Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/6891
Titre: | Étude du problème de la mécanique quantique dans l’espace choisi |
Auteur(s): | Berkani, Ikram |
Mots-clés: | M´ecanique Quantique Oscillateur harmonique espace ordinaire et d´eform´e.. |
Date de publication: | 2-sep-2020 |
Editeur: | Université Blida 1 |
Résumé: | Dans ce m´emoire nous pr´esentons les outils fondamentaux de formalisme de la m´ecanique quantique relativiste bas´e sur le principe d’incertitude d’Heisenberg g´en´eralis´e, Nous int´eressons `a l’espace d´eform´e. C’est l’espace d´eform´e qui est Consacr´e de r´esoudre les ´equations relativistes par exemple l’´equation de Klein Gordon, Dirac, Oscillateur harmonique, ´equation de Schr¨odinger... On a introduit un param`etre de d´eformation βi0 Nous appliquons au potentiel d’un oscillateur harmonique `a une dimension (1 + 1) dans un champ ´electrique ε, nous illustrons comment on peut r´esoudre l’´equation de Schr¨odinger dans l’espace des impulsions et extraire le spectre d’´energie, analytiquement, dans ce formalisme utilisant les polynˆomes de Gegenbauer. Grˆace `a cette ´etude, nous sommes arriv´es `a confirmer que tous les r´esultats que nous avons obtenus en utilisant l’alg`ebre d´eform´ee supposent que l’absence du param`etre de d´eformation (β = 0) correspond aux r´esultats de ce syst`eme de la m´ecanique quantique dans l’espace ordinaire. Mots-cl´es : M´ecanique Quantique, Oscillateur harmonique, espace ordinaire et d´eform´e.. |
Description: | ill., Bibliogr. |
URI/URL: | http://di.univ-blida.dz:8080/jspui/handle/123456789/6891 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
berkani ikram.pdf | 1,65 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.