Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/12429
Titre: | Abnormal sound detection for machine condition monitoring |
Auteur(s): | Mokhtari, Abderrahim |
Mots-clés: | Anomaly Sound Detection Deep Learning Statistical Test Feature Extraction Machine Condition Monitoring |
Date de publication: | 4-oct-2021 |
Editeur: | Université Blida 1 |
Résumé: | Anomalous sound detection (ASD) is the task to identify whether the sound emitted from a target machine is normal or anomalous. Automatically detecting mechanical failure is an essential technology in the fifth industrial revolution, including artificial intelligence -based factory automation. Prompt detection of machine anomaly by observing its sounds may be useful for machine condition monitoring. The goal of this work is to explore two different classes of ASD systems : Unsupervised and Supervised ASD using the long-mel energies features. The unsupervised ASD approach consists of a deep AutoEncoder, whereas, the Supervised ASD system implements the outlier exposed strategy based on a deep Residual Neural Network (ResNet) . We have performed multiple experiments using a huge dataset which consists of 54, 254 sound files, and supported our analysis and discussion with numerous statistical tests to analyze and compare the two ASD systems. We have dedicated experiments for investigating the impact of varying some hyperparameters of the autoencoder architecture, like the code (or bottleneck) size Our experimental findings indicate that the deep residual network (ResNet) outperforms the autoencoder model. Keywords: Anomaly Sound Detection, Deep Learning, Statistical Test, Feature Extraction, Machine Condition Monitoring. |
Description: | ill., Bibliogr. |
URI/URL: | http://di.univ-blida.dz:8080/jspui/handle/123456789/12429 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Mokhtari Abderrahim.pdf | 2,06 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.