REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE الجمهورية الجزائرية الديمقراطية الشعبية MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE وزارة التعليم العالي والبحث العلمي

UNIVERSITE SAAD DAHLEB BLIDA -1-جامعة البليدة -1-

Faculté de Technologie

Département de Génie Civil

···· دائرة الهندسة المدنية

MEMOIRE DE PROJET DE FIN D'ETUDES Pour l'Obtention du diplôme DE MASTER EN GENIE CIVIL Option : Constructions métalliques et mixtes

THÈME

Etude d'un bâtiment industriel en charpente métallique d'un usage de stockage R+4 +2 SS

Devant les membres de jury : Encadreur: AZZAZ ABDEESSMED Co-encadreur : Mr AICHOUCHE HAROUN Présenté par :

MISSOUM NOUR-EL-HOUDA FEKIR REKIA

Résumé

Notre projet de fin d'études consiste à faire une étude et dimensionnement d'un hangar de stockage composé de deux sous-sol et 4 étages en charpente métallique situé à la Wilaya de « Bouira ». Il est constitué de plusieurs portiques, stabilisés par des contreventements, et couvert par une toiture à deux versants symétriques. Ce projet est élaboré en plusieurs étapes ; en premier lieu l'évaluation des charges et surcharges ainsi que les effets des actions climatiques (neige et vent) selon le règlement Algérien « RNV 99 V2013 », ensuite le dimensionnement des différents éléments (secondaires et porteurs), après l'étude dynamique de l'ouvrage selon le règlement parasismique Algérien « RPA 99 V 2003 », puis l'étude des assemblages selon le « CCM 97 », et enfin l'étude de l'infrastructure selon le « BAEL 91 », et comme logiciel nous avons utilisé le « ROBOT ». Le mémoire a été achevé par une conclusion. Mots clés : Charpente métallique –Hangar de stockage –Dimensionnement Assemblage- Séisme.

Abstract

Our end-of-study project consists of carrying out a study and sizing of a storage shed consisting of two basements and 4 floors in a metal frame located in the Wilaya of "Bouira". It consists of several porticos, stabilized by bracing, and covered by a roof with two symmetrical slopes. This project is developed in several stages; firstly the evaluation of loads and overloads as well as the effects of climatic actions (snow and wind) according to the Algerian regulation "RNV 99 V2013", then the sizing of the various elements (secondary and load-bearing), after the dynamic study of the work according to the Algerian paraseismic regulation "RPA 99 V 2003", then the study of the assemblies according to the "CCM 97", and finally the study of the infrastructure according to the "BAEL 91", and as software we used the robot ". The dissertation ended with a conclusion. Key words : Metal frame - Storage shed - Dimensioning Assembly - Earthquake.

ملخص

يتكون مشروع نهاية الدراسة لدينا من إجراء دراسة وتحجيم سقيفة تخزين تتكون من طابقين سفليين و4 طوابق في إطار معدني بولاية "البويرة". وتتكون من عدة أروقة مثبتة بدعامة ومغطاة بسقف منحدرين متماثلين. تم تطوير هذا المشروع على عدة مراحك؛ أولاً تقييم الأحمال والزائدة وكذلك تأثيرات العوامل المناخية (الثلوج والرياح) حسب اللائحة الجزائرية "«RNV 99 V2013، ثم تحجيم العناصر المختلفة (الثانوية والحاملة)، بعد الدراسة الديناميكية العمل وفق لائحة الزلازل الجزائرية "«ROV 99 V2003، ثم دراسة التجمعات حسب "«97 CCM و أخيرا دراسة البنية التحتية حسب "20 BAEL الم الزلازل الجزائرية استخدماها " ROBOT النهت الأطروحة باختتام الكلمات المفتاحية: الهيكل المعدني - سقيفة التخزين - تجميع الأبعاد - الزلزال.

Nous remercions avant tout le Dieu de nous avoir gardé en bonne santé afin de mener à bien ce projet de fin d'étude.

Nous remercions également nos familles pour les sacrifices qu'elles ont faites pour que nous terminions nos études.

Nous exprimons toutes nos profondes reconnaissances à notre promoteur Mr. AZZAZE.A et notre co-promoteur Mr. AICHOUCHE.H qui nous a témoigné de sa confiance et de son aide scientifique et par son expérience et sa compétence.

Je remercie également tous les enseignants qui ont contribués à ma formation durant mon cursus universitaire.

Enfin je remercie tous ceux qui ont contribués de près ou de loin à l'élaboration de ce modeste travail, trouvant ici l'expression de ma profonde gratitude et profonds respects.

Nour & Roukaya...

Dédicaces

Mien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qui j'aime jusqu'à les frontières de l'imagination.

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, mon père MAHMOD qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, ma mère BENAISSA.Z qui a été à mes côtés et ma soutenu durant toute ma vie, merci mes parents.

A toute ma famille :

A mes frères : Mohamed, Ibrahim, Ismail, Youcef.

A ma sœur : Imen.

A ma chère amie Ihcen et sa famille, ma binôme « MISSOUM NOUR EL HOUDA » qui je souhaite tout le bonheur, ainsi qu'à sa famille.

A toute la famille FEKIR ainsi que la famille BENAISSA et ma belle-famille

BENKARA

Roukaya....

SOMMAIRE

INTF	RODUCTION	12
	CHAPITRE 1 : GENERALITES	
	1.1 Présentation :	15
	1.2 Règlement technique :	15
	1.3 Logiciel utilisé :	15
	1.4 Propriété des matériaux utilisés :	.16
	1.5 Hypothèses de calcul :	.18
	CHAPITRE 2 : Conception et Présentation des éléments du bâtiment	
	2.1 Présentation D'ouvrage	.20
	2.2 Données géométriques du projet :	21
	2.3 Localisation et données concernant le site :	.22
	CHAPITRE 3 : étude climatique et Pré-Dimensionnements des éléments	
	3.1étude de vent	24
	3.1.1 INTRODUCTION	.24
	3.1.2 DETERMINATION DE LA PRESSION DYNAMIQUE DYN	24
	3.1.3 VENT PERPENDICULAIRE AU LONG PONT (V 1)	.25
	3.2 la charge du la neige	.30
	3.2.1 LA CHARGE DE LA NEIGE SUR LE SOL SK :	31
	3.2.2 COEFFICIENT DE FORME DE LA TOITURE :	.31
	3.2.3 VALEUR DE LA CHARGE DE NEIGE :	.31
	3.2.4 L'ACTION D'ENSEMBLE	.31
	3.3 étude des pannes	.32
	3.3.1 INTRODUCTION :	.32
	3.3.2 DEFINITION :	32
	3.3.3 PRINCIPE EVALUATION DES CHARGES ET SURCHARGES	.33
	3.3.4 DE PRE DIMENSIONNEMENT :	35
	3.3.5 VERIFICATION DE LA FLECHE A « ELS » :	.35
	3.3.6 VERIFICATION A LA FLEXION DEVIEE :	.36
	3.3.7 VERIFICATION AU CISAILLEMENT :	.36
	3.3.8 VERIFICATION DE LA STABILITE AU DEVERSEMENT :	.38
	3.4 Calcul des lisses de bardage	40
	3.4.1 DETERMINATION DES CHARGES ET SURCHARGES :	40
	3.4.2 CONDITION DE LA FLECHE :	.41
	3.4.3 VERIFICATIONS DE LA RESISTANCE DE SECTION A L'ELU :	.41
	3.4.4 VERIFICATION AU CISAILLEMENT :	.41
	3.4.5 VERIFICATION DE LA STABILITE AU DEVERSEMENT :	.42
	3.5 Calcul la solive	43
	3.5.1 Phase de construction :	44
	3.5.2 Phase final :	.45
	3.6 Pré-dimensionnement des poutres	.46
	3.6.1 Les Poutres principales :	.46
	3.6.2 Phase initiale :	.46

3.6.3 Phase finale :	
3.7 Les poutres secondaires	49
3.7.1 Phase initiale :	50
3.7.2 Phase finale :	
3.8 Les poteaux	52
3.8.1 Les choix par calcule :	53
3.8.2 Les choix finals :	53
3.9 Etude et dimensionnement de système de contreventement	53
3.9.1 INTRODUCTION :	53
3.9.2 ETUDE DE CONTREVENTEMENT VERTICAL :	54
3.9.3VERIFICATION AU FLAMBEMENT	
3.9.4 DETERMINATION DE LA COURBE DE FLAMBEMENT DE PROFILE :	
3.9.5 ETUDE DE POUTRE AU VENT :	55
3.9.6 VERIFICATION AU FLAMBEMENT :	56
3.9.7 DETERMINATION DE LA COURBE DE FLAMBEMENT DE PROFILE :	56
3.10 Etude de poutre treille	56
3.10.1 DIMENSIONNEMENT DE LA POUTRE :	56
3.10.2 Montants :	57
3.10.3 VERIFICATION AU FLAMBEMENT :	
3.10.4 DIAGONALE :	57
3.10.5 VERIFICATION AU FLAMBEMENT :	57

CHAPITRE 4 : ETUDE SISMIQUE (M.S.E)

4.1 Introduction	60
4.1.1 Principe de la methode :	60
4.1.2 Estimation de la periode fondamentale de la structure :	61
4.1.3 COEFFICIENT DE COMPORTEMENT GLOBAL DE LA STRUCTURE :	61
4.1.4 FACTEUR DE QUALITE :	61
4.1.5 Poids de la structure :	62
4.2 Résultats de l'analyse dynamique	62
4.2.1 Modele initial :	62
4.2.2 VERIFICATION DE L'EFFORT TRANCHANT A LA BASE :	63
4.2.3 VERIFICATION DU DEPLACEMENT INTER-ETAGE :	64
4.3 Modèle finale	65
4.3.1 VERIFICATION DE L'EFFORT TRANCHANT A LA BASE	
4.3.2 VERIFICATION DU DEPLACEMENT INTER-ETAGE :	
4.3.3 Verification Effet P- Δ :	67

CHAPITRE 5 : VERIFICATION DES ELEMENTS

5.1 I	Introduction	69
5.2	Vérification des poteaux	.70
5.3	Vérification des poutres principale	74
5.4	Vérification des poutres secondaire	78
5.5	Vérification des solives	81
5.6	Vérification des pannes	84
5.7 1	Vérification de la stabilité selon X-X	36

CHAPITRE6 : Les Assemblages

6.1 Introduction	89
6.1.1 PROCEDURES DE CALCUL :	90
6.1.2 Note de calcul :	90
6.2 Vérification du pied de poteau à l'effort de compression	90
6.2.1Vérification du la tige d'ancrage :	91
6.3 Assemblage poutre solive	92
6.4Général	93
6.5 Géométrie	93
6.5.1 Poutre principale :	93
6.5.2 POUTRE :	94
6.5.3 RAIDISSEUR :	94
6.5.4 BOULONS :	95
6.5.5 COEFFICIENTS DE MATERIAU :	95
6.6 Efforts	95
6.7 Résultats	95
6.7.1 BOULONS ASSEMBLANT LA POUTRE AU RAIDISSEUR	95
6.7.2 VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT	
TRANSVERSAL) :	97
6.7.3 VERIFICATION DU RAIDISSEUR AFFAIBLI PAR LES TROUS :	98
6.7.4 VERIFICATION DE LA RESISTANCE DE LA SECTION DE LA POUTRE AFFAIBLIE I	PAR
LES TROUS :	98
6.8 Remarques	98
6.9Assemblage poutre treille	99
6.10 Général	100
6.11 Géométrie	100
6.11.1 BARRES :	100
6.11.2 BOULONS :	101
6.11.3 GOUSSET :	102
6.11.4 COEFFICIENTS DE MATERIAU :	103
6.12 Efforts	103
6.13 Résultats	103
6.13.1 BARRE 1	103
6.13.2 BARRE 2	106
6.13.3 BARRE 5	108

CHAPITRE 7 : Etude de fondation

7.1 introduction	
7.2 les types de fondation	112
7.3 Pré-dimensionnement de radier	113
7.4 Pré-dimensionnement nervure	114
7.5 Vérification au poinçonnement	114
7.6 Vérification au. renversement	114
7.7 Ferraillage du radier	115

CONCLUSION GENERALE120

Liste des tableaux

Tableau 1.1 : valeurs nominales de fypour le ferraillage	16
Tableau 3.1 : les valeurs de CPE sur les parois verticales selon v1 et v3	26
Tableau3.2 : les valeurs de CPE sur les parois verticales selon v2 et v4	27
Tableau3.3 : les valeurs de CPE sur la toiture pour Θ = 0°	27
Tableau3.4 : les valeurs de CPE sur la toiture pour Θ = 90°	28
Tableau3.5 : les valeurs finales de pression aérodynamique CPI=0.2	29
Tableau3.6 : les valeurs finales de pression aérodynamique CPI=-0.3	30
Tableau 3.7 : Action d'ensemble V1	31
Tableau 3.8 : La surcharge de poteaux	35
Tableau 3.9 : le choix de poteaux calcule	39
Tableau 3.10 : le choix de poteaux calcule	41
Tableau 4.1 : facteur de qualité Q	62
Tableau4.2 : Participation massique	63
Tableau 4.3 : tableau de vérification d'effort tranchant	63
Tableau 4.4 : tableau de vérification de déplacement inter-étage	64
Tableau 4.5 : tableau de vérification d'effort tranchant pour modèle final	66
Tableau 4.6 : tableau de vérification de déplacement inter-étage pour modèle final	67
Tableau4.7: vérification de Effet Ρ-Δ	67
Figure 2.1. Vue en 3D de l'hangar	22
Figure3.1 :la présentation des CPE sur les parois verticales au sens v1 et v3	26

Figure 3.2:la présentation des CPE sur les parois verticales au sens v2 et v427
Figure 3.3 : la disposition de la panne32
Figure 3.4: schéma statique des charges permanentes G sur les pannes
Figure 3.5: Répartition des charges ponctuelle sur la portée de la panne33
Figure 3.6 : Représentation de cisaillement
Figure 3.7 : Représentation de phénomène de déversement dans la semelle inférieure
Figure 3.8: Disposition de la lisse sur le poteau40
Figure 3.9 : Diagramme d'efforts normale par les contreventements verticaux
Figure 3.10 : Diagramme d'efforts normale par la poutre au vent55
Figure 3.11: Diagramme d'efforts normale par la poutre treille57
Figure 4.1 : modèle finale65
Figure 6 .1 : base poteaux articulés90
Figure 6. 2 : Tige d'ancrage adoptée pour poteau92
Figure 6. 3 : Assemblage poutre solive92
Figure 6.4 : Assemblage poutre treille99
Figure 7.1 : semelle isole sous poteaux113
Figure 7.2 : radier générale1

Introduction

Dans le cadre de notre formation de master en Génie Civil spécialité « Construction métallique » à l'Université SAAD DAHLEB « BLIDA », nous sommes amenés, à l'issu de notre cursus, à réaliser un projet de fin d'études (PFE), Le but de ce projet est d'être confronté à une situation professionnelle d'ordre scientifique et technique. Il regroupe donc l'ensemble des qualités que doit posséder un ingénieur dans son travail quotidien. Il s'agit d'un hangar en charpente métallique à la Wilaya de BOUIRA.

Les ossatures métalliques se distinguent par certains avantages tel que :La légèreté, le montage rapide et la facilité des transformations, c'est la raison pour laquelle ce hall a était conçu en charpente métallique. Ce pendant ce matériau présente aussi quelques inconvénients qui sont principalement la corrosion et sa faible résistance au feu donc une protection de toute la structure est indispensable.

Dans ce projet de fin d'études, nous allons appliquer et compléter les connaissances et les informations acquises le long de notre formation, en utilisant les règles de construction actuellement en vigueur en Algérie, ainsi que le moyen de calcul informatique.

Notre travail contient plusieurs chapitres après l'introduction :

Un premier chapitre de généralités qui mentionne la démarche adoptée pour mener à bien ce Travail où l'ouvrage est présenté par ces données géométriques et localisation ainsi que les règlements et les matériaux utilisés puis le deuxième chapitre présente les principes et la procédure pour la détermination des différentes charges (permanente et d'exploitation) selon le document technique règlementaire « DTR BC.2.2 » et aux surcharges climatiques selon le « RVN 99 version 2013 ». Le troisième et quatrième et cinquième et sixième chapitres représenté les études l'étude climatique l'étude dynamique et sismique les vérifications des éléments structuraux selon les règlement « RPA99 » et « CCM99 ».

En fin les derniers chapitres consiste à étudier les différents assemblages métalliques de la structure Selon le « CCM99 » et l'étude de fondation.

Comme tout travail, ce mémoire s'achève par une conclusion générale qui synthétise tout ce qui a été fait. Enfin, une série d'annexes vient d'apporter plus de détails et d'explication aux chapitres.

Figure 1.1 image pour le projet

1.1 Présentation :

Il s'agit d'un hangar de stockage en charpente métallique à Wilaya de « BOUIRA », qui compose de RDC et 4 étages avec 2 sous-sols.

1.1.1 Données géométriques du projet :

Dimensions en élévation :

-	Hauteur totale du bâtiment	17m
-	Hauteur de 1 er sous-sol	3m
-	Hauteur de 2 er sous-sol	4m
-	RDC	3m
-	Hauteur de1 er et 2em étage	3m
-	Hauteur de 3 eme	4m
-	Hauteur de 4 eme	6m

Dimensions en plan :

-	Longueur totale	61.5m
-	Largeur totale	25.00m

1.1.2 Localisation et données concernant le site :

L'ouvrage est implanté au niveau de la willaya de Bouira dont :

- La contrainte admissible du sol est de 1,8 bars.
- Le site est classé dans la zone 4 (RNV13).
- La zone sismicités III (RPA03).

1.2 Règlement technique :

Les règlements techniques utilisés dans cette étude sont :

- DTR BC2.2 : Charges permanentes et charges d'exploitation.
- RPA99 : Règlement Parasismique Algériennes version 2003
- CBA93 : Règlement de conception et de calcule des structures en béton arme
- ECO3 : calcul des structures en acier

1.3 Logiciel utilisé :

- Autodesk AutoCAD
- Socotec
- Robot

1.4 Propriété des matériaux utilisés :

1.4.1 Acier :

L'acier est un matériau constitué essentiellement de fer et d'un peu de carbone, qui sont extraits de matières premières naturelles tirées du sous-sol (mines de fer et de charbon). Le carbone n'intervient dans la composition, que pour une très faible part (généralement inférieur à 1 %).

Outre le fer et le Carbonne, l'acier peut comporter d'autre éléments qui lui sont associés soit : Involontairement comme le phosphore et le soufre qui sont les impuretés qui altèrent les propriétés des aciers.

Volontairement comme le silicium, le manganèse, le nickel, le chrome...etc. ces derniers ont pour propriétés d'améliorer les caractéristiques mécaniques des aciers (Résistance à la rupture, dureté, ductilité, résistance vis-à-vis de la corrosion).

Les caractéristiques mécaniques des différentes nuances d'acier sont les suivantes :

- Module d'élasticité longitudinale : E = 210 000 MPa.
- Module de cisaillement : G = E/[2(1+v)]
- Le coefficient de poisson : v = 0,3
- Coefficient de dilatation : $\alpha = 12 \times 10^{-6}$ par °c
- Masse volumique $\rho = 7850 \text{ kg/m}^3$

	Nuances	Fy (MPa)
Don da liagoa	Fe 220	215
Konds fisses	Fe 240	235
Downed II A	Fe 400	400
Barres HA	Fe 500	500

Tableau 1.1 : valeurs nominales de fy pour le ferraillage

• Contrainte du calcul :

$$\sigma_{bu} = \frac{fe}{\gamma_s}$$

$$\gamma_s$$
 Coefficient de sécurité =

$$\begin{cases}
1.15 \text{ pour une situation accidentel} \\
1.5 \text{ pour une Situation durable}
\end{cases}$$

1.4.2 Béton :

 Le béton est un matériau de construction Composé de granulats, de sable, ciment, d'eau et éventuellement d'adjuvant pour en modifier les propriétés.

- Le béton présente une excellente résistance à la compression jusqu'à 450daN/cm² mais 10 fois moindre en traction ou en cisaillement. 325000 / Nm □ =
- Béton armé : 350 Kg/m3
- ciment CRS 210/325 Béton de propriété : 150 Kg/ m3 ciment CRS 210/325
- Le béton utilisé est défini du point de vue mécanique par : La résistance à la compression à 28 jours : fc28 = 25 N/mm²
- La résistance à la traction : ft28 = 0,6+ 0,06 fc28

1.4.3 Le boulonnage :

Le boulonnage et le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur site.

Pour notre cas, on a utilisé les boulons de haute résistance (HR) classe 10.9 ET 8.8 pour les assemblages rigides des portiques auto stable. Les boulons HR comprennent une tige filetée, une tête hexagonale et un écrou en acier à très haute résistance.

1.4.4 Le soudage :

Le soudage est une opération qui consiste à joindre deux parties d'un même matériau avec un cordon de la soudure constituée d'un métal d'apport, ce dernier sert de liant entre les deux pièces à assembler.

1.5 Unités utilisées :

Unités	Utilisation
Mètre m	Dimensions de bâtiments, des travées et de dimension des éléments.
Centimètre carre cm^2	Pour les sections d'acier.
${ m daN}/m^2$	Pour les charges appliquées (G, Q, Setc.)
daN.m	Pour les moments fléchissant.
daN	Pour les charges concentrées.

Tableau 2.2 : tableau des unités

1.6 Eléments structuraux :

Poteaux : HEA Poutre : HEM IPE Panne : IPE Panne sablière : HEA Lisse : UAP Contreventements : cornières et UPN

Chapitre 2 Conception et Présentation des éléments du bâtiment

2.1 Mode de construction :

Une bonne connaissance des matériaux utilisés en construction Métallique est indispensable pour la réalisation d'une structure, aussi bien pour sa conception .

Dans le cadre de notre projet on a opté pour les matériaux suivants :

2.1.1 Acier de construction pour les éléments de structure :

On admet pour la nuance d'acier E28 qui à comme caractéristique :

résistance limite d'élasticité	f_y =27,5 kg/mm ²
module d'élasticité longitudinal	$E=2.1 \times 10^4 \text{ daN/mm}^2$
-poids volumique	$\rho=7850 \text{ daN/mm}^2$
Coefficient de dilatation thermique	α=12x10 ⁻⁶
Module de cisaillement	G=E/(2(1+ υ))=0.8 x10 ⁴ daN/mm ²
Coefficient de poisson	υ= 0.3

2.1.2 LE BETON ARME :

2.1.2.1 Le béton :

Pour la réalisation des fondations et des planchers, le type de ciment utilisé est le CPA caractérisé par le dosage de **350Kg /m³** dont les autres caractéristiques sont les suivants /

- Poids volumique : $\rho=2500 \text{ daN/mm}^3$
- Résistance caractéristique à la compression $f_{c28}=2.5$ daN/mm²
- o Résistance caractéristique à la traction $f_{t28}=0.21$ daN/mm²

2.1.2.2 L'acier

Pour le ferraillage des fondations on à utiliser des barres HA type 1 de nuance **FeE50** dont la contrainte limite d'élasticité est $f_e = 50$ daN/mm²

-module d'élasticité longitudinal $E=2.1 \times 10^4$ daN/mm²

2.1.3 Les contreventements

La stabilité verticale dans le sens x est de type (y) et de le sens y est de type x avec la poutre au vent de type x , elles assurent la verticalité des poteaux et prennent les efforts dus aux séismes et au vent en les transmettant aux fondations.

2.1.4 Les planchers

Le plancher sera mixte collaborant en béton armé de (15cm) d'épaisseur et repose sur un coffrage perdu (TN40) contient des connecteurs (goujons) qui assurent la liaison d'ensemble du plancher et le non glissement de la dalle pleine en fin une matelas des solives qui supportes le plancher et ses composantes.

2.2 Présentation des éléments :

Eléments principaux

- Les poteaux
- Les poutres
- Les contreventements
- Les fondations

Eléments secondaire

- L'acrotère
- Les lisse de bardage
- Les pannes
- Les solives
- Les dalles pleines
- Les escaliers

Figure 2.1 : vu en 3D de l'hangar

2.3 Localisation et données concernant le site :

L'ouvrage est implanté au niveau de la willaya de Bouira dont :

- La contrainte admissible du sol est de 1,8 bars.
- Le site est classé dans la zone 4 (RNV13).
- La zone sismicités III (RPA03).

Chapitre 3 Etude climatique Pré-Dimensionnements des éléments

3.1 Effet du vent :

3.1.1 Introduction :

Les effets du vent sont étudiés conformément à la réglementation « Règlement neige et Vent » RNV99-version 2013. L'effet du vent par unité de surface est donné par la formule suivante :

 $Qj=q_{dyn}*(c_{pe}-c_{pi}) N/m^2$

La direction V1 du vent : perpendiculaire à la façade principale. La direction V2 du vent : parallèle à la façade principale.

Avec : q_{dyn} : Pression dynamique du vent.

c_{pe} : Coefficient de pression extérieur.

 c_{pi} : Coefficient de pression intérieur.

Données relatives au site :

Le site du projet se trouve à BOUIRA zone B avec H=186m (Annexes A.2) :

Zone..... $q_{réf} = 500N/m^2$

Catégorie de terrain : Catégorie III alors :

KT = 0,234 (facteur de terrain)

 $Z_0 = 1 m$ (paramètre de rugosité)

Z_{min}= 10m (hauteur minimale)

E =0.67.

3.1.2 Détermination de la pression dynamique dyn :

La hauteur de l'ouvrage étant supérieure à 10m (H=17) mais on considère

comme structure de hauteur totale ≤ 10 m.

La pression dynamique est calculée à l'aide de la formule 2.12. On calculera donc la pression dynamique.

q_{dyn}= qréf. Ce

A. Coefficient de rugosité(Cr) :

Le coefficient de rugosité traduit l'influence de la rugosité et de la hauteur sur la vitesse Moyenne du vent.
$$\begin{split} C_r(z) =& k_t * ln(z/z_0) \text{ car } z_{min} < z < 200 \text{m} \; . \\ \text{Pour } z =& 14 \text{m et } z =& 17 \text{m} \\ C_r(14) = \; 0.618 \qquad \qquad C_r(17) =& 0.663 \end{split}$$

B. Intensité de turbulence Iv (z):

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent :

 $Iv(z) = \frac{1}{ct * \ln(\frac{z}{z_0})}$ pour $z > z_{min}$

Iv(14)=0.379 et Iv(17) =0.353

C. Coefficient d'exposition(Ce) :

Le coefficient d'exposition au vent Ce(z) tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol. En outre, il tient compte de la nature turbulente du vent. Ce(z) est donnée par :

 $C_e(z)=C_t^2(z)*C_r^2(z)*(1+7Iv(z)).$

Donc $C_e(14)=1.4$ et $C_e(17)=1.56$

Après avoir défini tous les coefficients qui permettent de prendre en compte les différents effets provoqués par le vent, on peut calculer la pression dynamique comme suit :

 $q_{dyn}(14) = 700 \text{ N/m}^{2}$

 $q_{dvn}(17) = 780 \text{ N/m}^2$

3.1.3 vent perpendiculaire au long pont (v 1) :

A. Coefficient de pression extérieur Cpe:

Le coefficient de pression extérieur Cpe depend de la form géométrique de la base de la structure, et de la dimension de la surface chargée.

Avec :

b : la dimension perpendicular à la direction du vent.

d : la dimension parallel à la direction du vent.

A.Parois verticals:

On se réfère au paragraph 1.1.2. du chapter 5 :

- à la figure 5.1 pour determiner les differences zones de pression,
- au tableau 5.1 pour tirer les valeurs des coefficients C_{pe}.

la paroi verticale v1 et v3:

b = 60.5 et h=14 donc e=28 alors e>d=25.

la section A': 78.4 m^{2.}

la section B':271.6 m².

Figure 3.1 La présentation des cpe sur les parois verticales.

Les zones de pression	Cpe
	10
Α	-1
В	-0.8
D	+0.8
E	-0.3

Tableau 3.1 : les valeurs de cpe sur les parois verticales.

la paroi verticale v2 et v4:

b=25 et h=14 e=25 alors e<d .

la section A: 70 m².

la section B: 280 m².

la section C: 497 m^2

Figure 3.2 La présentation des cpe sur les parois verticales.

Les zones de pression	Cpe
	10
Α	-1
В	-0.8
С	-0.5
D	+0.8
E	-0.3

Tableau3.2 : les valeurs de cpe sur les parois verticales.

B.Toiture:

On se réfère au paragraphe 1.1.5. du chapitre 5 : la direction du vent est définie pour un angle Θ = 0° (cf. chapitre 5, § 1.1.5.1) ; la figure 5.4 permet de déterminer les différentes zones de pression ; les valeurs des coefficients C_{pe} sont tirées du tableau 5.4.

pour un angle $\Theta = 0^\circ$:			
Les zones de pression	Les section m ²	Cpe10 v1	C _{pe10 v2}
F	19.6	-1.02	-1.02
G	130.2	-0.86	-0.86
Н	586.85	-0.345	-0.345
I	586.85	-0.43	-0.43
J	169.4	-0.82	-0.82

Tableau 3.3 les valeurs de cpe sur la toiture

pour un angle Θ = 90°:

Les zones de pression	Cpe10 v1	Cpe10 v2
F	-1.345	-1.345
G	-1.3	-1.3
Н	-0.615	-0.615
Ι	-0.515	-0.515

Tableau 3.4 les valeurs de cpe sur la toiture

B.Coefficient de pression intérieure Cpi :

Pour le coefficient de pression intérieure on prend le max et le min de eurocode on a hangar c'est pas un bâtiment complet .

Alors la pression aérodynamique devient :

Pour Cpi = 0.2:

pression due au vent V1 paroi verticale						
La zone	Qdn(N/m ²) C pe C pi Qj (N/m ²):					
А	780	-1	0,2	-936		
В	780	-0,8	0,2	-780		
D	780	0,8	0,2	468		
E	780	-0,3	0,2	-390		

pression due au vent V2 paroi verticale				
La zone	Qdn(N/m²)	C pe	Срі	Qj (N/m²)
А	780	-1	0,2	-936
В	780	-0,8	0,2	-780
С	780	-0,5	0,2	-546
D	780	0,8	0,2	468
E	780	-0,3	0,2	-390

pression due au vent V1 toiture Θ =0				
La zone	Qdn(N/m²)	C pe	Срі	Qj (N/m²)
F	780	-1,02	0,2	-951,6
G	780	-0,86	0,2	-826,8
Н	780	-0,345	0,2	-425,1
I	780	-0,43	0,2	-491,4
J	780	-0,82	0,2	-795,6

pression due au vent V2 toiture Θ=0						
La zone	.a zone Qdn(N/m²) C pe C pi Qj (N/m²)					
F	780	-1,02	0,2	-951,6		
G	780	-0,8	0,2	-780		
Н	780	-0,345	0,2	-425,1		
Ι	780	-0,43	0,2	-491,4		
J	780	-0,82	0,2	-795,6		

pression due au vent V1 toiture Θ=90				
La zone Qdn(N/m ²) C pe C pi Qj (N/m ²)				
F	780	-1,345	0,2	-1205,1
G	780	-1,3	0,2	-1170
Н	780	-0,615	0,2	-635,7
	780	-0,515	0,2	-557,7

pression due au vent V2 toiture Θ=90						
La zone	La zone Qdn(N/m ²) C pe C pi Qj (N/m ²)					
F	780	-1,345	0,2	-1205,1		
G	780	-1,3	0,2	-1170		
Н	780	-0,615	0,2	-635,7		
	780	-0,515	0,2	-557,7		

Tableau 3.5 les valeurs finales de pression aérodynamique cpi=0.2

Pour cpi=-0.3 :

pression due au vent V1 paroi verticale								
La zone	a zone Qdn(N/m²) C pe C pi Qj (N/m²							
А	780	780 -1 -0,3		-546				
В	780	-0,8	-0,3	-390				
D	780	0,8	-0,3	858				
E	780	-0,3	-0,3	0				

pression due au vent V2 paroi verticale							
La zone	ie Qdn(N/m²) C pe C pi Qj (N						
А	780	780 -1 -0,3 -546					
В	780	-0,8	-0,3	-390			
С	780	-0,5	-0,3	-156			
D	780	0,8	-0,3	858			
E	780	-0,3	-0,3	0			

pression due au vent V1 toiture Θ=0								
La zone	zone Qdn(N/m²) C pe C pi Qj (N/m²							
F	780	-1,02	-0,3	-561,6				
G	780	-0,86	-0,3	-436,8				
H	780	-0,345	-0,3	-35,1				
_	780	-0,43	-0,3	-101,4				
J	780	-0,82	-0,3	-405,6				

pression due au vent V2 toiture Θ=0							
La zone Qdn(N/m²) C pe C pi Qj (N/m							
F	780	-1,02	-0,3	-561,6			
G	780	-0,8	-0,3	-390			
Н	780	-0,345	-0,3	-35,1			
I	780	-0,43	-0,3	-101,4			
J	780	-0,82	-0,3	-405,6			

pression due au vent V1 toiture Θ=90								
La zone	Qj (N/m²)							
F	780	-1,345	-0,3	-815,1				
G	780	-1,3	-0,3	-780				
Н	780	-0,615	-0,3	-245,7				
I	780	-0,515	-0,3	-167,7				

pression due au vent V2 toiture Θ=90								
La zone Qdn(N/m²) C pe C pi Qj (N/m²)								
F	780	-1,345	-0,3	-815,1				
G	780	-1,3	-0,3	-780				
Н	780	-0,615	-0,3	-245,7				
Ι	780	-0,515	-0,3	-167,7				

Tableau 3.6 les valeurs finales de pression aérodynamique cpi=-0.3

3.2 la charge de la neige :

Le calcul de la surcharge climatique de la neige est en fonction de la localisation géographique et de l'altitude du lieu .

$$S=\mu{\times}S_{k....} \qquad KN/m^2.$$

Avec:

S : Charge caractéristique de la neige par unité de surface.

 μ : Coefficient d'ajustement des charges, en fonction de la forme de la toiture.

Appelé coefficient de forme.

 S_k : Charge de neige sur le sol.

3.2.1 La charge de la neige sur le sol Sk :

Le projet se trouve dans la Wilaya de BOUIRA, classée en Zone B dont l'altitude H est de 186 m.

Zone B $S_k = (0.04H+10) / 100$. Alors $Sk_= 0.174 \text{ Kn} / \text{m}^2$.

3.2.2 Coefficient de forme de la toiture :

La structure est de toitures à versant symétriques où:

 $\alpha = \beta = 13.5^{\circ} \quad alors0 < \beta <\!\!30 \qquad \mu =\!\!0.8$

3.2.3 Valeur de la charge de la neige :

S=0.1392 Kn/m².

3.2.4 L'action d'ensemble

	Direction V1									
Zone	A (m ²)	qp (N)	Cpe	W (N)ou(kN)	cos α	sin α	C.H		C.V	
D	847	780	0,8	624	0	0	6	24	0	
E	847	780	-0,3	-34	0	0	-2	234	0	
F1	19,6	780	-1,02	-795,6	0,97	0,23	-77	1,732	-182,988	
G	130,2	780	-0,86	-670,8	0,97	0,23	-650,676		-154,284	
F2	19,6	780	-1,02	-795,6	0,97	0,23	-771,732		-182,988	
Η	586,85	780	-0,345	-269,1	0,97	0,23	-261,027		-61,893	
Ι	586,85	780	-0,43	-335,4	0,97	0,23	-325,338		-77,142	
J	169,4	780	-0,82	-639,6	0,97	0,23	-620,412		-147,108	5
							Rx=	- 3010,917	Rz=	-659,295

Tableau 3.7 Action d'ensemble V1

3.3 Etude des pannes :

3.3.1 Introduction :

Les éléments secondaires représentent l'ossature nécessaire au support de la couverture et du Bardage. Ainsi le calcul de la procédure est comme suit :

1-Evaluation les charges appliquées sur les éléments considérés, puis rechercher la combinaison ayant l'effet le plus défavorable.

2-Pré dimensionnement des éléments suivant la condition de limitation de la flèche.

3-Vérification de la résistance, de la stabilité et de la rigidité en se basant sur les formules de La résistance des matériaux (RDM) et les différentes règles.

Les éléments secondaires composants notre structure sont les suivants :

-les pannes.

- les lisses de bardage.

-les potelets.

3.3.2 Définition :

Les pannes sont des poutres destinées à supporter la couverture et de transmettre les charges et surcharges s'appliquant sur cette dernière à la traverse ou bien à la ferme. Elles sont disposées parallèlement à la ligne de faitage, et elles sont calculées en flexion déviée, sous l'effet des charges permanentes, d'exploitations et climatiques. Elles sont réalisées soit en profilés formés à chaud en (I), ou bien en (U), soit en profilés formés à froid en (Z), (U), (Σ) ou en treillis pour les portées supérieures à 6m.

Dans notre structure on étudie la panne la plus sollicitée qui est la panne intermédiaire de portée L=6m, incliné d'un angle $\alpha = 13.5^{\circ}$; on suppose l'entraxe « e » égale à 1,5 m,et nous utiliserons des IPE.

Figure 3.3 Disposition de la panne

3.3.3 Evaluation des charges et surcharges :

a) Les charges permanentes (G) :

Figure 3.4 Schéma statique des charges permanentes G sur les pannes

G = (PCouverture + Accessoire) * ee : espacement entre les pannes (e= 1,5m) $Gmax = (11.38+2) \times 1,5 = 20.07 \text{ Kg/m}$ G = 0.2007 KN/m.

b) Charge d'exploitation :

Charge concentrée de 100 Kg, chacune situées à 1/3 et 2/3 de la portée. La charge uniformément répartie q est obtenue en égalisant les deux moments maximums dues à Q'.

Figure 3.5 Répartition des charges ponctuelle sur la portée de la panne

Les charges et surcharges appliquées :

G= 0.2007 KN/ml. W = -1.807 KN/ml. S = 0.139KN/ml. Q = 0.444 KN/ml Décomposition des charges : Suivant l'axe Z-Z : Gz = G cos α =0.195KN/m. Qz = Q cos α = 0.428 KN/m. Wz = W = -1.807KN/m. Sz= Scos α = 0.202KN/m. Suivant l'axe Y_Y: Gy = G cos α =0.046KN/m. Qy = Q cos α = 0.1 KN/m. Wy = 0 SY= Scos α = 0.048KN/m.

Les combinaisons d'actions :

```
1) ELU:
```

Suivant l'axe z-z :

Comb 1= 1.35Gz+1.5Qz =0.905KN/ml.

Comb 2= 1.35Gz+1.5Sz = 0.574KN/ml.

Comb 3= 1.35Gz+1.5Wz =-2.5KN/ml.

Comb 4 = Gz + 1.35Wz + Sz = -2.00KN/ml.

Suivant l'axe y-y : Comb 1= Gy+Sy = 0.146KN/ml. Comb 2= Gy+Qy = 0.224KN/ml. Comb 3 = Gy= 0.046KN/ml.

2) ELS:

Suivant l'axe z-z :

Comb 1 = Gz+Qz = 0.657KN/ml.

Comb 2=Gz+Sz = 0.431KN/ml.

```
Comb 3 = Gz + Wz = -1.608KN/ml.
```

Suivant l'axe y-y : Comb 1= Gy+Sy = 0.055KN/ml. Comb 2= Gy+Qy = 0.055KN/ml. Comb 3 = Gy+Wy= 0.103KN/ml.

Selon les deux axes y et z, les charges maximales à l'ELS /ml revenant à la panne la plus sollicitée est :

Qsz=-1.606 KN/ml. Qsy=0.046KN/ml.

3.3.4 Principe de pré dimensionnement :

Les pannes sont sollicitées à la flexion déviée (flexion bi axiale). Elles doivent satisfaire les deux conditions suivantes :

- Condition de flèche (l'ELS).
- Condition de résistance (l'ELU).

Généralement, on fait le pré dimensionnement des pannes par l'utilisation de la

condition de flèche, puis on fait la vérification de la condition de résistance.

Vérification à l'ELS : La flèche à l'état limite de service se fait avec les charges et surcharges de service: $F \leq Fadm$.

Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

 $fz=5QzL4/384EIy \le L/200 \rightarrow Iy \ge 5 \times Qz \times 200 \times L3/384 \times E$

Iy≥430*10⁴ mm⁴

Ce que nous donne $Iy=541.2*10^4 \text{ mm}^4$ donc on opte pour un **IPE140.**

profilie	h (mm)	b(mm)	tw (mm)	tf (mm)	r(mm)	a (mm)
	140	73	4,7	6,9	7	1640
IPE140	Iy (mm4)	Iz (mm4)	wplz mm4	wply mm4	iz mm	iymm
	541,2*10^4	44,92*10^4	19,52*10^3	88,34*10^3	16,5	57,4

Tableau 3.8 : les dimensions de profile IPE140

Poids propre réel :

 $G = (Pcouverture + Accessoire) \times e + Ppanne$

Gmax= (11.38+2) x1.5+12.9=34.26 Kg/ml G=0.3426 KN/ml

3.3.5 Vérification de la flèche à « ELS » :

La vérification de la flèche se fait avec des charges non pondérées en utilisant la formule suivante :

fZmax = 25 mm < 30 mm.

fymax=20.33 mm < 30 mm.
Classification de la section : $\varepsilon = \sqrt{235}/fy = 1$

Semelle comprimée : c/tf =36.5/6.9=5.29<10 *e*

Ame fléchée : d/tw =26.86<72 ε

Semelle de classe1.

ame de classe 1.

Profilé de classe 1.

3.3.6 Vérification à la flexion déviée :

Les pannes travaillent à la flexion déviée, il faut donc vérifier que :

$$\left(\frac{M_{y,sd}}{M_{ply,Rd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{plz,Rd}}\right)^{\beta} \leq 1$$

Pour un profilé laminé en I : $\alpha=2$ et $\beta=1$

Pour An :

$$M_{sdy=}Q_{z*}l^{2}/8 = 11.16 \text{ KN.m}$$

 $M_{sdz=}Q_{v*}l^{2}/8 = 0.252 \text{ KN.m}$

 $M_{plrdy}=w_{ply}*fy/\sigma_{m0}=20.75$ Kn.m

 $M_{plrdz}=w_{plz}*fy/\sigma_{m0}=4.53$ Kn.m

An : $(11.16/20.75)^2 + (0.252+4.53) = 0.33 < 1$

Donc, les pannes en IPE140 vérifient les contraintes de la flexion déviée.

Vérification au cisaillement : 3.3.7

On doit vérifier que :

$$V_{sd} < V_{plrd}$$

Figure 3.6 Représentation de cisaillement

Avec :

Vzsd et Vysd : valeur de calcul de l'effort tranchant.

Vpl Rd: valeur de calcul de la résistance au cisaillement.-

 $V_{sdz} = \frac{Qz * l2}{2} = 2.48 * 6/2 = 7.44 \text{ Kn}.$ $V_{sdy} = \frac{Qy * l2}{2} = 0.381 \text{ Kn}.$ $V_{plrdz} = A_{Vz} * fy / \sqrt{3} * \sigma_{m0} = 7.64 * 10^{2} * 235 / \sqrt{3} = 103.65 \text{ kn}.$ $V_{plrdy} = AVy * fy / \sqrt{3} * \sigma m0 = 118.86 \text{ kn}.$ D'ou: $V_{sdz} < V_{plrdz} \quad \text{et} \qquad V_{sdz} < 0.5 V_{plrdz}$

$V_{\rm sdy} < V_{\rm plrdy}$ et	$V_{\rm sdy} < 0.5 V_{\rm plrdy}$
----------------------------------	-----------------------------------

Donc la résistance des pannes au cisaillement est vérifiée.

Et pas d'interaction entre le moment résistant et l'effort tranchant.

3.3.8 Vérification de la stabilité au déversement :

La semelle supérieure qui est comprimée sous l'action des charges descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture il n'y a donc pas de risque de déversement contrairement à la semelle inferieure qui est comprimée sous l'action du vent de soulèvement et qui est quant à elle susceptible de déverser du moment qu'elle est libre tout au long de sa portée.

On rappelle la combinaison de charge défavorable pour le risque de déversement. Il s'agit de la première combinaison dans laquelle le vent agit seul et risque de faire déverser la panne (fléchie vers le haut) et en comprimant la semelle inférieure au niveau de la mi- travée (voir la figure).

Figure 3.7 Représentation de phénomène de déversement dans la semelle inférieure.

D'après l'EuroCode 3, la résistance au déversement du profilé est vérifiée si la condition suivante est satisfaite :

$$M_{ysd} \leq M_{bRd}$$

 $M_{brd} = \chi lt \times \beta w \times W ply \times fy/\gamma M1$

Pour le calcul de χlt on à la formule : $\chi lt = 1/\phi LT + (\phi LT^2 - \lambda LT^2)^2$.

La valeur de λLT peut être calculé par la formule :

$$\lambda_{LT} = \frac{L/i_z}{\sqrt{C1} \times \left[1 + \frac{1}{20} \left(\frac{l}{\frac{l}{t_T}}\right)^2\right]^{0.25}}$$

Tel que :

d'où $\lambda LT = 114.2$

donc λLT = λLT /93.91E et $\mathcal{E} = \sqrt{\frac{235}{fy}}$

alors $\lambda LT^{-} = 1.2 > 0.4$ Il y a risque de déversement .

$$\phi LT = 0.5 \times (1 + \alpha LT \times (\lambda LT - 0.2) + \lambda LT^2)$$

 $\alpha LT = 0.21$ Pour les profilés laminés.

 $\phi LT = 0.5 \times (1 + 0.21 \times (1.2 - 0.2) + 1.2^2) = 1.32.$

Le coefficient de réduction pour le déversement : $\chi lt = 0.53$

 $M_{brd} = 0.53 * 1 * 235 * 88.34 * 10^3 / 1.1 = 10.01$

Donc : la stabilité au déversement de la panne n'est pas vérifiée, on augmente le profile IPE140 donc on augmente le profile **IPE 160.**

profile	h (mm)	b(mm)	tw (mm)	tf (mm)	r(mm)	a (mm)
	160	82	5	7,4	9	1620
IPE160	ly (mm4)	lz (mm4)	wplz mm4	wply mm4	iz mm	lymm
	869,3*10^4	68,31*10^4	26,10*10^3	123,9*10^3	18,4	65,8

Tableau 3.9 : les dimensions de profile IPE 160

Tel que :

L = 300 mm; iz = 1.65 mm; h = 160 mm; C1 = 1.132; tf = 7.4 mm.

D'où $\lambda LT = 109.44$

donc
$$\lambda LT$$
 = λLT /93.91E et $\mathcal{E} = \sqrt{\frac{235}{fy}}$

Alors λLT = 1.16>0.4 Il y a risque de déversement.

 $\phi LT = 0.5 \times (1 + \alpha LT \times (\lambda LT - 0.2) + \lambda LT^2)$

 $\alpha LT = 0.21$ Pour les profilés laminés.

 $\phi LT = 0.5 \times (1 + 0.21 \times (1.16 - 0.2) + 1.16^2) = 1.27.$

Le coefficient de réduction pour le déversement : $\chi lt = 0.54$

$M_{b\,rd}\!= 0.53^{*}1^{*}235^{*}123.9^{*}10^{3}\!/1.1 = 19.78 \ kn.m$

M_{sdy} =11. 16 kn.m

Donc la résistance des pannes IPE160 au déversement est vérifiée.

λLT	λLT	φLT	χlt	MbMb Mb,rd	Msdy
109,44	1,16	1,27	0,54	19,78	11,16

3.4 Calcul des lisses de bardage :

Les lisses de bardages sont des éléments de profilé laminé qui sont constituées de poutrelles (IPE, UAP, UPE) ou de profils minces pliés. Etant disposées horizontalement, elles sont portées soit par les poteaux de portiques, soit par les potelets intermédiaires. , elles sont destinées à reprendre les efforts du vent sur les bardages.

Figure 3.8 Disposition de la lisse sur le poteau

3.4.1 Détermination des charges et surcharges :

a) Les charges permanentes :

- Poids propre de la tôle de couverture TN35.... 10.17 Kg /m2 $\,$
- Poids propre d'accessoires d'attaches2Kg/m2.

G = [(P bardage + P accessoire) x e]

G=(10.17+2)*2

G = 0.1825 kn/ml.

b) La surcharges climatique du au vent :

On calcul les lisse de bardages avec les valeurs de vent suivantes :

W pignon= Wlong-pan= -0.951 KN/ m².

W=1.426 Kn/ml.

C) Charges appliquées à l'ELU :

Charge appliquée à L'ELU

Quy = 1.35G = 0.2463 KN/ml

Quz = 1.5 W = 2.139 KN/ml

Charges appliquées à L'ELS :

Qsy = G = 0.1825 KN /ml

Qsz = W = 1.46 KN / ml

3.4.2 Condition de la flèche :

 $fz = 5QzL4/384EIy \le L/200 \rightarrow Iy \ge 5 \times Qz \times 200 \times L3/384 \times E$

 $Iy \ge 488.83 * 104 mm4$

On adopte UPE 140 Iy= $599.5*10^4$ mm⁴.

profilie	h (mm)	b(mm)	tw (mm)	tf (mm)	r(mm)	a (mm)
	140	65	5	9	12	1840
UPE140	Iy (mm4)	Iz (mm4)	wplz mm4	wply mm4	iz mm	iy mm
	599,5*10^4	78,7*10^4	33,22*10^3	98,84*10^3	20,7	57,1

Tableau 3.10 : les dimensions de profile UPE 140

3.4.3 Vérifications de la résistance de section a L'ELU :

-Sollicitation :

Axe z-z': $Mysd = quz. l^2/8 = 9.62 kn. m$

Axes-y-y': $Mzsd = quy \cdot l^2/8 = 2.16 \ kn \cdot m$.

 $Mplrdy = wply * fy/\sigma m0 = 22.75 Kn.m$

 $Mplrdz = wplz * fy/\sigma m0 = 7.8 Kn.m$

$(9.62/16.52)^2 + (2.16/5.94) = 0.45 < 1$.

Donc la résistance du moment est vérifiée.

3.4.4 Vérification au cisaillement :

On doit vérifier que :

$$V_{sd} < V_{plrd}$$

Avec :

Vzsd et Vysd : valeur de calcul de l'effort tranchant.

Vpl Rd: valeur de calcul de la résistance au cisaillement.

$$Vsdz = \frac{Qz * l}{2} = 2.139 * 6/2 = 6.41Kn.$$
$$Vsdy = \frac{Qy * l}{2} = 0.7389Kn.$$

$$Vplrdz = AVz * fy/\sqrt{3} * \sigma m0 = 7.18 * 102 * 235/\sqrt{3} = 111.93kn$$

 $Vplrdy = AVy * fy/\sqrt{3} * \sigma m0 = 152.50 kn.$

D'ou:

$V_{\rm sdz} < V_{\rm plrdz}$	et	$V_{ m sdz}$ $<$ $0.5 V_{ m plrdz}$
$V_{\rm sdy} < V_{\rm plrdy}$	et	$V_{ m sdy}\!\!<\!0.5 { m V}_{ m plrdy}$

Donc la résistance des lisses au cisaillement est vérifiée.

Et pas d'interaction entre le moment résistant et l'effort tranchant.

3.4.5 Vérification de la stabilité au déversement :

D'après l'EuroCode 3, la résistance au déversement du profilé est vérifiée si la condition suivante est satisfaite :

$$M_{sd} \leq M_{plrd}$$

 $Mbrd = \chi lt \times \beta w \times W ply \times fy/\gamma M1$

Pour le calcul de χlt on à la formule : $\chi lt = 1/\phi LT + (\phi LT^2 - \lambda LT2)^2$.

La valeur de λLT peut être calculé par la formule :

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{\sqrt{C1} \times \left[1 + \frac{1}{20} \left(\frac{l}{\frac{h}{tf}}\right)^2\right]^{0.25}}$$

Tel que :

L = 300 mm ; iz = 20.7 mm ; h = 140 mm ; C1 = 1.132 ; tf = 9mm.

d'où $\lambda LT = 131.6$

donc $\lambda LT^{-} = \lambda LT / 93.91\epsilon$ et $\epsilon = \sqrt{\frac{235}{fy}}$

alors $\lambda LT^{-} = 1.4 > 0.4$ Il y a risque de déversement .

 $\phi LT = 0.5 \times (1 + \alpha LT \times (\lambda LT - 0.2) + \lambda LT^2)$

 $\alpha LT = 0.21$ Pour les profilés laminés.

 $\phi LT = 0.5 \times (1 + 0.21 \times (1.4 - 0.2) + 1.4^2) = 1.606$

Le coefficient de réduction pour le déversement : $\chi lt = 1$

Mbrd = 0.53 * 1 * 235 * 96.84 * 103/1.1 = 22.75 kn.m

 $Mysd = 9.62 \ kn.m < M_{brd} = 22.75 \ kn.m$

λLT	λLT	φLT	χlt	Mb,rd	Msdy
131,6	1,4	1,606	1	22,75	9,62

Donc : la stabilité au déversement de lisse est vérifiée.

3.5 Calcul la solive :

Les solives Sont des poutrelles en IPE qui travaillent a flexion simple leur écartement (la distance entre une solive et l'autre) est pratiquement déterminé par l'équations suivante : $\frac{l}{25} < h < \frac{l}{15}$ L (solive) = 6 m.

240 < h < 400 alors donc on pend IPE 330.

profilie	h (mm)	b(mm)	tw (mm)	tf (mm)	r(mm)	a (mm)
	330	160	7,5	11,5	18	6260
IPE330	Iy (mm4)	Iz (mm4)	wplz mm4	wply mm4	iz mm	iy mm
	11,77*10^7	788,1*10^4	153,7*10^3	804,3*10^3	35,5	137,1

Tableau 3.11 : les dimensions de profile IPE 330.

3.5.1 Phase de construction :

3.5.1.1 Charge et combinaisons de charge :

Poids propre du profilé 0.491kN/ml Poids propre du béton frais (15cm)......3kN/m²

Surcharge de construction (ouvrier).....0,75 kN/m²

ELU:
$$q_u = 1,35G + 1,5Q$$

- -

 $q_u = 1.35 * (3+0.12+0.491) + 1.5*0.75$

$$q_u = 13.3 \ kn \ /ml$$

ELS: $q_u = G + Q$

 $q_u = 9.73 \ kn \ /ml$

3.5.1.2 Vérification de la flexion :

$$M_{sd} \leq M_{plrd}$$
$$M_{plrd} = \frac{W_{pl.y} \times f_y}{\gamma_{m0}} = \frac{(804.3 \times 10^3 \times 235)}{1.1} \times 10^{-6} = 189.01 kN.m$$

- -

 $M_{sd} = 60.12 \ kN.m$ (avec un étaiement)

$R_{beton} = 1345.83 \, kN$

$$\begin{aligned} \mathbf{R}_{acier} &= A_a \times \frac{f_y}{\mathbf{v}_a} \\ R_{acier} &= 6260 \times \frac{235}{1} \times 10^{-3} \end{aligned}$$

 $R_{acier} = 1471.1 \ kN$

D'où $R_{beton} < R_{acier}$ alors axe neutre est dans le profile

$$R_w = Aame * fy$$
$$R_w = 541.08 \ kN$$

 $R_w < R_{beton}$ donc l'axe neutre est dans l'âme.

$$M_{plrd} = Ra\left(\frac{ha}{2}\right) + \left(\frac{hc}{2} + hp\right)Rb$$

 $M_{plrd} = 407.57 \ kNm$

$$M_{sd} = \frac{q_u \times L^2}{8} = \frac{55.09 \times 36}{8}$$
$$M_{sd} = 247.5 \ kNm$$

 $M_{sd} = 247.5 \ kNm \ < M_{plrd} = 407.57 \ kNm$

3.5.1.3 Vérification de l'effort tranchant :

 $V_{sd} \leq V_{plrd}$

$$V_{plrd} = \frac{f_y \times A_v}{\sqrt{3} \times r_{m0}} = \frac{235 \times A_v}{\sqrt{3} \times 1.1} = 395.79 \ kN$$
$$A_v = 1.04 \times h \times t_w$$
$$A_v = 2917.2 \ mm^2$$

$$V_{sd} = \frac{q_u \times L}{2} = \frac{55.09 * 6}{2} = 165.27kN$$

42,68 kN < 134,61 kN C'est vérifier.

 $V_{sd} < 0, 5V_{plrd}$

165.2kN < 197.895 kN

Pas d'interaction entre l'effort tranchant et le moment

3.5.1.4 Vérification de la rigidité :

$$f^{max}_{2} = \frac{5}{384} \times \frac{q_{s} \times L^{4}}{E \times I_{c}} \leq \bar{f}$$

$$q_{s} = 40.91 \ kN/ml$$

$$E = 2,1 \times 10^{5} \ Mpa$$

$$\begin{cases} m = \frac{E_{a}}{E_{b}} = 15 \\ v = \frac{A_{a}}{A_{b}} = 0,0114 \end{cases}$$

$$I_{c} = \frac{A_{a}(h_{b} + 2h_{p} + h_{a})}{4(1 + m \times v)} + \frac{b_{eff} \times h_{c}^{-3}}{12 \times m} + I_{y}$$

$$I_{c} = 84.747 * 10^{6} \ mm^{4}$$

$$f^{max} = \frac{5}{384} \times \frac{40.91 \times 6000^{4}}{2,1 \times 10^{5} \times 84.747 \times 10^{6}} = 24.9 \ mm$$

 $f_{tot} = 24.9mm < \bar{f} = 30 mm$ C'est vérifier.

3.6 Pré-dimensionnement des poutres :

3.6.1 Les Poutres principales :

 $L_{poutre} = 6 m.$

 $\frac{l}{25} < h < \frac{l}{15}$ 240 < h < 400 quand on prendre un IPE de ce interval

la poutre elle verifies pas alors on prend IPE 550

profile	h (mm)	b(mm)	tw (mm)	tf (mm)	r(mm)	a (mm)
	550	210	9	15,7	24	13400
IPE550	Iy (mm4)	Iz (mm4)	wplz mm4	wply mm4	iz mm	iy mm
	67,12*10^7	2668*10^4	400,5*10^3	2787*10^3	44,5	223,5

Tableau 3.12 : les dimensions de IPE 550

3.6.2 Phase iniale :

3.6.2.1 Charge et combinaisons de charge :

ELU: $q_u = 1,35G + 1,5Q$

 $q_u = 1.35 * (3 * 0.2 + 0.12 * 0.2 + 0.907) + 1.5 * 0.75 * 0.2$

 $q_u = 2.291 \, kn \, /ml$

ELS: $q_u = G + Q$

 $q_u = 1.681 \, kn \, /ml$

3.6.2.2 Réactions des solives :

$$R_{solive} = \frac{q_{solive} \times L_{solive}}{2}$$

 $R_{solive} = 356.34 \ kn$

3.6.2.3 Vérification de la flexion :

$$M_{sd} \leq M_{plrd}$$

$$\boldsymbol{M_{plrd}} = \frac{W_{pl.y} \times f_y}{\gamma_{m0}} = \frac{(2194 \times 10^3 \times 235)}{1} \times 10^{-6} = 515.59 kN.m$$

$\boldsymbol{M_{sd}} = 214.67 kN.m$	(Avec un étaiement)
214.67 Nm < 515.59 kNm	C'est vérifier.

3.6.2.4 Vérification de l'effort tranchant :

$$V_{sd} \leq V_{plrd}$$

$$V_{plrd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma_{m0}} = \frac{235 \times A_v}{\sqrt{3} \times 1.1} = 719.63 kN$$

 $A_v = 1,04 \times h \times t_w$ $A_v = 5304 \ mm^2$ $V_{sd} = 113.5 \ kN \qquad (Avec un \ étaiement)$

113.5 kN < 719.63 kN C'est vérifier.

$$V_{sd} < 0.5 V_{plrd}$$

113.5kN < 359.81 kN Pas d'interaction entre l'effort tranchant et

le moment.

3.6.2.5 Vérification du déversement :

$M_{sd} \leq M_{brd}$

IPE 550 de classe 1 (K=1 ; C₁=1,132 ; K_w=1 ; β_w =1 ; L=6m)

$$\lambda_{LT} = \frac{\frac{K \times L}{i_Z}}{\sqrt{C_1} \times \left(\left(\frac{K}{K_w}\right)^2 + \frac{1}{20} \times \left(\left(\frac{K \times L/i_Z}{h/t_f}\right)^2\right)^{0.25}} \\\lambda_{LT} = 109.79 \\\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} \times \sqrt{\beta_w} \quad \text{avec} \quad \lambda_1 = 93.91\epsilon \quad \text{et} \quad \varepsilon = \sqrt{\frac{235}{f_y}} \\\overline{\lambda_{LT}} = 1.169$$

 $\phi_{LT} = 0.5 \times (1 + \alpha_{LT} \times (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda_{LT}}^2$ $\alpha_{LT} = 0.21 \quad \text{Pour les profiles lamines}$ $\phi_{LT} = 1.29$ $\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{(\phi_{LT}^2 - \overline{\lambda_{LT}}^2)}}$ $\chi_{LT} = 0.55$

$$M_{brd} = \chi_{LT} \times \beta \mathbf{w} \times W_{pl.y} \times \frac{f_y}{\mathbf{x}_{M1}}$$

 $M_{brd} = 283.57 kNm$ $M_{sd} = 214.67 kNm$ 214.67 kNm < 364,72 kNm C'est vérifier.

3.6.3 Phase finale :

3.6.3.1 Charge et combinaisons de charge :

	$q_u = 1$	3.44 kn /ml
	ELU:	$q_u = 1,35G + 1,5Q$
Poids du bac d'acier	•••••	0,12 kN/m²
Surcharge de construction (ouvrie	er)	0,75 kN/m²
Poids propre du béton frais (15cm	n)	3kN/m ²
Poids propre du profilé		0.907kN/ml

3.6.3.2 Position de l'axe neutre plastique :

$$R_{b\acute{e}ton} = \frac{0.85}{v_b} \times f_{ck} \times b_{eff} \times h_b \qquad \text{avec } f_{ck} = 25 \text{ Mpa}$$
$$R_{b\acute{e}ton} = \frac{0.85}{1.5} \times 25 \times 1000 \times 95 \times 10^{-3}$$
$$R_{beton} = 1345.83 \text{ kN}$$

$$R_{acier} = A_a \times \frac{f_y}{\gamma_a}$$
$$R_{acier} = 116 * 10^2 \times \frac{235}{1} \times 10^{-3}$$
$$R_{acier} = 2726kN$$

D'où $R_{beton} < R_{acier}$ alors axe neutre est dans le profile

$$R_w = Aame * fy$$
$$R_w = 109.98 \ kN$$

 $R_w < R_{beton}$ donc l'axe neutre est dans l'âme.

$$M_{plrd} = Ra\left(\frac{ha}{2}\right) + \left(\frac{hc}{2} + hp\right)Rb$$
$$M_{plrd} = 819.45 \ kNm$$

 $M_{sd} = 238.78 \ kNm$

$$M_{sd} = 238.78 \ kNm \ < M_{plrd} = 819.45 \ kNm$$

3.6.3.3 Vérification de l'effort tranchant :

 $V_{sd} \leq V_{plrd}$

$$V_{plrd} = \frac{f_y \times A_v}{\sqrt{3} \times r_{m0}} = \frac{235 \times A_v}{\sqrt{3} \times 1.1} = 719.63 kN$$

 $A_{v} = 1,04 \times h \times t_{w}$ $A_{v} = 5304 \ mm^{2}$

 $V_{sd} = 129.41 \ kN$ 129.41 kN < 719.63 kN C'est vérifier.

$$V_{sd} < 0.5 V_{plrd}$$

129.41 $kN < 359.81 kN$

Pas d'interaction entre l'effort tranchant et le moment.

3.7 Les poutres secondaires :

 $L_{poutre} = 6 \text{ m}$.

$$\frac{l}{25} < h < \frac{l}{15}$$
 240 < h < 400 alors done on pend IPE 360.

3.7.1 Phase initiale :

3.7.1.1 Charge et combinaisons de charge :

ELU: $q_u = 1,35G + 1,5Q$

 $q_u = 1.35 * (3 + 0.12 + 0.571) 0.17 + 1.5 * 0.75 * 0.170$

 $q_u = 5.17 kn /ml$

ELS: $q_u = G + Q$

 $q_u = 0.75 \ kn \ /ml$

3.7.1.2 Vérification de la flexion :

$$M_{sd} \leq M_{plrd}$$

 $M_{plrd} = \frac{W_{pl.y} \times f_y}{\gamma_{m0}} = \frac{(1019 \times 10^3 \times 235)}{1.} \times 10^{-6} = 239.46 kN.m$ $M_{sd} = 23.265 \ kN.m$

23.265 kN.m < 239.46kN.m C'est vérifier.

3.7.1.3 Vérification de l'effort tranchant :

 $V_{sd} \leq V_{plrd}$ $V_{plrd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma_{m0}} = \frac{235 \times A_v}{\sqrt{3} \times 1.1} = 406.38 \ kN$ $A_v = 1,04 \times h \times t_w$ $A_v = 2995.2 \ mm^2$ $V_{sd} = 15.51 \ kN. \ m$ $15.51kN < 406.38 \ kN$ C'est vérifier.

 $V_{sd} < 0.5 V_{plrd}$

 $40.08 \ kN \ < 203.13 \ kN$

Pas d'interaction entre l'effort tranchant et le moment.

3.7.1.4 Vérification de la rigidité :

$$f^{max} = \frac{5}{384} \times \frac{q_s \times L^4}{E \times I_y} \le \bar{f}$$

 $q_s = 0.75 kN/ml$ $E = 2.1 \times 10^5 Mpa$

$f^{max} = 0.37$

3.7.2 Phase finale :

3.7.2.1 Charge et combinaisons de charge :

Poids propre du profilé	. 0.571kN/ml
Poids propre du béton frais (15cm)	.3kN/m ²
Charge de finition	$.2Kn/m^2$
Surcharge de construction (ouvrier)	.0,75 kN/m ²

ELU : $q_u = 1,35G + 1,5Q$ $q_u = 1.35 * (3+0.12+0.571)0.17 + 1.5*0.75*0.170$

$$q_u = 5.629 kn / ml$$

ELS: $q_s = G + Q$

 $q_s = 1.09 \, kn \, /ml$

3.7.2.2 Vérification de la flexion :

 $M_{sd} \leq M_{plrd}$

 $M_{plrd} = \frac{W_{pl.y} \times f_y}{\gamma_{m0}} = \frac{(1019 \times 10^3 \times 235)}{1.} \times 10^{-6} = 239.46 kN.$ $M_{sd} = 25.2 \ kN. m$

100.8kN.m < 239.46kN.m C'est vérifier.

3.7.2.3 Vérification de l'effort tranchant :

$$V_{sd} \leq V_{plrd}$$

$$V_{plrd} = \frac{f_y \times A_v}{\sqrt{3} \times r_{m0}} = \frac{235 \times A_v}{\sqrt{3} \times 1.1} = 406.38 \ kN$$

$$A_v = 1,04 \times h \times t_w$$

 $A_v = 2995.2 mm^2$
 $V_{sd} = 15.51 kN.m$
 $16.8kN < 406.38 kN$ C'est vérifier.

 $V_{sd} < 0,5V_{plrd}$

 $16.8 \ kN \ < 203.13 \ kN$

Pas d'interaction entre l'effort tranchant et le moment.

3.7.2.4 Position de l'axe neutre plastique :

$$R_{b\acute{e}ton} = \frac{0.85}{v_b} \times f_{ck} \times b_{eff} \times h_b \qquad \text{avec } f_{ck} = 25 \, Mpa$$

$$R_{b\acute{e}ton} = \frac{0.85}{1.5} \times 25 \times 1000 \times 95 \times 10^{-3}$$

$$R_{beton} = \mathbf{1345.83} \, kN$$

$$R_{acier} = A_a \times \frac{f_y}{v_a}$$

$$R_{acier} = 7270 \times \frac{235}{1} \times 10^{-3}$$

$$R_{acier} = \mathbf{1708.450} \, kN$$

D'où $R_{beton} < R_{acier}$ alors axe neutre est dans le profile

 $R_{w} = Aame * fy$ $R_{w} = 2676.8 * 235 = 629.04 \ kN$ $R_{w} < R_{beton} \quad \text{donc l'axe neutre est dans l'âme.}$ $M_{plrd} = Ra\left(\frac{ha}{2}\right) + \left(\frac{hc}{2} + hp\right)Rb$ $M_{plrd} = 445.46 \ kNm$

 $M_{sd} = 25.2 \ kNm$

 $M_{sd} = 25.2kNm < M_{plrd} = 445.46 kN$

3.8 les poteaux :

Les poteaux sont des éléments verticaux qui transmettre les efforts extérieurs provenant des charges permanentes, de la neige et de la surcharge d'exploitation aux fondations.

Niveau	Surcharge Q	Charge G	∑Q (kN/m²)	∑G	q
	(kN/m ²)	(kN/m ²)		(kN/m ²)	(kN/m ²)
Niv1:+17m	2,5	12,2	2,5	12,2	20,22
Niv2+11 m	2,5	4,97	5	17,17	30,6795
Niv3+7 m	9,45	4,97	14,45	22,14	51,564
Niv4 +3 m	9,45	34,97	23,9	57,11	112,9485
Niv5:+4m	9,45	34,97	33,35	92,08	174,333
Niv6 :-3m	9,45	34,97	42,8	127,05	235,7175
Niv7 :-6 m	9,45	34,97	52,25	162,02	297,102

 $q = (1,35 \times \Sigma G) + (1,5 \times \Sigma Q) \text{ kN/m}^2$

Tableau 3.13 : charge et surcharge appliquée sur les poteaux

A. Détermination de profile :

Dans section de classe 1

$$N_{sd} \le N_{c,rd} = \frac{A \times f_y}{\gamma_{m0}}$$

Donc :

$$A = \frac{N_{sd} \times r_{m0}}{f_y}$$

Avec : $f_y = 235 MPa$; $r_{m0} = 1,1$

Niveau	Q	surface du poteau	\mathbf{N}_{sd}	Α	Profile
	(kN/m ²)	(m ²)	(kN)	(mm ²)	
Niv1+17m	20,22	54	1091,88	4646,29787	HEA 200
Niv2:+11m	30,6795	54	1656,693	7049,75745	HEB200
Niv3:+7 m	51,564	54	2784,456	11848,7489	HEB 260
N+3 m	112,9485	54	6099,219	25954,1234	HEB 600
Niv5:+4 m	174,333	54	9413,982	40059,4979	HEM 800
Niv6 :-3 m	235,7175	54	12728,745	54164,8723	HEM 550+HEM 240
Niv7 :-6 m	297,102	54	16043,508	68270,2468	HEM 500 + HEM 550

3.8.1 les choix par calcule :

Tableau 3.14 : le choix des sections des poteaux

3.8.2 Les choix finals :

Niveau	Nsd	Α	Profile	N=A*Fy
	(kN)	(mm ²)		(KN)
Niv1:+17m	1091,88	28400	HEA360 + HEA360	6674
Niv2:+11m	1656,693	28400	HEA 360 + HEA360	6674
Niv3:+7 m	2784,456	43600	HEB450 + HEB450	10246
Niv4:+3 m	6099,219	43600	HEB450 + HEB450	10246
Niv5 :+4m	9413,982	68860	HEM 500+HEM 500	16182,1
Niv6 :-3 m	12728,745	68860	HEM 500+ HEM 500	16182,1
Niv7 :-6 m	16043,508	68860	HEM 500 + HEM 500	16182,1

Tableau3.15 : le choix final des poteaux

3.9 VI Etude et dimensionnement de système de contreventement :

3.9.1 Introduction :

Les contreventements sont des éléments qui ont pour objet d'assurer la stabilité de l'ossature en s'opposant à l'action des forces horizontales telles que le vent, le freinage des ponts roulants, l'action sismique...etc. Ils sont destinés pour garantir le bon cheminement des efforts horizontaux vers les fondations. Ils sont disposés en toiture dans le plan des versants : poutre au vent "contreventement

horizontal" et en façades : palée de stabilité "contreventement vertical", et doivent reprendre les efforts horizontaux appliqués tant sur le pignon que sur les long-pans.

3.9.2 Etude de contreventement vertical :

Le contreventement vertical a pour rôle de transmettre les efforts horizontaux longitudinaux dus à la réaction de la poutre au vent du pignon et les réactions dues au freinage du pont roulant, vers les fondations.

Le dimensionnement s'effectue en négligeant les diagonales comprimées en admettant qu'elles flambent, dans ce cas tous les efforts sont repris par les diagonales tendues.

F1 : est la réaction longitudinale du vent avec F1 = S*W

Avec S est la surface du poteau.

Est W est la force de vent.

 $S = \frac{20*3}{2} = 30 \ m^2$ et W=0.858 kn/m².

F1=30*0.858 =25.7 Kn

Figure 3.9 Diagramme d'efforts normale par les contreventements verticaux

Effort normale max obtenue par les contreventements verticale 17.29 Kn.

$$\delta = \frac{N}{A}$$
 avec $\delta = 235 Mpa$ alors $A = \frac{17.29 \times 10^3}{235} = 73.57 \text{ mm}^2$. On prend **UPN140**

3.9.3 Vérification au flambement :

L Longueur de diagonale $l = \sqrt{6^2 + 4^2} = 7.2 m$

Lf=0.5*L =3.6 m

$$\lambda = 3.6 * \frac{10^3}{17.5} = 205.71$$
 $\bar{\lambda} = \frac{205.71}{93.91} = 2.2 > 0.2$ il ya rique de flambement

3.9.4 Détermination de la courbe de flambement de profilé :

 $\frac{h}{b} = \frac{140}{60} = 2.3 < 1.2$ et $tf = 10 < 40 \ mm$ alors

courbe (b) donc
$$\alpha = 0.34$$

$$\emptyset = 0.5(1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2)$$

 $\phi = 3.26$.

$$X = 0.17$$

 $Nbrd = X * Ba * fy * \frac{A}{\gamma} = 81.49 Kn$

 $N_{sd} {=} 17.29 \ < \ N_{brd} {=} 81.49 \quad ok \; c'est \; v\acute{e}rifie$

3.9.5 Etude de poutre au vent :

on doit la vérifier au flambement simple sous un effort de compression .

$$F1 = 0.936 * \frac{20}{2} = 28.3$$
kn

$$F2 = 0.936 * \frac{129}{2} = 60.37 \text{ km}$$

$$F3 = 0.939 * \frac{138}{2} = 64.58 \text{ kn}$$

Figure 3.10 Diagramme d'efforts normale par la poutre au vent

Avec F=0.285 kn d'apres le diagramme d'effor normal.

$$\delta = \frac{N}{A}$$
 avec $\delta = 235 Mpa$ alors $A = \frac{0.285 \times 10^3}{235} = 1.27 \text{ mm}^2$. on prend L 100*100*10

3.9.6 Vérification au flambement :

$$l = \sqrt{6^2 + 6^2} = 8.48m$$

Lf=0.5*L =4.24 m

$$\lambda = 4.24 * \frac{10^3}{30.4} = 139.47$$
 $\bar{\lambda} = \frac{139.47}{93.91} = 1.48 > 0.2$ il ya rique de flambement

3.9.7 Détermination de la courbe de flambement de profilé :

$$\frac{h}{h} = \frac{100}{100} = 1 < 1.2$$
 et $tf = 10 < 40 \ mm$ alors

courbe (b) donc $\alpha = 0.34$

$$\emptyset = 0.5(1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2)$$

 $\phi = 1.81$

X = 0.35

 $Nbrd = X * Ba * fy * \frac{A}{\gamma} = 592.82 Kn$

 N_{sd} =0.285 < N_{brd} =157.93 ok c vérifie

3.10 Etude de poutre treille :

La poutre treillis se constitue de montants et de diagonales, en bois ou en acier, assemblés et reliés au moyen de nœuds qui servent d'articulations. Ces éléments prennent appui sur des semelles appelées membrures On distingue la membrure supérieure de la membrure inférieure.

3.10.1 Dimensionnement de la poutre :

 $\frac{l}{15} < h < \frac{l}{10}$ avec L est la longueur de la poutre L=12 m.

Donc 0.8 < h < 1.2 donc on prend h=1 m.

Espacement entre chaque montants est de 1 m.

l la longueur de montant est 1 m.

F1 est la rection de solive due a 82.63 kn

Figure 3.11 Diagramme d'efforts normale par la poutre treille

3.10.2 Montants :

Avec N=708.35kn d'apres le diagramme d'effor normal .

 $\delta = \frac{N}{A}$ avec $\delta = 235 Mpa$ alors $A = \frac{708.35 \times 10^3}{235} = 3014 \text{mm}^2$.

on prend L 180*180*20.

3.10.3 Vérification au flambement :

L = 1 m

Lf=0.5*L =0.5 m

$$\lambda = 0.5 * \frac{10^3}{54.7} = 9.14$$
 $\bar{\lambda} = \frac{9.14}{93.91} = 0.09 < 0.2$ il ya pas rique de flambement

3.10.4 Diagonale :

Avec N=444.28kn d'apres le diagramme d'effor normal.

 $\delta = \frac{N}{A}$ avec $\delta = 235 Mpa$ alors $A = \frac{444.28 \times 10^3}{235} = 1890 \text{ mm}^2$. on prend L 150*100*12

3.10.5 Vérification au flambement :

L Longueur de diagonale $l = \sqrt{1^2 + 1^2} = 1.41m$

Lf=0.5*L =0.705 m

$$\lambda = 0.705 * \frac{10^3}{26.7} = 24.73$$
 $\bar{\lambda} = \frac{27.73}{93.91} = 0.26 > 0.2$ il ya rique de flambement

3.10.5.1 Détermination de la courbe de flambement de profilé :

$$\frac{h}{b} = 150/100 = 1.5 > 1.2$$
 et $tf = 10 < 40 \ mm$ alors

courbe (c) donc $\alpha = 0.34$

$$\emptyset = 0.5(1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2)$$

 $\phi = 0.54$

$$X = 1$$

 $Nbrd = X * Ba * fy * \frac{A}{\gamma} = 674.45Kn$

 $N_{sd} = 444.28 < N_{brd} = 674.45$ ok c vérifie

3.10.5.2 La membrure supérieure de la membrure inférieure :

Avec N=708.35kn d'apres le diagramme d'effor normal.

 $\delta = \frac{N}{A}$ avec $\delta = 235 Mpa$ alors $A = \frac{708.35 \times 10^3}{235} = 3014 \text{mm}^2$. on prend

On prend les membrure supérieure et inférieure L200*200*20.

3.10.5.3 1.Vérification au flambement :

L Longueur 12 m

Lf=0.5*L =6 m

 $\lambda = 6 * \frac{10^3}{61.1} = 98.19$ $\bar{\lambda} = \frac{98.19}{93.91} = 1.04 > 0.2$ il ya rique de flambement

3.10.5.4 Détermination de la courbe de flambement de profilé :

 $\frac{h}{b} = \frac{200}{200} = 1 < 1.2 \text{ et } tf = 10 < 40 \text{ mm alors}$ courbe (c) donc $\alpha = 0.49$ $\emptyset = 0.5(1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^2)$ $\emptyset = 1.24$ X = 0.51 $Nbrd = X * Ba * fy * \frac{A}{\gamma} = 929.72Kn$

 $N_{sd}\!=\!\!708.35 < \ N_{brd}\!=\!\!929.72$ ok c'est vérifié

4.1 Introduction :

Les tremblements de terre ont représenté depuis toujours un des plus graves désastres de l'humanité. Leur apparition brutale et imprévue, la violence des forces mises en jeu, le séisme impose aux structures des accélérations importantes peuvent causer des dégâts importants aux constructions, pour la détermination des efforts sismique, il existe trois méthodes :

- La méthode statique équivalente.
- La méthode spectrale.
- La méthode d'analyse dynamique par accélérogramme.

4.1.1 Principe de la méthode :

Le calcul de la méthode statique peut être considère comme dérivant de l'analyse modal à travers les simplifications suivantes :

-le mode fondamental est seul pris en compte.

-la déformée du mode fondamental est arbitrairement assimilée à une droite pour les structures à portiques.

Calcul de l'effort tranchant V à la basse : W

$$V = \frac{ADQW}{R}$$

A : coefficient d'accélération de zone, donné par le tableau (4.1) de RPA 99/version 2003 en fonction de la zone sismique et du groupe d'usage du bâtiment

Zone III

Groupe d'usage 2 (RPA99/version 2003 art 3.2)

A=0.25

D : est un facteur d'amplification dynamique moyen qui est fonction de la catégorie de site du facteur de d'amortissement (η) et de la période fondamental de la structure (T).

$$D = \begin{cases} 2,5 \ \eta & 0 \le T \le T_2 \\ 2,5 \ \eta (T_2/T)^{2/3} & T_2 \le T \le 3s \\ 2,5 \ \eta (T_2/T)^{2/3} (3/T)^{5/3} & T \ge 3s \end{cases}$$

Avec T2 : période caractéristique associée à la catégorie du site et donnée par le tableau 4.7 art 4.2.3 du RPA99/ version 2003, (site meuble (S2)) : T2(S2) = 0.4 sec

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

Où ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

On a un remplissage léger $\xi = 4 \Rightarrow \eta = 1,08$.

4.1.2 Estimation de la période fondamentale de la structure :

1. La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculée par des méthodes analytiques ou numériques.

2. La formule empirique à utiliser selon les cas est la suivante :

$$T = C_T h_N^{3/4}$$

h_N : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (N).

 $h_N = 23 m.$

 C_T : Coefficient, fonction du système de contreventement, du type de remplissage et donné par le tableau 4.6 RPA 99 ver2003.

Cas $n^{\circ}4 \Rightarrow C_{T} = 0.050$.

4.1.3 Coefficient de comportement global de la structure :

Sa valeur unique est donnée par le tableau 4.3 (RPA99 ver2003) en fonction du système de contreventement tel que défini dans le chapitre III.3.4 (RPA99 ver2003).

Cas $n^{\circ}B \ 10b \Longrightarrow R = 4$.

4.1.4 facteur de qualité

Le facteur de qualité de la structure est fonction de :

- la redondance et de la géométrie des éléments qui la constituent
- la régularité en plan et en élévation
- la qualité de contrôle de la construction

La valeur de Q est déterminée par la formule :

$$Q = 1 + \sum_{1}^{6} P_q$$

Critère q	Observée (O/N)	Qq // xx	Observée (O/N)	Qq // yy
Conditions minimales sur les files de contreventement	Oui	0	Oui	0
Redondance en plan	Oui	0	Oui	0
Régularité en plan	Non	0,05	Non	0,05
Régularité en élévation	Non	0,05	Non	0,05
Contrôle de la qualité des matériaux	Oui	0	Oui	0
Contrôle de la qualité de l'exécution	Oui	0	Oui	0

Tableau 4.1 facteur de qualité Q

Q//xx=1+(0+0+0,05+0,05+0+0)=1,10.

Q//yy=1+(0+0+0,05+0,05+0+0)=1,10.

4.1.5 poids de la structure :

On préconise de calculer le poids total de la structure de la manière suivante :

$$W = \sum_{i=1}^{n} W_i$$

Wi Étant donné par :

$$W_i = W_{Gi} + \beta W_{Qi}$$

Avec :

- W_i : Le poids concentré au niveau du centre masse du plancher « i ».
- W_{Gi} : Le poids dû aux charges permanentes et celui des équipements fixes éventuels, secondaires de la structure au niveau « i ».
- W_{Qi} : Surcharges d'exploitation au niveau « i ».
- B : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation.
- $\beta = 0,3$ (bâtiment d'habitation, bureaux ou assimilés). (Tableau 4.5)
- -

4.2 Résultats de l'analyse dynamique :

4.2.1 Modelé initial :

Période et participation du model :

Cas/Mode	Fréquence [Hz]	Période [sec]	UX [%]	UY [%]
mode1	1,63	0,61	67,89	0
mode2	1,96	0,51	67,89	72,84
mode3	2,44	0,41	74,64	72,86
mode4	5,39	0,19	86,78	72,86
mode5	6,55	0,15	86,78	89,25
mode6	7,57	0,13	86,83	89,25
mode7	9,18	0,11	90,81	89,25
mode8	11,45	0,09	90,81	93,08
mode9	11,75	0,09	90,81	93,08
mode10	11,87	0,08	90,81	93,08

Tableau 4.2Participation massique

Résultat obtenu :

- 1^{er} mode une translation suivant y-y.
- 2^{eme} mode une rotation.
- 3^{eme} mode une translation suivant x-x.
- Le taux de participation massique atteint les 90% au 10^{eme} mode.

4.2.2 Vérification de l'effort tranchant à la base :

sens	Α	D	Q	R	W	V	0.8V
х-х	0,25	2,2	1,1	4	169621,42	25655,24	20524,19
у-у	0,25	2,2	1,1	4	169621,42	25655,24	20524,19

	Fx	Fx	F
Ex Max	29541,82	4826,01	29933,42
Ey Max	485,45	34239,31	34242,75

	0.8V/F
rx	0,5904
ry	0,5161

Tableau 4.3 tableau de vérification d'effort tranchant

4.2.3 Vérification du déplacement inter-étage :

Sens x-x :

Cas/Ftage	UX [cm]	dr UX (cm)	1%h	r%
0007 20080	e[e]		cm	/
étage1	2,7	2,7	3	90,00%
étage2	9,9	7,2	4	180,00%
étage3	14,8	5	3	166,67%
étage4	17,8	3	3	100,00%
étage5	19,8	2	4	50,00%
étage6	41,5	1,2	6	20,00%

Sens y-y :

Cas/Etage	Uv [cm]	dr Uv (cm)	1%h	r%
	-,[]		cm	/
étage1	10,7	10,7	3	356,67%
étage2	35,8	25,1	4	627,50%
étage3	49,5	13,7	3	456,67%
étage4	59,1	9,6	3	320,00%
étage5	66,6	7,5	4	187,50%
étage6	138,1	2,9	6	48,33%

Tableau 4.4 tableau de vérification de déplacement inter-étage

Remarque :

Les vérifications de modèle initial sont pas vérifiées alors on doit améliorer les sections des profiles et on ajoute des contreventements de stabilité.

4.3 Modèle finale :

Figure 4.1 model final

	sens	Α	D	Q	R	W	V	0.8V
х-х	0,25	2,2	1,2	4	167360,67	27614,51	22091,61	17673,2868
у-у	0,25	2,2	1,2	4	167360,67	27614,51	22091,61	17673,2868

4.3.1 Vérification de l'effort tranchant à la base :

	Fx	Fx	F
Ex Max	27936,33	7585,4	28947,83
Ey Max	4430,17	29938,72	30264,72

	0.8V/F
rx	0,7090
ry	0,6782

Tableau 4.5 tableau de vérification d'effort tranchant

4.3.2 Vérification du déplacement inter-étage :

Sens x-x :

Story	Elévation	UX	Dr UX	1%h	r%
,	cm	[cm]	[cm]	cm	/
Story1	300	1,1	1,1	3	36,67%
Story2	400	3,8	2,7	4	67,50%
Story3	300	5,5	1,7	3	56,67%
Story4	300	7	1,5	3	50,00%
Story5	400	7,9	0,9	4	22,50%
Story6	600	15,5	-0,7	6	-11,67%

Sens	у-у	:
------	-----	---

Story	Elévation	UY	dr UY	1%h	r%
	cm	[cm]	[cm]	cm	/
Story1	300	1	1	3	33,33%
Story2	400	3	2	4	50,00%
Story3	300	4,3	1,3	3	43,33%
Story4	300	5,6	1,3	3	43,33%
Story5	400	6,7	1,1	4	27,50%
Story6	600	14,8	0,8	6	13,33%

Tableau 4.6 tableau de vérification de déplacement inter-étage

4.3.3 Vérification Effet P- Δ :

Sens x-x :

Story	Р	Δkx	Vkx	hk	θ	Lim	%
	kN	cm	kN	cm	/	/	/
Story1	169621,42	1,10	26846,04	300	0,023		23,17%
Story2	127332,82	2,70	25053,97	400	0,034	0.1	34,31%
Story3	87558,62	1,70	19743,38	300	0,025		25,13%
Story4	55930,39	1,50	13949,09	300	0,020	0)-	20,05%
Story5	16277,09	0,90	4860,49	400	0,008		7,53%
Story6	3 408,49	0,70	1 327,47	600	0,003		3,00%

Sens y-y:

Story	Р	Δky	Vky	hk	θ	Lim	%
	kN	mm	kN	mm	/	/	/
Story6	169621,42	1,00	29887,87	300	0,019		18,92%
Story5	127332,82	2,00	27782,83	400	0,023		22,92%
Story4	87558,62	1,30	22207,64	300	0,017	0.1	17,09%
Story3	55930,39	1,30	15949,22	300	0,015		15,20%
Story2	16277,09	1,10	5887,23	400	0,008		7,60%
Story1	3 408,49	0,80	888,18	600	0,005		5,00%

Tableau 4.7 vérification d'Effet P- Δ

Chapitre 5 Vérification des éléments

5.1 Introduction :

Le calcul d'une structure exige que sous toutes les combinaisons d'actions possibles définies réglementairement, la stabilité statique soit assurée

• Tant globalement, au niveau de la structure.

• Qu'individuellement au niveau de chaque élément.

Les actions développent diverses sollicitations, qui génèrent des contraintes au sein du matériau et des déformations des éléments. Il s'agit donc, afin de garantir le degré de sécurité souhaité de vérifier que les contraintes et les déformations restent en dessous des limites admissibles.

Et pour cela on va étudier dans ce chapitre deux types de comportement caractéristiques, dénommés phénomènes d'instabilité qui sont :

-Le flambement : qui affecte les barres simplement comprimées (flambement simple) ou comprimées et fléchies (flambement flexion).

-Le déversement : qui affecte les semelles comprimées des pièces fléchies.

Les vérifications sont faites par logiciel robot donc on obtenue les résultats suivants :

5.2 Vérification des poteaux :

la verification de poteau sur robot

NORME: NF EN 199 TYPE D'ANALYSE:	03-1-1:2005/NA:2013/A1: Verification des pieces	2014, Euro code 3: Desig	n of steel structures.
FAMILLE: PIECE: Poteau HEB8	00 COORDONN	NEE: $x = 0.00 L = 0.00 n$	1
CHARGEMENTS: <i>Cas de charge decisive:</i>	16 G+Q+EY (1+2+3+6) *1.00	
MATERIAU: ACIER E28 fy = 27	5.00 MPa		
PARAMETRES DE	LA SECTION: HBB 80	0x800x800	
h=80.0 cm	gM0=1.00	gM1=1.00	
b=80.0 cm	Ay=238.42 cm2	Az=238.42 cm2	Ax=665.29 cm2
tw=0.0 cm	Iy=3/3986.51 cm4	Iz=3/3986.51 cm4	Ix=2036.34 cm4
u=0.0 cm	wpiy=11793.05 cm3	w piz=11/93.05 cm3	
 EFFORTS INTERNE	S ET RESISTANCES U	LTIMES:	
N,Ed = 1415.65 kN	My,Ed = -238.78 kN*m	Mz,Ed = 728.72 kN*m	Vy,Ed = 314.12 kN
Nc,Rd = 18295.44 kN	My,Ed,max = -238.78 k	N*m	Mz, Ed, max = 728.72
kN*m	Vy,T,Rd = 3785.50 kN		
Nb,Rd = 18295.44 kN	My,c,Rd = 3243.09 kN*	^k m	Mz,c,Rd = 3243.09
kN*m	Vz,Ed = 91.66 kN		
1	MN,y,Rd = 3223.67 kN	í*m	MN, z, Rd = 3223.67
kN*m	Vz,T,Rd = 3785.50 kN		
			$\Pi, Ed = 0.01 \text{ KN}^{+}\Pi$
	S DE DEVERSEMENT:		
PARAMETRES DE F	LAMBEMENT:	\square	
en y:		en z:	
Ly = 3.00 m	Lam_y = 0.03	Lz = 3.00 m	$Lam_{z} = 0.03$
Lcr, y = 0.70 m	Xy = 1.00	Lcr, z = 0.70 m	Xz = 1.00
Lamy = 2.95	kzy = 0.53	Lamz = 2.95	kzz = 0.87

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

$$\begin{split} \text{N,Ed/Nc,Rd} &= 0.08 < 1.00 \quad (6.2.4.(1)) \\ (\text{My,Ed/MN,y,Rd})^{1} 1.00 + (\text{Mz,Ed/MN,z,Rd})^{1} 1.00 = 0.30 < 1.00 \quad (6.2.9.1.(6)) \\ \text{Vy,Ed/Vy,c,Rd} &= 0.08 < 1.00 \quad (6.2.6.(1)) \\ \text{Vz,Ed/Vz,c,Rd} &= 0.02 < 1.00 \quad (6.2.6.(1)) \\ \textbf{Contrôle de la stabilité globale de la barre:} \\ \text{Lambda,y} &= 2.95 < \text{Lambda,max} = 210.00 \qquad \text{Lambda,z} = 2.95 < \text{Lambda,max} = 210.00 \qquad \text{STABLE} \\ \text{N,Ed/(Xy*N,Rk/gM1)} + kyy*My,Ed,max/(XLT*My,Rk/gM1) + kyz*Mz,Ed,max/(Mz,Rk/gM1) = 0.26 < 1.00 \quad (6.3.3.(4)) \\ \text{N,Ed/(Xz*N,Rk/gM1)} + kzy*My,Ed,max/(XLT*My,Rk/gM1) + kzz*Mz,Ed,max/(Mz,Rk/gM1) = 0.31 < 1.00 \quad (6.3.3.(4)) \\ \end{split}$$

Chapitre 5 :

DEPLACEMENTS LIMITES

Flèches (REPERE LOCAL): Non analysé

Déplacements (REPERE GLOBAL):

vx = 0.0 cm < vx max = L/150.00 = 2.0 cm *Cas de charge décisif:* 8 ELS (1+2+3)*1.00 vy = 0.0 cm < vy max = L/150.00 = 2.0 cm*Cas de charge décisif:* 8 ELS (1+2+3)*1.00 Vérifié

Vérifié

Le Poteau est correct.
Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Ratio(vx)	Cas (vx)	Ratio(vy)	Cas (vy)
360 poto_360	OK	HBB 800x800	ACIER E28	2.95	2.95	0.71	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
347 poto_347	OK	HBB 800x800	ACIER E28	2.95	2.95	0.71	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
324 poto_324	OK	HBB 800x800	ACIER E28	2.95	2.95	0.64	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
311 poto_311	OK	HBB 800x800	ACIER E28	2.95	2.95	0.64	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
288 poto_288	OK	HBB 800x800	ACIER E28	2.95	2.95	0.62	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
275 poto_275	Œ	HBB 800x800	ACIER E28	2.95	2.95	0.62	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
325 poto_325	<mark>(K</mark>	HBB 800x800	ACIER E28	2.95	2.95	0.61	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
312 poto_312	OK	HBB 800x800	ACIER E28	2.95	2.95	0.61	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
348 poto_348	OK	HBB 800x800	ACIER E28	2.95	2.95	0.60	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
361 poto_361	OK	HBB 800x800	ACIER E28	2.95	2.95	0.60	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
354 poto_354	OK	HBB 800x800	ACIER E28	2.95	2.95	0.60	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
396 poto_396	OK	HBB 800x800	ACIER E28	2.95	2.95	0.60	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
246 poto_246	OK	HBB 800x800	ACIER E28	2.95	2.95	0.59	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
341 poto_341	OK	HBB 800x800	ACIER E28	2.95	2.95	0.59	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
252 poto_252	OK	HBB 800x800	ACIER E28	2.95	2.95	0.59	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
289 poto_289	OK	HBB 800x800	ACIER E28	2.95	2.95	0.59	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
239 poto_239	Œ	HBB 800x800	ACIER E28	2.95	2.95	0.59	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
276 poto_276	Œ	HBB 800x800	ACIER E28	2.95	2.95	0.58	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
383 poto_383	OK	HBB 800x800	ACIER E28	2.95	2.95	0.58	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
219 poto_219	Œ	HAB 500x500	ACIER E28	4.41	4.41	0.58	17 G+Q-EY	0.01	8 ELS	0.00	8 ELS
210 poto_210	OK	HBB 800x800	ACIER E28	2.95	2.95	0.58	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
255 poto_255	OK	HAB 500x500	ACIER E28	4.41	4.41	0.58	17 G+Q-EY	0.01	8 ELS	0.00	8 ELS
98 poto_98	OK	HAB 500x500	ACIER E28	4.41	4.41	0.57	17 G+Q-EY	0.01	8 ELS	0.00	8 ELS
242 poto_242	OK	HAB 500x500	ACIER E28	4.41	4.41	0.57	17 G+Q-EY	0.01	8 ELS	0.00	8 ELS
206 poto_206	Œ	HAB 500x500	ACIER E28	4.41	4.41	0.57	17 G+Q-EY	0.01	8 ELS	0.00	8 ELS
398 poto_398	OK	HBB 800x800	ACIER E28	2.95	2.95	0.57	15 G+Q-EX	0.01	8 ELS	0.00	8 ELS
291 poto_291	<mark>(K</mark>	HAB 500x500	ACIER E28	4.41	4.41	0.56	17 G+Q-EY	<mark>0.01</mark>	8 ELS	0.00	8 ELS
147 poto_147	OK	HAB 500x500	ACIER E28	4.41	4.41	0.56	16 G+Q+EY	0.01	8 ELS	0.00	8 ELS
253 poto_253	OK	HBB 800x800	ACIER E28	2.95	2.95	0.56	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
240 poto_240	OK	HBB 800x800	ACIER E28	2.95	2.95	0.56	14 G+Q+EX	0.00	8 ELS	0.00	8 ELS
183 poto_183	<mark>(K</mark>	HAB 500x500	ACIER E28	4.41	4.41	0.56	17 G+Q-EY	0.01	8 ELS	0.00	8 ELS

Note de calcule :

HAB 500x500x500	Auto ~	Pièce: 17 poto_17 Point / Coordonnée: 7 / Cas de charge: 16	/x = 1.00 L = 4.00 m G+Q+EY (1+2+3+6)*1.00	Profil correct	OK
Résultats simplifiés	Déplacement	ts Résultats détaillés			Changer
N,Ed = 190.43 kl Nc,Rd = 13067.2 Nb,Rd = 13067.2	N 26 kN 26 kN	My,Ed = -84.92 kN*m My,Ed,max = -84.92 kN*m My,c,Rd = 1678.26 kN*m MN,y,Rd = 1677.91 kN*m	Mz,Ed = 91.20 kN*m Mz,Ed,max = 91.20 kN*m Mz,c,Rd = 1678.26 kN*m MN,z,Rd = 1677.91 kN*m	Vy,Ed = 44.87 kN Vy,T,Rd = 3227.62 kN Vz,Ed = -4.01 kN Vz,T,Rd = 3196.40 kN Tt,Ed = 0.00 kN*m Classe de la section = 1	Efforts
				XLT = 1.00]
FLAMBEMENT y	4.00 m = 0.70 m = 4.41	Lam_y = 0.05 Xy = 1.00 kzy = 0.54	FLAMBEMENT z Lz = 4.00 m Lcr,z = 0.70 m Lamz = 4.41	Lam_z = 0.05 Xz = 1.00 kzz = 0.91	Note de calcul Paramètres Aide
CONTROLE DE LA (My,Ed/MN,y,Rd) Vy,Ed/Vy,c,Rd =	A SECTION)^ 1.00 + (Mz 0.01 < 1.00	,Ed/MN,z,Rd)^1.00 = 0.10 < (6.2.6.(1))	(1.00 (6.2.9.1.(6))		
CONTROLE DE LA Lamy = 4.41 < La N,Ed/(Xz*N,Rk/g	A STABILITE D am,max = 210 M1) + kzy*My	E LA BARRE).00 Lamz = 4.41 < Lam , Ed,max/(XLT*My,Rk/gM1) +	,max = 210.00 STABLE ∙kzz*Mz,Ed,max/(Mz,Rk/gM1) =	0.09 < 1.00 (6.3.3.(4))	

5.3 Verification des poutres principals:

la verification de la poutre principale sur robot _____

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures. **TYPE D'ANALYSE:** Vérification des pièces

_____ _____

_____ **FAMILLE:**

PIECE:	36 PP_36	POINT:	COORDONNEE:

CHARGEMENTS:

Cas de charge décisif: Défini manuellement

MATERIAU:

ACIER E36 fy = 355.00 MPa _____

PARAMETRES DE LA SECTION: HEM 650 pp

h=66.8 cm b=30.5 cm tw=2.1 cm	gM0=1.00 Ay=244.00 cm2 Iy=281668.00 cm4	gM1=1.00 Az=123.48 cm2 Iz=18979.20 cm4	Ax=373.74 cm2 Ix=1578.91 cm4
tf=4.0 cm	Wely=8433.17 cm3	Welz=1244.54 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

$N, Ed = 0.00 \ kN$	My,Ed = -396.26 kN*m $Mz,Ed = 0.00 kN*m$	Vy,Ed = 0.00 kN
Nc,Rd = 13267.70 kN	My,el,Rd = 2993.78 kN*m	Mz, el, Rd = 441.81
kN*m	Vy,T,Rd = 5000.08 kN	
Nb,Rd = 13267.70 kN	My,c,Rd = 2993.78 kN*m	Mz,c,Rd = 441.81 kN*m
	Vz,Ed = 207.59 kN	
		Vz,T,Rd = 2530.59 kN
	Mb $Pd = 2003.78 \text{ kN}\text{m}$	Tt Ed = 0.04 kN*m

 $Mb,Rd = 2993.78 \text{ kN}^{*}\text{m}$

Tt.Ed = 0.04 kN*mClasse de la section = 3_____

PARAMETRES DE DEVERSEMENT: XLT = 1.00XLT = 1.00XLT,mod = 1.00_____ _____ **PARAMETRES DE FLAMBEMENT:** en y: en z: kyy = 1.00 kzz = 1.00_____

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.13 < 1.00 (6.2.1(7))

 $sqrt(Sig,x,Ed^{*}2 + 3^{*}(Tau,z,Ed+Tau,tz,Ed)^{2})/(fy/gM0) = 0.14 < 1.00 \quad (6.2.1.(5))$ $Vy,Ed/Vy,T,Rd = 0.00 < 1.00 \quad (6.2.6-7)$ $Vz,Ed/Vz,T,Rd = 0.08 < 1.00 \quad (6.2.6-7)$ $Tau,ty,Ed/(fy/(sqrt(3)^{*}gM0)) = 0.00 < 1.00 \quad (6.2.6)$ $Tau,tz,Ed/(fy/(sqrt(3)^{*}gM0)) = 0.00 < 1.00 \quad (6.2.6)$ $Contrôle \ de \ la \ stabilité \ globale \ de \ la \ barre:$ $My,Ed/Mb,Rd = 0.13 < 1.00 \quad (6.3.2.1.(1))$ $N,Ed/(Xy^{*}N,Rk/gM1) + kyy^{*}My,Ed/(XLT^{*}My,Rk/gM1) + kyz^{*}Mz,Ed/(Mz,Rk/gM1) = 0.13 < 1.00$ (6.3.3.(4)) $N,Ed/(Xz^{*}N,Rk/gM1) + kzy^{*}My,Ed/(XLT^{*}My,Rk/gM1) + kzz^{*}Mz,Ed/(Mz,Rk/gM1) = 0.13 < 1.00$ (6.3.3.(4))

La poutre est correcte.

Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)
371 PP_371	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.60	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
370 PP_370	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.58	14 G+Q+EX	0.00	8 ELS	0.06	8 ELS
367 PP_367	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.58	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
368 PP_368	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.57	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
335 PP_335	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.56	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
372 PP_372	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.56	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
299 PP_299	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.54	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
331 PP_331	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.54	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
332 PP_332	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.54	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
405 PP_405	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.53	14 G+Q+EX	0.00	8 ELS	0.03	8 ELS
263 PP_263	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.53	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
295 PP_295	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.52	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
336 PP_336	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.51	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
296 PP_296	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.51	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
406 PP_406	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.51	14 G+Q+EX	0.00	8 ELS	0.03	8 ELS
259 PP_259	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.50	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
260 PP_260	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.49	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
422 PP_422	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.49	14 G+Q+EX	0.00	8 ELS	0.02	8 ELS
300 PP_300	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.49	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
227 PP_227	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.49	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
264 PP_264	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.47	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
191 PP_191	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.47	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
421 PP_421	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.47	14 G+Q+EX	0.00	8 ELS	0.02	8 ELS
404 PP_404	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.47	14 G+Q+EX	0.00	8 ELS	0.03	8 ELS
223 PP_223	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.46	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
224 PP_224	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.46	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
403 PP_403	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.46	14 G+Q+EX	0.00	8 ELS	0.03	8 ELS
369 PP_369	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.46	14 G+Q+EX	0.00	8 ELS	0.06	8 ELS
155 PP_155	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.45	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
188 PP_188	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.45	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
420 PP_420	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.45	14 G+Q+EX	0.00	8 ELS	0.02	8 ELS
187 PP_187	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.45	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
119 PP_119	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.44	14 G+Q+EX	0.00	8 ELS	0.07	8 ELS
407 PP_407	OK	HEM 650 pp	ACIER E36	19.95	84.14	0.44	14 G+Q+EX	0.00	8 ELS	0.04	8 ELS

Note de calcul:

Résultats - norme - NF EN 1993-1-1:2005/NA:2013/A1:2014 —											
HEM 650 pp ✓ Cas de charge	PP_405 nnée: 7 / x = 0.10 L = 0.60 : 14 G+Q+EX (1+2+3	Profil correct Im I+5)*1.00	○○	OK							
Résultats simplifiés Déplacements Résultats dé	taillés			Changer							
FORCES N,Ed = 0.00 kN My,Ed = -1408 Nc,Rd = 13267.70 kN My,el,Rd = 299 Nb,Rd = 13267.70 kN My,c,Rd = 299 Mb,Rd = 2993.	.92 kN*m Mz,Ed = 0.00 k 93.78 kN*m Mz,el,Rd = 441 3.78 kN*m Mz,c,Rd = 441 78 kN*m	N*m Vy,Ed = 0.01 kN I.81 kN*m Vy,T,Rd = 5000.18 k .81 kN*m Vz,Ed = 817.96 kN Vz,T,Rd = 2530.62 k Tt,Ed = 0.03 kN*m Classe de la section =	N N = 3	Efforts Détaillée							
DEVERSEMENT z = 1.00 Mcr = 4 Image: Constraint of the second se	180313.19 kN*m Cour - = 0.08 fi,LT	be,LT - d XLT = 1.00 = 0.46 XLT,mod = 1.	00								
				Note de calcul Paramètres							
куу = .		K22 = 1.00		Aide							
CONTROLE DE LA SECTION sqrt(Sig,x,Ed*^2 + 3*(Tau,z,Ed+Tau,tz,Ed)^2 Vz,Ed/Vz,T,Rd = 0.32 < 1.00 (6.2.6-7)	2)/(fy/gM0) = 0.53 < 1.00 (6.2	2.1.(5))									
CONTROLE DE LA STABILITE DE LA BARRE N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Ri	⟨gM1) + kyz®Mz,Ed/(Mz,Rk/gM	1) = 0.47 < 1.00 (6.3.3.(4))									

5.4 verification des poutres secondaire:

Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)
1494 Ps_1494	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.24	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
1500 Ps_1500	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.23	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1498 Ps_1498	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.23	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1502 Ps_1502	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.23	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1496 Ps_1496	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.22	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
1413 Ps_1413	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.22	16 G+Q+EY	0.00	8 ELS	0.02	8 ELS
1473 Ps_1473	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.22	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1506 Ps_1506	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1365 Ps_1365	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1484 Ps_1484	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
1504 Ps_1504	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
1463 Ps_1463	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1286 Ps_1286	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1490 Ps_1490	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1510 Ps_1510	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1290 Ps_1290	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1373 Ps_1373	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.21	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1488 Ps_1488	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1288 Ps_1288	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1512 Ps_1512	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1492 Ps_1492	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1292 Ps_1292	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1355 Ps_1355	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1508 Ps_1508	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1467 Ps_1467	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1363 Ps_1363	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1497 Ps_1497	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1470 Ps_1470	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1468 Ps_1468	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1471 Ps_1471	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1501 Ps_1501	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1472 Ps_1472	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.20	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1464 Ps_1464	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.19	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS
1469 Ps_1469	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.19	16 G+Q+EY	0.00	8 ELS	0.01	8 ELS
1486 Ps_1486	OK	HEM 550 ps	ACIER E36	23.19	81.54	0.19	16 G+Q+EY	0.00	8 ELS	0.00	8 ELS

Note de calcul:

Résultats - norme - NF EN 1993-1-1:2005/NA:2013/A1:2014 —											
HEM 550 ps V Profil correct HEM 550 ps V Cas de charge: 16 G+Q+EY (1+2+3+6)*1.00	OK										
Résultats simplifiés Déplacements Résultats détaillés	Changer										
FORCES My,Ed = -541.91 kN*m Mz,Ed = 0.00 kN*m Vy,Ed = -0.00 kN Nc,Rd = 12580.42 kN My,el,Rd = 2457.49 kN*m Mz,el,Rd = 444.52 kN*m Vy,T,Rd = 5016.90 kN Nb,Rd = 12580.42 kN My,c,Rd = 2457.49 kN*m Mz,c,Rd = 444.52 kN*m Vz,Ed = 270.94 kN Nb,Rd = 12580.42 kN My,c,Rd = 2457.49 kN*m Mz,c,Rd = 444.52 kN*m Vz,Ed = 270.94 kN Nb,Rd = 2457.49 kN*m Mz,c,Rd = 444.52 kN*m Vz,Ed = 20.02 kN*m Vz,Ed = 2117.53 kN Mb,Rd = 2457.49 kN*m Tt,Ed = 0.02 kN*m Classe de la section = 3 Vz	Efforts Détaillée										
DEVERSEMENT z = 1.00 Mcr = 406326.01 kN*m Courbe,LT - d XLT = 1.00 Lcr,low=0.60 m Lam_LT = 0.08 fi,LT = 0.46 XLT,mod = 1.00											
FLAMBEMENT y kyy = 1.00	Note de calcul Paramètres Aide										
CONTROLE DE LA SECTION sqrt(Sig,x,Ed*^2 + 3*(Tau,z,Ed+Tau,tz,Ed)^2)/(fy/gM0) = 0.23 < 1.00 (6.2.1.(5)) Vz,Ed/Vz,T,Rd = 0.13 < 1.00 (6.2.6-7)											
CONTROLE DE LA STABILITE DE LA BARRE N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) + kyz*Mz,Ed/(Mz,Rk/gM1) = 0.22 < 1.00 (6.3.3.(4))											

5.5 verification des solives:

Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)
32 Poutre_32	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
64 Poutre_64	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
77 Poutre_77	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
100 Poutre_100	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
113 Poutre_113	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
136 Poutre_136	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
149 Poutre_149	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
172 Poutre_172	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
185 Poutre_185	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
208 Poutre_208	Œ	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
221 Poutre_221	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
244 Poutre_244	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
257 Poutre_257	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
280 Poutre_280	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
293 Poutre_293	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
316 Poutre_316	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
329 Poutre_329	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
352 Poutre_352	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
365 Poutre_365	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
388 Poutre_388	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
401 Poutre_401	OK	IPE 400	ACIER E36	73.08	306.16	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1564 Poutre_156	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1565 Poutre_156	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1566 Poutre_156	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1567 Poutre_156	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1568 Poutre_156	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1574 Poutre_157	(K	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1575 Poutre_157	(K	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1576 Poutre_157	(K	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1577 Poutre_157	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS
1578 Poutre_157	OK	IPE 400	ACIER E36	36.26	151.90	0.00	7 ELU	0.00	8 ELS	0.00	8 ELS

Note de calcul:

🖉 Résultats - norme - NF EN 1993-1-1:2005/NA:2013/A1:2014 —	· 🗆 X
Profil correct	ОК
Résultats simplifiés Déplacements Résultats détaillés	Changer
Flèche de la barre uy = 0.0 cm < uy max = L/200.00 = 6.0 cm Vérifié Cas de charge décisif: 8 ELS (1+2+3)*1.00 100	
uz = 0.0 cm < uz max = L/200.00 = 6.0 cm	Efforts Détaillée
Déplacements des noeuds de la barre	Note de calcul
<u>7</u>	Paramètres Aide

5.6 vérification des pannes:

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Ratio(uy	Cas (uy)	Ratio(uz	Cas (uz)
647	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
595	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
578	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
697	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
459	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
663	M IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
731	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
527	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
544	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
646	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
680	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
561	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
714	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
596	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
562	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
460	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
681	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
579	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
528	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
732	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
545	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
664	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
455	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
715	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
698	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
511	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
510	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
456	K IPE 160	ACIER E36	91.22	325.39	0.20	7 ELU	0.15	8 ELS	0.09	8 ELS
457	K IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.15	8 ELS	0.09	8 ELS
699	K IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
733	K IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
580	K IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
563	K IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
665	M IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
648	K IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
546	M IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
716	M IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
512	M IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS
529	OK IPE 160	ACIER E36	91.22	325.39	0.19	7 ELU	0.14	8 ELS	0.09	8 ELS

Note de calcul:

🗊 Résultats - norme - NF E	N 1993-1-1:2005/NA:2013/A1:20	014	-	
IPE 160 V	Pièce: 697 x = Cas de charge: 7 E	= 0.50 L = 3.00 m ELU (1+2)*1.35+3*1.50	Profil correct	OK
Résultats simplifiés Déplace	ements Résultats détaillés			Changer
	My,Ed = 1.87 kN*m My,pl,Rd = 43.97 kN*m My,c,Rd = 43.97 kN*m Mb,Rd = 10.90 kN*m	Mz,Ed = -0.23 kN*m Mz,pl,Rd = 9.27 kN*m Mz,c,Rd = 9.27 kN*m	Tt,Ed = 0.00 kN*m Classe de la section = 1	Efforts Détaillée
DEVERSEMENT Z = 1.00 Lor,upp=	Mcr = 10.90 kN*m 6.00 m Lam_LT = 2.01	Courbe,LT - fi,LT = 2.52	XLT = 0.25 XLT,mod = 0.25	
FLAMBEMENT y		FLAMBEMENT z		Note de calcul Paramètres Aide
CONTROLE DE LA SECTIO (My,Ed/MN,y,Rd)^ 2.00 - Tau,ty,Ed/(fy/(sqrt(3)*gN	N + (Mz,Ed/MN,z,Rd)^1.00 = 0.03 < 40)) = 0.00 < 1.00 (6.2.6)	: 1.00 (6.2.9.1.(6))		
CONTROLE DE LA STABILI My,Ed/(XLT*My,Rk/gM1)	TTE DE LA BARRE + Mz,Ed/(Mz,Rk/gM1) = 0.20 < 1.0	00 (6.3.3.(4))		

5.7 Verification de la stabilité selon X-X:

Pièce Pr		Profil	Matériau	u Lay Laz		Ratio	Cas
2774 ST X _2774	0K	2 UPN 350	ACIER E36	14.05	42.23	0.48	24 G+Q+1.25EY
2786 ST X _2786	ОК	2 UPN 350	ACIER E36	14.05	42.23	0.48	24 G+Q+1.25EY
2773 ST X _2773	ОК	2 UPN 350	ACIER E36	14.05	42.23	0.48	24 G+Q+1.25EY
2761 ST X _2761	0K	2 UPN 350	ACIER E36	14.05	42.23	0.47	24 G+Q+1.25EY
2762 ST X _2762	0K	2 UPN 350	ACIER E36	14.05	42.23	0.46	24 G+Q+1.25EY
2785 ST X _2785	ОK	2 UPN 350	ACIER E36	14.05	42.23	0.44	24 G+Q+1.25EY
2713 ST X _2713	ОK	2 UPN 350	ACIER E36	14.05	42.23	0.43	24 G+Q+1.25EY
2737 ST X _2737	ОK	2 UPN 350	ACIER E36	14.05	42.23	0.43	24 G+Q+1.25EY
2750 ST X _2750	0K	2 UPN 350	ACIER E36	14.05	42.23	0.43	24 G+Q+1.25EY
2738 ST X _2738	0K	2 UPN 350	ACIER E36	14.05	42.23	0.42	24 G+Q+1.25EY
2749 ST X _2749	0K	2 UPN 350	ACIER E36	14.05	42.23	0.38	24 G+Q+1.25EY
2714 ST X _2714	0K	2 UPN 350	ACIER E36	14.05	42.23	0.38	24 G+Q+1.25EY
2772 ST X _2772	0K	2 UPN 350	ACIER E36	13.97	41.97	0.30	24 G+Q+1.25EY
2771 ST X _2771	0K	2 UPN 350	ACIER E36	13.97	41.97	0.30	24 G+Q+1.25EY
2784 ST X _2784	0K	2 UPN 350	ACIER E36	13.97	41.97	0.30	24 G+Q+1.25EY
2763 ST X _2763	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.29	24 G+Q+1.25EY
2760 ST X _2760	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.29	24 G+Q+1.25EY
2759 ST X _2759	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.29	24 G+Q+1.25EY
2788 ST X _2788	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.29	24 G+Q+1.25EY
2776 ST X _2776	OK	2 UPN 350	ACIER E36	13.97	41.97	0.28	24 G+Q+1.25EY
2775 ST X _2775	0K	2 UPN 350	ACIER E36	13.97	41.97	0.28	24 G+Q+1.25EY
2783 ST X _2783	0K	2 UPN 350	ACIER E36	13.97	41.97	0.28	24 G+Q+1.25EY
2735 ST X _2735	0K	2 UPN 350	ACIER E36	13.97	41.97	0.27	24 G+Q+1.25EY
2711 ST X _2711	0K	2 UPN 350	ACIER E36	13.97	41.97	0.27	24 G+Q+1.25EY
2736 ST X _2736	0K	2 UPN 350	ACIER E36	13.97	41.97	0.27	24 G+Q+1.25EY
2764 ST X _2764	0K	2 UPN 350	ACIER E36	13.97	41.97	0.27	24 G+Q+1.25EY
2748 ST X _2748	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.27	24 G+Q+1.25EY
2765 ST X _2765	ОК	2 UPN 350	ACIER E36	13.97	41.97	0.26	24 G+Q+1.25EY
2790 ST X _2790	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.26	24 G+Q+1.25EY
2778 ST X _2778	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.26	24 G+Q+1.25EY
2777 ST X _2777	0K	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2715 ST X _2715	0K	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2752 ST X _2752	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2747 ST X _2747	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2712 ST X _2712	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2739 ST X _2739	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2740 ST X _2740	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.25	24 G+Q+1.25EY
2787 ST X _2787	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.25	20 0.8G+1.25EY
2766 ST X _2766	ОK	2 UPN 350	ACIER E36	13.97	41.97	0.24	24 G+Q+1.25EY
2754 ST X _2754	0K	2 UPN 350	ACIER E36	13.97	41.97	0.24	24 G+Q+1.25EY

Note de calcul:

🚾 Résultats - norme - NF EN 1993-1-1:2005/NA:2013/A1:2014 —	
Image: AutoPièce: 2785 ST X _2785 Point / Coordonnée: $6 / x = 0.83 \text{ L} = 6.01 \text{ m}$ Cas de charge: 24 G+Q+1.25EY (1+2+3)*1.00+6*1.25	ОК
Résultats simplifiés Résultats détaillés FORCES N,Ed = 1971.90 kN	Changer
Nc,Rd = 5488.30 kN Nb,Rd = 4462.51 kN	Efforts
Classe de la section = 1	
XLT = 1.00	
	Note de calcul
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Paramètres
CONTROLE DE LA SECTION N,Ed/Nc,Rd = 0.36 < 1.00 (6.2.4.(1))	
CONTROLE DE LA STABILITE DE LA BARRE Lamy = 14.05 < Lam,max = 210.00 Lamz = 42.23 < Lam,max = 210.00 STABLE N,Ed/Nb,Rd = 0.44 < 1.00 (6.3.1.1.(1))	

6.1 Introduction :

Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations entre les pièces, sans Générer de sollicitations parasites notamment de la torsion.

Pour réaliser une structure en charpente métallique on distingue deux moyens d'assemblages :

Les assemblages soudés : Le soudage est un procédé qui consiste à réaliser un joint soudé destiné à relier entre deux ou plusieurs parties d'un assemblage en assurant la continuité de la matière entre ces parties

Les assemblages boulonnés : On distingue deux types de boulons :

- Les boulons ordinaires.

- Les boulons à haute résistance à serrage contrôlé.

Ces deux types de boulons se différencient par leur méthode de mise en œuvre. Les boulons ordinaires sont mis en œuvre avec un serrage ordinaire (non contrôlé) tandis que les boulons à haute résistance sont mis en œuvre avec serrage contrôlé.

Base poteaux :

Les pieds de poteaux constituent la zone de transition entre l'ossature métallique et les fondations (ou l'infrastructure) en béton armé. Ils sont admis soit articulés, soit encastrés.

Ces hypothèses sont rarement satisfaites de façon absolue. En effet, l'articulation n'est jamais parfaite à cause de la rigidité de la plaque de base et l'encastrement est en général élastique surtout à cause de la déformabilité du sol.

Lorsque le pied de poteau est articulé, la plaque de base est chargée de transmettre les efforts du poteau métallique au béton. En cas d'efforts importants à transmettre, on utilise des plaques de base de forte épaisseur, plus rarement des plaques raidies. En cas de pied de poteau encastré, l'infrastructure en béton, armé doit être conçue pour recevoir les ancrages nécessaires. Vu le ferraillage des fondations, la plaque de base ne peut pas être noyée dans la dalle, mais dans l'épaisseur de la chape.

Figure 6.1 base poteaux articulés

6.1.1 Procédures de calcul :

- Vérification du pied de poteau à l'effort de compression.
- Vérification du pied de poteau vis-à-vis de cisaillement.

6.1.2 Note de calcul :

Caractéristiques et paramètres des éléments :

Tiges d'ancrages, platine ou plaque d'assise (et éventuellement des bêches) sont les

Constituants du pied de poteau.

Les caractéristiques de l'ensemble sont :

Poteaux HEB 800*HEB800 : h = 800mm; b = 200 mm; tw = 17.5 mm; tf = 33 mm.

Béton : $fck = 25 N/mm^2$; $Ecm = 32 KN/mm^2$.

Tige d'ancrage : *Classe* 10.9; *d* = 27mm ;*d*0 = 30mm ; *A* = 154mm2

Platine : (1000*800*20) mm3; $fy = 235 N/mm^2$; $fu = 360 N/mm^2$.

6.2 Vérification du pied de poteau à l'effort de compression :

L'effort de compression repris par le potelet est : 1415.68 KN.

Le béton :

On vérifie que : *fj* : La résistance de contact de la liaison (mortier-béton).

$$fj = \frac{2}{3}fcd. Kj$$

K j: Facteur de concentration K j=1.13.

fck: Résistance caractéristique du béton à la compression fck=25.

$$fj = \frac{2}{3} fcd. K j = 12.8$$
 Map.

Acef f : La surface portante avec une largeur supplémentaire d'appui « c » ne dépasse pas : $c = tp \sqrt{\frac{fy}{3*fi*\delta}}$ c=49.46 mm

 $Aceff = (2(b + 2c)(2c + tf)) + ((2c + tw)(h - 2tf - 2c)) = 199500 \text{ mm}^2.$

$$\rightarrow \sigma = \frac{1415680}{199500} = 7.09$$
 Map. < $fj = 12.8$ Map.

La résistance de la liaison mortier-béton est vérifiée.

6.2.1 Vérification du la tige d'ancrage:

Pour une tige on a :

 $F_{vsd} < F_{tRd} R \acute{e}sistance au$ traction

 $F_{vsd <} F_{bRd}$ Résistance à la pression diamétrale

 $F_{tRd} = 0.9 fbuA / \gamma m = 0.9*1000*561/1.25 = 403.92 \text{ KN}$

 $F_{vsd} = N_{sd}/nb = 1415.28/4 = 353.75$ KN.

 $F_{vsd=}$ 353.75 KN $\leq F_{tRd}$ =403.92 KN.

 $F_{vsd} = N_{sd}/nb = 1415.28/4 = 353.75$ KN.

 $F_{bRd=} \pi \emptyset(l_1+6.5r_c+3.5l_2)f_{bd}$ avec $l_1=l_s$?; $r_c=3\emptyset=8.1$ et $l_2=1.5\emptyset=4.05$

 $l_{1=}-42.87\ cm$.

6.3 Assemblage poutre solive :

Figure 6.3 Assemblage poutre solive

6.4 GENERAL

Assemblage N°: 2 Nom de l'assemblage : Poutre-poutre (âme) Noeud de la structure: 1304 Barres de la structure: 260, 1675

6.5 GEOMETRIE

6.5.1 POUTRE PRINCIPALE

Profilé: HEM 650

Barre N°:	260		
α=	-90,0	[Deg]	Angle d'inclinaison
$h_g =$	668	[mm]	Hauteur de la section poutre principale
$b_{fg} =$	305	[mm]	Largeur de l'aile de la section de la poutre principale
$t_{wg} =$	21	[mm]	Epaisseur de l'âme de la section de la poutre principale
$t_{fg} =$	40	[mm]	Epaisseur de l'aile de la section de la poutre principale
$r_g =$	27	[mm]	Rayon de congé de l'âme de la section de la poutre principale
$A_p =$	373,74	[cm ²]	Aire de la section de la poutre principale

HEM 650
281668,00 [cm ⁴] Moment d'inertie de la section de la poutre pricnipale
ACIER E36
355,00 [MPa] Résistance de calcul
495,00 [MPa] Résistance à la traction

6.5.2 POUTRE

Profilé: IPE 400

Barre N°: 1675

$\alpha =$	0,0	[Deg]	Angle d'inclinaison
$h_b =$	400	[mm]	Hauteur de la section de la poutre
$b_b =$	180	[mm]	Largeur de la section de la poutre
$t_{wb} =$	9	[mm]	Epaisseur de l'âme de la section de la poutre
$t_{fb} =$	14	[mm]	Epaisseur de l'aile de la section de la poutre
$r_b =$	21	[mm]	Rayon de congé de la section de la poutre
$A_b =$	84,46	[cm ²]	Aire de la section de la poutre
$I_{yb} =$	23128,40	[cm ⁴]	Moment d'inertie de la poutre
Matériau:	ACIE	R E36	
$f_{yb} =$	3	855,00[MPa]Résistance de calcul
$f_{ub} =$	4	95,00[MPa]Résistance à la traction

6.5.3 RAIDISSEUR

$l_s =$	400	[mm]	Longueur du raidisseur
$h_s =$	588	[mm]	Hauteur du raidisseur
$t_s =$	8	[mm]	Epaisseur du raidisseur
$d_s =$	260	[mm]	Longueur de l'encoche
$h_{1s} =$	21	[mm]	Encoche supérieur
$h_{2s} =$	250	[mm]	Encoche inférieure
Matériau	1: ACIER	E36	
$f_{ys} =$	355,00 [MPa]	Résistance de calcul

 $f_{us} = \qquad 495{,}00 \quad [MPa] \quad \text{R}\acute{e}sistance ~\grave{a}~la~traction$

6.5.4 BOULONS

6.5.4.1 BOULONS ASSEMBLANT LA POUTRE AU RAIDISSEUR

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	= 8.8		Classe du boulon	
d =	20	[mm]	Diamètre du boulon	
$d_0 =$	22	[mm]	Diamètre du trou de boulon	
$A_s =$	2,45	[cm ²]	Aire de la section efficace du boulon	
$A_v =$	3,14	[cm ²]	Aire de la section du boulon	
$f_{ub} =$	800,00	[MPa]	Résistance à la traction	
k =	3		Nombre de colonnes des boulons	
w =	3		Nombre de rangéss des boulons	
$e_1 =$	79	[mm]	Niveau du premier boulon	
$p_2 =$	80	[mm]	Ecartement	
$p_1 =$	80	[mm]	Entraxe	
6.5.5	COEFI	FICIEN	NTS DE MATERIAU	
$\gamma_{M0} =$	1,00		Coefficient de sécurité partiel	[2.2]

$\gamma_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]

6.6 EFFORTS

Cas:	7: ELU (1+2)*1.35+3*1.5
Cub.	(1+2) $(1+2)$ $(1-3)$

 $N_{b,Ed} = 0,00 \quad [kN] \quad Effort \ axial$

 $V_{b,Ed} = 171,63$ [kN] Effort tranchant

M_{b,Ed} = -0,00 [kN*m] Moment fléchissant

6.7 RESULTATS

6.7.1 BOULONS ASSEMBLANT LA POUTRE AU RAIDISSEUR

6.7.1.1 RESISTANCE DES BOULONS

F _{v,Rd}	120,6 [kN Résistance du boulon au cisaillement dans la partie non filetée	$F_{v,Rd} =$
=	4] d'un boulon	$0.6*f_{ub}*A_v*m/\gamma_{M2}$

Pression du boulon sur la poutre

Direction x

$k_{1x} = 2,50$	Coefficient pour le calcul de $F_{h,Bd}k_{1x} = min[2.8^{*}(e_{1}/d_{0})-1.7, 1.4^{*}(p_{1}/d_{0})-1.7, 2.5]$

k _{1x} > 0.0	2,50 > 0,00 vérifié
$\alpha_{bx} = 0$, 61	Coefficient pour le calcul de $F_{b,Rd}$ $\alpha_{bx}=min[e_2/(3^*d_0), p_2/(3^*d_0)-0.25, f_{ub}/f_u, 1]$
α _{bx} > 0.0	0,61 > 0,00 vérifié
$F_{b,Rd1x} = 103$, 20 [kN] Résistance d'un boulon en pression diamétrale $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_{M2}$
Direction z	
$k_{1z} = 2,50$	Coefficient pour le calcul de $F_{b,Rd}$ $k_{1z}=min[2.8^*(e_2/d_0)-1.7, 1.4^*(p_2/d_0)-1.7, 2.5]$
k _{1z} > 0.0	2,50 > 0,00 vérifié
$\alpha_{bz} = 0,96$	Coefficient pour le calcul de $F_{b,Rd}$ $\alpha_{bz}=min[e_1/(3^*d_0), p_1/(3^*d_0)-0.25, f_{ub}/f_u, 1]$
α _{bz} > 0.0	0,96 > 0,00 vérifié
$F_{b,Rd1z} = 163$, 83 [kN] Résistance d'un boulon en pression diamétrale $F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_z/\gamma_{M2}$
Pression du b	ooulon sur l'âme du raidisseur
Direction x	
$k_{1x} = 2,50$	Coefficient pour le calcul de $F_{b,Rd}k_{1x}$ =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$	2,50 > 0,00 vérifié
$\alpha_{bx} = 0$, 76	Coefficient pour le calcul de $F_{b,Rd}$ $\alpha_{bx}=min[e_2/(3^*d_0), p_2/(3^*d_0)-0.25, f_{ub}/f_u, 1]$
α _{bx} > 0.0	0,76 > 0,00 vérifié
$F_{b,Rd2x} = 120$, 00 [kN] Résistance d'un boulon en pression diamétrale $F_{b,Rd2x}=k_{1x}^*\alpha_{bx}^*f_u^*d^*t_w/\gamma_{M2}$
Direction z	
$k_{1z} = 2,50$	Coefficient pour le calcul de $F_{b,Rd}$ $k_{1z}=min[2.8^*(e_2/d_0)-1.7, 1.4^*(p_2/d_0)-1.7, 2.5]$
k _{1z} > 0.0	2,50 > 0,00 vérifié
$\alpha_{bz} = 0$,96	Coefficient pour le calcul de $F_{b,Rd}$ $\alpha_{bz}=min[e_1/(3^*d_0), p_1/(3^*d_0)-0.25, f_{ub}/f_u, 1]$
α _{bz} > 0.0	0,96 > 0,00 vérifié
$F_{b,Rd2z} = 152,4$	0 [kN] Résistance d'un boulon en pression diamétrale $F_{b,Rd2z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$

6.7.1.2 FORCES AGISSANT SUR LES BOULONS DANS L'ASSEMBLAGE RAIDISSEUR - POUTRE

cisaillement des boulons

e = 281 [mm] Distance du centre de gravité du groupe de boulons du centre de l'âme de la poutre principale

M_0	48,1 [kN*	: Moment fláchissent ráel
=	4 m]	Woment neemssant reer

 $M_0 = V_{b,Ed} * e$

cisaillement des boulons

e =	281 [mm	Distance du centre de gr l'âme de la poutre princi	avité du groupe de boulor pale	ns du centre de	
F _{Vz}	19,0 7 [kN	Force résultante dans le tranchant	boulon due à l'influence d	le l'effort	$F_{Vz} \!\!=\!\! V_{b,Ed} \! / \! n$
F _{Mx}	50,1 5 [kN	Effort composant dans le	e boulon dû à l'influence o	lu moment	$F_{Mx} = M_0 * z_i / \sum z_i^2$
F _{x,Ed}	50,1 5 [kN] Effort de calcul total dat	ns le boulon sur la directio	on x	$F_{x,Ed} = F_{Nx} + F_{Mx}$
$F_{z,Ed}$	69,2 2 [kN] Effort de calcul total dat	ns le boulon sur la directio	on z	$F_{z,Ed} = F_{Vz} + F_{Mz}$
F _{Ed}	85,4 7 [kN] Effort tranchant résultan	t dans le boulon		$\begin{split} F_{Ed} &= \Box (\left. F_{x,Ed} \right.^2 + \\ \left. F_{z,Ed} \right.^2) \end{split}$
F _{Rdx}	103, 20 [kN	Résistance résultante de	calcul du boulon sur la di	rection x	$\begin{array}{c} F_{Rdx} = min(F_{bRd1x}, \\ F_{bRd2x}) \end{array}$
F _{Rdz}	152, 40 [kN] Résistance résultante de	calcul du boulon sur la di	rection z	$\begin{array}{c} F_{Rdz} = min(F_{bRd1z}, \\ F_{bRd2z}) \end{array}$
F _{x,Ed}	$\leq F_{Rdx}$		50,15 < 103,20	vérifié	(0,49)
F _{z,Ed}	$\leq F_{\text{Rdz}}$		69,22 < 152,40	vérifié	(0,45)
$F_{Ed} \leq$	F _{v,Rd}		85,47 < 120,64	vérifié	(0,71)

6.7.2 VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT TRANSVERSAL)

6.7.2.1 RAIDISSEUR

- $A_{nt} = 12,40 \frac{[cm^2]}{l}$ Aire nette de la zone de la section en traction
- $A_{nv} = 27,24 \frac{[cm^2]}{l}$ Aire de la zone de la section en traction

V _{effRd} =	^{803,8} [k	N] Résistance de calcul de la section affaiblie p trous	oar les	$V_{effRd}=0.5^{f}f_{u}^{*}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{*}f_{y}^{*}A_{nv}/\gamma_{M0}$
V _{b,Ed} :	≤ V _{effRd}	171,63 < 803,83	vérifié	(0,21)

6.7.2.2 **POUTRE**

 $A_{nt} = 12,47 \frac{[cm^{2}]}{]}$ Aire nette de la zone de la section en traction $A_{nv} = 21,03 \frac{[cm^{2}]}{]}$ Aire de la zone de la section en traction

6.7.2.2 **POUTRE**

 $A_{nt} = 12,47 \frac{[cm^2]}{]}$ Aire nette de la zone de la section en traction

V_{effRd}	677,8 7 ^[kN] R	ésistance s trous	de calcul de la	section affaiblie	par	$\begin{array}{c} V_{effRd}\!\!=\!\!0.5^*\!f_u^*\!A_{nt}\!/\!\gamma_{M2} + \\ (1\!/\!\sqrt{3})^*\!f_y^*\!A_{nv}\!/\square_{M0} \end{array}$
$ V_{b,Ed} $	$\leq V_{effRd}$		17	1,63 < 677,87	vérifié	(0,25)
6.7.3 $A_t =$	VERIFIC 23,52	ATION [cm ²]	DU RAIDISS Aire de la zone	SEUR AFFAII tendue de la sec	BLI PAR LES	TROUS
$A_{t,net} - 0.0*(A)$	- 10,24	[CIII]		0.70 < 0.90		
0.9 · (F	$A_{t,net}/A_t \ge (I_y)^2$	$\gamma M_2 / (I_u \cdot \gamma$	MO)	0,70 < 0,90		
M _{c,Rdne}	441,80 [k]	N*m] Re	ésistance de calc	ul de la section	à la flexion	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ \mathbf{M}_0 \leq$	$M_{c,Rdnet}$		48	,14 < 156,86	vérifié	(0,31)
$A_v =$	$47,04 [\mathrm{cm}^2]$] Aire de	la section effica	ce en cisailleme	ent	$\mathbf{A}_v = \mathbf{h}_s \ast \mathbf{t}_s$
A _{v,net} =	$= 41,76 [cm^2]$] Aire de	la section effica	ce nette en cisai	llement	$A_{vnet} = A_v - n_v * d_0$
V _{pl,Rd} =	=964,13 [kN]	Résista	nce plastique de	calcul pour le c	isaillement	$V_{pl,Rd}\!\!=\!\!(A_{v,net}*\!f_y)\!/\!(\;3*\!\gamma_{M0})$
$V_{b,Ed} \leq$	$\leq V_{pl,Rd}$		171,6	3 < 964,13	vérifié	(0,18)
6.7.4 A _t =	VERIFIC AFFAIBL 15,05	ATION LIE PAF [cm ²]	DE LA RESI LES TROUS Aire de la zone	STANCE DE S tendue de la sec	LA SECTION	DE LA POUTRE
6.7.4 $A_t = A_{t,net} = A_{t,net}$	VERIFIC AFFAIBL 15,05 = 11,27	ATION JE PAF [cm ²] [cm ²]	DE LA RESI LES TROUS Aire de la zone Aire nette de la	STANCE DE 5 tendue de la sec zone de la sect	LA SECTION ctionu brutte ion en traction	DE LA POUTRE
6.7.4 $A_t =$ $A_{t,net} =$ 0.9*(A	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y^*)$	ATION JE PAR $[cm^2]$ $[cm^2]$	DE LA RESI LES TROUS Aire de la zone Aire nette de la _{(M0})	STANCE DE tendue de la sec zone de la sect 0,67 < 0,90	LA SECTION ctionu brutte ion en traction	DE LA POUTRE
6.7.4 $A_t =$ $A_{t,net} =$ $0.9*(A_{net} =$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y^*)$ 172,13 [6]	ATION JE PAF [cm ²] [cm ²] [cm ²] (fu [*] γ cm ³] Fa	DE LA RESI LES TROUS Aire de la zone Aire nette de la (MO) ccteur élastique o	STANCE DE tendue de la sec zone de la sect: 0,67 < 0,90 de la section	LA SECTION ctionu brutte ion en traction	DE LA POUTRE
6.7.4 $A_t =$ $A_{t,net} =$ $0.9*(A_{net} =$ $M_{c,Rdm}$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y * 172,13 [a_{t,net} = 61,11 [k]]$	ATION JE PAF [cm ²] [cm ²] ^{(γ} M ₂)/(f _u *γ cm ³] Fa N*m] Re	DE LA RESI A LES TROUS Aire de la zone Aire nette de la ^(MO) cteur élastique d ésistance de calc	STANCE DE tendue de la sec zone de la sect 0,67 < 0,90 de la section ul de la section	LA SECTION ctionu brutte ion en traction à la flexion	DE LA POUTRE $M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
6.7.4 $A_t =$ $A_{t,net} =$ 0.9*(A $W_{net} =$ $M_{c,Rdno}$ $ M_0 \le$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t \ge (f_y*$ 172,13 [4 $e_t = 61,11$ [k] $M_{c,Rdnet}$	ATION JE PAR $[cm^2]$ $[cm^2]$ $(f_u^{*\gamma})/(f_u^{*\gamma})$ cm^3 Fa N*m] Re	DE LA RESI A LES TROUS Aire de la zone Aire nette de la (MO) cteur élastique d ésistance de calc	STANCE DE tendue de la sect zone de la sect 0,67 < 0,90 de la section ul de la section 14 < 61,11	LA SECTION ctionu brutte ion en traction à la flexion vérifié	DE LA POUTRE $M_{c,Rdnet} = W_{net}*f_{yp}/\gamma_{M0}$ $(0,79)$
6.7.4 $A_t =$ $A_{t,net} =$ 0.9*(A $W_{net} =$ $M_{c,Rdnet}$ $ M_0 \le$ $A_v =$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y * 172,13 \ [c] het = 61,11 \ [k]M_{c,Rdnet}30,10 \ [cm^2]$	ATION JE PAF $[cm^2]$ $[cm^2]$ $(r_{\gamma M2})/(f_u * \gamma$ cm ³] Fa N*m] Re	DE LA RESI Aire de la zone Aire nette de la (MO) (cteur élastique d ésistance de calc 48 la section effica	STANCE DE tendue de la sec zone de la sect 0,67 < 0,90 de la section ul de la section 14 < 61,11 ce en cisailleme	LA SECTION ctionu brutte ion en traction à la flexion vérifié	DE LA POUTRE $M_{c,Rdnet} = W_{net}*f_{yp}/\gamma_{M0}$ $(0,79)$
6.7.4 $A_t =$ $A_{t,net} =$ 0.9*(A $W_{net} =$ $M_{c,Rdno}$ $ M_0 \le$ $A_v =$ $A_{v,net} =$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y * 172,13 [4]$ $e_t = 61,11 [k]$ $M_{c,Rdnet}$ $30,10 [cm^2]$ $= 24,42 [cm^2]$	ATION JE PAF [cm ²] [cm ²] (m ²)/(fu [*] γ cm ³] Fa N*m] Ra] Aire de] Aire de	DE LA RESI Aire de la zone Aire nette de la (MO) (cteur élastique d ésistance de calco [48] la section effica	STANCE DE tendue de la sec zone de la sect 0,67 < 0,90 de la section ul de la section 14 < 61,11 ce en cisailleme ce nette en cisai	LA SECTION ctionu brutte ion en traction à la flexion vérifié ent llement	DE LA POUTRE $M_{c,Rdnet} = W_{net}*f_{yp}/\gamma_{M0}$ $(0,79)$ $A_{vnet}=A_v-n_v*d_0$
6.7.4 $A_t =$ $A_{t,net} =$ 0.9*(A $W_{net} =$ $M_{c,Rdne}$ $ M_0 \le$ $A_v =$ $A_{v,net} =$ $V_{pl,Rd} =$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y*$ 172,13 [4 $m_{c,Rdnet}$ 30,10 [cm ²] 24,42 [cm ²] = 616,93 [kN]	ATION JE PAF $[cm^2]$ $[cm^2]$ $[m^2)/(f_u*\gamma$ $cm^3]$ Fa N*m] Re] Aire de] Aire de Résistan	DE LA RESI Aire de la zone Aire nette de la (MO) (Cteur élastique de ésistance de calco [48] la section effica la section effica	STANCE DE tendue de la sec zone de la sect 0,67 < 0,90 de la section ul de la section ,14 < 61,11 ce en cisailleme ce nette en cisai calcul pour le ci	LA SECTION ctionu brutte ion en traction à la flexion vérifié ent illement isaillement	$\mathbf{DE LA POUTRE}$ $\mathbf{M}_{c,Rdnet} = \mathbf{W}_{net} * \mathbf{f}_{yp} / \gamma_{M0}$ $(0,79)$ $\mathbf{A}_{vnet} = \mathbf{A}_{v} - \mathbf{n}_{v} * \mathbf{d}_{0}$ $\mathbf{V}_{pl,Rd} = (\mathbf{A}_{v,net} * \mathbf{f}_{y}) / (\sqrt{3} * \gamma_{M0})$
6.7.4 $A_t =$ $A_{t,net} =$ 0.9*(A $W_{net} =$ $M_{c,Rdne}$ $ M_0 \le$ $A_v =$ $A_{v,net} =$ $V_{pl,Rd} =$	VERIFIC AFFAIBL 15,05 11,27 $A_{t,net}/A_t) \ge (f_y*$ 172,13 [4 $e_t = 61,11$ [k] $M_{c,Rdnet}$ 30,10 [cm ²] = 24,42 [cm ²] = 616,93 [kN] $\leq V_{pl,Rd}$	ATION JE PAF $[cm^2]$ $[cm^2]$ $\gamma_{M2})/(f_u*\gamma$ $cm^3] Fa$ N*m] Re] Aire de] Aire de Aire de	DE LA RESI Aire de la zone Aire nette de la (MO) (Cteur élastique de ésistance de calco [48] la section effica he plastique de [171,6]	STANCE DE tendue de la sect zone de la sect 0,67 < 0,90 de la section ul de la section 14 < 61,11 ce en cisailleme ce nette en cisai calcul pour le ci 3 < 616,93	LA SECTION ctionu brutte ion en traction à la flexion vérifié ent illement isaillement vérifié	$M_{c,Rdnet} = W_{net}*f_{yp}/\gamma_{M0}$ $(0,79)$ $A_{vnet}=A_v-n_v*d_0$ $V_{pl,Rd}=(A_{v,net}*f_y)/(\sqrt{3}*\gamma_{M0})$ $(0,28)$

6.8 REMARQUES

Hauteur du grugeage du raidisseur inférieur trop faible 250 [mm] < 263 [mm]

Assemblage satisfaisant vis à vis de la	Datio	0 70	
Norme	Katio	0,79	

6.9 Assemblage poutre treille :

Figure 6.4 Assemblage poutre treille

6.10 GENERAL

Assemblage N°: 4

Nom de l'assemblage : Gousset - noeud membrure de treillis

Noeud de la structure: 7

Barres de la structure: 1041, 1047, 1030,

6.11 GEOMETRIE

6.11.1 BARRES

		Barre 1	Barre 2	Barre 5		
Barre N°:		1041	1047	1030		
Profilé:		2 CAE 180x18	2 CAE 180x18	2 CAE 180x18		
	h	180	180	180		mm
	b _f	180	180	180		mm
	t _w	18	18	18		mm
	t _f	18	18	18		mm
	r	18	18	18		mm
	А	123,82	123,82	123,82		cm2

		Barre 1	Barre 2	Barre 5		
Matériau:		ACIER E36	ACIER E36	ACIER E36		
	$\mathbf{f}_{\mathbf{y}}$	355,00	355,00	355,00		MPa
	\mathbf{f}_{u}	495,00	495,00	495,00		MPa
Angle		-45,0	45,0	90,0		Deg
Longueur	1	1,41	1,00	1,41		m

6.11.2 BOULONS Barre 1

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe	=HR 10.9		Classe du boulon
d =	24	[mm]	Diamètre du boulon
$d_0 =$	26	[mm]	Diamètre du trou de boulon
$A_s =$	3,53	[cm ²]	Aire de la section efficace du boulon
$A_v =$	4,52	[cm ²]	Aire de la section du boulon
$f_{yb} =$	900,00	[MPa]	Limite de plasticité
$f_{ub} =$	1200,00	[MPa]	Résistance du boulon à la traction
n =	3		Nombre de colonnes des boulons
Espace	ment des b	oulons	70;70 [mm]
$e_1 =$	45 [mm]	Distanc	ce du centre de gravité du premier boulon de l'extrémité de la barre
$e_2 =$	90 [mm]	Distanc	e de l'axe des boulons du bord de la barre

 $e_c = 70$ [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres

Barre 2

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	HR 10.9		Classe du boulon
d =	24	[mm]	Diamètre du boulon
$\mathbf{d}_0 =$	26	[mm]	Diamètre du trou de boulon
$A_s =$	3,53	[cm ²]	Aire de la section efficace du boulon
$A_v =$	4,52	[cm ²]	Aire de la section du boulon
$f_{yb} =$	900,00	[MPa]	Limite de plasticité

Classe =	HR 10.9		Classe du boulon
$f_{ub} =$	1200,00	[MPa]	Résistance du boulon à la traction
n =	3		Nombre de colonnes des boulons

Espacement des boulons 70;70 [mm]

 $e_1 = 45$ [mm] Distance du centre de gravité du premier boulon de l'extrémité de la barre

 $e_2 = 90$ [mm] Distance de l'axe des boulons du bord de la barre

 $e_c = 70$ [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres

Barre 5

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe :	=HR 10.9		Classe du boulon
d =	24	[mm]	Diamètre du boulon
$d_0 =$	26	[mm]	Diamètre du trou de boulon
$A_s =$	3,53	[cm ²]	Aire de la section efficace du boulon
$A_v =$	4,52	[cm ²]	Aire de la section du boulon
$f_{yb} =$	900,00	[MPa]	Limite de plasticité
$f_{ub} =$	1200,00	[MPa]	Résistance du boulon à la traction
n =	3		Nombre de colonnes des boulons
Espace	ment des b	oulons	70;70 [mm]
$e_1 =$	45 [mm]	Distar	ce du centre de gravité du premier boulon de l'extrémité de la barre

 $e_2 = 90$ [mm] Distance de l'axe des boulons du bord de la barre

. .

e_c = 250 [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres

. .

6.11.3 GOUSSET

$I_p =$	1000	[mm]	Longueur de la platine
$h_p =$	600	[mm]	Hauteur de la platine
$t_p =$	10	[mm]	Epaisseur de la platine

Paramètres

$h_1 =$	0	[mm]	Grugeage
$\mathbf{v}_1 =$	0	[mm]	Grugeage
$h_2 =$	0	[mm]	Grugeage
$\mathbf{v}_2 =$	0	[mm]	Grugeage

$h_1 =$		0	[mm]	Grugeage	
h ₃ =		0	[mm]	Grugeage	
$v_3 =$		0	[mm]	Grugeage	
$h_4 =$		0	[mm]	Grugeage	
$\mathbf{v}_4 =$		0	[mm]	Grugeage	
Cent	re de grav	vité	de la tôl	e par rapport au centre de gravité des barres	(0;200)
e _v =	10 [mm 0]	Dis	stance ve	erticale de l'extrémité du gousset du point d'intersection des axes	des barres

e _H	50 [mm	Distance horizontale de l'extrémité du gousset du point d'intersection des axes des
=	0]	barres

 $e_0 = 0 \begin{bmatrix} mm \\ l \end{bmatrix}$ Distance axe membrure hor.

- Matériau: ACIER E24
- $f_y = 235,00$ [MPa] Résistance

6.11.4 COEFFICIENTS DE MATERIAU

$\gamma_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]

6.12 EFFORTS

Cas	31. G+O-1 5EX ((1+2+3)	*1 00+5*-1 50
Cub.	51. O Q 1.5LA	(1	1.0015 1.50

$N_{b1,Ed} = 280,76$	[kN]	Effort axial	
$N_{b2,Ed} = 279,90$	[kN]	Effort axial	
$N_{b5,Ed} = -110,49$	[kN]	Effort axial	

6.13 RESULTATS

6.13.1 BARRE 1

6.13.1.1 RESISTANCE DES BOULONS

$F_{v,Rd} = 521,15$ [k]	N] Résistance de la tige d'un boulon au cisaillement	$F_{v,Rd}\!\!=\!0.6^*\!f_{ub}^*\!A_v^*\!m\!/_{\gamma_{M2}}$
Pression du boul	on sur la barre	
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$	2,50 > 0,00 vérifié	

α_{bx}	0,5 Coeffic 8 boulons	eient dépendant de l'espacement des s	$\Box_{bx} = min[e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/$	$(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, $ 1]
$\alpha_{bx} >$	0.0	0,58 > 0,00	vérifié	
F _{b,Rd1} ,	493,4 [kN 8]	Résistance de calcul à l'état limite de p paroi du trou	lastification de la	$F_{b,Rd1x}\!\!=\!\!k_{1x}\!\ast\!\alpha_{bx}\!\ast\!f_{u}\!\ast\!d\!\ast\!t_{i} \\ /\!\gamma_{M2}$
Direc	tion z			
$k_{1z} =$	2,07	Coefficient pour le calcul de $F_{b,Rd}$	k1z=min[2.8*(e1/	d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]
$k_{1z} > 0$	0.0	2,07 > 0,00	vérifié	
$\alpha_{bz} =$	1,00	Coefficient pour le calcul de F _{b,Rc}	I	$\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} >$	0.0	1,00 > 0,00	vérifié	
F _{b,Rd1z}	e = 707,97 [k	N]Résistance d'un boulon en pression o	liamétrale	$F_{b,Rd1z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$
Press	ion du boul	lon sur la platine		
Direc	tion x			
$k_{1x} =$	2,50	Coefficient pour le calcul de F _{b,Rd}		$k_1 = \min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} >$	0.0	2,50 > 0,00	vérifié	
α_{bx}	0,6 Coeffic 5 boulons	ient dépendant de l'espacement des s	$\Box_{bx} = min[e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/e_1/$	$(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, $ 1]
$\alpha_{bx} >$	0.0	0,65 > 0,00	vérifié	
$F_{b,Rd2}$	113,4 [kN 3]	VRésistance de calcul à l'état limite de p du trou	lastification de la	paroi $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_{M2}$
Direc	tion z			
$k_{1z} =$	2,07	Coefficient pour le calcul de $F_{b,Rd}$	k1z=min[2.8*(e1/	d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]
$k_{1z} > 0$	0.0	2,07 > 0,00	vérifié	
$\alpha_{bz} =$	1,00	Coefficient pour le calcul de F _{b,Rc}	l	$\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0$	0.0	1,00 > 0,00	vérifié	
F _{b,Rd2z}	=145,01[k	N] Résistance d'un boulon en pression o	liamétrale	$F_{b,Rd2z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$
6.13.1	1.2 VERII SUR L	FICATION DE L'ASSEMBLAGE LES BOULONS	POUR LES EF	FFORTS AGISSANT
cisaill	ement des b	ioulons	l'ava des baulans	
6 -	a lini			

M ₀ =	10 , 94 [kN*r]	ⁿ Moment fléchissant réel	$M_0=N_{b1,Ed}$ *e
F _{NSd} =	93,59 [kN]	Force résultante dans le boulon due à l'influence de l'effort axial	$F_{NSd} = N_{b1,Ed}/n$

e =	39	[mm]	Excentricité de l'effort axial par rapport à l'axe des boulons					
F _{MSd} =	78,12	[kN]	Effort composant dans le boulon dû à l'influence du moment		$F_{\text{MSd}} = M_0 * x_{\text{max}} / \Sigma x_i^2$			
$F_{x,Ed} =$	93,59	[kN]	Effort de calcul total dans le boulon sur la direction x		$F_{x,Ed} = F_{NSd}$			
$F_{z,Ed} =$	78 , 12	[kN]	Effort de calcul total dans le boulon sur la direction z		$F_{z,Ed} = F_{MSd}$			
$F_{Ed} =$	121,9 1	[kN]	Effort tranchant résultant dans le boulon	Effort tranchant résultant dans le boulon F _{Ed}				
F _{Rdx} =	113,4 3	[kN]	Résistance résultante de calcul du boulon sur la direction x		F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})			
F _{Rdz} =	145,0 1	[kN]	Résistance résultante de calcul du boulon sur la direction z		F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})			
F _{x,Ed} ≤	F _{Rdx}		93,59 < 113,43	vérifi é	(0,83)			
F _{z,Ed} ≤	F _{Rdz}		78,12 < 145,01	vérifi é	(0,54)			
F _{Ed} ≤ F	vRd		121,91 < 521,15	vérifi é	(0,23)			

6.13.1.3 VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β ₃ =	0,52	Coefficient de ré	duction			[Tableau 3.8]
A =	61,91 [cm²]	Aire de la sectio	n transversa	le de la cornière		
A _{net} =	57 , 23 [cm²]	Aire de la sectio	n nette		,	$A_{net} = A - d_0^* t_{f1}$
$N_{u,Rd} =$	¹¹⁶⁸ , ⁰ ₂ [kN]	Résistance de c	alcul de la s	ection nette	$N_{u,Rd} = ($	β ₃ *A _{net} *f _{u1})/γ _{M2}
N _{pl,Rd} =	¹⁹⁷⁸ , ⁰ 2 [kN]	Résistance de c brute	alcul plastiqı	ue de la section	$N_{pl,Rd} =$	(0.9*A*f _{y1})/γ _{M2}
0.5*N _b ⁄	$ _{1,Ed} \leq N_{u,Rd}$		140,38	< 1168,02	vérifié	(0,12)
0.5*N _b	$ _{1,Ed} \leq N_{pl,Rd}$		140,38	< 1978,02	vérifié	(0,07)

6.13.1.4 VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	 13, 8 [cm Aire nette de la zone de la section en 6 ²] traction 	
A _{nv} =	$ \begin{array}{c} 21, 6 \begin{bmatrix} cm \\ 0 & 2 \end{bmatrix} \end{array} Aire de la zone de la section en traction $	
V _{effRd} =	⁷¹⁷ , [kN] Résistance de calcul de la section affaiblie 14 [kN] par les trous	V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/√3)*f _y *A _{nv} /γ _{M0}

A _{nt} =	13,8 [cm Aire nette de la zone de la section en				
	6 ²] traction				

$ 0.5^*N_{b1,Ed} \le V_{effRd}$ 140,38 < 717,14 vérifié	(0,20)
--	--------

6.13.2 BARRE 2

6.13.2.1 RESISTANCE DES BOULONS

 $F_{v,Rd} = 521, 15$ [kN] Résistance de la tige d'un boulon au cisaillement $F_{v,Rd} = 0.6^* f_{ub}^* A_v^* m / \gamma_{M2}$

Pression du boulon sur la barre

Direction x

k _{1x} =		2,50	Coefficient	pour le calcul	$de \; F_{b,Rd}$	k _{1x} =min	[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} >	0.0		2,50 >	0,00	véri	fié	
α _{bx} =	Ο,	5 Coefficien 8 boulons	t dépendant de	l'espacement	des	α_{bx} =min[e ₁ /(3	3*d ₀), p ₁ /(3*d ₀)-0.25 f _{ub} /f _u , 1
α _{bx} >	0.0)		0,58 > 0,0	0	véri ié	f
F _{b,Rd1}	Ix 4	93, [k Rés 48 N] pare	sistance de calc pi du trou	cul à l'état limit	e de plasti	fication de la	F _{b,Rd1x} =k _{1x} *α _{bx} *fu*c *t _i /γ _{M2}
Direc	ctior	١Ζ					
k _{1z} =	2,0	7 Coeffic	ient pour le cal	cul de F _{b,Rd}	k _{1z} =min[2	.8*(e ₁ /d ₀)-1.7,	1.4*(p ₁ /d ₀)-1.7, 2.5
k _{1z} >	0.0		2,07 > 0	, 00 vé	rifié		
$\alpha_{bz} =$	1	,00	Coefficient pou	ir le calcul de	$F_{b,Rd}$	α _{bz} =m	in[e₂/(3*d₀), fub/fu, 1]
α_{bz} >	0.0)	1,	00 > 0,00	vérifié		
$F_{b,Rd1z} = 707, 97$ [kN] Résistance d'un boulon en pression diamétrale $F_{b,Rd1z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$							
Pression du boulon sur la platine							
Direc	ctior	n x					
k _{1x} =		2,50	Coefficient	pour le calcul	de $F_{b,Rd}$	k₁=min	[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} >	0.0		2,50 >	0,00	véri	fié	
α _{bx} =	0,	6 Coefficien 5 boulons	t dépendant de	l'espacement	des	$\alpha_{bx}=min[e_1/(3)]$	3*d ₀), p ₁ /(3*d ₀)-0.25 f _{ub} /f _u , 1
α _{bx} >	0.0	I		0,65 > 0,0	00	vér ié	if

Direction z

$k_{1z} = 2,07$	Coefficient pour le calcul de $F_{b,Rd}$	k _{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4	I*(p₁/d₀)-1.7, 2.5]
k _{1z} > 0.0	2,07 > 0,00 vé	fié	
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de	b,Rd α _{bz} =min[e	e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{bz} > 0.0	1,00 > 0,00	vérifié	

 $F_{b,Rd2z} = 145, 01 \text{ [kN]}$ Résistance d'un boulon en pression diamétrale $F_{b,Rd2z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$

6.13.2.2 VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

e =	39	[mm]	Excentricité de l'effort axial par rapport à l'axe des boulons	
M0 =	10,90	[kN* m]	Moment fléchissant réel	$M_0 {=} N_{b2, Ed} {}^*\!e$
F _{NSd} =	93,30	[kN]	Force résultante dans le boulon due à l'influence de l'effort axial	$F_{\text{NSd}} = N_{\text{b2,Ed}}/n$
F _{MSd} =	77,88	[kN]	Effort composant dans le boulon dû à l'influence du moment	$F_{\text{MSd}} = M_0 * x_{\text{max}} / \Sigma x_i^2$
F _{x,Ed} =	93,30	[kN]	Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed}=F_{NSd}$
F _{z,Ed}	77 , 88	[kN]	Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{MSd}$
$F_{Ed} =$	121,5 4	[kN]	Effort tranchant résultant dans le boulon	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	113,4 3	[kN]	Résistance résultante de calcul du boulon sur la direction x	F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	145,0 1	[kN]	Résistance résultante de calcul du boulon sur la direction z	F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})
$ F_{x,Ed} $	≤ F _{Rdx}		93,30 < 113,43 vérifié	(0,82)
$ F_{z,Ed} $	≤ F _{Rdz}		77,88 < 145,01 vérifié	(0,54)
F _{Ed} ≤	F_{vRd}		121,54 < 521,15 vérifié	(0,23)

6.13.2.3 VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β3 =	0,52	Coefficient de réduction	[Tableau 3.8]
A =	61,91 [cm ²]	Aire de la section transversale de la cornière	
A _{net} =	57,23 [cm ²]	Aire de la section nette	$A_{net} = A - d_0^* t_{f2}$
6.13.2.3 VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β ₃ =	0,52		Coefficient de réduction	[Tableau 3.8]
$N_{u,Rd} = 1$	1168,02	[kN]	Résistance de calcul de la section nette	$N_{u,Rd} = (\beta_3 * A_{net} * f_{u2}) / \gamma_{M2}$
$N_{pl,Rd} = 1$	1978,02	[kN]	Résistance de calcul plastique de la section brute	$N_{pl,Rd} = (0.9^*A^*f_{y2})/\gamma_{M2}$
0.5*N _{b2}	$ \leq N_{u,Ro}$	ł	139,95 < 1168,02 vérifié	(0,12)
0.5*Nb2	$_{Ed} \leq N_{pl,R}$	d	139,95 < 1978,02 vérifié	(0,07)

6.13.2.4 VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	13,86 ^{[cm} _{2]} Aire nette de la zone de la section en traction	
A _{nv} =	21, 60 $\begin{bmatrix} \text{cm} \\ 2 \end{bmatrix}$ Aire de la zone de la section en traction	
V_{effRd}	717, [kN Résistance de calcul de la section affaiblie	V _{effRd} =0

V _{effRd} =	 717, [kN Résistance de cal 14] par les trous 	lcul de la section affaiblie	V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/√3)*f _y *A _{nv} /γ _{M0}
0.5*N	$ _{b2,Ed} \leq V_{effRd}$	139,95 < 717,14 vérifié	(0,20)

6.13.3 BARRE 5

6.13.3.1 RESISTANCE DES BOULONS

 $F_{v,Rd} = 521, 15$ [kN] Résistance de la tige d'un boulon au cisaillement $F_{v,Rd} = 0.6*f_{ub}*A_v*m/\gamma_{M2}$

Pression du boulon sur la barre

Direction x

k _{1x} =	2,50	Coefficient pour le calcul de F _{b,Rd}	ŀ	x1x=min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0).0	2,50 > 0,00	vérifié	
α _{bx}	0,5 Coeffic 8 boulons	ient dépendant de l'espacement des s	α _{bx} =min[e ₁ /	(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > (0.0	0,58 > 0,00	vérifié	
F _{b,Rd1x} = Direct	493,4[kN 8]	Résistance de calcul à l'état limite de p du trou	plastification de la	paroi F _{b,Rd1x} =k _{1x} *α _{bx} *f _u *d*t _i / γ _{M2}
k _{1z} =	2,07	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₁ /	do)-1.7, 1.4*(p1/d0)-1.7, 2.5]
k _{1z} > ().0	2,07 > 0,00	vérifié	
α _{bz} =	1,00	Coefficient pour le calcul de F _{b,Rd}		α_{bz} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{bz} > (0.0	1,00 > 0,00	vérifié	
Fb,Rd1z	=707,97[k	N] Résistance d'un boulon en pression	diamétrale	F _{b,Rd1z} =k _{1z} *α _{bz} *f _u *d*ti/γ _{M2}

Pression du boulon sur la platine

Direction x

k _{1x} = 2,50	Coefficient pour le calcul de F _{b,Rd}	k1=min[2.8*(e2/d0)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00	vérifié
α _{bx} 0, 6 Coeffi = 5 boulor	cient dépendant de l'espacement des ns	α _{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	0,65 > 0,00	vérifié
F _{b,Rd2x} 113, 4 [k = 3] Direction z	N Résistance de calcul à l'état limite de p du trou	plastification de la paroi $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_{M2}$
$k_{1z} = 2,07$	Coefficient pour le calcul de $F_{b,Rd}k_{1z}$	=min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0	2,07 > 0,00	vérifié
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,R}	$\alpha_{bz} = \min[e_2/(3^*d_0), f_{ub}/f_u, 1]$
$\alpha_{\rm bz} > 0.0$	1,00 > 0,00	vérifié

 $F_{b,Rd2z} = 145, 01 \text{ [kN]}$ Résistance d'un boulon en pression diamétrale $F_{b,Rd2z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$

6.13.3.2 VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

e =	3	9 [mm]	Excentricité de l'effort axial par rapport à l'axe des bou	lons	
M ₀ =	-4,3	ິ [kN* m]	Moment fléchissant réel		$M_0 = N_{b5,Ed} * e$
F _{NSd} =	36,8	- 3 [kN]	Force résultante dans le boulon due à l'influence de l'e axial	ffort	$F_{\text{NSd}} = N_{\text{b5,Ed}}/n$
F _{MSd} =	30,7	_ 4 [kN]	Effort composant dans le boulon dû à l'influence du mo	oment	$F_{\text{MSd}} = M_0 * x_{\text{max}} / \Sigma x_i^2$
F _{x,Ed} =	36,8	- 3 [kN]	Effort de calcul total dans le boulon sur la direction x		$F_{x,Ed} = F_{NSd}$
F _{z,Ed} =	30,7	_ 4 [kN]	Effort de calcul total dans le boulon sur la direction z		$F_{z,Ed}=F_{MSd}$
$F_{Ed} =$	47 , 9	7 [kN]	Effort tranchant résultant dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	113,	4 3 [kN]	Résistance résultante de calcul du boulon sur la directi	on x	F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz}	145,	⁾ [kN]	Résistance résultante de calcul du boulon sur la directi	on z	F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})
F _{x,Ed}	≤ F _{Rdx}		-36,83 < 113,43	vérifi é	(0,32)

|--|

$ F_{z,Ed} \leq F$	Rdz	-30,74 < 1	45,01 v é	érifi (0,21)
F _{Ed} ≤ F _{vR}	td	47,97 < 521,	15 v é	érifi (0,09)
6.13.3.3	VERIFICA TROUS	ATION DE LA SECTION DE	LA POUTRE AF	FAIBLIE PAR LES
β3 =	0,52	Coefficient de réduction		[Tableau 3.8]
A =	61,91 [cm ²	Aire de la section transversale de	la cornière	
A _{net} =	57,23 [cm²	Aire de la section nette		$A_{net} = A - d_0^* t_{f5}$
$N_{u,Rd} = 1$	168,02 [kN]	Résistance de calcul de la section	nette	$N_{u,Rd} = (\beta_3 * A_{net} * f_{u5}) / \gamma_{M2}$
$N_{\text{pl,Rd}} = 1$	978,02 [kN]	Résistance de calcul plastique de	la section brute	$N_{pl,Rd} = (0.9^*A^*f_{y5})/\gamma_{M2}$
0.5*N _{b5,B}	$ \leq N_{u,Rd}$	-55,24 < 1	168,02 vérifié	(0,05)
0.5*N _{b5,6}	$ \leq N_{pl,Rd}$	-55,24 < 1	978,02 vérifié	(0,03)
6.13.3.4	VERIFIC	ATION DE LA BARRE POUF	R LE CISAILLEM	IENT DE BLOC
$A_{nt} = 1$	3 , 86 [cm²Air]	e nette de la zone de la section en	traction	
A _{nv} = 2	1,60 <mark>[cm²</mark> Air]	e de la zone de la section en tractio	on	
V _{effRd} 7	¹⁷ , ¹ 4 [kN] Ré les	sistance de calcul de la section affa trous	aiblie par	V _{effRd} =0.5*fu*Ant/γ _{M2} + (1/√3)*fy*Anv/γ _{M0}
0.5*N _{b5,f}	$ Ed \leq V_{effRd}$	-55 , 24 < 717,	14 vérifié	(0,08)

Assemblagesatisfaisant vis à vis de la Norme Ratio 0,83

Chapitre 7 Etude des fondations

7.1 Introduction :

Les fondations d'une construction sont constituées par les parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure elles constituent donc la partie essentielle de l'ouvrage puisque de leur bonne conception et réalisation découle la bonne tenue de l'ensemble.

Les éléments de fondation transmettent les charges au sol soit directement (cas des semelles reposant sur le sol ou cas des radiers) soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

7.2 Les types des fondations :

Fondation superficielle:

- Semelle isolée sous Poteau
- Semelle filante continue sous mur
- Semelle filante sous plusieurs poteaux
- Radiers généraux

Nu	Ns	f c28	σ _{sol}	L _{max}	Périmètre	Sradier
(kn)	(kn)	(MPa)	(Bars)	(m)	(m)	(m ²)
235034,01	169621,42	30	1.8	6	168	1440

Surface minimale du radier :

$$S_r \ge \frac{N_s}{\sigma_{sol}} \times 10 = \frac{16962.142}{1.8} * 10^{\wedge} - 1 = 942,34 m^2$$
$$S_r = 1440 m^2 > 942,34 m^2$$

Le radier sera muni de nervures reliant les poteaux et sera calculé comme des panneaux de dalles pleines sur quatre appuis continus (nervures) chargés par une pression uniforme qui représente la pression maximale du sol résultante de l'action du poids du bâtiment

L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.

et les voiles.

Figure 7.1 : radier générale

7.3 Pré-dimensionnement de radier :

• Condition de l'épaisseur minimale :

La hauteur du radier doit avoir au minimum 25 cm ($h_{min} \ge 25 \ cm$)

• Condition forfaitaire de coffrage radier :

$$h = \frac{Lmax}{20} = \frac{6}{20} = 0,3 m$$
 Avec $L_{max} = la plus grande portée (6 m).$
 $\Rightarrow h = 35 cm$

• calcul h radier par condition de vérification au cisaillement :

$$h \ge max \left\{ \frac{T^{Max}}{\overline{\tau_{u1}} \times b} ; \frac{T^{Max}}{\overline{\tau_{u2}} \times b} \right\} ; avec \ b = 1 \ ml$$
• $T^{Max} = \frac{q \times l}{2} ; \ q = \frac{N_u \times b}{S_r}$

$$q = \frac{16962.142}{1440} = 11,779 \ ton/ml \qquad ; T^{Max} = \frac{117.79*6}{2} = 35.33 \ ton$$
• $\overline{\tau_{u1}} = \min\{0, 1f_{c28} ; 3 \ Mpa\} = 3 \ Mpa$

•
$$\overline{\tau_{u2}} = \min\left\{\frac{0.07 \times f_{c28}}{1.15} ; 3 Mpa\right\} = 1.83 Mpa$$

 $h \ge max\left\{\frac{35.33}{3} ; \frac{35.33}{1.83}\right\} = 19.30 cm$
 $h = 20 cm$
On prend $h = 40 cm$

7.4 Pré-dimensionnement nervure :

La nervure est rigide :

$$\left(\frac{\pi}{2} \times l_e\right) \ge (\text{entre axe poteaux}) \quad \text{càd} \quad \frac{\pi}{2} \times l_e \ge \text{longueur travée}$$

Avec :

-
$$l_e = \sqrt[4]{\frac{4 \times E \times I}{K \times B_{sf}}}$$

- $I = \frac{b_n \times h_n^3}{12}$; $b_n = 1m$
- $b_{sf} = 6m$
- $E = 11000 \times 30^{1/3} = 34179,55 Mpa$
- $K = 40 MN/m^3$

Alors la relation devient :

$$h_n \ge \sqrt[3]{\frac{48 \times K \times b_{Sf} \times l^4}{E \times b_n \times \pi^4}} = \sqrt[3]{\frac{48 \times 0.04 \times 6000 \times 6000^4}{34179,55 \times 1500 \times \pi^4}} = 1.6 \text{ m}$$

Hn= 1.8 m

7.5 Vérification au poinçonnement :

$$N_u \le \frac{0.045 \times \mu_c \times h \times f_{c28}}{\gamma_b}$$

Avec :

 μc : Périmètre du contour projeté sur le plan moyen du radier.

Nu : La charge revenant au poteau ou au voile le plus chargé à l'ELU (1524,49 tons).

h : Epaisseur totale du radier.

$$\mu_c = (2a + 2h) \times 2 = (2 \times 1,5 + 2 \times 1.5) \times 2 = 12 m$$

$$7177.12 \ kn \le \frac{0.045 \times 12000 \times 1500 \times 30}{1.5} = 16200 \ kn$$

C'est vérifier

7.6 Vérification au renversement :

Selon **RPA99/version 2003(Art.10.1.5)**, quel que soit le type de fondation (superficielle ou profonde) nous devons vérifier que l'excentrement des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié du centrale de la base des éléments de fondation résistant au reversement.

On doit être vérifié la condition suivant : Mr/Nr <B/4

M_r : Moment de renversement dû aux forces sismique.

 N_r : effort normal de la structure (W=G+ βQ)

B : la largeur du radier.

	Mr(kn,m)	Nr (kn)	B (m)	Mr/Nr	B/4
sens x-x	299017,81	169621,42	24	1,76285407	6
sens y-y	336198,88	169621,42	60	1,98205439	15

Donc vérifiée

7.7 Ferraillage du radier :

7.7.1 Ferraillage nervure du radier :

Valeur de la pression sous radier

- ELU:
$$q_u = \frac{N_{u'}}{S_r} \times b = \frac{235034.01 \times 1}{1440} = 163.21 \ kN/m$$
; $b = 1 \ m$
- ELS: $q_s = \frac{N_{s'}}{S_r} \times b = \frac{169621.42 \times 1}{1440} = 117.79 \ kN/m$

On a le rapport des panneaux $\left(\mathbf{0}, \mathbf{4} < \frac{L_x}{L_y} = \frac{6}{6} = 1 < \mathbf{1}\right)$ la dalle travaille dans les deux

sens.

• Calcul des moments :

$$\boldsymbol{\alpha} = \frac{L_x}{L_y} = \frac{6}{6} = 1 \quad \Rightarrow \quad \begin{cases} \mu_x = 0.0368\\ \mu_y = 1 \end{cases} \quad \Rightarrow \begin{cases} M_x = \mu_x \times q_u \times L_x^2 = 216.22 \ kN. \ m_y = \mu_y \times M_x = 216.22 \ kN. \ m_y = 1 \end{cases}$$

• Moments en travées (panneau d'intermédiaire)

 $M_{tx} = 0.85 \times M_x = 183.78 \ kN.m$ $M_{ty} = 0.85 \times M_y = 183.78 \ kN.m$

• Moments sur appuis (panneau d'intermédiaire)

 $M_{tx} = 0.5 \times M_x = 108.11 \text{ kN. m}$ $M_{ty} = 0.5 \times M_y = 108.11 \text{ kN. m}$

- ✤ Moment en travée et sur appuis à l'ELS (v=0,2) :
 - Calcul des moments :

$$\alpha = \frac{L_x}{L_y} = \frac{6}{6} = 1 \quad \Rightarrow \quad \begin{cases} \mu_x = 0.0441 \\ \mu_y = 1 \end{cases} \quad \Rightarrow \begin{cases} M_x = \mu_x \times q_s \times L_x^2 = 187.00 \ kN.m \\ M_y = \mu_y \times M_x = 187.00 kN.m \end{cases}$$

- Moments en travées (panneau d'intermédiaire) $M_{tx} = 0.85 \times M_x = 158.95 \ kN.m$ $M_{ty} = 0.85 \times M_y = 158.95 \ kN.m$
- Moments sur appuis (panneau d'intermédiaire) $M_{tx} = 0.5 \times M_x = 93.5kN.m$ $M_{ty} = 0.5 \times M_y = 93.5kN.m$

* Calcul du ferraillage :

	Sens	<i>M</i> _u	A _{s,calculé}	
		(kN.m)	(cm ²)	
Travée	Х-Х	183.78	2.10	
ITavee	у-у	183.78	2.10	
Appui	X-X	108.11	1.23	
rippur	у-у	108.11	1.23	

Condition de non fragilité :

$$A_{S}^{min} = 0,23 \times b \times d \times \frac{f_{t28}}{f_{e}}$$

~

$$A_S^{min} = 0.23 \times 100 \times (180 - 5) \times \frac{2.4}{500} = 19.32 \ cm^2$$

La condition est vérifiée.

Condition
$$A_s^{min}$$
 de RPA99 :
 A_s^{min} : $A_s^{min} = 0,5\% \times (h \times b)$
 $A_s^{min} = 0,005 \times 100 \times 180 = 90 \ cm^2$

$$A_{s}^{max}: \qquad \Box \ \Box \ \Box$$

$$A_{s}^{max} = 0,06 \times 100 * 180 = 1080 \ cm^{2} \ \text{Zone recouvrement.}$$

$$A_{s}^{max} = 0,04 \times 100 * 180 = 720 \ cm^{2} \ \text{Zone courante.}$$

	Sens	A _{s,calculé} (cm²)	A _{s,min RPA} (cm ²)	Choix	A _{s,adopt} é (cm²)	<i>S</i> _t (cm)
Travée	X-X	2.10				
Havee	у-у	2.10	90	4T32+14T25	100.89	15
Appui	X-X	1.23				
	у-у	1.23				

7.7.2 Ferraillage dalle du radier :

	Sens	<i>M_u</i> (kN.m)	A _{s,calculé} (cm ²)
Travée	X-X	183.78	1.05
	у-у	183.78	1.05
Appui	X-X	108.11	0.61
	у-у	108.11	0.61

Condition de non fragilité :

$$A_{S}^{min} = 0,23 \times b \times d \times \frac{f_{t28}}{f_{e}}$$

$$A_{s}^{min} = 0.23 \times 100 \times (35) \times \frac{2.4}{500} = 3.864 \ cm^{2}$$

La condition est vérifiée.

Condition
$$A_s^{min}$$
 de RPA99 :
 A_s^{min} : $A_s^{min} = 0.5\% \times (h \times b)$
 $A_s^{min} = 0.005 \times 100 \times 40 = 20 \ cm^2$

 $A_{s}^{max}: \qquad \Box \ \Box \ \Box$ $A_{s}^{max} = 0,06 \times 100 * 40 = 240 cm^{2} \text{ Zone recouvrement.}$ $A_{s}^{max} = 0,04 \times 100 * 40 = 160 cm^{2} \text{ Zone courante.}$

	Sens	A _{s,calculé} (cm²)	A _{s,min RPA} (cm ²)	Choix	A _{s,adopt} é (cm²)	<i>S</i> _t (cm)
Travée	X-X	1.05	20	8T20	25.13	15
	у-у	1.05				
Appui	X-X	0.61	20			
	у-у	0.61				

7.7.3 Vérification des contraintes à l'ELS:

/	sens	Mser (knm)	As cm ²	(Mpa)	σbc [–] (Mpa)	σs (Mpa)	σs (Mpa)	vérification
travée	х-х	158.95	6,16	1,15	15	156,96	201	ok
	у-у	158.95	6,16	1,15	15	156,96	201	ok
appuis	х-х	93.5	3,14	0,92	15	179,45	201	ok
	у-у	93.5	3,14	0,92	15	179,45	201	ok

Conclusion générale

Ce modeste travail nous a donné une occasion pour appliquer et approfondir toutes nos connaissances acquises durant le cursus de notre formation de master en génie civil.

La conception d'une structure métallique repose le dimensionnement aux états limites ultimes en tenant compte des actions environnantes les plus sèvres tel que les surcharges d'exploitation, la neige, le vent et le séisme.

Ce travail consiste à étudier et dimensionner un hangar en charpente métallique avec un système treille, conçue sous forme régulière. Après avoir défini les charges agissantes sur la structure, les poteaux, poutres sablières, contreventements, stabilités, pannes, potelets et lisses de bardage comme éléments de la structure ont été dimensionnés.

Ce dimensionnement concerne chaque élément, assemblage, connexion ou partie sensible de la construction. La précision et la rigueur dans les calculs et vérification d'une part et la définition exacte des différents détails de la construction sont requises.

La structure a été modélisée par le logiciel ROBOT afin d'élaborer le calcul sismique. Le calcul de la résultante des forces sismiques à la base obtenue par combinaison des valeurs modales ne dépasse pas les 80% de la résultante des forces sismiques, comme exiger par le règlement.

Cette expérience nous a permis aussi de faire mieux comprendre le domaine de la construction en charpente métallique qui nous a permis d'un côté d'assimiler les différentes techniques et logiciel de calcul ainsi que la réglementation régissant les principes de conception et de calcul des ouvrages dans ce domaine.

A la fin de ce projet qui constitue pour nous une première expérience dans ce vaste domaine, il nous acquit des grandeurs très importantes pour mettre le premier pas dans ma future vie professionnelle