
People’s Democratic Republic of Algeria
الشعبية الديمقراطية الجزائرية الجمهورية

Ministry of Higher Education and Scientific Research
العلمي البحث و العالي التعليم وزارة

Saad Dahlab University of Blida
Science Faculty

Computer Science Department

End-of-study Report

in view of obtaining a Master’s diploma in Computer science

Option : Informatics systems and networks

behavioral analysis of Active
Directory logs

Presented by:
Mr. Aissani Youcef Supervisor :

Mr. Neffah Mohamed

Defense Jury:

Mrs. : Cherfa Imene
Mrs. : Tebbi Hanane

Promotion : 2022/2023

acknowledgements

First and foremost, I thank God for allowing me to reach this point. I would like to
thank my supervisor NEFFAH MOHAMED for all the work and guidance he gave me
along the way. I would like to thank all my family for supporting me along the way of
my scientific journey, their help during my studying and research time was invaluable.i
would also like to thank friends who made my journey more enjoyable.

-Aissani Youcef

Abstract

This thesis focuses on the behavioral analysis of log data for anomaly detection and
clustering in the field of cybersecurity. The objective is to obtain insights into patterns,
anomalies, and potential threats present in sonatrach’s logs. Various algorithms, including
K-means, DBSCAN, GMM, and Isolation Forest, were evaluated and compared in terms
of their performance in detecting anomalies and clustering the data. The results showed
that while K-means performed poorly, DBSCAN, GMM, and Isolation Forest exhibited
different levels of sensitivity and performance. The findings provide valuable insights for
improving anomaly detection and threat analysis in cybersecurity.

Keywords : anomaly detection, behavioral analysis, clustering, preprocessing, ma-
chine learning.

Résumé

Cette thèse se concentre sur l’analyse comportementale des données de logs pour la
détection d’anomalies et le regroupement dans le domaine de la cybersécurité. L’objectif
est d’obtenir des informations sur les motifs, les anomalies et les menaces potentielles
présentes dans les logs de Sonatrach. Différents algorithmes, tels que K-means, DBSCAN,
GMM et Isolation Forest, ont été évalués et comparés en termes de performances pour
détecter les anomalies et regrouper les données. Les résultats ont montré que, tandis
que K-means a obtenu de mauvais résultats, DBSCAN, GMM et Isolation Forest ont
démontré différents niveaux de sensibilité et de performance. Ces résultats offrent des
informations précieuses pour améliorer la détection d’anomalies et l’analyse des menaces
en cybersécurité.

Mots clés : détection d’anomalies, analyse comportementale, regroupement, pré-
traitement, apprentissage automatique.

Contents

acknowledgements

Abstract

Résumé

Presentation of the host organization

Motivation for our project

General Introduction

1 Fundamental Principles 1
1.1 Introduction . 1
1.2 Overview of Machine Learning and Deep Learning: 1
1.3 Types of Learning . 1

1.3.1 Supervised Learning . 1
1.3.2 Unsupervised Learning . 5
1.3.3 Reinforcement Learning . 6
1.3.4 Semi-Supervised Learning . 6
1.3.5 Ensemble Learning . 7

1.4 Overview of Anomaly detection with logs 7
1.4.1 Structure of an Anomaly Detection System 7

1.5 Conclusion . 10

2 Methodology 11
2.1 Introduction . 11

2.1.1 Our system’s conception . 11
2.2 Steps taken for preprocessing . 12

2.2.1 Data Cleaning: . 12
2.2.2 Data Transformation: . 13
2.2.3 Feature Selection: . 14
2.2.4 2nd Set of Collected Data: . 16
2.2.5 Preprocessing Steps: . 16
2.2.6 Discussion of Challenges Faced During Data Collection and Preprocessing: 17

2.3 Explanation of Algorithm Selection . 18
2.4 Conclusion . 18

3 Implementation 20

Contents

3.1 Introduction . 20
3.2 Tools and Libraries Used: . 20

3.2.1 Work Environment: . 21
3.2.2 Description of the dataset in our project 21
3.2.3 Visualization of each characteristic distribution in our dataset by

user: . 22
3.3 Description of the algorithms used for anomaly detection in our logs 25

3.3.1 The functioning of K-means is as follows: 25
3.3.2 The functioning of DBSCAN: . 27
3.3.3 The functioning of GMM: . 28
3.3.4 The functioning of Isolation Forest: 28

3.4 Results of Each Algorithm: . 29
3.4.1 K-means: . 29
3.4.2 DBSCAN: . 29
3.4.3 GMM: . 32
3.4.4 Isolation Forest: . 35

3.5 The Application: . 37
3.6 Conclusion: . 39

General Conclusion 40

Bibliography 41

List of Figures

1.1 Types of learning in artificial intelligence and the required data[1] 2
1.2 Example of a decision tree[3] . 3
1.3 An example of Naive Bayes’s classification[4] 3
1.4 Support vector machine classification[6] . 5
1.5 Unsupervised learning mechanism [7] . 5
1.6 K-means flow diagram[8] . 6
1.7 Diagram of reinforcement learning[9] . 7
1.8 Log collection architecture[11] . 8
1.9 Log parsing example[13] . 9
1.10 Architecture of an anomaly detection system[14] 9

2.1 concept of anomaly detection system . 11
2.2 visualization of the number of rows with “-” character found in each column 13
2.3 visualization of the number of components and the variance ratio 14

3.1 Users logs by date and hour . 23
3.2 HTTP responses by user’s logs . 24
3.3 Users logs by software used . 24
3.4 Users logs by endpoint . 25
3.5 Time taken for each log by users . 25
3.6 a graph of SSE values by cluster . 26
3.7 clusters by k-means . 29
3.8 clusters by dbscan . 29
3.9 DBSCAN clustering users by datetime logs 29
3.10 DBSCAN clustering users by time-taken logs 30
3.11 DBSCAN clustering users by endpoint logs 31
3.12 DBSCAN clustering users by software logs 31
3.13 DBSCAN clustering users by HTTP status response logs 32
3.14 GMM clusters . 32
3.15 GMM clustering users by datetime logs . 33
3.16 GMM clustering users by time-taken logs 33
3.17 GMM clustering users by endpoint logs . 34
3.18 GMM clustering users by software logs . 34
3.19 GMM clustering users by HTTP status response logs 35
3.20 isolation forest clusters . 35
3.21 Isolation Forest clustering users by datetime logs 36
3.22 Isolation Forest clustering users by time-taken logs 36
3.23 Isolation Forest clustering users by endpoint logs 36

List of Figures

3.24 Isolation Forest clustering users by software logs 37
3.25 Isolation Forest clustering users by HTTP status response logs 37
3.26 anomaly detection application GUI . 38
3.27 Example result of the application . 39

list of abbreviations and acronyms

SVM Support Vector machine.

IP Internet Protocol.

TF-IDF term frequency-inverse document frequency.

LDA Linear Discriminant Analysis.

PCA Principal Component Analysis.

t-SNE t-Distributed Stochastic Neighbor.

URI Uniform Resource Identifier .

TruncatedSVD truncated singular value decomposition.

DBSCAN Density-based spatial clustering of applications with noise.

GMM Gaussian Mixture Model.

HTTP Hypertext Transfer Protocol.

SSE Sum of Squared Errors.

WCSS Within-Cluster Sum of Squares.

CPU Central Process Unit.

RAM Random Access Memory .

GPU Graphics Processing Unit.

OS Operating System.

Presentation of the host organization

SONATRACH is the proud Algerian national company dedicated to the exploration,
exploitation, pipeline transportation, processing, and marketing of hydrocarbons and their
derivatives. With its mission, it is committed to optimizing valuable national hydrocarbon
resources, thus generating wealth for the economic and social development of the country.
As a major player in the oil and gas industry, SONATRACH holds a leading position in
Africa and the Mediterranean region. Its activities are deployed in four essential areas:
Upstream, Downstream, Pipeline Transportation, and Marketing. Through its involve-
ment in various projects in Africa, Latin America, and Europe, the company collaborates
with diverse partners, thereby strengthening its international influence.

For over 50 years, SONATRACH has fully assumed its role as an engine of the na-
tional economy. By effectively leveraging the country’s hydrocarbon resources, it actively
contributes to the creation of wealth that promotes the economic and social development
of the country. With an unwavering commitment, SONATRACH continues to excel in its
activities of exploration, exploitation, transportation, and marketing, ensuring a promis-
ing future for Algeria.

Motivation for our project

Last year, the Director of Digitalization and Information System (DSI) made an im-
portant discovery regarding unusual connections in the Active Directory logs. These
abnormal connections raised concerns and necessitated an investigation and anomaly de-
tection within the system. Our research is taking place within the DSI’s Innovation
Center, located at Sonatrach headquarters in Hydra. In this collaborative environment,
we have had access to valuable log data under the supervision of engineer Mr. Neffah.
This opportunity allows us to deepen the analysis and detection of anomalies with the
aim of improving the overall security and integrity of the system.

General Introduction

In recent years, cybersecurity has become a critical concern due to the increasing
number of cyber threats and attacks. Anomaly detection plays a vital role in identifying
suspicious activities and potential security breaches. Log data analysis offers valuable
information for understanding system behavior and detecting anomalies. This thesis
focuses on the analysis of log data and aims to explore different algorithms for anomaly
detection and clustering.

Our thesis begins with the Fundamental Principles, providing an overview of machine
learning and anomaly detection in logs. The methodology chapter describes our concep-
tual system, preprocessing techniques as well as the challenges faced during the collection
and preprocessing.

The Implementation chapter describes the algorithms used in detail, and presents the
tools used and the findings of the evaluation. It highlights the performance and limitations
of each algorithm in detecting anomalies and clustering the log data. The distributions
of suspicious connections based on the clustering results are visualized.

The thesis also includes the development of an application that allows the network
engineer to apply the selected algorithms to log files and identify users with abnormal
behavior. The application provides a user-friendly interface and enables further analysis
of abnormal logs.

Our contribution to cybersecurity here is by comparing different machine learning
algorithms for anomaly detection and clustering in unlabeled log data analysis. The
results highlight the strengths and weaknesses of each algorithm and provide valuable
insights for improving anomaly detection techniques. The developed application offers a
practical tool for analyzing log data and identifying abnormal behavior, enhancing the
overall cybersecurity efforts.

Chapter 1

Fundamental Principles

1.1 Introduction

Machine learning, an exciting and rapidly advancing field, leverages mathematical algo-
rithms to empower machines with the ability to learn and automate tasks. It has revo-
lutionized numerous domains by providing intelligent solutions and automating complex
processes.

Log anomaly detection has been a longstanding challenge, particularly due to the sheer
volume and complexity of logs generated by systems. Manual detection by technicians
proved to be impractical and time-consuming, necessitating the development of automated
techniques. Artificial intelligence (AI) has emerged as a powerful ally in addressing this
challenge, offering efficient and effective solutions for log analysis and anomaly detection.

We provide in this chapter a brief overview of the different methods used in machine
learning and how log anomaly detection is structured. This will serve as a foundation for
understanding the subsequent sections, where we delve into log anomaly detection. By
leveraging the capabilities of machine learning algorithms, we can unlock hidden patterns,
correlations, and anomalies within log data, enabling us to make informed decisions and
take proactive measures to mitigate risks.

1.2 Overview of Machine Learning and Deep Learn-
ing:

1.3 Types of Learning

1.3.1 Supervised Learning

Supervised learning is one of the main approaches in machine learning. In this type of
learning, we start with an existing dataset that includes both inputs and their corre-
sponding outputs. The goal is to build a model capable of mapping new inputs to their
corresponding outputs based on the provided training examples.

1

Chapter 1. Fundamental Principles

Figure 1.1: Types of learning in artificial intelligence and the required data[1]

The training dataset consists of input-output pairs, also known as training examples.
Each training example consists of an input and the corresponding output that we want to
predict. The learning process involves adjusting the model’s parameters to minimize the
difference between the predicted outputs by the model and the actual outputs provided
in the training dataset.

Once our model has been trained on the training dataset, we can use it to predict the
corresponding outputs for new inputs that have not been seen during the training. This
allows us to generalize the model beyond the specific examples it was trained on[2].

Some examples of supervised learning algorithms include:

Decision Trees

Decision trees are widely used supervised learning algorithms in the field of machine
learning. They use a tree-like structure to represent decisions based on the features of a
given input. Each node in the tree corresponds to a condition or feature to check, and
each branch represents a possible response or another condition to evaluate. The leaves
of the tree represent the predicted classes or values.

2

Chapter 1. Fundamental Principles

Figure 1.2: Example of a decision tree[3]

Naive Bayes

The Naive Bayes classification model is a widely used algorithm in the field of machine
learning. It is based on Bayes’ theorem, which is a statistical method for calculating the
conditional probability of an event using prior information.

In the case of Naive Bayes, it is assumed that each feature used for classification is
independent of the others. This naive assumption simplifies the calculation of conditional
probabilities and allows for an efficient implementation of the algorithm. In other words,
it considers each feature to independently contribute to the final classification, without
considering potential interactions between them.

Figure 1.3: An example of Naive Bayes’s classification[4]

3

Chapter 1. Fundamental Principles

Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful algorithms used in machine learning for
classification and regression tasks. Their strength lies in their ability to effectively separate
different data classes using hyperplanes in a high-dimensional space.

The SVM approach is based on the concept of maximum margin. The goal is to find
the hyperplane that optimally separates the classes, by maximizing the distance between
the closest observations of each class and the hyperplane. This maximum margin helps
minimize the classification error and ensures good generalization of the model.

SVMs are particularly useful when the classes are linearly separable, meaning that
there exists a hyperplane that can perfectly distinguish them. However, through the use
of kernel functions, SVMs can also be extended to handle nonlinear classification problems
by transforming the data into higher-dimensional spaces where linear separation becomes
possible[5].

4

Chapter 1. Fundamental Principles

Figure 1.4: Support vector machine classification[6]

1.3.2 Unsupervised Learning

Unsupervised learning is an approach in machine learning where we explore and analyze
data without having predefined labels or target values. Unlike supervised learning, where
we have labeled training data, in unsupervised learning, we let the algorithm discover
hidden structures or patterns in the data.

The main goal of unsupervised learning is to find natural groups or clusters in the data
based on similarity of features or other criteria. This helps identify intrinsic relationships
and subtle patterns that can be used to group the data into coherent sets.

Figure 1.5: Unsupervised learning mechanism [7]

5

Chapter 1. Fundamental Principles

K-means

K-means is an unsupervised algorithm that uses Euclidean distance to cluster data. In
this algorithm, the data is considered as points, and it is initialized with k points and
iterated multiple times to obtain the final clusters.

Figure 1.6: K-means flow diagram[8]

1.3.3 Reinforcement Learning

Reinforcement learning is a branch of machine learning that relies on a reward system.
Unlike supervised learning where the responses are provided, in reinforcement learning,
the model learns through trial and error by interacting with an environment.

At the beginning of training, the model has no prior knowledge about the actions to
take in order to maximize the reward. It starts with a starting point and explores different
possible actions. With each action, the environment provides a reward or punishment
based on the quality of the performed action.

The model uses these rewards to adjust its strategies and learn from previous choices.
It seeks to maximize the overall reward over a period of interaction with the environment.
Reinforcement learning is often used to solve sequential decision-making problems where
the actions of an agent affect future states and obtained rewards.

1.3.4 Semi-Supervised Learning

Semi-supervised learning is a hybrid approach that combines elements of supervised and
unsupervised learning. This type of learning is particularly useful when we have partially
labeled data, meaning that only a small portion of the data is labeled while a large part
remains unlabeled.

6

Chapter 1. Fundamental Principles

Figure 1.7: Diagram of reinforcement learning[9]

The goal of semi-supervised learning is to use the labeled data to guide learning on the
unlabeled data. By leveraging the available information in the labeled data, the model
seeks to generalize and extend its knowledge to the unlabeled data.

1.3.5 Ensemble Learning

Ensemble learning refers to the technique of combining multiple models to obtain better
predictions. It includes techniques such as bagging, stacking, and boosting. Other appli-
cations of ensemble learning include assigning confidence to the model’s decision, optimal
feature selection, data fusion, incremental learning, non-stationary learning, and error
correction[5].

1.4 Overview of Anomaly detection with logs

1.4.1 Structure of an Anomaly Detection System

Log collection

Log collection plays a fundamental role in anomaly detection. Software systems regu-
larly perform logging to record the system’s state, activities, errors, and other important
events. Logs are chronological records that provide valuable information about the sys-
tem’s functioning and behavior[10]. A log typically consists of two parts: a constant part
and a variable part. The constant part is predefined in the system’s source code and
includes information such as the log’s severity level, event type, and the relevant module
or function. The variable part contains event-specific information, including the asso-
ciated message and the timestamp indicating when the log was written. In distributed
systems, logs are often collected from multiple sources, such as servers, virtual machines,
applications, and services. These logs are then centralized in a common repository for
further analysis. Log collection can be done using dedicated tools or specific software
agents configured to collect and transfer logs to the central repository.

Figure1.8 presents the log collection architecture [11].

7

Chapter 1. Fundamental Principles

Figure 1.8: Log collection architecture[11]

Log Parsing

A crucial step in the log anomaly detection process is log parsing[13] . Logs are typically
semi-structured, meaning they can have different formats, variable information, and irrel-
evant elements for analysis. To enable more accurate and efficient analysis, it is essential
to structure the logs in a way that retains only the relevant parts.

8

Chapter 1. Fundamental Principles

Figure 1.9: Log parsing example[13]

Feature Extraction

Once the logs have been collected and structured, the next crucial step in the anomaly
detection process is feature extraction. At this stage, we have log messages in textual form,
but to apply machine learning or deep learning techniques, it is necessary to transform
them into a numerical representation.

Anomaly Detection

This step involves training an anomaly detection model. It is a crucial step where the
numerical features are used to create a model capable of distinguishing normal logs from
suspicious logs. This distinction is crucial for identifying abnormal behaviors in the logs
and taking appropriate actions.

Figure 1.10: Architecture of an anomaly detection system[14]

9

Chapter 1. Fundamental Principles

The techniques used for anomaly detection in logs can be classified into su-
pervised and unsupervised approaches:

Supervised

In supervised anomaly detection, when we have a dataset of labeled logs, we can train a
deep learning or machine learning model knowing whether each log is normal or suspicious.

Unsupervised

Labeling logs can be challenging and time-consuming since there are often a large number
of logs. In such cases, unsupervised techniques such as clustering are used to circumvent
this problem. Clustering groups similar logs together and detects anomalies based on
these groupings.

1.5 Conclusion

We have shed light on the fundamental principles of machine learning. We have explored
various learning approaches, including supervised and unsupervised techniques, which
enable us to extract valuable insights from log data. Additionally, we have discussed
the crucial components of log collection, log parsing, feature extraction, and anomaly
detection, highlighting their significance in achieving accurate and efficient detection of
anomalies. By leveraging the power of machine learning, we can automate the process
of log analysis and uncover hidden patterns or abnormal behaviors that may indicate
system failures or security threats. We have set the stage for further exploration and
experimentation, as we aim to use the capabilities of machine learning in log anomaly
detection in our system.

10

Chapter 2

Methodology

2.1 Introduction

the methodology employed for the behavioral analysis in our system goes into needing
to discuss the steps taken for preprocessing the data, which involved data cleaning and
transformation to ensure its readiness for analysis. we explore the process of feature
selection, where we identify and choose relevant features that contribute to the anomaly
detection model and exclude the ones that are deemed unuseful for our particular case.

2.1.1 Our system’s conception

Our conceptual system encompasses several interconnected components that form the
foundation of our work: log data, data preprocessing, feature selection, model training,
and behavioral analysis.

Figure 2.1: concept of anomaly detection system

11

Chapter 2. Methodology

2.2 Steps taken for preprocessing

2.2.1 Data Cleaning:

Remove duplicates, irrelevant or missing data. This ensures that our data is clean and
ready for further analysis. First, we remove null data points found in the dataset. After
visualizing and inspecting the data, we discovered that there are not only missing values
but also values that are not usable (in our case filled with the character ”-”), which we
also removed by deleting the rows. After this step, we are left with 747,169 usable log
lines.

12

Chapter 2. Methodology

Figure 2.2: visualization of the number of rows with “-” character found in each column

2.2.2 Data Transformation:

Since we have unlabeled data, we will transform it based on the specific use of unsuper-
vised models. This will include normalization and conversion of categorical variables into
numerical variables. For the ”method” column, we used one-hot encoding to encode the
distinct values of the method. One-hot encoding involves creating binary columns for
each unique category in a categorical feature, with a value of 1 indicating the presence
of that category and 0 indicating its absence. This technique is used to convert categor-
ical data into a numerical format that can be used in machine learning algorithms. For
columns where we have value ranges, we used scaling to normalize the values, which in-
volves transforming the feature values into a standardized range, typically between 0 and
1. This technique is used in machine learning to ensure that features with different ranges
are on the same scale, which helps algorithms perform better. The normalization formula
involves subtracting the minimum value of the feature from each value, dividing by the
range (the difference between the maximum and minimum values), and then scaling to
the desired range. While normalization can remove the effect of outliers, it can also result
in smaller standard deviations [15].

For IP addresses, we used a mechanism to convert them into integer values.
For columns where we have text that requires more than the previous techniques

offered, there are different techniques that can be used depending on the specific nature of
the data. A common technique is to use text preprocessing methods such as tokenization,
stemming, and lemmatization[16] . Tokenization involves splitting the text into individual
words or tokens, while stemming and lemmatization involve reducing each word to its
base or root form. The technique we used is text vectorization, such as bag of words
or term frequency-inverse document frequency (TF-IDF), to represent the textual data
numerically. These techniques can help reduce the dimensionality of the data and improve
the performance of machine learning models that use textual data as input[17] .

13

Chapter 2. Methodology

After representing the text with a vectorization technique, we would obtain a large
vector that would take up too much space and require too many resources, so we need to
reduce these vectors using dimensionality reduction algorithms such as Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA), and t-Distributed Stochastic
Neighbor Embedding (t-SNE). But as the use of dimensionality reduction can affect vari-
ance, it is important to choose an appropriate method that preserves the integrity of the
data. One such method is Principal Component Analysis, which can reduce the dimen-
sionality of the data while retaining the most important information. Careful analysis of
variance is essential for selecting an optimal value for our model, balancing complexity
and accuracy to ensure robustness without sacrificing performance.

Figure 2.3: visualization of the number of components and the variance ratio

2.2.3 Feature Selection:

Select only relevant features that contribute to the anomaly detection model. This helps
reduce the dimensionality of the dataset and improves the performance of the model.

After using the initial collected data and conducting experiments and observations,
we concluded that the use of these 6 columns would be sufficient in terms of variation and
importance to build robust training data:

datetime:

The datetime column indicates the timestamp of each log entry. It can be important for
analyzing trends and patterns over time. For example, we could identify anomalies or
detect specific periods when certain activities occur more frequently, or when the user
logs in at unusual times.

14

Chapter 2. Methodology

cs-uri-stme:

The cs-uri-stem column represents the root part of the requested Uniform Resource Iden-
tifier (URI). It provides information about the specific webpage or resource that was
requested. Analyzing this column can help identify popular pages, spot potential vulner-
abilities or attack patterns, and gather insights into user behavior.

cs-username:

The cs-username column contains the username associated with each log entry. It can
be valuable for user-specific analysis and monitoring. Since our main objective is user
behavioral analysis, this column is of crucial importance.

cs(User-Agent):

The cs(User-Agent) column captures the user agent string, which provides information
about the client device or browser used to access the web application. Analyzing this
column allows us to understand the distribution of client devices or browsers and detect
abnormal or malicious user agent patterns.

sc-status:

The sc-status column represents the status code returned by the server in response to a
request. It indicates the success or failure of the request. Analyzing this column helps
determine error-prone behaviors. By examining different status codes such as 200 for
success, 404 for not found, or 500 for internal server error, we can identify abnormal
behaviors that require special attention. This can contribute to improving system quality
and reliability by addressing recurring issues and optimizing performance.

Time-taken:

The time-taken column records the duration or time taken for server processing of a
request. It provides information about the performance of the web application and can be
useful for identifying slow or resource-consuming requests, optimizing system performance,
and detecting anomalies related to response time. By analyzing this column, we can
identify abnormally long response times, bottlenecks, or system usage peaks, which can
contribute to performance optimization and improving the user experience.

As for the non-selected columns:

IP addresses:

IP addresses were not selected because they are not relevant for our analysis due to the low
number of distinct IP addresses available in the dataset. Without a significant quantity

15

Chapter 2. Methodology

of distinct IP addresses, it is difficult to extract useful information or detect IP-related
anomalies. Therefore, we chose not to include these columns in our analysis.

s-port:

The s-port column, with only two values, exhibits low variance, making it less useful for
our analysis. Since there is no significant diversity in the values of this column, it does
not provide discriminative information for detecting patterns or anomalies. Therefore, we
decided not to include this column in our analysis.

Cs-method:

The HTTP request method used is not a determining factor for identifying abnormal
patterns or behaviors. Therefore, we chose not to include this column in our analysis.

cs-uri-query:

The cs-uri-query (URI query) column was not selected as it is redundant for our analysis.
This column contains information combined from the cs-uri-stem and cs(User-Agent)
columns. Additionally, the size of the cs-uri-query column is too large to be efficiently
encoded in our analysis. Therefore, we chose not to use this column in our study.

2.2.4 2nd Set of Collected Data:

2.2.5 Preprocessing Steps:

Data Cleaning:

Similar to the first time, we had to perform the same data cleaning steps, which left us
with 3 million usable logs in this dataset.

Data Transformation:

We used the same steps, but not for each column, as in this case, we have a lot more data,
and therefore, more dimensions to consider. So, a change in the dimensionality reduction
algorithm is necessary since the PCA algorithm poses a memory demand issue that is not
available on our machine. Therefore, we opted for an algorithm that would give us the
necessary dimensionality reduction while avoiding memory shortage, which is the Trun-
catedSVD algorithm. TruncatedSVD has other advantages in our case, especially when
the output from the vectorization using the TF-IDF algorithm is sparse. TruncatedSVD
is more optimal in this case as it is specifically designed to handle sparse matrices and
performs a truncated singular value decomposition that retains the most important fea-
tures of the original matrix. This allows us to efficiently reduce the dimensionality of our
data while preserving the most significant information for our anomaly detection task.

16

Chapter 2. Methodology

2.2.6 Discussion of Challenges Faced During Data Collection
and Preprocessing:

Data Labeling Unavailability

Anomaly detection often requires labeled data to train and evaluate algorithms. How-
ever, in our research, the dataset provided by Sonatrach was unlabeled, which posed a
major challenge. The absence of labeled anomalies made it difficult to develop super-
vised anomaly detection models. Therefore, alternative approaches had to be explored to
effectively address the problem.

Limited Computing Power

Another challenge was the limited computing power available for data processing and
analysis. Anomaly detection on large datasets can be computationally intensive, requiring
significant computing resources. Due to the constraints of the machine used, processing
time and memory limitations posed additional difficulties in handling and analyzing the
dataset.

Data Noise and Inconsistencies

Raw log data often contains noise and inconsistencies, making it difficult to extract mean-
ingful information. Log entries may have missing or erroneous values, variable formats, or
irrelevant data fields. These inconsistencies had to be addressed during the preprocessing
phase to ensure accuracy and reliability in the subsequent anomaly detection analysis.

High-Dimensional Feature Space

Log data can be high-dimensional, with numerous features contributing to the complexity
of the dataset. The large number of dimensions can lead to issues such as the curse of di-
mensionality, increased computational requirements, and reduced algorithm performance.
Dimensionality reduction techniques had to be employed to mitigate these challenges and
extract the most informative features for anomaly detection.

Trade-offs in Data Preprocessing

Preprocessing decisions involved trade-offs between preserving important information and
reducing noise and irrelevant features. Determining the optimal balance between data
cleaning, feature selection, and dimensionality reduction was challenging, as different pre-
processing techniques can affect the performance and interpretability of anomaly detection
algorithms in different ways.

To overcome these difficulties, a deep understanding of the data characteristics, exper-
tise in the field, and experimentation with different preprocessing techniques were neces-
sary. By carefully addressing these challenges, our goal was to create a high-quality pro-

17

Chapter 2. Methodology

cessed dataset capable of effectively detecting anomalies and supporting accurate anomaly
detection in the subsequent stages of our research.

2.3 Explanation of Algorithm Selection

The decision to use the clustering algorithms k-means, DBSCAN, GMM, and isolation
forest in this study was motivated by the need to effectively analyze an unlabeled dataset
using reliable clustering techniques. Due to their relevance to unsupervised learning tasks
and their ability to identify underlying patterns in the data, these algorithms were specif-
ically chosen.

The k-means clustering method was selected for its simplicity and efficiency in dividing
data points into coherent clusters based on their proximity. It attempts to minimize
the sum of squared intra-cluster distances by iteratively updating the cluster centroids,
making it easy to distinguish distinct groups.

DBSCAN, on the other hand, excels in locating dense areas in the dataset while
effectively handling outliers and noise. It defines clusters as dense regions containing a
minimum number of neighboring points, enabling it to capture clusters of all sizes and
shapes.

GMM (Gaussian Mixture Model), a probabilistic model, was chosen because it can
represent each cluster as a Gaussian distribution, allowing it to capture complex data
distributions. With the ability to handle clusters of varied shapes and densities, it provides
a more nuanced view of the underlying structure of the data.

Additionally, the Isolation Forest algorithm was used to separate outlier instances
by constructing random binary decision trees as an anomaly detection tool. It assigns
anomaly scores and separates outlier values from typical data points by calculating the
average path length required to isolate an instance.

By incorporating these different clustering algorithms into our methodology, we sought
to gain useful insights, identify significant patterns, and spot potential anomalies within
the unlabeled dataset. This enhanced our understanding of the underlying data distribu-
tion and contributed to the field of anomaly detection.

2.4 Conclusion

This chapter has provided a comprehensive overview of the methodology employed in
our log anomaly detection system. We have discussed the preprocessing steps involved
in preparing the data for analysis, including data cleaning to remove duplicates and
irrelevant information, as well as data transformation techniques such as normalization
and one-hot encoding. The use of dimensionality reduction algorithms, such as Principal
Component Analysis (PCA) and TruncatedSVD, has been highlighted to effectively reduce
the dimensionality of the data without compromising its integrity. We have also addressed
the challenges encountered during data collection and preprocessing, such as the absence of
labeled anomalies, limited computing power, data noise, and inconsistencies, and the high-

18

Chapter 2. Methodology

dimensional feature space. Overcoming these challenges required careful consideration and
experimentation with various preprocessing techniques.

19

Chapter 3

Implementation

3.1 Introduction

In this chapter, we talk about the tools, libraries, and algorithms we utilized to build
our anomaly detection system. We describe the dataset that was used in our project. To
provide insights into the dataset’s distribution and patterns, visualizations of user logs by
distinct characteristics are presented. We describe how the algorithms used for anomaly
detection work and how parameters are chosen.We examine the benefits and drawbacks
of each approach and show visuals of the clustering findings.

3.2 Tools and Libraries Used:

Python:

We used the Python programming language as the foundation of our project. Python
offers a wide range of libraries and frameworks that are well-suited for data analysis and
machine learning tasks[20].

Scikit-learn:

Scikit-learn is a popular machine learning library in Python that provides a comprehensive
set of tools for data preprocessing, clustering, and anomaly detection. We leveraged its
functionalities to implement the algorithms discussed in Chapter 3[21].

NumPy and Pandas:

NumPy and Pandas are two essential Python packages for data manipulation and anal-
ysis. Pandas offers data structures and functions for handling structured data, such as
dataframes, while NumPy supports efficient numerical computations. These libraries al-
lowed us to preprocess and efficiently organize the log data[22], [23].

20

Chapter 3. Implementation

Matplotlib and Seaborn:

Matplotlib and Seaborn are visualization libraries in Python that enable us to create
various types of graphs and charts. We used these libraries to visualize the results of our
analysis, providing a clear understanding of detected anomalies and observed patterns[24],
[25].

PyQt5:

A robust framework called PyQt is used to create graphical user interfaces (GUIs). It
enables developers to easily produce interactive and aesthetically pleasing applications.
PyQt offers a smooth user experience with a variety of built-in widgets and numerous
customization options. By using PyQt, developers can create user-friendly interfaces that
enhance the functionality of their applications[26].

3.2.1 Work Environment:

Table 3.1: Machine Specifications

Machine OS CPU GPU RAM
Laptop Windows 10 i7-7700HQ Nvidia GTX 1060 16GB

3.2.2 Description of the dataset in our project

Our dataset was collected from a Windows Exchange server(2016) at the headquarters of
Sonatrach over a period of 24 hours, which gave us 1 million lines of logs. The columns
found in our dataset are as follows:

date:

The date on which the event occurred, in the format YYYY-MM-DD.

Time:

The time at which the event occurred, in the format HH:MM:SS.

S-ip:

The IP address of the server that processed the request.

Cs-method:

The HTTP method used for the request (GET, POST, PUT, HEAD, OPTIONS, RPC_IN_DATA,
RPC_OUT_DATA).

21

Chapter 3. Implementation

Cs-uri-stem:

The part of the URI of the request, which usually specifies the accessed endpoint (e.g.,
/api/users).

Cs-uri-query:

The query string of the request, which typically contains additional parameters or filters.

S-port:

The port number on which the server processed the request.

cs-username:

The username associated with the request, if any.

C-ip:

The IP address of the client that made the request.

cs(User-Agent):

The client’s user agent string, which usually specifies the type and version of the client
software used.

sc-status:

The HTTP response status code (e.g., 200, 404, 500).

Time-taken:

The time (in milliseconds) taken to respond to the request. -After using the log data
from a single day and having only 1 million logs available for training, we requested more
data, and a dataset spanning 4 days was collected for our use, consisting of 4 million log
entries.

3.2.3 Visualization of each characteristic distribution in our dataset
by user:

As part of our analysis, we present a visualization of our dataset. The dataset consists
of five key features: datetime, HTTP response, software used, endpoint, and time taken.
These features offer valuable insights into the activities and interactions within the net-
work.

22

Chapter 3. Implementation

Figure 3.1: Users logs by date and hour

23

Chapter 3. Implementation

Figure 3.2: HTTP responses by user’s logs

Figure 3.3: Users logs by software used

24

Chapter 3. Implementation

Figure 3.4: Users logs by endpoint

Figure 3.5: Time taken for each log by users

3.3 Description of the algorithms used for anomaly
detection in our logs

3.3.1 The functioning of K-means is as follows:

Initialization: Randomly select k data points to serve as initial cluster centroids.
Assignment: Determine the distance between each data point and the cluster centroids.

Each data point is assigned to the cluster with the nearest centroid.
Recalculation of centroids: After assigning each data point to a cluster, calculate new

centroids by taking the average of the coordinates of all data points belonging to each
cluster.

25

Chapter 3. Implementation

Iteration: Repeat steps 2 and 3 until a termination condition is met, such as when
the centroids no longer change significantly or when the maximum number of iterations
is reached.

Parameter selection:

To choose a value of k for K-means, we would calculate the Sum of Squared Errors (SSE),
also known as the Within-Cluster Sum of Squares (WCSS). SSE is calculated by summing
the squared distances between each data point and the centroid of the cluster it is assigned
to. It measures the total variance in the data explained by the clusters. Specifically, SSE
is calculated as follows:

SSE =
∑

(distance(point, centroid))2

A lower SSE value indicates that data points are closer to their respective centroids,
which is desirable as it indicates better intra-cluster cohesion. On the other hand, a higher
SSE value may indicate significant dispersion of data points or poor partitioning.

After obtaining SSE values for a range of k values, we plot the values and use the
elbow method, which involves finding the point on the graph that resembles an elbow.

Figure 3.6: a graph of SSE values by cluster

Analysis of the SSE graph: It appears that there is a minimal decrease in SSE values
from k values 2 to 3, which we could consider as the optimal value of k.

Advantages of applying K-means: - Ease of implementation: K-means is a straight-
forward algorithm to use. - Computational efficiency: K-means can handle large datasets
and is computationally efficient.

26

Chapter 3. Implementation

Limitations of K-means include: - K-means assumes that clusters have isotropic shapes
with similar variation in all dimensions. However, anomalies often have different shapes
and variations, making reliable identification by K-means challenging. - K-means struggles
to handle outliers as it treats them as normal data points and assigns them to the nearest
cluster. Outliers can weaken the representation of the cluster or create new clusters,
resulting in poor anomaly detection efficiency. - K-means is limited to linear boundaries
as it assumes clusters can be divided by these boundaries. Anomalies, however, can exhibit
complex and nonlinear correlations that K-means cannot detect. Due to this limitation,
K-means struggles to correctly identify anomalies in our dataset.

3.3.2 The functioning of DBSCAN:

When K-means fails to handle non-convex problems, DBSCAN, also known as Density-
Based Spatial Clustering of Applications with Noise, is a powerful technique that succeeds.
The idea is simple: a cluster is a region of high density that can take any shape and is
surrounded by a region of lower density. There is no need to determine in advance
how many clusters are expected as this statement is generally true. The process starts
by examining a small area (technically, a point surrounded by the minimum number of
possible samples). If there is sufficient density, it is considered part of a cluster.

Epsilon (�) and min_samples are two essential factors on which DBSCAN relies: The
maximum distance or radius within which points are considered neighbors is defined by
the epsilon (eps) parameter. It effectively specifies the level of spatial density at which
a point is considered a member of a cluster. The granularity of the clusters found by
DBSCAN can be adjusted by varying the value of eps. A larger epsilon value allows the
inclusion of more distant points, resulting in larger clusters, while a smaller epsilon value
leads to tighter and more compact clusters.

However, min_’samples indicates the minimum number of neighbors a point must
have to be classified as a core point. Core points in the DBSCAN algorithm are crucial as
they serve as the foundation for cluster creation. A point is considered a core point if it
has min_samples neighbors within its epsilon neighborhood. Any point within an epsilon
radius of a core point is also considered a member of the same cluster. We can control the
minimum density threshold required to identify a cluster by modifying min_samples. By
increasing min_samples, we will obtain the identification of denser and more significant
clusters.

Unlike other algorithms used in our analysis, DBSCAN posed higher resource require-
ments, making it difficult to efficiently explore a wide range of parameter combinations.
Despite these limitations, we conducted several experiments with different parameter val-
ues to discover potential clusters.

Choice of parameters:

The process of selecting parameters for DBSCAN often involves some trial and error as
the algorithm does not have a built-in method for determining the best parameter values.
Due to the absence of a precise method for determining the best parameter settings, it is

27

Chapter 3. Implementation

necessary to conduct experiments and rely on domain expertise to guide the parameter
selection process.

3.3.3 The functioning of GMM:

Due to their ability to simulate complex data distributions, Gaussian Mixture Models
(GMMs) have proven to be useful tools in anomaly detection. A probabilistic model
called GMM assumes that the data has been generated using a combination of Gaussian
distributions. Each Gaussian component in the data indicates a cluster or group.

Choice of parameters:

The parameters used for the GMM algorithm were configured to obtain two distinct
clusters, one representing normal data and the other representing abnormal data. The
chosen value for the parameter k was 2 because we wanted to have exactly two clusters.
This allowed for clear differentiation between normal observations and those considered
abnormal. By having these two distinct clusters, it was easier to take targeted actions
based on the nature of the detected anomalies. This approach resulted in more accurate
results and a better understanding of the different behaviors present in the data.

3.3.4 The functioning of Isolation Forest:

An anomaly detection approach called Isolation Forest isolates outlier values in a dataset.
It works by building a random forest of isolation trees, where each tree is constructed
by randomly selecting a feature and then splitting the data on a randomly chosen value
within the range of that feature. Each data point receives an anomaly score from the
algorithm based on the number of splits required to isolate it.

In comparison to other algorithms, the main advantage of the Isolation Forest algo-
rithm lies in its efficiency in detecting anomalies, especially in high-dimensional datasets.
It is an unsupervised learning technique that does not require labeled training data, which
is beneficial in our situation. Additionally, Isolation Forest is not affected by the presence
of irrelevant features and can handle outliers of all sizes and shapes.

Choice of parameters:

When using Isolation Forest for anomaly detection, there is an important parameter
known as the threshold. This parameter plays a crucial role in Isolation Forest as it
determines the cutoff point for classifying instances as normal or abnormal. By setting
an appropriate threshold, we can control the sensitivity of the algorithm in detecting
anomalies. A lower threshold will classify more instances as anomalies, while a higher
threshold will detect fewer anomalies.

Determining a good threshold when we don’t have ground truth can be difficult and
highly subjective.

28

Chapter 3. Implementation

3.4 Results of Each Algorithm:

3.4.1 K-means:

In our evaluation, the k-means algorithm performed poorly in both anomaly detection
and clustering analysis. Simply dividing the log file into two without considering the
subtleties of the data proved to be insufficient for our objectives. Therefore, we decided
to exclude k-means from our actual detection process.

Figure 3.7: clusters by k-means

3.4.2 DBSCAN:

We used the DBSCAN clustering algorithm to identify patterns and anomalies in the
logs. Applying DBSCAN resulted in the formation of two clusters, one of which was
significantly smaller than the other. This result poses a challenge as it suggests that the
algorithm may have missed some irregularities present in the data.

Figure 3.8: clusters by dbscan

Distribution of suspicious connections according to DBSCAN clustering:

Figure 3.9: DBSCAN clustering users by datetime logs

29

Chapter 3. Implementation

Figure 3.10: DBSCAN clustering users by time-taken logs

30

Chapter 3. Implementation

Figure 3.11: DBSCAN clustering users by endpoint logs

Figure 3.12: DBSCAN clustering users by software logs

31

Chapter 3. Implementation

Figure 3.13: DBSCAN clustering users by HTTP status response logs

3.4.3 GMM:

On the other hand, when we applied the Gaussian Mixture Model (GMM) to our log
data, the results were quite different. GMM successfully detected a larger number of
logs as anomalies compared to DBSCAN. This suggests that GMM has the potential to
capture a wider range of irregularities and anomalies in the data. Such capability could
be highly beneficial in the process of anomaly detection and resolution, as it provides a
more comprehensive understanding of system behavior.

Figure 3.14: GMM clusters

Distribution of suspicious connections according to GMM clustering:

32

Chapter 3. Implementation

Figure 3.15: GMM clustering users by datetime logs

Figure 3.16: GMM clustering users by time-taken logs

33

Chapter 3. Implementation

Figure 3.17: GMM clustering users by endpoint logs

Figure 3.18: GMM clustering users by software logs

34

Chapter 3. Implementation

Figure 3.19: GMM clustering users by HTTP status response logs

3.4.4 Isolation Forest:

The Isolation Forest algorithm proved to be more sensitive in capturing a greater number
of anomalies compared to DBSCAN. However, it did not show the same level of sensitivity
as GMM, which detected even more irregularities in the log data. A noteworthy observa-
tion is that the anomalies detected by the Isolation Forest did not follow a recognizable
pattern or distribution.

Figure 3.20: isolation forest clusters

Distribution of suspicious connections according to Isolation Forest clustering:

35

Chapter 3. Implementation

Figure 3.21: Isolation Forest clustering users by datetime logs

Figure 3.22: Isolation Forest clustering users by time-taken logs

Figure 3.23: Isolation Forest clustering users by endpoint logs

36

Chapter 3. Implementation

Figure 3.24: Isolation Forest clustering users by software logs

Figure 3.25: Isolation Forest clustering users by HTTP status response logs

3.5 The Application:

Our application is simple: it takes a log file as input, and you have the choice to apply one
of the three used algorithms. Depending on the chosen algorithm, you will receive a list of
users whose abnormal behavior has been detected. Once the algorithm is applied to the
log file, our application extracts the users who exhibited abnormal behavior. These users
can then be further examined to understand the reasons behind their atypical behavior.

37

Chapter 3. Implementation

Figure 3.26: anomaly detection application GUI

Import File:

Import a log file in Excel format for use by the application.

Apply Algorithm:

Apply the selected algorithm to the log file to detect anomalies.

38

Chapter 3. Implementation

Available Algorithms:

Example of Application Operation:

After importing a log file and applying an algorithm, users with abnormal behavior are
displayed. To analyze the abnormal logs separately in more detail, they can be saved to
an Excel file.

Figure 3.27: Example result of the application

3.6 Conclusion:

In this chapter, we presented the algorithms and the parameters used as well as the
results and analysis of our project,. We discussed the libraries and tools used throughout
our experimentation process and examined the obtained results. Our main objective
was to gather information about patterns, anomalies, and potential cybersecurity threats
present in the dataset. To showcase the application of the algorithms, we developed
a simple GUI-based application that takes a log file as input and applies the chosen
algorithm to detect abnormal user behavior. The application provides a list of users
exhibiting abnormal behavior, which can be further examined to understand the reasons
behind their atypical actions. In conclusion, we explored and analyzed multiple anomaly
detection and clustering algorithms in log data. Through our evaluation, we found that
DBSCAN, GMM, and Isolation Forest offer varying levels of performance and sensitivity.

39

General Conclusion

Detecting anomalies and efficiently analyzing logs in large companies as sonatrach can be
a daunting task manually, so there’s a need for an automated and time-saving way to go
about it which is presented by the use of machine learning.

In this thesis, we focused on the behavioral analysis of log data for anomaly detection
and clustering in the domain of cybersecurity. We evaluated and compared various ma-
chine learning algorithms, including K-means, DBSCAN, GMM, and Isolation Forest, to
identify patterns, anomalies, and potential threats in the unlabeled sonatrach log dataset.
The evaluation results revealed that K-means performed poorly in both anomaly detec-
tion and clustering analysis, mainly due to its simplistic approach of dividing the log file
without considering subtle irregularities. Therefore, it was excluded from our actual de-
tection process. On the other hand, DBSCAN successfully identified clusters, but one of
them was significantly smaller, suggesting that it may have missed certain irregularities
in the data. GMM demonstrated a higher sensitivity in detecting anomalies compared to
DBSCAN, indicating its potential to capture a wider range of irregularities. Isolation For-
est, while sensitive in capturing anomalies, did not match the performance level of GMM.
Notably, anomalies detected by Isolation Forest did not exhibit recognizable patterns or
distributions. Moreover, we developed an application that allows the network engineer
to input log files and apply the selected algorithms to detect abnormal behavior. This
application facilitates the analysis of abnormal logs, enabling a deeper understanding of
the reasons behind such behavior.Through our evaluation, we have found that DBSCAN,
GMM, and Isolation Forest offer varying levels of performance and sensitivity. For further
examination and use of deep learning models and techniques ,sonatrach would need to do
a labeling process for the logs to have precision and more applicability to the work.

40

Bibliography

. [1] M. Mohssen, Machine Learning Algorithms and Applications.
[2] R. Susmita, “A Quick Review of Machine Learning Algorithms”
[3] “decision tree.” https://www.saedsayad.com/decision_tree.html
[4] “naive bayes.” https://kdagiit.medium.com/naive-bayes-algorithm-4b8b990c7319
[5] B. Mahesh,“Machine Learning Algorithms - A Review”
[6] “support vector machine.” https://www.sciencedirect.com/topics/computer-science/support-
vector-machine
[7] “unsupervised learning.” https://www.tibco.com/reference-center/what-is-unsupervised-
learning
[8] Y. Zhang, New Advances in Machine Learning.
[9] “reinforcement learning.” https://towardsdatascience.com/reinforcement-learning-101-
e24b50e1d292
[10] Zhuangbin et al, “Experience Report: Deep Learning-based System Log Analysis for
Anomaly Detection”
[11] “log collection.” https://community.netwitness.com/t5/netwitness-platform-online/log-
collection-architecture/ta-p/669276
[12] “Tools and Benchmarks for Automated Log Parsing”, doi: https://doi.org/10.48550/arXiv.1811.03509.
[13] “log parsing.” https://www.researchgate.net/figure/A-simple-example-of-log-parsing-
Log-parsing-converts-unstructured-log-messages-into_fig1_338606640
[14] “anomaly detection structure.” https://www.mdpi.com/2076-3417/13/8/4930
[15] “Feature Engineering: Scaling, Normalization, and Standardization.” https://www.analyticsvidhya.com/blog/2020/04/feature-
scaling-machine-learning-normalization-standardization/
[16] “Text Normalization for Natural Language Processing (NLP).” https://towardsdatascience.com/text-
normalization-for-natural-language-processing-nlp-70a314bfa646
[17] “Understanding TF-IDF: A Traditional Approach to Feature Extraction in NLP.”
https://towardsdatascience.com/understanding-tf-idf-a-traditional-approach-to-feature-extraction-
in-nlp-a5bfbe04723f
[18] G. Bonaccorso, Machine Learning Algorithms.
[19] “Anomaly Detection Using Isolation Forest in Python.” https://blog.paperspace.com/anomaly-
detection-isolation-forest/

41

[20] “python website.” https://www.python.org/

[21] “Scikit-learn.” https://scikit-learn.org/

[22] “NumPy.” https://numpy.org/

[23] “Pandas.” https://pandas.pydata.org/

[24] “Matplotlib.” https://matplotlib.org/

[25] “Seaborn.” https://seaborn.pydata.org/

[26] “Pyqt5.” https://doc.qt.io/

42

	acknowledgements
	Abstract
	Résumé
	Presentation of the host organization
	Motivation for our project
	General Introduction
	Fundamental Principles
	Introduction
	Overview of Machine Learning and Deep Learning:
	Types of Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Semi-Supervised Learning
	Ensemble Learning

	Overview of Anomaly detection with logs
	Structure of an Anomaly Detection System

	Conclusion

	Methodology
	Introduction
	Our system’s conception

	Steps taken for preprocessing
	Data Cleaning:
	Data Transformation:
	Feature Selection:
	2nd Set of Collected Data:
	Preprocessing Steps:
	Discussion of Challenges Faced During Data Collection and Preprocessing:

	Explanation of Algorithm Selection
	Conclusion

	Implementation
	Introduction
	Tools and Libraries Used:
	Work Environment:
	Description of the dataset in our project
	Visualization of each characteristic distribution in our dataset by user:

	Description of the algorithms used for anomaly detection in our logs
	The functioning of K-means is as follows:
	The functioning of DBSCAN:
	The functioning of GMM:
	The functioning of Isolation Forest:

	Results of Each Algorithm:
	K-means:
	DBSCAN:
	GMM:
	Isolation Forest:

	The Application:
	Conclusion:

	General Conclusion
	Bibliography

