assigned directly. Here‟s a detailed explanation of exponential distribution  

Its formula is given by   P (T ≤ t) =   1-e
-
 
λt

     

We will be using this formula to generate random periods of time  

The first step is to extract the value of time t from the formula: 

R= 1- e
-
 
λt 

e
-
 
λt  

= 1-R
 

- λt
 =

 log(1-R)
 

t
 
= log(1-R) / (-λ) 

Note: that the same process is done with the parameter μ (mu) instead of λ (lambda) to 

generate the service rate. 
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the obtained values “t” are assigned to the inter-arrivals and the service time of the packets at 

each iteration. 

The following routine illustrate the implementation of process above in the simulation model: 

Routine 3-1 generating arrival and service rates 
double exponential_distribution (double parameter) { 

        Random rand = new Random();  

        double R = rand.nextDouble(); 

        return  Math.log(1-R)/(-parameter); 

    }
 

 

- The said parameter, represent both parameters (λ) for the arrival time or (µ) for service 

rate. 

- This function generates a random number R using the next Double () method of the 

Random class. This method returns a random double value between 0 (inclusive) and 

1 (exclusive). 

- The expression Math.log (1 - R) calculates the natural logarithm of 1 - R. 

- The function returns the calculated value Math.log (1 - R) / (-parameter), which is a 

random number drawn from the exponential distribution with the specified rate 

parameter. 

By using this function, we were able to generate random numbers that follow an exponential 

distribution with a given average rate. 

 

Now, let's discuss the concept of the seed in random number generation 

The seed is a starting point or initial value used by a random number generator algorithm to 

generate a sequence of random numbers. By setting the seed, we can reproduce the same 

sequence of random numbers each time the program runs. 

However, in our implementation, the seed is not explicitly set for the Random class. As a 

result, the default behavior of the Random class is used, which sets the seed based on the 

current system time. This means that each time the program runs, a different sequence of 

random numbers will be generated. 

2.6 Simulation events  

In our simulator, we encounter three different types of events: arrival, start service, and 

departure. Each of these events corresponds to a specific procedure that outlines how the 

event impacts the state variables, progresses time, and generates additional events. Apart from 

these procedures, we also have initialization and the gathering of statistics. 

 Process arrival 

The process arrival event represents the arrival of a new packet to the system. It 

creates a new packet with a service time following an exponential distribution (µ) and adds it 

to the packet queue. If the server is idle, it schedules the start of service at the current time 

(Tnow). It also schedules the next arrival event at Tnow + exponential distribution(λ). 

Routine 3-2 arrival 
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Process arrival () { 

create new Packet given service time as exponential distribution(µ); 

 add the packet to the queue; 

 if (server is idle) { 

 schedule start service at Tnow; 

 } 

 schedule arrival at Tnow + exponential distribution(λ)); 

} 

 

 process start service 

This event occurs when the server begins serving a packet. It changes the server state 

to busy, retrieves the next packet from the queue using the First-In-First-Out (FIFO) policy, 

records the time at which service starts (Tnow), and schedules the departure of the packet at 

Tnow + Packet.service_time. This event represents the initiation of processing for a packet by 

the server. 

Routine 3-3 start service 

Packet process start service () { 

 Server state = busy; 

 Get the packet from the queue; (FIFO) 

 Packet time of starting service = Tnow; 

 schedule departure at Tnow + Packet.service_time; 

 return packet; 

}  

 

 

 Process Departure 

The departure signifies the completion of service for a packet. It updates the server state to 

idle, increments the count of packets served, removes the processed packet from the system, 

and checks if there are any remaining packets in the queue. If packets are waiting, this event 

schedules the start of service for the next packet at the current time (Tnow). It represents the 

moment when a packet finish being serviced and leaves the system. 

Routine 3-4 departure 

Process departure (packet) { 

Server state = idle; 

            packet served ++; 

           delete packet; 

           if (packets queue size > 0) 

            schedule start service at Tnow;       

} 

 

 Main program 
The main program controls the simulation and consists of the following steps 

- Outer Loop Iterate over variations (λ or N) to analyze different scenarios. 

- Inner Loop Simulate multiple batches of the system. 
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- Initialization Set up the initial state of the system. 

- Batch Simulation Loop Simulate a certain number of packets/customers are 

served. 

- Get Event and Time Retrieve the next event and its time. 

- Event Processing Call the appropriate event function based on the event type. 

- Delete Event Remove the processed event from the queue. 

- Report Statistics Summarize and display the collected data. 

- Statistical Calculations and Results Display Analyze and present batch means 

and results. 

Routine 3-5 main program 

main () { 

for (variation of λ or N) { 

for (each batch) { 

initialization (); 

while (number of served in each batch < 10000) { 

   event = get event from the event queue; 

   Tnow = event time; 

   switch (event type) { 

              case arrival process arrival ();   

case start service Packet = process start service ();  

              case departure process departure(Packet);  

     } 

     Delete event; 

} 

 Report statistics (); 

} 

Stat Calculations of batch means & results display (batch Means); 

} 

 

 Initialization  

the initial setup phase of a simulation where the system's state is configured. The 

server is set to idle, and the packet and events queues are initialized. The current time is set to 

0, and statistic variables are initialized. A new packet ID is assigned, and the first arrival event 

is scheduled to start the simulation. Initialization prepares the system's initial conditions and 

data structures for the simulation. 

Routine 3-6 initialization 

 Initialization () { 

server state = idle; 

Initialize packet queue; 

Initialize events queue; 

Tnow = 0; 

Initialize Statistic Variable; 

New packet id = 0; 
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schedule arrival at Tnow; 

} 

} 

 

 Report Statistics 

Reporting statistics involves collecting and presenting performance metrics (measurements) 

that offer insights into the system's behavior. It includes displaying the calculated results in a 

readable format (numerical values).  

3. Performance metrics 

Here are some commonly used measurements [27]: 

Note: that in the following, we will be explaining how we calculated performance metrics for 

both analytic and simulation model.  

And we will be using Traffic Intensity (load factor) ρ which is calculated by ρ = λ/µ. 

4.1 Overall Packets served  

It represents the total number of packets served in the entire simulation, which is the sum of 

Packets served in each batch. This metric provides an overall count of the Packets that have 

been successfully served. 

Overall Packets served += Packets served in each batch; 

 

3.2 Mean waiting time 

 It is the average time a Packet spends waiting in the queue before it starts receiving service. 

The mean waiting time is calculated by dividing the cumulative waiting time of all served 

Packets by the number of Packets served in each batch.  

Mean waiting time += packet.t start service - packet.t arrival; 

Batch Means of mean waiting time[i]=mean waiting for time/packets served in each batch; 

 

The batch Means of mean waiting time array stores the mean waiting time for each batch, 

assuming “i” represents the current batch index. 

The mean waiting time is also calculated analytically using the formula ρ/(µ*(1-ρ)).  

3.3 Mean response time  

It is the average time a Packet spends in the system from the moment it arrives until it departs, 

including both waiting time and service time. The mean response time can be calculated in 

two ways 

Analytical calculation: The mean response time can be analytically calculated using the 

formula 1/(µ-λ) + 1/µ. This formula takes into account the arrival rate (λ) and the service rate 

(µ) of the system. 

Simulation calculation: The mean response time can also be calculated by the simulation 

model. This involves summing up the response time for each served packet, which is 

calculated as the difference between the current time (Tnow) and the arrival time of the packet 
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(packet arrival time). The total response time is then divided by the number of packets served 

in each batch. 

Mean response time += Tnow – packet arrival time;           

Batch Means of mean response time [i]= mean response time/packets served in each batch; 

 

3.4 Throughput 

 It represents the average number of Packets served per unit of time. It is calculated by 

dividing the number of Packets served in each batch by the total simulation time (Tnow). 

analytically is equal to the arrival rate lambda and by simulation: 

throughput = Packets served in each batch / Tnow; 

 

3.5 Total Energy Consumption 

 It represents the total energy consumed by the system during the simulation. The formula 

given in calculates the total energy consumption by considering different components such as 

idle energy consumption (ECI), busy energy consumption (ECb), energy wasted during state 

transitions (ECs), and energy consumption for holding each packet in the buffer (ECTx). The 

formula accounts for the probability of being in the idle state (vacation prob) and the average 

number of cycles (Nc) 

EC = vacation prob * ECI + ((1 – vacation prob) * ECb) + (ECs/Nc) + Q * ECTx; 

 

3.6 Blockage 

 represents the proportion of time the server is busy (in a saturated state) compared to the total 

simulation time. It indicates the level of congestion or utilization of the server. The blockage 

can be calculated using the formula 

Simulation calculation The simulation-based blockage can be calculated by dividing the 

saturation time (the time when the server is busy) by the total simulation time. 

Within the arrival event    

if (packets queue size() == K ) { 

start of saturation time = Tnow; 

saturated = true;} 

within the departure event 

if (packets_queue.size() < K && saturated == true) { 

            saturation_time += Tnow – start_of_saturation_time; 

            saturated = false;} 

at the end of the simulation 

batchMeans_of_blockage[i] = saturation_time/Tnow ; 

 

Analytical calculation the analytical blockage can be calculated using the formula 

 ((1-ρ) * ρ^K) / (1 – ρ^(K+1)), where ρ is the traffic intensity and K is the buffer size. 
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3.7 Loss Rate 

 The loss rate represents the rate of rejected Packets in each batch, indicating the proportion of 

Packets that were not served due to queue limitations or other constraints. The loss rate can be 

calculated in two ways 

Analytical calculation The analytical loss rate can be calculated using the formula λ * 

blocking_prob. The blocking probability (blocking_prob) represents the probability that a 

Packet is blocked or rejected due to queue limitations. 

Simulation calculation The simulation-based loss rate can be calculated by dividing the 

number of rejected Packets by the total number of Packets that arrived in each batch. 

Within the arrival event 

        Number of arrived packets ++; 

if (packet size () > K) then don’t add it to the packets queue 

            // The packet was rejected 

         Number of rejected packets ++; 

At the end of the simulation  

Loss rate = number rejected Packet / Packets arrived in each batch; 

 

 

3.8 Probability of being in the idle state (PI)  

The probability of being in the idle state calculates the likelihood of the server being idle. It is 

determined by measuring the total time the server is idle (idle Time) and dividing it by the 

total simulation time. 

within the Initialization 

 idle Time=0; idle prob=0; idle start = Tnow; 

if (server was idle)  

add (Tnow – idle start) to idle Time; 

Then set the server busy; 

if (server was busy)  

idle start = Tnow; 

then set the server idle; 

At the end of the simulation idle prob = idle Time / Tnow; 

 

 

Analytically: for an infinite buffer, the probability of being in the idle state can be calculated 

as (1-ρ), where ρ is the traffic intensity. 

For a finite buffer of size K, the probability of being in the idle state can be calculated as (1-ρ) 

/ (1-ρ^K), where ρ is the traffic intensity and K is the buffer size. 

3.9 Average number of packets in the queue (Q)  

It represents the average number of packets or Packets present in the queue. It is calculated in 

the simulation by dividing the cumulative number of packets in the queue by the total number 

of events processed. Analytically calculated by the formula (ρ / (1-ρ)) – (ρ * (1 + K* ρ^ K) / 

(1- ρ^ K+1), and in our simulation model: 
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Within each event we extract and accumulate the number of packets in the 

queue: 

Number of packets in buffer += packets_queue.size(); 

Number of events++; 

Mean no packets in buffer = number of packets in buffer /number of events; 

 

3.10 number of cycles  

which represents the count of cycles that occur during the simulation. A cycle in this context 

refers to the time interval between two consecutive arrivals that find an empty system. It 

consists of a busy period (BP), during which the server is actively serving customers, 

followed by an idle period (IP), during which the system remains empty. 

To calculate the average number of cycles (Nc), the code divides the total number of cycles 

by the total simulation time (Tnow).  

Within the departure event  

If (packets queue is Empty ()) {             

server state = idle; 

        number of cycles ++; 

Nc = number of cycles / Tnow; 

 

By measuring the number of cycles and normalizing it by the simulation time, we can get an 

understanding of how frequently the system transitions between busy and idle states. This 

metric can provide insights into the utilization and efficiency of the server and help analyze 

the behavior of the queuing system. 

5. Methods to collect the simulation results  

We have been using the mean batch method as a method for gathering simulation results by 

averaging several simulation runs.  

 Compute means for each batch  

The mean batch method is used to collect simulation results by averaging multiple simulation 

runs, increasing the accuracy and reliability of the findings. This approach involves 

conducting simulations with randomized inputs for each batch, producing a set of outcomes. 

Performance metrics of interest are gathered during each batch run, and the batch mean is 

computed by averaging the results. This process is repeated for multiple batches to capture 

system variability.  

 Compute overall mean 

The overall mean is then calculated by summing the batch means, providing a more accurate 

depiction of the simulation findings.  

 Calculate the standard deviation  

The standard deviation is also calculated to quantify the variability and uncertainty in the data, 

offering insights into data distribution and reliability. Various statistical techniques, such as 

confidence intervals. 

 Calculate the confidence interval  
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The confidence interval is a statistical measure that provides an estimate of the range within 

which the true value of a population parameter is likely to fall. 

confidence Level = 0.95; // Desired confidence level 

Critical Value = 1.96; // For a 95% confidence level 

if (confidenceLevel > 0.95) { 

Critical Value = 2.576; // For a 99% confidence level 

} 

        standard Error = √ (variance/number of batches); 

        critical Value = get Critical Value (confidence Level, number of batches - 1); 

margin Of Error = critical Value * standard Error; 

lower Bound = mean Of Means- margin Of Error; 

upper Bound = mean Of Means + margin Of Error; 

 

 

4. Extension of the Simulation Model  

This elaboration focuses on exploring different simulation models with vacation policies in 

the context of M/M/1 queue models  

For infinite buffer ∞ and finite buffer (size K) 

 For infinite buffer ∞ where there is no buffer size restriction, all arriving packets are 

accepted regardless of the queue size. 

 and a finite buffer (size K) Contrarily, a finite buffer with a specific size, denoted as 

"K," implies that the maximum number of packets that can be accommodated is 

limited to K. In this case, packets are accepted as long as the buffer is not full. 

4.1 M/M/1 Queue Model with N-Policy  

One of the most intuitive methods is to postpone service until a fixed number (N > 1) of 

customers has accumulated in the queue. Once the server becomes active, it stays active until 

the system becomes empty again. [32] as it shows in Figure 14  

 
Figure 9:  Transition diagram of a sensor node with N-Policy. [33] 

Implementation 

The N-Policy threshold condition is checked within the "process arrival " method 

if the packets queue. Size () >= N 
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This condition checks if the number of packets in the queue is greater than or equal to the 

threshold N. If this condition is satisfied, a new event for starting the service is created. 

4.2 M/M/1 queue Model with T-Policy (Timer policy) 

if no packets arrive during a vacation period, the server extends its vacation and remains idle. 

This policy introduces the concept of vacations, which can help save energy or reduce costs 

during periods of low demand. 

 
Figure 10: Transition diagram of a sensor node with T-Policy 

After all the customers are served in the queue exhaustively, the server deactivates and takes 

at most J vacations of constant time length T repeatedly until at least one customer is found 

waiting in the queue upon returning from a vacation. If at least one customer presents in the 

system when the server returns from a vacation, then the server reactivates and requires a 

startup time before providing the service. On the other hand, if no customers arrive by the end 

of the Jth vacation, the server remains dormant in the system until at least one customer 

arrives [34]. 

Implementation  

Setting up a variable T (max Time of a vacation) 

Initialize the vacation timer at Tnow 

Within the arrival process  

If (the vacation timer is over)  

start service; 

Within the departure  

if (queue becomes empty)  

start a new vacation;  

 

 

4.3 M/M/1 queue Model with min (N, T) Policy  

The addition of timer T avoids endless waiting that may happen in some applications with a 

sparse arrival scenario. For example, in habitat monitoring, there‟s no traffic on the network 

for long periods, which are followed by short periods of network traffic, referred to as bursts. 

If the total number of arriving packets in a specific burst cannot reach N, then T -policy would 

save those stale queued packets and trigger the radio server to transmit them in due course. 

[35] 
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Figure 11: Transition diagram of a sensor node with min (N, T) Policy 

Implementation 

By incorporating the 'OR' operation in the condition check, we ensure that the server is 

activated when either of the policies is satisfied 

if (server state = idle & (vacation time >= T || packet queue size () >= N))  

  then        start service; 

 

 

4.4 M/M/1 Queue Model with D-Policy  

The server is turned off at the end of a busy period and turned on when the cumulative 

amount of work first exceeds some fixed value D [36] 

This policy helps manage the workload of the server and ensures timely service delivery 

based on the accumulated work. 

 
Figure 12: Transition diagram of a sensor node with D-Policy 

4.5 M/M/1 queue Model with Hybrid Policy  

the sensor node can switch from idle to busy state either 

_ At the instant of the Nth packet arrival. 

_ Or at the end of a vacation period which is an exponentially distributed random duration 

with the parameter ζ, even if the number of packets in the buffer is less than N. [33] 

 
Figure 13:  State transition diagram of a sensor node with Hybrid Policy. [33] 



 

47 
 

Implementation 

After introducing the parameter zeta, we apply it to generate random vacation times as 

follows 

Vacation time ≥ exponential distribution(ζ) 

 

4.6 Implementation of delayed idle state 

To simulate the delayed idle state in a queueing system, an extended version of the M/M/1 

queue model is utilized. The implementation involves maintaining an additional state variable 

to track the server's state (idle, busy, or delayed idle), and the Θ parameter.  

 

 
Figure 14: Transition diagram of a sensor node with Delayed Idle server state and N-Policy. 

  if (packet queue is Empty () then   Server state= is delayed idle;  

  If (Server state = delayed idle) { 

         if (Tnow – delayed idle start >= Θ)   

         then  server = Server state idle; 

         

By simulating the idle delayed state and analyzing the resulting performance metrics, it 

becomes possible to evaluate the effectiveness of this extension in improving energy 

efficiency, reducing overhead, and optimizing system behavior in queueing systems. 

 

Conclusion 

In conclusion, this chapter provided a comprehensive overview of implementing a simulation 

model for evaluating WSN node performance using vacation policies. It covered key aspects 

such as pseudo-code, simulation events, environment details, data structures, M/M/1 queueing 

system, service processes, state variables, exponential distribution, main program structure, 

statistics reporting, and assumptions. This chapter laid the foundation for subsequent analysis 

and discussions on WSN performance evaluation. 
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Chapter 4: Experimental Study 
Chapter 4 of this report presents a comprehensive examination of the system's behavior and 

performance through the execution of controlled experiments and the utilization of a 

simulation model. The primary objective of this chapter is to provide an in-depth analysis of 

the experimental results and discuss the findings in detail. To evaluate the effectiveness of our 

simulation model, we compare its numerical outcomes with the corresponding analytical 

results. Furthermore, we employ visually appealing graphs to effectively present the collected 

data, leveraging their ability to simplify complex information. Through this rigorous 

examination, we aim to gain valuable insights into the system's functionality and 

performance, paving the way for further improvements and optimizations. 

1. Experimental Study 

the process of conducting controlled experiments using the simulation model to investigate 

and analyze the behavior and performance of a system. It involves designing and executing a 

series of experiments by manipulating various input parameters or configurations of the 

simulation model and observing the corresponding output results. 

2. System parameters values   

The system parameters values used in the simulation are as follows: 

Table 5: system parameters values used in the simulation 

The capacity of Buffer (K) 10 

Queue Threshold ranges from 1 to 9 

The mean data arrival rate (λ) ranges from 0,25 to 2 

Mean service rate (µ) 2 

The mean Vacation rate (ζ) ranges from 0,1 to 0,5 

ECi 50 

ECd 100 

ECb 500 

ECTx 5 

ECs 300 

Number of Batches 1000 

Simulation Time  10000 

3. Arrival rate Lambda (λ) variation 

In this scenario, we will explore the impact of varying lambda values on the metric, assuming 

fixed values for the other parameters. We will consider a lambda range from 0.1 to 1.9 and 

µ=2. By analyzing this range, we can observe how the metric changes with different lambda 

values. 

3.1 M/M/1 with infinite buffer provided by our model beside analytical results 
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Table 6: Performance Results from M/M/1 Simulation model vs Analytic Equations for 

different performance metrics. 

 

λ mean 
waiting time 

analytic 
mean 
waiting 
time  

throughput analytic 
throughput  

mean 
response 
time 

analytic 
mean 
response 
time   

Idle Proba analytic 
Idle 
Proba 

Mean no 
customer 
in buffer 

analytic 
Mean no 
customer 
in buffer 

cycles 
numbers 

energy 
concumption 

overall 
clients 
served 

0,1 0,026183901 0,026316 0,099949708 0,1 0,526118162 0,526316 0,947064508 0,95 0,00259 0,002632 0,094953829 63,906923 1001538 

0,2 0,055460479 0,055556 0,199962301 0,2 0,554692798 0,555556 0,898031479 0,9 0,011148 0,011111 0,179763888 113,410853 2003002 

0,3 0,087779081 0,088235 0,299574796 0,3 0,588826692 0,588235 0,848515655 0,85 0,026307 0,026471 0,254587266 160,200129 3002900 
0,4 0,125075249 0,125 0,399550105 0,4 0,624596272 0,625 0,798885354 0,8 0,049804 0,05 0,319736138 204,203592 4000303 

0,5 0,167011515 0,166667 0,499364364 0,5 0,665858784 0,666667 0,748817988 0,75 0,083142 0,083333 0,374448198 245,307215 4997783 

0,6 0,214318668 0,214286 0,598998501 0,6 0,712926926 0,714286 0,699280463 0,7 0,128004 0,128571 0,419665044 283,448931 6000603 

0,7 0,268635548 0,269231 0,699109571 0,7 0,768523944 0,769231 0,648865185 0,65 0,187536 0,188462 0,454867832 318,75835 7000848 
0,8 0,333176187 0,333333 0,799485588 0,8 0,83218321 0,833333 0,599163322 0,6 0,265669 0,266667 0,479576293 351,147503 8005772 

0,9 0,40851953 0,409091 0,898594158 0,9 0,907728994 0,909091 0,549706701 0,55 0,367772 0,368182 0,494579645 380,491725 8998523 

1 0,499237864 0,5 0,999050752 1 0,999271012 1 0,49966442 0,5 0,496712 0,5 0,499465731 407,266971 10002414 

1,1 0,609912824 0,611111 1,098953869 1,1 1,109618533 1,111111 0,449794137 0,45 0,67136 0,672222 0,494779609 430,853497 10994200 

1,2 0,749080249 0,75 1,198477761 1,2 1,249275589 1,25 0,399439056 0,4 0,898321 0,9 0,479296454 451,873323 12001325 

1,3 0,925790993 0,928571 1,298344407 1,3 1,427121985 1,428571 0,349934891 0,35 1,204986 1,207143 0,454004899 470,682323 13002343 

1,4 1,161668434 1,166667 1,398554108 1,4 1,66441727 1,666667 0,299821631 0,3 1,62726 1,633333 0,41932132 486,753348 13999860 

1,5 1,498716896 1,5 1,498033502 1,5 1,997433174 2 0,25020406 0,25 2,240114 2,25 0,375405818 500,792339 14999094 
1,6 1,998229601 2 1,597449116 1,6 2,494545981 2,5 0,200557652 0,2 3,193912 3,2 0,318815331 513,44468 15994604 

1,7 2,809334656 2,833333 1,697973628 1,7 3,339614187 3,333333 0,150409395 0,15 4,764931 4,816667 0,255094863 526,538197 16997366 

1,8 4,455374757 4,5 1,798016338 1,8 4,94296522 5 0,100452929 0,1 8,009443 8,1 0,181101407 544,61527 17992871 

1,9 9,46430069 9,5 1,895983523 1,9 9,787403418 10 0,050575197 0,05 17,580285 18,05 0,096417976 590,504446 18982623 
 

The results obtained from our simulator are very similar to the analytical ones based on the 

previously mentioned equations. When the difference between the simulated results and the 

analytical ones is small, often within a few decimal numbers, it suggests that our simulator is 

providing mostly correct results. 

our simulator can accurately reproduce analytical results which is an important validation step 

in ensuring the reliability of the simulation. It indicates that our simulator is correctly 

implementing the underlying equations and models, and can be trusted to provide accurate 

predictions or outputs for similar scenarios. 

From now on we will be using graphs instead of tables for results presentation because graphs 

are visually appealing and capture attention more effectively, they simplify complex data 

making it easier to understand and interpret trends and patterns, they present information 

concisely and avoid information overload. 

Next, we will be presenting the difference between our simulation results and analytical 

results for some metrics in the case where the buffer size is limited. 

3.2 M/M/1/K queue (finite buffer) K= 10; 
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Figure 15: Performance Results from M/M/1/K Simulation model and from Analytic 

Equations (i) Mean Waiting Time (ii) Throughput (iii) Mean Response Time (iv) Idel 

Probability (v) Mean Number of Customers in the Buffer. 

 

Again, the values we obtained are very close, with only minor differences in the decimal 

places. This suggests that our simulation model is effectively capturing the behavior of the 

M/M/1/K queueing system. 

Although there might be slight differences due to the inherent stochasticity in the system and 

the finite number of simulations runs, the general trend and magnitude of the metrics values 

match between the two approaches. 

It's important to note that small variations can be expected due to the random nature of the 

system and the finite number of simulation runs. However, as long as the overall trend and 

magnitude of the results match the analytical values, it indicates that our simulation model is 

providing a reasonable approximation of the system's behavior. 

3.3 Performance evaluation of different policies  

Now for each metric, we will be discussing the difference between each policy model and 

why the results may differentiate from one case to another  

o Mean waiting time 

- Infinite buffer N =4; D= 1; T= 1; 

 
Figure 16: Performance Results from M/M/1 Simulation model with different Policies 

Measuring Mean Waiting Time vs arrival rate lambda. 
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 Finite buffer K= 10; ζ = 0.2; //Mean Vacation rate 

 
Figure 17: Performance Results from M/M/1/K Simulation model with different Policies 

Measuring Mean Waiting Time. 

 

The waiting time values appear to decrease gradually at first and then start to stabilize or 

increase slightly. This behavior suggests that the waiting time reaches a minimum point and 

then starts to level off or slightly increase as the arrival rate continues to rise. This can be 

attributed to the fact that at higher arrival rates, the server may experience more congestion 

and longer queues, leading to slightly increased waiting times. 

the T Policy, min (N, T) Policy, and Hybrid Policy tend to provide better performance in 

terms of waiting time compared to the N and D Policies. Among them, the min (N, T) Policy 

takes into account both capacity limitations and time constraints, making it a favorable choice 

in many scenarios. However, the specific choice of policy may depend on the specific 

requirements and priorities of the system under consideration. 

 

 
Figure 18: Performance Results from M/M/1/K Simulation model, M/M/1/K Simulation 

model with N Policy, and M/M/1/K Simulation model with N Policy and Idle Delayed server 

state Measuring Mean Waiting Time. 
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In the N Policy scenario, when new arrivals are not served immediately, and they must wait in 

the queue, resulting in longer overall waiting times. But once the arrival rate increases the 

number of customers in the buffer reaches N faster and the waiting time decreases. 

Introducing the idle delayed state in the M/M/1/K system helps reduce the waiting time 

compared to the N Policy scenario. The idle delayed state means that when the buffer is 

empty, the server switch to a delayed idle state that is faster to switch from back to the busy 

state again so one arriving customer triggers the server back to busy and the waiting time 

becomes less. This reduces the long queuing time of customers and improves the overall 

waiting time, although it is still higher than the standard M/M/1/K system. 

o Throughput 

 Finite buffer  

 
Figure 19: Performance Results from M/M/1/K with different Policies and Delayed Idle state 

Simulation Models Measuring Throughput vs. arrival rate variation. 

 

The D policy consistently shows lower throughput values compared to other policies. The 

Hybrid Policy shows competitive throughput values, often performing well compared to other 

policies. This indicates that combining different policies can lead to improved system 

performance and better throughput. The introduction of the idle delayed state reduces the 

overall throughput as the server spends more time in the delayed idle state, resulting in slower 

customer service. 

o Mean response time 

-infinite buffer case  
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Figure 20: Performance Results from M/M/1 with different policies Simulation Models 

Measuring Mean Response Time vs arrival rate variation. 

 In the N Policy the mean response time is significantly higher compared to the M/M/1 

system. This is because customers have to wait longer before their service begins, leading to 

increased overall response times. 

The response time first decreases as the arrival rate (λ) increases. This is expected because a 

higher arrival rate means more customers entering the system, resulting in longer queues and 

faster threshold reaching 

But higher and higher arrival rates lead to more customers entering the system, resulting in 

longer queues and increased response times. 

Mm1 system without policy consistently has the lowest response time. This is because it 

represents a basic M/M/1 queueing system without any optimization or control mechanisms. 

 
Figure 21: Performance Results from M/M/1/K with N Policy and Idle Delayed State 

Simulation Models Measuring Mean Response Time based on arrival rate variation. 

In the M/M/1/K system with N Policy and Delayed Idle, the mean response time decreases 

compared to the M/M/1/K with N Policy system.  

By incorporating the idle delayed state, the waiting time for customers is minimized, leading 

to enhanced response times. 

The probability that the server is idle  
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Figure 22: Performance Results from M/M/1 with different policies Measuring Idle 

Probability with finite buffer vs. arrival rate variation. 

The idle probability represents the likelihood of the server being idle, or not serving any 

customers, at a given time. A lower idle probability indicates that the server is more likely to 

be busy and actively serving customers, while a higher idle probability suggests that the 

server is more likely to be idle and waiting for customers. 

with Threshold Policies the idle probability is slightly higher compared to the basic system. 

This is because customers have to wait in the queue before their service begins, which can 

lead to brief periods of server idleness. 

In the M/M/1/K with N Policy, the idle probability increases further compared to the 

M/M/1/K system. Both the buffer size limitation and the delayed service policy contribute to 

potential periods of server idleness. 

o Mean number of customers in the buffer 

 

 
Figure 23: Performance Results from M/M/1 with different policies Measuring the Mean 

number of customers in the buffer for finite and infinite simulation models vs.  arrival rate 

variation. 

with the N Policy system, the mean number of customers in the buffer is higher compared to 

the M/M/1 system. This is because customers have to wait in the queue before their service 



 

56 
 

begins, resulting in a larger number of customers in the buffer. Both the buffer size limitation 

and the delayed service policy contribute to a larger number of customers in the buffer. 

In the M/M/1/K system with N Policy and Idle Delayed server state, the mean number of 

customers in the buffer decreases compared to the M/M/1/K with N Policy system. 

Incorporating the idle delayed state helps reduce the waiting time for customers in the queue, 

resulting in a smaller number of customers in the buffer. 

The mean number of customers in the buffer values provides insights into the average queue 

length and the amount of work the server handles in different queuing scenarios, considering 

factors such as arrival rate, buffer size, and service policies. 

Mean number of cycles  

 
Figure 24: Performance Results from M/M/1, with Threshold Policies Simulation Models 

Measuring Mean Cycles number vs. arrival rate variation. 

The Threshold Policies delay the start of service until the number of customers in the queue 

reaches the threshold N, which reduces the occurrence of cycles. 

The mean number of cycles provides insights into the frequency of system utilization and idle 

periods in different queuing scenarios. It helps analyze the efficiency and utilization of the 

server and the impact of buffer size and service policies on the system's behavior. 

Energy consumption 

 
Figure 25: Performance Results from M/M/1, M/M/1 with N Policy, M/M/1/K, and  M/M/1/K 

with N Policy Simulation models Measuring Total Energy Consumption based on arrival rate 

variation. 
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as the arrival rate increases, energy consumption also increases. This is because a higher 

arrival rate leads to more frequent arrivals, which require the server to be active for longer 

periods, resulting in higher energy consumption. 

With threshold policies, energy consumption decreases compared to the basic system. Their 

delays at the start of the service reduce the overall energy consumption. 

Overall Packets served  

 

 
Figure 26: Performance Results from M/M/1 and M/M/1/K with different Policies Simulation 

models giving the number of overall Packets served vs. arrival rate variation. 

As the arrival rate (lambda) increases in the queuing system, the number of Packets served 

tends to increase. This relationship is intuitive because a higher arrival rate means more 

customers entering the system, resulting in a greater number of Packets being served. 

However, it's important to consider the system capacity, which in this case is limited. The 

buffer can hold a maximum of 10 packets in the waiting queue at any given time. When the 

buffer is full, any additional arriving packets will be rejected or blocked from entering the 

system. 

As lambda continues to increase, the buffer will fill up faster, leading to more Packets being 

rejected or blocked. Consequently, the total number of Packets served by the system will start 

to decline as the rejection or blocking of Packets becomes more frequent. 

Conclusions for lambda variation 

the numerical results and discussions demonstrate the following key findings: 
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 Arrival rate has a significant impact on system performance, with higher arrival rates 

leading to longer queues, increased waiting times, and decreased Idle probability. 

 The buffer size limitation plays a crucial role in controlling system behavior. It helps 

maintain stability in mean waiting time, response time, and idle state probability. 

 The idle delayed state helps reduce waiting times and improves response times 

compared to the N Policy scenario. 

 As the arrival rate increases, the number of Packets served initially increases, but it 

eventually declines due to the rejection or blocking of Packets when the buffer is full. 

These findings highlight the trade-offs between system performance metrics such as waiting 

times, throughput, energy consumption, and the impact of buffer size limitations and service 

policies.  

4.Threshold N variation 

Mean Waiting Time 

 
Figure 27: Performance Results from M/M/1 with different Policies Simulation models giving 

the Mean Waiting Time vs Thresholds N variation in finite and infinite buffer cases. 

As the threshold (N) increases, the waiting time generally increases across all policies. This is 

expected, as a higher threshold allows more customers to accumulate in the system before 

service begins, resulting in longer waiting times.  

The Hybrid Policy shows relatively lower waiting times compared to other policies for 

smaller threshold values (e.g., N = 2 or N = 3) but the N Policy with Delayed Idle server state 

provides better performance for all threshold values.  
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Figure 28: Performance Results from M/M/1 with T and min (N, T) Policies Simulation 

models giving the Mean Waiting Time vs Threshold T variation in finite and infinite buffer 

cases. 

These results show that the mean waiting time varies significantly between the two policies as 

the threshold value changes. The min (N, T) Policy generally yields lower mean waiting times 

compared to the T-Policy for most threshold values. This suggests that the min (N, T) Policy 

is more effective in reducing waiting times in the queue. 

Energy consumption 

 
Figure 29: Performance Results from N Policy and Hybrid Policy Simulation Models 

Measuring Energy Consumption based on Threshold N. 

 We can observe the following: 

The Hybrid Policy generally yields lower energy consumption compared to the N Policy for 

most threshold values and arrival rates. This suggests that the Hybrid Policy is more effective 

in reducing energy consumption in the system. 

 
Figure 30: Performance Results from Hybrid Policy Simulation Model Measuring Energy 

Consumption vs. Threshold N and mean vacation rate ζ Variation. 

 

Higher values of the mean vacation rate ζ indicate more frequent vacations taken by the 

server, the server undergoes more transitions between the idle and busy states. Each transition 

requires activation energy, resulting in higher overall energy consumption. This switching 

energy contributes to the increase in average energy consumption with a higher mean vacation 

rate. 
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Figure 31: Performance Results from M/M/1 with different Policies Simulation models giving 

the Mean Energy Consumption vs Thresholds N variation in finite and infinite buffer cases. 

 
Figure 32: Performance Results from T Policy Simulation Model Measuring Energy 

Consumption vs. Threshold T. 

Increasing the threshold value tends to reduce the average energy consumption in the 

considered policies. It indicates that allowing more work to accumulate in the queue before 

the server becomes active can lead to energy savings. However, the specific impact of 

threshold values on energy consumption may vary depending on the policy used. 
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Figure 33: Performance Results from D Policy Simulation Model Measuring Energy 

Consumption vs. Threshold D. 

As D increases, it takes longer for the workload to accumulate to that level, resulting in longer 

idle periods for the server. During these idle periods, the server consumes energy at the idle 

state energy consumption rate (ECI). Each transition from the idle state to the busy state or 

vice versa incurs an energy cost (ECs). Since increasing the threshold value D leads to longer 

idle periods and more transitions between states, it results in higher energy consumption. 

5.Service rate mu (µ) variation 

Mean Waiting Time  

 

 
Figure 34: Performance Results from Different Policy Simulation Models Measuring Mean 

Waiting Time vs. service rate µ. 

 
Figure 35: Performance Results from Different Policy Simulation Models Measuring Average 

Energy Consumption vs. service rate µ. 

As the service rate (µ) increases, the mean waiting time and average energy consumption 

decrease for all systems. This is expected since a higher service rate allows customers to be 

served more quickly, reducing their waiting time and overall energy consumption. 
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6.Overall Discussion 

This analysis reveals the interplay of various factors in the performance of queuing systems. 

The arrival rate (lambda) emerges as a critical determinant affecting system metrics such as 

waiting times, response times, throughput, and the number of packets served. These metrics, 

in turn, are influenced by the buffer size limitation (K), which plays a crucial role in 

maintaining system stability and preventing congestion. 

The impact of the arrival rate becomes evident as it increases. Initially, more packets are 

served due to the higher influx, but the number eventually declines due to packet rejection or 

blocking when the buffer reaches its capacity. This highlights the trade-offs involved in 

system performance metrics, such as the potential for lower waiting times leading to higher 

average waiting times overall. 

One notable policy, the N Policy, introduces a delay in starting service until the queue reaches 

a predefined threshold. While this policy leads to higher waiting times and response times, it 

can effectively reduce energy consumption. However, incorporating the idle delayed state into 

the system helps alleviate waiting times and enhances response times. 

The min (N, T) Policy presents a favorable choice by considering both capacity limitations 

and time constraints, aiming to strike a balance between immediate access and queueing while 

accounting for system capacity. Additionally, the Hybrid Policy showcases competitive 

performance compared to other policies and can be considered for overall system 

optimization. 

To sum up, determining the best policy for a queuing system necessitates evaluating specific 

requirements and priorities. By carefully considering different factors, queuing systems can be 

tailored to achieve efficient and effective performance. 

Conclusion 

In conclusion, this chapter presented a comprehensive experimental study to examine the 

behavior and performance of the system. In this chapter, we used controlled experiments and 

our simulation model to analyze the system's performance. The findings demonstrated the 

impact of various parameters, such as arrival rate and buffer size, on system performance 

metrics. The study highlighted the trade-offs between different performance metrics and the 

influence of service policies. Eventually, the experimental study provided valuable insights 

into the system's functionality and performance, laying the foundation for further 

improvements and optimizations. 
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Conclusions and future directions 
In conclusion, this project has provided a comprehensive study of wireless sensor networks 

(WSNs), focusing on energy efficiency and the use of vacation policies in queueing systems. 

Throughout the report, we have explored the background of WSNs. We have also delved into 

the concept of queues with vacation, which offers a more realistic representation of real-world 

queueing systems. By implementing discrete-event simulation models, we were able to 

evaluate the performance of such systems under various conditions. This allowed us to 

analyze and compare different policies, such as threshold-based policies, and assess their 

impact on system behavior and energy consumption. 

Through our simulation studies, we aimed to achieve several objectives. First and foremost, 

energy efficiency was a key focus. By considering limited sensor node resources, we sought 

to extend its battery life. We also aimed to improve the sensor node performance while 

reducing energy consumption, striking a balance between energy conservation and waiting 

delay. 

The numerical results presented a deeper understanding of the system's behavior. We 

analyzed the system parameter variations. By measuring performance metrics, we gained 

insights into the system's performance and efficiency under different conditions. We were 

able to fine-tune the system design and gain valuable insights and guidelines for designing 

energy-efficient sensor networks. 

The findings from our research have significant implications for the whole wireless sensor 

network not only a single node. They provide valuable knowledge and guidelines for 

designing energy-efficient systems, optimizing parameters, and striking the right balance 

between energy conservation and performance. The exploration of queues with vacation has 

provided a deeper understanding of system dynamics and behavior. By incorporating one or 

two vacation policies, we can achieve improved results, and the Hybrid policy stands out as 

the best example of this. 

Moving forward, several future directions can build upon this research. One important aspect 

to consider is the implementation of quality of service (QoS) mechanisms in wireless sensor 

networks. This would enhance the overall efficiency and reliability of the network, 

particularly in scenarios where real-time or mission-critical data is being transmitted. 

As technology advances, new communication protocols and networking architectures may 

emerge in the field of wireless sensor networks. Future research could investigate the 

integration of emerging technologies. These advancements have the potential to further 

enhance the performance, scalability, and adaptability of WSNs while optimizing energy 

consumption and system behavior. 

Finally, this research has laid a solid foundation for understanding energy-efficient WSNs and 

the use of vacation policies in queueing systems. By exploring future directions such as 

implementing quality of-service mechanisms and considering different packet types, 

researchers and practitioners can continue to advance the field and contribute to the 

development of highly efficient and reliable wireless sensor networks. 
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