
People’s Democratic Republic of Algeria.

Ministry of Higher Education and Scientific Research

Machine learning for Sign Language
Recognition: Application on Smart

Buildings

Submitted September 2020, in partial fulfillment of
the conditions for the award of the degree Master Software engineering.

Mohamed Mehdi BOURAHLA

ID: M201532027293

Supervised by Roufaida LAIDI and Abdallah KAMECH

Computer Science department

Saad Dahleb Blida University

Date: 23 / 09 / 2020

In front of the jury:

Hafida ABED

Fatima Zahra ZAHRA

Promotion: 2019/2020



Abstract

Recent advances in mobile computing, wireless sensing and communication technolo-

gies, consumer electronics have modernized our cities and living environments. Buildings,

roads, and vehicles are now empowered with a variety of smart sensors and objects that

are interconnected via machine-to-machine communication protocols, accessible via the

Internet, to form what is known as the Internet of Things (IoT). The power of IoT ex-

pands when coupled with Machine Learning, since the later offer techniques that allow

analyzing the vast amount of data generated by sensors and actuators. Smart buildings

are an appealing example of IoT and machine learning applications offering higher energy

saving and occupants satisfaction through dynamic control.

Vocal virtual assistants (e.g., Amazon Alexa, Google Home) are now a central compo-

nent of the smart house. However, they are not adapted to deaf and mute people who

communicate using sign language. Efficient alternative communication means inside the

house are required to assist the interaction of deaf and hearing-impaired people.

The main goal of this thesis is to conceive and realize a solution based on machine

learning for sign language recognition that allows the control of a smart home environment

through gestures.

Keywords: Smart buildings, Machine learning, Sign language, Disabled people, Human-

Computer interaction.

i



Résumé

Les progrès récents dans l’informatique mobile, la détection sans fil et les technologies

de communication, l’électronique grand public ont modernisé nos villes et nos milieux de

vie. Les bâtiments, les routes et les véhicules sont désormais dotés de divers capteurs

et objets intelligents interconnectés par des protocoles de communication machine à ma-

chine, accessibles via Internet, pour former ce qu’on appelle l’Internet des objets (IoT).

La puissance de l’IoT se développe lorsqu’il est couplé avec le Machine Learning, puisque

ce dernier offre des techniques qui permettent d’analyser la grande quantité de données

générées par les capteurs et les actionneurs. Les bâtiments intelligents sont un exem-

ple attrayant d’applications d’IoT et d’apprentissage automatique offrant des économies

d’énergie plus élevées et la satisfaction des occupants grâce au contrôle dynamique.

Les assistants vocaux virtuels (par exemple, Amazon Alexa, Google Home) sont désormais

une composante centrale de la maison intelligente. Cependant, ils ne sont pas adaptés

aux personnes sourdes et muettes qui communiquent en langage gestuel. Des moyens de

communication alternatifs efficaces à l’intérieur de la maison sont nécessaires pour faciliter

l’interaction des personnes sourdes et malentendantes.

L’objectif principal de cette thèse est de concevoir et de réaliser une solution basée sur

l’apprentissage automatique pour la reconnaissance du langage des signes qui permet le

contrôle d’un environnement domestique intelligent à travers des gestes.

Mots clés: Bâtiments intelligents, apprentissage automatique, langue des signes, per-

sonnes handicapées, interaction homme-machine.

ii



iii



Dedications

I dedicate this thesis to my parents for whom a whole book of

dedications would not be enough to express my gratitude to

them. For all of their support, encouragement, love and

sacrifices that have brought me to this point in my life and

continue to keep me moving forward. May Allah preserve them

as well as all moms and dads in the world.

To my brothers and beloved sister who always believed in me and

saw me as the little computer kid in the family.

My dear friends Abdelouahab, Chakib, Chouaib, Hadjer,

Mohamed, Oussama, Rym for their love and support, may they

find here the expression of my gratitude.

All my CSC club family who over the past five years have taught

me to overcome challenges and make a difference and have

opened the door to many opportunities for me.

iv



Acknowledgements

First of all, I would like to thank ALLAH the greatest for all the patience,

health and strength he has given me to do this modest work. Every letter typed

on this thesis and every information withheld is by his grace glory to him.

I would like to thank Ms. Roufaida LAIDI my supervisor at CERIST for her

help, her infinite patience, her availability and her golden advice which fueled

my reflection, and especially for her efforts and all her contributions and

corrections along the way.

I would like to express my gratitude to my supervisor Mr. Abdallah

KAMECHE at Saad Dahleb university for having mentored me for this project

as well as for all the knowledge I have acquired from him.

I also thank all the professors of the computer science department of Saad

Dahleb University and any contributor to the knowledge I have acquired in

recent years without whom I will not be where I am.

My gratitude to our delegate Mr. Imade ANANE and to Ms. Rym

BOUCHETERA for their support to all our promotion.

All my thanks to Mr. Chakib KERRI for supporting me and helping me

prepare the presentation of this project. Thanks to Mrs. Imene HENNI

MENSOUR for inspiring me and opening the door to many opportunities.

v



Contents

Abstract i

Acknowledgements iv

GENERAL INTRODUCTION 1

1 Background and Context 4

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Sign Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Smart Homes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.5 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . 14

vi



CONTENTS

1.5.5 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Literature Review for Sign Language Recognition 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Vision-Based Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Sensor-Based Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Signal Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Data Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Wireless-Based Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Types of Wireless Transmission Used in SLR . . . . . . . . . . . . . 35

2.4.2 Signal Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



CONTENTS

2.4.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Used Approaches in Existing Works . . . . . . . . . . . . . . . . . . 41

2.5.2 Comparison Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.4 Adopted Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Solution Description 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Word-Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Word-level recognition . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Sentence-level recognition . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Sequence-Based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Sequence-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Implementation & Evaluation 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



4.2.1 SignFi Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Sentences Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Tools & Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Recognition Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Comparison Between the Two Methods . . . . . . . . . . . . . . . . 85

4.3.4 Comparison With Other Works . . . . . . . . . . . . . . . . . . . . 86

4.4 Deployement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

GENERAL CONCLUSION 91

Bibliography 93

ix



List of Tables

1.1 The commonly used activation functions . . . . . . . . . . . . . . . . . . . 13

2.1 Results obtained by various vision-based gestures recognition . . . . . . . . 27

2.2 Taxonomy of extracted features in three domains . . . . . . . . . . . . . . 32

2.3 Results obtained by various sensor-based gestures recognition . . . . . . . . 34

2.4 Results obtained by various wireless-based gestures recognition . . . . . . . 40

2.5 Summary of the currently used approaches in hand gesture recognition . . 42

2.6 Comparison between the existing approaches in hand gesture recognition . 43

4.1 SignFi dataset summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The selected ASL words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Comparison of word-level SLR systems . . . . . . . . . . . . . . . . . . . . 87

4.4 Comparison of Sentence-level SLR systems . . . . . . . . . . . . . . . . . . 88

x



List of Figures

1.1 Machine learning: a new programming paradigm [7] . . . . . . . . . . . . . 7

1.2 Machine learning algorithm process . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Convolutional neural network architecture . . . . . . . . . . . . . . . . . . 15

1.5 Recurrent neural network architecture . . . . . . . . . . . . . . . . . . . . 17

2.1 Vision based hand gesture recognition process . . . . . . . . . . . . . . . . 23

2.2 Sensor-based gesture recognition process . . . . . . . . . . . . . . . . . . . 29

3.1 Architectures’ black boxes representation . . . . . . . . . . . . . . . . . . . 46

3.2 Word-based architecture overview . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 CSI representation of MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Wavelet analysis results of air-drawn gestures [59] . . . . . . . . . . . . . . 49

3.5 Raw CSI measurements do not capture how CSI phases change over sub-

carriers and sampling time [60] . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Architecture of the CNN model . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Sentence structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Architecture of the RNN model . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Sequence-based architecture overview . . . . . . . . . . . . . . . . . . . . . 56

3.10 Architecture of the CRNN model . . . . . . . . . . . . . . . . . . . . . . . 57

xi



4.1 Floor plan and measurement settings of the lab and home environments

from SignFi [60] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Pytorch vs TensorFlow: Number of Unique Mentions . . . . . . . . . . . . 67

4.3 The model’s Keras implementation . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Architecture and parameter settings of the CNN model . . . . . . . . . . . 70

4.5 Architecture and parameter settings of the LSTM model . . . . . . . . . . 73

4.6 ConvLSTM structure with hyperparameters . . . . . . . . . . . . . . . . . 74

4.7 Laboratory environment performance evaluation . . . . . . . . . . . . . . . 76

4.8 Home environment performance evaluation . . . . . . . . . . . . . . . . . . 77

4.9 Home and lab combination performance evaluation . . . . . . . . . . . . . 78

4.10 Multiple users scenario performance evaluation . . . . . . . . . . . . . . . . 79

4.11 Sentence-level performance evaluation . . . . . . . . . . . . . . . . . . . . . 80

4.12 ConvLSTM model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.13 Batch normalization impact on the accuracy . . . . . . . . . . . . . . . . . 82

4.14 Dropout impact on the FC layer . . . . . . . . . . . . . . . . . . . . . . . . 83

4.15 Dropout impact on the convolutional unit . . . . . . . . . . . . . . . . . . 83

4.16 Average vs. Max pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.17 Training time and average accuracy RNN vs. LSTM vs. GRU . . . . . . . 85

4.18 Proposed architectures’ process . . . . . . . . . . . . . . . . . . . . . . . . 85

4.19 Web application architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.20 Screenshots from the web application . . . . . . . . . . . . . . . . . . . . . 90

xii



GENERAL INTRODUCTION

Context

In the last decade, technology has taken a massive step in the Smart Homes sector, with

the development of mobile computing, wireless sensing, communication technologies, and

smart sensors. Smart home technology is currently being implemented for the entire

house, in particular, the kitchen and the living room. It facilitates users with security,

comfortable living, and energy management features as well as added benefits for disabled

individuals. Research has already provided for a smart connected house where several de-

vices cooperate in pampering the wishes of users with little or no effort. The research done

to date has focused on voice control of the house, with a simple voice command, for exam-

ple, ”Increase the temperature” the system would interact and increase the temperature

of the room. However, other researchers have focused on the control of connected devices

through gestures made by the user’s hands, which is called Hand Gesture Recognition

(HGR). The motivation of the researchers was not only to bring a new way of interacting

with machines but rather to offer a way for disabled people to control their home like a

non-disabled person.

According to the statistics of the World Federation of the Deaf and the World Health

Organization, approximately 70 million people in the world are deaf-mute. A total of 360

million people are deaf, and 32 million of these individuals are children [1]. The majority

of speech- and hearing-impaired people cannot read or write in natural languages [2].

Fortunately, hearing-impaired people use sign languages to communicate with each other.

However, this language is unfamiliar to hearing people.

Recently, a significant amount of effort in human-computer interaction (HCI) has been

dedicated to the development of user-friendly interfaces employing voice, vision, gesture,

and other innovative I/O channels. HCIs allow users to freely control devices via simple

operations without requiring the user’s full attention. Therefore, HGR is an essential

feature of HCIs because it allows users to control devices with simple hand gestures

efficiently. A computer or machine’s ability to understand the hand gestures is the key to

unlocking other potential applications [3]:

• Sign language recognition (SLR)—Communication medium for the deaf. It consists

1



of several categories, namely fingerspelling, isolated words, a lexicon of words, and

continuous signs.

• Robotics and Tele-robotic—Actuators and motions of the robotic arms, legs, and

other parts can be moved by simulating a human’s action.

• Games and virtual reality—Virtual reality enable realistic interaction between the

user and the virtual environment. It simulates the movement of users and translates

the movement in the 3D world.

• Human-computer interaction—Includes application of gesture control in the military

and medical field, manipulating graphics, design tools, annotating, or editing docu-

ments.

Problem Statement

This work focuses on SLR. With the advance of technology, new systems based on machine

learning can translate sign language into natural language. In the context of SLR the

challenge would be to acquire the signs that the user produces and to predict in real-time

which sign has been made and then to make an act of it. Our system will leverage signs

produced by the user in a home environment to predict a sentence that represent an action

on connected peripherals.

Thesis structure

To better present our work, we have organized this thesis as follow:

• Chapter 1: gives a background information about the main concepts related to our

work namely sign language, smart homes and machine learning and deep learning.

Furthermore, it establishes the context of the research, justifies the need for conduct-

ing the study, and summarizes what the study aims to achieve.

• Chapter 2: illustrates the process of HGR and presents three different approaches

in the literature namely vision, sensor and wireless-based. Next, it gives the current

state of the art of each approach. Finally, it compares and summarizes the existing

approaches.

• Chapter 3: gives an overview about our solution to translate sign language into smart

home action.

2



• Chapter 4: covers the implementation details and evaluates the performance of the

proposed solution.

3



Chapter 1

Background and Context

1.1 Introduction

This chapter overviews the main concepts related to our work: namely sign language,

smart homes, machine learning and deep learning. Furthermore, it establishes the context

of the research, justifies the need for conducting the study, and summarizes what the study

aims to achieve.

1.2 Sign Language

Sign Language (SL) is considered as the most organized and structured form out of various

gesture categories. It is the native language for a deaf or a person with a communication

disability. SL relies primarily on gestures to communicate rather than speech, combining

the use of finger shapes, hand movements and facial expressions. There is no universal SL;

different sign languages are used in different countries or regions. For example, British

Sign Language (BSL) is a different language from American Sign Language (ASL), and

Americans who know ASL may not understand BSL. The 2020 edition of Ethnologue

[4] lists 144 sign languages, but there are more than that. For example, Rwandan Sign

Language is not listed in the Ethnologue, although it is an established language within

the country. Nevertheless, the most widely used sign language is ASL, used in the USA,

Canada, parts of Mexico and, with modifications, in other countries in Central America,

Asia and Africa. Moreover, ASL has, like English, become a colonizing language, with

missionaries bringing it to Africa and the Philippines, among other places.

4



1.3. Smart Homes

The classification system for sign languages of the world is outdated: it was put together

in 1991, by Henri Wittmann [5]. He based it on the Ethnologue edition at the time (1988)

which listed 69 sign languages. Wikipedia has a simplified list of language families, which

is reflective of the state of knowledge we have today in SL linguistics. The most significant

sign languages family is the French Sign Language (French: Langue des Signs Française

(LSF)) which includes LSF and ASL.

Algerian Sign Language (French: Langue des Signs Algérienne (LSA)) is the sign

language used by communication disability persons and their close relatives in Algeria.

The LSA is linked to the LSF family and has no direct link with Arabic sign languages.

SL symbols can be classified into single-handed or double-handed signs, static or dy-

namic. For representing one handed signs, single dominant hand is used. It can be

represented by any static gesture or a gesture with motion. They can further be classified

as type 0 or type 1 sign. In type 0 sign, both the hands are active, whereas, in type 1

dominant hand is more active as compared to non-dominant hand. SL consists of manual

and non-manual elements as well. In manual signs, only hands are used to express any

sign. In non-manual signs body postures, mouth gestures and face expressions are used.

The significant deficiencies in this language are a lot of hand movements, a limited

vocabulary, and learning difficulties [2]. Besides, SL is unfamiliar to those who are not

deaf and mute, and people with disabilities face severe challenges in communicating with

able individuals. This interaction barrier significantly affects the lives and social relations

of deaf people.

1.3 Smart Homes

Human beings communicate with the surrounding environment, in multiple ways. They

are aware of the environmental conditions and act, react or adjust accordingly. If the en-

vironment can reciprocate this behavior and adapt to human behavior, it can bring many

benefits. Such actions, as well as introducing new programs and facilities, will automate

different tasks that humans currently perform manually. A smart home can be defined

as a residence equipped with computing and information technology that anticipates and

responds to the needs of the occupants, working to promote their comfort, convenience,

security and entertainment through the management of technology within the home and

5



1.4. Machine Learning

connections to the world beyond [6].

The terms “Home Automation,” “Connected Devices” and “Internet of Things” are

distinct parts of the Smart Home concept. Home Automation is where home electrical

devices are connected to a central system that automates those devices based on user

input. Connected devices are smart electrical devices that are connected to the Internet

and sensors. These devices know or anticipate what the user’s needs. The Internet of

Things (IoT) transforms an automated home into a smart home. With a combination of

sensors, smart devices and systems, IoT connects everyday objects to a network, enabling

them to complete tasks and communicate with each other, with no user input.

There are many types of smart homes in the current state with three major application

categories. The first category provides services to residents by identifying and recognizing

their actions or by detecting their health conditions. Such smart homes act as testing

grounds for the collection of information to support the well-being of the residents of the

home. The second category of smart homes is an emerging trend of smart homes, which

can help the occupants to reduce the energy consumption of the house by monitoring and

controlling of the devices and rescheduling their operating time according to the energy

demand and supply. The third category is surveillance, where the data captured in the

environment are processed to obtain information that may help to raise alarms, in order

to protect the home and the residents from burglaries, theft and natural disasters such as

floods.

1.4 Machine Learning

While classical programs use the rules to process the data, and output answers, Machine

Learning (ML) programs receive data and the answers to output the rules (see Fig. 1.1).

These rules can then be applied to unseen data to produce answers [7]. ML is training

computers to learn from data collected through experience. It is the most appropriate

alternative when the solution is not a priori known, but can only be developed using data

or experience. It is typical in problems where human expertise does not exist, or when

it is difficult to express it. Traditional domains where ML has mostly been used include

speech/face-recognizing, language processing, spam filtering [8].

6



1.4. Machine Learning

Figure 1.1: Machine learning: a new programming paradigm [7]

A machine learning algorithm aims to create a model, which is the representation of

a phenomenon that the ML algorithm has learned. Hence, in order to train a model, a

specific process is followed as shown in Fig. 1.2

Figure 1.2: Machine learning algorithm process

1.4.1 Data Collection

The goal of data collection (also called “data acquisition”) is to gather datasets, which are

a set of data samples that contain features essential to solving a problem, and can be used

to train machine learning models. There are mainly three approaches in the literature:

data discovery, data augmentation, and data generation. Data discovery is when one

wants to share or search for new datasets and has become essential, as more datasets

are available on the Web and corporate data lakes. Data augmentation complements

data discovery where existing datasets are enhanced by adding more external data. Data

generation can be used when there is no available external dataset, but it is possible to

generate crowdsourced or synthetic datasets instead [9].

1.4.2 Data Preparation

Data preparation (or “data preprocessing”) aims at making the raw data gathered from

the previous step more manageable and convenient to the training phase. It includes

vectorization, normalization and dimensionality reduction.

7



1.4. Machine Learning

Vectorization

It is the process of transforming data into tensors. In the context of binary image recogni-

tion, each image in the dataset is represented by a matrix. The size of this matrix depends

on the number of pixels we have in any given image. Thus, the pixel values denote the

intensity or brightness of the pixel.

Normalization

The data collected in a dataset usually comes from different sources, and each feature has

its range of values. Heterogeneous data (a mix of large and small digits) may dramatically

decrease the performance of some ML algorithms, hence the need for normalization. After

normalization, each feature contributes approximately equally to the final distance.

Dimensionality reduction

Data reduction techniques reduce the representation of the data set into a smaller volume

while keeping the integrity of the original data [10]. The goal is to produce identical (or al-

most identical) outcomes when applying the ML algorithm over reduced data and original

data. Feature selection and feature extraction are two primary methods for dimensional-

ity reduction. Feature selection removes irrelevant or redundant features. The goal is to

find a minimum set of the most significant attributes, such as the resulting probability

distribution is as close as possible to the original one. It facilitates the understanding

of the selected pattern and accelerates the learning stage. On the other hand, feature

extraction creates new features by merging the old ones that could better represent the

decision boundaries in supervised learning [11].

1.4.3 Model Selection

One important step to select a model to fit the collected data is to categorize the problem.

ML algorithms that we cover in our thesis are described in the following sections.

a) Supervised learning

Supervised learning algorithms experience a dataset containing features, and each example

is also associated with a label or target. Supervised learning problems are further grouped

into regression and classification problems. A classification problem is when the output

variable is a category, such as “red/blue” or “disease/no disease.” A regression problem

is when the output variable is a real value, such as “dollars” or “weight.” Some famous

8



1.4. Machine Learning

examples of supervised machine learning algorithms are Linear regression for regression

problems. Random forest for classification and regression problems. Support vector

machines for classification problems. In the following of this section, we give an overview

about the supervised learning algorithms mentioned in our thesis.

Support vector machine

Support Vector Machine (SVM) is a supervised ML model mostly used for classification,

and sometimes for regression. Binary linear classification is performed by searching the

hyper-plane that optimally differentiates two classes, i.e., that maximizes the distance

to the nearest data point on each of its sides. Two parallel hyperplanes (that separate

the two classes of data with maximum distance) can be selected if the training data

are linearly separable. Non-linear classification can be assured by SVM and kernel trick

with non-linear kernel functions. The most popular, general-purpose kernel functions

are polynomials of degree q, Radial-Basis Functions (RBf) and sigmoidal functions [12].

There are many variants of SVM, such as SVC (Support Vector Clustering) that is used

in unsupervised learning clustering problems, and SVR (Support Vector Regression) that

is used for regression [13].

Decision trees

Decision Trees (DT) build classification or regression models in the form of a tree-like

graph or a flowchart-like structure, where ”tests” on attributes are represented by nodes,

class labels (numerical data) by leaves, and the outcome of the test by branches. Carefully

crafted questions on attributes of the test record are used in a series to feed the tree. The

C4.5 algorithm is the most used in DTs. It adopts a top-down divide-and-conquer recur-

sive approach. In every node, the algorithm chooses the best split among the features and

possible split points. The split maximizing the normalized information gain is selected.

This procedure is repeated for every node until reaching a ”stop condition”, which may

be the minimum number of leaves in a node, the tree height, etc. [12]. The composition of

multiple trees leads to more efficient algorithms such as Random Forest or Gradient Tree

Boosting. Random Forests, on the other hand, are collections of independently trained

DTs outputting the mode class of the classes in case of classification, or the mean of the

individual trees predictions in case of regression. DTs are unstable as they tend to overfit

the training data, i.e., small changes in the data lead to largely different trees. This model

9



1.4. Machine Learning

provide more robust prediction compared to the use of single trees. The forest is called

random because a random sample of the complete dataset is used to train each tree, which

is known as ”bootstrap aggregating or bagging” [12].

b) Unsupervised learning

Unsupervised learning algorithms experience a dataset containing many features, and then

learn useful properties of the structure of this dataset. Unsupervised learning problems are

grouped into clustering and association problems. A clustering problem discovers inherent

groupings in data, such as grouping customers by purchasing behavior. An association

rule learning problem finds rules that describe large portions of data, such as people that

buy X also tend to buy Y. Some famous examples of unsupervised learning algorithms

are K-Nearest Neighbor for clustering problems and Apriori algorithm for association

rule learning problems. In the following of this section, we define unsupervised learning

algorithms that are mentioned in our thesis.

K-Nearest Neighbors

The K-Nearest Neighbor (KNN) Algorithm is a method that does not require a training

phase. The classification or the numerical value prediction for a new instance is made by

searching through the entire dataset for the K closest instances using similarity measures

(e.g., Euclidean distance). The output is summarized in these K nearest instances. For

regression, the value of the new instance is the average on its K nearest neighbors. In

classification, it is assigned to the class to which belong most of its K nearest neighbors

(the mode class) [12].

Hidden Markov Model

Hidden Markov Model (HMM) is a probabilistic sequence model that associates a sequence

of observations to a sequence of labels. It computes, for a given sequence, a probabil-

ity distribution over possible sequences of labels for the purpose of select the best one.

HMM is a Markov process with unobserved (i.e., hidden) states. Only the token output

(that dependents on the state) is visible. HMM generates a sequence of tokens to inform

about the sequence of states [12]. HMMs can be trained both in an unsupervised and a

supervised form. First, when only observed output sequences are available for training,

the model’s conditional probabilities from this indirect evidence can be estimated through

the Baum–Welch algorithm [14], a form of unsupervised learning, and an instantiation of

10



1.4. Machine Learning

the expectation maximization algorithm [15]. When instead aligned sequences of hidden

variables and output variables are given as supervised training data, both the output emis-

sion probabilities and the state transition probabilities can be straightforwardly estimated

from frequencies of co-occurrence in the training data [16].

1.4.4 Model Evaluation

In machine learning, the goal is to achieve models that generalize, hence it is crucial to be

able to measure the generalization power of the model reliably. Evaluation techniques test

the model’s performance on unseen data. Data is split into three sets: training, validation,

and test. The training and validation sets are used during the training to tune the hyper-

parameters, while the test set evaluates the final model. Classic evaluation techniques are

Simple holdout validation, K-fold cross validation. Therefore, model evaluation metrics

are required to quantify model performance. The choice of evaluation metrics depends on

a given machine learning task (such as classification, regression, clustering). Classification

accuracy and confusion matrix are standard metrics on classification tasks, whereas Root

Mean Square (RMS) for regression tasks.

The fundamental issue in machine learning is the balance between the optimization

and the generalization. The optimization refers to the process of adjusting a model to

get the best performance possible on the training data. In contrast, the generalization

refers to how well the trained model infers on unseen data. At the beginning of training,

they are correlated, and the model is said to be underfitting because it has not learned

all relevant patterns in the training data yet. However, when the generalization stops

improving, the model is overfitting, i.e., it learns patterns specific to the training data,

but misleading or irrelevant for new data. To avoid overfitting, it is recommended to

increase the size of the training set [7].

1.4.5 Hyperparameter Tuning

In machine learning, we have both model parameters and parameters we tune to make

the model train better and faster. These tuning parameters are called hyperparameters

[17]. Hyperparameters tuning is an iterative process in the machine learning algorithm

life cyle that uses the feedback of the model’s performance on the validation data to set

the most optimal hyperparameters for the learning algorithm. The most commonly used

11



1.5. Deep Learning

techniques for searching the best configuration are Grid search and Random search. For

example, the main hyperparameter of the SVM is the kernel. It maps the observations

into some feature space. Ideally the observations are more easily (linearly) separable after

this transformation. There are multiple standard kernels for these transformations, e.g.

the linear kernel, the polynomial kernel and the radial kernel. The choice of the kernel

and their hyperparameters affect greatly the separability of the classes (in classification)

and the performance of the algorithm.

1.5 Deep Learning

For decades, the machine learning system required careful engineering to design a fea-

ture extractor that transformed the raw data into a suitable internal representation from

which the learning subsystem, could detect patterns in the input. Deep learning methods

are representation-learning methods with multiple levels of representation, obtained by

composing simple but non-linear modules that each transforms the representation at one

level into a representation at a higher, slightly more abstract level. With the composition

of enough such transformations, very complex functions can be learned. For classification

tasks, higher layers of representation amplify aspects of the input that are important for

discrimination and suppress irrelevant variations. The key aspect of deep learning is that

human engineers do not design these layers of features; they are learned from data using

a general-purpose learning procedure [18]. In the following of this section, we explain the

major components of deep learning namely neurons, activation functions and artificial

neural networks. Therefore, we give an intuition about Convolutional neural networks

and Recurrent neural networks.

1.5.1 Neurons

Artificial neural networks were inspired by the neural architecture of a human brain, and

like in a human brain, the basic unit is called an Artificial Neuron. It is a mathematical

function that takes one or more inputs that are multiplied by values called weights and

added together. This value is then passed to a function, known as an activation function,

to become the neuron’s output. As shown in Fig. 1.3.

12



1.5. Deep Learning

Figure 1.3: Artificial neuron

1.5.2 Activation Functions

As seen above, an activation function is a function applied by a neuron to determine the

output of the neural network. It maps the resulting values in between 0 to 1 or -1 to

1 depending upon the function. Indeed, the activation functions are mainly divided on

the basis of their range or curves. The following table lists the mainly used activation

functions namely Threshold function (or Binary step), Sigmoid, Tanh (or Hyperbolic

Tangent) and Rectified Linear Unit (ReLU).

Threshold Tanh Sigmoid ReLU

g(z) =

 1 if z ≥ 0

0 if z < 0
g(z) = ez−e−z

ez+e−z g (z) = 1
1+e−z g (z) = max(0, z)

Table 1.1: The commonly used activation functions

Among the four activation functions in the latter table, the default recommendation is

to use ReLU. As for the output neurons, Sigmoid is recommended in binary classification

tasks. Nevertheless, in multi-classification problems, Softmax activation function is used,

which can be seen as a generalization of the sigmoid function [19].

13



1.5. Deep Learning

1.5.3 Artificial Neural Networks

The ANN architecture is composed of an input layer, an output layer and at least one

hidden layer, which are fully connected; each neuron in one layer connects with a weight

to every neuron in the next layer. At each layer, there is also a bias that can help better

fit the data. More layers generally increase the depth of the network (Hence the term deep

learning) and allow it to provide different levels of representation and feature extraction.

The input layer dimension represents the amount of feature that every data sample has.

As for the output layer dimension, it contains only one neuron for binary classification

and regression tasks and N neurons for N -classification problems.

Updating the weights is the primary way the neural network learns new information.

Initially, the weights of the network are assigned random values, so the network merely

implements a series of random transformations. The process of learning is re-adjusting

the weights and biases, this helps the model to learn which features are related to which

outcomes, and adjusts the weights and biases accordingly. Neural networks learn these

relationships blindly by making a guess based on the inputs and weights and then mea-

suring how accurate the results are. A loss function (also called a cost function) quantifies

how close a given neural network is to the ideal toward which it is training. It is a metric

based on the error observed in the network’s predictions. The goal is finding the param-

eters (weights and biases) that will minimize the “loss” incurred from the errors. In this

way, loss functions help reframe training neural networks as an optimization problem [17].

Gradient descent is one of the most popular algorithms to perform optimization and by

far the most common way to optimize neural networks. It is an iterative optimisation

algorithm used to find the minimum value for a function.

In deep learning, the process of entering information into the input layer and applying

transformations to get the output value and calculating the loss function is referred as

forward propagation. At the opposite, the process of using gradient descent on the weights

to minimize the error on the output of the network is referred as Backpropagation.

1.5.4 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are designed to process data that comes in the

form of multiple arrays, for example, a colour image composed of three 2D arrays con-

14



1.5. Deep Learning

taining pixel intensities in the three colour channels. Many data modalities are in the

form of multiple arrays: 1D for signals and sequences, including language; 2D for images

or audio spectrograms; and 3D for video or volumetric images.

Figure 1.4: Convolutional neural network architecture

The architecture of a typical CNN (Fig. 1.4) is structured as a series of stages. The

first few stages in charge of feature extraction are composed of two types of layers: con-

volutional layers and pooling layers. The second stages are classification layers in which

we have one or more fully connected layers to take the higher-order features and produce

class probabilities or scores.

Convolutional layers

A convolution is defined as a mathematical operation describing a rule for how to merge

two sets of information. It takes input, applies a convolution kernel, and gives us a feature

map as output. The convolution operation is known as the feature detector of a CNN. The

input to a convolution can be raw data or a feature map output from another convolution

[17]. We commonly refer to the sets of weights in a convolutional layer as a filter. This

filter is convolved with the input and the result is a feature map. Units in a convolutional

layer are organized in feature maps, within which each unit is connected to local patches

in the feature maps of the previous layer through a set of filters. All units in a feature

map share the same filter and different feature maps in a layer use different filters. The

result of this local weighted sum is then passed through a non-linear activation function

such as a ReLU.

15



1.5. Deep Learning

Pooling layers

Pooling layers are commonly inserted between successive convolutional layers to reduce

the data representation progressively over the network and help control overfitting. For

instance, max pooling computes the maximum of a local patch of units in one feature

map independently. With a (2× 2) size, the max pooling operation is taking the largest

of four numbers in the filter area. Neighbouring pooling units take input from patches

that are shifted by more than one row or column, thereby reducing the dimension of the

representation and creating an invariance to small shifts and distortions.

Backpropagating gradients through a CNN is as simple as through a regular deep

network, allowing all the weights in all the filters to be trained.

1.5.5 Recurrent Neural Network

In practice, neural networks take a fixed size input and use it to predict a fixed size output.

For example, a 256x256 image to predict a single Boolean output. Simple neural networks

like these cannot accept variable length entries like text, or an image of unknown size or

a sentence of unknown length. There are different techniques for building networks to

take inputs of varying sizes, including Recurrent Neural Networks (RNNs). RNNs are

another class of neural networks that dominate ML problems that involve sequences of

inputs. It is a type of neural network where the connections between units form a directed

cycle. This creates an internal state of the network, which allows it to exhibit dynamic

behaviour. Unlike neural networks, RNNs can use their internal memory to process and

work on arbitrary sequences of inputs. This makes them applicable to tasks such as

non-segmented connected handwriting recognition, voice recognition, natural language

processing, machine translation, etc. RNNs process an input sequence one element at a

time, maintaining in their hidden units a ‘state vector’ that implicitly contains information

about the history of all the past elements of the sequence.

16



1.5. Deep Learning

Figure 1.5: Recurrent neural network architecture

A simple RNN has three layers i.e. input layer, hidden recurrent layers and the output

layer. At each time step of sending input through a recurrent network, nodes receiving

input along recurrent edges receive input activations from the current input vector and

from the hidden nodes in the network’s previous state. The output is computed from

the hidden state at the given time-step. The previous input vector at the previous time

step can influence the current output at the current time-step through the recurrent

connections [17]. At each time step t, the hidden state H<t> and the output y<t> are

computed as follow:

H<t> = g1
(
Whh.H

<t−1> +Wxh.x
<t> + bh

)
(1.1)

y<t> = g2
(
Why.H

<t> + by
)

(1.2)

Where g1 , g2 are activation functions, bh , by are biases parameters and Whh , Wxh , Why

are weights parameters.

Forward propagation in a RNN is relatively straightforward. Backpropagation through

time is actually a specific application of back propagation in RNNs. It requires expanding

the network one time step at a time to obtain the dependencies between model variables

and parameters. Then, based on the chain rule, we apply backpropagation to compute

and store gradients. However, since sequences can be rather long, the dependency can

be rather lengthy. For instance, for a sequence of 1000 characters, the first symbol could

potentially have significant influence on the symbol at position 1000. This is not compu-

17



1.5. Deep Learning

tationally feasible and it requires over 1000 matrix-vector products before we would arrive

at that very elusive gradient [20]. The basic problem is that gradients propagated over

many stages tend to either vanish or explode. The most effective way to get around this

issue is to use the Long Short Term Memory or Gated Recurrent Unit variants of RNNs.

Gated Recurrent Unit

The main difference between RNNs and Gated Recurrent Units (GRUs) is that the latter

support gating of the hidden state. It means that there is a dedicated mechanism for

when a hidden state should be updated and when it should be reset. These mechanisms

are learned and they address the vanishing and exploding gradient issues. For instance,

if the first symbol is of great importance it learns not to update the hidden state after

the first observation. Likewise, it learns to skip irrelevant temporary observations. Last,

it learns to reset the latent state whenever needed.

At each time step, we will consider overwriting the hidden state with H̃<t> that

represent a candidate to replace H<t> . Knowing that H̃<t> is defined as follow:

H̃<t> = tanh
(
x<t>.Whx + (R<t>

⊙
H<t−1>).Whh + bh

)
(1.3)

Where Whx , Whh are weights parameters, bh is a bias parameter and
⊙

denotes the

Hadamard product between two vectors and R<t> is a gate in the GRU unit which is

responsible for reinitialization. This variable comes from a sigmoid function that returns

values between 0 and 1, if the value of R<t> equal to 0 this would mean that we want to

reset the memory cell, and if it were equal to 1, this would mean that we want to keep the

information received from the previous states. R<t> is defined by the following formula:

R<t> = σ
(
x<t>.Wxr +H<t−1>.Whr + br

)
(1.4)

Where Wxr , Whr are weights parameters and br is a bias parameter. As for H<t> , it is

defined by the following formula:

H<t> = U<t>
⊙

H<t−1> +
(
1− U<t>

)⊙
H̃<t> (1.5)

Where U<t> is the second gate of the GRU unit that is responsible for updating the

18



1.5. Deep Learning

memory cell and assigning it a new value. Such as the reset variable, the update variable

comes from a sigmoid function, if the value of U<t> is equal to 0 the old value of the

memory cell is overwritten and is replaced by the candidate value H̃<t> , and if the value

of U<t> is equal to 1, no change takes place. U<t> is defined by the following formula:

U<t> = σ
(
x<t>.Wxu +H<t−1>.Whu + bu

)
(1.6)

Where Wxu , Whu are weights parameters, bu is a bias parameter.

Long Short Term Memory

Developed by Hochreiter and Schmidhuber in 1997 [21], Long Short Term Memory (LSTM)

shares many of the properties of the GRU. It introduces three gates: the input gate, the

forget gate, and the output gate. In addition to that, it introduces the memory cell that

has the same shape as the hidden state. The motivation for such a design is the same as

GRUs, namely to be able to decide when to remember and when to ignore inputs in the

latent state via a dedicated mechanism.

At each time step t, the introduced LSTM gates namely input gate, forget gate and

output gate are respectively computed as following:

I<t> = σ
(
x<t>.Wxi +H<t−1>.Whi + bi

)
(1.7)

F<t> = σ
(
x<t>.Wxf +H<t−1>.Whf + bf

)
(1.8)

O<t> = σ
(
x<t>.Wxo +H<t−1>.Who + bo

)
(1.9)

Where Wxi, Wxf ,Wxo and Whi, Whf ,Who are weight parameters and bi, bf , bo are biases

parameters.

The first step is to decide what information to throw away from the cell state. This

decision is made by the forget gate layer. It looks at H<t> and x<t> , and outputs a

number between 0 and 1 for each number in the cell state C<t−1> . A 1 represents “keep

it” while a 0 represents “forget it” . The next step is to decide what new information to

store in the cell state. This has two parts. First, the input gate decides which values to

update. Next, a tanh gate creates a vector of new candidate values, C̃<t> , that could be

19



1.6. Context

added to the state.

C̃<t> = tanh
(
x<t>.Wxc +H<t−1>.Whc + bc

)
) (1.10)

Where Wxc and Whc are weights parameters and bc is a bias parameter.

Therefore, It updates the old cell state, C<t−1> , into the new cell state C<t> using

the result of the previous computation:

C<t> = F<t>
⊙

C<t−1> + I<t>
⊙

C̃<t> (1.11)

If the forget gate is always approximately 1 and the input gate is always approximately

0, the past memory cells C<t−1> will be saved over time and passed to the current time

step. Finally, it decides to output. This output will be based on the cell state, but will

be a filtered version. First, the output gate decides what parts of the cell state to output.

Then, it puts the cell state through tanh, and multiply it by the result of the output gate.

H<t> = O<t>
⊙

tanh
(
C<t>

)
(1.12)

1.6 Context

SLR is a collaborative research area that involves machine learning, computer vision,

natural language processing and linguistics. Its objective is to build various methods

and algorithms in order to identify already produced signs and perceive their meaning.

SLR systems are HCI based systems that are designed to enable effective and engaging

interaction. Such systems can be deployed in buildings to offer disabled and deaf persons

the possibility to control connected devices as able individuals with voice commands.

20



Chapter 2

Literature Review for Sign Language

Recognition

2.1 Introduction

In literature, three main categories for HGR can be distinguished: vision, sensors, and

wireless-based approaches. The vision-based class makes use of video camera(s) to cap-

ture the images of hands, which are then processed and analyzed using computer vision

techniques. This type of HGR is simple, natural, and convenient for users and is cur-

rently the most popular. However, several challenges should be addressed, for instance,

illumination change, background clutter, partial or full occlusion, and the risks related to

cameras and other recording devices deployment on personal privacy [22]. This approach

is the object of Sec. 2.2.

Sensor-based approaches generally rely on the use of sensors physically attached to the

user. These sensors collect the position, the motion, and the trajectories of the fingers

and the hands. Features such as the flex angle of digits, the orientation, and the absolute

position of the hands are often in 3D space. Hence, it contains the depth information

useful in telling distance of gesture away from the sensors. These instruments are set

up before the recognition, and these often limit the approaches to a laboratory setup [3].

The main disadvantage of this approach is the need to continuously wearing a glove or a

bracelet by the user, which is not comfortable for daily life. Sec. 2.3 explains each stage of

the sensor-based approach and shows how the researchers have overcome this constraint.

21



2.2. Vision-Based Gesture Recognition

Finally, wireless-based (also called “device free”) gesture recognition systems do not

require the user to install camera infrastructures or to wear sensors. It relies on a particular

architecture of transmitter and receiver, knowing that the transmitter broadcasts a signal

(e.g. Wi-Fi), and the receiver initiates a process that will analyse how the wireless signals

are reflected by surrounding objects. From there, it can be used to recognize hand and

finger gestures. Still, those systems face several challenges, for example, how to deal

with other humans in the environment, long distances, and obstacles. Sec. 2.4 reviews

solutions in the wireless-based category and describes the latest development in the area.

2.2 Vision-Based Gesture Recognition

Many contributions considered gesture recognition by analysing visual frames. Researchers

studied both static gestures using single frames of images and dynamic gestures using

videos, which are continuous frames of images. The goal in these works was to minimize

the system response time, increase identification accuracy, recognize more gestures, and

enhance robustness. This approach has the advantage of being well known to the public.

For example, Kinect from Microsoft [23] used to identify players’ movements. The famil-

iarity of the users with this type of input device makes their integration easier. However,

the variety of gestures included in SL is the main challenge in vision-based hand gesture

recognition. Recognizing a large number of gestures requires handling multiple Degrees

of Freedom (DoF), a huge variability of the 2D image based on the point of view of the

camera (even with the same gesture), various silhouette dimensions (i.e. spatial reso-

lution) and many temporal aspect measurements (i.e. the variability of gesture speed).

The accuracy-performance-usefulness trade-off has to be adjusted according to the type

of application, the expense of the solution and different requirements such as real-time

performance, robustness, scalability and consumer freedom [24]. The process of gesture

recognition in the vision-based approach is composed of the following steps: the data

acquisition, the image processing, the segmentation and tracking, the dimensionality re-

duction, and the classification (as shown in Fig. 2.1). In the following, we explain each

step by referring to the most recent solutions proposed in this approach.

22



2.2. Vision-Based Gesture Recognition

Figure 2.1: Vision based hand gesture recognition process

2.2.1 Data Acquisition

Images or videos of the hand gestures are captured through:

• Single-camera—Webcam, video camera and smartphone camera [25] [26]

• Stereo-camera—using multiple monocular cameras to provides depth information

such as Kinect [27] [28]

• Invasive techniques—In addition to cameras, some authors include body markers such

as coloured gloves, wrist bands, and LED lights [26], [29].

2.2.2 Image Processing

In this section, image processing is limited to the modifications made on images or video

to improve the overall performance and does not include segmentation and tracking, which

are discussed independently in the next two sections. Median and Gaussian filters are one

of the commonly used techniques to reduce noises in images or videos [3].

Pansare et al. [30] first applied gray threshold on skin pixels with specific probability,

then the filtering of gray image is done using median filter for preserving the edges followed

by Gaussian filter. Oyedotun et al. [31] obtained binary photos (black and white) by

thresholding the original images at a 0.5 gray level. Furthermore, the resulted binary

images are filtered using a median filter to remove the noise. In [28], the joint bilateral

filtering algorithm is used to filter the collected gesture images and improve the quality

of the image.

2.2.3 Segmentation

Segmentation (also called “Hand detection”) splits images into distinct parts where the

Region of Interest (RoI) is separated from the rest of the picture [3]. In our context, the

RoI is the hand. To this purpose, several features and their combinations are utilized.

Such features are skin color, shape, motion, and anatomical models of hands.

23



2.2. Vision-Based Gesture Recognition

In [32], the hand segmentation follows three steps: 1) converting the image from RGB

to YCbCr, 2) extracting the RoI using a skin segmentation algorithm, 3) using a threshold

to transform the image pixel values into binary values. In [26], the authors used red gloves

to capture images. Therefore, the segmentation is done by extracting the red band of the

RGB image to isolate it from the background. Then edge detection is performed using

Sobel edge filter [33]. However, color-based methods face the challenge of removing other

parts of the user’s body with similar colors, such as the face and arms. As a solution,

[34] used the Viola-Jones method [35] to detect the user’s face, replace it with a black

circle, and detect the skin area using the HSV. In [36], the face of the user is detected and

removed from the second frame of the video using the Viola-Jones algorithm. Next, skin

filtering is performed to obtain the skin-colored objects in the frame. On the other hand,

a three-frame differencing algorithm is applied to the first three frames. The results of

the skin filtering and three-frame differencing are combined to obtain the desired hand

from the background.

2.2.4 Tracking

Tracking is only concerned by dynamic HGR since it is about the frame-to-frame cor-

respondence of the segmented hand regions or features, it is the process of analysing

sequential video frames and output the movement of the hand between the frames. The

importance of robust tracking is twofold. First, it provides the inter-frame linking of

hand/finger appearances, giving rise to trajectories of features in time. These trajectories

carry essential information and might be used either in a raw form (e.g., virtual drawing)

or after further analysis (e.g., recognition of some hand gestures). Second, in model-

based methods, tracking provides a way to maintain estimates of the model’s variables

and features that are not observable all the time [24]. Typical hand tracking algorithms

are optical flow, CamShift, Kalman filtering, particle filtering, condensation algorithm,

etc. These algorithms are focused on specific hypotheses, and often, the combination of

multiple algorithms produces better results [22].

[37] Used a Kalman filter and hand blobs analysis for hand tracking to obtain motion

descriptors and hand regions. [38] Combine optical flow, blob analysis, and noise filtering

techniques, including dilation and erosion operations, to recognize six hand gestures. In

their experimental results, the authors found that their algorithm performs good results at

24



2.2. Vision-Based Gesture Recognition

detection, tracking, and classification. [36] Performed hand tracking using the modified

Kanade-Lucas-Tomasi (KLT) feature tracker. Velocity and orientation were added to

remove the redundant feature points. In their experimental results, they compared with

CamShift and their proposed tracking algorithm was more robust.

2.2.5 Dimensionality Reduction

Before feeding the data collected from images to a classifier, a dimensionality reduction

step is required. Since for images, we think of the number of features as the number of

pixels. Therefore, for a 64x64 image we have 4096 features. Such amount of features

could slow down the system. The most commonly used algorithm to extract relevant

features are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),

Shift-Invariant Feature Transform (SIFT), and Speeded Up Robust Feature (SURF).

[32] used the PCA method for feature extraction to reduce the dimensionality of the

image while preserving much of the information. [34] Used the SIFT algorithm to extract

the key points (vectors) for each training image. However, some authors rely on neu-

ral networks to classify gestures, and this method does feature extraction automatically.

In [36], ANalysis of VAriance (ANOVA) and Incremental Feature Selection (IFS) tech-

niques were used to select the optimal features from the 44 existing features. [25] Used

Histogram of Oriented Gradients (HOG) feature extraction technique to determine the

intensity gradients distribution (i.e. edge directions) in the given image, which describes

the appearance and shape of the object in the picture.

2.2.6 Classification

The overall goal of HGR is the interpretation of the semantics that the hand(s) loca-

tion, posture, or gesture conveys. Vision-based techniques are classified under static and

dynamic gestures. The classification uses the information extracted and processed by

previous steps and outputs the recognition results.

[31] Applied a CNN with two hidden layers to recognize 24 ASL static signs obtained

from a public database, a batch size of 5 is used to achieve stochastic gradients compu-

tations for optimizing the mean-square-error cost function. The authors achieved 91.33%

accuracy on testing data. Singha et al. [36] merged three classifiers: ANN, SVM and

k-Nearest Neighbours (kNN) to build a dynamic HGR system. The ANN includes one

25



2.2. Vision-Based Gesture Recognition

hidden layer. Its input layer consists of 40 neurons, which represent the 40 features, and

the output layer has 40 neurons expressing 40 gesture classes. The results of the individ-

ual classifiers were combined to get the classifier fusion result. Majority voting technique

were used to combine the different classifiers. Their experiment achieved an accuracy of

92.23%. [37] Performed gesture recognition using Pseudo two Dimensions Hidden Markov

Models (P2-DHMMs) to classify 36 gestures and achieved an average accuracy of 98%.

The authors deduced that P2-DHMMs perform much better when the recognition task

contains various gestures with varied sizes.

2.2.7 Results

In Tab. 2.1, we summarize the results obtained by various researchers in HGR based on

vision, where the lines represent the works, and the columns are the stages and methods

used by each work.

26



2.2. Vision-Based Gesture Recognition

R
ef

D
at

a
ac

q
u
is

i-
ti

on
D

at
ab

as
e

Im
ag

e
p
ro

-
ce

ss
in

g
S
eg

m
en

ta
ti

on
&

T
ra

ck
in

g
D

im
en

si
on

al
it

y
re

d
u
ct

io
n

C
la

ss
ifi

ca
ti

on
A

cc
.

[2
5]

W
eb

ca
m

4
st

at
ic

C
ro

p
p
in

g
S
k
in

fi
lt

er
in

g
H

O
G

k
N

N
81

%
[2

8]
K

in
ec

t
5

st
at

ic
J
oi

n
t

B
il
at

er
al

fi
lt

er
in

g
S
k
in

g
fi
lt

er
in

g
C

N
N

98
.5

2%

[3
4]

V
id

eo
ca

m
er

a
6

st
at

ic
R

es
iz

in
g,

C
on

ve
rt

in
g

to
p

or
ta

b
le

gr
ay

m
ap

S
k
in

fi
lt

er
in

g,
V

io
la

-J
on

es
m

et
h
o
d

S
IF

T
S
V

M
96

.2
3%

[3
6]

W
eb

ca
m

40
d
y
n
am

ic
S
k
in

fi
lt

er
in

g,
V

io
la

-J
on

es
m

et
h
o
d
,

K
L
T

A
N

O
V

A
,

IF
S

S
V

M
,

A
N

N
,

k
N

N
92

.2
3%

[2
6]

W
eb

ca
m

,
R

ed
gl

ov
e

6
st

at
ic

C
ro

p
p
in

g
S
ob

el
ed

ge
fi
l-

te
r

A
N

N
89

.4
8%

[3
7]

V
id

eo
ca

m
er

a
36

d
y
n
am

ic
K

al
m

an
fi
lt

er
,

B
lo

b
an

al
y
si

s
D

is
cr

et
e

co
-

si
n
e

tr
an

sf
or

m
P

2-
D

H
M

M
s

98
%

[2
9]

V
id

eo
ca

m
er

a,
gr

ee
n

b
ac

k
-

gr
ou

n
d
,

gr
ee

n
w

ri
st

26
st

at
ic

C
ro

p
p
in

g
S
k
in

fi
lt

er
in

g
D

is
cr

et
e

w
av

el
et

tr
an

s-
fo

rm
an

d
F

-r
at

io

S
V

M
98

.6
4%

[3
9]

K
in

ec
t

24
st

at
ic

P
er

-p
ix

el
cl

as
-

si
fi
ca

ti
on

D
is

ta
n
ce

ad
ap

ti
ve

sc
h
em

e

R
an

d
om

fo
r-

es
t

90
%

T
ab

le
2.

1:
R

es
u
lt

s
ob

ta
in

ed
b
y

va
ri

ou
s

v
is

io
n
-b

as
ed

ge
st

u
re

s
re

co
gn

it
io

n

27



2.2. Vision-Based Gesture Recognition

2.2.8 Discussion

Among the works cited in the previous table, only [25], [26] and [34] do not concern the

recognition of sign language. On the other hand, [28], [29] and [39] used the signs of the

alphabet and [36], [37] used the alphanumeric signs. In ASL, letters are expressed with

static signs, with the exception of ”j” and ”z” which are expressed with dynamic signs.

However in [29], the authors considered all letters as static signs. A confusion could arise

between the letters ”i” and ”j” which both have the little finger raised. Tab. 2.1 cites

two dynamic HGR works [36], [37].

Although widely used, vision-based SLR techniques face many drawbacks. The pre-

sented works tried to overcome them by improving one or many steps of the HGR process.

In SL, a single term may be expressed by a combination of more than a single gesture.

By consequence, works based on static gestures are not suited such terms. For example,

the word ”Light” start with closed fingers pointing downwards, then spreading them. In

addition, for such solutions to be efficient, the user should face the camera permanently.

Thus, complete visual coverage is required. The privacy and low-cost requirements make

these solutions unadapted to smart buildings.

2.2.9 Conclusion

This section provides an overview of the steps in the gesture recognition process using the

vision approach, namely, data acquisition, image processing, segmentation and tracking,

dimensionality reduction, and classification. HGR faces many obstacles, including poor

lighting conditions, camera’s inability to capture dynamic gesture in focus, occlusion due

to finger movement, color variations due to lighting conditions, which need to be handled

in the processing steps. The Microsoft Kinect device provides an effective way to solve

the above issues and provides the skeleton for more convenient hand segmentation and

tracking. However, it elevates the cost of the solution. We consider the vision-based

gesture recognition not adaptable to the smart home context due to the privacy issues

that may arise from placing cameras inside the house.

28



2.3. Sensor-Based Gesture Recognition

2.3 Sensor-Based Gesture Recognition

Sensor-based solutions use sensors physically connected to the users that capture finger

and hand location, movement, and trajectories. Features such as the flex angle of fin-

gers, the orientation, and the absolute position of the hand are often in 3D space. This

approach, however, requires the users to wear a glove or a wrist (depending on the type

of sensors) connected to the user’s arm with sensors, this requirement tends to limit the

approach to a laboratory setup [3]. As a solution, some researchers tried to give the

user more freedom and less invasive possibilities. This section presents works from the

sensor-based hand gesture recognition category following the steps shown in Fig. 2.2.

Figure 2.2: Sensor-based gesture recognition process

2.3.1 Data Acquisition

The sensor-based approach requires the use of sensors to capture the motion, position,

and velocity of the hand. For that, different types of sensors are used:

• Inertial Measurement Unit (IMU)—Measure the acceleration, the location, degree of

freedom and acceleration of the fingers. Which requires the use of a gyroscope and

an accelerometer [40], [41].

• Electromyography (EMG)—Measures the human muscle’s electrical pulses and har-

ness the bio-signal to detect finger movements [42], [43].

• Others—Utilizes flex sensors, mechanical, electromagnetics, and haptic technologies

[44].

2.3.2 Signal Preprocessing

Data collected from various sensors contains some degree of erroneous, noisy, and redun-

dant information caused by dead batteries, sensor read failures and loss of intermittent

communication. Signal preprocessing operations mainly include Data cleaning techniques

to remove the artifacts and outliers, in addition to data interpolation to cope with miss-

29



2.3. Sensor-Based Gesture Recognition

ing readings and data transformation to put data into the proper format. This section

presents the sensor signal preprocessing methods used by researchers in gesture recogni-

tion.

Data cleaning is an umbrella word that groups a set of techniques used to smooth out a

raw signal by filtering out artifacts and removing unwanted information to keep only the

characteristics of signals that carry relevant information. Multiple filters are used that

must be following the sensor’s characteristics [45]. [46] applied a bandpass filter between

20 and 450 Hz on EMG signals to remove noise. In addition, a notch filter is used to

remove the 50 Hz power line interference. In [44], the authors presented a new gesture

recognition method using a flexible epidermal tactile sensor based on strain gauges to

sense deformation. As this distortion may reduce the accuracy, they used a median filter

to remove the noise. [47] Is an SLR system based on accelerometers and gyroscopes of a

smartwatch. The authors applied moving average filters [48] to the sequence of collected

signals to suppress the impact of jitter triggered by different activities.

In some works, researchers combined different sensors. For example, the Cyberglove

[49] contains 18 to 22 sensors, each of which has its value range. A wide variety of

values may dramatically influence the performance of some ML algorithms, e.g. when the

Euclidean distance is used, hence the need for normalization. After normalization, each

feature contributes approximately equally to the final distance. In [43], the data collected

from an EMG is normalized before introducing it in a real-time HGR model. In [50], the

authors leverage a light-weight off-the-shelf wearable device, Myo armband, that provides

nine inertial sensing unit signals (3-axis accelerometer, gyroscope, and orientation) and

eight-channel EMG signals. Since the EMG signal is much more noisy and stochastic, the

authors used the RMS to process the EMG signal.

2.3.3 Data Segmentation

Sensor data usually comes as a continuous flow of raw data because sensors provide instant

measurements of the controlled phenomenon, either on request or at regular intervals.

Segmentation methods try to achieve a proper division of this raw and continuous data

flow into smaller blocks of information. The appropriate selection and parameterization

of segmentation techniques have a drastic impact on the success of feature extraction and

ML algorithms [45]. In the works we have cited, two distinct approaches are commonly

30



2.3. Sensor-Based Gesture Recognition

used namely temporal-based segmentation and activity-based segmentation. Activity-

based segmentation consists in dividing the signal data stream by identifying the start

and end points of each gesture. Various methods are proposed in the literature to identify

the beginning and ending points of gestures. Setting a threshold to detect changing points

is the most common method. On the other hand, temporal based segmentation is further

classified into Time interval-based segmentation and Sliding window segmentation. Time

interval-based approach consists in dividing the sensorial datasets into blocks of equal

time duration, while Sliding window segmentation divides the continuous signal data flow

into windows with either static or dynamic sizes.

In [42], the authors developed an EMG based interface for HGR to recognize control

signs in the gestures. To capture only relevant patterns in EMG waveforms, they de-

signed an adaptive thresholding. [41] Proposed a gesture segmentation method based on

Euclidean distance between each acceleration data time step. The acceleration is rela-

tively stable when there is no hand movement. In contrast, it varies dramatically when in

a hand motion state. The mean Euclidean distance in motion state is much higher than

in status of no movement. Hence, it can be used to segment a gesture motion. MyoSign

[50] is a deep learning model that enables end-to-end ASL recognition at both word and

sentence levels. The continuous signal stream of sensors is segmented into a series of

overlapping clips. They introduce a no sign class to represent the state without signs or

the movement epenthesis between two continuous signs. Then Connectionist Temporal

Classification (CTC) is applied on top of an LSTM which allows MyoSign to translate

word or sentence in an end-to-end way.

2.3.4 Feature Extraction

In the sensor-based approach, the goal of this step is to extract new features from the

signal. For example, acceleration signals are highly fluctuating and oscillatory, which

makes it difficult to recognize the underlying patterns using their raw values. Time series

analysis methods allow extending the signal to multiple features. They may be divided

into two classes: frequency-domain methods and time-domain methods. Time domain

analysis is about looking how time series evolves over time. It can include analysis of

width, heights of the time steps, and other characteristics. On the other hand, many

signals are better represented not by how they change over time, but what amplitudes

31



2.3. Sensor-Based Gesture Recognition

they have in it and how they change and that is the purpose of Frequency domain analysis.

Time domain includes Auto-correlation and cross-correlation analysis, and Frequency

domain includes Fourier and Wavelet analysis. Tab. 2.2 summarizes the main features

that can be extracted in each of these domains:

Domain Extracted Features

Time domain Mean, Median, Average, Variance, Standard Deviation, Min,

Max, Range, RMS, Correlation, Cross-Correlation, Integra-

tion, Differences, Angular Velocity, Signal magnitude area, Sig-

nal vector magnitude, Zero-crossing.

Frequency domain DC component, Key Coefficients, Coefficients sum, Dominant

frequency, Energy, Info Entropy.

Table 2.2: Taxonomy of extracted features in three domains

In [44], the authors based their system on strain gauges to sense deformation that are

transduced to electric signals. From there, the authors extract two time-series, the Differ-

ence Absolute Mean Value (DAMV) and the Mean Absolute Value (MAV), to distinguish

between gestures. In [42], the authors select features in the time domain (i.e., Max, Min,

MAV, variance, RMS, and signal length) and features in the frequency domain obtained

by using Fast Fourier Transform (FFT). They calculated: fundamental frequency and

Fourier variance. Georgi et al. [51] developed a HGR system using IMU and EMG sen-

sors, They compute for each sliding window a 28 dimensional feature vector. The first

twelve dimensions are mean and standard deviation for each of the six channels of the

IMU. The remaining 16 dimensions are the standard deviation of each EMG channel. [52]

Summarize the main feature extraction techniques useful for acceleration, environmental

measurements, and vital signs. They describe time-domain features like the ones mostly

used on environmental measures, such as those obtained by binary sensors. In the case

of acceleration data, time-domain and frequency-domain features are commonly used,

whereas time-based features such as the number of heartbeats are used on vital signals

[45].

32



2.3. Sensor-Based Gesture Recognition

2.3.5 Classification

All methods from above can get features for any ML model we have. However nowadays

researchers do not want to rely on human-biased mathematical models and features.

Neural networks are extremely powerful tools in biosignals analysis, they trade better

than we do as well. Thus, they are able to automatically learn parameters and features

to find effective solutions for complex problems. Besides, they are very fast to run in the

inference stage even when the number of classes is very large.

In [50], the authors proposed a mixture of CNN, to abstract representations from

inputs of different sensory modalities, and a bidirectional LSTM, to model temporal de-

pendencies. The system has been evaluated on 70 ASL words and 100 ASL sentences

and achieved an average accuracy of 92.4%. In [40], an RNN hand gesture classification

based on accelerometer data is proposed. A combination of Convolutional LSTMs and

standard LSTM cells was used to exploit both temporal and spatial information in the

accelerometer signals. Experiments on a database consisting of 40 gestures performed by

20 able-bodied subjects and 2 amputees reveal an average recognition accuracy of 89.8%

for able-bodied and 85.4% for amputees. In [42], an EMG based interface for HGR is pre-

sented. The authors combine two linear classifiers, k-NN and Bayes, to perform real-time

classification. The combination allowed the recognition accuracy to reach 94%. In [44],

the authors used an algorithm based on SVM and selected Radial Basis Function (RBF)

kernel for non-linear classification. Only two features were used as input representing

strain gauges deformation. The average accuracy for gesture recognition was 97.8% for

six different gestures.

2.3.6 Results

This section summarizes some of the existing works in hand gesture recognition based

on sensors, and this through the following table, where the lines represent the works,

and the columns are the stages and methods used by each work. We did not consider

the segmentation and feature extraction stages, since almost all works rely on sliding

windows and extract features from both time and frequency domains when not using

neural networks.

33



2.3. Sensor-Based Gesture Recognition

Ref Data Acquisition Database Signal preprocessing Classification Acc.

[42] EMG 4 Detrending function
k-NN,

Bayes
94%

[51]

EMG,

Accelerometers,

Gyroscopes

12 Z-normalization

Hidden

Markov

Models

97.8%

[47]
Accelerometers,

Gyroscopes
103 Moving average filter B-LSTM 99.2%

[50]

EMG,

Accelerometers,

Gyroscopes

70 Median filter
CNN,

B-LSTM
92.4%

[43] EMG 5

Butterworth filter,

muscle detection

function

ANN 98.7%

[44] Strain gauges 8 Median filter SVM 97.8%

[40] Accelerometer 40 Normalization LSTM 89.8%

Table 2.3: Results obtained by various sensor-based gestures recognition

2.3.7 Discussion

In the previous table, we cited seven works using sensors to identify gestures. Among

these works, two of them were interested in the problem of SLR namely MyoSign [50] and

SignSpeaker [47]. These two works, unlike the systems cited in the vision-based approach,

try to identify words and sentences instead of being limited to the alphabet. However,

although these two works offer the possibility of recognizing a wide range of words and

phrases, the fact remains that users must wear a smartwatch or an armband, respectively

to Signspeaker [47] or MyoSign [50], in order to use the systems. Although these two

devices are less invasive than others are, they are nevertheless cumbersome.

Besides, the use of B-LSTM has a practical impact on sentence level recognition by

removing or adding information during learning such that the sequence of events that

preceded and followed are taken into account when given the present. These systems

offer a more extensive range of gestures compared to the previous category and are more

34



2.4. Wireless-Based Gesture Recognition

suitable for SLR in smart homes context.

2.3.8 Conclusion

In this section, we provide an overview of the steps in the gesture recognition process using

the sensor approach, namely, data acquisition, Signal preprocessing, segmentation, feature

extraction, and classification. The researchers proposed solutions for data collection,

innovative noise reduction algorithms to remove the effects of interference, and to increase

the number of identifiable gestures and recognition accuracy. Promising works have been

cited that could suit SLR systems in a smart home context. Even if the sensor used are

cheap and precise, this approach requires a device attached to the users’ arms constantly

so that they can communicate with the system. This constraint makes this solution

invasive.

2.4 Wireless-Based Gesture Recognition

Contrary to the two previous categories, wireless systems require neither instrumentation

worn by the user nor the installation of cameras. This approach’s architecture consists

of a transmitter broadcasting a signal (e.g., Wi-Fi), a transmitting antenna, a receiving

antenna (often the same antenna is used for transmitting and receiving) and a receiver

and processor to determine properties of the object(s). The deformations in the signals

can be used to recognize hand and finger movements. Several works exist, and the main

challenges are the ability to extract the gestures from wireless signals and dealing with

multiple humans in the environment. The remainder of the section describes the wireless-

based SLR process. First, we detail the types of wireless communication signals used

for signs recognition. Next, the methods to extract proper information. Finally, the

segmentation, the classification models, and their results.

2.4.1 Types of Wireless Transmission Used in SLR

The present works on wireless-based hand gesture recognition systems are categorized

into three main trends:

35



2.4. Wireless-Based Gesture Recognition

Received Signal Strength (RSS)

It is the strength of the signal measured at the receiver’s antenna and can be measured

for each received packet. The signal’s energy is quantized to form the Received Signal

Strength Indicator (RSSI). There are four parameters associated with RSSI: dynamic

range, accuracy, linearity, and averaging period. The RSSI dynamic range is specified in

dB and indicates the minimum and maximum received signal’s energy that the receiver

is capable of measuring [53]. Abdelnasser et al. [54] and Haseeb et al. [55] proposed a

gesture recognition system by leveraging changes in RSS due to hand motions. Several

tools are used to collect RSSI measurements, [55] used a wireless extension for the Linux

user interface.

Radio Frequency (RF)

Radio frequencies are generated and processed within many functional units such as trans-

mitters, receivers, computers, televisions, and mobile phones. In the gesture recognition

context, many works leverage RF waves to detect motion and gestural input. Examples

include sensing via disturbances of GSM [56]. Google’s soli work [57] relies on a high-

frequency radar with a central frequency of 60 GHz, which allows for more fine-grained

gesture sensing. The Doppler shifts and multi-path distortions that occur in Wi-Fi sig-

nals from human motion in the environment are exploited in [58]. RF-based systems

are sometimes called Software Defined Radio (SDR) based since raw signals are collected

using devices such as Universal Software Radio Peripheral (USRP) and Radio-frequency

IDentification (RFID) readers.

Channel State Information (CSI)

In wireless communications, CSI refers to known channel properties of a communication

link. This information describes how a signal propagates from the transmitter to the

receiver and represents the combined effect of, for example, scattering, fading, and power

decay with distance. CSI-based sensing systems have been designed for various purposes,

such as localization, human motion detection, and counting humans. Recently, CSI has

been extended to recognize human activities such as fall detection, daily activity recogni-

tion, micro-movement recognition, and gesture recognition. In [59] and [60], the authors

leverage the fluctuations in the CSI of Wi-Fi signals caused by hand motions to classify

gestures with high accuracy even in scenarios where the signal passes through multiple

36



2.4. Wireless-Based Gesture Recognition

walls. The most commonly used software to gather CSI is Linux 802.11n CSI Tool [61].

2.4.2 Signal Preprocessing

The challenge in wireless communications signal preprocessing is to increase the capacity

in bps/Hz of bandwidth through reducing noise, interference and multipath distortion.

Signal processing methods play the central role in removing or compensating for noise

and thereby improving capacity [62].

In [59], two walls separate the transmitter and receiver from the user who lies within a

distance of 8 m. The authors use a Butterworth filter to remove noise but preserve the real

trend of CSI caused by hand motion. Besides, to focus on gestures from a particular user,

the authors rely on Multiple-Input Multiple-Output (MIMO) capability that is inherent to

802.11n. It provides throughput gains by enabling multiple transmitters to send packets

to a MIMO receiver concurrently. If we consider the wireless reflections from each human

as signals from a wireless transmitter, then they can be separated using a MIMO receiver.

[55] Process the RSSI signal by comparing its values with a threshold. All windows that

have a variance less than the threshold will be predicted as no gesture or noise. [58]

Leverages the property of Doppler shift, which is the frequency change of a wave as

its source moves relative to the observer. Similarly, the human hand gestures result in

minimal Doppler shifts. To overcome this challenge, the authors transform the received

Wi-Fi signal into a narrowband pulse with the bandwidth of a few Hertz. The receiver

then tracks the frequency of this narrowband pulse to detect the small Doppler shifts. [60]

Explains that the 3D CSI matrix is similar to a digital image with spatial resolution of

N ×M and K color channels, so CSI-based Wi-Fi sensing can reuse the signal processing

techniques and algorithms designed for computer vision tasks.

2.4.3 Segmentation

The segmentation (Also called gesture detection) algorithm plays an important role in the

overall performance of the gestures identification system. It is important to detect the

gestures first because in this way we can properly label the data we collect and train the

system. Incorrect segmentation of the received signals can trigger incorrect classifications.

In addition, through gesture detection, we segment the signal samples we collected, so

that only those segments corresponding to a gesture will be processed using the ML

37



2.4. Wireless-Based Gesture Recognition

algorithm. This naturally reduces the computational cost. Wireless communication data

comes as a continuous flow of raw data. Therefore, the segmentation algorithms used in

this approach are similar to sensor based approach namely temporal-based segmentation

and activity-based segmentation.

In [58] the receiver computes the average energy in the positive and negative Doppler

frequencies. When the ratio between this average energy and the noise level is greater

than 3 dB, the receiver detects the beginning of a segment. If this ratio falls below 3

dB, the receiver detects the end of the segment. In [55], the incoming RSSI stream is

split into overlapping windows of T seconds length, and d seconds gaps between window

starts. In [59] the authors first design a multi-level wavelet decomposition algorithm

to decompose CSI and analyze its frequency and time components to obtain a unique

pattern for each gesture. Then, apply a short-time energy algorithm to the results of

wavelet decomposition of CSI, which can classify silent and communication periods.

2.4.4 Feature Extraction

As the sensor based approach, the goal of this step is to extract new features from the

signal. The receiver collects a signal that is not enough to distinguish between gestures.

Time series analysis methods allow extending the signal to multiple features.[56] Devel-

oped an algorithm to convert the reflected GSM pulses to a continuous signal that can

be used for gesture recognition. Combining the data points from four antennas, they

generated a feature vector with 18,000 elements. They reduced the feature space by

downsampling the feature vector to 80 elements (i.e., 20 elements per channel) using only

time-domain data. On the other hand, [54] uses a discrete wavelet transform to capture

both frequency and time domain data from RSSI values. [63] Introduces Higher order

statistics based third-order cumulant features that are robust to background noises and

signal interferences. They demonstrated that using this feature extraction method could

achieve a better classification accuracy even without applying any preprocessing methods.

2.4.5 Classification

The works presented in this approach differ in the range of the system, For example,

the range of the Soli [57] radar is limited to 30 cm. As well as SignFi [60], which relies

on CSI measurements to predict gestures, separates the transmitter and receiver from

38



2.4. Wireless-Based Gesture Recognition

230 cm and 130 cm, respectively, for the laboratory and the domestic environment. On

the other hand WiGer [59] increases the distance between the user and the receiver. In

their experiments, the authors test their system in a scenario where two walls separate

the transmitter and the receiver from the user who is at a distance of 8 m. Works that

cover a large area test their system in scenarios where the transmitter and receiver are

in the Line Of Sight (LOS) as well as in the None Line Of Sight (NLOS). For instance,

[64] built a system to identify four different gestures by leveraging CSI measurements, the

authors use SVM with RBF kernel to classify the gestures. They also used the LIBSVM

[65], an open source machine learning library that applies a method named one-against-

one method to construct k(k − 1) classifiers where each one is trained on data from

two classes to classify these two classes and k is the number of classes. Then a voting

strategy is used to predict the test data. In experimental results, their system achieved

an average accuracy of 92% in LOS and 88% in NLOS. [55] Developed a system to control

a smartphone with three different gestures. To classify each gesture, they used an LSTM

model. The model’s hyperparameters were selected by performing a grid search in the

parameters space. Each parameters’ setting is evaluated using four-folds cross-validation.

The experiments showed an average accuracy of 78%. In [57], the authors proposed a

combination of Deep Convolutional Neural Network (DCNN) and RNN to identify 11

gestures. Where the DCNN has eight layers and the last fully connected layer is directly

connected to the input of the LSTM cell. They achieved an average accuracy of 87%.

2.4.6 Results

This section summarizes some of the existing works in HGR based on wireless communi-

cation, and this through the following table, where the lines represent the works, and the

columns are the stages and methods used by each work. As works on sensor based, we

did not consider the segmentation and feature extraction stages, since almost all works

rely on sliding windows and extract features from both time and frequency domains when

not using neural networks. The accuracy of each work covering a large perimeter was

mentioned in the NLOS and LOS scenarios respectively.

39



2.4. Wireless-Based Gesture Recognition

Ref Database
Wireless

transmission

Signal

preprocessing
Classification Acc.

[54] 7 RSS
Threshold-based on Stein

unbiased risk estimate

Pattern

Matching
87.5%

[55] 3 RSS
Compare with a

threshold
RNN 78%

[66] 25 RSS Low pass filter DTW 96%

[56] 14 RF (GSM) Savitzky-Golay filter
SVM with PUK

kernel
87.2%

[57] 11 RF (Radar)

Signal normalization,

Logarithmic data scaling,

Max-min truncation

CNN + RNN 87%

[67] 9 RF(RFID)
Phase Shift Calibration,

Wavelet Denoising
Random Forest 96%

[60] 276 CSI
Multiple linear

regression
CNN 98.91%

[59] 7 CSI
Butterworth low-pass

filter
DTW

89%

97.28%

[63] 276 CSI Without SP
SVM with RBF

kernel
98.26%

Table 2.4: Results obtained by various wireless-based gestures recognition

2.4.7 Discussion

In the previous table, we cited nine works based on wireless communications to perform

hand gestures recognition. Among these works, four of them have interpreted SL gestures

namely [63], [60], [66] and [67]. These works, like the outstanding systems cited in the

sensor based approach, try to identify words and sentences. [63], [60] and [66] are based

on CSI measurements while [67] relied on RFID technology. The latter focused on the

interpretation of sentences unlike the other that handle only words. [63] and [60] use the

same dataset composed of 276 terms, these terms can further be composed to construct

sentences.

40



2.5. Summary and Discussion

On the other hand, the main income of such approaches (compared to vision and sensor

based systems) is the freedom of the user from carrying or deployment new hardware.

However, some wireless-based systems require specific materials. For example, [58] used

a USRP-N210s to implement and evaluate a prototype of the system. Others require the

user to perform the sign language in front of the receiver. In [57], the user has to perform

his gestures 30cm above the radar. Other approaches allow the user to be far from the

transmitter or the receiver, which brought new challenges (e.g., distance, obstacles, and

interferences). For instance, the authors of [59] test their system in a scenario where two

walls separate the transmitter and the receiver from the user who is at a distance of 8m.

The latter system is based on CSI measurements, if we manage to find a compromise

between the number recognized gestures in [63],[60] and the robustness and range in [59],

relying on CSI measurements would be ideal for an SLR system in the environment of a

smart home.

2.4.8 Conclusion

In this section, we passed through the most common stages of gesture recognition based

on wireless transmission, namely signal preprocessing, segmentation, feature extraction,

and classification for each type of transmission used in works. This approach resolves

previous approaches limitations since neither vision nor wearable devices are required.

Dealing with obstacles like walls, other human motions, and various interferences may

be challenging. Using CSI to identify gestures have made an impact on wireless-based

systems. Therefore, leveraging the fluctuations in the CSI of Wi-Fi signals makes it a

suitable option for SLR in the smart home context.

2.5 Summary and Discussion

2.5.1 Used Approaches in Existing Works

This section presents a summary of the currently used approaches in hand gesture recog-

nition cited above with their input methods, and this through the following table, where

the lines represent the works, and the columns are the approaches and methods used by

each work. X Indicates the approach (columns) used by each work (rows).

41



2.5. Summary and Discussion

Ref. Vision Sensor Wireless

K
in

ect

W
eb

cam

V
id

eo
cam

era

S
train

gau
ges

G
y
roscop

es

A
ccelerom

eters

E
M

G

R
F

R
S
S

C
S
I

[25][26][36] X

[28][39] X

[29][34][37] X

[42][43] X

[50][51] X X X

[47] X X

[44] X

[40] X

[54][55] X

[56][57][58] X

[59][60][63] X

Table 2.5: Summary of the currently used approaches in hand gesture recognition

2.5.2 Comparison Criteria

We establish three categories of comparison criteria related to smart homes, sign language,

and system performance.

Smart home systems’ criteria are privacy, affordability, and easy installation. Smart

home systems control the entire house connected devices, from lights to door locks. Be-

sides, this kind of system records users’ data and habits continuously. Data falling into

malicious hands is hazardous for the house occupants. On the other hand, smart home

devices and connected peripherals are expensive and hard to deploy.

Sign language recognition systems’ criteria are the recognition of static vs. dynamic

signs and the invasiveness of the acquisition method. SL symbols are classified into

static and dynamic gestures, as well as constructing sentences requires the sequence of

multiple signs. For optimal experience, the SLR systems should handle dynamic signs.

42



2.5. Summary and Discussion

Additionally, SLR systems may be used for long and anytime. Thus a comfortable device

would make the system better.

System performance criteria are the recognition accuracy, the robustness against the

environment, and the number of handled gestures. All the cited approaches above rely

on machine learning algorithms to predict the correct sign produced by the user and the

more accurate the system, the better it is. Besides, the studied systems face several chal-

lenges related to the environment that could reduce the system performance. Therefore

robustness is an important criterion to compare between the works. On the other hand,

the number of gestures handled by the system must be considered, since the number of

classes affects the recognition rate. In our comparison, we consider the minimum number

of recognized gestures by the approaches of 100, since our goal is not to develop a commu-

nication tool, but a way to control devices. Similarly, we consider 90% as the minimum

recognition accuracy, since the current voice-based devices’ accuracy is between 90% and

95%.

2.5.3 Discussion

In Tab. 2.6, we compare the current approaches in the literature to recognize hand

gestures following the criteria that we proposed above.

Vision Sensor Wireless

Privacy issue

Affordable

Ease of installation

Dynamic

Noninvasive

Accurate

Robust

Number of gestures

Table 2.6: Comparison between the existing approaches in hand gesture recognition

Vision-based systems have a drastic impact on gesture recognition and achieved com-

mercial success (e.g., Microsoft’s Kinect [23]). However, due to the installation cost and

43



2.6. Conclusion

personal privacy, most of the vision-based sensing devices are hard to deploy at scale,

for example, throughout an entire home or building. Sensor-based systems responded to

those problems since there is no vision, and the sensors used are generally cheap with

high precision. However, it requires the permanent wear of a glove or a wristband to com-

municate with the system, which makes the solution invasive. Wireless systems require

neither instrumentation nor infrastructure of cameras. However, the range is limited and

can be increased by adding access points, which increases the cost.

2.5.4 Adopted Approach

The study of the current approaches for hand gesture recognition and smart homes and

sign language constraints, we opted to use CSI measurements present in WiFi signals

to recognize a sentence of signs that represents an action on connected peripherals. We

exploit CSI measurements among other wireless trends, since CSI measurements are used

for different sensing purposes. Besides, WiFi sensing exploits the infrastructure used for

wireless communication, so it is easy to deploy with a low cost. Moreover, unlike sensor-

based and vision-based solutions, WiFi sensing is not invasive or sensitive to lighting

conditions.

2.6 Conclusion

In this chapter, we presented an overview of hand gesture recognition techniques, which

opens a wide range of options to deploy in a smart home in particular for hearing and

speaking impaired occupants. Sign language recognition is one of hand gesture recog-

nition applications where machine learning has good potential. In the literature, three

different approaches have stood out (i.e., vision, sensor, and wireless-based). For the

three approaches, we presented methods proposed by the researchers following the stages

of the recognition process. Therefore we summarized works in the three categories and

proposed comparison criteria related to smart homes, sign language, and system perfor-

mance. Based on the latter comparison, we opted to develop a sign language recognition

system following the wireless approach by leveraging CSI measurements present in WiFi

signals.

44



Chapter 3

Solution Description

3.1 Introduction

During our study, we developed two different architectures to use CSI measurements to

predict the actions desired by the user. In this chapter, we present the design of those ar-

chitectures that translates sign language into smart home action using CSI measurements

present in the WiFi signal. The chapter describes all the stages of the process, namely

the collection of CSI traces, signal preprocessing, and the machine learning algorithms.

3.2 System Overview

The objective of our work is to develop a system for translating sign language into com-

mands that can be executed by the smart home. We have considered two different archi-

tectures for this, namely Word-based and Sequence-based architectures which will be the

objects of sections Sec. 3.3 and Sec. 3.4, respectively.

The format of the input data is what makes the difference between these two architec-

tures. Indeed, as its name indicates, the first architecture processes CSI measurements

sign by sign. Subsequently, once a sequence of signs is recognized, It is processed sepa-

rately in order to predict the desired action. As for the second architecture, in order to

predict the action wanted by the user, it directly processes a sequence of CSI measure-

ments reflecting a sequence of signs.

The following figures illustrate, using black boxes, the process of the two architectures

proposed in our solution.

45



3.3. Word-Based Architecture

(a) Word-based architecture process

(b) Sequence-based architecture process

Figure 3.1: Architectures’ black boxes representation

3.3 Word-Based Architecture

This architecture consists of the following stages, as shown in Fig. 3.2:

• Preparation: In this stage, the system collects CSI measurements from the transmitter

(i.e., WiFi access point). Raw CSI measurements are preprocessed to remove noises.

Then, the amplitude and the phase are extracted.

• Word-level recognition: The purpose of this stage is to predict word by word the

performed signs reflected by the CSI measurements. For this, we rely on a CNN

model to achieve both feature extraction and word classification.

• Sentence-level recognition: In this stage, we manage to assemble the predicted words

from the latter stage in a vector that represents an action on the connected peripher-

als. Thus, we rely on an RNN model to perform the commands prediction from the

constructed sequence of words.

46



3.3. Word-Based Architecture

Figure 3.2: Word-based architecture overview

3.3.1 Preparation

CSI Collection

Channel state information is the physical layer information of the WiFi signal. In con-

trast with the RSSI information, CSI gives information on different channels instead of

a cumulative signal strength indication. WiFi devices following 802.11n standards work

with Orthogonal Frequency Division Multiplexing (OFDM), achieve increased data rates,

improved capacity, and a reduced bit error rate of the system. Besides, devices starting

from IEEE 802.11n support MIMO with the OFDM scheme, enabling them to send and

receive information over multiple antennas (as shown in Fig. 3.3). The OFDM extracts

the channel frequency response in the format of CSI, which contains both amplitude and

phase information of the signal in the subcarrier level.

Figure 3.3: CSI representation of MIMO

47



3.3. Word-Based Architecture

Wireless communication systems are subject to attenuation, delays, and phase shifts.

To maintain the rate adaptations and transmit power, WiFi devices have to monitor the

channel state for each MIMO channel continuously. The narrowband flat fading channel

model of the MIMO system is given by [68]:

Yij = Hij ×Xij +N (3.1)

Where H denotes the channel state information. X and Y express the transmitter

and receiver, respectively, N is the noise, i is the stream number, and j is the subcarrier

number. In a MIMO system with T number of transmit antennas, R number of receive

antennas, and C number of channel subcarriers, CSI is a 3-dimensional matrix with a

size of T × R × C. Each element in the matrix is a complex number with the amplitude

and phase information of the corresponding receiver-transmitter pair of antennas for a

particular OFDM sub-carrier. The H matrix could be represented as:

H =


H11 H12 H13 . . . H1R

H21 H22 H23 H2R

...
. . .

...

HT1 HT2 HT3 . . . HTR

 (3.2)

Where Hij = h1, h2, h3, . . . , hC is the CSI value for transmitting antenna i and receiving

antenna j and hk denotes channel sate for kth sub-carrier [68]. Each complex hk could

also be represented by:

hk = ‖hk‖ · ej
6 hk (3.3)

Where ‖hk‖ is the amplitude, 6 hk is the phase. If either the amplitude or phase of

at least one path changes, the CSI value changes. Since CSI captures how surrounding

objects reflect wireless signals, it can be used to recognize hand and finger gestures. For

instance, Fig. 3.4 shows the result of the wavelet decomposition algorithm and the changes

in amplitude caused by three different air-drawn gestures.

48



3.3. Word-Based Architecture

Figure 3.4: Wavelet analysis results of air-drawn gestures [59]

In our work, we rely on changes in amplitude and phase extracted from CSI measure-

ments to predict gestures, since the CSI phase is much more sensitive to environment

dynamics due to its inherent short wavelength [69]. However, although CSI is included

in WiFi since IEEE 802.11n, not all standard WiFi cards report it. Thus, the present

work uses raw CSI traces of the SignFi dataset [60], where the gesture movements refer to

American Sign Language. More details about this dataset are given in the implementation

section.

Signal preprocessing

Wireless communication systems are designed to be coherent systems. The receiver needs

to know the frequency and phase of the transmitted signal. However, perfect coher-

ence cannot be achieved as the oscillator on the transmitter and receiver differ. Thus,

raw CSI measurements contain phase offsets due to hardware and software errors. For

instance, Sampling Time/Frequency Offsets (STO/SFO) are due to unsynchronized sam-

pling clocks/frequencies of the receiver and transmitter. It introduces estimation errors

for angle-of-arrival and time-of-flight, which are used to track and localize humans and

objects. Besides, the raw measured CSI phases give redundant information about how

CSI phases change. Thus, phase offset removal improves performance for binary and

multi-class classification applications since it recovers CSI phase patterns over subcarriers

and sampling time [70].

In SignFi [60] dataset, the authors have already preprocessed the CSI samples using

49



3.3. Word-Based Architecture

multiple linear regression to remove phase offset. The phase offsets are estimated by

minimizing the fitting errors across C subcarriers, N transmit antennas, and M receive

antennas. Preprocessed CSI phases are obtained by removing the estimated phase offsets

from the measured CSI phases. Fig. 3.5 shows the effectiveness of signal preprocessing on

the CSI phase. On the other hand, no filter method has been mentioned, since the authors

built their dataset in two different environments (i.e. laboratory and home) as the layout,

surrounding environment, and displacement of the transmitter and receiver of the lab

and home are different, leading to different noise signals. Afterward, CSI measurements

are manually segmented for each sign gesture. Nevertheless, in our work, in contrast to

SignFi, we normalized the data since the given datasets have a different range of values.

(a) Raw and Unwrapped CSI

Phases

(b) CSI Phase vs. sub-carrier In-

dex

(c) CSI Phase vs. Sampling Time

Figure 3.5: Raw CSI measurements do not capture how CSI phases change over sub-

carriers and sampling time [60]

3.3.2 Word-level recognition

The main goal of this stage is to process CSI measurements in order to predict one

sign performed by the user at a time. Processing CSI measurements requires extensive

computation resources. For example, size(H) = 3× 3× 52× 100× 32/8 = 187, 200 bytes

for a WiFi channel with 3 transmitter/receiver antennas, 52 subcarriers, and 100 CSI

samples with each value represented by 32 bits. Besides, CSI measurement processing is

a time-frequency analysis task. Thus, signal transformation and dimensionality reduction

techniques are essential before further processing. Before the machine learning and deep

learning era, people were creating mathematical models and approaches for time-series

50



3.3. Word-Based Architecture

and signals analysis. Time-frequency analysis methods such as Fast Fourier Transform

and Discrete Wavelet Transform are widely used to find the distinct dominant frequencies.

However, in our work we do not rely on such methods but rather take advantage of deep

learning to extract new features and reduce the dimensionality.

Convolutional Neural Network

A CNN model can be defined as a combination of two components: the feature extraction

part and the classification part. The feature extraction layers have a generally repeating

pattern of the sequence composed of the convolution layer, the ReLU activation function

and the pooling layer. There could be multiple of these units connecting for large and

complex datasets. In our proposed method, only one unit is used to learn essential features

by convolving the CSI input, since we tested multiple of these units in our experimentation

and It did not improve the system performance.

The convolutional layers are designed to extract important features from the multi-

channel CSI data based on the findings of existing studies on CSI [71]. Besides, the

3D CSI matrix is similar to a digital image with a spatial resolution of N ×M and K

color channels. Thus, CSI-based WiFi sensing can reuse signal processing techniques and

algorithms designed for computer vision tasks. CNN models have shown significant per-

formance in recognition and detection tasks. The Rectified Linear Unit layer provides

fast and effective training for deep neural networks, since its activation function is easy

to compute and optimize. It has been shown more effective than traditional activations,

such as logistic sigmoid and hyperbolic tangent, and is widely used in CNNs [19]. The

combination of the convolutional layer and a nonlinear activation function (ReLU in our

case) is sometimes referred as the detector stage. A pooling layer follows this stage to

reduce the spatial size (width and height) of the data representation and help control

overfitting.

Among the convolutional unit, we included in our model a Batch Normalization (BN)

layer. BN layer accelerates training in CNNs by normalizing the output of the previous

layer at each batch. It applies a transformation that keeps the mean activation close to

zero while also keeping the activation standard deviation close to one. BN also reduces

the sensitivity of training toward weight initialization and acts as a regularizer [17]. This

approach leads to faster learning rates since normalization ensures no activation value is

51



3.3. Word-Based Architecture

too high or too low, as well as allowing each layer to learn independently of the others.

As for the classification part, we can have one or more fully connected layers to take

the higher-order features and produce class probabilities or scores. However, these layers

process vectors, which are 1D, whereas the current output is a 3D tensor. First we have

to flatten the 3D outputs to 1D using a flattening layer and then add a fully connected

layer on top that connects all of its neurons to the neurons in the previous layer. The

purpose is to combine all the features learned by previous layers (i.e. Convolutionial unit)

to classify the input.

The fully connected layer typically uses either a softmax or sigmoid activation function

for classification. Softmax functions are most often used as the output of a classifier,

to represent the probability distribution over n different classes [19]. Since we have a

multiclass modeling problem, we use a softmax output layer to get the highest score of

all the classes. The softmax output layer gives us a probability distribution over all the

classes.

Fig. 3.6 shows how the layers are overlapped in our model. More details about the

parametrization are given in the next chapter.

Figure 3.6: Architecture of the CNN model

3.3.3 Sentence-level recognition

Through this work, our contribution is to perform a sentence-level sign language recog-

nition system to execute actions on smart home peripherals. Thus, the purpose of this

stage is to process a set of words or sentence to predict the action wanted by the user.

52



3.3. Word-Based Architecture

These words come from the previous stage i.e. the word-level recognition. The sentences

must contain the objects to control, the action, and, eventually, the room, for instance,

“Start air conditioner” or “Open kitchen door.” Although the dataset on which we rely

offers a wide range of objects, actions, and rooms, it nevertheless remains addressed to

word-level recognition problems since labels represent single words. Thus, we must first

build sentences from the latter dataset to proceed to sentence-level recognition.

To build the sentences, we first selected words from the dataset that are the best

suited to our context. More details about the word selection are given in the implemen-

tation section. Therefore, we combined all the latter words using the following sentence

structures:

Figure 3.7: Sentence structures

Recurrent Neural Network

Sentence-level sign language recognition is a sequence-learning task since we are given a

series of words that represent the sequential data. Recurrent Neural Networks (RNNs)

are well suited for sequence learning problems due to their ability to handle temporal

dependencies of the input data. The state of the RNN is reset between processing two

different, independent sequences (such as two different sentences). Thus, in the design of

our system, we use an RNN model to support sequence prediction.

Nevertheless, before feeding our sequence of raw words to the RNN layer, each word

must be represented by a vector of integers. A popular and powerful way to associate a

vector with a word is the use of dense word vectors, also called word embeddings. Whereas

53



3.3. Word-Based Architecture

the vectors obtained through one-hot encoding are binary, sparse (mostly made of zeros),

and high-dimensional (same dimensionality as the number of words in the vocabulary),

word embeddings are low-dimensional floating-point vectors. Unlike the word vectors

obtained via one-hot encoding, word embeddings are learned from data [7]. We use word-

embedding techniques because they are low-dimensional and compact. In an embedding,

words are represented by dense vectors where a vector represents the projection of the

word into a continuous vector space. The position of a word within the vector space is

learned from the text. In our work, we used an embedding layer at the beginning of the

neural network. It is initialized with random weights and will learn an embedding for all

of the words in the training dataset.

Afterward, the embedded sequence of words is fed into an RNN layer that iterates over

the words of a sequence, while maintaining an internal state that encodes information

about the previous words. The output of the RNN layer contains a single vector per

sample. This vector is the last’s RNN cell output containing information about the entire

input sequence. It is sometimes useful to stack several recurrent layers one after the

other in order to increase the representational power of a network [7]. However, in our

experimentation It did not improve the system performance.

The RNN layer is followed by a fully connected layer and softmax activation function,

which will determine the probability for each sequence. In the literature, It is deprecated

to use softmax activation function for classification where the number of classes is large

(e.g many thousand). It is recommended to use the variant of the softmax activation

function called the hierarchical softmax activation function. This variant decomposes the

labels into a tree structure, and the softmax classifier is trained at each node of the tree

to direct the branching for classification [17]. However, this is not used in our work for

implementation reasons and will be considered for future works.

Fig. 3.8 shows how the layers are overlapped in our model. More details about the

parametrization are given in the next chapter.

54



3.4. Sequence-Based Architecture

Figure 3.8: Architecture of the RNN model

3.4 Sequence-Based Architecture

This second architecture consists of the following stages, as shown in Fig. 3.9:

• Preparation: As in the word-based architecture, we use CSI measurements, then we

have to go through a preprocessing step, which is similar to the one seen above, thus

it is not described in this section. Instead, we prepare CSI sequences that reflect a

sentence expressing the desired command.

• Sequence-learning: At this stage, we use a sequence of preprocessed CSI measure-

ments to directly predict the desired action. For this, we use a Convolutional Recur-

rent Neural Network, which is described in the following section.

The particularity of this second method is that it uses a single-step architecture, i.e.

the preprocessed CSI measurements go through a single deep learning model to predict

the desired action.

55



3.4. Sequence-Based Architecture

Figure 3.9: Sequence-based architecture overview

3.4.1 Preparation

The dataset on which we rely in our work is composed of preprocessed CSI measure-

ments segmented word by word. Hence, a similarity with the word-based architecture,

we generated a set of sentences with the words proposed in the dataset. Subsequently,

we transformed the words of each sentence by their proper CSI value. The result of this

operation is a dataset of CSI sequences representing the sentences and are labeled by

the desired commands. More details about this dataset are given in the implementation

section.

3.4.2 Sequence-learning

Although the RNN layer has proven powerful for handling temporal correlation, it contains

too much redundancy for spatial data. To address this problem, we propose an extension

of the RNN which has convolutional structures in both the input-to-state and state-to-

state transitions. Thus, in the sequence-based architecture, we use a combination of

these two prominent neural networks CNN and RNN to achieve a one-step sign language

sequence recognition.

The Convolutional Recurrent Neural Network (CRNN) is similar to an RNN but has

convolutional structures in both the input-to-state and state-to-state transitions. A dis-

tinguishing feature of this design is that all the inputs X1, . . . , Xt, cell outputs Y1, . . . , Yt,

hidden states H1, . . . , Ht (and gates it, ft, ot in case of Convolutional LSTM) are 3D ten-

56



3.4. Sequence-Based Architecture

sors whose last two dimensions are spatial dimensions (rows and columns) [72]. The key

equations of Convolutional LSTM (ConvLSTM) are shown below, where ’∗’ denotes the

convolution operator and
⊙

denotes the Hadamard product:

I<t> = σ
(
x<t> ∗Wxi +H<t−1> ∗Whi + C<t−1>

⊙
Wci + bi

)
(3.4)

F<t> = σ
(
x<t> ∗Wxf +H<t−1> ∗Whf + C<t−1>

⊙
Wcf + bf

)
(3.5)

O<t> = σ
(
x<t> ∗Wxo +H<t−1> ∗Who + C<t−1>

⊙
Wco + bo

)
(3.6)

C̃<t> = tanh
(
x<t> ∗Wxc +H<t−1> ∗Whc + bc

)
) (3.7)

C<t> = F<t>
⊙

C<t−1> + I<t>
⊙

C̃<t> (3.8)

H<t> = O<t>
⊙

tanh
(
C<t>

)
(3.9)

Once the data reshaped, it is fed to a deep learning model composed of a CRNN layer.

The output of this layer is a combination of convolution and an RNN output, i.e. a 3D

tensor that is the last CRNN cell output containing information about the entire input

sequence. This layer is followed by a batch normalization to normalize the output of the

previous layer at each batch, ReLU activation function, pooling, fully connected layer and

softmax function to determine the probability for each sequence.

Fig. 3.10 shows how layers are structured in this model. More details about the

parametrization are given in the next chapter.

Figure 3.10: Architecture of the CRNN model

57



3.5. Conclusion

3.5 Conclusion

In this chapter, we reviewed two different architectures that translate sign language into

smart home actions. The first one is done in two steps using a CNN model to perform

word-level recognition from the CSI measurements. A sequence of these words is then fed

to an RNN model that performs sentence-level recognition to predict the desired action.

As for sequence-based architecture, it is done in a single step. We use a CRNN model

that, through a sequence of CSI measurements, can directly predict the desired action. In

the next chapter, we describe the details of the implementation of these two architectures

and evaluate their performance.

58



Chapter 4

Implementation & Evaluation

4.1 Introduction

This chapter covers the details of the implementation of the two architectures proposed in

the previous chapter, including the presentation of the datasets and the tools used as well

as the experimentation settings. It also covers performance evaluation. This through the

evaluation of the system on different datasets, as well as the study of the deep learning

models parameters. We also present a comparison between the two proposed architectures

and work present in the literature. We conclude with an overview of the deployment.

4.2 Implementation

This section describes different implementation stages. It covers the SignFi [60] dataset

and the used libraries. We justify the choice of the used framework for the development

of the deep learning models with a comparative study between the different existing

frameworks. Afterward, more details about the deep learning networks present in our

system are given.

4.2.1 SignFi Dataset

As mentioned in the previous section, although CSI is included in WiFi since IEEE

802.11n, not all standard WiFi cards support it. The most commonly used tool to collect

CSI measurements in the literature is the Linux 802.11n CSI Tool [61]. It is built on the

Intel WiFi Wireless Link 5300 802.11n MIMO radios, using a custom modified firmware

59



4.2. Implementation

and open-source Linux wireless drivers. Thus, the tool relies on the custom firmware

image that only works on the IWL 5300 card. The present work uses CSI measurements

of the SignFi dataset [60], following ASL.

The authors of the SignFi dataset captured the raw CSI measurements for 276 signs

that are frequently used in daily life, with 20 and 10 instances for each gesture in the

laboratory (lab) and home environments, respectively. The SignFi dataset is the dataset

of choice in the present work, as it is the only dataset containing CSI traces with 276

gestures and a significant number of gesture samples with high clarity in data acquisition.

There are 8280 gesture instances, 5520 from the lab, and 2760 from the home environment,

for 276 sign gestures in total from 1 user. Tab. 4.1 summarizes the 276 sign words used

in our experiments divided into different categories. According to the authors, these sign

words are the essential words for ASL beginners since they are not composed of more

than three signs per word.

Common Animals Colors Descriptions Family Food Home People Questions School Time Others Total

16 15 12 32 31 54 17 13 6 26 31 23 276

Table 4.1: SignFi dataset summary

CSI traces are measured in both lab and home environments. The dimension of the lab

and home is 13m× 12m and 4.11m× 3.86m, respectively. The lab has more surrounding

objects, leading to a more complex multi-path environment than the home. The distance

between the transmitter and receiver is 230cm and 130cm, respectively, for the lab and

home environment. For the home environment, the transmit antenna array is orthogonal

to the direction from the transmitter to the receiver. For the lab environment, the angle

between the transmit antenna array and the direct path is about 40 degrees. Fig. 4.1

shows the floor plan and measurement settings for the lab and home environments.

60



4.2. Implementation

(a) Home environment (b) Lab environment

Figure 4.1: Floor plan and measurement settings of the lab and home environments from

SignFi [60]

The WiFi transmitter and receiver are two laptops with Intel WiFi Link 5300 installed.

They both operate at 5GHz, and the channel width is 20MHz. Note that the 802.11n CSI

tool [61] only provides CSI values of 30 sub-carriers even though a 20MHz WiFi channel

has 52 sub-carriers. The transmitter has three external antennas, and the receiver has

one internal antenna. The transmitting power is fixed at 15dBm. All experiments are

conducted in the presence of other WiFi signals.

4.2.2 Sentences Dataset

The SignFi dataset [60] consists of 276 ASL words; each of these words is segmented

individually and is associated with a set of CSI instances. The CNN model presented in the

previous chapter manages the prediction of a word using the received CSI measurements.

Now, to be able to execute commands on connected objects, we need sentences. For this,

we rely on a set of words present in the previous dataset to generate sentences. We select

these words based on our context, namely home automation.

Regular conversations tend to follow Subject-Verb-Object or Subject-Verb order. Al-

though the word order in ASL and English can be similar, ASL does not use the “to be”

verb (am, is, are, was, were) or anything to indicate the state of “being.” Nor does it use

61



4.2. Implementation

articles (a, an, the). The following table summarizes the selected words from the SignFi

dataset and groups them in four different categories.

Category Words

Direct Door, Shower, Air Conditioner, Fan, Radio, TV, Refrigerator, Win-

dow, Washer, Computer, Aunt, Boyfriend, Brother, Cousin(Female),

Cousin(Male), Daughter, Uncle, Wife, Father, Girlfriend, Granddaughter,

Grandfather, Grandmother, Grandson, Husband, Mother, Nephew, Niece,

Roommate, Sister, Son.

Indirect Apartment, Bath, Room, Home, House, Kitchen, Room, Garage, Toilet.

Verb Finish, Open, Close, Continue, Play, Read, Start, Up, Down, Stop, Tele-

phone, Clean, Next, Previous, Help.

Time Afternoon, Always, Friday, Hour, Midnight, Minute, Monday, Morning,

Never, Night/Evening, Noon, Now, Saturday, Sunday, Thursday, Today,

Tomorrow, Tuesday, Wednesday.

Table 4.2: The selected ASL words

After combining these words, we managed to build 16,287 sentences made up of at

most four words, from which 2,421 classes were raised. These classes are the different

commands that our system can handle. For instance, “Play Radio” and “Start Radio”

are considered as the same class.

4.2.3 Tools & Libraries

To develop our system, we used the Python programming language. Python libraries

include several features that allow the user to evaluate and analyze datasets and produce

effective results. The Python programming language has become a robust and powerful

tool for parsing data using these libraries. We use several libraries for the manipulation,

the organization, and visualization of data. We rely on the following tools and libraries

in our implementation:

NumPy

NumPy [73] is a Python library, which supports large multidimensional arrays and matri-

ces, as well as an extensive collection of high-level mathematical functions for operating

62



4.2. Implementation

on these arrays. It contains, among others: a powerful N-dimensional matrix object,

sophisticated (diffusion) functions, a useful linear algebra, a Fourier transform, and ran-

dom number capacities. NumPy is distributed under a liberal BSD (Berkeley Software

Distribution License) license. It is developed and maintained publicly on GitHub.

Matplotlib

Matplotlib [74] is a Python library intended to plot and visualize data in the form of

graphs. It can be combined with the python scientific computing libraries NumPy and

SciPy [75]. Matplotlib is freely distributed under a BSD license.

Scikit-learn

Scikit-learn [76] (also known as Sklearn) is a free Python library for machine learning;

it features various supervised and unsupervised learning algorithms and also modules for

data preprocessing and model evaluation. Scikit-learn is distributed under the 3-Clause

BSD license and is currently maintained by a team of volunteers.

Pandas

Pandas [77] is an open-source, BSD-licensed library. It is used for data manipulation

based on the NumPy data structure. It also provides various functions in the analysis of

finance, statistics, social sciences. This library offers tools for transforming raw data into

useful data sets. It also provides several functions to access, index, merge, or group data

easily.

Google Colab

Google colab is a Google research project created to help spread machine learning educa-

tion and research. It offers a notebook to write and execute Python code in the browser,

with no configuration required, free access to GPUs, and easy sharing. Colab makes the

task easier since all the most commonly used libraries are installed and updated, besides,

it is composed of an Intel Xeon processor with two cores @2.3 GHz and 12 GB RAM. It is

equipped with an NVIDIA Tesla K80 (GK210 chipset), 12 GB RAM, 2496 CUDA cores

@560 MHz. This configuration allows developing and training neural networks faster.

Deep learning frameworks

A deep learning framework is an interface, library, or a tool that allows us to build deep

learning models more easily and quickly, without getting into the details of underlying

63



4.2. Implementation

algorithms. They provide a clear and concise way of defining models using a collection

of pre-built and optimized components. Below are some of the critical features of a deep

learning framework:

• Optimized for performance.

• Easy to understand and code.

• Good community support.

• Parallelize the processes to reduce computations.

• Automatically compute gradients.

In the following, we present three of the most popular deep learning frameworks,

namely TensorFlow, Keras, and PyTorch. Afterward, we conduct a comparative study

between the three to choose which one suits our methodology the most.

TensorFlow

TensorFlow [78] is a software framework for numerical computations based on dataflow

graphs. It is designed primarily as an interface for expressing and implementing machine

learning algorithms, chief among them deep neural networks. It has a comprehensive,

flexible ecosystem of tools, libraries, and community resources that lets researchers push

the state-of-the-art in ML, and developers quickly build and deploy ML-powered appli-

cations. TensorFlow was designed with portability in mind, enabling these computation

graphs to be executed across a wide variety of environments and hardware platforms. It

provides stable Python and C++ Application Programming Interfaces (APIs), as well as

non-guaranteed backward compatible API for other languages. Pure TensorFlow, how-

ever, abstracts computational graph-building in a way that may seem both verbose and

not-explicit. Although TensorFlow is flexible and portable, it remains difficult to imple-

ment since it is low-level and requires lengthy code.

Keras

Keras [79] is a deep-learning framework for Python that provides a convenient way to

define and train almost any kind of deep-learning model. Keras was initially developed

for researchers to enable fast experimentation. It is a model-level library, providing high-

level building blocks for developing deep-learning models. It does not handle low-level

operations such as tensor manipulation and differentiation. Instead, it relies on a spe-

64



4.2. Implementation

cialized, well-optimized tensor library to do so, serving as the backend engine of Keras.

Rather than choosing a single tensor library and tying the implementation of Keras to

that library, Keras handles the problem in a modular way; thus, several different backend

engines can be plugged seamlessly into Keras. Currently, the three existing backend im-

plementations are the TensorFlow backend, the Theano [80] backend, and the Microsoft

Cognitive Toolkit (CNTK) backend [81][7]. The Keras ease of implementation and ab-

straction of the deep learning complexities comes at the price of flexibility. Keras is indeed

more readable and concise than other frameworks, allowing to build deep learning models

faster while skipping the implementation details. Not considering these details, however,

limits the opportunities for exploration of the inner workings of each computational block

in the deep learning pipeline, which makes it difficult for debugging.

PyTorch

PyTorch [82] is an open-source offering from Facebook that facilitates writing deep learn-

ing code in Python. It has two lineages. First, it derives many features and concepts from

Torch [83], which was a Lua-based neural network library that dates back to 2002. Its

other major parent is Chainer [84], created in Japan in 2015. Chainer was one of the first

neural network libraries to offer an eager approach to differentiation instead of defining

static graphs, allowing for greater flexibility in the way networks are created, trained, and

operated. The combination of the Torch legacy plus the ideas from Chainer has made

PyTorch popular over the past couple of years. PyTorch offers a low-level environment

for experimentation, giving the user more freedom to write custom layers and look under

the hood of numerical optimization tasks.

Comparison between the frameworks

We propose to conduct a comparative study between the early presented deep learning

frameworks namely TensorFlow, Keras and PyTorch. Our evaluation is based on [85]

and our tests. In the following of this section, we study each of the frameworks using

comparison factors that we selected during our investigations.

• Ease of use

Keras has a simple architecture compared to TensorFlow and PyTorch. It is readable,

concise and the best choice for prototyping. Tensorflow on the other hand is not easy to

use and requires a lot of raw code. As for PyTorch, it has a complex architecture and less

65



4.2. Implementation

readable than Keras.

• Flexibility

The ease of use comes at the price of flexibility. That is why Keras offers less flexibility

than other deep learning frameworks. It might be too high-level and not always easy to

customize. On the other hand, PyTorch and TensorFlow offer a comparatively lower-level

environment, giving the user more freedom to write custom layers and look under the

hood of numerical optimization tasks.

• Debugging

In Keras, there is usually less frequent need to debug simple networks. However, in the

case of TensorFlow, it is difficult to perform debugging. PyTorch on the other hand

has better debugging capabilities as compared to the other two. Nevertheless, Tensor-

Flow offers better visualization using the TensorBoard toolkit, which allows developers

to debug better and track the training process. Pytorch, however, provides only limited

visualization.

• Portability

PyTorch saves models in pickles that implement binary protocols for serializing and de-

serializing a Python object structure, which are Python-based and not portable. As

for TensorFlow and Keras, the easiest way of deploying models is by using TensorFlow

Serving, a flexible, high-performance serving system for machine learning models, designed

for production environments.

• Performance

The performance is comparatively slower in Keras, while TensorFlow and PyTorch provide

a high level of performance. Nevertheless, differences in speed benchmarks are not the

main criterion for choosing a framework since performance obstacles are caused by failed

experiments, unoptimized networks, and data loading; not by the raw framework speed.

• Community

Currently, Keras is the most popular deep learning framework. Followed by TensorFlow

and PyTorch, it has gained immense popularity due to its simplicity when compared to the

other two. Although of the three main frameworks, PyTorch is the least popular, trends

show that this may change soon. The Gradient [86] published a blog showing dramatically

the advancement and acceptance of PyTorch in the scientific community (based on the

66



4.2. Implementation

number of papers implemented at major conferences (CVPR, ICRL, ICML, NIPS, ACL,

ICCV, etc.). As you can see from Fig. 4.2, In 2018, PyTorch was obviously a minority,

although at major conferences it was disproportionately preferred by researchers in 2019.

Figure 4.2: Pytorch vs TensorFlow: Number of Unique Mentions

An important point to consider is that since TensorFlow 2.0, Keras is integrated as a

sub-module thus can be accessed directly via the TensorFlow library. This allows putting

pure TensorFlow code into Keras models and benefiting from the best of both frame-

works. Therefore, in our implementation, we leverage the flexibility and performance of

TensorFlow and the ease of use of Keras by simply using the TensorFlow library.

4.2.4 Experimentation

Word-level recognition

Once the preprocessed CSI measurements are extracted from the SignFi [60] dataset as

an array of multiple values, we change the data shape, so it fits the CNN model. The size

of each CSI matrix is (3, 30). There are 200 CSI samples for each sign gesture, so the

size of the CSI trace for each sign gesture is (3, 30, 200). First, we extract the amplitude

and phase, each with a size of (3, 30, 200) from the CSI values. Therefore, they are

combined and reshaped to a tensor of (200, 60, 3). As for the labels, the dataset provides

276 different classes. We use one-hot encoding to represent the categorical variables that

return a binary matrix representation of the classes.

67



4.2. Implementation

a) Model architecture

We implemented the CNN network responsible for recognizing the words as a sequence

of multiple layers. In the following, we describe the sequence of layers used in our imple-

mentation using Keras by mentioning the parameters used in each of them:

Convolutional layer

The Keras Conv2D class creates a convolution kernel that is convolved with the input

layer to produce a tensor of outputs. The first required Conv2D parameter is the number

of filters that the convolutional layer learns. After a series of tests, we found that 16 filters

are the best fit for our model. The second required parameter is the filter size, a 2-tuple

specifying the width and height of the 2D convolution window. In our case, we use filters

of size (5 × 5). Afterward, since it is the first layer in our model, we explicitly specify

our input shape so that the CNN architecture has somewhere to start, then all the other

shapes are calculated automatically based on the units and particularities of each layer.

The input shape follows the shape of our data excluding the sample axis namely (200, 60,

3).

Batch normalization layer

The batch normalization layer normalizes the activations of the previous layer at each

batch, i.e., applies a transformation that maintains the mean activation close to 0 and the

activation standard deviation close to 1. BN can have a dramatic effect on optimization

performance, especially for convolutional networks and networks with sigmoidal nonlin-

earities [19]. We preserve the default parameters’ values in our model provided by Keras

and add the BN layer before the activation layer.

Rectified Linear Unit layer

ReLU layer provides fast and practical training for deep neural networks since its acti-

vation function is easy to compute and optimize. It has been shown more effective than

traditional activations, such as logistic sigmoid and hyperbolic tangent, and is widely used

in CNNs [19].

Average Pooling layer

An average pooling layer involves calculating the average for each patch of the feature

map. In our case, we use a pool size of (3× 3). It means that each (3× 3) square of the

feature map is downsampled to the average value in the square.

68



4.2. Implementation

Fully connected layer

Fully connected layers are defined using the Dense class in Keras. We can specify the

number of units or nodes in the layer as the first argument. The units of each layer will

define the output shape (i.e., the shape of the tensor that is produced by the layer, and

that will be the input of the next layer). In our case, since it is the last layer, the number

of units is the number of gestures to classify, i.e., 276.

Softmax layer

The output layer typically uses either a softmax or sigmoid activation function for classifi-

cation. The softmax activation function returns the probability distribution over mutually

exclusive output classes. Since we deal with a multi-class classification task, we use a soft-

max function on the top of the neural network. Activations in Keras, can either be used

through an activation layer or the activation argument supported by all forward layers.

We preferred to dedicate a layer to activation functions to make the model clearer and

represented as a piece of blocks, as shown in Fig. 4.3.

Figure 4.3: The model’s Keras implementation

b) Model training

Once the model architecture is defined, the learning process is configured in the compi-

lation step, where we specify the optimizer and loss function that the model should use,

as well as the metrics to monitor during training. The loss function is used to find error

or deviation in the learning process. Keras provides a set of loss functions in the losses

module. The best loss function to use in our case is categorical cross-entropy. It measures

the distance between two probability distributions. Here, between the probability distri-

69



4.2. Implementation

bution output by the network and the exact distribution of the labels. By minimizing the

distance between these two distributions, the network is trained to output value as close

as possible to the actual labels.

On the other hand, optimization provides a way to minimize the loss function for deep

learning. A necessary process to optimize the input weights by comparing the prediction

and the loss function. In our model, we use Stochastic Gradient Descent (SGD). The

strength of SGD is that it is a popular algorithm for training neural networks due to its

robustness in the face of noisy updates [17]. Its implementation is straightforward with

Keras using the optimizer sub-module. By default the learning rate is set to 0.01, which

is suitable for our model. As for the metrics, since it is a classification task, we use the

accuracy. It creates two local variables, total and count, that are used to compute the

frequency with which the predictions match the labels.

After compiling the model, we specify the number of epochs, which represents the number

of iterations over the training data, and the batch size, which is the number of samples

processed before the model is updated. In our case, the network will start to iterate on the

training data in a batch size of 10 samples and 10 epochs. At each iteration, the network

will compute the gradients of the weights concerning the loss on the batch, and update

the weights accordingly. The following figure summarizes the CNN model architecture as

well as the parametrization.

Figure 4.4: Architecture and parameter settings of the CNN model

70



4.2. Implementation

Sentence-level recognition

As previously mentioned, sentence-level recognition is considered as an NLP task. Giving

a set of sentences labeled in different classes (which represent the commands), we need

to build a model capable of determining the desired command from them. Before feeding

our raw sentences to an ML model, we first go through a preprocessing stage. It consists

in making our data edible for any ML model, namely digital data. In our implementation,

we pass our sentences through a Tokenizer. Tokenization is a way of separating a piece

of text into smaller units called tokens. Here, tokens can be either words, characters,

or subwords. We implement tokenization with Keras using the Tokenizer class. Once

it fits our sentences, each word is given an index. Therefore, we just have to transform

our sentences using these indexes. After that, since the recurrent neural network expects

sequences with the same length, we have to map the sentences to the same length. For

this, we use a Keras preprocessing method that pads sequences to the same length that

is four. Every sequence with a length lower than four is completed with zeros, and the

RNN subsequently understands that these values are irrelevant. As for the labels, we

use one-hot encoding to represent the categorical variables that return a binary matrix

representation of the 2,421 classes.

a) Model architecture

Embedding layer

Keras offers an Embedding layer that can be used for neural networks on text data. It

requires that the input data be integer, so each word is represented by a unique integer.

This data preparation step has been performed using the Tokenizer. The Embedding layer

is initialized with random weights and will learn an embedding for all of the words in the

training dataset. The Embedding layer is defined as the first hidden layer of a network.

It must specify three arguments, namely the input and output dimensions and the input

length. The input dimension is the size of our vocabulary, which is 74. The output

dimension is the size of the vector space in which words will be embedded. After a series

of tests, we set the value to 32. As for the input length, it is the length of input sequences

that is 4. The output of the Embedding layer is a 2D vector with one embedding for each

word in the input sequence.

71



4.2. Implementation

Recurrent layer

There are three built-in RNN layers in Keras, namely SimpleRNN, GRU, and LSTM.

All recurrent layers follow the same procedure and accept the same keyword arguments.

Nevertheless, after testing the three layers on our data, the LSTM has lower training time

and better accuracy. Thus, we use LSTM cells in our architecture. The only arguments

that we are interested in are the number of units and the dropout. We empirically set

the number of units to 512 that represents the dimensionality of the output space. As

for the dropout rate, it sets input units to 0 with a frequency of rate (a float between

0 and 1; a fraction of the input units to drop) at each step during training time, which

helps prevent overfitting. We set it in our case to 0.1. The default activation function

for LSTM layers is Tanh and Sigmoid as the gating function. We set these arguments to

their default values as well as the rest of the parameters.

Fully connected & Softmax layers

A fully connected and a Softmax layer follow the recurrent layer. We set the number of

classes as the number of units i.e. 2421 using the dense class. Note that it is deprecated

to use softmax activation function for a high number of classes. In such cases, it is more

recommended to use hierarchical softmax or negative sampling [17]. Since Keras does not

support it, we will consider it for future work.

b) Model training

Similarly to the CNN network, we use categorical cross-entropy loss function and accu-

racy metric since we deal with a multi-class classification task. However, we use Adam

optimizer with 3e−4 learning rate based on our tests and because Adam combines features

of many optimization algorithms that is why it is currently recommended as the default

method to use [20]. On the other hand, we set the batch size and epochs to 10 and 10

respectively for training. Fig. 4.5 summarizes the LSTM model architecture as well as

the parametrization.

72



4.2. Implementation

Figure 4.5: Architecture and parameter settings of the LSTM model

Sequence-learning algorithm

In the sequence-based architecture, the system directly uses a sequence of CSI measure-

ments to predict the desired action. These sequences are constructed using the sentences

dataset mentioned in Sec. 4.2.2 where each word has been replaced by its own CSI mea-

surements. Once done, our dataset consists of 16, 287 × 20 = 325, 740 CSI sequences

(Numberofsentences × numberofinstancesperword) with a length ranging from 1 to 4

representing 2,421 command classes. However, the hardware used in our implementation

does not allow us to use all of these sequences. Therefore, only sequences with a length

ranging from 1 to 3 are used. This reduces the number of sequences to 17,920, and the

number of classes to only 180. Thereafter, to perform the sequence recognition, we rely in

our system on a convolutional recurrent neural network model. It expects the sequences

to have the same length, thus we use the Keras preprocessing method that pads sequences

to the same length that is three.

a) Model architecture

The model input is a CSI sequence with the following format (batch, time, rows, cols,

channels). Limiting the sequences by 3 per sample and the CSI tensor format (200,

60, 3), the input final format is (batch, 3, 200, 60, 3). The architecture starts with a

Convolutional LSTM (ConvLSTM) layer. It is similar to an LSTM layer, but the input

transformations and recurrent transformations are both convolutional. The ConvLSTM

class on Keras contains a wide range of attributes. The ones that interest us most are the

number of filters, filter size and the recurrent activation function. The number of filters

73



4.2. Implementation

and the filter size are the same parameters seen in the convolutional layer, we set their

values to 8 and (3× 3), respectively. As for the recurrent activation function, by default

Keras uses the hard-sigmoid function that is defined as:

hardSig(x) = max(min(0.25x+ 0.5, 1), 0) (4.1)

The ConvLSTM layer is followed by a batch normalization layer, a ReLU activation func-

tion and an average pooling layer with (3×3) pool size. We used ReLU over Tanh because

ReLU is not computationally expensive and converges faster than Tanh. Following this

block of layers comes the Flatten layer to convert the data shape to 1D vector and the

fully connected layer with 180 units.

b) Model training

Once the architecture of our model is in place, we specify the training options, namely the

loss function, the metrics and the optimizer. The loss function and metrics are categorical

cross entropy and accuracy since it is a multi-classification task. As for the optimizer,

according to our tests, the SGD optimizer fits well our model in terms of accuracy and

training time. We also set the number of epochs and batch size to 10. The following

figure shows the structure of our ConvLSTM model with hyperparameters.

Figure 4.6: ConvLSTM structure with hyperparameters

74



4.3. Evaluation

4.3 Evaluation

In this section, we present the performance evaluation of the proposed system. This

through the evaluation of the system on different datasets, the comparison with other

systems proposed in the literature and other architectures that suit our system, as well

as the parametric study of the two implemented models.

4.3.1 Recognition Accuracy

Word-level

In our work, we collect the CSI measurements from the datasets proposed by SignFi

[60]. The latter measurements are recorded in different environments and experimentation

settings, which led to forming three distinct datasets namely in a laboratory environment,

in a home environment, and a dataset recorded by five different users. In this section,

we propose to evaluate our system performance on the three datasets as well as on the

combination of lab and home environments. The SignFi dataset provides a limited amount

of data for the model to learn general representations. One of the strategies to overcome

this situation is to use k-Fold cross-validation. Cross-validation is a resampling procedure

used to evaluate machine learning models on a limited data sample. The procedure uses

the scoring provided in the given estimator (accuracy in our case) and has a parameter

called k that refers to the number of groups that a given data sample is split to. As such,

the procedure is called k-fold cross-validation. In our implementation, we used 5-fold

cross-validation that splits the dataset into five folds of approximately equal size. The

first fold is treated as a validation set while the remaining are training set. The measure

reported by cross-validation is the average of the accuracies computed in the loop. This

approach can be computationally expensive, but does not waste too much data, which is

a major advantage in problems where the number of samples is very small.

a) Laboratory Environment

The laboratory environment dataset includes 5,520 instances of 276 gestures recorded by

only one user. The distance between the transmitter and receiver is 230cm and the angle

between the transmit antenna array and the direct path is about 40 degrees. Compared to

the home environment the lab has more surrounding objects, leading to a more complex

multi-path environment. After running a 5-fold cross validation on the 5,520 instances,

75



4.3. Evaluation

the average recognition accuracy resulted is 99, 71% for the 276 gestures. As for the

training time, using Google Colab hardware, it lasts 29 seconds. The following figure

shows the accuracy and loss curves in the function of the epochs. We can notice that the

model converges from the 3rd epoch.

(a) Model accuracy vs. epochs (b) Model loss vs. epochs

Figure 4.7: Laboratory environment performance evaluation

b) Home environment

The home environment includes 2,760 instances for 276 gestures recorded by the same

user as the lab environment. The distance between the transmitter and receiver is 130cm

and the transmit antenna array is orthogonal to the direction from the transmitter to

the receiver. After running 5-fold cross-validation on the 2,760 instances, the average

recognition accuracy resulted is 99, 49% for the 276 gestures and training time of 11

seconds. The following figure shows the accuracy and loss curves vs. the number of

epochs. We also notice here that the model converges from the 3rd epoch although the

number of instances is half that of the laboratory dataset and the experimentation settings

are different. The home environment should have shown the same results as the lab

environment or better if the number of instances was the same since the experimentation

settings are more favorable.

76



4.3. Evaluation

(a) Model accuracy vs. epochs (b) Model loss vs. epochs

Figure 4.8: Home environment performance evaluation

c) Home and lab combination

The combination of the last two datasets gives 8,280 instances for 276 gestures, all recorded

by the same user. The major differences of these two environments are (1) dimension

of the room, (2) distance between the transmitter and receiver, (3) angle between the

transmit antenna array and the direct path, (4) multi-path environments, and (5) number

of instances. After running 5-fold cross-validation on the 8,280 instances, the average

recognition accuracy resulted is 99, 09% for the 276 gestures and 31 seconds of training.

The following figure shows the accuracy and loss curves vs. the epochs. The combination

of environments is an important factor to consider in case there are several rooms in a

house and each has a different environment. Although we only use two environments in

our case, the results of our model show that the system remains robust.

77



4.3. Evaluation

(a) Model accuracy vs. epochs (b) Model loss vs. epochs

Figure 4.9: Home and lab combination performance evaluation

d) Multiple users

Another dataset in the laboratory environment is recorded, this time with 7,500 instances

for 150 gestures performed by five different users. Different users may have different ges-

ture durations and slightly different hand/finger movements for the same sign word. One

of the users has different experiment settings, such as laptop displacement, surrounding

objects, desk and chair arrangements, etc., even though they are in the same lab envi-

ronment. During our evaluation, we first tested our model performance on the four users

that have the same experiment settings. The recognition accuracy obtained after running

5-fold cross-validation is 92%. However, when adding the user records with different set-

tings, the recognition accuracy collapses to 82% and training time of 26 seconds. This

difference shows that experimentation settings considerably influence the performance of

the system. Nevertheless, as shown in the following figure, there is a gap between training

and testing accuracies. We conclude that the model is overfitting in this situation. More

data would help to prevent overfitting and allow the model to generalize better since 1,500

instances/user is not enough.

78



4.3. Evaluation

(a) Model accuracy vs. epochs (b) Model loss vs. epochs

Figure 4.10: Multiple users scenario performance evaluation

Sentence-level

As for the sentence level recognition, the nature of the datasets and the experimental pa-

rameters are independent of the performance of the model. Since in our implementation,

we use the words present in the datasets to generate sentences. As explained in the previ-

ous chapter, we have selected 74 words that can be used in the field of home automation.

With these words, we managed to generate a set of 16,287 sentences through grammar.

From these sentences, we can distinguish 2421 classes. We evaluated the performance

of our LSTM model using 5-fold cross-validation. Despite a large number of classes, the

model has an average accuracy of 99.08% and a training time of 114 seconds. Fig. 4.11

illustrates the evolution of the accuracy and loss curves on the training as well as on the

testing sets through the epochs. We notice from this figure that the model converges

starting from 7th epoch using the LSTM.

79



4.3. Evaluation

(a) Model accuracy vs. epochs (b) Model loss vs. epochs

Figure 4.11: Sentence-level performance evaluation

Sequence recognition

To build the CSI sequences, we use the measurements from a single dataset, i.e. the labo-

ratory environment dataset. Note that for hardware performance reasons, only sequences

with a length ranging from 1 to 3 are used. This reduced the number of sequences to

17,920, and the number of classes to only 180. Therefore, 5-fold cross validation is used to

evaluate the performance of our model, and the ConvLSTM achieves an average accuracy

of 97.40% in training time of 480 seconds. Fig. 4.12 shows the accuracy and loss curves

on the training as well as on the testing sets through the epochs.

We would like to mention that the way we constructed the sequences is not recom-

mended. Because in practice, the measurements are received continuously and not manu-

ally segmented word by word as in the dataset that we use. Nevertheless, this method has

been proposed to show the efficiency of ConvLSTMs in the case of a CSI sequence, since

in future works we are considering building a set of CSI sequences expressing a sentence

made with ASL.

80



4.3. Evaluation

(a) Model accuracy vs. epochs (b) Model loss vs. epochs

Figure 4.12: ConvLSTM model evaluation

4.3.2 Parametric Study

During our work, we developed three distinct neural network models, the CNN interpret

CSI measurements and predict the sign made by the user. While the LSTM uses the words

generated by the CNN to predict the desired action by the user. As for the ConvLSTM, it

takes a CSI sequence to predict directly the desired action. To tune the hyper-parameters

that best suit our three models i.e. the best accuracy and training time, we used one of

the optimizers offered in the scikit-learn [76] library called Grid Search. Grid search is

a process that searches exhaustively through a manually specified subset of the hyper-

parameter space of the targeted model. In our case, we specified the number and size of

filters in the CNN and ConvLSTM layers, the pool size of the pooling layer as well as

the optimizer, the number of epochs and the batch size in the model’s hyper-parameter

subset. As for the LSTM, we specified the output dimension in the embedding layer, the

number of cells in the LSTM layer and the optimizer, the number of epochs, and the

batch size. Thus, the hyper-parameters selected in our implementation rely on the result

of the grid search, which computes the most optimal values.

On the other hand, the structure of the models and the selection of the layers have

a major importance in the optimization of the model. In our implementation, we relied

on the work of SignFi [60] as well as on the recommendations of deep learning pioneers

[7], [19], [18]. In this section, we discuss the contribution of some implemented layers

81



4.3. Evaluation

in model optimization. However the ConvLSTM model is not covered here since it has

almost the same layers as the CNN and they have the same impact.

CNN model

a) Batch normalization layer

Batch normalization can have a dramatic effect on optimization performance, especially

for convolutional networks [19]. Fig. 4.13 shows the impact of batch normalization on

the recognition accuracy in every used dataset. We can notice that BN has a consider-

able effect on the Laboratory + Home dataset. This can be explained by the different

experimentation settings of the samples that leads to a different range of values.

Figure 4.13: Batch normalization impact on the accuracy

b) Dropout layer

As a matter of testing, we tried to implement a dropout layer in our CNN architecture.

We placed this layer once between the pooling and flattening layers to apply its effect on

the convolutional region, and another time right after the fully connected layer with a

dropout rate of 0.25. Dropout mechanism is supposed to prevent overfitting and speed up

the training. However, in our case it had no impact on the unseen data accuracy or the

training time. In contrast to SignFi [60] that has seen its accuracy considerably increased

from 59% to 88% by using a dropout layer on the convolutional unit. Fig. 4.14 shows the

dropout layer impact on the recognition accuracy when applied on the Fully Connected

layer. We can notice that the model is underfit since there is a huge gap between the

testing and training curves.

82



4.3. Evaluation

Figure 4.14: Dropout impact on the FC layer

However, when the dropout is applied on the convolution region, we cannot notice an

impact on the recognition accuracy as shown in Fig. 4.15. The reason is that the batch

normalization reduces generalization error and allows dropout to be omitted, due to the

noise in the estimate of the statistics used to normalize each variable [19]. Further, it may

not be a good idea to use batch normalization and dropout in the same network.

Figure 4.15: Dropout impact on the convolutional unit

c) Average-pooling layer

The pooling layer reduces the number of connections to the following layers by down

sampling. It returns the average or the maximum of the inputs within a rectangular

region. The pooling size of our system is (3 × 3). Nevertheless, to know whether the

average or the maximum value suits our system the most, we tested both on our model.

83



4.3. Evaluation

The following figure shows the difference between using an average or a max-pooling layer.

There is not a difference as big as mentioned in SignFi [60] namely 10% lower when using

the max-pooling layer.

Figure 4.16: Average vs. Max pooling layer

LSTM model

RNN preserves information from inputs that has already passed through it using the

hidden state. During the implementation of our system, we tried different recurrent

layers to find the one that suits the most our system in terms of accuracy and training

time. These layers are RNN, LSTM and GRU. We found out that the three of them have

the same average accuracy namely 99, 12%, 98, 52% and 99, 08% for the RNN, LSTM and

the GRU, respectively. Nevertheless, they do not show the same performance regarding to

the training time. As shown in Fig. 4.17, the LSTM layer spend less time in the training

phase compared to the RNN and the GRU. The difference is only 25 seconds in our case

since we generated a small dataset, but in the case of a larger dataset, the difference in

training time could be greater.

84



4.3. Evaluation

(a) Models’ accuracy (b) Models’ Training time

Figure 4.17: Training time and average accuracy RNN vs. LSTM vs. GRU

4.3.3 Comparison Between the Two Methods

The following figures illustrate the process of the two architectures proposed in our solu-

tion.

(a) Word-based architecture (b) Sequence-based architecture

Figure 4.18: Proposed architectures’ process

The object of this section is to compare these two proposed architectures. We focus

our comparison on two main points that are the structure and the performance.

Structure

In the word-based architecture, the system uses word-for-word segmented CSI measure-

ments that go through two deep learning models to predict the desired action. While

the sequence-based architecture relies on CSI sequences representing a sentence in ASL

85



4.3. Evaluation

to predict the desired action. The fact that there are two models in one architecture is

a drawback in system deployment, as each model is deployed on a server with a separate

port. Therefore, we have to host both models, which can be expensive. On the other

hand, we consider in future works to build a dataset with CSI sequences reflecting ASL

signs, which would be more appropriate for our context i.e. home automation. In this

scenario, we would use an architecture that supports sequences.

Performance

The key performance indicators taken into consideration here are accuracy, training time

and the number of classes. The word-based architecture combines a CNN for the word level

recognition and an LSTM for the sentence level recognition. The CNN in the laboratory

environment has an average accuracy of 99.71% and a training time that lasts 29 seconds.

As for the LSTM, It achieves an average accuracy of 99.08% in training time of 114

seconds. Thus, the combination between them is an average accuracy of 99.35% and a

training time of 143 seconds to handle an amount of 2,421 classes. On the other hand, the

sequence-based architecture has only one model i.e. the ConvLSTM that in the laboratory

environment achieves an average accuracy of 97.40% and a training time of 480 seconds for

only 180 classes. Therefore, the word-based architecture outperforms the sequence-based.

4.3.4 Comparison With Other Works

In our work, we cited numerous works that aim at the recognition of sign language.

Nevertheless, most of them perform only isolated word recognition, not sentence level

translation. Thus, we make a comparison between our work and the current state of the

art using the CNN model for word level recognition and the combination of CNN LSTM

and ConvLSTM for sentence level recognition.

Word-level recognition

In the following table, we cite the word-level sign language recognition systems that we

mentioned in the state-of-the-art section.

86



4.3. Evaluation

Ref Approach Signal/Device
Num.

gestures

Recognition

algorithm

Recognition

Accuracy

[36]
Vision-based

Webcam 40
SVM, ANN,

kNN
92.23%

[37] Video camera 36 P2-DHMM 98%

[47]
Sensor-based

Accelerometers,

Gyroscopes
103 B-LSTM 99.2%

[50]

EMG,

Accelerometers,

Gyroscopes

70 CNN 92.4%

[60]
Wireless-based

CSI 276 CNN
98.91% (home),

98.01% (lab)

Our

design
CSI 276 CNN

99.49% (home),

99.71% (lab)

Table 4.3: Comparison of word-level SLR systems

Signs that vision-based systems rely on are alphanumerical in contrast to the other

approaches that use word signs. The reason is that the majority of alphanumerical signs

are static, however systems based on wireless and sensors are less sensitive to static

gestures but more to motions. However, in our case we are interested in words more than

the alphabet to express actions on connected objects. We also mentioned in Tab. 3 the

work that inspired us i.e. SignFi [60]. We achieved better results by tuning the CNN

model.

Sentence-level recognition

In the following table, we cite the word-level sign language recognition systems that we

mentioned in our thesis.

87



4.4. Deployement

Ref Approach Signal/Device
Num.

sentences

Max.

length

Recognition

algorithm

Recognition

Accuracy

[47]
Sensor-based

Accelerometers,

Gyroscopes
73 2 B-LSTM 98.96%

[50]

EMG,

Accelerometers,

Gyroscopes

100 8
CNN,

B-LSTM
93.1%

Word-

based Wireless-based
CSI 2421 4

CNN,

LSTM
99.35%

Sequence-

based
CSI 180 3 ConvLSTM 97.40%

Table 4.4: Comparison of Sentence-level SLR systems

In the literature, there is not much work done in recognizing sign language at the

sentence level. Especially with the wireless approach. Therefore, we compare our work

with two sensor-based references in sentence level SLR namely [47] and [50]. The first

thing we can notice is the number of sentences that each system handles. In [47], the

authors build their sentences manually using 103 common-used words. The same process

is followed in [50], the authors manually construct 100 sentences using 40 ASL words.

However, in our case, we automatically construct the sentences using 74 commonly used

ASL signs. It leads to having sentences that do not make sense, for instance, “READ

BATHROOM WINDOW”. Nevertheless, in our dataset even these meaningless sentences

are linked to classes that come closest to their meaning. As in the example just cited, the

desired action associated with the sentence would be to open the bathroom window. As

for the structure of the systems, [50] is similar to our word-based architecture (CNN +

LSTM) and [47] proceeds like our sequence-based architecture (ConvLSTM).

4.4 Deployement

To demonstrate our system we proceeded to the deployment of our models. As we do

not have the necessary equipment to receive CSI measurements. We designed a web

application that simulates a smart home environment, which includes different rooms,

88



4.4. Deployement

namely a bedroom, a kitchen, a living room, a bathroom and a garage. Each of these

rooms has objects that will interact with the system. The web application sends CSI

measurements as a request to the models, and in return, the model sends the prediction

of these measurements i.e. the desired action. Depending on the desired action received,

there will be an interaction in the user interface of the application. The CSI measurements

that the web application sends are from the SignFI dataset but unseen to the models.

The following figure illustrates the architecture of this web application.

Figure 4.19: Web application architecture

We deploy deep learning models using Tensorflow serving. It is a flexible, high-

performance serving system for machine learning models, designed for production en-

vironments. Once the models are deployed, we can send requests and receive responses

in JSON (JavaScript Object Notation) format. As for the application, we developed it

using Flask, which is a web application framework developed with Python. It is designed

to make getting started quick and easy. Fig. 4.20 shows screenshots taken from the web

application.

89



4.5. Conclusion

(a) Button to enter a sentence (b) Bathroom

(c) Kitchen (d) Living room

Figure 4.20: Screenshots from the web application

4.5 Conclusion

In this chapter, we discussed the implementation of the two architectures proposed in

this thesis. We started by presenting the datasets and the tools on which we rely in

our work. We used the pre-processed and word-by-word segmented CSI measurements

present in SignFi public dataset. We justified the choice of the deep learning framework

with a comparative study between Keras, TensorFlow and PyTorch. Thereafter, details

regarding the experimentation are mentioned, going through the configuration of deep

learning models and the discussion of their structure. The second part of this chapter

is dedicated to the evaluation where we present the performances of the two methods as

well as the impact of certain layers in the structure of models. Following this, we made a

comparison between the two architectures as well as the comparison with other works in

the literature.

90



GENERAL CONCLUSION

Context

This thesis was produced at the University of Saad dahleb Blida – Blida 1 – and the Re-

search Centre for Scientific and Technical Information – CERIST – The main goal of this

project is to conceive and realize a solution based on machine learning for sign language

recognition that allows the control of a smart home environment through gestures.

Solution

We proposed an solution that is based on channel state information measurements present

in the Wi-Fi signal, which reflect the gestures of sign language performed in the environ-

ment. We made two different architectures that meet the needs of our subject. The word-

based architecture processes the input measurements sign-by-sign with a CNN model, and

then performs sentence-level recognition with an LSTM model to predict the desired ac-

tion. As for the sequence-based architecture, it processes the measurements in sequences

with a ConvLSTM model to directly predict the desired action. This solution is imple-

mented using the Python programming language and the Keras deep learning framework

and is evaluated using the SignFi [60] public dataset, which offers pre-processed and

segmented word-by-word CSI measurements.

Contributions

The major contributions of our work are:

• Study of the current state of the art of gesture recognition (Definition of existing

approaches, analysis of existing work, establishing comparison criteria and synthesis).

• The proposition of a solution capable of classifying the users’ gestures into actions

executed by the smart home.

• The design of a solution for the processing of CSI sequences.

• A comparative study of several frameworks and systems implementation tools.

• Implementation and tuning of three deep learning models namely CNN, LSTM and

ConvLSTM with Keras.

91



• Deployment of deep learning models with Tensorflow serving and creation of an ap-

plication simulating the flow of the system in a Smart home environment with Flask.

Future perspectives

Our work opens a large amount of future perspectives. The most important of them are:

• Conceive our own dataset in a Smart home environment with a larger number of

instances, and segmented in a manner to perform sentence level recognition.

• Build a grammar free dataset, which means that the structure of the sentence has

not to follow a grammar.

• Conceive a CSI based system to translate Sign language not only for smart home

actions but rather to communicate. For example with virtual assistants like Siri or

Alexa.

92



Bibliography

[1] Deafness and hearing loss. url: https://www.who.int/news-room/fact-sheets/

detail/deafness-and-hearing-loss (visited on 02/19/2020).

[2] Mohamed Aktham Ahmed, Bilal Bahaa Zaidan, et al. “A review on systems-based

sensory gloves for sign language recognition state of the art between 2007 and 2017”.

In: Sensors 18.7 (2018). Publisher: Multidisciplinary Digital Publishing Institute,

p. 2208.

[3] Ming Jin Cheok, Zaid Omar, et al. “A review of hand gesture and sign language

recognition techniques”. In: International Journal of Machine Learning and Cyber-

netics 10.1 (2019). Publisher: Springer, pp. 131–153.

[4] Gary F Simons and Charles D Fennig. “Ethnologue: Languages of the World”. In:

Dallas, Texas: SIL International (). url: http://www.ethnologue.com..

[5] Henri Wittmann. “Classification linguistique des langues signées non vocalement”.

In: Revue québécoise de linguistique théorique et appliquée 10.1 (1991). Publisher:

Association québécoise de linguistique, pp. 215–288.

[6] Richard Harper. Inside the smart home. Springer Science & Business Media, 2006.

[7] F. Chollet. Deep Learning with Python. Manning Publications Company, 2017. isbn:

978-1-61729-443-3. url: https://books.google.dz/books?id=Yo3CAQAACAAJ.

[8] Djamel Djenouri, Roufaida Laidi, et al. “Machine learning for smart building appli-

cations: Review and taxonomy”. In: ACM Computing Surveys (CSUR) 52.2 (2019).

Publisher: ACM New York, NY, USA, pp. 1–36.

[9] Yuji Roh, Geon Heo, et al. “A survey on data collection for machine learning: a big

data-ai integration perspective”. In: IEEE Transactions on Knowledge and Data

Engineering (2019). Publisher: IEEE.

93



BIBLIOGRAPHY

[10] Jiawei Han and Micheline Kamber. Data mining: concepts and techniques. 3rd ed.

Burlington, MA: Elsevier, 2012. 703 pp. isbn: 978-0-12-381479-1.

[11] Salvador Garćıa, Julián Luengo, et al. Data preprocessing in data mining. Springer,

2015.

[12] Ethem Alpaydin. “Introduction to Machine Learning Ethem Alpaydin”. In: Intro-

duction to machine learning (2014).

[13] Trevor Hastie, Robert Tibshirani, et al. The elements of statistical learning: data

mining, inference, and prediction. Springer Science & Business Media, 2009.

[14] Leonard E Baum, Ted Petrie, et al. “A maximization technique occurring in the

statistical analysis of probabilistic functions of Markov chains”. In: The annals of

mathematical statistics 41.1 (1970), pp. 164–171.

[15] Arthur P Dempster, Nan M Laird, et al. “Maximum likelihood from incomplete

data via the EM algorithm”. In: Journal of the Royal Statistical Society: Series B

(Methodological) 39.1 (1977), pp. 1–22.

[16] Antal van den Bosch. “Hidden Markov Models”. In: Encyclopedia of Machine Learn-

ing. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010,

pp. 493–495. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_362.

url: https://doi.org/10.1007/978-0-387-30164-8_362.

[17] Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach. ”

O’Reilly Media, Inc.”, 2017.

[18] Yann LeCun, Yoshua Bengio, et al. “Deep learning”. In: nature 521.7553 (2015).

Publisher: Nature Publishing Group, pp. 436–444.

[19] Ian Goodfellow, Yoshua Bengio, et al. Deep learning. MIT press, 2016.

[20] Aston Zhang, Zachary C. Lipton, et al. Dive into Deep Learning. 2019.

[21] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997). Publisher: MIT Press, pp. 1735–1780.

[22] Yanmin Zhu, Zhibo Yang, et al. “Vision based hand gesture recognition”. In: 2013

International Conference on Service Sciences (ICSS). IEEE, 2013, pp. 260–265.

94



BIBLIOGRAPHY

[23] Z. Zhang. “Microsoft Kinect Sensor and Its Effect”. In: IEEE MultiMedia 19.2

(2012), pp. 4–10. issn: 1941-0166. doi: 10.1109/MMUL.2012.24.

[24] Siddharth S Rautaray and Anupam Agrawal. “Vision based hand gesture recog-

nition for human computer interaction: a survey”. In: Artificial intelligence review

43.1 (2015). Publisher: Springer, pp. 1–54.

[25] Tejashree P Salunke and SD Bharkad. “Power point control using hand gesture

recognition based on hog feature extraction and K-NN classification”. In: 2017 Inter-

national Conference on Computing Methodologies and Communication (ICCMC).

IEEE, 2017, pp. 1151–1155.

[26] Ananyaa Sharrma, Ayush Khandelwal, et al. “Vision based static hand gesture

recognition techniques”. In: 2017 International Conference on Communication and

Signal Processing (ICCSP). IEEE, 2017, pp. 0705–0709.

[27] Chenyang Li, Xin Zhang, et al. “Lpsnet: A novel log path signature feature based

hand gesture recognition framework”. In: Proceedings of the IEEE International

Conference on Computer Vision Workshops. 2017, pp. 631–639.

[28] Gongfa Li, Heng Tang, et al. “Hand gesture recognition based on convolution neural

network”. In: Cluster Computing 22.2 (2019). Publisher: Springer, pp. 2719–2729.

[29] Jaya Prakash Sahoo, Samit Ari, et al. “Hand gesture recognition using DWT and

F-ratio based feature descriptor”. In: IET Image Processing 12.10 (2018). Publisher:

IET, pp. 1780–1787.

[30] Jayshree R Pansare and Maya Ingle. “Vision-based approach for American sign lan-

guage recognition using edge orientation histogram”. In: 2016 International Con-

ference on Image, Vision and Computing (ICIVC). IEEE, 2016, pp. 86–90.

[31] Oyebade K Oyedotun and Adnan Khashman. “Deep learning in vision-based static

hand gesture recognition”. In: Neural Computing and Applications 28.12 (2017).

Publisher: Springer, pp. 3941–3951.

[32] Mandeep Kaur Ahuja and Amardeep Singh. “Static vision based Hand Gesture

recognition using principal component analysis”. In: 2015 IEEE 3rd International

Conference on MOOCs, Innovation and Technology in Education (MITE). IEEE,

2015, pp. 402–406.

95



BIBLIOGRAPHY

[33] Samta Gupta and Susmita Ghosh Mazumdar. “Sobel edge detection algorithm”.

In: International journal of computer science and management Research 2.2 (2013),

pp. 1578–1583.

[34] Nasser H Dardas and Nicolas D Georganas. “Real-time hand gesture detection and

recognition using bag-of-features and support vector machine techniques”. In: IEEE

Transactions on Instrumentation and measurement 60.11 (2011). Publisher: IEEE,

pp. 3592–3607.

[35] Paul Viola and Michael J Jones. “Robust real-time face detection”. In: International

journal of computer vision 57.2 (2004). Publisher: Springer, pp. 137–154.

[36] Joyeeta Singha, Amarjit Roy, et al. “Dynamic hand gesture recognition using vision-

based approach for human–computer interaction”. In: Neural Computing and Ap-

plications 29.4 (2018). Publisher: Springer, pp. 1129–1141.

[37] Nguyen Dang Binh, Enokida Shuichi, et al. “Real-time hand tracking and gesture

recognition system”. In: Proc. GVIP (2005). Publisher: Citeseer, pp. 19–21.

[38] Thittaporn Ganokratanaa and Suree Pumrin. “The vision-based hand gesture recog-

nition using blob analysis”. In: 2017 International Conference on Digital Arts, Media

and Technology (ICDAMT). IEEE, 2017, pp. 336–341.

[39] Cao Dong, Ming C Leu, et al. “American sign language alphabet recognition using

microsoft kinect”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition workshops. 2015, pp. 44–52.

[40] Philipp Koch, Mark Dreier, et al. “A Recurrent Neural Network for Hand Gesture

Recognition based on Accelerometer Data”. In: 2019 41st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

IEEE, 2019, pp. 5088–5091.

[41] Renqiang Xie and Juncheng Cao. “Accelerometer-based hand gesture recognition by

neural network and similarity matching”. In: IEEE Sensors Journal 16.11 (2016).

Publisher: IEEE, pp. 4537–4545.

[42] Jonghwa Kim, Stephan Mastnik, et al. “EMG-based hand gesture recognition for

realtime biosignal interfacing”. In: Proceedings of the 13th international conference

on Intelligent user interfaces. 2008, pp. 30–39.

96



BIBLIOGRAPHY

[43] Zhen Zhang, Kuo Yang, et al. “Real-Time Surface EMG Pattern Recognition for

Hand Gestures Based on an Artificial Neural Network”. In: Sensors 19.14 (2019).

Publisher: Multidisciplinary Digital Publishing Institute, p. 3170.

[44] Sung-Woo Byun and Seok-Pil Lee. “Implementation of Hand Gesture Recognition

Device Applicable to Smart Watch Based on Flexible Epidermal Tactile Sensor

Array”. In: Micromachines 10.10 (2019). Publisher: Multidisciplinary Digital Pub-

lishing Institute, p. 692.

[45] Qin Ni, Ana Garćıa Hernando, et al. “The Elderly’s Independent Living in Smart

Homes: A Characterization of Activities and Sensing Infrastructure Survey to Fa-

cilitate Services Development”. In: Sensors 15.5 (2015). Publisher: MDPI AG,

pp. 11312–11362. issn: 1424-8220. doi: 10.3390/s150511312. url: http://dx.

doi.org/10.3390/s150511312.

[46] Rami N. Khushaba, Sarath Kodagoda, et al. “Toward improved control of pros-

thetic fingers using surface electromyogram (EMG) signals”. In: Expert Systems

with Applications 39.12 (2012), pp. 10731–10738. issn: 0957-4174. doi: https :

//doi.org/10.1016/j.eswa.2012.02.192. url: http://www.sciencedirect.

com/science/article/pii/S0957417412004654.

[47] Jiahui Hou, Xiang-Yang Li, et al. “Signspeaker: A real-time, high-precision smartwatch-

based sign language translator”. In: The 25th Annual International Conference on

Mobile Computing and Networking. 2019, pp. 1–15.

[48] Hisatake Sato. Moving average filter. Google Patents, Oct. 16, 2001.

[49] WW Kong and Surendra Ranganath. “Signing exact english (SEE): Modeling and

recognition”. In: Pattern Recognition 41.5 (2008). Publisher: Elsevier, pp. 1638–

1652.

[50] Qian Zhang, Dong Wang, et al. “MyoSign: enabling end-to-end sign language recog-

nition with wearables”. In: Proceedings of the 24th International Conference on In-

telligent User Interfaces. 2019, pp. 650–660.

[51] Marcus Georgi, Christoph Amma, et al. “Recognizing Hand and Finger Gestures

with IMU based Motion and EMG based Muscle Activity Sensing.” In: Biosignals.

2015, pp. 99–108.

97



BIBLIOGRAPHY

[52] Oscar D Lara and Miguel A Labrador. “A survey on human activity recognition

using wearable sensors”. In: IEEE communications surveys & tutorials 15.3 (2012).

Publisher: IEEE, pp. 1192–1209.

[53] Shahin Farahani. “Chapter 7 - Location Estimation Methods”. In: ZigBee Wireless

Networks and Transceivers. Ed. by Shahin Farahani. Burlington: Newnes, 2008,

pp. 225–246. isbn: 978-0-7506-8393-7. doi: 10.1016/B978- 0- 7506- 8393- 7.

00007 - 8. url: http : / / www . sciencedirect . com / science / article / pii /

B9780750683937000078.

[54] Heba Abdelnasser, Moustafa Youssef, et al. “Wigest: A ubiquitous wifi-based ges-

ture recognition system”. In: 2015 IEEE Conference on Computer Communications

(INFOCOM). IEEE, 2015, pp. 1472–1480.

[55] Mohamed Abudulaziz Ali Haseeb and Ramviyas Parasuraman. “Wisture: Rnn-based

learning of wireless signals for gesture recognition in unmodified smartphones”. In:

arXiv preprint arXiv:1707.08569 (2017).

[56] Chen Zhao, Ke-Yu Chen, et al. “SideSwipe: detecting in-air gestures around mo-

bile devices using actual GSM signal”. In: Proceedings of the 27th annual ACM

symposium on User interface software and technology. 2014, pp. 527–534.

[57] Saiwen Wang, Jie Song, et al. “Interacting with soli: Exploring fine-grained dynamic

gesture recognition in the radio-frequency spectrum”. In: Proceedings of the 29th

Annual Symposium on User Interface Software and Technology. 2016, pp. 851–860.

[58] Qifan Pu, Sidhant Gupta, et al. “Whole-home gesture recognition using wireless

signals”. In: Proceedings of the 19th annual international conference on Mobile com-

puting & networking. 2013, pp. 27–38.

[59] Mohammed Abdulaziz Aide Al-qaness and Fangmin Li. “WiGeR: WiFi-based ges-

ture recognition system”. In: ISPRS International Journal of Geo-Information 5.6

(2016). Publisher: Multidisciplinary Digital Publishing Institute, p. 92.

[60] Yongsen Ma, Gang Zhou, et al. “Signfi: Sign language recognition using wifi”. In:

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-

gies 2.1 (2018). Publisher: ACM New York, NY, USA, pp. 1–21.

98



BIBLIOGRAPHY

[61] Daniel Halperin, Wenjun Hu, et al. “Tool Release: Gathering 802.11n Traces with

Channel State Information”. In: ACM SIGCOMM CCR 41.1 (Jan. 2011), p. 53.

[62] “Noise in Wireless Communications”. In: Advanced Digital Signal Processing and

Noise Reduction. John Wiley & Sons, Ltd, 2006, pp. 433–448. isbn: 978-0-470-

09496-9. doi: 10.1002/0470094966.ch17. url: https://onlinelibrary.wiley.

com/doi/abs/10.1002/0470094966.ch17.

[63] Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, et al. “Higher Order Feature Ex-

traction and Selection for Robust Human Gesture Recognition using CSI of COTS

Wi-Fi Devices”. In: Sensors 19.13 (2019). Publisher: Multidisciplinary Digital Pub-

lishing Institute, p. 2959.

[64] Wenfeng He, Kaishun Wu, et al. “Wig: Wifi-based gesture recognition system”. In:

2015 24th International Conference on Computer Communication and Networks

(ICCCN). IEEE, 2015, pp. 1–7.

[65] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector ma-

chines”. In: ACM transactions on intelligent systems and technology (TIST) 2.3

(2011). Publisher: Acm New York, NY, USA, pp. 1–27.

[66] Pedro Melgarejo, Xinyu Zhang, et al. “Leveraging directional antenna capabilities

for fine-grained gesture recognition”. In: Proceedings of the 2014 ACM International

Joint Conference on Pervasive and Ubiquitous Computing. 2014, pp. 541–551.

[67] Xianjia Meng, Lin Feng, et al. “Sentence-Level Sign Language Recognition Using

RF signals”. In: 2019 6th International Conference on Behavioral, Economic and

Socio-Cultural Computing (BESC). IEEE, 2019, pp. 1–6.

[68] C. Wang, S. Chen, et al. “Literature review on wireless sensing-Wi-Fi signal-based

recognition of human activities”. In: Tsinghua Science and Technology 23.2 (2018),

pp. 203–222.

[69] Hongbo Jiang, Chao Cai, et al. “Smart home based on WiFi sensing: A survey”. In:

IEEE Access 6 (2018). Publisher: IEEE, pp. 13317–13325.

[70] Yongsen Ma, Gang Zhou, et al. “WiFi sensing with channel state information: A

survey”. In: ACM Computing Surveys (CSUR) 52.3 (2019). Publisher: ACM New

York, NY, USA, pp. 1–36.

99



BIBLIOGRAPHY

[71] Kazuya Ohara, Takuya Maekawa, et al. “Detecting state changes of indoor everyday

objects using Wi-Fi channel state information”. In: Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies 1.3 (2017). Publisher:

ACM New York, NY, USA, pp. 1–28.

[72] SHI Xingjian, Zhourong Chen, et al. “Convolutional LSTM network: A machine

learning approach for precipitation nowcasting”. In: Advances in neural information

processing systems. 2015, pp. 802–810.

[73] S. van der Walt, S. C. Colbert, et al. “The NumPy Array: A Structure for Effi-

cient Numerical Computation”. In: Computing in Science Engineering 13.2 (2011),

pp. 22–30.

[74] J. D. Hunter. “Matplotlib: A 2D Graphics Environment”. In: Computing in Science

Engineering 9.3 (2007), pp. 90–95.

[75] Pauli Virtanen, Ralf Gommers, et al. “SciPy 1.0: Fundamental Algorithms for Sci-

entific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:

https://doi.org/10.1038/s41592-019-0686-2.

[76] F. Pedregosa, G. Varoquaux, et al. “Scikit-learn: Machine Learning in Python”. In:

Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[77] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and

Jarrod Millman. 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[78] Mart́ın Abadi, Ashish Agarwal, et al. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. 2015. url: https://www.tensorflow.org/.

[79] François Chollet et al. Keras. 2015. url: https://keras.io.

[80] Theano Development Team. “Theano: A Python framework for fast computation

of mathematical expressions”. In: arXiv e-prints abs/1605.02688 (May 2016). url:

http://arxiv.org/abs/1605.02688.

[81] Frank Seide and Amit Agarwal. “CNTK: Microsoft’s Open-Source Deep-Learning

Toolkit”. In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’16. event-place: San Francisco, Cal-

ifornia, USA. New York, NY, USA: Association for Computing Machinery, 2016,

100



BIBLIOGRAPHY

p. 2135. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2945397. url: https:

//doi.org/10.1145/2939672.2945397.

[82] Adam Paszke, Sam Gross, et al. “PyTorch: An Imperative Style, High-Performance

Deep Learning Library”. In: Advances in Neural Information Processing Systems

32. Ed. by H. Wallach, H. Larochelle, et al. Curran Associates, Inc., 2019, pp. 8024–

8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

[83] Ronan Collobert, Samy Bengio, et al. Torch: A Modular Machine Learning Software

Library. 2002.

[84] Takuya Akiba, Keisuke Fukuda, et al. “ChainerMN: Scalable Distributed Deep

Learning Framework”. In: Proceedings of Workshop on ML Systems in The Thirty-

first Annual Conference on Neural Information Processing Systems (NIPS). 2017.

url: http://learningsys.org/nips17/assets/papers/paper_25.pdf.

[85] Deep Learning Frameworks Comparison – Tensorflow, PyTorch, Keras, MXNet, The

Microsoft Cognitive Toolkit, Caffe, Deeplearning4j, Chainer. Netguru Blog on Ma-

chine Learning. Publication Title: Netguru Blog on Machine Learning. url: https:

//www.netguru.com/blog/deep-learning-frameworks-comparison (visited on

06/27/2020).

[86] Horace He. “The State of Machine Learning Frameworks in 2019”. In: The Gradient

(2019). url: https://thegradient.pub/state- of- ml- frameworks- 2019-

pytorch-dominates-research-tensorflow-dominates-industry/.

101


