

Final year project thesis

presented by

GAROUDJA Lyes

&

HAOUHACHE Mohamed El_Hadi

With the requirements of the Master‘s degree in Automatic Control

Theme

68HC12 based fuzzy logic

controller for an inverted

pendulum

Under the supervision of : Boualem KAZED

academic year 2012-2013

الشعبية الديمقراطية الجزائرية الجـمهورية

Democratic and Popular Republic of Algeria

العــلمــي البحــث و الــعــالي التعليم وزارة

Ministry of Higher Education and Scientific Research

 البليدة دحلب سعد جــامعة

university saad dahlab of blida

وجياالتكنول كلية

Faculty of Technology

الإلكترونيـك قسم

Department of Electronics

ACKNOWLEDGEMENT

I thank Allah for helping and guiding us for the completion of this work.

Our first and foremost regards are addressed to Prof. Kazed Boualem, Dept. of

Electrical Engineering for assigning us this project. His supportive nature, continuous

guidance and constructive ideas were really valuable during every stage of this project.

Then, we express our deep thanks to my family, especially our parents, for their

patience and moral support during the most important stages of this work.

Finally, we sincerely convey our gratitude to the students and all the staff members of

the Department of Electrical Engineering.

:ملخص

الرحوي الرحين، ّالصلاة ّالسلام على أًبيائَ، لقد تن ّ بحود الله اتوام هشرّع التخرج بعٌْاى السيطرة بسن الله

ِدف ُذا الوشرّع الى تٌفيذ ّحدة ي, ق على ًْاس هقلْب بْاسطت الوٌطق الضبابي في الوتحكن الدقي

خاصت بالوٌطق لوتحكن احتْاءٍ على تعليواث, هي أُن خصائص اشاقْليالتحكن لضواى تْازى الٌْاس الوعكْس

.الوبِن

.المبهم ق، المنط21CHالمتحكم الدقيق كلمات المفاتيح:

Résumé : Au nom de Dieu le miséricordieux, prière et paix soient sur ses Prophètes,

avec la louange de Dieu il a été possible de réaliser ce projet de fin d'études intitulé:

contrôle d'un pendule inversé par la logique floue dans le microcontrôleur HC12. Ce

travail consiste à implémenter un contrôleur flou pour stabiliser la position d‘un pendule

inversé, l‘une des caractéristiques principales du microcontrôleur 68HC12 est la

présence, dans son jeu d‘instructions, de fonctions particulières propres aux calculs

intervenant dans l‘implémentation d‘un contrôleur flou.

Mots clés : microcontrôleur 68HC12, logique floue, pendule inversé

Abstract :

In the name of God the merciful, prayer and peace be upon His prophets, this final year

project study entitled: 68HC12 based Fuzzy Logic Controller for an inverted pendulum,

was completed. The aim of this project is to implement a fuzzy controller to stabilize

the position of an inverted pendulum, one of the most important features of the 68HC12

microcontroller is the presence of special hardware instructions specifically designed to

implement a fuzzy logic controller.

Keywords: 68HC12 microcontroller, fuzzy logic, inverted pendulum.

HC12

Acronyms and Abbreviations List

ADC: Analog to Digital Converter.

COP: Computer Operating Properly watchdog.

CPU: Central Processing Unit.

DAC: Digital to Analog Converter.

DC: Direct Current.

Derror: the Difference between two consecutive errors.

DIR: DIRect.

EMIND: smaller two unsigned 16 bit values in accumulator D.

EMACS: Extended Multiply and ACcumulate Signed 16 bit to 32 bit.

EMAXM: larger of two unsigned 16 bit values in Memory.

ETBL: Extended Table Lookup and interpolate.

EXT: extended.

FLC: Fuzzy Logic Controller.

IDX: Indexed.

INH: Inherent.

LIM: Lite Integration Module.

LQFP: Low profile Quad Flat Pack.

LSB: Least Significant Bit.

MAX: MAXimum.

MAXM: larger of two unsigned 8 bit values in Memory

MCU: Microcontroller Unit.

MEM: Membership.

MIN: Minimum.

MINA: smaller two unsigned 8 bit values in accumulator A.

MSB: Most Significant Bit.

N: Negative.

NB: Negative Big.

NRZ: Non Return to Zero.

P: Positive.

PB: Positive Big.

PLL: Phase Locked Loop.

PROD: Product.

PWM: Pulse Width Modulation.

RAM: Random Access Memory.

REL: Relative.

REV: Rule Evaluation.

REVW: Rule Evaluation Weighted.

SCI: Serial Communication Interface.

SPI: Serial Peripheral Interface.

TBL: Table Lookup and interpolate.

TTL: Transistor- Transistor Logic.

WAV: Weighted Average.

Z: Zero.

Contents table

Introduction ... 1

Chapter1 Microcontroller MC68HC812A4, HC12 compact and Arduino(UNO) 2

1.1 Introduction : ... 2

1.2 MC68HC812A4 microcontroller .. 2

1.2.1 Introduction ... 2

1.2.2 Features ... 3

1.2.3 Signal Descriptions ... 5

1.2.4 Central processor unit (CPU12) .. 9

1.2.5 Addressing modes ... 9

1.3 HC12Compact ... 12

1.3.1 Introduction ... 12

1.3.2 Package Contents .. 12

1.3.3 Monitor Program Twin Peeks ... 15

1.3.4 Serial communication interface module SCI1 .. 17

1.3.5 Analog-to-Digital Converter (ATD) ... 18

1.4 Arduino (UNO) ... 20

1.5 Conclusion .. 23

Chapter 2 Implementation in HC12 microcontroller of fuzzy sets, fuzzy logic and fuzzy

control 24

2.1 Introduction ... 24

2.2 Historical review ... 25

2.3 Fuzzy sets and fuzzy logic .. 25

2.3.1 Types of membership functions .. 28

2.3.2 Linguistic variables ... 29

2.3.3 Fuzzy control system ... 30

2.3.4 Types of fuzzy logic controllers .. 33

2.4 Fuzzy Logic in HC12 compact ... 34

2.4.1 Fuzzification (MEM) .. 36

2.4.2 Rule Evaluation (REV and REVW) .. 38

2.4.3 Defuzzification (WAV) ... 39

2.4.4 Example .. 40

2.5 Conclusion .. 42

Chapter 3 Theoretical study of the inverted pendulum and project equipment 43

3.1 Introduction ... 43

3.2 Modeling the inverted pendulum .. 43

3.3 Project Hardware tools .. 46

3.3.1 Introduction ... 46

3.3.2 Mechanical and electrical tools ... 47

3.4 Conclusion .. 52

Chapter 4 Project synthesis and results analyzes ... 53

4.1 Introduction ... 53

4.2 Choice of the FLC algorithm parameters .. 53

4.3 design of the fuzzy logic controller in hc12 compact ... 55

4.4 Using ARDUINO UNO as generator of PWM signal .. 56

4.5 Analyze of the results .. 56

Conclusion.. 57

Annexe A .. 58

Annexe B .. 67

Bibliography .. 71

Figures List

Figure 1. 1 MC68HC812A4 Block diagram. .. 4

Figure 1. 2 Pin assignments. ... 5

Figure 1. 3 Programming Model. ... 9

Figure 1. 4 Parts Location Diagram. ... 13

Figure 1. 5 Jumper locations. .. 13

Figure 1. 6 Connectors. ... 14

Figure1. 7 The Arduino Uno interface board ... 21

Figure2. 1 (a) Classical/crisp set boundary; (b) fuzzy set boundary .. 25

Figure2. 2 triangular function. .. 28

Figure2. 3 Trapezoidal function. .. 28

Figure2. 4 Gaussian function. ... 29

Figure2. 5 Block diagram of a typical fuzzy logic controller. .. 30

Figure2.6 Membership functions of the output linguistic values. ... 31

Figure2.7 Possible distribution of an output condition. .. 32

Figure 2.8 Block Diagram of a Fuzzy Logic System. ... 35

Figure 2.9 Fuzzification mecanism with the HC12 microcontroller. .. 37

Figure2. 10 Temperature membership functions. ... 40

Figure2. 11 Humidity membership functions ... 41

Figure2.12 Current output. ... 41

Figure3. 1 inverted pendulum's force representation. ... 43

Figure3. 2 the robot .. 47

Figure3. 3 HC12 compact ... 47

Figure3. 4 Arduino UNO .. 48

Figure 3. 5 EMG30 DC motor. ... 48

Figure3. 6 Basic Potentiometer Construction ... 49

Figure3. 7 Robot platforme... 50

Figure 3. 8 Arduino UNO power board ... 50

Figure 3.9 power board schematic. ... 51

Figure 3. 10 The block diagram of the L298. ... 51

Figure 3. 11 The Pin connections of L298. .. 52

Tables list

Table 1. 1 Pin Descriptions. .. 6

Table 1. 2 Port Descriptions. ... 8

Table 1. 3 HC12 addressing modes. .. 10

Table 1. 4 Twinpeeks commands .. 15

Table 1. 5 the sector addresses of the Am29F400T. ... 16

Table 2.1 Inference matrix. ... 41

Table4. 1 Inference matrix. ... 54

1

 Introduction

The inverted pendulum is among the most difficult systems to control in the field

of control engineering, due to its relative complexity, it is widely used as test bench to

analyze the performance of different types of controllers. In order to ensure the stability

of the pendulum, two DC motors will make a mobile platform move forward and

backward with a variable speed, this will be calculated in an embedded system based on

a dedicated microcontroller. The control algorithm will be implemented using the fuzzy

logic approach. In this project we have been asked to implement a fuzzy logic controller

to stabilize the position of an inverted pendulum using a special microcontroller for this

purpose. This microcontroller has the advantages of having special fuzzy logic

instructions (MEM, REV Etc…) within its instruction set. The HC12compact board is a

universal microcontroller module based on this microcontroller. Furthermore this board

has many other peripherals that can be used to communicate with different kinds of

analog or digital systems. For applications that require extensive memory storage this

module is equipped with additional static and EEPROM memory. One of the most

important features of this module is the availability of a bootloader preprogrammed on

the microcontroller, this is not only used to download the compiled program on the chip

but also enable us to monitor the content of different parts of the memory.

 The role of the HC12 is to provide the control signal to another board, based on

another microcontroller (ATMEGA 328), which will be used to transform this control

signal in terms of duty cycle that will supply the power stage with the right signal to

both the motors to make the pendulum on stable vertical position. The required current

for the motors is supplied through a double H-bridge, connected so that a single PWM

signal is necessary to rotate the motors in one direction or the other. This has been made

possible by using a Schmidt trigger type inverter which provides the opposite PWM

signal used as the second input signal for the H-Bridge.

2

Chapter1 Microcontroller MC68HC812A4,

HC12 compact and Arduino(UNO)

1.1 Introduction :

The goal of this chapter is to describe the MC68HC812A4 microcontroller, the

HC12 compact and the Arduino UNO features.

1.2 MC68HC812A4 microcontroller

1.2.1 Introduction

The MC68HC812A4 microcontroller unit (MCU) is a 16-bit device composed of

standard on-chip peripheral modules connected by an inter-module bus.

 Modules include:

• 16-bit central processor unit (CPU12).

• Lite Integration Module (LIM).

• Two asynchronous serial communications interfaces (SCI0 and SCI1).

• Serial peripheral interface (SPI).

• Timer and pulse accumulator module.

• 8-bit analog-to-digital converter (ATD).

• 1-Kbyte random-access memory (RAM).

• 4-Kbyte electrically erasable, programmable read-only memory (EEPROM).

• Memory expansion logic with chip selects, key wakeup ports, and a phase-locked loop

(PLL).

3

1.2.2 Features

Features of the MC68HC812A4 include:

• Low-power, high-speed M68HC12 CPU.

• Power-saving stop and wait modes.

• Memory:

– 1024-byte RAM.

– 4096-byte EEPROM.

– On-chip memory mapping allows expansion to more than 5-Mbyte address space.

• Single-wire background debug mode.

• Non-multiplexed address and data buses.

• Seven programmable chip-selects with clock stretching (expanded modes).

• 8-channel, enhanced 16-bit timer with programmable prescaler :

– All channels configurable as input capture or output compare.

– Flexible choice of clock source.

• 16-bit pulse accumulator.

• Real-time interrupt circuit.

• Computer operating properly (COP) watchdog.

• Clock monitor.

• Phase-locked loop (PLL).

• Two enhanced asynchronous non-return-to-zero (NRZ) serial communication

interfaces (SCI).

• Enhanced synchronous serial peripheral interface (SPI).

• 8-channel, 8-bit analog-to-digital converter (ATD).

• Up to 24 key wakeup lines with interrupt capability.

• Available in 112-lead low-profile quad flat pack (LQFP) packaging.

4

The figure 1.1 show the MC68HC812A4 block diagram:

Figure 1. 1 MC68HC812A4 Block diagram.

5

1.2.3 Signal Descriptions

The MC68HC812A4 is available in a 112-lead low-profile quad flat pack (LQFP). The

pin assignments are shown in Figure 1.2. Most pins perform two or more functions, as

described in Table 1.1, Individual ports are cross referenced in Table 1.2.

Figure 1. 2 Pin assignments.

6

Table 1. 1 Pin Descriptions.

Pin Port Description

VDD, VSS — Operating voltage and ground for the MCU

VRH, VRL — Reference voltages for the ADC

AVDD, AVSS — Operating voltage and ground for the ADC

VDDPLL,VSSPLL — Power and ground for PLL clock control

VSTBY Port AD RAM standby power input

XTAL, EXTAL — Input pins for either a crystal or a CMOS compatible clock

PE0 Asynchronous, non-maskable external interrupt request input

IRQ PE1 Asynchronous, maskable external interrupt request input

with selectable falling-edge

triggering or low-level triggering

R/ PE2 Expansion bus data direction indicator

General-purpose I/O; read/write in expanded modes

PE3 Low byte strobe (0 = low byte valid)

General-purpose I/O

ECLK PE4 Timing reference output for external bus clock (normally,

half the crystal frequency)

General-purpose I/O

BKGD — Mode-select pin determines initial operating mode of the

MCU after reset

MODA PE5 Mode-select input determines initial operating mode of the

MCU after reset

MODB PE6 Mode-select input determines initial operating mode of the

MCU after reset

IPIPE0 PE5 Instruction queue tracking signals for development systems

IPIPE1 PE6

ARST PE7 Alternate active-high reset input

General-purpose I/O

XFC — Loop filter pin for controlled damping of PLL VCO loop

7

— Active-low bidirectional control signal; input initializes

MCU to known startup state; output

when COP or clock monitor causes a reset

ADDR15–ADDR8 Port A Single-chip modes: general-purpose I/O

Expanded modes: external bus pins

Port D in narrow data bus mode: general-purpose I/O or key

wakeup port

ADDR7–ADDR0 Port B

DATA15–DATA8 Port C

DATA7–DATA0 Port D

ADDR21,ADDR16 Port G Memory expansion and general-purpose I/O

BKGD — Single-wire background debug pin Mode-select pin that

determines special or normal operating mode after reset

KWD7–KWD0 Port D Key wakeup pins that can generate interrupt requests on

high-to-low transitions General-purpose I/O

KWH7–KWH0 Port H

KWJ7–KWJ0 Port J Key wakeup pins that can generate interrupt requests on any

transition General-purpose I/O

RxD0 PS0 Receive pin for SCI0

TxD0 PS1 Transmit pin for SCI0

RxD1 PS2 Receive pin for SCI1

TxD1 PS3 Transmit pin for SCI

SDI/MISO PS4 Master in/slave out pin for SPI

SDO/MOSI PS5 Master out/slave in pin for SPI

SCK PS6 Serial clock for SPI

PS7 Slave select output for SPI in master mode; slave select input

in slave mode

IOC7–IOC0 Port T Input capture or output

8

Table 1. 2 Port Descriptions.

Port Direction Function

Port A I/O Single-chip modes: general-purpose I/O

Expanded modes: external address bus ADDR15–ADDR8

Port B I/O Single-chip modes: general-purpose I/O

Expanded modes: external address bus ADDR7–ADDR0

Port C I/O Single-chip modes: general-purpose I/O

Expanded wide modes: external data bus DATA15–DATA8

Expanded narrow modes: external data bus DATA15–

DATA8/DATA7–DATA0

Port D I/O Single-chip and expanded narrow modes: general-purpose I/O

External data bus DATA7–DATA0 in expanded wide mode

Port E I/O and

I(2)

External interrupt request inputs, mode select inputs, bus control

signals General-purpose I/O

Port F I/O Chip select

General-purpose I/O

Port G I/O Memory expansion

General-purpose I/O

Port H I/O Key wakeup

General-purpose I/O

Port J I/O Key wakeup

General-purpose I/O

Port S I/O SCI and SPI ports

General-purpose I/O

Port T I/O Timer port

General-purpose I/O

Port

AD

I ADC port

General-purpose input

9

1.2.4 Central processor unit (CPU12)

CPU12 registers are an integral part of the CPU and are not addressed as if they were

memory locations See Figure 1.3.

8-BIT ACCUMULATORS A

AND B ,16-BIT

ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

Figure 1. 3 Programming Model.

1.2.5 Addressing modes

Addressing modes determine how the CPU accesses memory locations to be operated

upon. The CPU12 includes all of the addressing modes of the M68HC11 CPU as well

as several new forms of indexed addressing. Table 1.3 is a summary of the available

addressing modes.

7 A 0 7 B 0

15 D 0

15 x 0

15 y 0

15 SP 0

15 PC 0

10

Table 1. 3 HC12 addressing modes.

Addressing

Mode

Source

Format

Abbreviation Inherent INST INH Operands (if

any) are

Inherent INST INH Operands (if any) are in CPU

registers.

Immediate INST

#opr8i

or

INST

#opr16i

IMM Operand is included in instruction

stream.

8- or 16-bit size implied by context

Direct INST opr8a DIR Operand is the lower 8 bits of an

address in the range

$0000–$00FF.

Extended INST

opr16a

EXT Operand is a 16-bit address

Relative INST rel8

or

INST rel16

REL An 8-bit or 16-bit relative offset

from the current pc is

supplied in the instruction.

Indexed

(5-bit offset)

INST

oprx5,xysp

IDX 5-bit signed constant offset from x,

y, sp, or pc

Indexed

(auto pre-

decrement)

INST

oprx3,–xys

IDX Auto pre-decrement x, y, or sp by 1

~ 8

Indexed

(auto pre-

increment)

INST

oprx3,+xys

IDX Auto pre-increment x, y, or sp by 1

~ 8

Indexed

(auto

post-decrement)

INST

oprx3,xys–

IDX Auto post-decrement x, y, or sp by

1 ~ 8

Indexed

(auto post-

increment)

INST

oprx3,xys+

IDX Auto post-increment x, y, or sp by

1 ~ 8

11

Indexed

(accumulator

offset)

INST

abd,xysp

IDX Indexed with 8-bit (A or B) or 16-

bit (D) accumulator

offset from x, y, sp, or pc

Indexed

(9-bit offset)

INST

oprx9,xysp

IDX1 9-bit signed constant offset from x,

y, sp, or pc

(lower 8-bits of offset in one

extension byte)

Indexed

(16-bit offset)

INST

oprx16,xysp

IDX2 16-bit constant offset from x, y, sp,

or pc

(16-bit offset in two extension

bytes)

Indexed-indirect

(16-bit offset)

INST

[oprx16,xys

p]

[IDX2] Pointer to operand is found at...

16-bit constant offset from x, y, sp,

or pc

(16-bit offset in two extension

bytes)

Indexed-indirect

(D accumulator

offset)

INST

[D,xysp]

[D,IDX] Pointer to operand is found at...

x, y, sp, or pc plus the value in D

12

1.3 HC12Compact

1.3.1 Introduction

HC12compact is a universal microcontroller module based on the Motorola

MC68HC812A4 MCU.

In addition to the on-chip features of the MCU itself, the following peripherals are

available on the HC12compact:

 512 KB Flash-Memory and 256 KB (optional: 1024 KB) RAM.

 Real Time Clock (battery backed).

 Analog/Digital-Converter (12 bit, 11 channels).

 Digital/Analog-Converter (12 bit, 2 channels).

 CAN Controller.

 RS232 interface driver.

 Beeper.

 Indicator LED.

Key features of the HC12compact unit are:

 compact design.

 low power consumption.

 easy handling.

 comprehensive software support available (Monitor, C-Compiler,

BDM-Debugger etc…).

1.3.2 Package Contents

The base version (stock code HC12CO/1) of HC12compact is equipped as follows:

 Ready-to-use controller board with 256 KB RAM and 512 KB Flash.

 None of the options are populated (order RTC, ADC, DAC and CAN separately,

but always together with the board).

 The header connectors at both edges of the board are not mounted (so the user

may solder them up- or downward, depending on the application).

 User Manual and software on CD-ROM.

 TwinPEEKs Monitor Program, residing in the internal EEPROM of the HC12.

 Serial cable with Sub-D9 connector (PC side).

13

Figure 1.4 and 1.5 show the parts location diagram and jumpers location and the

figure 1.6 shows the connectors:

Figure 1. 4 Parts Location Diagram.

Figure 1. 5 Jumper locations.

14

Figure 1. 6 Connectors.

15

1.3.3 Monitor Program Twin Peeks

a . Introduction

The monitor program TwinPEEKs is useful to load and execute user programs and to

view and modify memory locations. TwinPEEKs resides in the internal EEPROM of the

HC12. The whole 4 KB EEPROM area plus a region of about 512 bytes of RAM are

reserved for TwinPEEKs.

The user program will be loaded into an external (RAM or Flash) memory space.

TwinPEEKs on the HC12compact communicates with a host PC via the first serial

interface (SCI0).

 Communication parameters are:

 19200 Baud,

 8N1,

 No protocol.

-Notation:

All numbers are in hex format, a monitor command consists of a single character,

followed by a list of arguments. The argument list may contain up to six items,

separated by a space or comma.

The address space is 64 KB, so addresses have a maximum length of 4 digits. This

address space of the HC12 contains all ports and control registers.

b . Monitor Commands

The list bellow shows the commands and their arguments:

Table 1. 4 Twinpeeks commands

A Display ADC results

D [<SADR>

[<EADR>]]

Displays the memory from <SADR> to <EADR> ,that mean from

start address to end address

E [<SADR>] Edit memory starting at <SADR>

F <SADR> <EADR>

<BY>

Fills memory from <SADR> to <EADR> with <BY>

G [<SADR>] Go to Address <SADR>

H Displays a list of available commands

I Info on Flash device ID

16

L Loads S-Records into memory

M <SADR> <EADR>

<ADR2>

Copies the memory area from <SADR> to

 <EADR> to another

area starting at <ADR2>

P Displays the currently selected program page number

T [<HH> <MM> <SS>

<DD> <MM> <YY>]

The command displays the RTC time when used w/o argument. Of

course, the optional RTC chip must be present

V <CH0> <CH2> The optional DAC has two channels which may be adjusted with this

command. The values range from $0000 to $0FFF (12 bits). $0000

equates 0V, $0FFF equates 4.095V.

X [<SECTOR>] Deletes a single Flash memory sector

The following table shows the sector addresses of the Am29F400T and the

corresponding program page numbers:

Table 1. 5 the sector addresses of the Am29F400T.

Sector

Address

Sector

Size

Memory

Area

PPAGE

00 64KB 00000–0FFFF 00-03

08 64KB 10000–1FFFF 04-07

10 64KB 20000–2FFFF 08-0B

18 64KB 30000–3FFFF 0C-0F

20 64KB 40000–4FFFF 10-13

28 64KB 50000–5FFFF 14-17

30 64KB 60000–6FFFF 18-1B

38 32KB 70000–77FFF 1C-1D

3C 8KB 78000-79FFF 1E (lower half)

3D 8KB 7A000-7BFFF 1E (upper half)

3E 16KB 7C000-7FFFF 1F

17

1.3.4 Serial communication interface module SCI1

The serial communications interface (SCI) allows asynchronous serial communications

with peripheral devices and other MCUs.

a Features

-13-bit baud rate selection

-Programmable 8-bit or 9-bit data format

-Separately enabled transmitter and receiver

-flags with interrupt-generation capability:

- Transmitter empty

-Transmission complete

- Receiver full.

b The register map

1-SCI 1 Baud Rate Register High (SC1BDH) : $00C8.

2-SCI 1 Baud Rate Register low (SC1BDl) : $00C9.

3-SCI 1 control register 1 (SC1CR1) : $00CA.

4-SCI 1 control register 2 (SC1CR2) : $00CB.

5-SCI 1 status register 1 (SC1SR1) : $00CC.

6-SCI 1 status register 2 (SC1SR2) : $00CD.

7-SCI 1 data register high (SC1DRH) : $00CE.

8-SCI 1 data register low (SC1DRl) : $00CF.

c External Pin Descriptions

-TXD Pin

TXD is the SCI transmitter pin. TXD is available for general-purpose I/O when it is not

configured for transmitter operation.

-RXD Pin

TXD is the SCI transmitter pin. TXD is available for general-purpose I/O when it is not

configured for transmitter operation.

18

d Example

This code is intended to use SCI1 to serially transmit number from the hc12 compact to

a computer; the transmission is performed at a baud rate of 9600.

 //serial port SCI1//

SC1BDL=0x34; //baud rate =9600//

SC1CR1=0x00; // Initialize for 8-bit Data format//

SC1CR2=0x08; //transmitter enabled //

asm(" LDAA $00cc "); //step1 for clear TDRE//

asm(" STD $00ce "); //step2 for clear TDRE//

while(1)

{

If (SC1SR1==0x80) // set the Transmit Data Register Empty Flag//

SC1DRL=0x31; //send the number 0x31 (1 in ASCII code) by the sci1 port //

}

1.3.5 Analog-to-Digital Converter (ATD)

The analog-to-digital converter (ATD) is an 8-channel, 8-bit, multiplexed-input,

successive approximation analog-to-digital converter, accurate to±1 least significant

bit (LSB). It does not require external sample and hold circuits The ATD converter

timing can be synchronized to the system P-clock. The ATD module consists of a 16-

word (32-byte) memory-mapped control register block used for control, testing, and

configuration.

a Features

Features of the ATD module include:

• Eight multiplexed input channels.

• Multiplexed-input successive approximation.

• 8-bit resolution.

• Single or continuous conversion.

• Conversion complete flag with CPU interrupt request.

• Selectable ATD clock.

19

b Register Map

1-ATD control registers 0 (ATDCTL0) ($0060).

2-ATD control register 1 (ATDCTL1) ($0061).

3-ATD control register 2 (ATDCTL2) ($0062).

4-ATD control registers 3 (ATDCTL3) ($0063).

5-ATD control registers 4 (ATDCTL4) ($0064).

6-ATD control registers 5 (ATDCTL5) ($0065).

7-ATD status registers 1 (ATDSTAT1) ($0066).

8-ATD status registers 2 (ATDSTAT2) ($0067).

9-ATD test registers 1 (ATDCTEST1) ($0068).

10-ATD test registers 2 (ATDCTEST2) ($0069).

11-port AD data input register (PORTAD) ($006F).

12-ATD result register0 (ADR0H) ($0070).

13-ATD result register1 (ADR1H) ($0072).

14-ATD result register2 (ADR2H) ($0074).

15-ATD result register3 (ADR3H) ($0076).

16-ATD result register4 (ADR4H) ($0078).

17-ATD result register5 (ADR5H) ($007A).

18-ATD result register6 (ADR6H) ($007C).

19-ATD result register7 (ADR7H) ($007E).

c General-Purpose Ports

Port AD is an input-only port. When the ATD is enabled, port AD is the analog input

port for the ATD.

Setting the ATD power-up bit, ADPU, in ATD control register 2 enables the ATD.

Port AD is available for general-purpose input when the ATD is disabled. Clearing the

ADPU bit disables the ATD.

20

d Example

Using the ATD to Measure a Potentiometer Signal:

This example allows the student to utilize the ATD on the HC12 to measure a

potentiometer signal output and save it in memory ($1000):

 //ATD//

ATDCTL2=0x82; // enable ATD and set ASCIE

for (i = 0; i < 20; ++i); //delay //

ATDCTL3 = 0x00; //reset//

ATDCTL4 = 0x01; // 4 ATD clock periods and a prescaler =4 //

ATDCTL5 = 0x01; // Conversions of a single input channel 1(PAD1) //

While (1)

 {

 while (ATDCTL2==0x83)

 {

 asm("ldaa $0072"); //voltage of PAD1//

 asm("staa $1000"); //save tension in memory//

 }

 }

1.4 Arduino (UNO)

1.4.1 Introduction

Arduino is a flexible programmable hardware platform designed for artists, designers,

tinkerers, and the makers of things. Arduino is small, blue circuit board, mythically

taking its name from a local pub in Italy. Central to the Arduino interface board, shown

in Figure 1.7, is an onboard microcontroller think of it as a small computer on a chip.

This microcontroller comes from a company called Atmel and the chip is known as an

AVR, it is slow in modern terms, running at only 16 MHz with an 8-bit core, and has a

very limited amount of available memory, with 32 kilobytes of storage and 2 kilobytes

of random access memory.

21

The Arduino development environment is free for all to use and will run on just about

any kind of computer that supports Java.

Figure1. 7 The Arduino Uno interface board

1.4.2 Some simple command of Arduino

In order to write an Arduino program, many commands can be used:

a pinMode:

This command, which goes in the setup () function, is used to set the direction of a

digital I/O pin.

Set the pin to OUTPUT if the pin is driving and LED, motor or other device. Set the pin

to INPUT if the pin is reading a switch or other sensor.

On power up or reset, all pins default to inputs.

This example sets pin 2 to an output and pin 3 to an input:

void setup()

{

pinMode(2,OUTPUT);

pinMode(3,INPUT);

}

22

b Serial.print

The Serial.print command lets we see what's going on inside the Arduino from your

computer. For example, we can see the result of a math operation to determine if we are

getting the right number. For the command to work, the command Serial.begin(9600)

must be placed in the setup() function. After the program is uploaded, you must open

the Serial Monitor window to see the response.

Here is a brief program to check if your board is alive and connected to the PC:

void setup()

{

Serial.begin(9600);//set the baud rate to 9600

Serial.println ("Hello World"); // display (Hello World) in the Serial Monitor window

}

c digitalWrite

This command sets an I/O pin high (+5V) or low (0V).

Use the pinMode() command in the setup() function to set the pin to an output.

Example:

digitalWrite(2,HIGH); // sets pin 2 to +5 volts

digitalWrite(2,LOW); // sets pin 2 to zero volts

d analogWrite()

The function analogWrite() will allow us to access the pulse width modulation hardware

on the Arduino microcontroller. The basic syntax for this function follows:

analogWrite(pin, duty cycle). In using this function we need to give it two pieces of

information. The first is the pin number, which can only include one of the following

pins on the Arduino Uno: 3, 5, 6, 9, 10, and 11. These are marked as PWM on the

interface board. The second bit of information is the duty cycle expressed as an 8-bit

numerical integer ranging between the values of 0 and 255,the value 0 corresponds to

off or 0% duty cycle and 255 is basically full on or 100% duty cycle.

Example:

analogWrite(5, 127). // generate a PWM signal with 50percent duty cycle in the pin 5.

23

e delay

delay pauses the program for a specified number of milliseconds. Since most

interactions with the world involve timing, this is an essential instruction. The delay can

be for 0 to 4,294,967,295 msec. This code snippet turns on pin 2 for 1 second.

digitalWrite(2,HIGH); // pin 2 high (LED on)

delay(1000); // wait 1000 ms

digitalWrite(2,LOW); // pin 2 low (LED off)

And many other command that we can use in order to write our program in the Arduino

like: map(), constrain() etc...

Note that Arduino support the c/c ++ instructions like: if, for, while, gotoetc.

1.5 CONCLUSION

The HC12 module and its microcontroller MC68HC812A4 are powerful

equipment because of its great advantages of fuzzy logic control instruction ,various

type of addressing mode ,much register ,much memory capacity …

Using the Arduino UNO with theirs easier instructions make the control algorithm and

the application more effective.

24

Chapter 2 Implementation in HC12

microcontroller of fuzzy sets, fuzzy logic and

fuzzy control

2.1 Introduction

Over the past few years, the use of fuzzy set theory, or fuzzy logic, in control systems

has been gaining widespread popularity, especially in Japan.

From as early as the mid-1970s, Japanese scientists have been instrumental in

transforming the theory of fuzzy logic into a technological realization. Today, fuzzy

logic-based control systems, or simply fuzzy logic controllers (FLCs), can be found in a

growing number of products, from washing machines to speedboats, from air condition

units to hand-held autofocus cameras. The success of fuzzy logic controllers is mainly

due to their ability to cope with knowledge represented in a linguistic form instead of

representation in the conventional mathematical framework.

Control engineers have traditionally relied on mathematical models for their designs.

This is the fundamental concept that provided the motivation for fuzzy logic and is

formulated by Lofti Zadeh, the founder of fuzzy set theory, as the Principle of

Incompatibility.

Real-world problems can be extremely complex and complex systems are inherently

fuzzy. The main advantage of fuzzy logic controllers is their ability to incorporate

experience, intuition and heuristics into the system instead of relying on mathematical

models. This makes them more effective in applications where existing models are ill-

defined and not reliable enough.

25

2.2 Historical review

Fuzzy logic was introduced in 1965 by Lofti Zadeh in his paper "Fuzzy Sets".

Zadeh and others continued to develop fuzzy logic at that time. The idea of fuzzy sets

and fuzzy logic were not accepted well within academic circles because some of the

underlying mathematics had not yet been explored. The applications of fuzzy logic were

slow to develop because of this, except in the east. In Japan specifically fuzzy logic was

fully accepted and implemented in products simply because fuzzy logic worked,

regardless of whether mathematicians agreed or not. The success of many fuzzy logic

based products in Japan in the early 80s led to a revival in fuzzy logic in the USA in the

late 80s. Since that time America has been catching up with the east in the area of fuzzy

logic.

2.3 Fuzzy sets and fuzzy logic

Classical set theory was founded by the German mathematician Georg Cantor

(1845– 1918). In the theory, a universe of discourse U, is defined as a collection of

objects all having the same characteristics. A classical set is then a collection of a

number of those elements. The member elements of a classical set belong to the set 100

per cent.

Other elements in the universe of discourse, which are non-member elements of the set,

are not related to the set at all. A definitive boundary can be drawn for the set, as

depicted in Figure 2.1.

Figure2. 1 (a) Classical/crisp set boundary; (b) fuzzy set boundary

26

A classical set can be denoted by A = {x U | P(x)} where the elements of A

have the property P, and U is the universe of discourse. The characteristic function

μA(x): U → {0, 1} is defined as ‗0‘ if x is not an element of A and ‗1‘ if x is an element

of A. Here, U contains only two elements, ‗1‘ and ‗0‘. Therefore, an element x, in the

universe of discourse is either a member of set A or not a member of set A.

There is ambiguity about membership for example, consider the set ADULT, which

contains elements classified by the variable AGE, it can be said that an element with

AGE = ‗5‘ would not be a member of the set whereas an element with AGE = ‗45‘

would be. The question which arises is: where can a sharp and discrete line be drawn in

order to separate members from non-members? At AGE = ‗18‘? By doing so, it means

that elements with AGE = ‗17.9‘ are not members of the set ADULT but those with

AGE = ‗18.1‘ are. This system is obviously not realistic to model the definition of an

ADULT human. Simple problems such as this one embody the notion behind Zadeh‘s

Principle of Incompatibility.

In fuzzy set theory, the concept of characteristic function is extended into a more

generalized form, known as membership function: μA(x):U→[0, 1]. While a

characteristic function exists in a two-element set of {0, 1}, a membership function can

take up any value between the unit interval [0, 1] (note that curly brackets are used to

represent discrete membership while square brackets are used to represent continuous

membership). The set which is defined by this extended membership function is called a

fuzzy set. In contrast, a classical set which is defined by the two-element characteristic

function, as described earlier, is called a crisp set. Fuzzy set theory essentially extends

the concept of sets to encompass vagueness. Membership to a set is no longer a matter

of ‗true‘ or ‗false‘, ‗1‘ or ‗0‘, but a matter of degree. The degree of membership

becomes important. The boundary of a fuzzy set is shown in Figure 2.1(b). While point

(a) is a member of the fuzzy set and point (c) is not a member, the membership of point

(b) is ambiguous as it falls on the boundary. The concept of membership function is

used to define the extent to which a point on the boundary belongs to the set.

 A fuzzy set F can be defined by the set of tuples F = {(μF(x), x) | x U}.

Zadeh proposed a notation for describing fuzzy sets whereby ‗+‘ denotes enumeration

and ‗/‘ denotes a tuple. Therefore, the fuzzy set F becomes:

 : For a continuous universe U.

27

Or:

 : For a discrete universe U.

Returning to the earlier example, an element with AGE = ‗18.1‘ may now be assigned

with the membership degree to the set ADULT of, say, 1.0.

An element of AGE = ‗17.9‘ may then have a membership degree of 0.8 instead of 0.

Such gradual change in the degree of membership provides a better representation of the

real world. However, the exact shape of the membership function is very subjective and

depends on the designer and the context of the application. While set operations such as

complement, union and intersection are straightforward definitions in classical set

theory, their interpretation is more complicated in fuzzy set theory due to the graded

attribute of membership functions. Zadeh proposed the following fuzzy set operation

definitions as an extension to the classical operations:

-Complement: x X: =1- .

-Union: x X: =max [].

- Intersection: x X: μ (A B) =min [].

These definitions form the foundations of the basics of fuzzy logic theory.

The relationship between an element in the universe of discourse and a fuzzy set is

defined by its membership function.

28

2.3.1 Types of membership functions

Figures 2.2, 2.3 and 2.4 show various types of membership functions which are

commonly used in fuzzy set theory. The choice of shape depends on the individual

application.

a triangular function:

Figure2. 2 triangular function.

b trapezoidal function:

F(x) =

Figure2. 3 Trapezoidal function.

29

c Gaussian function:

F(x) =

σ

Figure2. 4 Gaussian function.

With: (the average value).

σ: standard deviation .

2.3.2 Linguistic variables

The concept of a linguistic variable, a term which is later used to describe the inputs and

outputs of the FLC, is the foundation of fuzzy logic control systems. A conventional

variable is numerical and precise. It is not capable of supporting the vagueness in fuzzy

set theory. By definition, a linguistic variable is made up of words, sentences or

artificial languages which are less precise than numbers. It provides the means of

approximate characterization of complex or ill-defined phenomena.

 For example, ‗AGE‘ is a linguistic variable whose values may be the fuzzy sets

‗YOUNG‘ and ‗OLD‘.

 A more common example in fuzzy control would be the linguistic variable ‗ERROR‘,

which may have linguistic values such as ‗POSITIVE‘, ‗ZERO‘ and ‗NEGATIVE‘.

30

2.3.3 Fuzzy control system

Figure 2.5 shows the block diagram of a typical fuzzy logic controller (FLC). There are

five principal elements to a fuzzy logic controller:

-Fuzzification module (fuzzifier).

-Knowledge base.

-Rule base.

-Inference engine.

-Defuzzification module (defuzzifier).

Figure2. 5 Block diagram of a typical fuzzy logic controller.

a Fuzzifier:

The fuzzification module converts the crisp values of the control inputs into fuzzy

values, so that they are compatible with the fuzzy set representation in the rule base.

b Knowledge base :

The knowledge base consists of a database of the plant. It provides all the necessary

definitions for the fuzzification process such as membership functions, fuzzy set

representation of the input–output variables and the mapping functions between the

physical and fuzzy domain.

31

c Rule base:

The rule base is essentially the control strategy of the system. It is usually obtained from

expert knowledge or heuristics and expressed as a set of (IF-THEN) rules. The rules are

based on the fuzzy inference concept and the antecedents and consequents are

associated with linguistic variables.

 For example:

IF error (e) is Positive Big (PB) THEN output (u) is Negative Big (NB)

 Rule antecedent Rule consequent

Error (e) and output (u) are linguistic variables while Positive Big (PB) and Negative

Big (NB) are the linguistic values.

d Defuzzifier:

The diagram in Fig. 2.6 shows the membership functions related to a typical fuzzy

controller‘s output variable defined over its universe of discourse. The FLC will process

the input data and map the output to one or more of these linguistic values.

Depending on the conditions, the membership functions of the linguistic values may be

clipped. Figure 2.7 shows an output condition with two significant (clipped above zero)

output linguistic values. The union of the membership functions forms the fuzzy output

value of the controller.

Figure2.6 Membership functions of the output linguistic values.

32

Figure2.7 Possible distribution of an output condition.

This is represented by the shaded area in Figure 2.7 and is expressed by the fuzzy set

equation:

Where:

S is the union of all the output linguistic values.

is an output linguistic value with clipped membership function.

k is the total number of output linguistic values defined in the universe of discourse.

In most cases, the fuzzy output value S has very little practical use as most applications

require non-fuzzy (crisp) control actions. Therefore, it is necessary to produce a crisp

value to represent the possibility distribution of the output. The mathematical procedure

of converting fuzzy values into crisp values is known as ‗defuzzification‘.

A number of defuzzification methods have been suggested. The choice of

defuzzification methods usually depends on the application. The most defuzzification

method used in fuzzy logic control is the weighted average method; it is only valid for

symmetrical membership functions.

Each membership function is assigned with a weighting, which is the output point

where the membership value is maximum.

33

The defuzzification process can be expressed by:

Where:

f(y) is the crisp output value.

y is the weight.

2.3.4 Types of fuzzy logic controllers

There are many types of FLC and the most popular are :

-MAMDANI.

-SUGENO.

These two types have the same methods of fuzzification and they differ in the inference

and in the defuzzification.

a Mamdani Type Fuzzy Logic Controller:

The inference block of this type is based on the minimum (MIN) or the product (PROD)

of the fuzzification‘s results.

The defuzzification output is calculated by:

Where:

f(y) is the crisp output value.

 is the maximum of all the rules with consequent .

 is the weight.

b SUGENO Type Fuzzy Logic Controller:

The inference block is denoted by the product (PROD) of the fuzzifier outputs.

In this type the output membership functions are singleton (crisp), so the output value is

calculated by:

Where:

f(y) is the crisp output value.

 are the inference results.

 are the singleton value of the output membership.

34

2.4 Fuzzy Logic in HC12 compact

The CPU12 includes four instructions that perform specific fuzzy logic tasks.

In addition, several other instructions are especially useful in fuzzy logic programs.

The four fuzzy logic instructions are:

• MEM (determine grade of membership), which evaluates trapezoidal membership

functions.

• REV (fuzzy logic rule evaluation) and REVW (fuzzy logic rule evaluation weighted),

which perform unweighted or weighted MIN-MAX rule evaluation

• WAV (weighted average), which performs weighted average defuzzification on

singleton output membership functions.

Other instructions that are useful for custom fuzzy logic programs include:

• MINA (place smaller of two unsigned 8-bit values in accumulator A)

• EMIND (place smaller of two unsigned 16-bit values in accumulator D)

• MAXM (place larger of two unsigned 8-bit values in memory)

• EMAXM (place larger of two unsigned 16-bit values in memory)

• TBL (table lookup and interpolate)

• ETBL (extended table lookup and interpolate)

• EMACS (extended multiply and accumulate signed 16-bit by 16-bit to 32-bit)

For higher resolution fuzzy programs, the fast extended precision math instructions in

the CPU12 are also beneficial.

 Flexible indexed addressing modes help simplify access to fuzzy logic data structures

stored as lists or tabular data structures in memory.

A microcontroller-based fuzzy logic control system has two parts:

• A fuzzy inference kernel which is executed periodically to determine system outputs

based on current system inputs.

• A knowledge base which contains membership functions and rules.

35

Figure 2.8 Block Diagram of a Fuzzy Logic System.

The knowledge base can be developed by an application expert without any

microcontroller programming experience. Membership functions are simply expressions

of the expert‘s understanding of the linguistic terms that describe the system to be

controlled. Rules are ordinary language statements that describe the actions a human

expert would take to solve the application problem. Rules and membership functions

can be reduced to relatively simple data structures (the knowledge base) stored in non-

volatile memory. A fuzzy inference kernel can be written by a programmer who does

not know how the application system works. The only thing the programmer needs to

do with knowledge base information is store it in the memory locations used by the

kernel.

36

2.4.1 Fuzzification (MEM)

During the fuzzification step, the current system input values are compared against

stored input membership functions to determine the degree to which each label of each

system input is true. This is accomplished by finding the y value for the current input

value on a trapezoidal membership function for each label of each system input.

The MEM instruction in the CPU12 performs this calculation for one label of one

system input. To perform the complete fuzzification task for a system, several MEM

instructions must be executed, usually in a program loop structure. Figure 2.9 shows a

system of three input membership functions, one for each label of the system input.

The x-axis of all three membership functions represents the range of possible values of

the system input. The vertical line through all three membership functions represents a

specific system input value. The y-axis represents degree of truth and varies from

completely false ($00 or 0 percent) to completely true ($FF or 100 percent).

The y-value where the vertical line intersects each of the membership functions is the

degree to which the current input value matches the associated label for this system

input. For example, the expression ―temperature is warm‖ is 25 percent true ($40). The

value $40 is stored to a random-access memory (RAM) location and is called a fuzzy

input (in this case, the fuzzy input for ―temperature is warm‖). There is a RAM location

for each fuzzy input (for each label of each system input). When the fuzzification step

begins, the current value of the system input is in an accumulator of the CPU12, one

index register points to the first membership function definition in the knowledge base,

and a second index register points to the first fuzzy input in RAM. As each fuzzy input

is calculated by executing a MEM instruction, the result is stored to the fuzzy input and

both pointers are updated automatically to point to the locations associated with the next

fuzzy input. The MEM instruction takes care of everything except counting the number

of labels per system input and loading the current value of any subsequent system nputs.

The end result of the fuzzification step is a table of fuzzy inputs representing current

system conditions.

37

Figure 2.9 Fuzzification mecanism with the HC12 microcontroller.

38

2.4.2 Rule Evaluation (REV and REVW)

Rule evaluation is the central element of a fuzzy logic inference program.

This step processes a list of rules from the knowledge base using current fuzzy input

values from RAM to produce a list of fuzzy outputs in RAM. These fuzzy outputs can

be thought of as raw suggestions for what the system output should be in response to the

current input conditions. Before the results can be applied, the fuzzy outputs must be

further processed, or defuzzified, to produce a single output value that represents the

combined effect of all of the fuzzy outputs. The CPU12 offers two variations of rule

evaluation instructions. The REV instruction provides for unweighted rules (all rules are

considered to be equally important). The REVW instruction is similar but allows each

rule to have a separate weighting factor which is stored in a separate parallel data

structure in the knowledge base. In addition to the weights, the two rule evaluation

instructions also differ in the way rules are encoded into the knowledge base.

An example of a typical rule is:

If temperature is warm and pressure is high, then heat is (should be) off.

The antecedent portion of the rule is a statement of input conditions and the consequent

portion of the rule is a statement of output actions. The antecedent portion of a rule is

made up of one or more (in this case two) antecedents connected by a fuzzy and

operator. Each antecedent expression consists of the name of a system input, followed

by a label name. The label must be defined by a membership function in the knowledge

base. Each antecedent expression corresponds to one of the fuzzy inputs in RAM. Since

and is the only operator allowed to connect antecedent expressions, there is no need to

include these in the encoded rule. The antecedents can be encoded as a simple list of

pointers to (or addresses of) the fuzzy inputs to which they refer.

The consequent portion of a rule is made up of one or more (in this case one)

consequents. Each consequent expression consists of the name of a system output,

followed by is, and followed by a label name. Each consequent expression corresponds

to a specific fuzzy output in RAM. Consequents for a rule can be encoded as a simple

list of pointers to (or addresses of) the fuzzy outputs to which they refer.

The complete rules are stored in the knowledge base as a list of pointers or addresses of

fuzzy inputs and fuzzy outputs. For the rule evaluation logic to work, there must be

some means of knowing which pointers refer to fuzzy inputs and which refer to fuzzy

outputs.

39

There also must be a way to know when the last rule in the system has been reached.

The important method used in the CPU12, is to mark the end of the rule list with a

reserved value, and separate antecedents and consequents with another reserved value.

This permits any number of rules, and allows each rule to have any number of

antecedents and consequents, subject to the limits imposed by availability of system

memory. Two mathematical operations take place during rule evaluation.

The fuzzy and operator corresponds to the mathematical minimum operation and the

fuzzy or operation corresponds to the mathematical maximum operation. The fuzzy and

is used to connect antecedents within a rule.

The fuzzy or is implied between successive rules. Before evaluating any rules, all fuzzy

outputs are set to zero (meaning not true at all).

As each rule is evaluated, the smallest (minimum) antecedent is taken to be the overall

truth of the rule. This rule truth value is applied to each consequent of the rule (by

storing this value to the corresponding fuzzy output) unless the fuzzy output is already

larger (maximum).

2.4.3 Defuzzification (WAV)

The final step in the fuzzy logic program combines the raw fuzzy outputs into a

composite system output. Unlike the trapezoidal shapes used for inputs, the CPU12

typically uses singletons for output membership functions. As with the inputs, the x-axis

represents the range of possible values for a system output. Singleton membership

functions consist of the x-axis position for a label of the system output. Fuzzy outputs

correspond to the y-axis height of the corresponding output membership function.

The WAV instruction calculates the numerator and denominator sums for weighted

average of the fuzzy outputs according to the formula:

Where n is the number of labels of a system output, are the singleton positions from

the knowledge base, and are fuzzy outputs from RAM. The final divide is performed

with a separate EDIV instruction placed immediately after the WAV instruction.

Before executing WAV, an accumulator must be loaded with the number of iterations

(n), one index register must be pointed at the list of singleton positions in the knowledge

base, and a second index register must be pointed at the list of fuzzy outputs in RAM.

40

If the system has more than one system output, the WAV instruction is executed once

for each system output.

2.4.4 Example

The aim of this example is to control the greenhouse windows depending on

temperature and humidity inside it.

Our fuzzy logic controller is denoted by two inputs (the temperature (T) and the

humidity (H)) and one output (the current (I)).

Its type is SUGENO fuzzy logic controller.

 T FLC

 (SUGENO)

-The inputs:

Temperature (T) = {cold (C), hot (H), UT=[17, 20], trapezoidal shape figure 2.10}

Humidity (H) = {dry (D), damp (Da), UH=[54 ,60],trapezoidal shape figure 2.11}.

-The output:

u(t)={off, on, 2, 3, singleton, figure 2.12}.

Figure2. 10 Temperature membership functions.

T

H

I

41

Figure2. 11 Humidity membership functions

Figure2.12 Current output.

Inference mechanism is: min max.

Inference matrix is summarized in the following table:

Table 2.1 Inference matrix.

 T Cold (C) Hot (H)

Dry (D) Off Off

Damp(Da) Off On

H

42

-That means that we have four rules:

Rule 1: if T is Cold and H is Dry than the Current Off.

Rule 2: if T is Cold and H is Damp than the Current Off.

Rule 3: if T is Hot and H is Dry than the Current Off.

Rule 4: if T is Hot and H is Damp than the Current On.

-The program in hc12 compact will be showing in the annex B

2.5 CONCLUSION

The HC12 compact module is a special microcontroller using to implement

fuzzy logic algorithm by a special fuzzy logic instructions as MEM, REV, and WAV.

43

Chapter 3 Theoretical study of the inverted

pendulum and project equipment

3.1 Introduction

The aim of this chapter is to make the mechanical study of an inverted pendulum

in order to show its nonlinearity and instability and to show all project components.

3.2 Modeling the inverted pendulum

An inverted pendulum is a classic control problem. The process is nonlinear and

unstable with one input signal and several output signals.

The aim is to balance a pendulum vertically on a motor driven wagon

Figure3. 1 inverted pendulum's force representation.

44

With:

M: platform weight.

m: pendulum weight.

x:position.

Θ:pendulum angle.

Summing the forces in the Free Body Diagram of the car in the horizontal direction, we

get the following equation of motion:

 =F….. (3.1)

The force exerted in the horizontal direction due to the moment on the pendulum is

determined as follows:

Component of this force in the direction of N is:

The component of the centripetal force acting along the horizontal axis is as follows:

Component of this force in the direction of N is

Summing the forces in the Free Body Diagram of the pendulum in the horizontal

Direction, we get an equation for N:

 ….. (3.5)

If we substitute this equation (3.2) into the first equation (3.1) we get the first equation

of motion for this system:

 … (3.6)

To get the second equation of motion, sum the forces perpendicular to the pendulum.

This axis is chosen to simplify mathematical complexity. Solving the system along this

axis ends up saving a lot of algebra. Just as the previous equation is obtained, the

vertical components of those forces are considered here to get the following equation:

 … (3.7)

……….. (3.2)

……….. (3.3)

……….. (3.4)

45

To get rid of the P and N terms in the equation above, sum the moments around the

centroid of the pendulum to get the following equation:

… (3.8)

Combining these last two equations, we get the second dynamic equation:

… (3.9)

The set of equations completely defining the dynamics of the inverted pendulum are:

 … (3.6)

… (3.9)

These two equations are non-linear and need to be linearized for the operating range.

Since the pendulum is being stabilized at an unstable equilibrium position, which is π

radians from the stable equilibrium position, this set of equations should be linearized

about .

Assume that: ., (where represents a small angle from the vertical upward

direction). Therefore , , and .

After linearization the two equations of motion become (u represents the input):

 … (3.10)

… (3.11)

To obtain the transfer function of the linearized system equations analytically, we must

first take the Laplace transform of the system equations.

The Laplace transforms are:

So we obtain:

Then, substituting into the second equation will yield:

Re-arranging, the transfer function is:

46

where :

From the transfer function above it can be seen that there is both a pole and a zero at the

origin. These can be canceled and the transfer function becomes:

The transfer function can thus be simplified as:

3.3 Project Hardware tools

3.3.1 Introduction

In this section we will describe the hardware part of our project. As stated above

the aim of this work is to test an FLC controller applied to an inverted pendulum. The

proposed setup consists of a cart moving forward and backward on top of which the axis

of the pendulum will be fixed. The moving platform is equipped with two DC motors

and a caster wheel as shown in figure 3.2. To supply these motors with the right power,

at each instant, a double H-Bridge whose inputs are connected to an arduino type board

that is used to generate the PWM signals used to control the speed and direction of both

motors. This board gets the duty cycle of these PWMs from the HC12 board after their

computation by the FLC controller. The position angle of the pendulum is measured

through a potentiometer fixed so as to minimize friction and distortion.

47

Figure3. 2 the robot

3.3.2 Mechanical and electrical tools

The overall hardware setup consists of the following parts:

a HC12 compact

It is a controller module from MOTOROLA which represents the controller

part and we used it to implement the FLC algorithm.

Figure3. 3 HC12 compact

48

b The Arduino UNO interface board

This is an ARDUINO type board used here just to generate the PWM signals

to the DC motor.

Figure3. 4 Arduino UNO

c EMG30 DC motors

The EGM30 (encoder, motor, gearbox 30:1) is a 12v motor fully equipped

with encoders and a 30:1 reduction gearbox.

It is ideal for small or medium robotic applications, providing cost effective

drive and feedback for the user. It also includes a standard noise suppression

capacitor across the motor windings.

Figure 3. 5 EMG30 DC motor.

49

- Specification

 Rated voltage 12v.

 Rated torque 1.5kg/cm.

 Rated speed 170rpm.

 Rated current 530mA.

 No load speed 216.

 No load current 150mA.

 Stall Current 2.5A.

 Rated output 4.22W.

 Encoder counts per output shaft turn 360.

d Potentiometer

Potentiometers are good position sensors. In our project we used potentiometer in order

to measure, at each instant, the pendulum position. A potentiometer is a type of variable

resistor that is used in circuits having low power. They are used to divide voltage and

they come with three terminals.

Figure3. 6 Basic Potentiometer Construction

The resistance between A and C is constant and the value of the potentiometer. The

resistance between A and B, B and C changes according to the position of the wiper.

e The robot platform

This the mobile part on which we make the inverted pendulum, it‘s made of:

- Two wheels driven by the EMG30 dc motor rotate forward and backward depending

on the control signal

- A caster wheel.

50

Figure3. 7 Robot platforme

f Battery

A 12 volt battery of 4.5 amps to supply the two dc motors through the power board and

control boards (HC12 and Arduino).

g Arduino UNO power board

Between the controller (hc12 microcontroller) and the actuators (the EMG 30 dc

motors) we need a power board ,the following schematic represents the power board

used in the project which is made of L298 dual full bridge driver.

Figure 3. 8 Arduino UNO power board

51

Figure 3.9 power board schematic.

- The L298 is a high voltage, high current dual full-bridge driver designed to accept

standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and

stepping motors.

Two enable inputs are provided to enable or disable the device independently of the

input signals.

Figure 3. 10 The block diagram of the L298.

52

Figure 3. 11 The Pin connections of L298.

3.4 Conclusion

To achieve the pendulum stability, many tools and equipment were used as the platform

and its component, the Arduino power board, a potentiometer sensor, an Arduino UNO

microcontroller, a HC12 compact module microcontroller, Two EMG30 DC motors.

53

Chapter 4 Project synthesis and results

analyzes

4.1 Introduction

The most important part of our project will be discussed in this chapter. This will

include the experimental results and the problems we faced to make the overall system

working together.

4.2 Choice of the FLC algorithm parameters

The FLC parameters have chosen as follows. First we choose the following

configuration:

-inputs:

 error={negative(N),zero(Z),positive(P),U [-7,7],trapezoidal}.

derror={negative(N),zero(Z),positive(P),U [-9,9],trapezoidal}.

-output:

control={negative big(NB), negative(N),zero(Z),positive(P), positive big(PB),-5,

-2,0,2,5,signeleton}.

The inference mechanism: min-max.

54

Table4. 1 Inference matrix.

That means that we have nine rules:

Rule 1:if error is negative (N) and derror is negative (N) then the of control signal is

negative big.(NB)

Rule 2:if error is negative (N) and derror is zero(Z) than the signal of control is

negative (N).

Rule 3:if error is negative (N) and derror is positive(P) than the signal of control is

negative big (NB).

Rule 4:if error is zero (Z) and derror is negative(N) than the signal of control is positive

big(PB).

Rule 5:if error is zero (Z) and derror is zero(Z) than the signal of control is zero(Z).

Rule 6:if error is zero (Z) and derror is positive(P) than the signal of control is negative

big(NB).

Rule 7:if error is positive (P) and derror is negative (N)than the signal of control is

positive big(PB).

Rule 8:if error is positive(P) and derror is zero(Z) than the signal of control is

positive(P).

Rule 9:if error is positive (P) and derror is positive(P) than the signal of control is

negative big.

 error

derror

Negative (N) Zero(Z) Positive (P)

Negative (N) NB PB PB

Zero(Z) N Z P

Positive (P) NB NB NB

55

4.3 design of the fuzzy logic controller in hc12 compact

As we say in chapter two, we used the fuzzy logic instruction of HC12 to build the

fuzzy logic controller like: MEM, REV, etc ….

 The first step(knowledge base) :

-The error: is defined by deference between the reference voltage and the accelerometer

voltage.

-The derror: is defined by deference between the new value and the last value of error.

Then in hc12 we denote membership functions, in this step we crash with a problem of

the negative value in the discourse universe because in the microprocessor the range of

discourse universe can varies from $00 to $FF

To solve this problem we add a positive value to the value of discourse universe so we

obtain a positive discourse universe.

-For the output, the same problem as the input (negative values) and the same way to

solve this problem.

 The second step (fuzzification)

We put the first input address in an accumulator, the first membership function

definition in the knowledge base is pointed by an index register and the first fuzzy input

in RAM is pointed by another index register, finally we use the MEM instruction.

 The third step (rule evaluation):

in the RAM we define the nine rules, than we point the first index register at the first

rule address and the second index register at the fuzzification output address ,we load

the accumulator A with $FF than finally we used REV instruction.

 The final step (the defuzzification):

We point the first index register with the address of fuzzy out(output of rules evaluation

step), the second index register with the address of the output singleton ,than we use

WAV and EDIV instructions in order to obtain the result of deffuzification .

56

4.4 Using ARDUINO UNO as generator of PWM signal

After the implementation of the algorithm in HC12 microcontroller we send the control

signal using one of the general purpose ports (Inputs/Outputs).

The ARDUINO UNO received this signal then we tried to find relation between it and

the duty cycle of the PWM signal.

 Many tests were done to improve the system response.

4.5 Analyze of the results

When we made the first test we observe that the controller give a wrong results because

a small variation in the pendulum doesn‘t change the robot speed so the robot cannot

check the pendulum stability, because of that we change the controller design (choose

another universe of discourse and another membership functions).

In the second test we choose as a universe of discourse the following configuration:

the error : U [-5,5], the derror : U [-7,7] and the control : U {-2,-1,0,1,2}.

For this configuration and after many tests we found that the system response did not

give a really good response, but better than the first results when the variation of 10°

change the robot speed but always the system response isn‘t enough.

For the third test made the following configuration:

the error: U [-1, 1], the derror: U [-1.5, 1.5] and the control: U {-2,-1, 0, 1, 2}.

After all those tests, we can consider the third fuzzy logic controller as a good controller

for our system due to its results.

57

Conclusion

 The main task of our project was to implement a fuzzy logic type controller on

an embedded system. After having carried out many experiments on the constructed

mobile platform we have come to the following conclusions; Even if from the

theoretical point of view everything seems quite simple using simulation tools, this is

not the case when it comes to implement the same results on an actual hardware. Indeed

many problems appear especially when dealing with mechanical construction, where

friction and other misalignment of some mechanical parts are sources of many

difficulties which make this implementation even more complex. As stated previously,

the problem of the well-known inverted pendulum has been the subject of the present

thesis. Despite the fact that the same problem has been extensively studied by many

scientists we did not come across a similar architecture as the one we adopted. This

choice comes from the fact that when using fuzzy logic it not necessary to have an

analytical model of the process under control, and our aim was to test this assumption

on an experimental platform. This does not mean that very good results can obtained

easily but at the price of the time it takes to test many possibilities before the final

choice of the controller parameters (universe of discourse, membership functions …).

In our case we have been able to keep the proposed the pendulum in a near

vertical position. Considering the difficulties we stated above it would have very

difficult to expect a perfect result. The most important result that we are sure about is

that this project has provided us considerable experience not only on the practical issues

that are faced when it comes to design a hardware system but also gave us more

confidence for eventually getting involved in similar projects in the future.

As an extension for the present work we have to insist on the improvement of

the mechanical aspect of the hardware platform and using more powerful motors, this

should make it less difficult to test similar algorithms using the same electronics and

firmware that implements the actual controller.

58

Annexe A

-CPU Registers:

-Accumulators A and B:

Accumulators A and B are general-purpose 8-bit accumulators that contain operands

and results of arithmetic calculations or data manipulations.

 Bit 7 6 5 4 3 2 1 Bit 0

A7 A6 A5 A4 A3 A2 A1 A0

Reset: Unaffected by reset

 Bit 7 6 5 4 3 2 1 Bit 0

A7 A6 A5 A4 A3 A2 A1 A0

Reset: Unaffected by reset

-Accumulators D:

Accumulator D is the concatenation of accumulators A and B. Some instructions treat

the combination of these two 8-bit accumulators as a 16-bit double accumulator.

-index register X and Y:

Index registers X and Y are used for indexed addressing. Indexed addressing adds the

value in an index register to a constant or to the value in an accumulator to form the

effective address of the operand.

Index registers X and Y can also serve as temporary data storage locations stack

pointer:

The stack pointer (SP) contains the last stack address used. The CPU12 supports an

automatic program stack that is used to save system context during subroutine calls and

interrupts.

59

The stack pointer can also serve as a temporary data storage location or as an index

register for indexed addressing.

-program counter

The program counter contains the address of the next instruction to be executed.

The program counter can also serve as an index register in all indexed addressing modes

except autoincrement and autodecrement.

-condition code register:

 Bit 7 6 5 4 3 2 1 Bit 0

S X H I N Z V C

Reset: 1 1 u 1 u u u u

u = Unaffected

S — Stop Disable Bit.

Setting the S bit disables the STOP instruction.

X — XIRQ Interrupt Mask Bit.

Setting the X bit masks interrupt requests from the XIRQ pin.

H — Half-Carry Flag.

The H flag is used only for BCD arithmetic operations. It is set when an ABA, ADD, or

ADC instruction produces a carry from bit 3 of accumulator A. The DAA instruction

uses the H flag and the C flag to adjust the result to correct BCD format.

I — Interrupt Mask Bit.

Setting the I bit disables maskable interrupt sources.

N — Negative Flag.

The N flag is set when the result of an operation is less than 0.

Z — Zero Flag.

The Z flag is set when the result of an operation is all 0s.

V — two‘s Complement Overflow Flag.

The V flag is set when a two‘s complement overflow occurs.

C — Carry/Borrow Flag.

The C flag is set when an addition or subtraction operation produces a carry or borrows.

60

-SCI PORT:

-SCI 1 Baud Rate Register High (SC1BDH): $00C8

 Bit 7 6 5 4 3 2 1 Bit 0

BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8

Reset: 0 0 0 0 0 0 0 0

-SCI 1 Baud Rate Register low (SC1BDl): $00C9

 Bit 7 6 5 4 3 2 1 Bit 0

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

Reset: 0 0 0 0 0 1 0 0

-SCI 1 control register 1 (SC1CR1): $00CA

 Bit 7 6 5 4 3 2 1 Bit 0

LOOPS WOMS RSRC M WAKE ILT PE PT

Reset: 0 0 0 0 0 0 0 0

-SCI 1 control register 2 (SC1CR2) : $00CB

 Bit 7 6 5 4 3 2 1 Bit 0

TIE TCIE RIE ILIE TE RE RWU SBK

Reset: 0 0 0 0 0 0 0 0

-SCI 1 status register 1 (SC1SR1): $00CC

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Write

Reset: 1 1 0 0 0 0 0 0

TDRE TC RDRF IDLE OR NF FE PF

61

-SCI 1 status register 2 (SC1SR2): $00CD

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Write

Reset: 0 0 0 0 0 0 0 0

-SCI 1 data register high (SC1DRH) : $00CE

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Write

Reset: unaffected by reset

-SCI 1 data register low (SC1DRl) : $00CF

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Write

Reset: unaffected by reset

-ATD:

-ATD control registers 0 (ATDCTL0) ($0060)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD control register 1 (ATDCTL1) ($0061)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 RAF

R8

 T8

0 0 0 0 0 RAF

R7 R6 R5 R4 R3 R2 R1 R0

T7 T6 T5 T4 T3 T2 T1 T0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

62

-ATD control register 2 (ATDCTL2) ($0062)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD control registers 3 (ATDCTL3) ($0063)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD control registers 4 (ATDCTL4) ($0064)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 1

-ATD control registers 5 (ATDCTL5) ($0065)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD status registers 1 (ATDSTAT1) ($0066)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

ADPU AFFC AWAI 0 0 0 ASCIE ASCIF

0 0 0 0 0 0 FRZ1 FRZ0

0 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0

0 S8CM SCAN MULT CD CC CB CA

SCF 0 0 0 0 CC2 CC1 CC0

63

-ATD status registers 2 (ATDSTAT2) ($0067)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD test registers 1 (ATDCTEST1) ($0068)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD test registers 2 (ATDCTEST2) ($0069)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-port AD data input register (PORTAD) ($006F)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD result register0 (ADR0H) ($0070)

 Bit 7 6 5 4 3 2 1 0

Read

Reset: 0 0 0 0 0 0 0 0

CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0

SAR9 SAR8 SAR7 SAR6 SAR5 SAR4 SAR3 SAR2

SAR1 SAR0 RST TSTOUT TST3 TST2 TST1 TST0

PAD7 PAD6 PAD5 PAD4 PAD3 PAD2 PAD1 PAD0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

64

-ATD result register1 (ADR1H) ($0072)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD result register2 (ADR2H) ($0074)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD result register3 (ADR3H) ($0076)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD result register4 (ADR4H) ($0078)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD result register5 (ADR5H) ($007A)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

65

-ATD result register6 (ADR6H) ($007C)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-ATD result register7 (ADR7H) ($007E)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-Port AD Data Register ($006F)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-Port J Data Direction Register (DDRJ) ($0029)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-Port J Data Register (PORTJ) ($0028)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

ADRxH7 ADRxH6 ADRxH5 ADRxH4 ADRxH3 ADRxH2 ADRxH1 ADRxH0

PAD7 PAD6 PAD5 PAD4 PAD3 PAD2 PAD1 PAD0

DDRJ7 DDRJ6 DDRJ5 DDRJ4 DDRJ3 DDRJ2 DDRJ1 DDRJ0

PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0

66

-Port H Data Direction Register ($0025) (DDRH)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

-Port H Data Register (PORTH) ($0024)

 Bit 7 6 5 4 3 2 1 Bit 0

Read

Reset: 0 0 0 0 0 0 0 0

DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0

PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0

67

Annexe B

-fuzzy logic implementation example:

//1-temperature//

//1st input Cold //

asm("LDAB #$11");

asm("STAB $1000");

asm("LDAB #$13");

asm("STAB $1001");

asm("LDAB #$ff");

asm("STAB $1002");

asm("LDAB #$ff");

asm("STAB $1003");

//1st input Hot //

asm("LDAB #$12");

asm("STAB $1004");

asm("LDAB #$14");

asm("STAB $1005");

asm("LDAB #$ff");

asm("STAB $1006");

asm("LDAB #$ff");

asm("STAB $1007");

//2-humidité//

//1st input Dry //

asm("LDAB #$35");

asm("STAB $1008");

asm("LDAB #$3a");

asm("STAB $1009");

asm("LDAB #$7f");

68

asm("STAB $100a");

asm("LDAB #$7f");

asm("STAB $100b");

//2nd input Damp //

asm("LDAB #$38");

asm("STAB $100c");

asm("LDAB #$3c");

asm("STAB $100d");

asm("LDAB #$7f");

asm("STAB $100e");

asm("LDAB #$7f");

asm("STAB $100f");

asm("LDAA #$12"); //the input T=18°C//

asm("LDX #$1000"); //temperature fuzzification //

asm("LDY #$1020");

asm("LDAB #2");

asm("loop_temp: MEM");

asm("DBNE B,loop_temp");

asm("LDAA #$37"); // the input H=55% //

asm("LDAB #2"); //humidity fuzzification //

asm("loop_temp1: MEM");

asm("DBNE B,loop_temp1");

//rule evaluation//

asm("ldab #4");

asm("RULE_EVAL: CLR 1,Y+");

asm(" DBNE B,RULE_EVAL");

//rules //

//first rule//

asm("ldy #$1020");

asm("ldaa #$00");

asm("staa $1050");

asm("ldaa #$02");

asm("staa $1051");

asm("ldaa #$fe");

69

asm("staa $1052");

asm("ldaa #$04");

asm("staa $1053");

asm("ldaa #$fe");

asm("staa $1054");

//second rule//

asm("ldaa #$00");

asm("staa $1055");

asm("ldaa #$03");

asm("staa $1056");

asm("ldaa #$fe");

asm("staa $1057");

asm("ldaa #$05");

asm("staa $1058");

asm("ldaa #$fe");

asm("staa $1059");

//third rule//

asm("ldaa #$01");

asm("staa $105a");

asm("ldaa #$02");

asm("staa $105b");

asm("ldaa #$fe");

asm("staa $105c");

asm("ldaa #$06");

asm("staa $105d");

asm("ldaa #$fe");

asm("staa $105e");

//fourth rule//

asm("ldaa #$01");

asm("staa $105f");

asm("ldaa #$03");

asm("staa $1060");

asm("ldaa #$fe");

asm("staa $1061");

70

asm("ldaa #$07");

asm("staa $1062");

asm("ldaa #$ff");

asm("staa $1063");

asm("ldx #$1050");

asm("ldy #$1020");

asm("ldaa #$ff");

asm("rev");

//current//

asm("ldaa #$02");

asm("staa $1070");

asm("ldaa #$02");

asm("staa $1071");

asm("ldaa #$02");

asm("staa $1072");

asm("ldaa #$03");

asm("staa $1073");

//defuzzification //

asm("ldy #$1024")

asm("ldx #$1070");

asm("ldab #4");

asm("wav");

asm("ediv");

asm("sty $1080");//current value//

}

71

Bibliography

[1] Freescale semiconductor: 'MC68HC812A4 DATASHEET', Freescale

semiconductor, 2005/2006.

[2] ELMICRO COMPUTER: 'HC12compact user manual', ELMICRO COMPUTER,

2008.

[3] Guanrong Chen, Trung Tat Pham: 'Introduction to fuzzy set, Fuzzy logic and Fuzzy

control systems‘, CRC Press, 2001.

[4] Khalil Sultan: 'Inverted Pendulum, Analysis, Design and Implementation', 2002.

