
University of Blida 1

Faculty of Sciences

Department of Informatics

Master Thesis

Option : Informatic Systems and Networks

Bioinspired Metaheuristic based Big Data
Uncertain Itemset Mining Framework

Presented By :

Kahlia Dounia Kheniche Ikram

In front of a jury composed of:

Ms. HIRECHE Celia President

Ms. TEBBI Hanane Examiner

Ms. ZAHRA Fatma Zohra Supervisor

2021/2022

Acknowledgement

In the name ofAllah, the most Beneficent and mostMerciful

We thank Allah for giving us health, strength to survive, as well as the audacity to

overcome all the difficulties and the will to start and complete this modest work.

We thankMs. ZAHRA very warmly for having supervised us, as well as for her

availability and her constructive remarks which were very useful to us throughout

our project.

We thank all of our Department of Informatics teachers of the Faculty of Sciences of

BLIDA 1.

We would like to thank the jury members for their interest in judging our work.

We also thank Zakaria Ziraoui and Abdenour Aba for their sincere contribution

which helps us to complete this project.

Finally, our thanks go to everyone who has contributed, directly or indirectly away, to

the culmination of this work.

We address a particularly emotional thought to our friends who have made our long

years of study enjoyable.

AlHamdulilah

Dedication

“. . Thank you Allah for the beautiful life that you have granted me . . ”

On successfully completing my graduation, I dedicated the people dearest to me, and that is the

least I can do for them, because without their encouragement I will never reach this important

moment in my life.

To my father, my king Omar, who made all sacrifices with a smile on his face, he worked hard for

me for so many years, he is my strength in difficult times, you are the one who chose this specialty

for me, so the least I can do is dedicate to you this success, and wherever life takes me, I will

always be thankful to you my Dad.

To my beautiful mother, my loving and selfless Amel, there is no one else in this world who will be

as happy as you will be on this day. I appreciate how you always worked so hard to show your love

for me. I want you to always know that I love you and cherish you more than life itself, and wish to

become half of the person you are!

To my big sister, Roumaissa. Thank you sister for always watching out for me, and protecting me

from others, letting me tag along even though you didn't really want to, and being simply the best

big sister ever. I love you and am so glad that we are sisters.

To my little sister, Cheyma. Thank you sister for always being there for me when I needed you

most, you have always loved me during my worst period, for your patience and understanding, for

bringing so much love and laughter into the world.

To my most special aunt, Nacera. Thank you for all of your years of love and support. I appreciate

everything you have ever done for me. You are the most supportive, reliable and most kind hearted

woman.

To my binomial and my bestie, Dounia Kahilia is the sister of my soul, and her beautiful family.

To my lovely cousins, which are special to me, Imen, Lilya, Meriem and Nesrine.

To my dearest friends Djalila, Ahlem and Chaimaa.

To my lovely cats, Oreo, Mchimech and Minou.

And for all Kheniche and Aksouh families.

Ikram Kheniche. . .

Dedication

‘The first thing is to thank Allah who has enabled me to reach this stage of my life after effort and

trouble and fatigue..’

I want to thank my family who has supported me throughout my life..

To my mother, Fatiha. You are the definition of irreplaceable, mom. Thank you for all that you

sacrificed for me, and for always loving me and believing in me. I love you. I couldn’t have

accomplished everything I have without you. You have cared for me like no one else ever could. I

will forever appreciate you.

To my late father, Mohammed. Thank you for giving me the most wonderful and unforgettable

memories anyone could ever have. I know you will be proud of me, I can imagine how big your

smile would be on my graduation day. I did it Dad..

To my lovely sister, Amira. You give so much and always encourage me to be my best self. Thank

you for always showering me with love and support, my darling sister.

To my brothers, Abdallah and Rayan. I am the luckiest person in the whole world to have brothers

like you. I am thankful to have you in my life.

And thank my sister who was not born by my mother Ikram Kheniche and her adorable family.

To my aunts, Malika, Ahlem and Zahia. I am so fortunate to have such amazing Aunts like you.

Thank you for being the greatest around..

To my beautiful cousins, Manal, Wissam and Amina.

To Yahia. Thank you for your support. You are a member of my family and I really appreciate that

you were always there for us.

To my best friend Zakaria Ziraoui.

Dounia Kahilia. . .

Abstract

Uncertain pattern mining is considered as an NP-Hard problem due to its complexity and its

execution time consummation. The problem is amplified in the Big Data era. Thus, we need to use

techniques that don’t require prior knowledge of the search space as the metaheuristics algorithms,

which use natural theories based on randomness.

This work deals with the uncertainty of data when extracting frequent patterns from big

uncertain (probabilistic) Datasets (BDUPM for Big Data Uncertain Pattern Mining). In addition to

that, the BDUPM task is addressed as a combinatorial optimization problem in this study. In fact,

we proposed three metaheuristic-based algorithms that are inspired from the Particle Swarm

Optimization (PSO), Bee Swarm Optimization (BSO) and Genetic Algorithms (GA), for the

purpose of extracting unexpected useful frequent patterns that help to get useful pieces of

information to make trusted decisions.

The proposed algorithms MRPSO-UFIM, MRBSO-UFIM and MRGA-UFIM are employed

with the MapReduce programming model in a parallel and distributed environment, and examined

based on the number of frequent itemsets retrieved, and computational time. The experiments have

shown the efficiency of our proposed solutions when tested with several uncertain datasets.

Key words : Frequent Pattern Mining, Uncertain Data, Big Data, Particle Swarm

Optimization, Genetic Algorithms, Bee Swarm Optimization.

Résumé

L’extraction de motifs incertains est considérée comme un problème NP-Hard, en raison de

sa complexité et de sa consommation de temps d’exécution. Le problème est amplifié à l’ère des

Big Data. Ainsi, nous devons utiliser des techniques qui ne nécessitent pas de connaissance

préalable de l'espace de recherche comme les algorithmes métaheuristiques, qui utilisent des

théories naturelles basées sur le hasard.

Ce travail traite l’incertitude des données lors de l’extraction de motifs fréquents à partir de

grands ensembles de données incertaines (probabilistes) (BDUPM pour Big Data Uncertain Pattern

Mining). En outre, la tâche BDUPM est abordée comme un problème d’optimisation combinatoire

dans cette étude. En fait, nous avons proposé trois algorithmes métaheuristiques inspirés de

l’optimisation des essaims de particules (PSO), de l’optimisation des essaims d’abeilles (BSO) et

des algorithmes génétiques (GA), dans le but d'extraire des modèles utiles inattendus qui aident à

obtenir des informations utiles pour faire des décisions fiables.

Les algorithmes proposés MRPSO-UFIM, MRBSO-UFIM et MRGA-UFIM sont utilisés

avec le modèle de programmation MapReduce dans un environnement parallèle et distribué, et

examinés en fonction du nombre d'itemsets fréquents récupérés et du temps de calcul. Les

expérimentations ont montré l’efficacité de nos solutions proposées lorsqu’elles sont testées avec

plusieurs ensembles de données incertains.

Mots-clés : Extraction des motifs fréquents, Données incertaines, Big Data, Optimisation

des essaims de particules, Algorithmes génétiques, Optimisation des essaims d’abeilles.

ملخص

تـتضخمحـيثتـنفيذه.وقـتواسـته��كتـعقيدهبـسبـبصـعبةمـشك�ةا�ـمؤكـدا�غـيرا�تـعدينيـعتـبر

بـمساحةمـسبقةمـعرفةتـتط�ب��تـقنياتاستـخدامإ�ىنـحتاجوبا�تـا�ي،ا�ضـخمة.ا�ـبياناتعـصرفـيا�ـمشك�ة

ا�عـشوائية.عـ�ىا�قـائمةا�طـبيعيةا�نـظرياتتـستخدموا�تـيميـتاهيـرستيك،كـخوارزميـاتا�بـحث

مـجموعاتمـنا�مـتكررةا��نـماطاسـتخراجعـندا�ـبياناتفـيا�يـقينعـدممـعا�ـعملهـذايـتعامل

ا�ضـخمة).��ـبيـاناتا�مـؤكدةا�ـغيـرا��نـماط�ـتعديـنBDUPM((ا��حـتما�ية)ا�ـمؤكدةغـيرا�كـبيرةا�ـبيانات

خـوارزمـياتثـ��ثاقـترحناحـيث.إنـدماجيتـحسينكمـشك�ةBDUPMمـهمـةتـناوليتـمذ�ك،إ�ـىبا��ضـافة

وا�خوارزميات)BSO(ا�نحلسربوتحسين)PSO(ا�طيورسربتحسينمنمستوحاةميـتاهيرستيكع�ىقائمة

مـنا�مفـيدةا��جـزاءعـ�ىا�حـصـولفـيتـساعدمـتوقعـةغـيرمفـيدةأنمـاطاستخـراج�غـرض),GA(ا�جينيـة

موثوقة.قـرارات��سـتخراجا�مـقدمةا�ـمـعـ�ـومـات

مـعMRBSO-UFIMوMRGA-UFIMوMRPSO-UFIMا�مـقترحةا�خـوارزمـياتاسـتخدامتـم

ا�ـمتـكـررةا�ـعنـاصرعـددعـ�ىبـنـاءًفـحصهـاوتـم،موزعـةومتـوازيةبيـئةفيMapReduceا�ـبرمـجةنـمـوذج

بـيـانـاتع�ىا�مـختبرةا�ـمـقترحةحـ�ـو�ناكـفـاءةا�ـتجـاربأظـهـرتا�مـستـغرق.وا�ـوقـتاسـتخراجـهـاتـما�ـتي

ومتعـددة.ومؤكـدةغير,مـخت�فة,ضـخمة

ا�ـطيور،سربتحسينا�ضخمة،ا�بياناتا�مؤكدة،غيرا�بياناتا�متكررة،ا��نماطتعدين:مفتاحيةك�مات

ا�نحل.سربتحسينا�جينية،ا�خوارزميات

Contents

LIST OF ABBREVIATIONS. 8

LIST OF FIGURES. 9

LIST OF TABLES . 12

General Introduction. 14

Chapter I : Uncertain Itemsets Mining . 18

I. Introduction. 19

II. Precise Pattern Mining . 19

A. Precise Data . 19

B. Frequent Pattern Mining from Precise Data . 20

1. Definition . 20

2. Frequent Pattern Mining Algorithms . 20

2.1. Apriori Algorithm . 20

2.2. FP-Growth Algorithm . 21

2.3. Eclat Algorithm . 22

C. High Utility Pattern Mining from Precise Data . 23

1. Definition. 23

2. Efficient Algorithms for High-Utility Itemset Mining. 24

2.1. HUI-Miner Algorithm. 24

2.2. Utility Pattern Growth Algorithm. 24

III. Uncertain Pattern Mining . 25

A. Uncertain Data . 25

B. Frequent Pattern Mining from Uncertain Data . 26

1. Definition. 26

2. Frequent Pattern Mining Algorithms. 27

2.1. UApriori Algorithm. 27

2.2. UF-Growth Algorithm . 29

2.3. UEclat Algorithm . 30

C. High Utility Pattern Mining from Uncertain Data. 31

1. Definition. 31

2. Potential High Utility Itemset Mining Model. 33

2.1. PHUI-UP Algorithm . 35

https://docs.google.com/document/d/1EOlvoXelLPbS5BGaloH3IwhNKALwVlf6UAglZkIVGgw/edit#bookmark=id.r1q37vv1sqry
https://docs.google.com/document/d/1EOlvoXelLPbS5BGaloH3IwhNKALwVlf6UAglZkIVGgw/edit#bookmark=id.r1q37vv1sqry
https://docs.google.com/document/d/1EOlvoXelLPbS5BGaloH3IwhNKALwVlf6UAglZkIVGgw/edit#bookmark=id.r1q37vv1sqry
https://docs.google.com/document/d/1EOlvoXelLPbS5BGaloH3IwhNKALwVlf6UAglZkIVGgw/edit#bookmark=id.r1q37vv1sqry
https://docs.google.com/document/d/1EOlvoXelLPbS5BGaloH3IwhNKALwVlf6UAglZkIVGgw/edit#bookmark=id.r1q37vv1sqry

2.2. PHUI-List Algorithm . 37

IV. Conclusion . 39

Chapter II : Big Data Uncertain Pattern Mining . 40

I. Introduction . 41

II. Background . 41

A. Uncertain Big Data .41

B. Paradigms of Big Data. 43

1. MapReduce . 43

2. Spark . 43

3. Graphic processing unit(GPU) . 44

4. Multi-Core computing . 44

5. Grid computing . 45

III. Parallel Frequent Pattern Mining Algorithms for Big Data . 45

A. MR-Growth . 45

B. MR-PUFGrowth Algorithm. 46

C. MR-UVEclat Algorithm . 46

D. BigAnt Algorithm . 46

E. PNDUA Algorithm . 46

F. PuFIM Algorithm . 47

G. ApproxFP Algorithm.. 48

IV. Comparison and Discussion . 48

V. Conclusion . 52

Chapter III : Bioinspired Metaheuristics and Pattern Mining 53

I. Introduction. 54

II. Metaheuristics. 54

III. Population Based Metaheuristics . 56

A. The Initial Population . 57

B. The Generation. 57

C. The Selection. 57

D. The Stopping Criterion . 58

IV. Algorithms using Population Based Metaheuristic . 58

A. Evolutionary Algorithms. 58

1. Genetic Algorithm. 59

B. Swarm Intelligence Algorithms. 62

1. Particle Swarm Optimization Algorithm . 63

2. Bee Swarm Optimization Algorithm . 65

V. Conclusion. 67

Chapter IV : The Proposed Approaches. .68

I. Introduction. 69

II. Proposed Solution. 69

A. MRExpSup solution (MapReduce#1) . 70

III. MRPSO-UFIM framework . 72

A. MRPSO solution (MapReduce#2). 75

1. MRPSO mapper function . 78

2. MRPSO reducer function . 80

IV. MRBSO-UFIM framework. 80

V. MRGA-UFIM framework. 83

A. MRGA solution (Map#3) . 86

VI. Conclusion. 87

Chapter V : Tests and ValidatioN . 88

I. Introduction .89

II. Experimental Environment. .89

A. Hardware Environment .89

B. Software Environment . 89

III. Experimental datasets and parameters. 90

A. Presentation of the used Datasets . 90

B. Parameters initialization . 90

IV. Results and Comparison . 92

A. Small dataset, Few number of items. .92

B. Small dataset, Average number of items .96

C. Large dataset, Few number of items . 102

V. Conclusion .105

General Conclusion .106

I. Contributions and summary of experimental findings. .107

II. Limits and Future work. 108

References. 109

List Of abbreviations

ARM : Association Rule Mining.

BSO : Bee Swarm Optimization.

EA : Evolutionary Algorithms.

ECA : Evolutionary Computation Algorithm.

Eclat : Equivalence Class Transformation.

EFIM : Efficient Frequent Itemset Mining.

EP : Evolutionary Programming.

ES : Evolutionary Strategies.

expSup : Expected Support.

FIM : Frequent Itemsets Mining.

FP-growth : Frequent Pattern growth.

FPM : Frequent pattern Mining.

FP-tree : Frequent Pattern tree.

GA : Genetic Algorithm.

Gbest : Global Best.

GP : Genetic Programming.

GPU : Graphic Processing Units.

HDFS : Hadoop Distributed File System.

HEWI-UApriori : High Expected Weighted Itemset Uncertain Apriori.

HPI : High Potential Itemset.

HTWPUI : Transaction Weighted Probabilistic and Utilization Itemset.

HUI : High Utility Itemset.

HUI-Mine : High Utility Itemset Miner.

HUPM : High Utility Pattern Mining.

HUPs : High Utility Patterns.

IDE : Integrated Development Environment.

JDK : Java Development Kit.

LGS : Local-trimming, Global-pruning and Single-pass patch-up.

MBP : Multi Back Propagation.

minSup : Minimum Support.

MR : MapReduce.

MRBSO-UFIM : MapReduce Bee Swarm Optimization Uncertain Frequent Itemset Mining.

MRExpSup : MapReduce Expected Support.

MR-Growth : MapReduce Growth.

MRGA-UFIM : MapReduce Genetic Algorithm Uncertain Frequent Itemset Mining.

MRPSO-UFIM : MapReduce Particle Swarm Optimization Uncertain Frequent Itemset Mining.

MR-PUFGrowth : MapReduce Uncertain Frequent Pattern Growth.

MR-UV-Eclat : MapReduce Uncertain Vertical Equivalence Class Transformation.

NP-hard : Non deterministic Polynomial time hardness.

Pbest: Personal Best.

PbM : Population based Metaheuristics.

PFIs : Probabilistic Frequent itemsets.

PHUI-List : Potential High Utility Itemset List.

PHUIM : Potential High Utility Itemset Mining.

PHUI-UP : Potential High Utility Itemset Mining Upper bound based mining.

PNDUA : Parallel Normal Distribution Based UApriori.

PSO : Particle Swarm Optimization.

PuFIM : Parallel Uncertain Frequent Itemset Mining.

PUF-Tree : Uncertain Frequent Pattern Tree.

RAM : Random access memory.

RDD : Resilient Distributed Dataset.

SI : Swarm Intelligence.

Tidset : Transaction Identifiers set Table.

TWPUDC : Transaction Weighted Probabilistic and Utilization Downward Closure.

TWU : Transaction Weighted Utility.

UApriori : Uncertain Apriori.

UF-growth : Uncertain Frequent Pattern growth.

UFIM : Uncertain Frequent Itemset Mining.

UFPM : Uncertain Frequent Pattern Mining.

UF-tree : Uncertain Frequent Pattern tree.

UF-Trees : Uncertain frequent Trees.

UHUPM : Uncertain High Utility Pattern Mining.

UP-Growth : Utility Pattern Growth.

Utidset : Uncertain Transaction Identifiers set Table.

UV-Éclat : Uncertain Vertical Equivalence Class Transformation.

List Of Figures
Figure.1: Deterministic basket market database table. .19

Figure.2: The Apriori Algorithm process. 20

Figure.3: The FP-Growth Algorithm process. 21

Figure.4: Horizontal and vertical representation of data. 21

Figure.5: The Eclat Algorithm process. 22

Figure.6: High utility deterministic database table. 23

Figure.7: Uncertain weather database and accuracy information. 25

Figure.8: The constructed PU-lists of . 37𝐻𝑇𝑊𝑃𝑈𝐼1

Figure.9: The classifications of the metaheuristic approach. 54

Figure.10: The general process of the Population-based Metaheuristic. 55

Figure.11: The Evolutionary-based PbM versus the Blackboard-based PbM. 56

Figure.12: The general process of Evolutionary Algorithms(EAs) . 58

Figure.13: The Genetic Algorithms process. 59

Figure.14: The different terminologies in the representation problem phase. 60

Figure.15: The general process of the Swarm Intelligence branch. 62

Figure.16: The diagram of the Particle Swarm Optimization Algorithm process 63

Figure.17: The Pseudo-Code of the Bee Swarm Optimization Algorithm process 65

Figure.18: The schematic representation of the distributed cluster.. 70

Figure.19: The schematic representation of the distributed cluster . 70

Figure.20: The schematic representation of the MRExpSup solution function 20

Figure.21: The proposed MRPSO-UFIM pseudo-code . 72

Figure.22: Generating initial population via heuristic method. 72

Figure.23: A particle local optimum situation . 73

Figure.24: The proposed PSO MapReduce solution pseudo-code. 76

Figure.25: The proposed MRBSO-UFIM pseudo-code . 80

Figure.26: The Determination of the Search Area . 81

Figure.27: The proposed MRGA-UFIM pseudo-code . 83

Figure.28: The basic steps for the creation of new parents. 84

Figure.29: The proposed GA Mapper solution pseudo-code 85

Figure.30:The MRPSO-UFIM program simulator. 90

Figure.31: The representation of the UBChess first uncertain transaction . 91

Figure.32: MRPSO obtained frequent itemsets, runtime based on the #iterations (Examination#1,

Small) . 92

Figure.33: MRGA obtained frequent itemsets, runtime based on the #iterations (Examination#1,

Small). 92

Figure.34: MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Small). 93

Figure.35: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Small) . 93

Figure.36: 36: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Small). 94

Figure.37: MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Small).. 94

Figure.38: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Test#1, Small). .. 95

Figure.39: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Test#1, Small). 95

Figure.40:MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Test#1, Small). 96

Figure.41: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Test#2, Small). .. 96

Figure.42: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Test#2, Small) . 97

Figure.43: MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Test#2 , Small). 97

Figure.44: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Test#1, Small). 98

Figure.45: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Test#1, Small). .. 98

Figure.46: MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Test#1, Small). .. 99

Figure.47: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Test#2, Small). .. 99

Figure.48: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Test#2 , Small). 100

Figure.49: MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Test#2, Small). 100

Figure.50: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Large).. 101

Figure.51: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Large). 102

Figure.52: MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#1,

Large). 102

Figure.53: MRPSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Large). 103

Figure.54: MRGA obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Large). 103

Figure.55:MRBSO obtained frequent itemsets, runtime based on the #iterations(Examination#2,

Large) .. 104

List Of Tables

Table.1: Deterministic Utidset vertical representation of all items. .. 30

Table.2: A Transactional uncertain database D .. 31

Table.3: The profit table. 31

Table.4: The final derived PHUIs for the example uncertain database. 36

Table.5: Comparative study of different FPM algorithms from big uncertain data. 48

Table.6: The used datasets in the experiments. 89

Table.7: The fixed control parameters. .. 90

Table.8: MRPSO Examination#1 coordination(Small). 92

Table.9: MRGA Examination#1 coordination (Small). .92

Table.10: MRBSO Examination#1 coordination (Small). 93

Table.11: MRPSO Examination#2 coordination(Small) . 93

Table.12: MRGA Examination#2 coordination (Small). .. 94

Table.13: MRBSO Examination#2 coordination (Small). 94

Table.14: MRPSO Examination#1, Test#1 coordination(Small). 95

Table.15: MRGA Examination#1, Test#1 coordination (Small). 95

Table.16: MRBSO Examination#1, Test#1 coordination (Small). 96

Table.17: MRPSO Examination#1, Test#2 coordination(Small). 96

Table.18: MRGA Examination#1, Test#2 coordination (Small). 97

Table.19: MRBSO Examination#1, Test#2 coordination(Small). 97

Table.20: MRPSO Examination#2, Test#1 coordination(Small). 98

Table.21: MRGA Examination#2, Test#1 coordination(Small). .98

Table.22: MRBSO Examination#2, Test#1 coordination(Small) . 99

Table.23: MRPSO Examination#2, Test#2 coordination(Small). 99

Table.24: MRGA Examination#2, Test#2 coordination(Small). 100

Table.25: MRBSO Examination#2, Test#2 coordination(Small). 82

Table.26: MRPSO Examination#1 coordination(Large). 101

Table.27: MRGA Examination#1 coordination(Large). 102

Table.28:MRBSO Examination#1 coordination(Large). .102

Table.29: MRPSO Examination#2 coordination(Large). 103

Table.30: MRGA Examination#2 coordination(Large). 103

Table.31:MRBSO Examination#2 coordination(Large) . 104

general introduction

Nowadays, since we are in the information age, all domains of life such as big companies,

health sectors, public or financial utilities …etc, necessitate to receive, store, retrieve, transmit, and

manipulate a huge amount of clients rich information, they may be structured, semi-structured or

General introduction

unstructured, and these collections are combined together to constitute massive imperfect data, also

known as the Big Data.

One of the concepts of Big Data is the veracity that deals with the uncertainty of data via

generally the probabilistic theory where the possibilistic basis handles data imprecision. On the

other hand, evidence theory can treat uncertainty, imprecision and incompleteness of data together.

All of the mentioned concepts make Big Data something too large to be analyzed by humans. Best

reduced by ex-McKinsey consultant Allen Bonde, “Big data is about machines, while small data is

about people”.

To process and explore these huge amount of data, we need to use one of the important and

well known Data Mining tasks, which is the Frequent Pattern Mining technology(FPM), it is a

process for extracting valuable and pertinent information from datasets to generate novel,

non-trivial, implicit and interesting patterns that help in predicting decisions and strategies

depending on a user specified threshold taking a pattern as an itemset, it is a necessary data

analytics concept that helps the other data mining tasks like clustering, indexing,

classification…etc, but we need to keep in consideration its complications, where we cannot use the

traditional FPM techniques to address Big Data FPM, as a reason to:

● The immensity of the datasets volume, high level of velocity and variety.

● The size of the output of frequent itemsets mining algorithms which is larger than the input

in many cases.

● The uncertainty of data which is an inherent property in various emerging applications such

as geolocation-based services, sensor-based, monitoring systems and data integration.

● The huge count of items required to represent an object in many domains which means an

exponential size of itemsets search space.

● The need for low frequency threshold itemsets in Big Data.

Therefore, these difficulties attracted researchers to develop a specific exact and traditional

approximation algorithms using one of the most Big Data paradigms, the MapReduce to be able to

address one or more of the aforementioned issues but not all, and they still suffer in many terms, the

larger the data, the more complex the solution space, they becomes slower and more difficult to

validate, especially the multiple scans of the data, consequently to that, the FIM problematic

become an NP-Hard problem and to solve it we need more non traditional techniques and strategies

14

General introduction

to boost up the performance of the mining process for large, uncertain data sets by transforming this

issue into a combinatorial optimization problem to search for the best and optimal resolution out of

all possible solutions.

We need to always keep in mind that Big Data volume grows with time, that makes this

optimization problem inconsistent. It is not possible to use heuristics to handle it, so a different

optimization approach is employed, known as metaheuristics, where their global idea was extracted

from our various natural elements such as evolutionary or swarm intelligence procedures.

In our case, all the previously mentioned methodologies and drawbacks inspired us to take

on the Big Data challenge, and to address the probability theory that means we will deal with

Uncertain Frequent Pattern Mining (UFPM) Big Data. Where we didn’t employ just one method,

but, we combined several ideas that help us to propose three efficient frameworks that perform the

UFPM task for the purpose of maximization, our contributions is as follows:

The first proposed algorithm was the MRPSO-UFIM that refer to MapReduce Particle

Swarm Optimization framework for Uncertain Frequent Itemsets Mining, the second one is the

MRBSO-UFIM that means MapReduce Bee Swarm Optimization algorithm for Uncertain Frequent

Itemsets Mining, and lastly the MRGA-UFIM that is identified as MapReduce Genetic Algorithm

for Uncertain Frequent Itemsets Mining. These frameworks are based on three well-known

metaheuristics PSO, BSO and GA algorithms with more enhancements, in a distributed Hadoop

environment via a modified MapReduce echnique that also includes an extra couple of

parallelization models.

The rest of this thesis is divided into five chapters and structured as follows:

Chapter I : Uncertain frequent pattern mining

This chapter defines the uncertain data based on the probabilistic theory and reviews the

existing frequent and high utility pattern mining algorithms from uncertain datasets.

Chapter II : Big Data Uncertain pattern mining

This chapter is mostly a survey that introduces the uncertain Big Data and its different

available paradigms, it also expresses the algorithms suggested by researchers, which work with

one or more presented paradigms, followed by a simple comparison between them.

Chapter III : Metaheuristics

15

General introduction

This chapter is related to the natural phenomena technique, the metaheuristics, where it

details its methods, and explains the three based metaheuristic algorithms.

Chapter IV : The proposed Solution

This chapter describes our proposed solution, it summarizes the steps that we have followed

to design our frameworks, with a detailed explanation of all the implemented ideas.

Chapter V : Test and Validation

In this chapter we present our tests and validation of the proposed solution and report the

obtained results through performance tables and plots.

16

Chapter I:

Uncertain Itemsets

Mining

Chapter I Uncertain Itemsets Mining

I. Introduction

Many existing data mining algorithms search interesting patterns from transactional

databases of precise data. However, with the rapid development of data acquisition and data

processing technologies, various forms of complex data have emerged, like uncertain data. Thus, in

many applications, the existence of an item in a transaction is best captured by a likelihood measure

or a probability, because we are living in an uncertain world, in which uncertain data can be found

almost everywhere.

In this chapter, we review some basic concepts and rules with the recent algorithmic

development on mining such itemsets from data with the two mining techniques: frequent itemset

mining, and high utility itemset mining. First, we gave a brief comprehension about precise data and

their frequent pattern mining algorithms, the Apriori, the FP-growth, the Eclat algorithms, and their

high utility pattern mining algorithms, the HUI-Miner, and the Utility pattern growth algorithms.

Since our paper focus on uncertainty, therefore, we presented the uncertain data and discussed the

frequent pattern mining algorithms from uncertain data proposed by researchers, the UApriori, the

UF-Growth, the UEclat algorithms, and the algorithms for mining potential high utility itemsets, the

PHUI-UP, the PHUI-List algorithms.

II. Precise Data Mining

A. Precise Data

Precise, certain, or deterministic data is the traditional type of data in which the presence

and the absence of items in transactions of a database is certain, an example of this type of database

is illustrated in Figure.1 (Chauhan, 2019) which describes lines as transactions and columns as the

total items, where the existence of an item in a transaction is 1 else is 0.

18

Chapter I Uncertain Itemsets Mining

Figure.1: Deterministic basket market database table.

To mine patterns from precise databases, researchers were interested in two well known data

mining tasks which are the frequent pattern mining and the high utility pattern mining.

B. Frequent Pattern Mining from Precise Data

1. Definition

Frequent pattern mining (FPM) is a fundamental data mining task that aims to

discover implicit, previously unknown and potentially useful information and valuable

knowledge in terms of sets of frequently occurring sets of items (Aggarwal & Han, 2014),

objects or events. Most frequent pattern mining algorithms find patterns from traditional

transaction databases, in which the content of each transaction of items is definitely known

and precise.

2. Frequent Pattern Mining Algorithms

2.1. Apriori Algorithm

Apriori (Agrawal & Srikant, 1994), is an algorithm that mines precise static

databases. Basically it can be described recursively in level-wise search technique. Let's

give a summary, the Apriori algorithm comprises two steps as presented in Figure.2 (Jain,

2017), which are ‘join’ and ‘prune’ operations, which are repeated over and over again.

First, it generates candidates then checks the support values from the occurrences of those

candidates within the database. A minimum support threshold minSup is defined before the

algorithm execution. Therefore, all candidates with a support value that is greater than or

equal to the minSup will be returned as frequent patterns. According to MacKinnon (2015),

one of the big Apriori-based algorithm challenges is that the candidate generation process is

19

Chapter I Uncertain Itemsets Mining

a bottleneck of all Apriori-based algorithms, which is not present in the tree-based algorithm

FP-Growth presented below.

Figure.2: The Apriori Algorithm process.

2.2. FP-Growth Algorithm

Frequent Pattern Growth (FP-Growth) (Han et al., 2000), is an algorithm that mines

frequent itemsets without a costly candidate generation process. It implements a

divide-and-conquer technique steps implemented recursively as illustrated by Zhang (2021)

in Figure.3. First, generating a descendingly ordered list of frequency of frequent items from

the database scan, then compressing the database into a frequent-pattern tree(FP-tree) using

the frequency-descending list. This tree is mined by starting from each initial suffix pattern,

constructing its conditional pattern base then constructing its conditional FP-tree, and

performing mining recursively on such a tree. The pattern growth is achieved by the

concatenation of the suffix pattern with the frequent patterns generated from a conditional

FP-tree.

20

Chapter I Uncertain Itemsets Mining

Figure.3: The FP-Growth Algorithm process.

2.3. Eclat Algorithm

Equivalence Class Transformation (Eclat) (Zaki, 2000), is a depth-first algorithm

that mines frequent itemsets efficiently. The algorithms introduced above all mine frequent

patterns from the transaction set of the itemsets, and they support the horizontal data

formats. There are many cases where the second database format is vertical, showing more

efficiency than the first format. The two data formats as Foscari et al., (2004) presented

them in Figure.4.

Figure.4: Horizontal and vertical representation of data.

Thus, Figure.5 illustrates the algorithm process as defined by Reynaldo & Boy

Tonara, (2018), we can see that it uses an inverted table to increase the speed of frequent

item set generation. It is started by listing the Transaction ID set of each item, then filtering

with minSup and computing the Transaction ID set of each item pair to filter out the pairs

that do not reach the minSup, this process repeats until all the frequent itemsets are

intersected with one another and no frequent itemsets can be found. However, Solanki &

Soni, (2015) finds that the Eclat disadvantage is that the deletion of the candidate set is not

performed, resulting in a large number of candidate sets, which affects the performance of

the algorithm.

21

Chapter I Uncertain Itemsets Mining

Figure.5: The Eclat Algorithm process.

C. High Utility Pattern Mining from Precise Data

1. Definition

High utility pattern mining (Fournier-Viger et al., 2019) is a challenge to find

meaningful information from massive amounts of data. Many studies have focused on

traditional frequent pattern mining and just concern the occurrence of itemsets, patterns in

the database, without considering the internal utility values (i.e., quantity). High utility

pattern mining is an emerging data science task, which consists of discovering patterns

having a high importance in databases. The utility of a pattern can be measured in terms of

various objective criteria such as its profit, frequency, and weight, Li et al., (2008) gives an

overview about the high utility pattern mining from a precise database as shown in Figure.6.

22

Chapter I Uncertain Itemsets Mining

Figure.6: High utility deterministic database table

2. Efficient Algorithms for High-Utility Itemset Mining

Efficient High-Utility Itemset Mining (EFIM) (Zida et al., 2015) is a novel

algorithm ,which introduces several new ideas to more efficiently discover high-utility

itemsets both in terms of execution time and memory. EFIM relies on two upper-bounds

named sub-tree utility and local utility to more effectively prune the search space. It also

introduces a novel array-based utility counting technique named Fast Utility Counting to

calculate these upper-bounds in linear time and space. Moreover, to reduce the cost of

database scans, EFIM proposes efficient database projection and transaction merging

techniques.

2.1. HUI-Miner Algorithm

The HUI-Miner algorithm (Liu & Qu, 2012), uses a novel utility-list structure to

store both utility information about itemsets and heuristic information for search space

pruning. Whereas, the utility-list of items allows directly deriving the utility-lists of other

itemsets and calculating their utilities without scanning the database. HUI-Miner avoids

candidate generation, it can efficiently mine high utility itemsets to further speed up the

construction of utility-lists.

2.2. Utility Pattern Growth Algorithm

The Utility Pattern Growth algorithm (UP-Growth) (Tseng et al., 2010), maintains

the information of high utility itemsets in a special data structure named UP-Tree that refers

23

Chapter I Uncertain Itemsets Mining

to utility pattern trees such that the candidate itemsets can be generated efficiently with only

two scans of the database. Tseng et al., (2010) evaluated UP-Growth in comparison with the

state-of-the-art algorithms on different types of datasets, they found that UP-Growth not

only reduces the number of candidates effectively but also outperforms other algorithms

substantially in terms of execution time, especially when the database contains lots of long

transactions.

III. Uncertain Pattern Mining

A. Uncertain Data

Many of the real world applications may have not only certain data but also various types of

uncertain data, generally most of the collected data is uncertain, imprecise and incomplete (Hariri

et al,. 2019), which refers to unknown or imperfect information. This uncertainty in data comes

from many different sources, such as the environmental conditions and issues related to data

collection and sampling, also in the multimodality (e.g., the complexity and noise introduced with

patient health records from multiple sensors include numerical, textual, and image data).

Additionally, uncertainty is one of the defining characteristics of data which means that the

data may contain hidden relationships, Therefore, the processing using uncertain data may

negatively impact the effectiveness and accuracy of the results data mining process. In another

manner, if training data is incomplete, or obtained through inaccurate sampling, after training the

learning algorithm using corrupted training data will likely output inaccurate results. In computer

science, uncertainty deviates the data information from the correct, intended or original values.

Previously, we listed two tasks for itemsets mining with precise data, but in this case, the

challenge is different with uncertain data. Well, it is not an easy task to mine uncertainty in real

datasets, especially when the data may have been collected in a manner that creates bias and items

within each transaction of the database have their own probability values not binary, instead of

exact existence or nonexistence information. Thus, to remove the many forms of uncertainty that

exist in data like the weather data example defined by Lee et al., (2015) that is shown in Figure.7,

not to zero, but to mitigate it, there are many theories and techniques that have been developed to

model its various forms. We will describe below two common itemsets mining techniques and their

Algorithms: Frequent pattern mining and High Utility pattern mining.

24

Chapter I Uncertain Itemsets Mining

Figure.7: Uncertain weather database and accuracy information.

B. Frequent Pattern Mining from Uncertain Data

1. Definition

Uncertain Frequent Pattern Mining (UFPM) (Chui et al., 2007) has the same

objective as the FPM strategy, which is a task that finds valid patterns (itemsets) from

uncertain databases such as the left side of Figure.7.

In uncertain data, the transactions are mostly probabilistic, where to determine

frequent itemsets we need to count the probability of presence of an itemset in a given

transaction, as it is not possible to definitively count the frequency of itemsets.

In this section, we are interested in the Chui et al., (2007) expected support-based

model to mine frequent patterns. Therefore, we will present some basic concepts related to

existential probability and expected support introduced by Chui et al., (2007). Let’s get S, a

set that contains m items of a dataset (m : the total number of items), and X describes a

pattern with X={x1,x2,...,xn} ‘n-itemset’, considering a pattern is composed of n items,

where X⊆ S and 1 ≤ n ≤ m, we have a transactional data D={t1,t2,...,tk}; which is a set of

k-transactions, think about tj which is a transaction from D, where each transaction tj⊆ D,

where all transactions containing X are collected in the obtained set D. Contrary to precise

data, each item xi from X in a transaction tj={x1,x2,...,xp}; in uncertain data is associated

with an existential probability value P(xi, tj), which is equal to the possibility of the

presence of xi in tj. An additional note that the probability of an item lies between 0 and 1 as

shown in Rule.1.

Rule.1: 0<P(xi, tj)≤1

When the items within X are independent, then the product of the existential

probability values corresponding to the items in the n-itemset X is the existential probability
25

Chapter I Uncertain Itemsets Mining

P(X, tj) for the pattern X in tj. Therefore, we have the following relationship presented in

Rule.2:

Rule.2: P(X, tj) = P(x, tj)
𝑥∈𝑋
∏

In precise data, the support is the number of occurrences of the pattern, but with

uncertainty, the support needs to be expected, and it can only be counted in probabilistic

value, which is the sum of the existential probabilities of an itemset. For better

understanding, suppose X is a pattern, let exSup(X) be the support of this itemset X in the

database is the sum of P(X, tj) over all k transactions in the database, which is defined below

in Rule.(3):

Rule.3: exSup(X) = P(X, tj) = (P(x, tj))
𝑗=1

𝑘

∑
𝑗=1

𝑘

∑
𝑥∈𝑋
∏

According to Chui et al., (2007), a pattern X is frequent on the condition that

exSup(X) ≥ minSup, where the expected support of X is larger than the defined threshold

minSup which refers to the user specified minimum support threshold. Considering we have

a probabilistic database and a user defined support value, the challenge is to extract an

efficient, complete and definite set of frequent patterns from this uncertain data. Therefore,

in the next section, we will introduce the UFPM algorithms, which can satisfy the condition

expSup ≥ minSup.

2. Frequent Pattern Mining Algorithms

2.1. UApriori Algorithm

UApriori is the first based level-wise algorithm with a candidate generate-and-test

paradigm proposed by Chui et al., (2007) that extracts frequent itemsets from uncertain

databases. It is a modification of the classical Apriori identified above. Where, it depends

on the Apriori property, presented by Agrawal & Srikant, (1994) which known as the

downward closure property as defined in property.1 below:

Property.1: “If a pattern I is frequent in expected support, then all the non-empty

subsets of the pattern are also frequent in expected support.”

26

Chapter I Uncertain Itemsets Mining

Property.2: “If any subset sb of an itemset S is not frequent, then the superset S itself

cannot be a frequent itemset.”

Equivalently, from property.1 in a reverse manner we can extract property.2. For the

uncertain problem, researchers Agrawal & Srikant, (1994) proved that we can use the

downward closure principle without a peril of losing true frequent patterns. Thus, according

to Rule.2, the existential probability of X is lower than or equal to his subsets, since we are

multiplying probabilistic values, imply that every subset of , where k is the total𝑋𝑘−1 𝑋𝑘

number of items within X, for any transaction T, must satisfy this condition shown in Rule.4:

Rule.4: p(, T) ≥ p(, T)𝑋𝑘−1 𝑋𝑘

Since the existential probability is a product function, the superset existential

probability gets smaller as we increase the multiplied subsets probabilities. Therefore, the

expected support of the subset is larger than the expected support of the superset pattern as

presented in Rule.5:

Rule.5: exSup() ≥ exSup()𝑋𝑘−1 𝑋𝑘

First, UApriori scans the database to get the expected support (expSup) of each

1-itemset, this expSup of 1-itemset is compared with the minimum support (minSup) to

extract the frequent 1-itemset. From the 1-itemset it generates the 2-itemset and prunes the

non-frequent itemset using the frequency condition. The database is scanned once again to

count the exSup of candidate 2-itemset, and apply the frequency condition. Similarly, the

procedure is repeated until no more frequent item is generated.

As it is known, there is always a difficulty while dealing with uncertain databases

(UDBs). Therefore, even the UApriori, UDBs exceeded its capabilities, well, he suffered

from the inherent problem from the original Apriori, which is handling large datasets, as

long as the algorithm approach is level-wise generate-and-test framework and it requires

multiple scans of UDBs, because the same pattern with different support values are

considered as different candidates.

The new complication was while dealing with very small existential probabilities of

most items of a pattern to generate the expected support in the pruning step, which ended up

to be even worse than that of the original Apriori because of the effect of multiplying small

27

Chapter I Uncertain Itemsets Mining

numbers several times. Chui et al., (2007) tried to remedy these problems by proposing a

trimming strategy called LGS (Local-trimming, Global-pruning and Single-pass patch-up),

to reduce the database by removing items with low probability. It is still Apriori based, but

this improvement helps reduce the number of candidate patterns being counted during the

mining process.

2.2. UF-Growth Algorithm

UF-Growth is a well known uncertain itemset mining and a tree-based algorithm

(Leung et al., 2007), which follows the basic framework of the FP-growth algorithm

explained in the previous section, during the mining operation, the algorithm does not

generate any candidate patterns unlike the level-wise method UApriori. Thus, it relies on

two essential operations: the construction of UF-trees and the mining of frequent patterns

from UF-trees. Hence, UF-growth and FP-growth share the same approach, which is pattern

growth approach, they construct their trees in two scans of the input database, but

UF-growth does not use the FP-tree. It uses another tree data structure called UF-tree in

which each node contains three parameters: the item, its existential probability, and its

occurrence count in the path. The UF-tree is constructed in the same manner of FP-tree,

taking account the following properties defined by Leung et al., (2007):

Property.3: “A new transaction is merged with a child node only if the same item

and the same existential probability exist in both the transaction and the child node.”

Since the data is probabilistic the Rule.3 is used to count the expected support with

some adaptation, as indicated down in Property.4:

Property.4: “The expected support of X is the sum of the product of the occurrence

count and existential probability of every item within X.”

Secondary, as the UF-tree is constructed, to mine frequent patterns from it, the

UF-growth used a recursive algorithm to break the tree into smaller pieces with a similar

way as the FP-growth algorithm, but also with some modification, which is listed down in

property.5:

Property.5: “When forming a UF-tree for the projected database for a pattern X, we

need to keep track of the expected support (in addition to the occurrence) of X.”

28

Chapter I Uncertain Itemsets Mining

According to property.4, Tong et al., (2012) made a comparison and showed that

UApriori outperformed UF-growth, because there is a small percentage for paths to share

the same node as they necessary have the same existential probability, and this probability is

between [0, 1], so the UF-tree will have a large number of subtrees which increased memory

requirements, Tong et al., (2012) comparison is not certain, because its seems that they

didn’t implemented the two optimizations of the UF-growth algorithm proposed by Leung

et al., (2008) to maintain its problem, which are discretizing and rounding of the expected

support values up to k decimal places, and limiting the maximum depth of recursion to two

which limit the construction of UF-tree.

2.3. UEclat Algorithm

UEclat is a vertical uncertain data mining algorithm (Abde-Elmegid et al., 2010), it

is an adaptation of the traditional Eclat algorithm introduced by (Zaki, 2000) which helps

finding frequent itemsets from uncertain databases. The operation will start by generating

the transaction id set known as Tidset table from the database, where each item x is

combined with its set of transaction identifiers Tidset at which x appear, but in case of

probabilistic data, the presence of items in transactions is presented by a existential

probability value between [0, 1]. UEclat implements a different structure known as the

Utidset table, which means the uncertain transaction identifiers set table that is a derivation

from the Tidset. Thus, this table stocks the item, its existential probability in every

transaction from only a single scan of the database, known as the Utidset(Table.1).

Table.1 : Deterministic Utidset vertical representation of all items.

Once the Utidset is built, the next step is to generate the Tidset table of frequent

items, which called the ‘prune’ step, the exSup of an item x is calculated using Rule.3, that is

29

Chapter I Uncertain Itemsets Mining

the sum of all existential probabilities of item x in all the transaction within the database, to

check if item x satisfy the frequency condition. If it is respected, then x is a frequent item

and will be added in the Utidset table, this process is repeated for all remaining items.

Finally, for the ‘mining’ step, the exSup of a pattern X or k-itemsets where , as𝑘≥2

presented in Rule.3 is the sum of the product of all existential probabilities of items within X

in all the transactions, the obtained exSup is compared with the minSup, and only the

k-itemsets which serve the frequency condition will be added to the k-itemset projected

database, and this operation is done recursively until all frequent possible k-itemsets are

mined, and added to the final projected DB.

Additionally to UEclat, there are a lot of improved algorithms such as U-Eclat

(Calders et al., 2010), UV-Eclat (Leung & Sun, 2011) that mine frequent items vertically

and have shown an effective and usually outperform horizontal approaches because of the

feature of vertical mining, which is using the independence of classes term, where each

frequent item is a class that contains a set of frequent k-itemsets.

C. High Utility Pattern Mining from Uncertain Data

1. Definition

High Utility Pattern Mining (HUPM) (Lin et al., 2016) is the second technique

defined in this chapter, where it is an utilizable and effective task for mining and analyzing

data with another concept. HUPM's purpose is to discover patterns in transactional

databases, which considers both quantity and profit of items, an example of an uncertain

quantitative database with its probabilistic values is shown in Table.2. and its corresponding

profit table is presented in Table.3.

Table.2: A Transactional uncertain database D. Table.3: The profit table.

Previously, in the high utility section, HUPM and their mining algorithms that handle

precise databases which consist only of the utility function, because data is binary. But, with
30

Chapter I Uncertain Itemsets Mining

uncertain databases known as UDBs, the measurement is different. Unlike UFPM which

considers only the objective measure which is probability of existence of a pattern, UHUPM

tries to combine both probability and utility, that is a semantic criterion to measure the utility

of a pattern based on items of high importance provided by the user.

In another manner, consider a pattern of itemsets depending on frequency as well as

utility to predict more profitable itemsets from UDBs, because for the uncertain databases,

itemsets with high utility and high existential probability are useful to users, not itemsets

with only one of them. The traditional HUPM algorithms do not consider the existential

probability, and they are insufficient to process UDBs. The development of other algorithms

for UHUPM is still in progress and has not yet been considered. Thus, no algorithm has yet

been proposed for exactly mining high utility patterns (HUPs) in an uncertain database.

Therefore, according to our research, we found that Lin et al., (2016) supposed a

framework known as the Potential High-Utility Itemset Mining(PHUIM) model to mine

UDBs with both probability and utility. Thus, down from this section, let’s take a brief look

at the proposed Lin et al., (2016) PHUIM model and their two algorithms.

2. Potential High Utility Itemset Mining Model

Potential High-Utility Itemset Mining (PHUIM) (Lin et al., 2016), aims to discover

itemsets with high utility that depend on the two criterions utility and probability.

First, the probability measure which is similar to the expected support notion defined

in the part of the uncertain frequent pattern mining problem is the same adopted in the Lin

et al., (2016) proposed PHUIM framework, and the name was changed to the potential

probability measure. However, to understand the second measure, which is utility, let’s

present below some basic concepts.

Consider I a set of n definite items I={i1 , i2 , …, in }, an uncertain database D ,

which contains a set of m-transactions D= {t1 , t2 , …, tm}, where for each transaction tj that

contain a subset of items, we have tj∈ D, an item ix in a subset tj is categorized by its

quantity q(ix, tj), and for every transaction tj from D is identified by a unique value which is

its existential probability p(tj) in D. Thus, each item ix has its profit value pfx, that is in the

created profit where pfTab={pf1, pf2, …, pfn}, and let X={i1 , i2 , …, ik} is a k-itemset,

where 1 ≤ k ≤ n, this X is a part of the subset tj only if X is a subset of or equal to tj: X⊆tj.

31

Chapter I Uncertain Itemsets Mining

Since we have two measures, then we have two thresholds, the minimum utility threshold ε,

and the minimum potential probability threshold μ.

Down to this part, to clarify the concept, we will introduce the basic rules that are

proposed by Lin et al., (2016) which helps finding the high utility itemsets and the potential

utility itemsets. First, let’s start by the utility of an item, an itemset, a transaction in the

database, then both its probability and potential probability.

The utility of an item ix in a transaction tj is defined in Rule.6:

Rule.6: u(,) = q(,) × pf()𝑖
𝑥

𝑡
𝑗

𝑖
𝑥

𝑡
𝑗

𝑖
𝑥

The utility of an itemset X in a transaction tj is defined in Rule.7:

Rule.7: u(X,) = u (,)𝑡
𝑗

𝑖
𝑘
∈𝑋∧𝑋⊆𝑡

𝑗

∑ 𝑖
𝑘

𝑡
𝑗

The utility of an itemset X in a database D is defined in Rule.8:

Rule.8: u(X) = u (X,)
 𝑋⊆𝑡

𝑗
 ∧𝑡

𝑗
∈𝐷

∑ 𝑡
𝑗

The transaction utility of transaction is defined in Rule.9:𝑡
𝑗

Rule.9: tu() = u (,)𝑡
𝑗

 𝑘=1

𝑚

∑ 𝑖
𝑘

𝑡
𝑗

The total utility of transactions in database D is defined in Rule.10:

Rule.10: TU = tu ()
 𝑡

𝑗
∈𝐷
∑ 𝑡

𝑗

The probability of an itemset X in a transaction tj, where X⊆tj is presented in

Rule.11:

Rule.11: p(X, tj) = p(tj)

The potential probability of an itemset X in the database D is presented in Rule.12:

Rule.12: Pro(X) = p (X,)
 𝑋⊆𝑡

𝑗
 ∧𝑡

𝑗
∈𝐷

∑ 𝑡
𝑗

32

Chapter I Uncertain Itemsets Mining

According to Lin et al., (2016) an itemset X in a database D is defined as a high

utility itemset(HUI), if it satisfies the Rule.13, else it is called a low utility itemset.

Rule.13: u(X) ≥ ε × TU

Moreover, an itemset X in a database D is defined as a high potential itemset(HPI), if

it satisfies the Rule.14, which is shown below:

Rule.14: Pro (X) ≥ μ × | D |

Finally, an itemset X is defined as a potential high utility itemset (PHUI), only if it

respects the two rules above, that is an HUI from Rule.13, and is an HPI from Rule.14.

Now, let’s know and define the two algorithms proposed by (Lin et al., 2016), which

helps the potential high utility mining process from uncertain databases.

2.1. PHUI-UP Algorithm

PHUI-UP is the first potential high utility algorithm proposed by (Lin et al., 2016)

to solve problems for PHUM in an uncertain database, and it is based on the level-wise

Apriori approach, which means that is work with the same probability properties of the

already presented probability count of the Apriori algorithm, but with some different terms.

Therefore, let’s present the Apriori extended downward closure properties for both

HPI and HUI, which are considered as basic concepts that are used by this algorithm. First,

the downward closure property of the high probability itemset (HPIDC) is the same as

defined in Rule.4. Thus, as mentioned in Rule.15:

Rule.15: Pro () ≥ Pro ()𝑋𝑘−1 𝑋𝑘

Which implies that if is an HPI than necessarily respects the HPI condition.𝑋𝑘 𝑋𝑘−1

Next, to mine HUIs, we cannot use the ARM properties. Therefore, Lin et al., (2016)

proposed a transaction weighted probabilistic and utilization downward closure (TWPUDC)

property, let’s present the basic rules of this property:

The transaction weighted utility (TWU) of an itemset X in D is defined in Rule.16:

Rule.16: TWU(X) = tu ()
𝑋⊆𝑡

𝑗
∧𝑡

𝑗
 ∈𝐷

∑ 𝑡
𝑗

33

Chapter I Uncertain Itemsets Mining

However, in the same manner as the HPI defined in Rule.15, TWDC is obtained if

the Rule.17 is implemented:

Rule.17: TWU() ≥ TWU()𝑋𝑘−1 𝑋𝑘

An itemset X in D is considered as a high transaction weighted utilization itemset

(HTWUI) if it respect the condition presented in Rule.18:

Rule.18: TWU(X) ≥ ε × TU

An itemset X in D is defined as a high transaction weighted probabilistic and

utilization itemset (HTWPUI), if it satisfies the two mentioned rules, Rule.14 and Rule.18

respectively, and the downward closure property TWPUDC of HTWPUIs is examined only

if the HPIDC and TWDC in Rule.15 and Rule.16 are respected. Let’s now link between the

previous PHUI and the HTWPUI as shown in property.6:

Property.6: “The transaction-weighted probabilistic and utilization downward

closure (TWPUDC) property ensures that PHUIs ⊆ HTWPUIs. It indicates that if an

itemset is not a HTWPUI, then none of its supersets are PHUIs.(Lin et al., 2016)”

From property.6 we can extract Rule.19:

Rule.19: u() TWU()𝑋𝑘−1 ≤ 𝑋𝑘−1

After implementing all the necessary rules, let’s move to the PHUI-UP algorithm

process.The proposed PHUI-UP algorithm has two phases. During the first phase, it scans

the database to find the TU, TWU values and the probabilities of all 1-itemsets within the

database, next it checks if the TWU and probabilities (Pro) for every itemset satisfied the

HTWPUI conditions implemented in Rule.14 and Rule.18. and putting them into the first set

of where k is initially set to 1. Then the algorithm start generating candidate set𝐻𝑇𝑊𝑃𝑈𝐼𝑘

C2 where k is set to two, and the database is then rescanned to calculate the TWU and Pro

values of each itemset in C2, this phase repeated to generate the next candidates Ck+1 for

discovering in a level-wise way until no candidate is generated and a complete𝐻𝑇𝑊𝑃𝑈𝐼𝑘+1

set of HTWPUIs is built. Next, in the second phase, the HTWPUIs-set. An additional

database scan is done to find the final PHUIs from the HTWPUIs-set based on property.6.

A complete set of PHUIs discovered by the PHUI-UP algorithm is classed in Table.4

where these results are obtained using the previous uncertain database coordinations
34

Chapter I Uncertain Itemsets Mining

presented in Table.2 and Table.3, the final PHUIs set contained only the itemsets {C}, {D}

and {AB}.

35

Chapter I Uncertain Itemsets Mining

Table.4: The final derived PHUIs for the example uncertain database.

We cannot disagree that the PHUI-UP algorithm extracts the PHUIs, but it has a long

execution time problem, because it scans the data several times. Therefore, in order to

address this problem, Lin et al., (2016) proposed an improved algorithm called the

PHUI-List.

2.2. PHUI-List Algorithm

PHUI-List is a potential high utility algorithm proposed by Lin et al., (2016) to

solve the previous PHUI-UP algorithm problem. However, this algorithm mines the

uncertain data within three phases, from a vertical data structure, known as the PU-List,

which means the probability utility list, to building a tree, then starting the pruning

technique. Before introducing these three steps, first, let’s define some rules and properties,

which are proved by Lin et al., (2016) and they are used in the PHUI-List algorithm.

To count the utilities iu of itemset X in tj, we use Rule.20:

Rule.20: X.iu = u (,)
𝑖 ∈𝑋∧𝑋⊆𝑡

𝑗

∑ 𝑖 𝑡
𝑗

To calculate the remaining utilities ru of itemset X in tj, we use Rule.21:

Rule.21: X.ru = u (,)
𝑖 ∉𝑋∧𝑖∈𝑡

𝑗
∧𝑋≺𝑖

∑ 𝑖 𝑡
𝑗

The sum of the utilities IU of an itemset X in D, is defined in Rule.22:

Rule.22: X.IU = (X.iu)
𝑋∈𝑡

𝑗
∧𝑡

𝑗
⊆𝐷

∑

36

Chapter I Uncertain Itemsets Mining

The sum of the remaining utilities RU of an itemset X in D, is defined in Rule.23:

Rule.23: X.RU = (X.ru)
𝑋∈𝑡

𝑗
∧𝑡

𝑗
⊆𝐷

∑

During the first phase, considering an itemset X, the algorithm first scans the original

uncertain database D once to extract the necessary informations such as the TU, the TWU,

and the Pro values of each item in X, then using the Rule.18 to take only the 1-itemsets that

satisfy the HTWPUI condition, these are sorted in ascending order by their𝐻𝑇𝑊𝑃𝑈𝐼𝑠1

TWU values or by alphabetical order. Next, the PHUI-List scans D once more to generate

the PU-List of each 1-item in the 1-itemsets. Where each row in the PU-List of an itemset X

in transaction tj contains four fields, the transaction identifier ‘TID’, where X⊆ tj∈ D, the

probability ‘prob’ of X in tj, the utility ‘iu’ of X in tj, the remaining utility ‘ru’ for X in tj.

However, to count the prob we use Rule.11, for the value of iu we use Rule.20, then to

calculate the ru we use Rule.21. This stage is summarized in Figure.8, which define the

constructed PU-lists of , where we applied the PHUI-List algorithm in the same𝐻𝑇𝑊𝑃𝑈𝐼𝑠1

uncertain database D presented in Table.2.

Figure.8: The constructed PU-lists of .𝐻𝑇𝑊𝑃𝑈𝐼1

Since we constructed the PU-Lists, we start the second phase, which starts the

construction of the Set-enumeration tree from the sorted itemsets, where each node in the
37

Chapter I Uncertain Itemsets Mining

tree contains an itemset, which is the extension of its parent node. Then, we will use a

depth-first search to discover the Set-enumeration tree. The third phase is the pruning step,

two pruning strategies are applied to decide whether the extensions of the processed node

need to be explored, the first pruning strategy is defined in property.7, and for second is

presented in property.8.

Property.7: “When traversing the Set-enumeration tree using a depth-first search

strategy, if the sum of all the probabilities of a tree node X in its constructed PU-list is less

than the minimum potential probability, then none of the descendant nodes of node X is a

PHUI.”

Property.8: “When traversing the Set-enumeration tree using a depth-first search, if

the sum of X.IU and X.RU in the constructed PU-list is less than the minimum utility count,

then none of the descendant nodes (extensions) of node X is a PHUI.”

If the processed node satisfies the two conditions identified in property.7 and

property.8, then the extensions of the descendant nodes of the processed node will be

explored recursively, until we discover PHUIs directly without scanning the data every time,

and without candidate generation. According to Lin et al., (2016), the PHUI-List algorithm

is correct and complete, because it discovers all PHUIs and only the PHUIs.

IV. Conclusion

This chapter has provided a brief analysis of the technologies used and developed recently to

mine patterns from uncertain databases. We can conclude that all the previously mentioned

algorithms still have their drawbacks, like consuming memory, taking a long execution time,

because the data complexity grows exponentially with time, this problem enters us in a new era

known as the big data, which is introduced in the next chapter.

38

Chapter II:

Big Data Uncertain

Pattern Mining

Chapter II: BIG DATA uncertain pattern mining

I. Introduction

Since we are in the big data era, which means that big data is everywhere, traditional pattern

mining algorithms are not sufficient to handle problems associated with such applications and

complex sources. Therefore, the level of difficulty is augmented, and the previous proposed

algorithms which handle the uncertain databases such as UApriori, UV-Eclat, UF-Growth, ... etc.

are ineffective according to the increasing needs of managing a large quantity of data, because these

algorithms execute the mining process sequentially on a single local computer. Thus, they cannot

result in the same performance made in previous simple uncertain data with these huge datasets,

which generate a new challenge known as mining patterns from uncertain big data. Therefore, to

solve this complexity many researchers started searching for solutions and techniques to minimize

the big data issues.

In this chapter we will present some of these proposed solutions and make a comparative

review between these different parallelized frequent pattern mining algorithms based on several

measures, parameters, and understanding the advantages and limitations of each algorithm.

Moreover, the first section contains an abstract definition of the uncertain big data and explain its

various paradigms and mechanisms that are used in recent years in both parallel or distributed data

mining platforms, these techniques have been further designed to accomplish a high performance

data mining, next we briefly introduced a set of the analyzed algorithms that used some of the

researchers techniques which are frequently used and outperformed in all kind of uncertain big data

in a distributed environment known as the MapReduce and Spark models such as MR-Growth,

MR-PUFGrowth, BigAnt, ApproxFP…etc, then in the comparison section we studied and discussed

the above listed algorithms based on a set of parameters, finally we gave a conclusion as a result of

our review.

II. Background

This section introduces background information on the main characteristics of uncertainty in

big data, with their techniques and paradigms.

A. Uncertain Big Data

In the previous chapter we presented a brief definition about the uncertain data, but when we

have a large dataset then the big data term appears, which is the collection of a huge and complex

data and it grows exponentially with time, This term describes datasets which are so large or

40

Chapter II: BIG DATA uncertain pattern mining

complex that traditional data processing applications are inadequate to deal with them Moreover, it

created a lot of challenges including analysis, capture, data curation, search, sharing, storage,

transfer, visualization, querying and updating information. Therefore, computer scientists have

made outstanding contributions to the application of big data and introduced a concept to handle

difficulties associated with such applications, known as data mining from uncertain large data,

which is the way to explore big data using complex mining tools. Additionally, this technology has

been playing an increasingly important role in decision making activities, in order to discover the

hidden relationships that exist within the data, and decide the value and meaning of this

information.

To understand the existence of uncertainty in large datasets, let's explain the main features of

big data. Our interest is in the 4V (Chebbi et al ., 2015), which are the volume, the variety, the

velocity and veracity. First, high volumes of valuable data such as texts and documents, medical

images, business transactions, banking records, surveillance videos, telecommunication and social

media data can be easily collected or generated from different sources, in different formats, which

mean that various parts can be managed with different tools. However, this refers to the large

amount of data involved, the size of available data is growing at an increasing rate, which leads to

the transformation from local servers to cloud or external partners and old approaches cannot

analyze large sets of data which give inconsistent results.

Secondally, variety refers to the different types of the collected sources, structured databases

such as text files, csv, excel..etc and unstructured databases like videos, text, graphics.. etc which

are more useful to humans and that’s mean that create more work and requires more analytical skills

to decipher it. next for the velocity, it is extremely important, it shown how fast the data is entered

and processed, to get a better comprehension, let’s give an example of a massive data, just consider

the social media case, when there are 300,000 status updates, 140,000 photos uploaded, and more

than 500,000 comments made every minute, adding to this the video calls which needs a real time

transmissions which have to be processed just as quickly. The last one is that veracity is the most

important “V” of big data, which indicates data honesty and accuracy, where the data veracity is

attributed to the source from which it comes. Thus, in this age data counts are collected from

different sources, constituting heterogeneity in the data which results in a difficulty to know about

the quality of data, that leads to the overlapping of the rapid changes between the old data and the

updated one, and this creates uncertainty.

41

Chapter II: BIG DATA uncertain pattern mining

As a consequence to the definitions given in this above section, we can signify that

uncertainty is presented when data is big, fast, diverse and incorrect. As we identified situations

which result in the appearance of inconsistent big data, the manner to fix these challenges is noted

down in the paradigms of big data.

B. Paradigms of the Big Data

Because of the above listed features: huge volume, high level of velocity, variety, and

veracity, all standard tools are not applicable, which motivates researchers to develop some new

approaches oriented to interact with sources of big data. In this section, let’s define these useful

paradigms that are implemented in uncertain large data and show an effective progress. Many

developers used them to introduce new massive incomplete data algorithms that gave good results.

1. MapReduce: this paradigm was published by google (Dean & Ghemawat, 2004), it is the

heart of the apache hadoop ecosystem, where it is the most common software framework

that facilitates the user to write applications that can process vast amounts of data on large

clusters. However, it is a batch processing technique and a program model for distributed

computing written in java, it creates a two-stage execution graph consisting of data mapping

and reducing, where each task has a certain operation, the map function which takes a set of

data and converts it into another set of data, where individual elements are broken down into

tuples where the input is a couple of a key and its value, secondly, the reduce step, which it

input is the takes the shuffled output of the map step and combines those data tuples into a

smaller set of tuples, these two functions are repeated continuously, after each map and

reduce the data is sent back to the disk part, this is considered as both a limitation and an

advantage, the back to the disk made the map and reduce much slower, but the good point

that is a more fault-tolerant, it offers a better security by using all the hadoop protection

features.

2. Spark: (Zaharia et al., 2010) is an open-source project that is under the wing of the apache

software foundation, which can quickly execute distributed processing tasks across multiple

computers on very large datasets. However, spark comes with in-built versions of java, scala

and python, which make it easier to use, also it runs tasks one hundred times faster

in-memory and ten times faster on disk than MapReduce, especially when compared with

multi-stage jobs that require the writing of state back out to disk between stages, it aims to

reduce the number of steps in a job, and reuse data across multiple parallel operations in

42

Chapter II: BIG DATA uncertain pattern mining

only one needed step, because we already indicated that MapReduce is a disk-based

framework unlike the spark which runs on RAM and execute tasks using a cache to greatly

speed up machine learning algorithms that repeatedly call a function on the same dataset,

additionally, it is a suitable tool for IoT sensors, social media sites and log monitoring, thus

it is using for batch processing as well as near real-time processing. Also, one of the

important concepts of spark is the resilient distributed dataset(RDD), most of the spark APi

is built based on RDD, taking the traditional map and reduce functions and adding some

built-in support for joining data sets, filtering, sampling, and aggregation. Moreover, one of

the limitations of the spark framework is that it is less fault-tolerant because when an

unexpected event proceeds it has to start the processing from the beginning.

3. Graphics processing units(GPU): is the soul of the computer that is used to accelerate

processing operations on big data through the harness of the massive parallelism

mechanism. Besides, GPU computing consists of using graphics processors which use

transistors for the processing step in addition to CPUs that implement transistors for caching

data, as a purpose of the use of both GPUs and CPUs was to speed up data science and

machine learning applications. Thus, let’s clearly understand the GPU parallel architecture,

each GPU is composed of a number of cores where each of these cores has a number of

functional units. For thread processing, one or more of these functional units can be used.

However, these units are known as thread processors, and they all share the same control

unit. Therefore, they are able to perform the same instruction.

4. Multi-Core computing: is a modern technology based on the improvements in processor

and network technologies, since every big data center server has multiple CPUs to maintain

the same single task. Therefore, using this technology that it is a parallel processing that has

two or more central processing units or cores attached which runs multiple computational

threads of a program in order to enhance performance and reduce power where each core

executes multiple instructions in parallel, this means that a program is splitted into diverse

threads, where each thread will proceed its task on a separate CPU or core. As a

consequence, this mechanism implemented two terms, the multi-threading and the shared

memory techniques to perform the parallel processing.

5. Grid computing: is a special type of distributed computing, which is a bunch of computers

geographically distributed and connected by networks that work together like a

43

Chapter II: BIG DATA uncertain pattern mining

super-computer to perform a task that would be difficult for a single machine to handle,

where these computers are connected by some bus, making ethernet or sometimes internet.

Thus, the machines on that network work under the same protocol, adding to that instead of

many CPU cores on a single machine, it contains multiple cores spread across various

locations, and the computers communicate and exchange resources with each other, well,

this signifies that all computing resources do not have to work on the same specific task, but

can work on sub-tasks that collectively make up the end goal, also means that a computer on

the node can swing in between being a user or a provider based on its needs. Moreover,

there are two kinds of network homogeneous or heterogeneous based on the operating

system of the machines in the network, which differ while using grid computing than other

distributed computing architectures, as long as it uses middleware to control the network and

its resources and authorize any process that is being executed on the network.

III. Parallel and Distributed Frequent Pattern Mining algorithms

A. MR-Growth Algorithm

The MR-Growth algorithm (Leung & Hayduk, 2013) extends from the UF-Growth (Leung

et al., 2007) algorithm and improves its weakness when detecting frequent patterns in large

uncertain data. This algorithm uses a different framework which is the MapReduce model by

applying two sets of the “map” and “reduce” functions in a tree-based pattern-growth fashion.

Additionally, three enhancements to the MR-Growth algorithm were proposed, they started with the

ForkJoin approach to complete multiple tasks in a minimized time via multi-core processors.

Secondally, the efficient conditional tree construction, which allows MR-Growth to construct

conditional trees without constructing projected trees first. The third improvement was given as a

solution to the big UF-trees by implementing the concatenating sample method to avoid building

UF-trees while the mining process begins.

B. MR-PUFGrowth Algorithm

The initiation point was from the MR-Growth (Leung & Hayduk, 2013) UF-tree large size

which occurs when the same item has many different probabilities, and this drawback affects the

efficiency. Therefore, Rathan & Rani, (2017) introduced the MR-PUFGrowth, they merged

between the two PUFGrowth (Leung & Tanbeer, 2013) and the MR-Growth(Leung & Hayduk,

2013) algorithms, it is a MapReduce model of the PUFGrowth based on the MR-Growth, but

instead of storing data in the UF-Trees, they are stocked in smaller trees known as PUF-Trees.
44

Chapter II: BIG DATA uncertain pattern mining

C. MR-UV-Eclat Algorithm

The MR-UV-Eclat (Braun et al., 2018), proposed to reduce processing time and memory

usage Braun et al. introduced a MapReduce version of UV-Eclat(Leung & Sun, 2011). After

vertical data conversion, it has two steps. First, the mapping step which is divided into two

processes, the expansion process, by concatenating the current itemset with each suffix node list.

Then, the pruning process to verify the new candidates in order to calculate the new support to add

it to the new mapped key containing. After this tree expansion, all new candidate vectors are

generated, the algorithm extracts the candidate itemset and its support value from the mapped

records formed previously in the mapping step. Secondally, the reducing step by summing all the

support values and comparing super value with minimum support threshold, to keep in the end only

records larger than support threshold.

D. BigAnt Algorithm

The BigAnt was proposed by Leung & Jiang, (2014), refers to an uncertain algorithm that

mines frequent patterns from massive data by utilizing the anti-monotonic constraints (AM) via

MapReduce framework. Thus, there were many algorithms that handle uncertain databases using

the constraints features but no one performed in uncertain big data. Therefore, Leung & Jiang,

(2014) introduced BigAnt which is based in a pattern growth fashion, (tree based approach) that

mines only interesting patterns that satisfy the user-specified constraints of the truly frequent

itemsets from inconsistent massive data. Moreover, the traditional process was to extract frequent

itemsets and then the user will select his interested itemsets. For that reason, in order to avoid

wasting a lot of time and space, the BigAnt gives more options to the user, which are the

user-specified frequency constraint such as the minSup and the user-specified non-frequency

anti-monotonic constraints that checks only the interested user items. Additionally, it has two map

and reduce functions, in the map step it checks the non-frequency AM constraints, and in the reduce

step it checks the frequency constraint as a result to form valid interesting itemsets that match up

the user selected constraints with a high velocity and high variety.

E. PNDUA Algorithm

The PNDUA (Xu et al., 2015), calculates the exact probabilistic frequentness by using

MapReduce framework, this last is very complicated in uncertain data, where researchers already

proposed some approximation algorithms such as DN (Calders et al., 2010), PD (Cam, 1960)...etc,

but these algorithms didn’t show acceptably effective while handling very large, dense or sparse

45

Chapter II: BIG DATA uncertain pattern mining

datasets. Therefore, Xu et al., (2015) introduced the PNDUA algorithm to solve this problem, it is a

parallel normal distributed based UApriori algorithm (Chui et al., 2007), which is splitted into

several sequential steps, starting with the first step which contain a single map and reduce functions

to calculate the expected support of each singleton frequent itemset, then it takes the output of the

step 1 to start second step, which generates candidates of frequent 2-itemsets in condition that they

aren’t empty. Thus, in the same manner the next steps will generate frequent k-itemsets and stop the

process only if there is no more frequent candidate generated list. Furthermore, one of the PNDUA

limitations is that it doesn't satisfy the problem mentioned above completely, it is runnable only in

dense datasets, not in both sparse and dense.

F. PuFIM Algorithm

The PuFIM (Ding et al., 2019), mines important and interesting itemsets by using

probability and weight over Pufim-tree, where its idea was to consider the weight of item (Lin et

al., 2015), in other hand, there is also more researchers that presented some algorithms that discover

high weight probability patterns based on their importance and weight from uncertain datasets like

HEWI-UApriori (Lin et al., 2015) algorithm, but not from massive data. Therefore, PuFIM

combines the two mentioned ideas to perform a parallel weighted uncertain frequent pattern mining

using the spark model from uncertain large data, its operation is considered in three steps, the first

takes data as an input to employ different map functions using the extended definitions of the

HEWI-UApriori, then scan the data twice to give the key and max weight probability for each item

set as an output, the next step is the creation of the PuFIM-Tree that mines recursively all high

weight probability patterns. Then, in the last step PuFIM extracted the frequent pattern according to

the expected weighted support of each itemset.

G. ApproxFP Algorithm

The ApproxFP (Xu et al., 2014), proposed in term of uncertain frequent itemset, two major

measures can be used which are the expected support based frequent itemset applied in some

previous mentioned algorithms, and the probabilistic frequent itemset(PFI) which is more complex

as a reason that is counted with the probability distribution of item support, according to recent

studies researchers aims to use the approximated poisson distribution (Cam, 1960) to find

frequency to develop efficient approximation algorithms such as MBP (Wang et al., 2010),

ApproxApriori (Calders et al., 2010)... etc which are much faster and achieved good results in

uncertain dense datasets, but not in sparse, big data. Therefore, Xu et al., (2014) introduced

46

Chapter II: BIG DATA uncertain pattern mining

ApproxFP to fix this limitation, this approximated frequent pattern algorithm on MapReduce

platform examine both expected support and PFIs by using an ApproxFP-tree which is constructed

in the reduce task to avoid spend much time in multiple scans of the database, but without building

the repeated pattern growth sub-trees because during the PFIs search from the tree, it becomes more

smaller by reason of working and comparing generated candidates with the maximum estimated

support which is computed with the prefix estimation method this leads to a short runtime and a

high speedup and accuracy in mining frequent patterns in sparse and uncertain big data.

IV. Comparison and Discussion

Our comparative study of all the parallel and distributed uncertain pattern mining algorithms

mentioned before is based on various measures and parameters such as technique used, data

representation, division strategy …etc, which can differentiate from an algorithm to another, as

shown in Table 5. Moreover, while comparing the advantages and limitations of the algorithms, we

can extract the most efficient, scalable, flexible, and accurate algorithms

(less memory consumption algorithms according to the time consuming between them).

Table.5. Comparative study of different FPM algorithms from big uncertain data.

Aspects of

comparison

Names of the algorithms

MR-Growth BigAnt ApproxFP PNDUA
MR-PUFGro

wth
MR-UV-Eclat PuFIM

Year 2013 2014 2014 2015 2017 2018 2019

Extends UF-Growth UF-Growth
MBP &

UF-Growth
UApriori

MR-Growt

h
UV-Eclat

HEWI-UAprioii &

UF-Growth

Division

Strategy

Search

Space

Split

Divide data

into several

partitions

Search and

prune

Divide data

into several

partitions

Search

Space

Split

Search

Space

Split

Search

Space

Split

47

Chapter II: BIG DATA uncertain pattern mining

Data

Representa

-tion

Horizontal

Horizontal Horizontal Horizontal Horizontal Vertical Horizontal

Storage

Structure
UF-Tree

UF-Tree

TPC-Tree

BLIMP-Tree

ApproxFP-Tr

ee
Array PUF-Tree Array PuFIM-Tree

Technique

used

Pattern

Growth

fashion

Constraints via

Pattern Growth

fashion

Prefix

estimation

method

without

sub-trees

Breadth First

(candidate

generation)

Prefixed

Item cap

Item Centric

fashion

Weighted items

via Pattern

Growth fashion

Framework

MapReduc

e
MapReduce MapReduce MapReduce

MapReduc

e
Spark Spark

Used

Datasets

.Accidents

.Connect4

.Mushroo

m

.Accidents

.Connect4

.Mushroom

.Kosarak

.T10I4D100K

.Accidents

.Connect

.Kosarak

.Connect

.T10I4D10

0K

.Retail

.Mushroo

m

.Two unknown

datasets

 .Retail

 .Mushroom

.T10I4D100K

Operating

system

Windows

7 64-bits

Windows 7

64-bits

Ubuntu 12.04

32-bits
Ubuntu 11.04

Ubuntu

14.04
- -

Main

memory
8GB 8GB 4GB/1GB 4GB/1GB 4GB - 4GB

Programm-

ing

language

Java Java Java Java Java - Scala

48

Chapter II: BIG DATA uncertain pattern mining

Advantages

.Multi-core

Processors

in the

ForkJoin

Framework

.Efficient

Conditional

Tree

Constructio

n

.Sampling

the

UF-Trees

.Space and

time efficient

because fewer

pairs need to

be shuffled and

sorted

.Small

selectivity:

short runtime

and high

speedup.

.Flexible: for

any databases

type precise or

uncertain

.Scalable, it

avoid

multiple data

scans and

time

consuming by

using

ApproxFP-Tr

ees

.Fastest

running time

and high

speed

because there

is no

sub-trees are

built

.High

accuracy on

sparse

uncertain big

datasets, PFIs

are found

with poisson

approximatio

n

.A parallel

normal

distribution

algorithm.

.Better

accuracy in

denser

datasets.

.Quite time

consuming

compared to

other

approximatio

n algorithms.

.Compact

data

representati

on for

uncertain

pattern

.Databases no

need a

repeatedly scan

each time

which make it

fastest and

more scalable

.Consumes the

least amount of

memory as a

reason that it

uses the

depth-first

search method.

.Extracting

interesting

patterns based on

probability and

weight measures.

.The use of

Pufim-tree to

reduce the times

of scanning the

databases.

.Scalable, and

the frequent

patterns are

fewer and more

precise

49

Chapter II: BIG DATA uncertain pattern mining

Drawbacks

.UF-Trees

are not as

compact

and their

size

becomes

larger for

huge

datasets

.The results are

based and

dependent on

the selectivity

of the user,

which needs to

be precise and

true to get

useful and

valid patterns

to avoid

wasting time

and memory in

processing

unsure or

wrong

interested

patterns

.The random

process still

may have a

non accurate

results

.Inflexible, it

works only in

dense

datasets,

therefore it is

ineffective in

sparse data

.One of its

operations

failed which

made it a

limited

algorithm.

.The large

number of

the

distributed

distinct

items leads

to worse

performanc

e when they

are in a

large set of

transactions

.The T-id sets

can be long,

therefore

expensive to

manipulate, and

consumes more

memory

especially in

dense datasets.

.The runtime of

PuFIM is not

reduced under

the distributed

environment

because it

consider both the

probability and

weight of the

itemset which is

more time

consuming

In term of memory and time processing, ApproxFP and BigAnt has the less time consuming

and achieved a high speed up comparing to the remaining algorithms, such as those who uses the

breadth first search, the pattern growth and the weighted fashions, Approx is a tree based algorithm

but without building sub trees which takes more time and extra memory space while processing,

where BigAnt inverse the traditional pattern growth technique to perform the selectivity, but it can

be efficient only when there is such a specific constraints that avoid mining all the frequent

itemsets, when there isn’t, BigAnt will have the same other pattern growth algorithms limitation.

In terms of scalability and flexibility, the seven algorithms listed above perform well in

uncertain big data, but depending on the data types which are several, when data is dense all the

listed algorithms run without any kind of failure, but not in the second type which is the sparse,

based on Xu et al., (2014) the ApproxFP work on the both kind of data, others like PNDUA that

has show a big difficulty and fail to handle sparse uncertain Big datasets, and this made it

unscalable, for the BigAnt, we cannot judge if it can be more scalable in sparse data, Leung &

Jiang, (2014) did not give more details about it.

50

Chapter II: BIG DATA uncertain pattern mining

In terms of accuracy, almost all the previous mentioned algorithms have a good

performance. PuFIM extracts interested itemsets, BigAnt outputs only the user interested patterns,

PNDUA and ApproxFP are approximative algorithms, so the accuracy is based on the recall and

precision.

V. Conclusion

In this chapter, we provided a comparison study of parallel and distributed algorithms

proposed for mining itemsets from big uncertain data such as MR-Groth, MR-UPF-growth,

MR-UVEclat, BigAnt, PNDUA, PuFIM, and ApproxFP algorithm. The objective of all these

algorithms is to mine effectively and efficiently frequent itemsets from huge uncertain datasets,

there are some who used the same techniques and others who tried different ones aiming to give a

solution to overcome the problem of scalability in the context of big data.

But as we defined in the Table.5 there are negative points too, where with the growth of the

Big Data 4V's these algorithms necessitate more memory, and they faced difficulties to handle that,

these challenges pushed the UFIM researchers to resort to bio-inspired metaheuristic algorithms.

51

Chapter III:

Bioinspired

Metaheuristics and

Pattern Mining

Chapter III: Bioinspired Metaheuristics and Pattern Mining

I. Introduction

The second chapter reviewed the uncertain big data characteristics, which are huge volume,

high level of velocity, variety and veracity. In addition to that it introduced several algorithms that

utilized one or multiple big data paradigms, developers of these algorithms clearly defined a set of

instructions, equations to solve the incomplete massive data issue. In other words, they tried to

transform the issue into a dependent problem by utilizing the exact or the heuristic approaches of

the optimization mechanism to achieve a guaranteed optimal solution for the frequent itemsets

mining.

Thus, we noticed that the implemented algorithms output differs from one datasets to

another, because the methods used which work for one optimization task might not work for

another. According to this hypothesis, uncertain big data becomes an NP-hard problem, its features

grow exponentially with time, the larger the issue, the more complex the solution space, which

makes the exact and traditional approximation algorithms become slower and it is difficult to verify

its validity, this means that they work very efficiently only with simple problems. Therefore, to

boost up the performance of the mining process for uncertain large datasets, a different optimization

approach is used, inspired by natural phenomena known as the metaheuristics, which is used

frequently in the data mining field as a fastest, efficient method to find a global solution.

This chapter is formed as follows, we will begin with a definition of the metaheuristic

approach, jumping to the next section, we will focus on the population-based metaheuristic solution

with an explanation of its methods and algorithms, known as the evolutionary, and the swarm

intelligence algorithms.

II. Metaheuristics

The greek word meta-heuristic as defined by Sörensen & Glover, (2013) signifies a high

level in discovering near-optimal solutions in a reasonable computational time, it had great

popularity from the first appearance which was in the 80s and still until now. In computer science, it

is defined as a master heuristic process designed to solve difficult optimization problems (Yang,

2011).

Effectively, metaheuristic is a consequence of the failures that have been shown with the old

optimization solutions that are exact and heuristic methods, it is a problem independent technique.

In other words, they are stochastic iterative algorithms, where they search for the causes of the

53

Chapter III: Bioinspired Metaheuristics and Pattern Mining

problem to find approximate solutions at a specific time (Tezel & Mert, 2011), also defined as

clever strategies to enhance the efficiency of heuristic procedures, especially with insufficient, bad

information or restricted computation capacity.

In recent years metaheuristics plays an important role in data mining, especially in the

frequent pattern mining process in an age of over increasing data, where the data mining needs to

benefit from the powerful metaheuristics that can deal with huge amounts of data in order to reach a

maximized accuracy and a minimized amount of information described as simplicity. Therefore, to

address the optimization purpose, metaheuristics techniques are generally divided into two

categories, the representation of these two categories differs from the characteristic of the study,

represented by single-solution(trajectory) and population-based, natural-inspired and

non-natural-inspired, dynamic and static objective, memory-usage and memory less algorithms..etc,

as Balabanov et al., (2020) presented in Figure.9, the different classifications of the metaheuristic

approach.

Figure.9: The classifications of the metaheuristic approach

In our study case, we focus on metaheuristic classes depending on the number of solutions

used at the same time, they are divided into single based and population based, and we give more

attention to the second metaheuristic category, the population based (Talbi, 2009) algorithms such
54

Chapter III: Bioinspired Metaheuristics and Pattern Mining

as the Swarm Intelligence algorithms(SIs) (Beni & Wang, 1989), and evolutionary

algorithms(EAs) (Darwin & Kebler, 1859), they performed well compared to the single solution

during the search process, also showed satisfactory capabilities to deal with high dimensional

optimization problems.

III. Population Based Metaheuristics

The Population based Metaheuristics (PbMs) (Talbi, 2009) are generally regarded as an

iterative enhancement of a population of solutions, the start point is an initial population of

solutions, then two major phases are applicated repeatedly, the generation and the replacement, in

the first phase a new population is created under the generation procedure, then in the replacement

phase a selection procedure is done to replace the current populations with the new ones, to better

understand the PbM operation, the Figure.10 (Repoussis, n.d.) illustrates the representation of the

PbM process in two manners, via an algorithm and an architecture, the output is given only when

the operation is stopped with a satisfied criteria.

Figure.10: The general process of the Population-based Metaheuristic

Basically, the generation and the replacement phases are memoryless, in some situations

they can use a memory to store the history of the search which is used in the PbM phases, known as

the memory search strategy. This class is rich in efficient algorithms, which as we said before are

mostly nature inspired algorithms, the difference between them is not in the techniques used but in

the fashion to implement these techniques. In addition, the search memory strategy varies from an

PbM algorithm to another, which means that every algorithm has its manner to represent extracted

and memorized information during the search process.

Let’s give some details of the population based metaheuristic, mainly it contains four

important steps as introduced below, these procedures make the difference between the single-based

and the population based solutions.

55

Chapter III: Bioinspired Metaheuristics and Pattern Mining

A. The Initial Population: is an important parameter, because a wrong generation of this

item will affect the PbM algorithm result, and to find the initial population PbM use

strategies that are measured based on three metrics, the diversity, the computational cost and

the quality of initial solution.

B. The Generation: as presented in Figure.11 (Musdholofah et al., 2020) we have two

major categories, the evolution-based which has three operations (reproduction, crossover

and mutation), this class includes many algorithms like the EAs (Darwin & Kebler, 1859).

The blackboard-based makes an indirect recombination using a shared memory which is an

important input during the generation process.

Figure.11: The Evolutionary-based PbM versus the Blackboard-based PbM.

C. The Selection: as specified in the Figure.10 in the template representation, after the

generation of new populations the selection procedure will select a new solution from the

union of the current and the generated populations, from the produced union we can apply

several selectivity techniques, we can select the newly generated solution as the new

population and this is the traditional manner, remaining techniques prefer to select from the

union set the best solutions as the new population.

D. The Stopping Criterion: it signifies the ending point of the PbM process, this constraints

can be specified statically with a given criteria like the fitness improvement remains under a

threshold value for a given period of time, the maximally allowed CPU times elapses, or

adaptively when there is a lack of activity or changeability of the solutions the operation is

stopped and the output is generated, this makes the iterative process inefficient and wastes

more time and memory if it continues while there is no progress.

56

Chapter III: Bioinspired Metaheuristics and Pattern Mining

IV. Algorithms Using Population Based Metaheuristic

In this section we will introduce the metaheuristic algorithms which help to mine frequent

and high utility patterns.

A. Evolutionary Algorithms

This type of population-metaheuristic is inspired from the theory of evolution and natural

selection (Darwin & Kebler, 1859), in other words, they do what biological nature does, this

evolutionary process makes the population adapt to the environment better and better, it is used as

the main strategy in a stochastic search manner to find optimal or near optimal solutions of the final

survivors applied to optimization problems, this class cover four major and highly successful

techniques such as the genetic algorithms(GA) (Holland, 1984), the Evolutionary Programming

(EP) (Fogel, 1962) and Evolutionary Strategies(ES) (Rechenberg, 1973).

Let’s give a general view of the EA algorithm, it will start the initialization phase by

generating the first population, known as the randomized initial population which is represented

with individuals (chromosomes), a fitness function is applied for the evaluation of quality of the

individuals, then a set of reality based evolution operators are applicated on these chromosomes,

such as selection, crossover (recombination), mutation, which leads to new individuals generation,

but the size is maintained as in nature with the natural selection procedure, old individuals are

partially or totally replaced, and this cycle is repeated, when the stopping criterion is satisfied the

process finished and the set of solutions is given, Figure.12 (Eiben & Smith, 2003) shows the

general EA process, with the pseudo-code schema.

Figure.12: The general process of Evolutionary Algorithms(EAs)

57

Chapter III: Bioinspired Metaheuristics and Pattern Mining

After this brief summary on the EAs general process, it's also helpful to go deeper, with

more details. Therefore, in the coming part we focused on the Genetic Algorithm (GA) (Holland,

1984), which is one of the popular classes of evolutionary algorithms and highlighted how it works.

1. Genetic Algorithm

Genetic Algorithm (GA) (Holland, 1984), is the most known branch of the EAs,

well John thinked of the idea that machines can imitate the natural biological processes and

apply it using a set of instructions and algorithms. However, since EAs simulate the natural

evolution strategy, many mechanisms are the same as the biological terminologies. Thus,

Figure.13 defines the major GA steps (Scrucca, 2013), and includes some important EAs

components and vocabularies that are implemented in GAs process.

Figure.13: The Genetic Algorithms process

As presented in the picture above, the generation of the initial population is the first

step, during this phase it makes the representation of the problem which contains several

terminologies, such as chromosomes, genotypes and phenotypes as shown in Figure.14

(Massone, 2018), the different elements of the problem representation. In biology, genetic

information are stored in chromosomes, each of them is made up of proteins and DNA

which are encoded into genes, similarly in computer science, the chromosomes also named

58

Chapter III: Bioinspired Metaheuristics and Pattern Mining

individuals, they are given as a group of potential solutions of the problem, and the set of all

these chromosomes is called population.

Figure.14: The different terminologies in the representation problem phase

Genotypes and Phenotypes are the link between the Evolutionary Algorithm world

and the real world, the phenotype is the actual physical representation of the chromosome,

they are these objects that constitute a possible solution in the context of the original

problem which have an encoded version called genotypes. Moreover, a genotype is a set of

genes that represent the chromosome by a software data structure, and its size is often

dynamic or static based on the problem domain. However, when we traverse from

phenotypes to genotypes the mapping here is called encoding, the decoding is when

inversing from genotypes to phenotypes.

An individual in GAs is generally described as a fixed length vector, the genotypes

use generally the binary encoding, the initial population which is generated randomly

contains a set of chromosomes that are presented as strings of binary encoding digits, the

initial population is seeded with solutions that are known to have good fitness, because the

choice of these solutions can affect the GAs near-optimal convergence ability.

Another essential element in the GAs process is the fitness function, this word is

taken from the EA theory, it is the quality function that verifies the quality of solution at

59

https://www.researchgate.net/figure/Nomenclature-for-a-genetic-algorithm_fig2_326356402

Chapter III: Bioinspired Metaheuristics and Pattern Mining

each iteration according to the problem to be solved, where every optimization problem has

its fitness function.

Furthermore, the GAs will apply this quality function on the population, then a

certain pool of calculated fitness values is generated, and the algorithm will start

implementing the evolution operators: selection, crossover and mutation.

In the selection, the GA will use the parent selection mechanism based on their

quality. Generally, the highest fitness individuals have a greater chance to become parents of

the next generation, these parents of chromosomes will help reproduce a new population

(offsprings). Next, a fundamental phase will take the offsprings and make a crossover

operator, which is explorative, selecting a random crossover point(s) in the range of this

point(s) the genes are exchanged and mixed between parents to generate the children's

chromosomes.

The mutation operator is exploitative, it is executed on each new offspring, but the

probability to mutate a gene is small, the purpose of mutation is to address a high level of

diversity, it switches the bit of every gene according to the mutation points range to a

randomly chosen neighboring solution.

Thus, as described in Figure.13 the fitness function will be applied on the new

offsprings, then a survivor selection mechanism is implemented, the offsprings will compete

with the old individuals, based on their quality values to guarantee a place in the next

generation. This whole cycle is repeated, there are cases when it is stopped when the GA

reaches the given optimal objective function, but in other situations, the GA process may

never stop, as a consequence that is an iterative algorithm and its condition may never get

satisfied.

B. Swarm Intelligence Algorithms

Swarm Intelligence(SI) (Beni & Wang, 1989), is a population-based metaheuristic branch

which has a great popularity because of their flexibility and diversity, they increased their ability to

adapt to external differences and self-learning, it refers to one of the most important methodology

that swarms use to achieving a common objective, known as the stigmergy, that means

communication via cues or signs placed in the environment by one entity, which influence the

behavior of other entities encountering them to help perform multiple tasks smartly, under the

60

Chapter III: Bioinspired Metaheuristics and Pattern Mining

stigmergy mechanism we have many effective functions that swarm can make in a cooperation such

as the natural construction of homes like ant nests or bees hives, or the foraging techniques that

exploits good food sources, adding to that the flocking activities which help traveling in groups,

flocks, swarms..etc, they are aligned separated and cohensied at the same time.

Therefore, as we have complex real world problems, these interesting natural behaviors

made an impact on computer science. Thus, Beni & Wang, (1989) inspired from these collective

swarm intelligence activities to reach semi-optimal solutions of NP-hard problems, especially in a

short period of time, Figure.15 (Brezočnik et al., 2018) illustrate the general SIs process.

Figure.15: The general process of the Swarm Intelligence branch.

In the next two sections, we will take a look at two different successful algorithms that are

inspired from the swarm intelligence framework, the first is the well known Particle Swarm

Algorithm(PSO) which is based on the flocking and swarming behavior of birds, and the second is

the Bee Swarm Algorithm(BSO) which refer as its name to the bee foraging activity.

1. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization(PSO) (Kennedy & Eberhart, 1995), is an

evolutionary computational technique inherited from the population-based stochastic

optimization algorithms motivated by the intelligent collective activity of the natural

flocking behavior developed from swarm intelligence.

61

Chapter III: Bioinspired Metaheuristics and Pattern Mining

The PSO started the process from the initialization of the population of random

potential solutions known as particles which is the first step as presented in Figure.16

(Dessouky & Elrashidy, 2016). Thus, a swarm consists of N particles, these birds are

represented in a vectorial form by their position x in the search space where they are all

flying, similar to the natural flocking activity when searching for the only one piece of food

in the search space where each particle dynamically adapts to the speed of its travel in line

with its own flight experiences and those of its mates.

Figure.16: The diagram of the Particle Swarm Optimization Algorithm process

There are two main global values that help a particle track its path in the swarm to

continuously update his position according to its previous experience and the experience of

its neighbors, it needs to take these values on consideration in each movement, the personal

best fitness value reached by this bird, known as the Pbest, and the second meter is the

Gbest which signify that every particle in the swarm is informed about the best position of

the best position that any particle has yet discovered, it is stored in a shared vector between

all agents.

62

Chapter III: Bioinspired Metaheuristics and Pattern Mining

The next agent parameter is the speed(velocity), which is an essential parameter in

the SIs strategy, as a reason that it is a relocation vector that will affect the position of the

bird in the next iteration during the search phase, this value is calculated based on Rule.24:

Rule.24: Vi+1 = w Vi + c1 rand(Pbest - Xi) + c2 rand(Gbest - Xi) × × ×

that helps to calculate the new position following Rule.25:

Rule.25: Xi+1 = Xi + Vi

In summary, a particle has three vectors, the position vector, the velocity vector and

the Pbest vector, and there are other supplementary parameters used in the velocity count

like the inertial weight w regarded to the velocity, two accelerations coefficients c1, c2 and

two random numbers as Rule.24 illustrated.

Let's go back to the diagram shown in Figure.16, after the swarm initialization of the

position and velocity, the evaluation of the population starts with the desired fitness

function. This procedure will compare the current fitness value of position with the fitness

values of the randomly initial meters of Pbest and Gbest, and select the fittest value to

update with. Then test if the obtained new Gbest and Pbest are satisfying the termination

condition, otherwise it continues the cycle by updating the velocity with Rule.24, and then

updating the position with Rule.25. A new particle is generated and all the steps of this

section are repeated until the termination condition is satisfied and outputs the Gbest as the

solution found.

One of the popular features of the PSO algorithm is its simplicity, and it is different

from the GAs as it doesn’t make any kind of selection.

2. Bee Swarm Optimization Algorithm

The Bee Swarm Optimization(BSO) (Drias et al., 2005), is a population based

metaheuristic algorithm, which is a member of the swarm intelligence branch, on the top of

that, it is one of the favored algorithms that are used in difficult optimization problems, for

the reason that is inspired from the bee colonies foraging behavior, this smart strategy made

this algorithm useful in various domains.

The process of the BSO starts with the generation of the first reference solution

named Sref which is similar to the initial population solution in PbM, where a bee called

BeeInit is responsible to use heuristic techniques to collect the Sref, as it is the starting point
63

Chapter III: Bioinspired Metaheuristics and Pattern Mining

it must contain a beneficial parameters, from the defined Sref a certain methods are applied

to choose and find the supplementary solutions, then all of these solutions including the Sref

are combined to form the SearchArea or also known as the search space.

The SearchArea solutions are placed based on an equivalent distance from the Sref,

according to the flip metric which helps to decide the most converged solutions in the

SearchArea, the primary phase is finished. Next, the content of the SearchArea is splitted

where each bee will take a solution to begin the local search phase, then these agents will

store the searching result in a table called the DanceTable as the famous bees waggle dance,

the worker bees can address this table to know about others solutions. In the last step the

BSO will select the fittest solution as the new Sref from the DanceTable and the cycle is

repeated and will stop based on the given constraints such as the max iterations or the

quality of the food sources reached during the process, the pseudo-code of the BSO is

presented in Figure.17 (Drias et al., 2005).

Figure.17: The Pseudo-Code of the Bee Swarm Optimization Algorithm process

The BSO is different from the other population based methodologies because all the

improvements made helps to explain the bees foraging activity deeply, where every bee has

its own mission.

V. Conclusion

In this chapter, we presented an efficient approach that gives a global optimization solution

to the NP-hard optimization problems, the metaheuristics address the limitation and complexity of

the exact and heuristic algorithms, since our study concentrate on the uncertain big data field, the

64

https://link.springer.com/chapter/10.1007/11494669_39#citeas

Chapter III: Bioinspired Metaheuristics and Pattern Mining

solution search time needs to be decreased the most, this why we focused and gives more attention

to the population-based metaheuristics(PbMs).

We give an overview on two of the well known PbM branches, EAs and SIs algorithms, then

we introduced their proficient classes such as the Genetic Algorithm(GA), the Particle Swarm

Optimization(PSO) and the Bee Swarm Optimization(BSO), all of the mentioned strategies will

help us to generate our proposed solution which is described in the next chapter.

65

Chapter IV:

The PROPOSED

APPROACHES

Chapter IV: The PROPOSED APPROACHES

I. Introduction

Based on the information we provided in the listed above chapters, the difficulty to mine

frequent patterns from uncertain big datasets can depend on two major problems which are the big

data and the algorithm search space, where almost all the previous researchers work tried to address

one of the factors which is generally the big data problem using different techniques and ideas.

Adding to that, this factor complexity grows up with time which means the old proposed solutions

performance may be decreased, so new solutions need to be developed to handle the problem.

Therefore, we proposed three frameworks that combine clustering and distributed

parallelism using a big data paradigm which is the MapReduce with three famous efficient

bio-inspired metaheuristic algorithms known as the particle swarm optimization (PSO) (Kennedy

& Eberhart, 1995), the bee swarm optimization (BSO) (Drias et al., 2005) and the genetic

algorithm (GA) (Holland, 1984), to improve both factors at the same time.

This chapter contains several parts starting with the proposed approaches, it takes in the first

part our basic idea including the common point between the proposed algorithms which is the

MapReduce job that calculates the expected support MRExpSup. Next, the implementations of each

proposed approach including all the applied improvements are introduced.

II. Proposed approaches

We already expressed the two main problems that occur during the UFIM process for big

data. As an inspiration from that, the Big Data problem has a unique resolving method that is shared

between all the proposed frameworks, where the mentioned solution is previewed in this section.

Let’s take a look at the general main pseudo-code which is illustrated in Figure.18. The

program is a set of multiple steps, it is globally splitted into three major phases, the initialization,

the fitness function calculation and the algorithms jobs. All the given steps are dependent on the

framework itself, except the MapReduce#1 defined in step.4.1.

68

Chapter IV: The PROPOSED APPROACHES

Algorithm 1. General Metaheuristic based UFIM
Global main pseudo-code

__

1. Begin

2. Generate the initial population

3. Initiate the control parameters

4. while (number of Iterations < MaxIter)

4.1. Start Fitness Evaluation (call Expected Support MapReduce#1)

4.2. Start Frameworks jobs(PSO, BSO, GA)

4.3. Next iteration until the stopping criterion is met

end while

5. Display the Frequent Itemsets file

6. End

__

Figure.18: The proposed main pseudo-code.

A. MRExpSup solution (MapReduce#1)

Before starting explanation of the job, the initial MapReduce#1 is referred to the fitness

function calculation, it is designed to handle the first issue, which is the big data problem, because

our problematic objective function is the count of the expected support which needs to get the

necessary inputs from the dataset. And for each individual, each line of the data is scanned multiple

times, as we said before, making the process more time and material consuming.

Due to this, our principal concept was to split our transactional database in a distributed

cluster based on the number of machines into mappers, giving this database to the map function as

an input, to count the expected support of all individuals of the population and output it in the

reduce function, this operation differs from the traditional expected support calculation method as a

reason that it doesn't use any sequential operations, it works only in parallel as presented in

Figure.19.

69

Chapter IV: The PROPOSED APPROACHES

Figure.19: The schematic representation of the distributed cluster.

In essence, we have a tuple of parallelization procedures inside the MRExpSup method, the

hadoop MR which is already a parallel distributed framework, and parallelization of the population

and the database transactions as summarized in Figure.20.

Figure.20: The schematic representation of the MRExpSup solution function.
70

Chapter IV: The PROPOSED APPROACHES

The population is first splitted into individuals sets, where each individual is handled in

parallel, secondary this individual will split all the input context of a specific mapper into ‘N’

packets of transactions instead of one at a time, this maximum number of splits ‘N’ of a mapper

transactions, it is calculated using Rule.26, where S is a user defined splittable value.

Rule.26: N =
𝑚𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐿𝑖𝑛𝑒𝑠

𝑑𝑎𝑡𝑎𝑆𝑖𝑧𝑒 × 𝑆

After that, this set of transactions are prepared in parallel, where they are splitted and each

record is maintained in parallel as an array of probabilistic values, then since we used the binary

representation, it takes the given individual and calculate its objective function based on the

comparison between its bits, if the individual bit is equal to 1, which proves that this item is𝑖𝑡ℎ

presented in this transaction, we take its value in the created probabilistic record values array and𝑖𝑡ℎ

apply Rule.2 declared in the first chapter.

Thus, after all the individual bits are processed, the individual obtained expSup value

becomes an output that is temporarily stored in the HDFS which then sent to the combiner.

Whereas, as we said before all the data lines are processed in parallel and distributed over the

machines.

Before starting the reducer presented in Figure.19, we go through a combiner process to

organize the map output records that have the same key, then the reducer will take this output as its

input and examine the sum of the set of all its expected support values as mentioned in Rule.3. At

the end, the reducer writes to the HDFS the final expSup value of this particular individual.

Note that this MapReduce job remains the same for all the algorithms, because they share

the same problematic and fitness function, this is why it is mentioned in this part not in the

algorithms one, because it is a common point between them and we don’t need to repeat it three

times. In the next parts we will highlight the different proposed frameworks, where each of them

has its own procedure.

III. MRPSO-UFIM framework

This framework supposed that each limitation is a MapReduce job. Let’s take a look at its

general MRPSO-UFIM main pseudo-code which is illustrated in Figure.21.

71

Chapter IV: The PROPOSED APPROACHES

__

Algorithm 3. MRPSO-UFIM

The proposed solution main pseudo-code

__

1. Begin

2. Generate the initial population

3. Initiate the PSO control parameters

4. Store population in HDFS

5. while (number of Iterations < MaxIter)

5.1. Start Fitness Evaluation (call Expected SupportMapReduce#1)

5.2. Combine the MapReduce#1 output with the population in HDFS

5.3. Check the range of velocities

5.4. Start PSO Job (callMapReduce#2)

5.5. Next iteration until the stopping criterion is met

end while

6. Display the Frequent Itemsets file

7. End

__

Figure.21: The proposed MRPSO-UFIM pseudo-code.

From Figure.21 we have step.2 and step.3 which are considered as a first basic phase of the

main program. The generation of the initial population differs from an algorithm to another, the

common point is that the individuals are a group of frequent patterns in order to avoid the random

generation that leads to non-optimal results, they are presented in the same binary format, an array

that is composed of 1 or 0 values, its dimension is the same as the dataset length, these group of

frequent items is generated using a heuristic defined method. The first line of the database is token,

then for each item if it differs from zero, we set its correspondence array column to 1, if not it

remains 0 in the array, until we get the final array that will use recursivity to extract all the possible

matching pairs of individuals, as illustrated in Figure.22.

Figure.22: Generating initial population via heuristic method.
72

Chapter IV: The PROPOSED APPROACHES

As we know a swarm is a collection of particles, assuming that each particle contains several

parameters such as its position array, which is a binary representation as shown in Figure.22, its

velocity array that is generated randomly in a given interval, both Pbest and Gbest arrays are arrays

of zeros, where Pbest and Gbest values are set to 0.

When step.3 starts, it has a significant impact on the outcome of the operation, because

convergence behavior may start occurring if wrong initial control parameters are set. Therefore, to

be specific there are three major attributes that we need to choose : the acceleration coefficients c1

and c2, the inertia weight w, the random values r1 and r2.

After step.3 is finished, we store the generated population into the Hadoop Distributed File

System(HDFS), where this phase is necessary for both algorithms because they use the population

file in their work. Then, step.5 begin, which describes a while loop that defines our stopping

criterion, we set a maximum number of iterations(MaxIter) and while the iteration is smaller than

the MaxIter, we enter to the second algorithm phase that contains the MapReduce expected support

job(step.5.1).

When the already defined MapReduce#1 is done, we move on to step.5.2 of the main code,

we combine here the expSup value for each individual with the population file, and restore it again

in the HDFS. Moreover, step.5.3 is processed before calling the MapReduce#2, we need to make

some changes. To further understand, PSO early convergence behavior happens when the search

process is trapped in a local optimum, where the position of the new particle doesn’t change during

the time, or it stucks into two positions as pictured in Figure.23.

Figure.23: A particle local optimum situation.

Therefore, PSO has a lot of parameters that we've already mentioned, where each of them

has a special ethnicity on the algorithm. In our study we made a lot of tests in order to obtain more
73

Chapter IV: The PROPOSED APPROACHES

valuable results and to know which enhancements are more efficient to our problem, and from that

we decided to fix the control parameters r2, c1, c2.

Thus, for the remaining two parameters w and r1, we suggested to use the well known

dynamic parameterization technique (Khan et al., 2017), at each iteration the w parameter is

changed, to minimize the exceeded velocity as it had a significant effect on the value of the new

velocity.

In each iteration we check if the minimum proposed velocity is upper to the obtained max or

lower to the obtained min, if it is the first case then we minimize the w value to reach the minimum

one using a decrease equation presented below in Rule.27.

Rule.27: w = maxW -
(𝑚𝑎𝑥𝑊 − 𝑚𝑖𝑛𝑊) × (𝐼𝑡𝑒𝑟 𝑚𝑜𝑑 𝑁𝑢𝑚𝑆𝑒𝑞)

𝐷

Where maxW, minW, Iter, NumSeq and D are representing respectively the maximum

weight, the minimum weight, the current iteration, the length of the proposed sequence of decreased

values and a value that specifies the change of numbers between iterations.

Furthermore, if it is equal to the minimum, the w is changed directly to the maximum, for

the second case we flip the Rule.27 in order to decrease we increase..etc and the same operation is

repeated during the time.

Note that for the r1 parameter, since is related to the particle itself, it is modified in the

Step.5.3, which is designed to fix the second problem, the search space problem, it is solved with

another MapReduce job, by using the PSO algorithm, where the output of the reducer is the global

frequent itemset in the current iteration, the total file of frequent itemsets is collected in a different

manner, let’s perceive the MRPSO solution.

A. MRPSO solution (MapReduce#2)

The main purpose of the MRPSO is to extract frequent patterns through two functions which

are the map and reduce function. According to the number of machines, the operation of the second

job is splitted into subtasks launched in parallel in the same manner of the MRExpSup idea, where

each one is given to each mapper of the slave node, the following Figure.24, represents the basic

steps that performs the MapReduce#2. Now in the next explanation, we will give an overview of

our mapper and reducer contents.

74

Chapter IV: The PROPOSED APPROACHES

__
Algorithm 4. MapReduce#2
PSO process: Extract frequent itemsets
__
Input:The population file
Output: Gbest Coordination

● Mapper(key, value):
1. Split the value into valuesArray
2. extract position, velocity, PbestArray, Pbest, GbestArray, Gbest and expSup from valuesArray
3. if(expSup>=Threshold)

if(expSup>=Pbest)
Pbest=expSup; PbestArray=position

end if
if(Pbest>=Gbest)

Gbest=Pbest; GbestArray=PbestArray
end if
Store in FIM

end if
4. get r1 value of particle
5. while(iter<MaxlocalItr)

5.1. for bit in velocity
update velocity via Rule.24; update sigmoid via Rule.27

end for
5.2. get the maxVelocity, minVelocity, maxSigmoid and minSigmoid values
5.3. get r3 via Rule.28
5.4. for bit in position

if(r3[bit] >= sigmoidArray[bit]) then position[bit]=0
else position[bit]=1

end for
5.5. if(existedPositionInBlackList(NewPosition))

NewPosition = FlipPosition(NewPosition)
if(OldPosition==NewPosition)

update r1 via Rule.30
iter++

else break;
end ifElse

5.6. else
if(OldPosition==NewPosition)

update r1 via Rule.30
iter++

else break;
end ifElse

end ifElse
end while

6. update population file
7. store r1, iter, w, OldPosition, and NewPosition in PARAM file
8. emit(key, GbestCoordination)

● Reducer(key, GbestCoordination)
1. Split the GbestCoordination into valuesArray
2. extract from the valuesArray the maximum Gbest value and the ArrayOfMaxValue
3. update population file
4. emit(key, MaxCoordination)

__

Figure.24: The proposed PSO MapReduce solution pseudo-code.

75

Chapter IV: The PROPOSED APPROACHES

1. MRPSO mapper function

A map process is a collection of key, value pairs, in this function the value is a line

of the combine file that contain all the necessary information of a particle for each subtask

(step.1), and to be able to perform the PSO steps we need to extract all the useful terms, we

have two types of parameters, the static and the dynamic during this map operation. The

fixed values such as the w, since it is not modified here, c1, c2, r2 and the user defined

minimum support named as Threshold, are obtained from the first initialization in step.3 of

main code in Figure.24.

For the rest of the dynamic variables in other words, the position, velocity,

PbestArray, Pbest, GbestArray, Gbest and expSup are extracted from the value pair of the

map object as presented in step.2.

As a first algorithm phase, the fitness function is already employed in the

MRExpSup job, then in step.3, we compare the expSup value of the particle with the

Threshold value, only if it is satisfied, and when this particle achieve its best solution in the

search space or it equals to its best previous position, we apply the process that update the

PbestArray and the Pbest by the position and the expSup respectively. After that, the

algorithm starts updating the particle global best, both Gbest arguments are replaced with

the Pbest fields, uniquely when the Pbest is greater than or equal to Gbest.

Since our goal is the maximization, there is an additional action in this step, which is

to store in the HDFS the position and the expSup of this current particle in a shared file

called FIM, which refer to frequent itemsets mining, this file will maximize the results and

to not consider only the highest Gbest as the final algorithm results. In contrast, if the

frequency rule is not satisfied, the above stages will be ignored.

The functionalities left are the velocity and position updates, these are simple PSO

steps, but in our case, there are some changes and improvements, to understand that we will

take this phase line by line.

We will give a particle the chance to eliminate the convergence by applying the idea

of chances.

76

Chapter IV: The PROPOSED APPROACHES

Then, the new position is calculated using the current velocity according to Rule.24.

And since the output of the velocity value is binary. Therefore, as indicated in step.5.1,𝑖𝑡ℎ

we use the sigmoid function equation defined in Rule.28 (Kennedy & Eberhart, 1997) :

Rule.28: sigmoidArray[i] =
1

1+𝑒−𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦[𝑖]

This sigmoid value is compared with a new variable named r3, and it is generated

randomly following Rule.29:

Rule.29: r3[i] = rangeMin + (rangeMax - rangeMin) randDouble()×

Where rangeMin is initiated using Rule.30, the rangeMax is the maximum value of

the sigmoidArray, we didn’t take its minimum value, the reason is that the uncertain datasets

are almost fully of zeros, we don’t need a position that is rich of ones to avoid multiplication

with zero values, the U is a value that helps augmenting rangeMin.

Rule.30: rangeMin = rangeMax -
𝑟𝑎𝑛𝑔𝑒𝑀𝑎𝑥 − 𝑟𝑎𝑛𝑔𝑒𝑀𝑖𝑛

𝑈

After updating position by doing a comparison between the r3 and the sigmoid

arrays(step.5.4), we will check the presence of this obtained position in a file that contain all

the already obtained positions to avoid the problem presented in Figure.23, if it is true, we

will flip a bit in the new position and check similarity with the previous one, if it is true and

they are the same, which means that the particle didn’t change its position yet in early

stages, the r1 of this particle is updated using Rule.31, it is inspired from the sinusoidal wave

equation, where U helps to obtain the user wanted dynamic sequence:

Rule.31: r1 = | A Sin(2 iter U +) |× Π × × ϕ

Let’s explain our overall contribution to this phase, when the local iter augments,

this leads to restart the step.5 processes again with a modified r1 value for this particle, until

we get a new different position from the old one. As shown in step.6, all the used individual

information is updated in the population file: the position, velocity, PbestArray, Pbest,

GbestArray and Gbest in the HDFS.

Finally, when step.8 is executed, the current GbestArray and Gbest coordination are

sent to the reduce function, to connect the particles with these values.

77

Chapter IV: The PROPOSED APPROACHES

2. MRPSO reduce function

As we spoke earlier that before starting the reduce function we must pass to the

combiner function to order the output of the mapper function and emit it to the reduce

function to get both key and value as input, whereas in the commencing we extract the

parameters from the input value which are all the GbestArray’s and their Gbest values, we

only need to compare the values of the Gbest among themselves to outcome the greater one

in the swarm. This reduce object facilitates the communication between particles, because

when it is finished and the highest value is selected, we update the GbestArray and its value

in the population file with the one generated from the reducer output for all the particles.

The aforementioned operations presented in step.5 of Figure.21, are repeated based on the

maximum number of iterations. Thereafter, when the stopping criterion is met, which leads to the

end of all the jobs, we can extract our results by displaying all the obtained frequent itemsets from

our FIM file that is located in the HDFS.

IV. MRBSO-UFIM framework

This MRBSO uncertain frequent pattern mining framework is different from the others, its essence

can be resumed as it uses only one MapReduce that is MRExpSup as opposed to MRPSO or MRGA which

require at least one or more additional MR functionalities. Figure.25 introduces the different MRBSO-UFIM

main steps and we can notice that all its processes are made in this main code.

78

Chapter IV: The PROPOSED APPROACHES

__

Algorithm 5. MRBSO-UFIM

The proposed solution main pseudo-code

__

1. Begin

2. Generate the initial Sref

3. Initiate the BSO control parameters

4. Store Sref in the Taboo list

5. while (number of Iterations < MaxIter)

5.1. while(MaxChances>0)

5.1.1. MaxChances - -

5.1.2. Determination of SearchAreaI, SearchAreaII(Figure.26)

5.1.3. Start Fitness Evaluation (call Expected SupportMapReduce#1)

5.1.4. Store the generated max-bees in the Dance table

5.1.5. get the MaxChildbeeCoordination from the Dance table

5.1.6. if(MaxChildBeeValue > SrefValue)

if(MaxChildBeeValue NOT existed already in Taboo)

SrefValue=MaxChildBeeValue

SrefArray=MaxChildBeeArray

else

change the flip of the SearchAreaI

end ifElse

5.1.7. else

change the flip of the SearchAreaI

end ifElse

end while

5.2. if(MaxChildBeeValue==SrefValue)

NewSrefCoordination=SelectDistantBee()

end if

5.3. Store the NewSref in Taboo

end while

6. Display the Frequent Itemsets file

7. End

__

Figure.25: The proposed MRBSO-UFIM pseudo-code

We will start generating the initial population, which refers in BSO to the InitBee as known

as the Sref, it is composed of two parameters, its identifier array followed by its expected support

value. Since we didn’t start our mining then we need to identify a bee as the Sref, but for the

maximization purpose we set the bee array and expSup to zeros.

79

Chapter IV: The PROPOSED APPROACHES

After step.02, we move on to the next step which is the control parameters initialization

(step.3). As we know, each algorithm contains information that greatly improves its work. In our

case, we have three parameters such as the MaxChance which is a user-determined value, and based

on our research the BSO algorithm contains one flip value, but in our solution, we proposed two flip

values which are the MotherFlip and ChildFlip values. Next, when both step.2 and step.3 are done,

we will store the Sref as the population in the HDFS.

Our algorithm starts the work to extract the frequent itemset for each iteration, and while

there are more chances start the determination of the search areas based on the Sref to output a set of

bees as presented in Figure.26 using one of the impressive strategies called the Next strategy

(Djenouri et al., 2014).

Figure.26: The Determination of the Search Area.

Now we possess the final search area of bees, we go to the next stage which is calculating

their expSup values by calling MapReduce#1. Before applying step.5.1.4 we will store the frequent

bees that satisfy the frequency condition in the FIM file, then from each child bees sets of a specific

mother bee we extract the maximum child coordination and store it in the dance table, and from

these maximum children bees we select only the highest one as a representative bee ‘MaxChildBee’

like written in step.5.1.5, where the main objective of this process is to let this representative bee be

the new Sref of the swarm.

80

Chapter IV: The PROPOSED APPROACHES

Then we will check if the MaxChildBee is valuable, if true, we have to do a quick check if it

doesn’t exists already in the Taboo list or not, we don’t want to make a test with an already existed

Sref, if true, this MaxChildBee become the new Sref for the next iteration. But, if it existed before or

the MaxChildBee is smaller than the Sref, we will make a random modification on the MotherFlip

and re-enter the second while loop again until the end of the MaxChances.

When our MRBSO satisfy step.5.2, this means that all the chances are finished and no

MaxChildBee could take the place of the Sref, therefore, we will change the current Sref by taking

the most distant childBee from the Dance table compared to the Srefs stored in the Taboo list, then

replacing this Sref with the obtained childBee from the distant selection operation and store it in the

Taboo list.

The process will be continued until the stopping criterion is met, and then we will be able to

view all of our possible frequent bees collected by our MRBSO-UFIM.

V. MRGA-UFIM framework

The MRGA-UFIM algorithm general idea is similar to our first proposed framework the

MRPSO-UFIM, we may found the same used techniques, where it contains two MR jobs, the first

one is the MapReduce#1, that calculates the fitness function and the second job is for the MRGA

process as figured in Figure.27.

81

Chapter IV: The PROPOSED APPROACHES

__

Algorithm 6. MRGA-UFIM

The proposed solution main pseudo-code

__

1. Begin

2. Generate the initial population

3. Initiate the GA control parameters

4. Store population in HDFS

5. while (number of Iterations < MaxIter)

5.1. Start Fitness Evaluation (call Expected SupportMapReduce#1)

5.2. get the list of max chromosomes : create parents

5.3. Start GA Job (callMap#3)

5.4. copy chromosomes to the population

5.5. Next iteration until the stopping criterion is met

end while

6. Display the Frequent Itemsets file

7. End

__

Figure.27: The proposed MRGA-UFIM pseudo-code.

To generate the initial population(step.2) we need a set of initial chromosomes obtained

from the same heuristic technique defined in Figure.22, furthermore, the GA require some specific

parameters to be initiated in step.3, including the crossover type to define which type the user

selected to perform the crossover operation, and the crossover points which refers to the parameters

of each crossover operation.

We will skip step.4, step.5 and step.5.1 as long as they are identical to the presented steps in

the first algorithm, when the MapReduce#1 is finished, we extract frequent itemsets from the output

of MapReduce#1, then we jump to the step.5.2, where it is an important phase that is composed of

multiple operations as pictured in Figure.28, we have to combine, sort, trim and shuffle the old

population with the new one to create a random sequence of pairs, these pairs will be examined as

the new parents which are given next to the MRGA job as inputs.

82

Chapter IV: The PROPOSED APPROACHES

Figure.28: The basic steps for the creation of new parents.

Note that the MRGA is formed from only a mapper without a reducer, since there is no need

for it, where this function is written in the pseudo-code defined in Figure.29.

83

Chapter IV: The PROPOSED APPROACHES

__

Algorithm 7. Map#3

GA process: Generate new chromosomes

__

Input: The parents file

Output: Set of new chromosomes

● Mapper(key, value):

1. Split the value into valuesArray

2. extract parent1 & parent2 from valuesArray

3. get the crossoverType, crossPoints. . .

4. while(chance<MaxlocalChances)

4.1. offspring1, offspring2 = crossover(crossoverType, parent1, parent2, crossPoints..)

4.2. offspring3, offspring4 = mutation(offspring1, offspring2)

4.3. check existence of offspring1, offspring2, offspring3 and offspring4 in the population

4.4. if (existence >= 3)

change the crossoverType

chance ++

4.5. else

emit(key, Non-Existed-Offsprings)

end ifElse

end while

__

Figure.29: The proposed GA Mapper solution pseudo-code.

A. MRGA solution(Map#3)

The main purpose of the Map#3 is to produce new chromosomes through the mapper

function, and as we said before, this job is also splitted into subtasks launched in parallel in

the same manner of the MRPSO solution, we start by extracting the parents, the control

parameters of the GA.

In the same manner of the Mapper PSO we give a maximum local number of

chances to help exiting minimize the opportunity to get the same parents, in step.4.1 a

crossover function is performed, as it is known as an important variant of the GA, and we

didn’t want to limitate the transformation of chromosomes on one method. Therefore, we

included the three famous crossover types functions, so according to the crossoverType

variable, the algorithm will choose its corresponding crossover techniques that are employed

such as the single point, the two points and the uniform crossover.

84

Chapter IV: The PROPOSED APPROACHES

Step.4.2 shows that the first offsprings are ready to perform the mutation, after that

we have to check if all the obtained offsprings(from the crossover and the mutation) are

existed in the current population, if plus to three of them are presented there, which drop us

in a bad situation, where the new offsprings are the same as the old ones, this case needs to

be avoided giving a chance to the parents to re-generate new offsprings by changing the

crossoverType to be a different from the last one, until they either change completely the

offspring or there is no more chances left, remember that our goal is the maximization

therefore we took all the offsprings as the new collected chromosomes not only the mutation

ones.

Let’s back to our global MRGA-UFIM algorithm presented in Figure.27, the algorithm will

copy the output of the GA mapper to the population path stored in the HDFS, where a new set of

chromosomes will be used in the next iteration MapReduce#1. All the remaining steps are

previously expressed in the earlier sections.

VI. Conclusion

In this chapter, we presented our three proposed solutions the MRPSO-UFIM, the

MRBSO-UFIM and the MRGA-UFIM they are based on a famous and efficient metaheuristic

algorithms PSO, BSO and GA respectively, to mine from uncertain big datasets in the purpose of

maximization. Furthermore, the selection of their parameters, tools and tests including the results

are seen in the coming pages.

85

Chapter V:

Tests AND Validation

Chapter V: Tests AND Validation

I. Introduction

In this chapter, the experience results of three based metaheuristic algorithms are compared

to find out the best one among them to solve the UFPM from Big Data, based on enhancement

we've discussed in the former chapter. We will initially talk about the environment and mechanisms,

datasets used in this work, including all the performed tests based on different metrics and

benchmarks.

II. Experimental Environment

A. Hardware Environment

All the experiments were performed on a computer configured as follows:

- Device : HP-Laptop.

- Processor : 4-Core 2.50GHz CPU.

- RAM : 7GB.

- OS : Ubuntu 20.04 64-bit.

B. Software Environment

Our work was implemented using the Apache Hadoop software (v-3.3.2), which is a set of

open source frameworks, to solve big data problems, it provides distributed processing by using

either a single or a set of computers in the same network, to perform a certain process locally. We

employed the Hadoop MapReduce framework, using the Java programming language

(JDK-11.0.16), which is developed via the Eclipse IDE platform.

The initial objective was to run our algorithms on a multi-nodes Hadoop cluster to make

realistic tests on a rich of CPUs machines. Unfortunately, we had some external difficulties, where

the biggest problem was the lack of the desirable materials and the search for backup solutions, all

this caused us to delay our work. Therefore, we had to use the Hadoop single-node in our proper

machines independently.

87

Chapter V: Tests AND Validation

III. Experimental datasets and parameters

A. Presentation of the used Datasets

In the making of the performance evaluation of the proposed frameworks, we tried to vary

between the categories of the dataset to almost examine all the important cases in order to not to

exceed the time available to us for testing and validation.

Therefore, we acquired three databases of different characteristics, collected from the SPMF

open-source data mining library (Fournier-Viger et al., 2016) and transformed with our generator to

get the uncertain databases as presented in Table.7, the description of the different datasets used

later in the experimentation, they are divided based on their coordination size.

Table.6: The used datasets in the experiments.

The studies made are evaluated relying on the database categories, the results are illustrated

in the next sections, where for each dataset we vary in the algorithms parameters.

B. Parameters initialization

As we indicated in the previous chapter, there are a set of fixed control parameters that need

to be identified and remain unchangeable for the whole testing cases, they affect the optimization

algorithms results and selecting the best parameters is still challenging, it necessitates much time.

The listed parameters below in Table.7, are given based on a lot of tests, generally this list helped

our algorithms avoiding the local optimum problem.

88

Chapter V: Tests AND Validation

Table.7: The fixed control parameters.

For the rest of the global fixed parameters such as the initial population size, the minimum

user threshold, ….etc. There is a terminal display that offers the user the ability to set its own

parameters in each test made. As an overview we have Figure.30 which shows the user terminal

display of the MRPSO-UFIM algorithm, where the user selected the UBChess dataset, and has

filled the number of iterations, the threshold percentage and the initial population size manually

with 25, 50 and 100 respectively.

The MRPSO Uncertain Frequent pattern mining algorithm STARTED

- --

These are the available datasets :

1 : UBaccidents , Items: 468 , lines: 340185

2 : UBPOWERC , Items: 140 , lines: 1040002

3 : UBRecordLink , Items: 29 , lines: 574913

4 : UBmushroom , Items: 119 , lines: 8125

5 : UBPAMAP , Items: 141 , lines: 1000002

6 : UBchess , Items: 75 , lines: 3197

7 : UBSkin , Items: 11 , lines: 245058

You need to select one from the listed above datasets to perform tests..

Enter the data name number : 6

- -

You chose the 'UBchess' data.

- -

You need to select the maximum number of iterations..

Enter the maximum iterations number : 25

- -

You need to select your minimum support value, to calculate the 'Threshold' you have to :

Enter your Threshold percentage % : 50

- -

You need also to select the population size..

Enter the population size between 10 and 500 : 100

- -

Figure.30: The MRPSO-UFIM program simulator.

89

Chapter V: Tests AND Validation

IV. Results and Comparison

In the next sections we will preview the results of our proposed bio-inspired algorithms with

the three used datasets UBChess, UBMushroom and UBRecordLink. Let's start testing them based

on two examinations, which are depending on the threshold value, where Examination#1,

Examination#2 are respectively for low and high minimum supports. Additionally, there are some

cases when each of them contain two tests, each test is a variation of the initial population size.

Note that each test has its appropriate coordination that are summarized in the tables

presented besides the plot's results of the obtained frequent itemsets and the total execution time

based on the number of iterations when applying each algorithm, as pictured in the listed figures.

A. Small dataset, Few number of items

The best description for this benchmark is the UBchess dataset, where it contains the highest

average size of items compared to the remaining ones. An uncertain transaction example of the first

UBchess line is captured in Figure.31.

1 0.839165,0.690155,0,0.727241,0,0.807358,0,0.758167,0,0.853484,0,0.723131,0,0.832275,0,0.753666,0,0.70926,0,0.721515,0,
0.888246,0,0.71674,0,0.69269,0,0.796196,0,0.810022,0,0.722614,0,0,0.781204,0,0.701074,0,0.845277,0,0.795294,0,0.864218
,0,0.879128,0,0.80005,0,0.784093,0,0.864264,0,0.844323,0,0.886908,0,0.813129,0,0.744585,0,0.860849,0,0.767621,0,0.8280
86,0,0.689744,0,0.746652,0,0.806797,0,0.856547,0,0.788827

Figure.31: The representation of the UBChess first uncertain transaction.

We employed only the examinations without the two couple of tests, the initial population is

fixed in the UBchess, where tests are illustrated in the coming figures.

90

Chapter V: Tests AND Validation

Figure.32: MRPSO obtained frequent itemsets, runtime based

on the #iterations (Examination#1, Small).

Table.8: MRPSO Examination#1

coordination.(Small)

Table.9: MRGA Examination#1

coordination (Small).

Figure.33: MRGA obtained frequent itemsets, runtime

based on the #iterations (Examination#1, Small).

91

Chapter V: Tests AND Validation

Figure.34: MRBSO obtained frequent itemsets, runtime based

on the #iterations(Examination#1, Small).

Table.10: MRBSO Examination#1

coordination(Small).

As we can see the number of the obtained itemsets increased at each iteration with the time,

the approaches avoided stacking at the same solution.

Table.11: MRPSO Examination#2

coordination(Small).

Figure.35: MRPSO obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Small).

92

Chapter V: Tests AND Validation

Figure.36: MRGA obtained frequent itemsets, runtime based

on the #iterations(Examination#2, Small).

Table.12: MRGA Examination#2

coordination (Small).

Table.13: MRBSO Examination#2

coordination(Small).

Figure.37: MRBSO obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Small)

We can notice that the MRBSO has successfully reached the total number of frequent

itemsets with a threshold of 50%, compared to the others.

93

Chapter V: Tests AND Validation

B. Small dataset, Average number of items

The second benchmark represents the UBMushroom dataset, it is a small dataset but with a

significant number of items, all the results, coordination and tests made with datasets are shown in

the following figures.

Figure.38: MRPSO obtained frequent itemsets, runtime based

on the #iterations(Examination#1, Test#1, Small).

Table.14: MRPSO Examination#1, Test#1

coordination(Small).

Table.15: MRGA Examination#1,

Test#1 coordination (Small).

Figure.39: MRGA obtained frequent itemsets, runtime

based on the #iterations(Examination#1, Test#1, Small).

94

Chapter V: Tests AND Validation

Figure.40: MRBSO obtained frequent itemsets, runtime based

on the #iterations(Examination#1, Test#1, Small).

Table.16: MRBSO Examination#1, Test#1

coordination(Small).

Table.17: MRPSO Examination#1,

Test#2 coordination (Small).

Figure.41: MRPSO obtained frequent itemsets, runtime

based on the #iterations(Examination#1, Test#2, Small).

95

Chapter V: Tests AND Validation

Figure.42: MRGA obtained frequent itemsets, runtime based

on the #iterations(Examination#1, Test#2, Small).

Table.18: MRGA Examination#1, Test#2

coordination (Small).

Table.19: MRBSO Examination#1,

Test#2 coordination.

Figure.43: MRBSO obtained frequent itemsets, runtime

based on the #iterations(Examination#1, Test#2 , Small).

From this Examination#1, we noticed that each time we increase the population the time of

search and frequent itemsets increases in double linearly for all the algorithms. In the second

Examination#2, the quality of the results is compared with the maximum obtained frequent itemsets

collected from the UApriori(Chui et al., 2007) exact algorithm, which is 22.

96

Chapter V: Tests AND Validation

Figure.44: MRPSO obtained frequent itemsets, runtime based

on the #iterations(Examination#2, Test#1, Small).

Table.20: MRPSO Examination#2, Test#1

coordination(Small).

Table.21: MRGA Examination#2,

Test#1 coordination(Small).

Figure.45: MRGA obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Test#1, Small).

97

Chapter V: Tests AND Validation

Figure.46: MRBSO obtained frequent itemsets, runtime based

on the #iterations(Examination#2, Test#1, Small).

Table.22: MRBSO Examination#2, Test#1

coordination(Small).

Table.23: MRPSO Examination#2,

Test#2 coordination(Small).

Figure.47: MRPSO obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Test#2, Small).

98

Chapter V: Tests AND Validation

Figure.48: MRGA obtained frequent itemsets, runtime based

on the #iterations(Examination#2, Test#2 , Small).

Table.24: MRGA Examination#2, Test#2

coordination(Small).

Table.25: MRBSO Examination#2,

Test#2 coordination(Small).

Figure.49: MRBSO obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Test#2, Small).

We can notice that the MRBSO in both tests, has successfully reached the total number of

frequent itemsets with a threshold of 50%, compared to the others.

99

Chapter V: Tests AND Validation

C. Large dataset, Few number of items

In this section, we will talk about the UBRecordLink database which is classified as large

data but contains a few items, where we have done a set of tests on our three frameworks by

stabilizing the initial population size and reducing the number of iterations due to the tightness of

the time and performing only the examinations. As we spoke earlier, each evaluation has its

information that is summarized in the tables presented beside the plot's results.

Figure.50: MRPSO obtained frequent itemsets, runtime

based on the #iterations(Examination#1, Large).

Table.26: MRPSO Examination#1

coordination(Large).

100

Chapter V: Tests AND Validation

Table.27: MRGA Examination#1

coordination(Large).

Figure.51: MRGA obtained frequent itemsets, runtime

based on the #iterations(Examination#1, Large).

Table.28: MRBSO Examination#1

coordination(Large).

Figure.52: MRBSO obtained frequent itemsets, runtime

based on the #iterations(Examination#1, Large).

After Examination#1, the threshold value is set to 50%, to raise the difficulty of the quality

test.

101

Chapter V: Tests AND Validation

Table.29: MRPSO Examination#2

coordination(Large).

Figure.53: MRPSO obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Large).

Figure.54: MRGA obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Large).

Table.30: MRGA Examination#2

coordination(Large).

102

Chapter V: Tests AND Validation

Figure.55: MRBSO obtained frequent itemsets, runtime

based on the #iterations(Examination#2, Large).

Table.31: MRBSO Examination#2

coordination(Large).

This Examination#2 shows that during this test the MRPSO outperforms other algorithms in

both comparative terms, time and frequency.

V. Conclusion

In this examination we tested the three approaches proposed in the previous chapter, tested

on three different datasets with a variation of the global parameters to better explore the designed

algorithms performance, the given test

Since our proposed algorithms are metaheuristic based, we cannot give the final best

achieved performances or the most efficient algorithm, we need more realistic tests that necessitate

more time to compare them, we can notice also that every test takes more additional time to

complete, the main reason is that we employed a single environment, due to the lack of materials.

But we can, based on these meaningful tests made, perceive that the variation in the percentage of

the minimum threshold didn’t impact the response time, where the variation in the initial population

size affected both time and obtained frequent itemsets.

103

General Conclusion

General Conclusion

The goal of this thesis was to extract frequent patterns from uncertain Big Datasets in a

reasonable time and with high quality results using metaheuristic based algorithms in a distributed

environment. In other words, the main objective was to perform the parallel processing distributed

via the Hadoop software, to conduct master and slaves network architecture, where we have

proposed three approaches for the Big Data UFPM task using the MapReduce framework.

In order to address the challenge faced by our problematic optimization problem, this work

has provided a literature review of the exact uncertain frequent pattern mining algorithms, next it

highlights the uncertainty in Big Data including its important paradigms and comparative study of

its state-of-the-art algorithms. The third chapter defines three of the well-known bio-inspired

metaheuristic based algorithms and reviews their latest enhancements. Where in the last two

chapters we introduced our proposed approaches and the employed tools, tests and validations of

our frameworks.

I. Contributions and summary of experimental findings

● Our MRPSO-UFIM has successfully controlled its inherent problems of the early

convergence occurring during the mining process, based on a lot of local tests to stabilize its

parameters, the enhancements made allowed the algorithm to perform the exploration and

exploitation properly according to the data coordination dynamically.

● The traditional MapReduce architecture may not help in the Big Data multiple scans, and

they are specified for certain datasets. Thus, our fitness function is observed in an improved

MapReduce model. Thus, all of our proposed approaches used inside the MapReduce

parallel model an extra parallelization process to fastly accomplish the expected support

count.

● The aim of the designed framework is to perform the maximization of the obtained frequent

itemsets.

From the experiments achieved in this study work, we can acquire that in terms of efficacy,

all the algorithms showed a remarkable and acceptable results, where the quality of the results has

been almost reached with the MRGA and the MRBSO compared to the MRPSO, but there were

some limitations that prevented us from achieving the desired execution time completely, as listed

in the next part.

105

General Conclusion

II. Limits and Future works

The limitations of this work are dependent to physical and material occurred problems, such as :

● One of the obstacles or problems we have faced in this work is the unavailability of the

desired materials that need to be provided in the first case. This changed our main objective

to apply our proposed approaches in a distribution environment of machines.

● As a consequence of the listed above failure, we had to test using our machines, where

because of the massive data, one machine was disrupted and failed to restart, so we had to

make all the tests on one machine with the single node clustering. That's why we didn't

compare our algorithms with the rest of the existing state-of-the-art algorithms.

This research work has yet multiple interesting areas that can be further explored such as:

● As a replacement to the dynamic parameterization in our MRPSO-UFIM, we further want to

use a different well-known branch, which is the reinforcement learning to better learn

avoiding early convergence.

● We can notice from the first chapter that we introduced the High Utility Pattern Mining, as a

perspective we want to extend from these proposed approaches a bio-inspired metaheuristic

solutions for the HUPM.

106

References

References

1. Abd-Elmegid, L., E. El-Sharkawi, M., M. El-Fangary, L., & K. Helmy, Y. (2010). Vertical

Mining of Frequent Patterns from Uncertain Data. Computer And Information Science, 3(2).

https://doi.org/10.5539/cis.v3n2p171.

2. Aggarwal, C., & Han, J. (2014). Frequent Pattern Mining.

https://doi.org/10.1007/978-3-319-07821-2.

3. Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large

Databases. VLDB.

4. Balabanov, T., Ivanov, S., & Ketipov, R. (2020). Solving Combinatorial Puzzles with

Parallel Evolutionary Algorithms. Large-Scale Scientific Computing, 493-500.

https://doi.org/10.1007/978-3-030-41032-2_56.

5. Beni, G., & Wang, J. (1989). Swarm intelligence in cellular robotic systems. Proceedings of

NATO advanced workshop on robots and biological systems.

6. Braun, P., Cuzzocrea, A., Leung, C., Pazdor, A., & Souza, J. (2018). Item-centric mining of

frequent patterns from big uncertain data. Procedia Computer Science, 126, 1875-1884.

https://doi.org/10.1016/j.procs.2018.08.075.

7. Brezočnik, L., Fister, I., & Podgorelec, V. (2018). Swarm Intelligence Algorithms for

Feature Selection: A Review. Applied Sciences, 8(9), 1521. https://doi.org/10.3390/app8091521.

8. Calders, T., Garboni, C., & Goethals, B. (2010). Approximation of Frequentness Probability

of Itemsets in Uncertain Data. 2010 IEEE International Conference On Data Mining.

https://doi.org/10.1109/icdm.2010.42.

9. Calders, T., Garboni, C., & Goethals, B. (2010). Efficient Pattern Mining of Uncertain Data

with Sampling. Advances In Knowledge Discovery And Data Mining, 480-487.

https://doi.org/10.1007/978-3-642-13657-3_51.

10. Cam, L.L. (1960). An approximation theorem for the Poisson binomial distribution. Pacific

Journal of Mathematics, 10, 1181-1197.

11. Chauhan, N., (2019). Market Basket Analysis: A Tutorial - KDnuggets. [online] KDnuggets.

Available at: <https://www.kdnuggets.com/2019/12/market-basket-analysis.html>.

https://doi.org/10.5539/cis.v3n2p171
https://doi.org/10.3390/app8091521
https://doi.org/10.1007/978-3-642-13657-3_51
https://www.kdnuggets.com/2019/12/market-basket-analysis.html

References

12. Chebbi, I., Boulila, W., & Farah, I. (2015). Big Data: Concepts, Challenges and

Applications. Computational Collective Intelligence, 638-647.

https://doi.org/10.1007/978-3-319-24306-1_62.

13. Chui, C., Kao, B., & Hung, E. (2007). Mining Frequent Itemsets from Uncertain Data.

Advances In Knowledge Discovery And Data Mining, 47-58.

https://doi.org/10.1007/978-3-540-71701-0_8.

14. Darwin, C. & Kebler, L. (1859) On the origin of species by means of natural selection, or,

The preservation of favoured races in the struggle for life. London: J. Murray. [Pdf] Retrieved from

the Library of Congress, https://www.loc.gov/item/06017473/.

15. Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large

Clusters. Google Research, from https://research.google/pubs/pub62/.

16. Dessouky, M., & Elrashidy, A. (2016). Feature Extraction of the Alzheimer’s Disease

Images Using Different Optimization Algorithms. Journal of Alzheimer's Disease &

Parkinsonism, 06(02).

17. Ding, J., Li, H., Wang, Y., Jia, L., You, J., & Yang, Y. (2019). A Parallel Uncertain Frequent

Itemset Mining Algorithm with Spark. 2019 20Th International Conference On Parallel And

Distributed Computing, Applications And Technologies (PDCAT). doi:

10.1109/pdcat46702.2019.00092.

18. Djenouri, Y., Drias, H., & Habbas, Z. (2014). Bees swarm optimisation using multiple

strategies for association rule mining. International Journal Of Bio-Inspired Computation, 6(4), 239.

https://doi.org/10.1504/ijbic.2014.064990.

19. Drias, H., Sadeg, S., & Yahi, S. (2005). Cooperative Bees Swarm for Solving the Maximum

Weighted Satisfiability Problem. Computational Intelligence And Bioinspired Systems, 318-325.

https://doi.org/10.1007/11494669_39.

20. Eiben, A.E., & Smith, J.E. (2003). What is an Evolutionary Algorithm?. In: Introduction to

Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-05094-1_2.

21. Fogel, L.J. (1962). Autonomous automata. Industrial Research, Vol. 4, pp. 14-19.

22. Foscari, C., Venezia, D., Palmerini, P., & Orlando, S. (2004). On performance of data

mining: from algorithms to management systems for data exploration. 2004–2002.

https://www.loc.gov/item/06017473/
https://doi.org/10.1007/11494669_39

References

23. Fournier-Viger, P., Chun-Wei Lin, J., Truong-Chi, T., & Nkambou, R. (2019). A Survey of

High Utility Itemset Mining. Studies In Big Data, 1-45.

https://doi.org/10.1007/978-3-030-04921-8_1.

24. Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H. T.

(2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th European Conference

on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part III, Springer LNCS

9853, pp. 36-40.

25. Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation.

Proceedings Of The 2000 ACM SIGMOD International Conference On Management Of Data -

SIGMOD '00. https://doi.org/10.1145/342009.335372.

26. Hariri, R., Fredericks, E., & Bowers, K. (2019). Uncertainty in big data analytics: survey,

opportunities, and challenges. Journal Of Big Data, 6(1).

https://doi.org/10.1186/s40537-019-0206-3.

27. Holland, J. (1984). Genetic Algorithms and Adaptation. Adaptive Control Of Ill-Defined

Systems, 317-333. https://doi.org/10.1007/978-1-4684-8941-5_21.

28. Jain, R., 2017. A beginner's tutorial on the apriori algorithm in data mining with R

implementation. [online] HackerEarth Blog. Available at:

<https://www.hackerearth.com/blog/developers/beginners-tutorial-apriori-algorithm-data-mining-r-i

mplementation/>.

29. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings Of ICNN'95 -

International Conference On Neural Networks. https://doi.org/10.1109/icnn.1995.488968.

30. Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm

algorithm. 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational

Cybernetics and Simulation, 5, 4104-4108 vol.5.

31. Khan, S., Kamran, M., Rehman, O., Liu, L., & Yang, S. (2017). A modified PSO algorithm

with dynamic parameters for solving complex engineering design problem.

32. Lee, G., Yun, U., & Ryang, H. (2015). An uncertainty-based approach: Frequent itemset

mining from uncertain data with different item importance. doi: 10.1016/j.knosys.2015.08.018.

https://doi.org/10.1145/342009.335372
https://doi.org/10.1007/978-1-4684-8941-5_21

References

33. Leung, C.KS., & Hayduk, Y. (2013). Mining Frequent Patterns from Uncertain Data with

MapReduce for Big Data Analytics. Database Systems For Advanced Applications, 440-455.

https://doi.org/10.1007/978-3-642-37487-6_33.

34. Leung, C.KS., & Jiang, F. (2014). A Data Science Solution for Mining Interesting Patterns

from Uncertain Big Data. 2014 IEEE Fourth International Conference On Big Data And Cloud

Computing. doi: 10.1109/bdcloud.2014.136.

35. Leung, C.KS., Carmichael, C., & Hao, B. (2007). Efficient Mining of Frequent Patterns

from Uncertain Data. Seventh IEEE International Conference On Data Mining Workshops

(ICDMW 2007). https://doi.org/10.1109/icdmw.2007.84.

36. Leung, C.KS., Mateo, M.A.F., & Brajczuk, D.A. (2008). A Tree-Based Approach for

Frequent Pattern Mining from Uncertain Data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A.

(eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2008. Lecture Notes in

Computer Science(), vol 5012. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-68125-0_61.

37. Leung, C.KS., & Sun, L., (2011). Equivalence class transformation based mining of frequent

itemsets from uncertain data. Proceedings of the 2011 ACM Symposium on Applied Computing -

SAC '11,.

38. Leung, C., & Tanbeer, S. (2013). PUF-Tree: A Compact Tree Structure for Frequent Pattern

Mining of Uncertain Data. Advances In Knowledge Discovery And Data Mining, 13-25.

https://doi.org/10.1007/978-3-642-37453-1_2.

39. Li, H., Huang, H., Chen, Y., Liu, Y., & Lee, S. (2008). Fast and Memory Efficient Mining of

High Utility Itemsets in Data Streams. 2008 Eighth IEEE International Conference On Data

Mining. https://doi.org/10.1109/icdm.2008.107.

40. Lin, J., Gan, W., Fournier-Viger, P., Hong, T., & Tseng, V. (2015). Weighted frequent itemset

mining over uncertain databases. Applied Intelligence, 44(1), 232-250.

https://doi.org/10.1007/s10489-015-0703-9.

41. Lin, J., Gan, W., Fournier-Viger, P., Hong, T., & Tseng, V. (2016). Efficiently mining

uncertain high-utility itemsets. Soft Computing, 21(11), 2801-2820.

https://doi.org/10.1007/s00500-016-2159-1.

https://doi.org/10.1109/icdmw.2007.84
https://doi.org/10.1007/978-3-540-68125-0_61
https://doi.org/10.1109/icdm.2008.107

References

42. Liu, M., & Qu, J. (2012). Mining high utility itemsets without candidate generation.

Proceedings Of The 21St ACM International Conference On Information And Knowledge

Management - CIKM '12. https://doi.org/10.1145/2396761.2396773.

43. MacKinnon, R., (2015). Seeing the forest for the trees: tree-based uncertain frequent pattern

mining. [online] Hdl.handle.net. Available at: <http://hdl.handle.net/1993/31059>.

44. Massone, M. (2018). Cross-Sections for Transient Analyses: Development of a Genetic

Algorithm for the Energy Meshing. Karlsruher Institut für Technologie (KIT).

45. Musdholofah, A., Kom, S., Kom, M., & D, P. (2020). Evolutionary Computation and Its

Application. Docplayer.net, from

https://docplayer.net/229200784-Aina-musdholofah-s-kom-m-kom-ph-d-webinar-series-lab-sc-thur

sday-30-july-2020.html.

46. Rathan, B., & Rani, K. (2017). A novel approach for mining patterns from large uncertain

data using MapReduce model. 2017 International Conference On Computer Communication And

Informatics (ICCCI). https://doi.org/10.1109/iccci.2017.8117705.

47. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen evolution [Evolution Strategy: Optimization of Technical Systems

According to the Principles of Biological Evolution]. Frommann-Holzboog Verlag, Stuttgart.

48. Repoussis, P. Metaheuristic Algorithms A brief introduction on the basics. Slidetodoc.com,

from https://slidetodoc.com/metaheuristic-algorithms-a-brief-introduction-on-the-basics/.

49. Reynaldo, J., & Boy Tonara, D. (2018). Data Mining Application using Association Rule

Mining ECLAT Algorithm Based on SPMF. MATEC Web Of Conferences, 164, 01019.

https://doi.org/10.1051/matecconf/201816401019.

50. Scrucca, L. (2013). GA: A Package for Genetic Algorithms inR. Journal Of Statistical

Software, 53(4). https://doi.org/10.18637/jss.v053.i04.

51. Solanki, S.K., & Soni, N. (2015). A Survey on Frequent Pattern Mining Methods Apriori ,

Eclat , FP growth.

52. Sörensen, K., & Glover, F. (2013). Metaheuristics. Encyclopedia Of Operations Research

And Management Science, 960-970. https://doi.org/10.1007/978-1-4419-1153-7_1167.

https://doi.org/10.1145/2396761.2396773
https://doi.org/10.1109/iccci.2017.8117705
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.1007/978-1-4419-1153-7_1167

References

53. Talbi, E. (2009). Metaheuristics: From Design to Implementation.

https://doi.org/10.1002/9780470496916.

54. Tezel, B., & Mert, A. (2011). A cooperative system for metaheuristic algorithms. Expert

Systems With Applications, 165, 113976. https://doi.org/10.1016/j.eswa.2020.113976.

55. Tong, Y., Chen, L., Cheng, Y., & Yu, P. (2012). Mining frequent itemsets over uncertain

databases. Proceedings Of The VLDB Endowment, 5(11), 1650-1661.

https://doi.org/10.14778/2350229.2350277.

56. Tseng, V., Wu, C., Shie, B., & Yu, P. (2010). UP-Growth. Proceedings Of The 16Th ACM

SIGKDD International Conference On Knowledge Discovery And Data Mining - KDD '10.

https://doi.org/10.1145/1835804.1835839.

57. Wang, L., Cheng, R., Lee, S., & Cheung, D. (2010). Accelerating probabilistic frequent

itemset mining. Proceedings Of The 19Th ACM International Conference On Information And

Knowledge Management - CIKM '10. https://doi.org/10.1145/1871437.1871494.

58. Xu, J., Li, N., Mao, X., & Yang, Y. (2014). Efficient Probabilistic Frequent Itemset Mining

in Big Sparse Uncertain Data. Lecture Notes In Computer Science, 235-247.

https://doi.org/10.1007/978-3-319-13560-1_19.

59. Xu, J., Mao, X., Lu, W., Zhu, Q., Li, N., & Yang, Y. (2015). MapReduce-based Parallelized

Approximation of Frequent Itemsets Mining in Uncertain Data. Neural Information Processing,

136-144. doi: 10.1007/978-3-319-26561-2_17.

60. Yang, X. (2011). Metaheuristic Optimization. Scholarpedia, 6(8), 11472.

https://doi.org/10.4249/scholarpedia.114720.

61. Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., & Stoica, I. (2010). Apache Spark -

Wikipedia. En.wikipedia.org., from https://en.wikipedia.org/wiki/Apache_Spark.

62. Zaki, M. (2000). Scalable algorithms for association mining. IEEE Transactions On

Knowledge And Data Engineering, 12(3), 372-390. https://doi.org/10.1109/69.846291.

63. Zhang, B. (2021). Optimization of FP-Growth algorithm based on cloud computing and

computer big data. International Journal Of System Assurance Engineering And Management,

12(4), 853-863. https://doi.org/10.1007/s13198-021-01139-2.

https://doi.org/10.1145/1835804.1835839
https://doi.org/10.1007/s13198-021-01139-2

References

64. Zida, S., Fournier-Viger, P., Lin, J.CW., Wu, CW., & Tseng, V.S. (2015). EFIM: A Highly

Efficient Algorithm for High-Utility Itemset Mining. In: Sidorov, G., Galicia-Haro, S. (eds)

Advances in Artificial Intelligence and Soft Computing. MICAI 2015. Lecture Notes in Computer

Science(), vol 9413. Springer, Cham. https://doi.org/10.1007/978-3-319-27060-9_44..

https://doi.org/10.1007/978-3-319-27060-9_44

