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Abstract 

Acoustic scene classification (ASC) refers to the identification of the environment in 

which audio excerpts have been recorded, which associates a semantic label to each audio 

recording. This task has drawn lots of attention during the past several years as a result of 

machines and electronics such as smartphones, autonomous robots, or security systems 

acquiring the ability to perceive sounds. This work aims to classify 10 common indoor and 

outdoor locations using environmental sounds. To accomplish the ensuing task, we have 

performed multiple experiments using a dataset which consists of 14400 sound files. The goal 

is to explore three different aspects of an ASC system: deep learning architecture, feature 

extraction technique and data augmentation method. In particular, two deep neural networks 

have been employed in the construction of our systems namely: Residual Neural Network 

(ResNet) and Alex Neural Network (AlexNet), along with a combination of feature 

representations based on signal processing techniques. Specifically, 3 feature sets have been 

extracted:  Log-Mel energies, ∆Log-Mel energies and ∆∆Log-Mel energies.  Moreover, this 

work deeply explores the use of Mixup data augmentation method and the effects of varying 

its hyperparameters in reducing the chance of overfitting. A series of thorough experimental 

comparisons and statistical tests have been performed with regards to evaluating our systems. 

The obtained results indicate that a proper choice of the feature set is crucial in view of the deep 

learning architecture. Additionally, statistical testing has shown the significant impact of mixup 

data augmentation technique on the predictive performance of our models, as systems trained 

on augmented data have a considerably better generalization ability compared to the 

counterpart systems trained on original data. Moreover, we have found that a well-tuned mixup 

hyperparameter α significantly improves the classification system performance. 

Keywords: Acoustic Scene Classification, Feature Extraction, Data Augmentation, Deep 

Learning, Mixup, Statistical Tests.  

 

 

 



 

 

 

Résumé  

La classification de scène sonore consiste à identifier l'environnement dans lequel des 

extraits audios ont été enregistrés, et à associer un label sémantique à chaque enregistrement 

audio. Cette tâche a attiré beaucoup d'attention au cours des dernières années en raison de 

l'acquisition de la capacité de perception des sons par les machines et les appareils 

électroniques tels que les smartphones, les robots autonomes ou les systèmes de sécurité.  Ce 

travail vise à classer 10 lieux communs intérieurs et extérieurs en utilisant les sons de 

l'environnement. Pour accomplir la tâche qui s'ensuit, nous avons réalisé de multiples 

expériences en utilisant une base de données constitué de 14400 fichiers sonores. Le but est 

d’explorer trois aspects différents d'un système de classification des scènes sonores : 

architecture d'apprentissage profond, technique d'extraction de caractéristiques et méthode 

d'augmentation des données. En particulier, deux réseaux neuronaux profonds ont été utilisés 

dans la construction de nos systèmes, à savoir le réseau neuronal résiduel (ResNet) et le réseau 

de neurones convolutif Alex (AlexNet), ainsi qu'une combinaison de représentations de 

caractéristiques basées sur des techniques de traitement du signal. Plus précisément, trois 

ensembles de caractéristiques ont été extraits :   les Log-Mel énergies, ∆Log-Mel énergies et 

∆∆Log-Mel énergies.  En outre, ce travail explore l'utilisation de la méthode d'augmentation 

des données Mixup et les effets de la variation de ses hyperparamètres pour réduire le risque 

de surapprentissage. Une série de comparaisons expérimentales et de tests statistiques 

approfondis ont été réalisés dans le but d'évaluer nos systèmes. Les résultats obtenus indiquent 

qu'un choix approprié de l'ensemble des fonctionnalités est crucial en tenant compte de 

l'architecture d'apprentissage approfondie. En outre, les tests statistiques ont montré l'impact 

significatif de la technique d'augmentation des données Mixup sur la performance prédictive 

de nos modèles, car les systèmes formés sur des données augmentées ont une capacité de 

généralisation considérablement meilleure que les systèmes homologues formés sur des 

données originales. De plus, nous avons constaté qu'un hyperparamètre du Mixup bien réglé α 

améliore considérablement les performances du système de classification. 

Mots-clés: Classification des scènes sonores, Extraction de caractéristiques, Augmentation des 

données, Apprentissage approfondi, Mixup, Tests statistiques.  



 

 

 

ملخص   

شير تصنيف المشهد الصوتي إلى تعريف البيئة التي تم فيها تسجيل ي

مقتطفات صوتية، والتي تربط تسمية دلالية بكل تسجيل صوتي. حازت هذه 

من   الكثير  نتيجة المهمة  الماضية  العديدة  السنوات  خلال  الاهتمام 

الروبوتات  أو  الذكية  الهواتف  مثل  والإلكترونيات  الآلات  اكتساب 

المستقلة أو أنظمة الأمان القدرة على إدراك الأصوات. يهدف هذا العمل 

مواقع داخلية وخارجية شائعة باستخدام الأصوات البيئية.   10إلى تصنيف  

جرينا تجارب متعددة لاستكشاف ثلاثة جوانب مختلفة لإنجاز هذه المهمة، أ

استخراج  تقنية  العميق،  التعلم  بنية  الصوتي:  المشهد  تصنيف  لنظام 

الميزات وطريقة زيادة البيانات. على وجه الخصوص، تم استخدام شبكتين 

عصبيتين عميقتين في بناء أنظمتنا وهما: الشبكة العصبية المتبقية 

(ResNetوالشبكة العص )( بية التلافيفيةAlexNet  جنبًا إلى جنب مع ،)

مجموعة من عروض الميزات القائمة على تقنيات معالجة الإشارات. على 

وطاقات   Log-Melمجموعات ميزات: طاقات    3وجه التحديد، تم استخراج  

Log-Me    وطاقات ∆Log-Mel علاوة على ذلك، يبحث هذا العمل في طريقة .∆∆

تأثيرات تغيير المعلمات الفائقة في تقليل و  Mixupزيادة البيانات  

التجريبية  المقارنات  من  سلسلة  إجراء  تم  الزائد.  التجهيز  فرصة 

تشير  أنظمتنا.  بتقييم  يتعلق  فيما  الإحصائية  والاختبارات  الشاملة 

لمجموعة  الصحيح  الاختيار  أن  إلى  عليها  الحصول  تم  التي  النتائج 

ة التعلم العميق. بالإضافة إلى الميزات أمر بالغ الأهمية في ضوء بني

ذلك، أظهر الاختبار الإحصائي التأثير الكبير لتقنية زيادة البيانات 

المختلطة على الأداء التنبئي لنماذجنا، حيث تتمتع الأنظمة المدربة 

بالأنظمة  مقارنة  بكثير  أفضل  تعميم  بقدرة  المعززة  البيانات  على 

 .المماثلة المدربة على البيانات الأصلية

زيادة  :المفاتيح  كلمات الميزة،  استخلاص  الصوتي،  المشهد  تصنيف 

 .، الاختبارات الإحصائيةMixupالبيانات، التعلم العميق، 
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INTRODUCTION  

1. Background and problem definition  

Environmental sounds are an immensely valuable modality in our day-to-day human lives 

as they complement the visual information that we acquire through perception [1]. We are 

constantly surrounded by environmental sounds on which we rely heavily to obtain important 

information about what is happening around us as a result of these sounds carrying a great 

number of clues. More broadly, sound contains various information that could indicate the 

sound sources, surrounding environment, music genres, possible dangers or even the emotions 

of a speaker; thus, playing a crucial part in our daily communication and interaction with the 

world. The task of recognizing sounds is not considered difficult for humans since we are able 

to discern and classify audio signals all the time without conscious effort [2]. However, 

automating the hearing task by developing robust systems capable of recognizing a wide range 

of sound events in realistic audio streams i.e. teaching machines to hear, is a complex task and 

can benefit humans in a broad range of fields. Such systems are known as sound scene 

recognition systems and have been attracting a continuously growing attention during the past 

years [3].

In smart cities or in automated surveillance of public spaces, an automated audio 

recognition system could infer events from audible information using audio sensors that are 

lower cost, require less networking bandwidth, consume less power, are potentially more robust 

and less easily obscured by weather, dust or pollution than video sensors [4].  Other relevant 

applications of such systems include auditory medical information monitoring [5], context-

aware services [6] and multimedia content analysis [7].  

The general framework for acoustic scene classification is usually categorized into two 

major steps. First, a 2D time-frequency representation of audio data is obtained via multiple 

signal processing-based methods. This representation is then used for extracting relevant 

features. Second, the extracted features are employed to achieve recognition using a 

classification model. One of the major challenges of acoustic scene classification is the complex 

and unstructured nature of environmental sounds.  
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Environmental sounds consist of various non-human and human sounds with a high 

degree of overlap. Compared with speech, environmental sounds are more diverse and span a 

wider range of frequencies, they are often less well-defined [3]. For example, there is no 

standard dictionary for environmental sound events analogous to sub-word dictionary 

phonemes in speech, and the duration of environmental sounds could vary widely. However, 

environmental sounds may include strong spectro-temporal signatures. Thus, it is important to 

consider non-stationary aspects of signal and capture its variation in both time and frequency 

domains i.e. the choice of proper feature sets during the feature extraction step is crucial [3].  

State of the art sound scene classification relies on deep neural network architectures to 

learn the associations between class labels and audio recordings within a dataset [8]. However, 

the complexity of these architectures arises another challenge for acoustic scene classification. 

Deep learning-based architectures are trained using a large number of parameters which makes 

them more prone to overfitting [9]. The easiest and most widely used approach to reduce 

overfitting is to employ larger datasets. As an alternative, data augmentation methods are 

currently used to improve the performance of neural networks by artificially enlarging the 

dataset using label-preserving transformation [3].  

2. Thesis contributions 

Although a great number of acoustic scene classification systems have been developed 

using a plethora of audio processing methods and machine learning paradigms, a review on the 

design and implementation pipeline of these systems with a comparative study using a recent 

dataset is required.  Moreover, a wide range of data augmentation techniques have been recently 

invoked in the development of acoustic scene classification systems. However, further research 

is still needed to properly assess the effects of the latter techniques on the performance of these 

systems. Motivated by these needs, we have designed and analyzed the behavior of multiple 

acoustic scene recognition systems. Additionally, we have conducted extensive experimental 

comparisons among the developed systems, our contribution to the area of acoustic scene 

classification are 5 folds: 

- We provide the proper guidelines to follow for developing and analyzing acoustic scene 

classification systems, along with a comprehensive description on conducting machine 

learning experiments. 
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- We conduct thorough and extensive experiments on acoustic scene recognition systems 

trained using a large-scale audio dataset. 

- We explore various deep neural network architectures and analyze the observed behavior 

of these architectures when trained on augmented/non-augmented data. 

- We analyze the importance of well-tuning the mixup hyperparameter α and its impact on 

the predictive capacity of the ASC systems. 

- We expand our research work by statistically comparing the developed audio classification 

systems using numerous tests. 

3. Thesis organization 

This thesis is categorized into two major parts. The first part reports the state-of-the-art 

notions that are necessary for understanding the ideas developed in this thesis. In Chapter 1, 

we cover some fundamentals behind sound signals. Specifically, we describe the various 

representations of sound signals and the most frequently used feature extraction techniques in 

literature. In Chapter 2, we review some relevant classification concepts, providing a brief 

description of machine learning, state-of-the-art deep learning architectures along with the 

evaluation metrics and statistical tests invoked in this work. The second half of this thesis 

describes the approach that we have chosen for constructing and evaluating acoustic scene 

recognition systems. We provide in Chapter 3, a detailed description of the experimental setup, 

hyperparameters tuning and evaluation procedure. In Chapter 4, we lay out the obtained results 

through performance tables and statistics-based plots and discuss these findings while 

employing robust statistical tests. Finally, we conclude by summarizing the contributions of 

this thesis, the lines of limitations and future work.   



 

 

 

 PART 1: PRINCIPLES OF ACOUSTIC SCENE 

CLASSIFICATION 

Throughout this part of the thesis, we present the fundamentals behind the ideas developed 

in our work. In Chapter 1, we introduce the essential notion of signals along with the acoustic 

features used to represent audio signals. We describe the elements which are required for the 

development of acoustic scene classification systems and highlight the importance of feature 

engineering to transform the signal into a better fitting representation for the acoustic scene 

classification task. Furthermore, we present the different feature extraction techniques that have 

been extensively invoked in experiments. In Chapter 2 of our thesis, we provide a 

comprehensive overview of the notion of machine learning along with the diverse methods and 

techniques used for the generation of systems specialized in the acoustic scene classification 

task. 

 

 

 

 

 

 

 

 



 

 

 

Chapter 1:  OVERVIEW OF SOUND 

SIGNALS 

1.1 Introduction  

Signal processing is defined as the manipulation of the properties of a specific signal to 

obtain another signal with more desirable properties. In the later part of the 20th century and 

along with the introduction of computers and their fast and tremendous growth, a number of 

researchers resorted to modeling and simulating various concepts of signal processing in their 

research endeavors using digital computers. These endeavors eventually led to what is known 

today as digital signal processing (DSP) [10]. During recent years, we have witnessed the 

increasing availability of audio content via numerous distribution channels both for commercial 

and non-profit purposes. The resulting wealth of data has inevitably highlighted the need for 

systems that are capable of analyzing the audio content in order to extract useful knowledge 

that can be consumed by users or subsequently exploited by other processing systems [11]. 

With the rapid growth of computing power in terms of speed and memory capacity, researchers 

aim to develop smart systems that are able to perform various tasks on the basis of the available 

data [10].

In this Chapter, we introduce a few fundamental concepts behind audio signal processing 

that will be required to perform our work. We commence by defining audio signals and the 

multiple characteristics of audio signals in Section 1.2-1.3. Section 1.4 describes the process 

of acquiring audio data for digital processing. In Section 1.5 we carry on outlining the various 

representations of audio signals. Preprocessing and feature extraction techniques are depicted 

in Sections 1.6 and 1.7. 

1.2 Audio signals  

A signal is defined as the representation of a quantity that varies in time. One of the 

concrete examples of a signal is an audio signal [12]. An audio signal is the representation of a 

sound which is a variation in air pressure. Specifically, it represents variations in air pressure 

over time. Producing a sound means creating a vibration, the created vibration results in an air 
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pressure disturbance, that is to say, the nearest particles to the sound's source will bounce off 

the particles close to them and so on, generating what is known as a sound wave. The vibration 

can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or 

rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a 

loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is 

audible to a human  listener [13]. The average human can hear frequencies in the range starting 

from 20 Hz all the way up to 15,000 Hz, although young children can sometimes hear sounds 

with frequencies up to 27,000 Hz [2]. 

1.3 Audio signals characteristics  

In order to explain the different elements that characterize an audio signal we will take the 

sound of a bell strike as an example. Striking a bell generates what is known as a periodic 

signal. After recording the sound generated by striking a bell and plot it, we get the 

representation shown in Figure 1.1 [12].  

The waveform that is shown in the Figure 1.1 is the representation of a periodic vibration, 

which simply means that there is a pattern that repeats itself over time. A periodic audio signal 

is characterized by the following components:  

CYCLE: a cycle refers to one repetition of the pattern within the sound signal. Figure 1.1 

shows three full repetitions of the pattern. The duration of each cycle is called the period. 

 

 
Figure 1.1: Plot of segment from a recording of a bell [3]. 
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PERIOD: period is the time required to complete one cycle of vibration. For example, Figure 

1.1 shows that 3 cycles are completed in 6.9𝑚𝑠, the period is 6.9𝑚𝑠 3𝑚𝑠⁄ , or 2.3𝑚𝑠. For 

speech applications, the most commonly used unit of measurement for period is the 

millisecond (𝑚𝑠) where:  

 1𝑚𝑠 =  1
1,000𝑠⁄ = 0.001𝑠. (1.1) 

 

FREQUENCY: frequency is defined as the number of cycles completed in one second. The 

unit of measurement for frequency is Hertz (Hz), and it is fully synonymous to the older 

and more straightforward term cycles per second (cps). Conceptually, frequency is simply 

the rate of vibration. Consequently, frequency is the single most important concept in 

hearing science. The formula for frequency is:  

 𝑓 = 1
𝑡⁄ , (1.2) 

 

where: 𝑓 represents the frequency in Hertz and 𝑡  represents the period in seconds. So, for 

our bell striking example, for a period of 0.0023𝑠: 

 𝑓 =  1
𝑡⁄ = 1

0.0023⁄ = 434.7 𝐻𝑧. (1.3) 

 

The frequency of the sound generated by striking a bell is about 435 Hz [2]. 

AMPLITUDE: the term amplitude refers to the magnitude of displacement of the particles in 

the air generated by the vibration. It is the magnitude of the air pressure disturbance [2]. On 

Figure 1.1 the amplitude is presented by the height of the waves which defines whether the 

volume of the sound is high or low [14].  

1.4 Audio data acquisition  

As we have mentioned earlier, sound is the result of a vibration that propagates in the form 

of waves through a medium such as air or water. These vibrations can be recorded by means of 

an electroacoustic transducer such as a microphone. A microphone is a device that measures 

the variations in air pressure caused by the vibrations, and generates an electrical signal that 

represents sound, it is called a transducer because they transduce, or convert, signals from one 



17 

 

 

CHAPTER 1: OVERVIEW OF AUDIO SIGNALS 

 

form to another [12]. The output generated by a microphone is represented under the form of 

an electric signal 𝑥(𝑡) where 𝑡 represents the time. In order to process the generated analog 

signals 𝑥(𝑡) with digital processors, the analog signal must be converted to digital. The process 

whereby analog signals are converted to digital signals involve a sampling and quantization 

procedure. It is then stored on a computer before further analysis [14].  

 

 

1.5 Audio signal sampling  

Sampling is a process that implies taking snapshots of an analog signal at a specific 

sampling rate or sampling frequency [15][16][17]. The sample rate is the number of samples 

taken per second [18]. Although any sampling frequency above 40 kHz would be adequate to 

capture the full range of audible frequencies, a widely used sampling rate is 44,100 Hz ( or 44.1 

kHz), which arose from the historical need to synchronize audio with video data [19]. If the 

sampling is performed at higher rates, it generates more samples and hence it creates a much 

larger demand for memory to store the samples [10]. 

1.6 Audio signal quantization  

In order for a signal to be suitable for treatment by numerical circuitry, it must first be 

represented in a numerical format, or quantized. That is, a continuous range of values is 

replaced by a limited set of values separated by discrete steps. Usually the number of steps is 

chosen to be a power of two, for the reason that it yields the most economical representation 

in binary digital electronics. Naturally, the quality of the approximation depends on the 

number of steps used to approximate the original signal [20].  

1.7 Audio signal representation  

The conversion from analog signal to digital signal generates what is known as the 

representation of sound in the time domain as shown in Figures 1.2-1.3. However, the time 

Figure 1.2: Digitization process of sound signals [3]. 
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domain representation of a sound signal, or waveform, is not easy to interpret [14]; these 

representations alone are insufficient to provide comprehensive information about sound 

signals [21]. Furthermore, it is nearly impossible, from a waveform, to identify or even localize 

sound events,  and  to  discriminate  between  sound [14]. As shown in Figures 1.2-1.3; without 

any knowledge about the recordings, the distinction between audio from an airport and audio 

from a bus is beyond the bounds of possibility. For that purpose, frequency-domain 

representations and time-frequency domain representations have been in use for years 

providing representations of the sound signals that are more in line with the human perception 

of sounds [22][14]. The sound signals are usually converted to the frequency-domain prior to 

any analysis. The frequency-domain representation of a signal can be obtained using the Fourier 

Transform [14]. 

  

  

 

1.8 The Fourier transform  

A sinusoid is a mathematical function that traces out the simplest repetitive motion in nature 

[2]. Any sound can be created by adding together an infinite number of these sinusoids [2]. This 

is the essence of Fourier synthesis [2]. To put this into context, any function can be generated 

from the summation of an infinite number of sinusoids of different frequencies and amplitudes 

[2]. The opposite of Fourier synthesis, Fourier analysis consists of decomposing a function 

into its component sinusoids. The Fourier transform is a mathematical way to go between the 

functional representation of a signal and its Fourier representation [2]. The Fourier 

representation of a signal shows the spectral composition of the signal. It contains a list of 

sinusoidal functions, identified by frequency, and each sinusoid has an associated amplitude 

(a) Airport in Barcelona. (b) Bus in Prague. 

Figure 1.3: Time-domain representation. 
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and phase. The phase of a signal is the start location of the sinusoid relative to some specific 

zero [2].  

1.9 The Short-Time Fourier transform  

The Fourier transform provides information about how much of each frequency is present 

in a signal. If the spectral content of the signal does not change much over time -stationarity of 

the signal-, then this works quite well [2]. However, if the signal changes over time, the Fourier 

transform will not be able to distinguish between the different changes in the spectral content. 

The short-time Fourier transform (STFT) is an attempt to fix the lack of time resolution in the 

classic Fourier transform [2]. 

The input data is broken into many small sequential pieces, called frames, and the Fourier 

transform is applied to each of these frames in succession. What is produced is a time-dependent 

representation, showing the changes in the spectrum as the signal progresses [2]. 

As a consequence, there is often a discontinuity, or break in the signal, at the frame 

boundaries. This introduces spectral components into the transform that are not present in the 

original signal i.e. spectral leakage. The solution to this problem is to apply a windowing 

function to the frame, which gently scales the amplitude of the signal to zero at each end, 

reducing the discontinuity at frame boundaries [2]. When these windowing functions are 

applied to a signal, it is clear that some information near the frame boundaries is lost. For this 

reason, a further improvement to the STFT is to overlap the frames [2]. When each part of the 

signal is analyzed in more than one frame, information that is lost at a frame boundary is picked 

up between the boundaries of the next frame [2]. 

The STFT allows for defining the linear-frequency spectrogram which is a 2D 

representation of a sound where energy in each frequency band is given as a function of time 

[14]. The spectrogram is then the matrix where each column is the modulus of the DFT of a 

sound signal frame [23][24].  

1.10 Audio pre-processing  

If needed, the audio data is pre-processed [23]. The   role of this step is to enhance certain 

characteristics of the signal for further analysis. This is achieved 

by  reducing  the  effects  of  noise  or  by emphasizing the target sounds in the signal [14]. 
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Knowledge about the recording conditions and characteristics of target sounds can be utilized 

in the pre-processing stage to enhance the signal [14]. In the case where the audio data is 

captured in non-uniform recording settings, down-mixing the audio signal into a fixed number 

of channels along with re-sampling it into fixed sampling frequency will result in converting 

the input data into a uniform format for further analysis [14]. After the pre-processing phase, 

the audio data is now appropriate to be used in the feature extraction phase.  

1.11 Feature extraction  

Most real-world data, and in particular sound data, is very large and contains much 

redundancy, and important features are lost in the cacophony of unreduced data [2]. The data 

reduction stage is often called feature extraction, and consists of discovering a few important 

facts about each data item, or case [25]. The features that are extracted from each case are the 

same, so that they can be compared. Feature extraction is rarely skipped as a step, unless the 

data in its original form is already in features, such as temperature read from a thermometer 

over time [2]. These features can be physical, based on measurable characteristics, or 

perceptual, based on characteristics reported to be perceived by humans [2][26].   

1.11.1 Physical features  

Physical features are low-level signal parameters that capture particular aspects of the 

temporal or spectral properties of the signal [27][28]. Although some of the features are 

perceptually motivated, we classify them as physical features since they are computed directly 

from the audio waveform amplitudes or the corresponding short-time spectral values [29].  

SPECTROGRAMS: A sound spectrum is a representation of a sound – usually a short sample 

of a sound – in terms of the amount of vibration at each individual frequency [30]. It is 

usually presented as a graph of either power or pressure as a function of frequency 

[30][31][32].  A spectrogram is built from a sequence of spectra by stacking them 

together in time and by the amplitude axis into a 'contour map' usually drawn in a 

grey scale. The final graph has time along the horizontal axis, frequency along the vertical 

axis, and the amplitude of the signal at any given time and frequency is shown as a grey 

level. Conventionally, black is used to signal the most energy, while white is used to signal 

the least but the contour map can be of other colors [33]. The figure above shows the 

spectrogram features of the airport in Barcelona and the bus in Prague audio recordings.  
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MEL-SCALED SPECTROGRAMS: This  representation is derived from the classical 

spectrogram by weighted averaging of the absolute values squared of the STFT and can 

undoubtedly be referred to as the most important feature set used in speech and audio 

processing, together with Mel Frequency Cepstral Coefficients (MFCC) [34]. Mel scale 

corresponds to an approximation of the psychological sensation of heights of a pure sound. 

Several analytical expressions exist; however, a common relation between the Mel scale 

𝑚𝑒𝑙(𝑓)  and the Hertz scale 𝑓  was given by Fant [15]. Mel Spectrogram, is, rather 

surprisingly, a Spectrogram with the Mel Scale as its y axis. It is the result of a non-linear 

transformation of the frequency scale. It partitions the Hz scale into bins, and transforms 

each bin into a corresponding bin in the Mel Scale, using overlapping triangular filters [35].  

A classical approximation is to define the frequency-to-Mel transform function for a    

frequency 𝑓 as [36]:   

 
𝑚 = 2595𝑙𝑜𝑔10 (1 +

𝑓

700
). 

(1.4) 

The inverse transform can be readily derived as: 

 𝑓 = 700 (10 
𝑚

2595 − 1). (1.5) 

LOG-MEL SPECTROGRAMS: The logarithmic spectrum, on the other hand, is a much more 

accessible representation. It is not only more visual, but importantly, the logarithm 

approximates roughly the sensitivity of the ear, such that logarithmic spectra can be used to 

(a) Airport in Barcelona. (b) Bus in Prague. 

Figure 1.4: Spectrogram of a recording from an airport and a bus. 

  

file:///C:/Users/Crash/Downloads/%5b15%5d
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assess auditory importance of spectral features [36]. The logarithmic spectrum visualizes 

spectral content such that the magnitude of values is approximately uniform throughout the 

spectrum. The only exception is zeros and other very small values in the magnitude 

spectrum, which give negative infinities or arbitrarily large negative values in the log 

spectrum. To cope with this problematic, we can use for example an energy bias similar to 

the mu-law rule or integrate energies over frequencies [36]. Specifically, instead of 

 𝑦 = log(|𝑥|2), (1.6) 

we can use:  

 𝑦 = log(|𝑥|2 + 𝑒), (1.7) 

where 𝑒 is a small positive number. The output y will then never go lower than a threshold 

[36]:  

 𝑦 ≥ log(𝑒). (1.8) 

DELTAS AND DELTA-DELTAS: A common method for extracting information about such 

transitions is to determine the first difference of signal features, known as the delta of a 

feature. Specifically, for a feature 𝑓𝑘, at time-instant 𝑘, the corresponding delta is defined 

as: 

 ∆𝑘=  𝑓𝑘 − 𝑓𝑘−1. (1.9) 

The second difference, known as the delta-delta of a feature, is correspondingly: 

 ∆∆𝑘= ∆𝑘 − ∆𝑘−1. (1.10) 

Common short-hand notations for the deltas and delta-deltas are, respectively, ∆ and ∆∆-

features. Features in a recognition engine are then typically appended by their Δ and ΔΔ -

features to triple the number of features with a very small computational overhead [36].  

https://wiki.aalto.fi/display/ITSP/Waveform
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MEL-FREQUENCY CEPSTRAL COEFFICIENTS (MFCC): MFCCs are perceptually 

motivated features that provide a compact representation of the short-time spectrum 

envelope. MFCCs have long been applied in speech recognition and, much more recently, 

to music [28]. To compute the MFCC, the windowed audio data frame is transformed by a 

Discrete Fourier Transform (DFT). Next, a Mel-scale filter bank is applied in the frequency 

domain and the power within each sub-band is computed by squaring and summing the 

spectral magnitudes within bands. The Mel-frequency scale, a perceptual scale like the 

critical band scale, is linear below 1 kHz and logarithmic above this frequency. Finally, the 

logarithm of the band wise power values is taken and decorrelated by applying a Discrete 

Cosine Transform (DCT) to obtain the cepstral coefficients.  

The log transformation serves to deconvolve multiplicative components of the spectrum 

such as the source and filter transfer function. The decorrelation results in most of the 

energy being concentrated in a few cepstral coefficients. For instance, in 16 kHz sampled 

speech, 13 low-order MFCCs are adequate to represent the spectral envelope across 

phonemes [28][23].  

1.11.2   Perceptual features 

The human recognition of sound is based on the perceptual attributes of the sound. When a 

good source model is not available, perceptual features provide an alternative basis for 

segmentation and classification. The psychological sensations evoked by a sound can be 

broadly categorized as loudness, pitch and timbre [29][27][37].     

LOUDNESS: Loudness is a sensation of signal strength; it is a measure of sound wave 

intensity [38]. As would be expected, it is correlated with the sound intensity, but it is also 

dependent on the duration and the spectrum of the sound [28].  

PITCH: Although pitch is a perceptual attribute, it is closely correlated with the physical 

attribute of fundamental frequency (F0) [28]. Subjective pitch changes are related to the 

logarithm of F0 so that a constant pitch change in music refers to a constant ratio of 

fundamental frequencies [2][29]. Pitch is the frequency of the fundamental component in 

the sound, that is, the frequency with which the waveform repeats itself [38]. 
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TIMBRE: Pitch and loudness of sound are well-definable perceptual quantities that occur 

very often when humans discuss sounds, but some perceptible characteristics of a sound are 

more difficult to quantify. These characteristics are grouped together, and are called 

“timbre”, which has been defined as that quality of sound which allows the distinction of 

different instruments or voices sounding the same pitch. Many spectral characteristics, as 

discussed above, can be used as classification features, and many of these correspond to the 

timbre of the sound [2][13][10][19][16]. 

 

1.12   Conclusion  

The proper design of the feature set while considering the intended audio categories is 

crucial to the classification task. Features are chosen based on the knowledge of the salient 

signal characteristics either in terms of production or perception. It is also possible to select 

features from a large set of possible features based on exhaustive comparative evaluations in 

classification experiments. Once the features are extracted, standard machine learning 

techniques are used to design the classifier. Throughout this chapter, we have reviewed 

important sound characteristics and the widely used techniques to represent and amplify these 

characteristics for analysis. We have presented several types of sound features which are key 

to understand the experiments conducted in our work. In the next chapter, we will present the 

fundamental notions of machine learning, the definition of classification task in machine 

learning, as well as an overview of the machine learning pipeline for acoustic scene 

classification. 

 



 

 

 

Chapter 2: MACHINE LEARNING PIPELINE 

FOR ACOUSTIC SCENE CLASSIFICATION  

2.1    Introduction  

 In the previous chapter, we have defined audio signals and listed their most substantial 

characteristics. We have also discussed the fundamental concepts and notions behind sound 

acquisition, including numerous representations and preprocessing techniques required to 

prepare the audio signal for the machine learning task. Machine learning (ML) is a subfield of 

computer science that evolved from the study of pattern recognition and computational learning 

theory in artificial intelligence [39][40]. Our main focus in this chapter revolves around the 

classification task in machine learning with use of the supervised learning method. The rest of 

this chapter is structured as follows: in Section 2.2, we introduce the concept of machine 

learning and the specific task of classification. In the following section, we present another 

branch of artificial intelligence: Deep learning. In Section 2.4, we define the notion of data 

augmentation, which is a common strategy for handling scarce data situations by synthesizing 

new data from existing training data, with the objective of improving the performance of the 

downstream model. This strategy has been a key factor in the performance improvement of 

various neural network models, mainly in the domains of computer vision and speech 

recognition [41].

2.2  Generalities on machine learning  

Machine learning can be defined as the study of the construction of computer programs that 

automatically improve and/or adapt their performance through experience; it can be thought of 

as “programming by example" [39]. The main goal of machine learning is to develop learning 

algorithms that are able to learn automatically without human intervention or assistance. Rather 

than programming the computer to solve the task directly, in machine learning, we are looking 

for methods that the computer will create its own program based on examples that we provide 

[39]. Learning methods fall into three major categories [14], depending on the nature of the 
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learning “signal” or “feedback” available to a learning system. These categories are: 

Supervised learning , unsupervised learning and semi-supervised learning [40]. 

 Supervised methods consist of learning a classification model from a set of labeled 

training data that it takes as an input. The training set consists of training samples. Each sample 

in the training set is a pair consisting of an input object (usually a vector) and a desired output 

value or label. A supervised learning algorithm analyzes the training data and produces an 

inferred function, which can be used to map new examples [42]. Unsupervised methods receive 

unlabeled input training data. However, the issue with unlabeled data is that we do not have a 

correct result to match, which means there is no error or reward signals to evaluate a potential 

solution. Therefore, the learning algorithm will try to discover persistent patterns and find 

hidden structures to link results that are close to each other in order to group them into classes 

using clustering algorithms [42][43]. Semi-supervised learning  is  more recent when  compared 

with the supervised and unsupervised learning [44], as the name suggests; semi-supervised 

learning is somewhere between unsupervised and supervised learning [45]. The dataset 

provided to the semi-supervised learning model is partially labeled [46], and is also provided 

with some supervision information [47]. The main objective of semi-supervised learning is to 

overcome the drawbacks of both supervised and unsupervised learning [44].    

Another categorization of machine learning tasks arises when one considers the desired 

output of a machine learned system, this categorization gathers two broad tasks in machine 

learning which are: Classification and Regression [40]. The final output in the classification 

task is a label, whereas the final output in the regression task is a quantity; put in other words, 

the key distinction between classification and regression is that the former has discrete outputs, 

whereas the latter has continuous outputs [48][49].  

2.2.1 Overview of classification task  

The term data science generally refers to the extraction of knowledge from data [50][51]. 

This involves a wide range of techniques and theories drawn from many research fields within 

mathematics, statistics and information technology, including statistical learning, pattern 

recognition, probability models, high performance computing, signal processing and also 

machine learning. Classification problems and methods have been considered a key part within 

the machine learning field, with a huge amount of applications published in the last few years 
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[52][53]. The concept of classification in ML has been traditionally treated in a broad sense, 

very often including supervised, unsupervised and semi-supervised learning problems [54]. 

 In the case of supervised learning, each data input is preassigned a class label. The main 

task of supervised algorithms is to learn a model that ideally produces the same labeling for the 

provided data and generalizes well on unseen data (i.e., prediction). The general aim of 

supervised classification algorithms is to separate the classes of the problem -with a margin as 

wide as possible- using only training data. If the output variable has two possible values, the 

problem is referred to as binary classification. On the other hand, if there are more than two 

classes, the problem is named multiclass or multinomial classification. A classification 

problem can be formally defined as the task of estimating the label 𝑦 of a 𝐾-dimensional input 

vector 𝑥 , where 𝑥 ∈ 𝑋 ⊆ 𝑅𝐾  and 𝑦 ∈ 𝑌 = {𝐶1, 𝐶2, … , 𝐶𝑄} , where y is the true class label 

preassigned to the input x. 

 This task is accomplished by using a classification rule or function 𝑔: 𝑋 → 𝑌 able to 

predict the label of unseen samples. In the supervised setting, we are given a training set of 

𝑁 points, represented by 𝐷 = {(𝑥𝑖 , 𝑦𝑖); 𝑖 = 1, … , 𝑁} [54]. The steps involved in the process of 

the classification task are described in the following subsections.  

2.2.2 Classification task pipeline 

A. Data acquisition/ data gathering 

This step involves understanding the problem at hand and identifying a priori knowledge to 

create the dataset [54]. When creating an intelligent system which will later be applied in real-

life uses, we  require a set of realistic data, the data can  either be naturally recorded, or 

artificially created with sufficient realism, and will be used in the development step, as well as 

the testing step; thus, ensuring better performance of our system [55]. There are different 

methods of acquiring a data collection such as the following:  

CREATING A NEW DATASET FROM SCRATCH: This can be achieved in many ways, such as 

recording real-world sounds as they are present in real life. The advantage here is the 

complete control over quality and/or the content of the data [55]. In order for the data to 

cover a maximum of acoustic variability, the recording phase has to be done several times 

by changing different factors such as location and time. This may require traveling to 
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different geographical locations which can subsequently be time consuming and financially 

draining [55]. 

AVAILABLE DATASETS: Since the creation of a dataset from scratch can be difficult, 

complicated, time consuming and financially overwhelming, another option is to search the 

web for potentially suitable dataset. There are numerous available free datasets for every 

machine learning task such as : Detection and Classification of Acoustic Scenes and Events 

(DCASE) datasets which are balanced and dedicated to different audio centered machine 

learning tasks [56], NYU Urban Sound [57], and Freefield [58]. Other audio data sources 

are the commercially available audio samples from BBC, Stockmusic, and others. [58]. A 

list of datasets suitable for research involving the audio-based context recognition and 

acoustic scene classification is presented in Table 2.1. 

                  Table 2.1: Available audio datasets for scene classification. 

Dataset Name Provider Classes Files Ref 

TAU Urban Acoustic Scenes 2019 

Mobile Development dataset 

TUT/TAU 10 16560 [55] 

TAU Urban Acoustic Scenes 2019 

Development dataset 

TUT/TAU 10 14400 [59] 

Scene IEEE AASP Challenge 

2013 

10 100 [60] 

Rouen audio scene dataset LITIS 19 3026 [56] 

CASA2010 TUT 13 160 [61] 

CASR TUT 27 225 [6] 

TUT Urban Acoustic Scenes 2018 

Development dataset 

TUT 10 8640 [55] 

UEA Noise DB/Series 2 12 35 [62] 

AucoDefro07 AucoDefro07 4 16 [63] 

DATA SIMULATION: Another method for creating datasets for development is data 

simulation. This involves mixing tokens of isolated sounds, with the desired complexity 

and overlap and background noise, in order to create examples of complex sound. The 
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advantage with this technique is the total control over the levels of several sounds in the 

background, which subsequently makes creating different sound samples with the same 

combination of sounds possible. However, it remains very limited due to its tendency to 

easily diverge from realism [64]. 

B. Data preparation/ preprocessing  

 Data preprocessing is considered as one of the most important phases in ML [65]. 

Preprocessing algorithms are usually used for: data cleaning, outlier detection, data 

imputation and transformation of features [54]. There is a hierarchy of problems that are 

often encountered in data preparation and pre-processing such as outliers, missing values or 

irrelevant and redundant data. Depending on the type of problem at hand, numerous approaches 

exist for addressing these hurdles; we can cite feature selection techniques [66][67] and 

anomaly detection methods [68][69].  

C. Algorithm/ model selection  

The choice of the learning algorithm is a critical step in the machine learning process. The 

classifier evaluation is most often based on predictive accuracy which is “the percentage of 

correct predictions divided by the total number of predictions”, or on the error rate which is 

“the percentage of incorrect predictions by the total number of predictions” [70]. There are at 

least three techniques which are used to estimate a classifier accuracy/error rate, one technique 

is to split the training set by using two-thirds for training set and the other third for testing 

set. However, this approach requires a large amount of data in order to obtain a reliable estimate 

of the performance [66]. An alternative strategy consists of invoking a resampling technique, 

known as cross-validation.  

The training set is divided into mutually exclusive and equal-sized subsets and for each 

subset the classifier is trained on the union of all the other subsets, while the remaining subset 

is used for testing the learned model, i.e. computing its performance. The average of the error 

rate of each subset is therefore an estimate of the error rate of the classifier [71]. Leave-one-

out validation is a special case of cross validation. All test subsets consist of a single instance. 

This type of validation is a lot more computationally expensive, but useful when the most 

accurate estimate of a classifier error rate is required [72]. If the error rate evaluation is 

unsatisfactory, a variety of factors must be examined: perhaps relevant features for the problem 

are not being used, a larger training set is needed, the dimensionality of the problem is too high 
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or the selected algorithm is inappropriate [69]. There are also many issues of concern to the 

would-be classifier. Below is a list of a few of these concerns: 

ACCURACY: There is the reliability of the rule, usually represented by the proportion of 

correct classifications. In some cases, it may be that some errors are more critical than 

others, and it may be important to control the error rate for some key classes. 

SPEED: In Some cases, the speed of the classifier is a major issue. A classifier that is 90% 

accurate may be preferred over a classifier that is 95% accurate if it is 100 times faster in 

testing (such differences in time-scales are not uncommon in neural networks for example). 

Such considerations would be important for the automatic reading postal codes, or 

automatic fault detection items on a production line. 

TRAINING TIME: In a rapidly changing environment, it may be necessary to learn a 

classification rule quickly, or make adjustments to an existing rule in real time [66].  

D. Learning/ training   

The classification of new samples becomes possible when the classifier decision boundaries 

are set. These boundaries have to reflect the considered classes. Relevant decision boundaries 

are achieved by learning, which is the process when a set of samples is used to tune the 

classifier to the desired task. How the classifier is tuned depends on which algorithm the 

classifier uses. The learning algorithm has to be given a training set of samples that are used to 

learn/to construct decision boundaries [73].  

E. Classification/ prediction 

 Once the classifier has been trained, it can be used to classify new samples. However, a 

perfect classification is seldom possible. Therefore, numerous different classification 

algorithms are used with varying complexity and performance. The main problem for a 

classifier is to cope with feature value variation for samples belonging to specific classes. This 

variation may be large due to the complexity of the classification task. To maximize 

classification accuracy, decision boundaries should be chosen based on combinations of the 

feature values  [73]. 
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F. Evaluation of a classifier performance  

The evaluation metric is a crucial element in achieving the optimal classifier during the 

training process. Thus, a  selection of a suitable evaluation metric  is an important key  for 

discriminating  and obtaining the optimal classifier [70]. For classification problems, the 

evaluation of the optimal solution during the training stage can be defined based on confusion 

matrix as shown in Table 2.2. The row of the table represents the predicted class, while the 

column represents the true class. From this confusion matrix, tp and tn denote the number of 

positive and negative instances that are correctly classified.  Meanwhile, fp and fn denote the 

number of misclassified negative and positive instances, respectively [70].  

Table 2.2: Confusion Matrix Representation. 

From Table 2.2, numerous commonly used metrics can be generated to evaluate 

the performance of classifier with different focuses of evaluations as shown in Table 2.3: 

Table 2.3: Metrics for Classification Evaluation. 

Metrics Formula Evaluation Focus 

Accuracy 

(acc) 

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

The accuracy metric measures the ratio 

of correct predictions over the total 

number of instances evaluated. 

Error Rate 

(err) 

𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Misclassification error measures the 

ratio of incorrect predictions over the 

total number of instances evaluated. 

Sensitivity 

(sn) 

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

This metric is used to measure the 

fraction of positive patterns that are 

correctly classified 

Specificity 

(sp) 

𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

This metric is used to measure the 

fraction of negative patterns that are 

correctly classified 

 Actual positive class Actual negative class 

Predicted positive class 

Predicted negative class 

True positive (tp) 

False positive (fp) 

False negative (fn) 

True negative (tn) 
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Precision (p) 
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Precision is used to measure the positive 

patterns that are correctly predicted from 

the total predicted patterns in a positive 

class. 

Recall (r) 𝑡𝑝

𝑡𝑝 + 𝑡𝑛
 

Recall is used to measure the fraction of 

positive patterns that are correctly 

classified 

F-measure 

(FM) 
2 ∗

𝑝 ∗ 𝑟

𝑝 + 𝑟
 

This metric represents the harmonic 

mean between recall and precision 

values 

Averaged 

Accuracy 

∑
𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖
𝑙
𝑖=1

𝑙
 

The average effectiveness of all classes 

Averaged 

Error Rate 

∑
𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖
𝑙
𝑖=1

𝑙
 

The average error rate of all classes 

Averaged 

Precision 

∑
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖
𝑙
𝑖=1

𝑙
 

The average of per-class precision 

Averaged 

Recall 

∑
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖
𝑙
𝑖=1

𝑙
 

The average of per-class recall 

Note: for each class ci of data where 𝒄 ∈ 𝑪 = {𝒄𝟏,𝒄𝟐, … , 𝒄𝒍}; tpi – true positive for ci; fpi 

– false positive for ci; fni – false negative for ci; tni – true negative for ci. 

 2.2.3 Statistical Tests  

Comparative classification studies generally focus on a single performance metric such as 

the accuracy or the error rate. Single point estimates of such measures were often compared 

directly in order to identify which classifier produces the most accurate classifiers when trained 

on samples from other domains. However recently, comparisons of point estimates are less 

frequently used, and null hypothesis significance tests are now gaining increasing popularity in 

machine learning [74]. A null hypothesis test takes the observed performance measure as input 

and assesses whether the difference between the classifiers is significant or not [75]. 

In this regard, Dietterich [76], Dem�̃�ar [74], Garcίa et al. [77], and Japkowicz et al. [78] 

introduced several statistical tests such as McNemar, Friedman, Nemenyi, Bonferroni-Dunn, 
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Wilcoxon, and ANOVA for performance comparison. In the following subsections, we briefly 

review the statistical tests we invoked in our experiments.  

A.  Friedman test 

The Friedman test is useful for comparing several algorithms over multiple domains. It first 

ranks the techniques for each dataset separately according to the generalization accuracy in 

descending order. The best performing technique gets the rank 1, the second best gets rank 2 

and so on. In case of ties, average ranks are assigned. Let 𝑟𝑖
𝑗
 be the rank attributed to the 𝑗𝑡ℎ 

algorithm on the 𝑖𝑡ℎ  dataset; and 𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗𝑁
𝑖=1 denote the average rank of algorithm j ∈  {1, 

..., t} over N datasets. Under the null hypothesis, it is assumed that all techniques are equivalent; 

hence, their average ranks should be equal.  

 𝑋𝐹
2 =  

12𝑁

𝑡(𝑡+1)
[∑ 𝑅𝑗

2 −
𝑡(𝑡+1)2

4

𝑘
𝑗=1 ]. (2.1) 

The statistic follows chi-squared distribution with t − 1 degrees of freedom for sufficiently 

large N and t (usually N > 10 and t > 5). In their study, Iman and Davenport reported that 𝑋𝐹
2 is 

conservative and derived a new statistic: 

 𝐹𝐹 =  
(𝑁−1)𝑋𝐹

2

(𝑁−1)−𝑋𝐹
2 . (2.2) 

This test provides only an assessment on whether the observed differences in the 

performances are statistically significant. In order to have a zoomed-in view of what these 

differences correspond to precisely i.e. identify pairs of techniques with significant different 

performances, a post hoc test is usually performed when Friedman test rejects the null 

hypothesis. Nemenyi, Bonfferoni-Dunn, and Holm are examples of post hoc tests that are 

widely used in conjunction with Friedman test. 

B.  Nemenyi Test  

This test is invoked when all techniques are compared with each other. The performance of 

two methods is significantly different if their corresponding average ranks differ by at least the 

critical difference  
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𝐶𝐷 = 𝑞𝛼√
𝑡(𝑡 + 1)

6𝑁
 , 

 

(2.3) 

where the critical value qα is defined based on the Studentized range statistic divided by √2. 

C. Bonferroni-Dunn Test  

In general, the Bonferroni-Dunn test is undesirably conservative and has little power; 

nevertheless, this test is useful when the main interest is the comparison of all techniques 

against a control algorithm. In this specific case, Bonferroni-Dunn test is more powerful than 

Nemenyi test because this latter adjusts the critical value for making 𝑡(𝑡 − 1) comparisons, 

whereas when comparing with a control method, only 𝑡 − 1 comparisons are made. This test is 

basically defined similarly to Nemenyi test except that we estimate the critical value for 𝛼/(𝑡 −

1) significance level. 

D.  Wilcoxon signed-ranks test 

Wilcoxon signed-ranks test is a non-parametric alternative to the paired t-test and is 

considered the best strategy to compare two algorithms over multiple domains. The formulation 

of this test is the following. We designate by 𝑑𝑖 the differences between the performance scores 

of two techniques on N datasets, i ∈ {1, … , 𝑁}. We first rank these differences according to 

their absolute values; in case of ties average ranks are attributed. Then, we compute the sum of 

ranks for the positive and the negative differences, which are denoted as 𝑅+  and 𝑅− , 

respectively. Their formal definitions are given by: 

𝑅+ = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖) +
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0

  ,

𝑑𝑖>0

    𝑅− = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖) +
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0𝑑𝑖<0

. 
(2.4) 

Notice that the ranks of 𝑑𝑖 = 0 are split evenly between 𝑅+ and 𝑅−. Finally, the statistics 

𝑇𝑤 is computed as 𝑇𝑤 = min (𝑅+, 𝑅−). For small N, the critical values for 𝑇𝑤 can be found in 

any textbook on general statistics [78], whereas for larger N, the statistics 

 

𝑧 =
𝑇 −

1
4 𝑁(𝑁 + 1)

√ 1
24 𝑁(𝑁 + 1)(2𝑁 + 1)

 , 

 

(2.5) 
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follows the normal distribution with 1 mean and 0 variance. For instance, the hypothesis which 

states that two approaches perform equally is rejected if z ≤ −1.96 at a 5% significance level. 

2.3 Outlining of deep learning  

 Deep learning is a subfield of machine learning concerned with algorithms inspired by the 

structure and function of the brain called artificial neural networks [79][80]. Deep learning 

approaches aim to mimic the way human brains work. Deep learning has already proved useful 

in many software disciplines, including computer vision [81], speech and audio processing [81], 

natural language processing [82], robotics [83], bioinformatics [84], chemistry [85], video 

games [86], search engines [87], online advertising [88] and even finance [89]. It has drawn 

heavily on our knowledge of the human brain, statistics and applied mathematics as it 

developed over the past several decades. In recent years, deep learning has seen tremendous 

growth in its popularity and usefulness, largely as the result of more powerful computers, larger 

datasets and techniques to train deeper networks [90].  

2.3.1  Multi-layer perceptrons  

Artificial neurons, which try to mimic the behavior of the human brain, are the principle 

building blocks of Artificial Neural Networks (ANNs). The basic computational element is 

called a node (or unit) which receives inputs from external sources and possess internal 

parameters which produce outputs. This unit is the perceptron [91].  

A perceptron can be formally described as a function 𝑓𝑗 of the input 𝑥 = (𝑥1, 𝑥1, … , 𝑥𝑁) 

weighted by a vector of connection weights  𝑤𝑗 = (𝑤𝑗,1, … , 𝑤𝑗,𝑁), completed by a neuron bias 

bj , and associated to an activation function 𝜑, namely: 

 𝑦𝑗 = 𝑓𝑗(𝑥) = 𝜑 ((𝑤𝑗 , 𝑥) + 𝑏𝑗). (2.6) 

Figure 2.1 shows a schematic representation of an artificial neuron where: 

 

𝑦𝑗 = 𝜑 [(∑ 𝑤𝑖𝑗𝑥𝑖

𝑁

𝑖=1

) + 𝑏] . 
(2.7) 
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Several activation functions can be considered in the classification task. Table 2.4 shows 

the most commonly used activation functions [92]: 

Table 2.4: Activation functions for classification. 

Activation Function Formula 

Identity 𝜑(𝑥) = 𝑥. 

Sigmoid (logistic) 𝜑(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
. 

Hyperbolic tangent (tanh) 𝜑(𝑥) =
𝑒𝑥𝑝(𝑥) − 𝑒𝑥𝑝(−𝑥)

𝑒𝑥𝑝(𝑥) + 𝑒𝑥𝑝(−𝑥)
=

𝑒𝑥𝑝(2𝑥) − 1

𝑒𝑥𝑝(2𝑥) + 1
. 

The Rectified Linear Unit (ReLU) 𝜑(𝑥) = max(0, 𝑥). 

Softmax 𝜑(𝑥)𝑖 =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)𝑗
. 

An Artificial Neural Network or a Multi-layer perceptron (MLP) is a connectionist model 

which consists of multiple perceptron cells arranged in the form of a directed graph [80]. The 

basic structure of an ANN can be modelled as shown in Figure 2.2. The input is usually loaded 

in the form of a multidimensional vector to the input layer of which will distribute it to the 

hidden layers. The hidden layers will then make decisions from the previous layer and weigh 

up how a stochastic change within itself detriments or improves the final output. This is referred 

to as the process of learning.  

A standard neural network (NN) consists of many simple, connected processors called 

neurons, each producing a sequence of real-valued activations [93]. Having multiple hidden 

layers stacked upon each other creates a deep learning architecture [94]. Within the hidden 

Figure 2.1: Schematic representation of an artificial neuron [91]. 
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layers of an artificial neural network, the output of a perceptron acts as the input to an activation, 

and then the output of this activation function goes into the next perceptron cell it is connected 

to. Being descendants of the perceptron, using a neural network, we can obtain non-linear 

separation boundaries [80].  

 

 

 Multilayer perceptrons have a basic architecture since each neuron of a layer is linked to 

all the units of the next layer but has no link with the neurons of the same layer. The parameters 

of the architecture are the number of hidden layers and of neurons in each layer. The activation 

functions are also to choose by the user. For the output layer, the activation function is 

generally different from the one used on the hidden layers. In the case of binary classification, 

the output gives a prediction of 𝑃(𝑌 = 1|𝑋). Since this value is in [0, 1], the sigmoid activation 

function is generally considered. For multi-class classification, the output layer contains one 

neuron per class, giving a prediction of 𝑃(𝑌 = 𝑖|𝑋). The sum of all these values has to be equal 

to 1. The multidimensional function Softmax is generally used in multi-class classification 

[92].   

2.3.2 Deep neural network architectures 

In recent years, deep artificial neural networks have won numerous contests in pattern 

recognition and machine learning [95][96][93]. The deep neural network approach have gained 

significant interest and have fostered major progress in audio processing [97][98]. They have 

been used on auditory data and evaluated on various audio classification tasks such as acoustic 

scene classification [99], audio event detection [100] and speech recognition [101]. Traditional 

neural networks are composed of one input layer, one hidden layer, and one output layer; these 

Figure 2.2: A basic neural network with one hidden layer [91]. 
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are shallow networks. More than one hidden layer qualifies a network as a deep learning 

network [73]. In this section of the thesis, we introduce some of the most commonly used deep 

artificial network architectures used in acoustic scene classification task.  

A. Feedforward neural networks  

The first type of neural network that has been developed historically is a regular 

Feedforward Neural Network (FNN). FNNs are used in several ASC algorithms [102]; for 

instance, they have been used to concatenate features of the audio signal [103], and have been 

combined with multiple classifiers to model acoustic scenes [104]. This network does not take 

into account any particular structure that the input data might have. Nevertheless, it is already 

a very powerful machine learning tool [105]. A FNN is formed by one input layer, one or more 

hidden layers and one output layer as shown in Figure 2.2. Each layer of the network -except 

the output layer- is connected to the following layer [105], which grants the FNN its most 

important feature: “fully-connected network” [106]. The learning process in FNNs consists of 

a forward pass and a backward pass. In the forward pass outputs are calculated and compared 

with desired outputs. The error is calculated on the basis of the produced output and the real 

output. In the backward pass i.e. backpropagation, this error is used to alter the weights in the 

network in order to decrease the error. Forward and backward passes are repeated until 

convergence [107].  

B. Convolutional neural networks  

The Convolutional Neural Networks (CNN) introduced by LeCun [108] have 

revolutionized image processing, and removed the burden of manual extraction of features in 

addition to being the exclusive architecture used by state-of-the-art ASC algorithms [102]. 

Convolutional neural networks have been extensively used in the acoustic scene classification 

task since they usually provide a summarizing classification of longer acoustic scene excerpts 

[109][110]. A CNN is made up primarily of 3 kinds of layers: Convolutional layers, Pooling 

layers, and Fully Connected layers [80]. A simplified CNN architecture for classification task 

is illustrated in Figure 2.3. 

The basic functionality of the example CNN above can be broken down into four key areas 

as follows:  
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1. As found in other forms of Artificial neural networks, the input layer will hold the pixel 

values of the image. 

2. The convolutional layer will determine the output of neurons of which are connected to 

local regions of the input through the calculation of the scalar product between their weights 

and the region connected to the input volume. The rectified linear unit (commonly shortened 

to ReLU) aims to apply an ’element wise’ activation function such as sigmoid to the output 

of the activation produced by the previous layer. 

3. The pooling layer will then simply perform down sampling along the spatial 

dimensionality of the given input, further reducing the number of parameters within that 

activation. 

4. The fully-connected layers will then perform the same duties found in standard ANNs 

and attempt to produce class scores from the activations, to be used for classification. It is 

also suggested that ReLU may be used between these layers, as to improve performance.  

Through this simple method of transformation, CNNs are able to transform the original 

input layer by layer using convolutional and down sampling techniques to produce class scores 

for classification and regression purposes [94].  

 

 

THE CONVOLUTIONAL LAYER: The convolution operation that gives its name to the CNN 

is the fundamental building block of this type of network [105]. The layer parameters focus 

around the use of learnable kernels. These kernels are usually small in spatial 

dimensionality, but spread along the entirety of the depth of the input. When the data hits a 

convolutional layer, the layer convolves each filter across the spatial dimensionality of the 

Figure 2.3: Convolutional neural network architecture [80]. 
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input to produce a 2D activation map. As we glide through the input, the scalar product is 

calculated for each value in that kernel. From this, the network will learn kernels that “fire” 

when they see a specific feature at a given spatial position of the input. These are commonly 

known as activations [94]. Every kernel will have a corresponding activation map, of which 

will be stacked along the depth dimension to form the full output volume from the 

convolutional layer [94].  

THE POOLING LAYER: The pooling operation, less and less used in the current state of the 

art CNN, is fundamentally a dimension reduction operation [105]. This motivation behind 

using a pooling layer is to just pass relevant features to the next layer and thereby, 

summarizing generated features in the previous convolution layer. There can be many types 

of pooling operations: max pooling (selects the maximum valued cell out of the receptive 

field of that neuron), average pooling (passes the average of the cell values in the local 

receptive field of the neuron). Either before or after the pooling layer an additive bias and 

sigmoidal nonlinearity is applied to each feature map [80].  

THE FULLY CONNECTED LAYER: After several convolution and pooling layers, the CNN 

generally ends with several fully connected layers [92]. The fully-connected layer; also 

known as the classification layer, contains neurons of which are directly connected to the 

neurons in the two adjacent layers, without being connected to any layers within them. This 

is analogous to the way neurons are arranged in traditional forms of ANN [94]. This is the 

fully connected layer which computes the score of each class from the extracted features 

from a convolutional layer in the preceding steps. The final layer feature maps are 

represented as vectors with scalar values which are passed to the fully connected layers 

[91]. 

C. Deep residual neural networks  

Residual Network (ResNet) is a deep neural network developed by Kaiming He for large-

scale data analysis, with the intent of designing ultra-deep networks that did not suffer from the 

vanishing gradients problem that predecessors had [91]. The vanishing gradients problem 

refers to the large decrease in the norm of the gradient during backpropagation. Such events are 

due to the long term components going exponentially fast to norm 0, making it impossible for 

the model to learn correlation between temporally distant events [111].  
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ResNet is a traditional feedforward network with a residual connection. It is developed 

with many different numbers of layers: 34, 50,101, 152, and even 1202 [91]. The ResNet 

architecture has been used in audio tasks such as speaker spoof detection [112], unsupervised 

audio representation learning [113] and acoustic scene classification [114]. 

A building block of the residual learning is shown in Figure 2.4. The sub-blocks in the 

architecture represent the complete convolutional layers including the activation functions. A 

deep residual network can consist of many such building blocks stacked together. In one 

residual building block, the output 𝐻(𝑥) of the block is a mapping of the input 𝑥. Instead of 

letting the multiple convolutional layers directly approximate the mapping 𝐻(𝑥) , the residual 

mapping 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 is to be approximated. A shortcut connection; also known as a 

skip connection, from the input to the output adds an identity mapping to the output of the 

stacked layers [115]. Augmenting neural networks with skip connections surprised the 

community by enabling the training of networks of more than 1,000 layers with significant 

performance gains. The skip connections in the residual blocks facilitate preserving the norm 

of the gradient, avoiding by this manner the vanishing gradient problem and leading to stable 

back propagation [116].    

 

 

Although it is known that very deep residual networks can improve accuracy of a model, it 

is argued that it takes too many extra layers to be rewarded with a small improvement in 

accuracy [117]. To address this problem, experiments with wider, rather than deeper, networks 

have been conducted and have led to an interesting finding with great practical importance 

concerning residual networks: Wide Residual Networks (WRN). This network architecture 

has proven that shallow networks with increased width are able to provide similar or better 

results than those obtained with very deep neural networks. The architecture of a wide residual 

block is shown in Figure 2.5.  The widening of a residual network is characterized by the 

widening factor k. Increasing the width of a network refers to increasing the number of filters 

on the convolutional layers k times.  

Figure 2.4: Building block of the Residual Neural Network [91]. 
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D. Alex neural networks  

The Alex Network (AlexNet) is a fundamental, simple, and effective deep convolutional 

neural network architecture [118], which was first proposed by Alex Krizhevsky et al. in the 

2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) [119][9]. AlexNet 

has achieved state-of-the-art recognition accuracy against all traditional machine learning and 

computer vision approaches. It has demonstrated a significant breakthrough in the field  of 

visual recognition and classification tasks and is the point  in  history  where  interest  in  deep  

learning  increased rapidly [119].  

The architecture of The Alex Network is shown in Figure 2.6. The network is mainly 

composed of cascaded stages, namely, convolution layers, pooling layers, rectified linear unit 

(ReLU) layers and fully connected layers. Specifically, AlexNet consists of five convolutional 

layers and three fully-connected layers. The first two convolutional layers are followed by 

normalization and a max-pooling layer, the third and fourth are directly connected whereas the 

fifth convolutional layer is followed by a max-pooling layer. The output of the fifth layer goes 

into a series of two fully-connected layers, in which the second fully-connected layer output is 

fed into a softmax classifier [120]. In order to prevent overfitting in the fully-connected layers, 

a regularization method called “dropout” is employed [121], which essentially consists of 

setting to zero the output of each hidden neuron with a certain probability [9]. The neurons 

which are “dropped out” do not contribute to the forward pass and do not participate in 

backpropagation. Another feature of the AlexNet model is the use of Rectified Linear Unit 

(ReLU), which is applied to each of the first seven layers. The use of ReLU non linearity has 

been shown by the authors to accelerate training time[120]. 

  Although this architecture was designed for image recognition purposes, it has been 

shown that AlexNet and similar deep convolutional neural networks can be successfully trained 

to classify spectral images of environmental sounds [122][123][124]. 

Figure 2.5: Building block of the Wide Residual Neural Network [117]. 
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2.4 Data augmentation 

Data collection is a major bottleneck in machine learning and an active research topic in 

multiple communities [125]. There are largely two reasons that data collection has recently 

become a critical issue. First, as machine learning is becoming more widely-used, new 

applications that do not necessarily have enough labeled data are emerging [125]. Second, 

unlike traditional machine learning, deep learning techniques automatically generate features, 

which saves feature engineering costs, but in return may require larger amounts of labeled data 

[125]. In consequence, the lack of sufficient amount of the training data or uneven class balance 

within the datasets became the most frequently mentioned problem in the field of machine 

learning [125]. As a result, there is a pressing need for accurate and scalable data collection 

techniques in the era of Big data [125], therefore, one of the ways of dealing with the lack of 

data problem and expanding the size of the data set  is Data Augmentation (DA) [126].  

The idea behind data augmentation is to disrupt the training data by injecting variance in 

order to have more data as varied as possible to feed the learning model [127]. It is done under 

the assumption that more information can be extracted from the original dataset through 

augmentations [128]. Thus, the model becomes more efficient in characterizing the differences 

between classes and less prone to overfitting i.e. learning a function with very high variance 

such as to perfectly model the training data. 

For acoustic modeling, creating a perturbation in the data can be as little as time stretching, 

adding background noises, or a constant pitch shifting, and can go as far as deforming the sound 

with variable speed perturbation. These deformations must not alter the semantics of the labels, 

hence why, care must be taken to ensure that the deformations applied to the input audio leave 

the labels unmodified [127]. 

Figure 2.6: Alex Network architecture [119]. 
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2.4.1 Online vs offline data augmentation  

There are two different approaches to performing data augmentation: Online data 

augmentation and offline data augmentation [129]. The online data augmentation approach 

-data augmentation on the fly- is made during training, which consequently signifies that the 

augmented data does not exist afterwards [129]. The Offline data augmentation approach means 

that a new complete dataset is created before the training starts. Both approaches have different 

advantages:   Offline augmentation makes the training process even faster, but is more 

advantageous if used in the case of smaller datasets considering that it involves an increase in 

the number of training data which leads to offline augmentation requiring more storage 

available beforehand [129]. Nonetheless the online augmentation approach can generate a 

larger number of unique samples if the training set is iterated over multiple times. On the other 

hand, Offline augmentation has a fixed number of possible augmented samples [129]. 

2.4.2   Common data augmentation techniques 

A. Mixup 

Mixup is a novel form of data augmentation that is used in order to combat overfitting [130] 

and improve the generalization ability of state-of-the-art neural network architectures 

[131][132]. The mixup data augmentation technique has been frequently used in a plethora of 

deep learning tasks, ranging from medical image segmentation [133] to natural language 

processing[134][82] to environmental sound recognition [135]. Dissimilar to traditional 

augmentation approaches such as rotation, flipping, distorting and deformation which are data-

dependent and require the use of expert knowledge [136][100], mixup can be seen as data-

agnostic augmentation procedure i.e. mixup is a non-label-preserving procedure 

[137][131][138]. Moreover, mixup is proven to be a better suited augmentation method for 

audio-based inputs than previously mentioned transformations, due to the temporal nature of 

audio signals and the physical meaning of the spectrum over the horizontal and vertical axes 

[130].   

Mixup creates new synthetic training examples by drawing samples from the original 

dataset and convexly combining both in terms of the input and the output [134]. Combining 

two data points convexly is equivalent to linearly combining the latter points i.e. given two 

vectors v and w, any vector of the form av + bw is a linear combination of v and w [139]. In 

more detail, the new synthetic training example (�̃�, �̃�) can be constructed by using the following 

formula: 
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 �̃� = 𝜆𝑥𝑖 + (1 −  𝜆)𝑥𝑗 , (2.8) 

 �̃� = 𝜆𝑦𝑖 + (1 −  𝜆)𝑦𝑗 , (2.9) 

where 𝑥𝑖  and 𝑥𝑗  are two randomly selected feature vectors from the training data (regardless 

of the provided label of the samples),𝑦𝑖 and 𝑦𝑗are their corresponding class labels respectively 

[131]. The linear interpolator 𝜆 ∈ [0,1] also known as the mix factor [135] or the mixing ratio 

[140],  is sampled from a probability distribution known as Be(a, b): Beta distribution[141]  

with a hyperparameter α = a = b for α ∈ (0 → ∞). It is of paramount importance to note that 

the hyperparameter α is responsible for determining and controlling the shape of the Beta 

distribution, hence, regularizing the mixing ratio. Figure 2.7 shows the Beta probability density 

function with varying values of the hyperparameter α [142]. 

  

 

As shown in the figure above, given a value of α<1, the beta distribution is U-shaped which 

signifies that the probability of selecting a value closer to either 0 or 1 is very high, whereas the 

probability of selecting values that belong between these two extremes is low and constant. Put 

in context, when the mixup hyperparameter α is smaller than 1, the possibility that the newly 

constructed virtual training example belongs to one of the given two classes is very high [143]. 

In contrast,  given a value of α >1 results in a very low probability of selecting a value closer 

to either 0 or 1, i.e. the probability that the synthetic training example belongs to one of the 

given two classes is very low [143].  

One exceptional case of the Beta probability distribution is the case where the 

hyperparameter α = 1. In this particular case, the Beta distribution Be(a, b) is equivalent to the 

Uniform distribution U(0,1) as shown in Figure 2.8 [142].  

Figure 2.7: Probability density function of the Beta distribution. 
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Figure 2.9(a) and Figure 2.9(b) are spectrogram representations of a siren and a bus sound 

recording respectively.  

  

(a) Siren recording. (b) Bus recording. 

 

Figure 2.10 illustrates the spectrogram representation of a virtual training example 

constructed by the mixup of the audio samples shown in Figure 2.9, where the mixup 

hyperparameter alpha is set to α = 0.4. Despite its simplicity and minimal computation 

overhead [131], the mixup data augmentation methods have provided state-of-the-art 

performance in many datasets, which include the CIFAR-10, CIFAR-100 image classification 

datasets along with sound classification datasets namely: CHIME-HOME [144], ESC-10 and 

ESC-50 [145].  

Figure 2.8: Probability density function of the Beta distribution with α=1. 

Figure 2.9: Spectrogram representations. 
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B. Random erasing 

 Random erasing is a data augmentation technique applied by selecting an arbitrary region 

from the input sample and erasing the content of this area [146].  This approach is extensively 

used in the field of computer vision where the training dataset consists of images [147][148]. 

Nonetheless, random erasing has been used for augmenting multiple audio datasets 

[149][150][151], considering that the preprocessing of audio data usually converts a sound 

signal into a two-dimensional spectrogram i.e. an image representation of the sound signal 

[152][153][130].  

During training, the process of randomly erasing a region Se, of a spectrogram S is 

performed using a certain probability P, where the ratio of the erased surface 
𝑆𝑒

𝑆⁄  is smaller 

than 1 [152]. Once an erasing region has been selected, each pixel within the area is assigned a 

random value within the range [0,255] as shown in Figure 2.11. This procedure generates a set 

of spectrograms with varying levels of occlusion, which helps making the model robust to 

occlusion and reducing the risk of network overfitting [146]. Random Erasing is parameter 

learning free, easy to implement, and can be integrated into most of the CNN-based models for 

both image and audio recognition [150][151].  

Figure 2.10: Spectrogram representation of the Mixup sample. 
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C. Audio deformation 

 Audio deformation is a data augmentation method which can be performed by directly 

applying changes to an audio sample while maintaining the semantic validity of the 

corresponding label, converting it into a new input example to train a neural network 

[154][155]. Several methods have been implemented in literature to serve the audio 

deformation purpose, a few of these methods are presented below.  

TIME STRETCHING: The basic principle behind time stretching is changing the speed of the 

audio sample, either by accelerating it or slowing it down [154]. Thus, time stretching 

changes the duration of the sample whereas its frequency content remains unchanged [156]. 

Figure 2.12 shows the resulting spectrogram representation of the previous siren recording 

after the application of time stretching augmentation. 

  

  

 

(a) Non-augmented sound.  (b) Increased loudness sound. 

Figure 2.11: Spectrogram of a siren recording augmented by random erasing. 

(a) Decelerated sound. (c) Accelerated sound.  

Figure 2.12: Spectrogram of a siren recording augmented by time stretching. 



 49 

 

 

CHAPTER 2: MACHINE LEARNING PIPELINE FOR ASC 

PITCH SHIFTING: Pitch shifting is the process of augmenting audio samples by altering the 

pitch without changing the speed of a sound recording [157]. Figure 2.13 illustrates the 

effect of pitch shifting on the previous siren recording. The application of pitch shifting 

augmentation is performed by scaling the frequency content of the audio sample by a 

constant factor i.e. scaling the linear-frequency spectrogram vertically [154][152][153]. 

  

  

 

SIMPLE GAIN: Simple gain augmentation technique, also known as volume gain, is used to 

generate new training examples by increasing the loudness of audio samples in the training 

set [158]. This procedure is implemented through scaling the spectrogram of an audio 

sample by a specified gain in decibels (dB). Varying the loudness of sound samples in a 

dataset can be helpful for the deep learning model in cases where the audio input is not loud 

enough [152][153], the figure below shows how the spectrogram representation is affected 

after applying simple gain data augmentation on a siren recording. 

  

  

 

(a) Lower pitched sound. (b) Higher pitched sound. 

Figure 2.13: Spectrogram of a siren recording augmented by pitch shifting. 

(a) Non-augmented sound. (b) Increased loudness sound. 

Figure 2.14: Spectrogram of a siren recording augmented by simple gain. 
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2.5 Summary of empirical and theoretical findings 

Despite the prominent success of deep learning-based models in both computer vision tasks; 

such as image classification [147] and object detection [148], and in audio-related tasks, such 

as speech recognition [153] and audio classification [154], these models are trained using large 

parameters and are therefore heavily dependent on large-scale training samples [9].  

Unfortunately, many tasks lack large amounts of diverse, trustworthy data. The 

consequences of this is model overfitting and poor generalization. This problem is extremely 

challenging in both the visual and the audio fields. To mend with this problem, data 

augmentation techniques have been extensively used in literature and have been proven to 

effectively enhance the model generalization ability [131][153][146][130].  

S. Thulasidasan et al. [159]  analyzed the effect of data augmentation-based learning on 

neural network calibration by performing numerous experiments using mixup augmentation 

technique. The experiments were conducted on both image and natural language processing 

datasets, with the use of various deep network architectures. They have shown that mixup-

trained networks are better calibrated and provide more reliable estimates both for in-sample 

and out-of-sample data. 

 In 2018, W. Shengyun et al. [160] trained a convolutional recurrent neural network (CRNN) 

on mixed time-frequency representation of sound samples for domestic audio tagging. They 

explored multiple ratios for the mixup approach and established based on their experiments that 

mixup generalizes better than other mixed form data augmentation methods in the audio tagging 

task. 

 Most recently, W. Shengyun et al. [130] conducted a thorough comparison of multiple data 

augmentation techniques for sound classification namely: time stretching, mixup, pitch shifting 

and time masking, and have proved that data augmentation methods are very helpful for the 

improvement of audio classification performance, especially directly used on spectrograms. 

 In addition, W Shengyun et al. proposed an effective and easy to implement data 

augmentation method named Mixed Frequency Masking data augmentation. This method is 

inspired by mixup data augmentation [131] and SpecAugment method [161], and adopts 

nonlinear combinations to construct new samples and linear combinations to construct labels.  
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Mixup-based augmentation methods have also been used in a variety of deep learning tasks 

such as: sentence classification [162] and information processing in medical imaging [163]. 

 It is worth mentioning that various other techniques have been used for augmenting sound 

data, for instance: Um et al. [164] used a variety of augmentations, such as jittering, scaling, 

rotation, slicing, permutation, magnitude warping, and time warping, to improve wearable 

sensor data for deep temporal convolutional neural networks.  

K. M Rashid and J Louis [83] used jittering, scaling, rotation, and time warping with long 

short-term memory networks for construction equipment activity recognition. In acoustic 

recognition, frequency warping has been extensively used to alleviate the problem of overfitting 

[165][166]. Table 2.5 provides an in-detail summary of the previously mentioned studies along 

with their achieved performances. 

Table 2.5: Summary of related works results. 

 

 
1 The EER is an accuracy measurement in biometric systems used to predetermine the threshold values for its 

False Acceptance Rate (FAR) and False Rejection Rate (FRR). 
2 map@3 is an evaluation metric which returns the best 3 classifications for each audio sample. 

Ref Dataset Data Type Architecture Augmentation Performance 

[159] STL-10 Image VGG-16 Mixup 82% accurate 

[159] CIFAR-100 Image ResNet-34 Mixup 80% accurate 

[159] Fashion-MNIST Image ResNet-18 Mixup 86% accurate 

[142] ImageNet Image ResNet-101 Mixup 93% accurate 

[142] IMDB Text CNN Mixup 83% accurate 

[143] CHIME-HOME Audio CRNN Mixup 0.10 EER1 

[112] Freesound 

Kaggle2018 

Audio ResNet Mixup 

Time Stretching 

93.60% mAP@32 

92.59% mAP@3 

[145] TREC Text CNN 

LSTM 

Mixup 92.1% accurate 

89.4 % accurate 

[147] Pakinson’s 

Disease Dataset 

Audio CNN Rotation 

Time warping 

82.62% accurate 

82.00% accurate 

[148] 2015UCR  

Series Archive 

Audio VGG 

LSTM 

Magnitude Warping 

Scaling 

86.00% accurate 

61.6% accurate 



   

 

 

 

2.6 Conclusion 

Throughout this chapter, we have reviewed the major concepts of classification task as well 

as the steps to undertake in order to develop a classification model. We have presented a few 

of the most commonly used deep learning architectures and data augmentation techniques in 

acoustic scene classification context. We have then summarized a few of the most recent related 

works while shedding the light on the data augmentation aspects of these works. Furthermore, 

we have defined the most common evaluation metrics and approaches used in literature, 

highlighting the importance of statistical tests in assessing the performance of machine learning 

classifiers as well as comparing between models.  

 

 

 

 

 

 

 

 

 

 



   

 

 

 

PART 2: EXPERIMENTATIONS 

This part of the thesis is dedicated to the procedure that we have adopted for the design and 

evaluation of sound classification systems. It is composed of two chapters. In the first chapter 

we present the experimental setup defined to construct and analyze our ASC system, whereas 

the second chapter is devoted to the examination and discussion of the results of our 

experiments. 



  

 

 

 

Chapter 3: EXPERIMENTAL DESIGN 

3.1 Introduction  

This chapter presents the setup defined to conduct our experiments. In Section 3.2 we 

present our data acquisition procedure. Next, in Section 3.3, we lay out the numerous tools that 

we have used in the development of our systems. Then in Section 3.4, we describe our 

implemented ASC system, and present the features used to train the system as well as the model 

topology. Finally, in Section 3.5, we explain the procedure that we have followed in order to 

analyze and discuss our results. 

3.2 Data acquisition procedure  

DATASET: We have carried out our experiments on the TAU Urban Acoustic Scenes 2019 

dataset (35,6 GB) which consists of 40 hours of high-quality binaural audio recordings from 

10 acoustic scenes in 12 different cities [59]. The acoustic scene class labels are the 

following: Airport, Indoor shopping mall, Metro station, Pedestrian street, Public square, 

Street with medium level of traffic, travelling by a tram, travelling by a bus, Travelling by 

an underground metro and Urban park. For each scene class, 5-6 minutes long audio files 

have been recorded in each location. The original recordings have been split into segments 

with a length of 10 seconds each and are provided in individual files in wav format. This 

format is strongly recommended and widely used in various audio processing fields as it 

encodes data without compression i.e. it is a lossless file format [167]. The training/test 

subsets are created based on the recording location such that the training subset contains 

approximately 70% of recording locations from each city. The development set contains 

14400 segments in total (144 per city per acoustic scene class) divided as follows: there are 

9185 segments in the training set and 5215 in the test set. 

RECORDING SETTINGS: The audio files were recorded by Soundman OKM II Klassik/studio 

with a power supply Adapter A3 [59], electret binaural microphone and a Zoom F8 audio 

recorder using 48kHz sampling rate and 24-bit resolution which guarantees a high audio 

quality. This microphone is specifically made to resemble headphones i.e. the microphones 
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are positioned in the ears. By positioning the microphones in the ears, the recordings are 

very similar to the subjective perception of sound reaching the user’s ear [59]. 

3.3 Development environment and utility libraries  

Deep learning research relies on exhaustive datasets and heavy computations during 

training which is generally time consuming and resource hungry. Thus, the use of parallel 

computing is necessary given that it considerably accelerates the training process [168]. For 

this purpose, Graphics Processing Units (GPU) is considered to be the leading parallel 

computing device used to conduct deep learning experiments. A GPU is an integrated single 

chip processor, consisting of a highly parallel structure designed to perform extensive graphical 

and mathematical computations [169]. The structure of GPUs allows parallel computing 

through thousands of threads at a time hence giving this category of hardware the upper hand 

in deep learning executions [170]. 

However, the use of such hardware resources can be not only costly in terms of purchase 

and maintenance, but also risky if events such as under/over utilization and/or equipment 

depreciation occur, making the deep learning project very cost effective [171]. 

On this account, multiple online solutions have been proposed by various tech companies 

such as Google, Amazon and Intel which consists in providing on-the-fly hardware i.e. 

providing pay-by-hour or free GPUs and fully configured runtime sessions for deep learning 

projects [171]. We have opted for this online solution to carry out our experiments considering 

the numerous advantages that it provides. The deep learning environment setup that we have 

used to complete our work is described below. 

3.3.1 Google Drive Storage  

Regarding the storage of our data, we have chosen Google Drive. It is an online storage, 

synchronization and sharing service that offers 15GB of free space, and several packages for 

different storage spaces. This way, the dataset is easier to access and load in the chosen runtime 

environment which is Google Colaboratory. 

3.3.2 Google Colaboratory 

Google Colaboartory, also referred to as “Google Colab”, is a cloud service based on the 

Jupyter environment for machine learning education and research [171][172]. It provides a 
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fully configured runtime for deep learning using Python and free access to Tensor Processing 

Unit (TPU); which offers up to 35 GB of RAM and 107 GB of disk space, and a TESLA k80 

GPU. We have made use of the provided TPU to perform audio feature extraction taking into 

account that this process is costly in terms of RAM, while we have performed training of our 

models using the provided GPU. The figure below shows the colab environment setup. 

Note that further robust resources can be accessed by upgrading to a professional version 

of Google Colaboratory. This upgrade guarantees priority access to highly powerful GPUs such 

as Tesla T4 and Tesla P100 and provides additional disk space and RAM capacity [173]. 

3.3.3 Utility Libraries  

Another bright spot for Google Colaboratory is the availability of all the necessary python 

libraries used for audio processing and deep learning experiments [171]. These libraries do not 

require any installation or configuration. The following are a few of the most relevant libraries 

that we have used in our work.  

LIBROSA: Librosa is a Python package for audio and music signal analysis and processing. 

It provides implementations of a variety of common functions that fall into four categories 

that are audio and time-series operations, spectrogram calculation, time and frequency 

conversion, and pitch operations [174]. These functions are heavily used throughout our 

experiments.  

TENSORFLOW: Tensorflow is an open-source library that implements automatic learning 

methods based on the principle of deep learning neural networks.  We have used Tensorflow 

in our work as it supports a variety of applications, with a focus on training and inference 

on deep neural networks [175]. 

KERAS: Keras is a high-level API written in python that runs on a Tensorflow backend. It 

is an approachable, highly-productive interface for solving machine learning problems, 

with a focus on modern deep learning. Its simplicity helps users develop a deep learning 

model quickly and provides a ton of flexibility while still being a high-level API [176]. 

PYTORCH: PyTorch is an open-source library developed by Facebook that performs 

instantaneous dynamic tensor computations with automatic differentiation and GPU 

acceleration, while maintaining performance comparable to the fastest modern libraries for 

deep learning [177]. 
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In addition to the above mentioned deep learning libraries we have made use of the Numpy 

library to perform manipulation operations on our data [178], the Matplotlib library for plotting 

and graphical representations, the pickle module [179] for serialization of python objects for 

storing purposes and the H5py python package to store our trained models for testing. Table 

3.1 provides additional information about the libraries we have used in our work. 

Table 3.1: Utility libraries used for deep learning. 

Utility Library Version 

Python 3.5 

Librosa 0.6.3 

Keras 2.3.1 

Tensorflow 2.2.0 

PyTorch 1.0.0 

Matplotlib 2.0.2 

Numpy 1.14.0 

Pickle 5 

3.4 Design and analysis of acoustic scene classification systems 

3.4.1 ASC System Characterization 

In order to fully exploit our dataset, we aim at building an acoustic scene classification 

system able to classify audio samples into one of predefined acoustic scene classes in a closed 

set classification setup. The designed supervised system follows the general framework for 

acoustic scene classification which usually consists of two stages. First, preprocessing of audio 

samples i.e. obtaining time-frequency representation of the data and extracting relevant 

features. Second, employing the extracted features to perform classification. Each of the 

developed systems is trained using specific feature sets along with different classification 

paradigms while varying their parameters.  

To explore the impact of augmenting the data for training, we have invoked the well-known 

data augmentation technique: mixup [131]. All developed systems have been trained and 

evaluated using mixup augmentation technique. We have utilized the F1-score metric and 

confusion matrix to perform the evaluation of our systems and have supported our analysis and 

discussion with numerous statistical tests. The proposed system is illustrated in Figure 3.1. 
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Additional details on the feature extraction techniques and the machine learning models that 

were used can be found in Sections 1.11 and 2.3.2. 

 

 

3.4.2 Data preprocessing and feature extraction    

One important characteristic to take into account when training a machine learning model 

is imbalanced data [180]. In supervised learning, the data set is said to be imbalanced if the 

class prior probabilities are highly unequal and prediction models built from imbalanced 

datasets are most often biased towards the majority concept [181]. Generally, data exploration 

techniques ranging from data querying and basic statistics to advanced visualization, are used 

to discover class imbalance and other characteristics of a dataset. 

To gain insight on the class distribution of our dataset, we have plotted the number of sound 

recordings per class in both the training set and the testing set as depicted in Figure 3.2. The 

below visualization shows that both training and testing sets are balanced, hence, we did not 

invoke under/over sampling methods or cross-validation in our work.  

Figure 3.1: Acoustic Scene Classification System pipeline. 
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Furthermore, we have empirically proved that our dataset is split in a balanced manner with 

the use of Shannon’s entropy [182]. A Shannon entropy is a general measure of diversity of 

objects in a given set i.e. it provides insight on the certainty of drawing an object at random 

from a given set. On a data set of n instances and k classes of size 𝑐𝑖, the Shannon entropy is 

computed as follows: 

 

𝐻 = − ∑
𝑐𝑖

𝑛
 𝑙𝑜𝑔

𝑐𝑖

𝑛

𝑘

𝑖=1

 , 
(3.1) 

where 
𝑐𝑖

𝑛
 is the probability of occurrence of a class 𝑐𝑖 . H tends to 0 when the data set is 

unbalanced and it tends to 𝑙𝑜𝑔𝑘 otherwise. 

Feature extraction is one of the most crucial stages in the acoustic scene classification task 

framework. This stage contributes greatly to the effectiveness of an ASC system. One of the 

most popular features applied in the ASC are representations of Mel-frequency scales such as 

Log-Mel energies [183]. The main reason for their success is that they provide a reasonably 

good representation of the spectral properties of the audio signal. In addition, they produce a 

reasonably high inter-class variability allowing for class discrimination. Besides that, these 

features can be used as basis to derive higher level features such as ∆Log-Mel energies and 

∆∆𝐿og-Mel energies. 

Figure 3.2: Stacked histogram class distribution in the training and testing sets. 
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Following the above indications, we have extracted the frequency domain features: Log-

Mel band energies and their derivatives ∆Log-Mel energies + ∆∆Log-Mel energies, from the 

audio samples to train our models.  

D. Log-Mel band Energies  

The provided audio files in our dataset are sampled at a rate of 48 kHz and are in stereo 

format. As a first feature extraction step, we have applied a Short-Time Fourier Transform 

with 2048 FFT points to each of the 10 second binaural signals in our dataset. Note that the 

number of FFT points should be a power of 2 for fastest computation of the spectrogram. To 

prevent spectral leakage, we have applied a Hamming windowing function with a 50% 

overlap. Next, 128 bin Mel-filter banks are applied to the calculated power spectrums.  

It is worth noting that it is important to keep a sufficient number of bins for representing 

the spectral characteristics, while greatly reducing the feature dimensions; hence, 128 

frequency bins is an adequate number of bins to use. Finally, the resulting Mel-energy values 

are logarithmically scaled to obtain the Log-Mel features. We have extracted these features 

using the Librosa version 0.6.3 python package. A summary of the values and variants used in 

extracting Log-Mel band features is shown in Table 3.2. 

Table 3.2: Log-Mel features parameters. 

 

 

 

 

E. Delta Log-Mel energies and Delta-Delta Log-Mel energies 

It is widely acknowledged that Log-Mel energies only describe the power spectral envelope 

of a single frame and are referred to as static feature [184]. Nevertheless, an acoustic scene 

recognition system could benefit from information about the rate of change of these Log-Mel 

features. In our work, we have extracted information about the temporal dynamics of the audio 

files by computing first and second derivatives of Log-Mel energies namely: ∆ Log-Mel 

Parameter Configuration 

Sample rate 48 000 Hz 

FFT points 2048 

Windowing function Hamming 

Overlap 50% 

Mel bands 128 
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energies and ∆∆Log-Mel energies, using the procedure presented in Section 1.11.1. We then 

stack the resulting features along with Log-Mel features for the training process. The figures 

above depict the time-domain, Log-Mel energies and  ∆∆Log-Mel energies representations of 

a sound sample belonging to the “street traffic” acoustic scene. 

 

 

 

 

 

 

3.4.4 Data Augmentation and Regularization 

MIXUP: To prevent overfitting during training and enhance the robustness of our model, 

we have invoked the mixup data augmentation technique. We have applied mixup 

augmentation by randomly selecting a pair of audio feature vectors from the training batch 

Figure 3.3: Time domain representation of a street traffic audio sample. 

Figure 3.4: Log-Mel energies representation of a street traffic audio sample. 

Figure 3.5: ∆∆ Log-Mel  energies representation of a street traffic audio sample. 
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and computing their weighted sum them as introduced in Section 2.4.2.A. While the audio 

feature vectors are computed and stored in advance, we have used on-the-fly data 

augmentation approach to construct the new samples. This approach has allowed us to 

thoroughly explore the effect of mixup augmentation technique by virtue of being 

computationally inexpensive and requiring no additional disk-space while guaranteeing a 

large amount of diverse training data. For exploration purposes, different values of the mix 

factor α have been tested.  

WEIGHT DECAY: Multiple studies have shown that the generalization ability of a deep 

neural network depends on a balance between the information in the training set and the 

complexity of the network [185]. Bad generalization occurs if the input information does 

not match the complexity of the deep neural network. Thus, the deep neural network 

requires regularization techniques during the training process in order to achieve better 

generalization and avoid overfitting. For this purpose, we have opted for a regularization 

method called weight decay.  

Weight decay is an explicit way of regularization such that a regularization term is 

added into the energy in order to penalize large weight values. We can directly control the 

regularization effect through manually tuning the weight decay coefficient wd. In our work, 

we have used a value of 1 × 10−3 for the weight decay coefficient on all convolutional 

layers. 

3.4.5 Neural Network Architectures  

Highest accuracy in numerous approaches to scene recognition have arisen from training 

deep convolutional neural networks on audio spectrogram features [186]. Driven by this, we 

have also adopted the use of CNNs to build our ASC system namely: Residual Network and 

Alex Network.  

DEEP RESIDUAL NETWORK: The key idea that has enabled a deeper network to be trained 

effectively was the introduction of so-called skip-connections [116] in the network 

architecture, hence developing Residual networks. Many variations of these networks have 

since been proposed and widely used as they offer the virtue of simplicity [187]. Motivated 

by this, we have used a Wide Residual Network architecture (WRN) with a widening factor 
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𝑘, as these architectures have been demonstrated to produce better accuracy in less training 

time than deeper networks [187].  

Residual networks with a widening factor 𝑘  = 1 are referred to as “thin” whereas 

networks with 𝑘 > 1 are referred to as “wide”. Note that, the residual network design used 

in our work is a pre-activation variety [8, 11] i.e. the order of batch normalization, activation 

and convolution in a residual block was changed from conv-BN-ReLU to BN-ReLU-conv 

as the latter was shown to train faster and achieve better results [188]. Table 3.3 shows the 

ResNet architecture that we have used to conduct our experiments. Overall, our network 

had approximately 1,487,268 parameters for 𝑘 = 1 and 3,254,468 parameters for 𝑘 = 2. 

Table 3.3: Residual Network architecture. BN: Batch Normalization, ReLU: Rectified 

Linear Unit. 

ResNet 

Input 1 × 128 × 128 

BN-ReLU-3 × 3 Convolution-64× 𝑘   

× 2   × 4 

BN-ReLU-3 × 3 Convolution-64× 𝑘   

BN-1× 1 Convolution-128 

BN-1× 1 Convolution-128 

Global Average Pooling 

10-way Softmax 

ALEX NETWORK: Given the successful application of image-based neural networks for 

acoustic scene classification tasks, we have employed a CNN-based architecture namely: 

AlexNet. The model topology; including details of each layer, is presented in Table 3.4.  

Our system is inspired by the original AlexNet design [96] with a few modifications. 

Please note that the rectified linear unit activation function “ReLU” is applied for each 

convolutional layer. In addition, we have employed batch normalization for all 

convolutional layer as experiments have shown that it reduces the training time and 

improves the performance of CNN-based systems. Overall, our network had approximately 

13,143,642 parameters. 
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Table 3.4: Alex Network architecture. BN: Batch Normalization, ReLU: Rectified 

Linear Unit. 

AlexNet 

Input 1 × 128 × 128 

3 × 3 Convolution-48-BN-ReLU 

2 × 2 Max Pooling 

3 × 3 Convolution-96-BN-ReLU 

2 × 2 Max Pooling 

3 × 3 Convolution-192-BN-ReLU 

2 × 2 Max Pooling 

3 × 3 Convolution-192-BN-ReLU 

3 × 3 Convolution-192-BN-ReLU 

2 × 2 Max Pooling 

Flattening 

Fully Connected (dim-1024)-BN-ReLU 

Fully Connected (dim-256)-BN-ReLU 

10-way Softmax 

3.5 Evaluation procedure  

There are different ways of evaluating the performance of learning  algorithms and the 

classifiers that they generate. Classification quality measures are generally constructed from a 

confusion matrix that records correctly and incorrectly recognized examples for each class as 

shown in Table 2.3 in Section 2.2.2.F.  

In order to  evaluate the results of our experiments, we have initially opted for the accuracy 

metric which is extensively used in literature. However, the use of this metric for statistical 

tests ranking did not provide sufficient information for proper evaluation. Therefore, we have 

chosen the F1-score metric which; unlike the accuracy, takes both false positives and false 

negatives into account, making it more reliable in our work. 

It is worthwhile emphasizing that relying on a single performance metric namely: averaged 

F1-score in our analysis is not sufficient for drawing any conclusions. For this purpose, we have 

supported our analysis and discussion with numerous statistical tests. The choice of specific 

statistical tests for the results of each evaluation case is not only based on statistical 
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appropriateness but also on the intended objective. The evaluation procedure that we have 

followed in order to compare and analyze our trained systems is as follows:  

A. For the purpose of comparing two classifiers or multiple classifiers in a pairwise 

manner over multiple datasets, we have opted for the non-parametric Wilcoxon signed-

ranks test [74]. We have chosen this test over the acclaimed t-test by reason of it being more 

sensible i.e. outliers (exceptionally good/bad performances on a few data sets) have less effect 

on the Wilcoxon than on the t-test [74].   

B. We have used the non-parametric Friedman test for measuring the difference between 

more than two classifiers, i.e. multiple classifiers, over multiple datasets. The null 

hypothesis being tested where we made use of the Friedman test was that all classifiers 

perform the same and the observed differences are merely due to chance. 

C. If the null-hypothesis was rejected after the use of Friedman test, we have proceeded 

with post-hoc tests namely: Nemenyi test [74] when we aimed at comparing all classifiers 

against each other, and Bonferroni-Dunn [74] test when the aim was to compare all 

classifiers with a control system. 

D. For graphical representation of statistical results, we have used critical difference 

diagrams (CD). The top line in the diagram is the axis on which the average ranks computer 

during Friedman test are plotted. The axis is turned so that the lowest (best) ranks are to the 

right since systems on the right side are perceived as better. 

E. To gain more insight into the errors made by our systems and the type of these errors 

we have computed the confusion matrix, which allowed us to thoroughly observe the model 

behavior over all the classes.  

F. For experiments where results are too numerous and complicated to be described 

adequately in plain text, we have opted for a graphical representation i.e. graph plot to observe 

and analyze the progression of the systems. 

3.6 Conclusion 

In this chapter, we have described the setup used to conduct our explorations and assess our 

results. We have presented the dataset used to train our systems as well as the features and 

augmentation technique utilized for the latter aim. In the following chapter, we will present and 

analyze the results of these experiments in order to derive empirical findings and conclusions.  



  

 

 

 

Chapter 4: EXPERIMENTAL FINDINGS 

AND DISCUSSION

4.1 Introduction  

This chapter describes and discusses the experimental results and findings that we have 

obtained during our experiments. The main goal of our case study is to compare the 

performances of several scene recognition systems, varying the mechanism for extracting 

features and the hyperparameters used for learning the models. Most importantly, we have 

thoroughly examined the influence of data augmentation on our systems. Specifically, we have 

conducted our experiments on TAU Urban Acoustic Scenes 2019 dataset, consisting of audio 

files recorded using one recording device. We have compared two deep neural network 

architectures namely, ResNet and AlexNet; and have trained our systems on Log-Mel 

Spectrogram features. Table 4.1 describes the scene classification systems that have been tested 

in our experiments. For additional information on these models and their parameters, please 

refer to Sections 3.5.4.A and 3.5.4.B. 

For evaluating these systems, we have estimated the F1 score along with the confusion 

matrix on the provided test set. Furthermore, we have based our discussions and conclusions 

on various statistical tests. Specifically, our case study consists of 4 experiments: 

• Experiment 1: investigates the impact of the mixup data augmentation technique. 

• Experiment 2: examines the impact of the mixup parameter. 

• Experiment 3: studies and compares several acoustic sound recognition systems 

obtained by varying hyperparameters and the feature sets. 

• Experiment 4: explores the change of the prediction scores as a function of the 

number of epochs. 

 

 



  

 

 

 Table 4.1:  List of all classifiers used in the experiments. 

System Abbreviation Feature Set System Description 

𝑅𝑒𝑠𝑘=1 Log-Mel energies ResNet model of width 1 trained for 250 epochs without mixup 

𝑅𝑒𝑠𝑘=1 + 𝑀𝑖𝑥 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 0.4 

𝑅𝑒𝑠𝑘=1 + ∆∆ Log-Mel+∆Log-Mel+∆∆Log-Mel ResNet model of width 1 trained for 250 epochs without mixup 

𝑅𝑒𝑠𝑘=1 + ∆∆ + 𝑀𝑖𝑥 Log-Mel+∆Log-Mel+∆∆Log-Mel ResNet model of width 1 trained for 250 epochs with mixup α = 0.4 

𝑅𝑒𝑠𝑘=2 Log-Mel energies ResNet model of width 2 trained for 250 epochs without mixup 

𝑅𝑒𝑠𝑘=2 + 𝑀𝑖𝑥 Log-Mel energies ResNet model of width 2 trained for 250 epochs with mixup α = 0.4 

𝑅𝑒𝑠𝑘=2 + ∆∆ Log-Mel+∆Log-Mel+∆∆Log-Mel ResNet model of width 2 trained for 250 epochs without mixup  

𝑅𝑒𝑠𝑘=2 + ∆∆ + 𝑀𝑖𝑥 Log-Mel+∆Log-Mel+∆∆Log-Mel ResNet model of width 2 trained for 250 epochs with mixup α = 0.4 

𝑅𝑒𝑠𝛼=0.1 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 0.1 

𝑅𝑒𝑠𝛼=0.4 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 0.4 

𝑅𝑒𝑠𝛼=0.7 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 0.7 

𝑅𝑒𝑠𝛼=1 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 1 

𝑅𝑒𝑠𝛼=4 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 4 

𝑅𝑒𝑠𝛼=7 Log-Mel energies ResNet model of width 1 trained for 250 epochs with mixup α = 7 

𝐴𝑙𝑒𝑥 Log-Mel energies AlexNet model trained for 20 epochs without mixup  

𝐴𝑙𝑒𝑥 + 𝑀𝑖𝑥 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 0.4 

𝐴𝑙𝑒𝑥𝛼=0.1 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 0.1 

𝐴𝑙𝑒𝑥𝛼=0.4 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 0.4 

𝐴𝑙𝑒𝑥𝛼=0.7 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 0.7 

𝐴𝑙𝑒𝑥𝛼=1 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 1 

𝐴𝑙𝑒𝑥𝛼=4 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 4 

𝐴𝑙𝑒𝑥𝛼=7 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 7 

𝐴𝑙𝑒𝑥𝛼=10 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 10 

𝐴𝑙𝑒𝑥𝛼=12 Log-Mel energies AlexNet model trained for 20 epochs with mixup α = 12 

𝐴𝑙𝑒𝑥𝑎=4,𝑏=7 Log-Mel energies AlexNet model trained for 20 epochs with mixup a = 4, b = 7 
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4.2 Experiment 1: Impact of the mixup data augmentation technique 

This experiment is devoted to studying the impact of the Mixup data augmentation 

technique on the performance of ResNet and AlexNet models. To this end, we have trained 

each model twice: first, on the augmented data; second, on the original data. Note that setting 

the value of the mixup parameter α is of vital importance and significantly influences the overall 

performance [131]. Exploratory experiments have indicated that setting α to 0.4 is preferable. 

Table 4.2 reports the results of this experiment. The last row specifies the averaged performance 

of each system over all scenes. 

Table 4.2: Average F1-score results of Resk=1, Resk=1+Mix, Alex and Alex+Mix 

Table  4.2 reveals that 𝑅𝑒𝑠𝑘=1 + 𝑀𝑖𝑥 yields the highest averaged score followed by 𝐴𝑙𝑒𝑥, 

whereas, 𝐴𝑙𝑒𝑥 + 𝑀𝑖𝑥 produces the worst performance. Therefore, these initial observations 

suggest that the mixup technique has a positive impact on the ResNet model. However, training 

on augmented data does not demonstrate a similar effect on the AlexNet-based system.  

Note that relying our analysis only on averaged F1-scores does not provide strong evidence 

on the significance of these conclusions. Moreover, it is widely acknowledged that the analysis 

of results through statistical tests is of paramount importance and should be conducted properly 

in order to ensure significance [74]. Dietterich [76], Dem�̃�ar [74], Garcίa et al. [77], and 

Japkowicz et al. [78] introduced several statistical tests such as McNemar, Friedman, Nemenyi, 

Classes 𝑹𝒆𝒔𝒌=𝟏 𝑹𝒆𝒔𝒌=𝟏 + 𝑴𝒊𝒙 𝑨𝒍𝒆𝒙 𝑨𝒍𝒆𝒙 + 𝑴𝒊𝒙 

Airport 0.61 0.67 0.70 0.72 

Bus 0.73 0.79 0.74 0.77 

Metro 0.69 0.73 0.66 0.61 

Metro Station 0.62 0.65 0.65 0.61 

Park 0.86 0.87 0.88 0.86 

Public Square 0.56 0.65 0.57 0.58 

Shopping Mall 0.68 0.70 0.61 0.61 

Street Pedestrian 0.60 0.71 0.63 0.61 

Street Traffic 0.81 0.83 0.83 0.83 

Tram 0.65 0.67 0.70 0.67 

Average F1-score  0.68 0.73 0.70 0.68 
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Bonferroni-Dunn, Wilcoxon, and ANOVA for performance comparison. Following their 

recommendations, we have considered using the Wilcoxon signed-ranks test, which fits well 

with our purpose. Under the null hypothesis, we have assumed that the differences between a 

system trained on the augmented data and non-augmented data are insignificant and have 

occurred merely due to chance. A summary of this test statistics is shown in Table 4.3. Row 2 

specifies the number of Win/Tie/Loss of the data augmentation-based system (column 

highlighted in grey in Table 4.2) over the baseline system. Row 3 shows the associated 𝑝 −

𝑣𝑎𝑙𝑢𝑒. For example, a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.05 indicates that the system in the column highlighted 

in grey is significantly better at 5% significance level than the system trained on the original 

data i.e. introducing the mixup data augmentation technique significantly improves the 

predictive performance. 

Table 4.3: Wilcoxon signed-rank test results. 

                   𝑹𝒆𝒔𝒌=𝟏 + 𝑴𝒊𝒙               𝑨𝒍𝒆𝒙 + 𝑴𝒊𝒙 

𝑹𝒆𝒔𝒌=𝟏 W / T / L 10 / 0 / 0 𝑨𝒍𝒆𝒙 W / T / L 3 / 2 / 5 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 0.0051 𝑝 − 𝑣𝑎𝑙𝑢𝑒 0.2845 

The results shown above indicate that training ResNet on augmented data significantly 

improves the generalization ability with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0051. Therefore, we can reject the null 

hypothesis regarding the ResNet-based system. However, introducing the mixup data 

augmentation technique does not demonstrate any improvement in the performance of AlexNet 

as depicted in Table 4.3 (𝑝 − 𝑣𝑎𝑙𝑢𝑒  = 0.2845). Hence, the observed differences between 

𝐴𝑙𝑒𝑥 + 𝑀𝑖𝑥 and 𝐴𝑙𝑒𝑥 are not significant. This behavior is expected since the mixup technique 

works better on models trained for longer runs [131]. Similar results have been reported in 

[189].  

Confusion matrix of Resnet  

In order to get a better insight on how mixup augmentation method improves the 

performance of Resnet-based model, we display in Figure 4.1 (a) and (b) the confusion matrices  

of  𝑅𝑒𝑠𝑘=1 and  𝑅𝑒𝑠𝑘=1+Mix, respectively, computed on the test set.
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(a) Resk=1. (b) Resk=1+Mix. 

Figure 4.1: Confusion Matrices of ResNet-based models. 
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The matrix of  𝑹𝒆𝒔𝒌=𝟏  shows an appreciable diagonal, meaning that several scenes are 

correctly classified. However, some classes are misrecognized as others; for instance, “bus” 

and “metro” are classified as “tram” and vice versa. It is worth noting that the mostly 

misclassified classes are quite similar, which makes it difficult even for a human being to 

distinguish between them. Figure 4.2 shows the Log-Mel spectrogram representation of 2 

scenes “tram” and “metro”. 

  

  

 

As reported earlier, training ResNet on the augmented data has boosted its performance. 

Most importantly, we observe a considerable reduction in the misclassification rate of 

numerous scenes that sound similar, as shown in Figure 4.2. 

The above findings further confirm the efficiency of the ResNet-based model for sound 

scene recognition. In Experiment 3, we thoroughly investigate the ResNet-based systems, while 

varying some of its hyperparameters and introducing the derivatives of Log-Mel features.  

4.3 Experiment 2: Impact of the Mixup parameter 

To further assess the influence of the mixup data augmentation technique, we have built 

several acoustic scene recognition systems on the augmented data, while varying the mixup 

parameter α. Recall that the  mix factor value used for mixing 2 sound samples 𝜆 is 

randomly  drawn following the Beta distribution Be(a, b), with a = b = α.  

A. AlexNet: We have performed this experiment with 8 different values of α ∈ {0.1, 

0.4,0.7,1,4,7,10,12} (please refer to Section 2.4.2.A for additional details on this parameter). 

(a) Tram. (b) Metro. 

Figure 4.2: Spectrogram representations. 
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Most importantly, we have tested the effect of setting a and b differently, a = 4, b = 7. Moreover, 

we have only considered training with the AlexNet model.  

Table 4.4 gives the results of this experiment. The last row specifies the average ranks of 

each model computed using the Friedman test. The ranks of each system have been assigned 

according to the F1-Score performance (Table 4.4) in descending order. Most importantly, 

systems with lower ranks are preferred i.e. succeed at recognizing most scenes.  

Table 4.4: AlexNet based models ranking according to average F1-score 

performance. 

In order to study these results and reveal significant differences, we have first conducted 

the Friedman test, while assuming that the observed differences are due to random behavior. 

This test rejects our hypothesis with FF = 3.97 > F(8,72) = 3.91 for α = 0.0007 (FF is distributed 

according to the F distribution with 9−1 = 8 and (9−1)×(10−1) = 72 degrees of freedom), which 

indicates an existence of at least one pairwise significant difference.  

For further analysis of these results, we have compared these scores in a pairwise manner 

based on the Wilcoxon test in Table 4.5. The first row of each entry specifies the number of 

Win/Tie/Loss of the technique in the column over the technique in the row; whereas, the second 

row shows the p-values for the Wilcoxon test. If the entry is bold, this means that the number 

of wins/losses over 10 is statistically significant using the Wilcoxon test. 

Classes 𝑨𝒍𝒆𝒙𝜶=𝟎.𝟏 𝑨𝒍𝒆𝒙𝜶=𝟎.𝟒 𝑨𝒍𝒆𝒙𝜶=𝟎.𝟕 𝑨𝒍𝒆𝒙𝜶=𝟏 𝑨𝒍𝒆𝒙𝜶=𝟒 𝑨𝒍𝒆𝒙𝜶=𝟕 𝑨𝒍𝒆𝒙𝜶=𝟏𝟎 𝑨𝒍𝒆𝒙𝜶=𝟏𝟐 𝑨𝒍𝒆𝒙𝒂=𝟒,𝒃=𝟕 

Airport 0.71 0.72 0.69 0.69 0.75 0.74 0.69 0.69 0.72 

Bus 0.73 0.77 0.75 0.74 0.72 0.70 0.69 0.69 0.77 

Metro 0.61 0.61 0.71 0.66 0.66 0.57 0.62 0.62 0.65 

Metro Station 0.58 0.61 0.66 0.62 0.65 0.64 0.61 0.61 0.61 

Park 0.84 0.86 0.84 0.58 0.87 0.83 0.86 0.86 0.86 

Public Square 0.50 0.58 0.60 0.58 0.56 0.53 0.54 0.54 0.52 

Shopping Mall 0.63 0.61 0.64 0.63 0.65 0.62 0.59 0.59 0.68 

Street Pedestrian 0.67 0.61 0.65 0.60 0.69 0.66 0.60 0.60 0.69 

Street Traffic 0.85 0.83 0.82 0.80 0.85 0.80 0.81 0.81 0.83 

Tram 0.65 0.67 0.65 0.68 0.68 0.68 0.64 0.64 0.69 

Average 

F1-score 

0.68 0.68 0.70 0.69 0.71 0.68 0.69 0.69 0.70 

Average Rank 5.75 4.65 3.95 5.35 2.45 5.75 6.85 6.85 3.40 
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Table 4.5: Comparison of AlexNet based models in a pairwise manner based on the 

Wilcoxon test. 

  𝑨𝒍𝒆𝒙𝜶=𝟎.𝟒 𝑨𝒍𝒆𝒙𝜶=𝟎.𝟕 𝑨𝒍𝒆𝒙𝜶=𝟏 𝑨𝒍𝒆𝒙𝜶=𝟒 𝑨𝒍𝒆𝒙𝜶=𝟕 𝑨𝒍𝒆𝒙𝜶=𝟏𝟎 𝑨𝒍𝒆𝒙𝜶=𝟏𝟐 𝑨𝒍𝒆𝒙𝒂=𝟒,𝒃=𝟕 

𝑨𝒍𝒆𝒙𝜶=𝟎.𝟏 
W/T/L 6/1/3 

0.35 

5/2/3 

0.35 

5/1/4 

0.95 

8/1/1 

0.01 

4/0/6 

0.91 

4/0/6 

0.30 

4/0/6 

0.30 

9/0/1 

0.01 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟎.𝟒 
W/T/L  5/0/5 

0.26 

4/1/5 

0.47 

8/0/2 

0.10 

5/0/5 

0.44 

1/2/7 

0.02 

1/2/7 

0.02 

4/5/1 

0.22 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟎.𝟕 
W/T/L   1/1/8 

0.03 

6/0/4 

0.57 

3/0/7 

0.20 

1/1/8 

0.01 

1/1/8 

0.01 

7/0/3 

0.95 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟏 
W/T/L    6/2/2 

0.05 

4/2/4 

0.75 

2/2/6 

0.20 

2/2/6 

0.20 

7/0/3 

0.11 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟒 
W/T/L     0/1/9 

0.005 

0/0/10 

0.005 

0/0/10 

0.005 

3/1/6 

0.44 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟕 
W/T/L      4/0/6 

0.33 

4/0/6 

0.33 

7/0/3 

0.07 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟏𝟎 
W/T/L       0/10/0 

1 

7/2/1 

0.02 p-value 

𝑨𝒍𝒆𝒙𝜶=𝟏𝟐 
W/T/L        7/0/3 

0.02 p-value 

The test results reveals the existence of four categories of models: C1={ 𝐴𝑙𝑒𝑥𝛼=4 ,  

𝐴𝑙𝑒𝑥𝑎=4,𝑏=7}; C2={𝐴𝑙𝑒𝑥𝛼=0.7 }; C3={𝐴𝑙𝑒𝑥𝛼=0.4 }; and C4={𝐴𝑙𝑒𝑥𝛼=0.1, 𝐴𝑙𝑒𝑥𝛼=1, 𝐴𝑙𝑒𝑥𝛼=7, 

𝐴𝑙𝑒𝑥𝛼=10, 𝐴𝑙𝑒𝑥𝛼=12}. The system trained with α = 4 achieve the best results with 6 significant 

wins and the system trained with a = 4, b = 7 achieve 5 significant wins , followed by 𝐴𝑙𝑒𝑥𝛼=0.7 

and  𝐴𝑙𝑒𝑥𝛼=0.4  with 3 and 2 significant wins respectively, whereas, 𝐴𝑙𝑒𝑥𝛼=0.1 , 𝐴𝑙𝑒𝑥𝛼=1 , 

𝐴𝑙𝑒𝑥𝛼=7, 𝐴𝑙𝑒𝑥𝛼=10 and 𝐴𝑙𝑒𝑥𝛼=12 yield the worst scores with 0 significant wins. According to 

the Wilcoxon test statistics, we can derive the following inferences: 

• We find that training with α = 4 significantly outperforms categories C3 and C4 at 0.0051≤

𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.1 (bold entry of Table 4.5). 

• We could not reject the null hypothesis stating that 𝐴𝑙𝑒𝑥𝛼=0.4 and 𝐴𝑙𝑒𝑥𝛼=0.7 are equivalent 

i.e. the observed differences are due to chance. Therefore, the values  α = 0.4 and α = 0.7 

yield systems which have similar performances. 

• We observe that systems belonging to C4 are significantly worse than the other alternatives, 

as indicated by the Wilcoxon test results. 
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Based on the above discussion, we can conclude that correctly setting the value of α 

parameter is of vital importance for the success of the mixup technique.  Recall that the mix 

factor used for mixing 2 instances follows a Be(a, b) distribution, such that a=b= α.We can 

distinguish 2 cases:  

i. α < 0.4:  For these values, the beta distribution has the shape of the U-shaped bimodal 

distribution (Figure 2.5(b)). It samples more values closer to either 0 and 1, generating 

more redundant samples. This leads to less mixup effect, hence, low generalization 

ability. Similar results have been reported in [131].  

ii. α > 4:  In this case, the beta distribution is the same as the gaussian distribution (Figure 

2.5(a)). It focuses on values that are neither close to 0 nor to 1, creating a grand mixup 

effect. This latter usually leads to underfitting as reported by several experimental 

investigations [159]. 

One should avoid the configurations indicated by (i) and (ii), and set the value of α for 

AlexNet between these two extreme cases. 

B. ResNet: We have performed this experiment with 6 different values of 

α ∈{0.1,0.4,0.7,1,4,7}. Moreover, we have only considered training with the 𝑅𝑒𝑠𝑘=1model. 

Table 4.6 gives the results of this experiment. The last row specifies the average ranks of each 

model computed using the Friedman test. 

Table 4.6: ResNet of width 1 based models ranking according to average F1-scores.  

Classes   𝐑𝐞𝐬𝛂=𝟎.𝟏 𝐑𝐞𝐬𝛂=𝟎.𝟒 𝐑𝐞𝐬𝛂=𝟎.𝟕 𝐑𝐞𝐬𝛂=𝟏 𝐑𝐞𝐬𝛂=𝟒 𝐑𝐞𝐬𝛂=𝟕 

Airport 0.64 0.67 0.66 0.51 0 0.12 

Bus 0.76 0.79 0.76 0.69 0.23 0.28 

Metro 0.73 0.73 0.67 0.58 0 0 

Metro Station 0.60 0.65 0.65 0.56 0 0 

Park 0.86 0.87 0.83 0.80 0.75 0.55 

Public Square 0.61 0.65 0.54 0.49 0 0 

Shopping Mall 0.68 0.70 0.61 0.63 0 0 

Street Pedestrian 0.62 0.71 0.48 0.54 0 0 

Street Traffic 0.84 0.83 0.80 0.76 0.05 0.57 

Tram 0.67 0.67 0.69 0.57 0.04 0.19 

Average F1-score 0.70 0.73 0.67 0.61 0.10 0.17 

Average Ranks 2.15 1.35 2.70 3.80 5.75 5.25 
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The results show that systems trained with α < 1 surpasses those trained with α > 1. In 

addition, Friedman’s test rejects the hypothesis that all algorithms perform equally with 

FF=62.59. With 6 algorithms and 10 classes, FF is distributed according to the F distribution 

with 6−1 = 5 and (6−1) × (10−1) = 45 degrees of freedom. The critical value of F (5,45) for α 

= 1×10−16 is 46.55, and since FF = 62.59 > F (5,45) = 46.55 we reject the null-hypothesis. This 

finding confirms the existence of at least one pair of systems with significant different 

performances. Then, we have proceeded with a post hoc Nemenyi test at a 5% significance 

level with the critical value 𝑞0.05 = 2.84 and the critical difference CD = 2.38. This test aims at 

identifying pairs of algorithms that are significantly different. The results of the Nemenyi test 

are depicted in Figure 4.3. On the horizontal axis, we represent the average ranks of each 

method (given in Table 4.6), and join the groups of systems that are not significantly different 

using thick lines. On the top left, we display the critical difference CD used in our experiments. 

 

Figure 4.3: Comparison of ResNet of width 1 based systems against each other with 

the Nemenyi test. 

We can identify two groups of systems: the ones trained using small values of α (α < 1) and 

those built with larger values of α (α > 1). Notice that systems within the same group achieve 

similar performances, and the observed differences are solely due to chance. Most importantly, 

the test provides a strong evidence that training models with α < 1 yields significantly better 

results than α > 1, which confirms our initial assumption. In addition, 𝑅𝑒𝑠α=1  performs 

significantly worse than  𝑅𝑒𝑠α=0.4 . However, it achieves similar performance to 𝑅𝑒𝑠α=0.1 , 

𝑅𝑒𝑠α=0.7 (group 1), and to𝑅𝑒𝑠α=4, 𝑅𝑒𝑠α=7 (group 2). Therefore, we cannot tell which group 

the 𝑅𝑒𝑠α=1 belongs to, i.e.  no conclusions can be drawn regarding 𝑅𝑒𝑠α=1 due to the lack of 

the experimental data. 

Based on the above analysis, in the case of the ResNet model, setting α between 0.1 and 1 

(excluded) is preferred over the other two extremes. 
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4.4 Experiment 3: Analysis of ResNet-based system 

According to our experiment 1, 𝑅𝑒𝑠𝑘=1 + 𝑀𝑖𝑥 has provided the best results in terms of F1-

scores and architecture complexity. In order to further explore the ResNet-based system 

efficiency in recognizing sound scenes, we have built numerous ResNet models, obtained by 

varying some hyperparameters and the mechanism used for extracting features. Because we are 

only interested in comparing 𝑅𝑒𝑠𝑘=1 against the other alternatives, we have conducted the 

following experiment, while considering the 𝑅𝑒𝑠𝑘=1 as our baseline system. Specifically, we 

consider two main changes: (i) the width of the ResNet model 𝑘 ∈ {1,2}, (ii) the feature set 

used for learning, namely: Log-Mel and Log-Mel+∆Log-Mel+∆∆Log-Mel. The resulting four 

models have been trained twice: with/without the mixup technique. We report in Table 4.7 the 

F1-score of the 7 variants of the original system. Note that we also give in the last column of 

Table 4.7 the performance results of our baseline system as a reference. Moreover, the last row 

of Table 4.7 specifies the average ranks of each model computed using the Friedman test. 

Table 4.7: Average Ranks and F1-scores of ResNet based models.  

Classes 𝑹𝒆𝒔𝒌=𝟏

+ 𝑴𝒊𝒙 

𝑹𝒆𝒔𝒌=𝟏

+ ∆∆ 

𝑹𝒆𝒔𝒌=𝟏

+ ∆∆

+ 𝑴𝒊𝒙 

𝑹𝒆𝒔𝒌=𝟐 𝑹𝒆𝒔𝒌=𝟐

+ 𝑴𝒊𝒙 

𝑹𝒆𝒔𝒌=𝟐

+ ∆∆ 

𝑹𝒆𝒔𝒌=𝟐

+ ∆∆

+ 𝑴𝒊𝒙 

𝑹𝒆𝒔𝒌=𝟏 

Airport 0.67 0 0.70 0.05 0.49 0.16 0.67 0.61 

Bus 0.79 0.13 0.75 0.02 0.60 0 0.81 0.73 

Metro 0.73 0.24 0.72 0.32 0.38 0.41 0.77 0.69 

Metro Station 0.65 0 0.68 0.02 0.45 0.03 0.79 0.62 

Park 0.87 0.77 0.91 0.64 0.65 0.59 0.91 0.86 

Public Square 0.65 0.21 0.62 0.01 0.32 0.28 0.69 0.56 

Shopping Mall 0.70 0 0.72 0.47 0.56 0.09 0.76 0.68 

Street Pedestrian 0.71 0.03 0.69 0.03 0.50 0.07 0.71 0.60 

Street Traffic 0.83 0.61 0.86 0.38 0.77 0.52 0.87 0.81 

Tram 0.67 0.27 0.68 0.40 0.12 0.40 0.74 0.65 

Average  

F1-score  

0.73 0.22 0.73 0.23 0.48 0.25 0.77 0.68 

Average Ranks 2.49 7.05 2.25 6.99 5.50 6.44 1.25 3.99 

Friedman test reject the hypothesis that the 7 variants of our baseline system 

𝑅𝑒𝑠𝑘=1 perform similarly, as illustrated in Table 4.6. The rejection of this hypothesis confirms 
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the existence of at least one pair of systems with significantly different performances. Because 

we are only interested in testing whether the variants of 𝑅𝑒𝑠𝑘=1 significantly improve the 

performance of the baseline system we have conducted a Bonferroni-Dunn test at a 10% 

significance level with the critical value 𝑞0.10 = 2.45 and the critical difference CD = 2.68. The 

results of this test are depicted by Figure 4.1. On the horizontal axis, we represent the averaged 

rank of each system given in the last row of Table 4.7, and mark using a thick line an interval 

of 2×CD one on the right and the other to the left of 𝑅𝑒𝑠𝑘=1 mean rank. 

Friedman test reject the hypothesis that the 7 variants of our baseline system 

𝑅𝑒𝑠𝑘=1 perform similarly, as illustrated in Table 4.7. The rejection of this hypothesis confirms 

the existence of at least one pair of systems with significantly different performances. Because 

we are only interested in testing whether the variants of 𝑅𝑒𝑠𝑘=1 significantly improve the 

performance of the baseline system we have conducted a Bonferroni-Dunn test at a 10% 

significance level with the critical value 𝑞0.10 = 2.45 and the critical difference CD = 2.68. The 

results of this test are depicted by Figure 4.4. On the horizontal axis, we represent the averaged 

rank of each system given in the column 1 of Table 4.7, and mark using a thick line an interval 

of 2×CD one on the right and the other to the left of 𝑅𝑒𝑠𝑘=1 mean rank. 

 

Figure 4.4: Comparison of the baseline system against the 7 other systems with the 

Bonferroni-Dunn test. 

From the analysis of the Bonferroni-Dunn test results shown above, we can derive the 

following insights: 

-  𝑅𝑒𝑠𝑘=2 + ∆∆ + 𝑀𝑖𝑥  falls outside the marked interval and has the lowest rank; hence, it 

significantly improves the baseline system and outperforms the other alternatives. We can 

conclude that training a wide ResNet on additional features with the mixup technique-activated 

significantly boosts the pure ResNet model. However, introducing ∆Log-Mel + ∆∆Log-Mel 

features without data augmentation ( 𝑅𝑒𝑠𝑘=2 + ∆∆ ) does not demonstrate any positive impact 

on our baseline system. This is rather an expected result, considering that wider networks 
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require more data to decrease the error rates [190]. In addition, 𝑅𝑒𝑠𝑘=2 and 𝑅𝑒𝑠𝑘=2 + 𝑀𝑖𝑥 are 

significantly worse than  𝑅𝑒𝑠𝑘=2 + ∆∆ + 𝑀𝑖𝑥. To put it simply,  𝑅𝑒𝑠𝑘=2 works well when 

trained on Log-Mel+∆Log-Mel + ∆∆Log-Mel augmented features. 

-  Training 𝑅𝑒𝑠𝑘=1 on augmented data with or without the derivative features ( 𝑅𝑒𝑠𝑘=1 + ∆∆ +

𝑀𝑖𝑥  and 𝑅𝑒𝑠𝑘=1 + 𝑀𝑖𝑥 )  considerably improves the performance of the pure model. 

However, learning from the additional features without augmentation ( 

𝑅𝑒𝑠𝑘=1 + ∆∆ ) significantly deteriorates the generalization ability. We believe that this 

behavior occurs because adding ∆Log-Mel + ∆∆Log-Mel features increases the dimension of 

our dataset, which leads to overfitting, hence, a decrease in the performance. It is widely 

acknowledged that, in case of high dimensional data with low number of samples, deep neural 

networks surfers from overfitting [191]. 

4.5 Experiment 4: Effect of the number of epochs on AlexNet performance 

Based on the results of the first experiment, we have noticed that training AlexNet on 

augmented data did not demonstrate any improvement in the performance. Note that several 

studies have indicated that the mixup technique works better on models trained for longer runs 

[131]. To further investigate this matter, we have carried out the following experiment. We 

have varied the number of epochs from 1 to 100 and measured the F1-Score on the test set. We 

have performed this experiment with two different mixup values: α = 0.4 and α = 4. Figure 4.5 

illustrates the results of this experiment.  

 

Figure 4.5: Effect of mixup technique on the Alexnet-based model. 
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The analysis of the curve results reported by Figure 4.5 can be summarized as follows. The 

performance improves as the number of epochs increases; then, it settles after a certain value 

(~ 20 epochs), and keeps this F1-score with some variations. This behavior coincides with our 

initial observation: the effect of mixup appears after longer runs i.e. higher number of 

epochs. We also notice that 𝐴𝑙𝑒𝑥𝛼=4 is less stable than its counterpart 𝐴𝑙𝑒𝑥𝛼=0.4. This latter 

confirms our results reported in Experiment 2. As indicated earlier, setting α between 0.4 and 

4 yields better scores. Specifically, the higher boundary of this interval (values close to 4) 

creates more mixup effect than the lower boundary (values close to 0.4). Therefore, values of 

α that are close to 4 are more prone to underfitting than those that are close to 0.4. Combining 

these findings with the results of Experiment 2 enables us to refine the interval of α values: α ~ 

0.4 are preferable. 

4.6 Summary of Empirical Findings 

In this chapter, we have presented the results of our experimental enquiries. Several lessons 

can be derived from our analysis: 

• Systems trained on the augmented data have demonstrated superiority over those trained 

on non-augmented data. 

• Mixup technique works better when the models are trained for longer runs, i.e. higher 

number of epochs. 

• The mixup parameter α is of paramount importance and should be defined carefully. As 

α increases (α > 1), the trained models are prone to underfit, leading to a degradation of 

the generalization ability. Therefore, values larger than 1 should be avoided. We 

recommend choosing values of α smaller than 1, while taking into consideration the 

number of epochs for the model training. 

• Systems trained on additional features ( ∆ Log-Mel + ∆∆ Log-Mel) without data 

augmentation considerably deteriorates the performance of the ResNet model. 

Therefore, the mixup demonstrates a positive impact when learning from high 

dimensional data with low number of samples, which frequently occurs in the case of 

Acoustic Scene Recognition. 

• Statistical testing is a powerful mechanism for unraveling existing differences among 

acoustic scene classification systems. Therefore, it can be used for the analysis and the 

selection of the best model for the problem at hand.  
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CONCLUSION

1. Summary of results 

In this thesis, we tackled the area of acoustic scene recognition of environmental sounds. 

The main objective behind our endeavor was to design and analyze acoustic scene classification 

systems able to recognize and classify acoustic scenes. To this end, we built several sound 

recognition systems and conducted multiple experiments to analyze the behavior of the latter 

systems.  

The experiments have been conducted on the TAU Urban Acoustic Scenes 2019 dataset; 

an audio database collected from real life contexts which contains 10 diverse indoor and 

outdoor locations (labels), totaling in 40 hours of recording and 35.6GB in wav format. In this 

work, we made use of two deep learning-based models: Residual Neural Network (ResNet) and 

Alex Neural Network (AlexNet). We trained the latter models on 3 different feature sets based 

on signal processing methods namely: Log-Mel energies, ∆Log-Mel energies and ∆∆Log-Mel 

energies. To help address overfitting, we opted for artificially enlarging the dataset through 

creating new training sample by making small changes to the original data while keeping its 

characteristics i.e. data augmentation. Concretely, we used a sample mixed-based data 

augmentation method named mixup. It is implemented by creating virtual feature-target pairs 

through linearly combining two randomly chosen feature vectors.  To evaluate each developed 

system, we favored the F1-score metric over the accuracy metric as the former takes into 

account both false positives and false negatives. Finally, we endorsed our discussion with 

various powerful statistical tests namely: Friedman test, Wilcoxon signed rank test, Nemenyi 

test and Bonferroni Dunn test. The analysis of our experiments indicate the following: 

• Getting good results from a recognition system is fundamentally based on the selection 

of relevant features and the suitable classifier. 

• Data augmentation effectively improves the generalization ability of both ResNet and 

AlexNet-based systems and greatly reduces the chances of overfitting. Concretely, Mixup 

data augmentation technique provided interesting results despite its simplicity and 

minimal computation overhead.  
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• The mixup parameter α is of critical importance to the performance of the trained model 

and should be defined carefully. We found that as α increases (α > 1), the trained models 

are prone to underfit, leading to a degradation of the generalization ability. Therefore, 

values larger than 1 should be avoided. We highly suggest choosing values of α smaller 

than 1, while taking into consideration the number of epochs for the model training. 

Moreover, systems utilizing mixup-augmented data should be trained for longer runs i.e. 

higher number of epochs in order to obtain favorable results. 

• Training deep learning models on additional features (∆Log-Mel + ∆∆Log-Mel) without 

the use of data augmentation considerably deteriorates the performance of the ResNet 

model. Therefore, the mixup demonstrates a positive impact when learning from high 

dimensional data with low number of samples, which frequently occurs in the case of 

Acoustic Scene Recognition. 

• Statistically testing the obtained scores is a powerful mechanism for comparing and 

unraveling existing differences among acoustic scene classification systems.  

2. Potential directions and future work 

The work presented in this thesis adds to a growing corpus of research showing the vital 

importance of wisely choosing the various hyperparameters in a machine learning project. 

Based on the insights gained from the experimental findings, we have concluded that the proper 

choice of feature sets for training can greatly affect the performance of ASC systems. 

Regardless, future investigations are necessary to validate the kinds of conclusions that can be 

drawn from this study. In addition, our findings on the use of mixup provide additional 

information about the capability of this data augmentation method in alleviating the problem 

of overfitting during training. Future research should further develop and confirm these initial 

findings by exploring the effects of various other values of the hyperparameter α.  

Another appealing work direction would be to combine the mixup data augmentation 

technique with multiple other data augmentation techniques and analyze how it affects the 

performance of an ASC system. During this work we have used a high-quality audio dataset 

specifically collected for machine learning purposes. However, deployment of machine 

learning models on smart devices or systems are expected to correctly classify sounds detected 

via sensors or microphones which do not necessarily detect sounds in high quality. Therefore, 

future research should be conducted in more realistic settings by making use of audio data sets 

which contain sounds recorded using different devices.  



 

 

 

Appendix A  

Design and Implementation of On-line Audio 

Recognition Demonstration 

A.1 Context and intentions   

Online demonstrations primarily act as a bridge between two parties: the party who 

wishes to share information and the party who wants to consume it. In order to bring forward 

the findings uncovered throughout our work, we have decided to create a static web interface. 

A static website can be defined as a collection of several web pages that are all related to each 

other and can be accessed by visiting a homepage via a browser.  

A.2 Implementation process and setup  

Following a discovery and planning step we have opted to design a one-page website, 

also known as a brochure website, to display the different aspects of our research work. Our 

web interface consists of a collection of items like text, images and multimedia elements created 

with Hyper Text Markup Language (HTML) and styled using Cascading Style Sheets (CSS). 

We have implemented and tested the web interface on a windows operating system using 

Google Chrome as a navigator. All code for the creation of our demonstration has been written 

and edited using Atom text editor. 

A.3 Web interface walkthrough 

Our demonstration is a one-page web interface containing several full-screen sections. 

The first section of our demonstration is a landing page consisting of a svg image on the right 

side of the screen and a text section on the left. We have included logos of the various 

programming languages used to create the interface. The textual part on the left side of the page 

describes the acoustic scene classification task and its applications. To move to the next section 

of the web page, a click on the “Continue Reading” button is required. The following image 

represents the landing page. 
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Figure A.1: Section 1 of acoustic scene classification demo. 

The second section of our demonstration provides a brief description of the major steps 

usually followed in the design of an acoustic scene classification system as shown in Figure 

A.2. It includes 3 boxes consisting of mainly text which highlights each step. Clicking on the 

“Continue Button” moves the user to the next section of the web page.  

 

Figure A.2: Section 2 of acoustic scene classification demo. 

The following section is an in-depth description of the way a human auditory system 

perceives sounds on a daily basis. The text area is enhanced with the use of an audio player 

element, which links to a 3 second recording of an ocean wave. This multimedia element is 

used to play the stored sound by clicking on the start button.    
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Figure A.3: Section 3 of acoustic scene classification demo. 

The fourth section of our one-page website demonstration includes another audio player 

which links back to a travelling by tram sound recording retrieved from the dataset used to 

conduct our experiments (please refer to Section 3.2 for further details on the dataset).  

We then portray on this section various feature representations of the audio recording 

namely: time-domain representation, Mel-spectrogram and 𝛥𝛥 Mel-spectrogram (as shown in 

Figure A.4).  

 

Figure A.4: Section 4 of acoustic scene classification demo. 
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In the following section, we provide the results of the prediction of two different models 

trained during our experiments. We have fed the travelling by tram sound recording from the 

previous section through two saved ResNet-based models: one model has been trained on Log-

Mel energies features only (𝑹𝒆𝒔𝒌=𝟏 ) and the second one has been trained on Log-Mel energies 

+ 𝛥Log-Mel energies + 𝛥𝛥Log-Mel energies (𝑹𝒆𝒔𝒌=𝟏 + 𝜟𝜟). The results of these predictions 

are indicated in Figure A.5: the ResNet-based model trained only using Log-Mel energies 

predicted that the recording is the sound of a metro station (prediction on the left of the web 

page). However, the ResNet system trained using Log-Mel energies + 𝛥Log-Mel energies + 

𝛥𝛥Log-Mel energies predicted that the recording is indeed the sound of travelling by tram 

(prediction on the right of the web page). 

 

Figure A.5: Section 5 of acoustic scene classification demo. 

Following this section, we showcase the auditory effects of the mixup data augmentation. 

We have chosen two different sound recordings: an ocean wave sound and a siren sound. Next, 

we have applied mixup by linearly combining the previous sounds with a mix factor 𝜆 = 0.07. 

The following equation describes how the obtained sound has been created: 

𝑁𝑒𝑤 𝑆𝑎𝑚𝑝𝑙𝑒 = 0.07(𝑆𝑖𝑟𝑒𝑛) + (1 −  0.07)(𝑂𝑐𝑒𝑎𝑛 𝑤𝑎𝑣𝑒). 

 We have implemented a small program which allows us to create the new sample and 

generate a readable .wav file. When playing the generated sound file using the multimedia 

player we can hear two sounds at different ratios: the sound of the ocean wave is dominant as 

it has been mixed at 93% with the sound of the siren at 7%.   
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Figure A.6: Section 6 of acoustic scene classification demo. 

Finally, we have chosen one of the most performant ResNet-based models from our case 

study: 𝑅𝑒𝑠𝑘=1 + 𝑀𝑖𝑥 and have tested it using a sound which does not belong to the dataset used 

in our experiments. This was achieved after training the system with the same settings using 

the entire dataset. The results of the prediction as well as details of the external sound are 

represented on this section of the webpage as illustrated in Figure A.7. 

 

 

Figure A.7: Section 7 of acoustic scene classification demo. 
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