
République Algérienne Démocratique et Populaire

Ministère de l‟Enseignement Supérieur et de la Recherche Scientifique

Année Universitaire

2019-2020

UNIVERSITE SAAD DAHLEB BLIDA 1

Faculté des Sciences et de Technologie
Département d‟Electronique

MEMOIRE DE MASTER

 Spécialité : Electronique des Systèmes Embarqués

Creation of a finding missing persons application

using MERN stack and flutter

 Par

DIBOUCHE Houssam Eddine & BABACI Abdelmalek

Promoteur

Madames BOUGHERIRA Hamida & NACEUR Djamila

Blida, Juillet 2020

Acknowledgement

Acknowledgement

First of all we would like to express our cordial gratefulness

to Almighty ALLAH for HIS Kindness,

for which thing we successfully completed our project.

While working on this project we have received many invaluable

help from a large number of people

we would like to take this opportunity to express our deepest

gratitude

to everyone who helped us.

We felt grateful to express our boundless honor and respect to

our supervisor professor Boughrira Hamida

for her deep knowledge and keen interest in the field of software

development that influenced us to carry out of this project.

Her endless patient helps, friendly support, which have guided us

throughout our work and showed the path of achievement.

We would like to express our heartiest gratitude

to our professor Naceur Djamila

for her support and provides more information.

Also grad to other faculty members, the staff of the Electronic

Department, Saad Dahleb Blida University

and at last but not the least We must acknowledge with due

respect the constant support and patience

of our family members for completing this project.

Table of Contents

Table of Contents

Acknowledgement ...

Table of Contents ...

Figures list..

Tables list ...

Abbreviations ...

Abstract ..

Introduction .. 1

Chapter 1 Web Application Architecture... 3

1.1. Introduction ... 3

1.2. Background ... 3

1.2.1. Overview .. 3

1.2.2. Definitions and basic description ... 3

1.2.3. History.. 7

1.2.4. TCP/IP Application Services ... 7

1.2.5. Web Versions ... 9

1.2.6. The Semantic Web ... 12

1.3. Theory ... 13

1.3.1. MVC... 13

1.3.2. Programming Languages ... 15

1.3.3. Web Application Frameworks ... 15

1.4. Conclusion .. 16

Chapter 2 Project technologies and structure... 17

2.1. Introduction ... 17

2.2. Web application development... 17

2.2.1. Various Fields .. 17

2.2.2. Restful Api ... 19

Table of Contents

2.2.3. Single Page Application... 20

2.3. Full Stack .. 21

2.3.1. Overview .. 21

2.3.2. Full Stack JavaScript.. 22

2.4. Tools.. 24

2.4.1. Visual Studio Code .. 24

2.4.2. Postman .. 24

2.4.3. MongoDB Compass ... 24

2.5. MERN Stack ... 25

2.5.1. Overview .. 25

2.5.2. Mongo DB ... 25

2.5.3. Node.js ... 27

2.5.4. Express.js ... 28

2.5.5. React.js ... 28

2.6. Mobile App Integration... 29

2.6.1. Native Apps.. 29

2.6.2. Hybrid Apps ... 29

2.6.3. Cross Platform Software .. 30

2.7. Real-Time Functionality ... 31

2.7.1. WebSockets.. 31

2.7.2. Socket.io... 31

2.8. Conclusion .. 32

Chapter 3 Find Me System Analysis And Design ... 33

3.1. Introduction ... 33

3.2. Preliminary study .. 33

3.2.1. System Description .. 33

3.2.2. System Functionality ... 34

Table of Contents

3.2.3. Project Requirements ... 35

3.3. Structural/ Procedural design .. 35

3.3.1. Flowchart diagram ... 35

3.3.2. Object Oriented Design.. 36

3.4. Project Model .. 37

3.4.1. Data Flow Diagram (DFD) .. 37

3.4.2. DFD Level 0... 38

3.4.3. DFD Level 1... 38

3.4.4. DFD Level 2... 39

3.4.5. DataBase Architecture ... 53

3.5. Conclusion .. 59

Chapter 4 Implementation and results ... 60

4.1. Introduction ... 60

4.2. Setting Up The Project .. 60

4.2.1. Setting Up The Back-end ... 60

4.2.2. Initiating The Back-end Project ... 60

4.2.3. Setting Up The React Application ... 67

4.3. User Interfaces .. 72

4.3.1. Public Pages ... 72

4.3.2. Private Pages .. 80

4.4. Limitations .. 91

4.5. Conclusion .. 91

Conclusion ... 91

Biographies .. 93

Figures list

Figures list

Figure 1.1: Most Popular Web Browsers 2000-2020 .. 6

Figure 1.2: Web 1.0.. 10

Figure 1.3: Web 2.0 architect... 11

Figure 1.4: Web 3.0.. 12

Figure 1.5: MVC Architecture .. 14

Figure 2.1: Web application model.. 18

Figure 2.2: REST API .. 20

Figure 2.3: Comparison of traditional page lifecycle and SPA lifecycle 21

Figure 2.4: Full Stack JavaScript .. 23

Figure 2.5: Block diagram of The Project Architecture .. 24

Figure 2.6: MERN stack architecture ... 25

Figure 2.7: Node.js event loop ... 27

Figure 2.8: Advantages of Flutter .. 31

Figure 3.1: Flowchart diagram for the application ... 36

Figure 3.2: Find Me Use Case Diagram ... 37

Figure 3.3: FindMe Zero Level DFD... 38

Figure 3.4: FindMe First Level DFD .. 39

Figure 3.5: JWT to access the application server.. 41

Figure 3.6: Authentication Second level DFD.. 42

Figure 3.7: Account management Second level DFD .. 42

Figure 3.8: „Track‟ management Second level DFD ... 43

Figure 3.9: Second Level DFD of inter-user communication system 44

Figure 3.10: Machine Learning and Deep Learning Amount of Data 46

Figure 3.11: Various Dimensions of TensorFlow.. 48

Figure 3.12: Manual Search Second Level DFD .. 51

Figure 3.13: Automatic Search Mechanism Second Level DFD.. 52

Figure 3.14: Data Base Schema Assossiations Diagram .. 53

Figure 4.1: Back-End package.json File .. 61

Figure 4.2: Back-End Project app.js File ... 62

Figure 4.3: Regiter Route Source Code ... 63

Figure 4.4: „Create-Track‟ Route Source Code ... 63

Figure 4.5: Chat Routes Source Code .. 64

Figures list

Figure 4.6: Register Middleware Source Code .. 65

Figure 4.7: „Create-Track‟ Middleware Source Code ... 66

Figure 4.8: „Send-Message‟ Middleware Source Code ... 67

Figure 4.9: Index.js Source Code.. 68

Figure 4.10: Front-End Project app.json File... 69

Figure 4.11: Rgister Method Source Code .. 70

Figure 4.12: „Create-track‟ Method Source Code.. 71

Figure 4.13: „Load-Messages‟ Method Source Code .. 72

Figure 4.14: Large Screen Landing Page User Interface ... 73

Figure 4.15: Small Screen Landing Page User Interface ... 73

Figure 4.16: Automatic Search User Interface.. 74

Figure 4.17: Signup User Interface ... 75

Figure 4.18: Email Confirmation User Interface .. 76

Figure 4.19: Login User Interface... 77

Figure 4.20: Forgot Password User Interface ... 78

Figure 4.21: Reset Password User Interface ... 79

Figure 4.22: Error Page User Interface ... 80

Figure 4.23: Other Users Track User Interface... 81

Figure 4.24: Owner Track User Interface ... 82

Figure 4.25: Temporary Track User Interface .. 82

Figure 4.26: Found Person Track User Interface .. 83

Figure 4.27: Filter User Interface.. 83

Figure 4.28: Right SideBar Component User Interface .. 84

Figure 4.29: Home User Interface Displayed On Large Screen ... 85

Figure 4.30: Home User Interface Displayed On Small Screen ... 85

Figure 4.31: My Tracks User Interface ... 86

Figure 4.32: Create Track User Interface.. 87

Figure 4.33: They Found Me User Interface .. 88

Figure 4.34: Notifications User Interface ... 88

Figure 4.35: Chat User Interface On Large Screen... 89

Figure 4.36: Chat User Interface On Small Screen... 89

Figure 4.37: Profile User Interface ... 90

Figure 4.38: Danger Zone User Interface ... 91

Tables list

Tables list

Table 1: User Data Model Schema .. 54

Table 2: Track Data Model Schema .. 55

Table 3: TrackIsFound Data Mode Schema .. 56

Table 4: TempUser Data Model Schema ... 56

Table 5: Image Data Model Schema.. 57

Table 6: Chat Data Model Schema .. 57

Table 7: Message Data Model Schema.. 58

Table 8: Notification Data Model Schema .. 58

Table 9: NotificationGenerator Data Model Schema .. 59

Abbreviations

Abbreviations

ABBREVIATIONS DEFINITIONS

 API Application Programming Interface

 APP Application

 ARPA Adevanced Researche Projects Agency

 ASP Active Server Pages

 AWS Amazon Web Services

 BBS Bulletin Board Systems

 CEO Chief Execeuctive Officer

 CGI Common Gateway Interface

 CNN Convolutional Neural Networks

 CPU Central Processing Unit

 CSS Cascading Style Sheets

 DFD Data Flow Diagram

 FIR First Information Report

 FTP File Transfer Protocol

 DOM Document Object Model

 GPL GNU Public License

 GPU Graphics Processing Unit

 GUI Graphical User Interface

 HTML Hyper Text Markup Languge

 HTTP HyperText Transfer Protocol

Abbreviations

 IBM International Business Machines

 IOT Internet Of Things

 IMAP Internet Message Access Protocol

 IP Internet Protocol

 JSON Java Script Object Notation

 JSP Java Server Pages

 LAMP Linux, Apache, MySQL, PHP/Perl/Python

 MVC Model View Controller

 MERN MongoDB/ Express JS/ React JS /Node JS

 MIT Massachusettes Institute of Technology

 MSN Microsoft Network

 MySql My(the name of co-founder Michael Widenius's daughter)

Structured Query Language

 NPM Node Package Manager

 OS Operating System

 PAAS Platform As A Service

 PARC Palo Alto Research Center

 PERL Practical Extraction and Report Language

 PHP Personal Home Page

 POP Post Office Protocol

 RDBMS Relational Database Management System

 RDF Resource Description Framework

Abbreviations

 REST Representational State Transfer

 RSS Really Simple Syndication

 SMTP Simple Mail Transfer Protocol

 SPA Single Page Application

 SQL Structured Query Language

 TCP Transmission Control Protocol

 TPU Tensor Processing Unit

 UI User Interface

 URL Uniform Resource Locator

 VS Visuel Studio code

 XHTML Extensible Hyper Text Markup Language

 XML Extensible Markup Language

Abstract

Abstract

The phenomenon of kidnapping and loss of people has increased in the recent years,

whether mentally retarded persons or children. It is difficult to find them either by the

traditional methods or by the modern methods which lack research speed and rely heavily

on the traditional research. Our objective is to create a web application using the “MERN

stack” and a mobile application works on the two most popular platforms (Android and

iOS) using "Flutter" which is the framework of dart based on the automatic search using

the images of the missing persons and the face recognition feature to help find them as

soon as possible. The users have more freedom that they can also use the traditional and

the manual search.

Keywords: MERN ; Dart ; Flutter ; JavaScript ; NodeJs ; Missing Persons ; Web

Application Mobile Application ; Cross-platform Application ; Andriod ; IOS ; Face-api.js

; Face Recognition ; Track.

(MERN stack)

Ios

Résumé

 Le phénomène des enlèvements et des pertes de personnes a augmenté en commun ces

dernières années, qu'il s'agisse de personnes mentalement en retard ou d'enfants. Il est

difficile de les trouver soit par des méthodes traditionnelles, soit par des méthodes

modernes qui manquent de rapidité de recherche et reposent fortement sur la recherche

traditionnelle.

Abstract

Notre objectif du projet est de créer une application Web utilisant « MERN stack » et une

application mobile fonctionne sur les deux plateformes les plus populaires (Android et

iOS) en utilisant le langage « DART » du framework « Flutter » basé sur la recherche

automatique en utilisant les images des personnes disparues grâce à la fonction de

reconnaissance faciale pour aider à retrouver les personnes disparues le plus tôt possible,

comme c'était le cas. On peut utiliser la recherche traditionnelle et manuelle pour donner

plus de liberté aux utilisateurs.

Mots clés: MERN ; Dart ; Flutter ; JavaScript ; NodeJs ; Personnes Disparues ;

Application Web ; Application mobile ; Android ; IOS ; Face-api.js ; Reconnaissance

Faciale ; Piste .

Introduction

Page | 1

Introduction

 One of the greatest fears of people is to lose their relatives. Each year many people get

lost in Algeria. In some cases, the lost person is found easily, but in some critical cases,

missing persons are never reunited with their relatives. Finding a lost person can be a

difficult task

 The currently available manual system for finding missing persons have a very long

procedure and takes more time. More time is required for launching an „FIR‟ (First

Information Report) in the police station. In addition, more time is required for finding a

lost person, and during the manual process, more manpower is needed.

 To make the task of finding missing persons easy we developed a web app and a mobile

app (cross-platform Web, Ios, and Android) that allow the user to enter the missing persons

information and keep a track of it. The user should register oneself to the system using his

email or his Facebook account to use all the system features and to keep his missing person

on track.

 The search mechanism is based on the face recognition feature, the App allows the

authenticated user and other users that don‟t want to register or login to check the missing

persons at their or any other area, just they need to provide the missing person picture and

in return the system displays the missing persons information if there is a match.

 Some existing applications do not show the proper information about the Missing person,

which makes it difficult to find out the missing person. Some missing person related

websites show only the database of the missing person. To overcome from this, some

applications have been developed. But these applications have certain limitations such as:

 The user cannot add a complaint nor the missing person information.

 They display the advertisements, which are collected from newspapers.

 Previous applications use humans to recognize the missing persons.

 To overcome these drawbacks we developed a single page application based on the MVC

(Model-View-Controller) "FindMe". The MVC pattern separates data and their graphical

appearance. The pageflow is controlled by the Controller. The Model is responsible for

fetching data (by accessing a database) and the View is responsible for the graphical

appearance of the data within Web pages. We used the MERN Stack, mongoDB as

Introduction

Page | 2

database, Express.js for the server side, and react.js for the Front-end web application and

flutter framework for the Front-end mobile. Our application is basically designed to

perform all the tasks that the previous systems can perform and all functionalities that are

provided by existing applications, as well as it gives additional features to the user which

based on recognizing the missing people face using ‟Artificial Intelligence‟ algorithm,

Google Tensorflow.

 To achieve our work, we have organized our thesis in four chapters as follows:

 In the first chapter we will talk about web application architectures, we will start by

giving a background on the web and the internet world followed by general concepts on

the programming languages and frameworks.

 In the second chapter, we will define the basic web development concept then we will

explain the full stack meaning and the different web stacks. The main objective of the

chapter is to study the different components of the most popular Full Stack JavaScript

framework, MERN stack, and describe other project technologies and structure.

 In the third chapter, we will describe our system and we will analyze the project using

flowcharts and data flow diagrams.

 The last chapter contains the result of the project implementation. We present the UI of

the project main pages. Then we discuss the project limitations and future enhancements.

Web Application Architecture

Page | 3

Chapter 1 Web Application Architecture

1.1. Introduction

 Since our objective is to develop a web application for IOs, and Android, we will describe

in this chapter the web application architecture, starting with a general background, which

contains general concepts on the web and the internet world. This chapter also provides a

detailed information about the TCP/IP services and the different web versions followed by

the semantic web. Then we will explain some theory about the programming languages,

frameworks, and the mvc architecture.

1.2. Background

1.2.1. Overview

 There is an often-overlooked distinction between the Web and the Internet. The line

between the two is often blurred, partially because the Web is rooted in the fundamental

protocols associated with the Internet. Today, the lines are even more blurred, as notions

of „the Web‟ go beyond the boundaries of pages delivered to Web browsers, into the

realms of wireless devices, personal digital assistants, and the next generation of Internet

appliances.[1]

1.2.2. Definitions and basic description

1.2.2.1. Internet

 The Internet is the global system of interconnected computer networks that uses

the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is

a network of networks that consists of private, public, academic, business, and government

networks of local to global scope, linked by a broad array of electronic, wireless, and

optical networking technologies.[19]

 The Internet carries a vast range of information resources and services, such as the inter-

linked hypertext documents and applications of the World Wide Web, electronic

mail, telephony, and file sharing.[28]

1.2.2.2. Web

 From the very beginnings of Internet technology, there has been a dream of using the

Internet as a universal medium for exchanging information over computer networks. Many

people shared this dream.

Web Application Architecture

Page | 4

 The Web is built on top of core Internet protocols that had been in existence for many

years prior to the Web‟s inception. Understanding the relationship between „Web

technology‟ and the underlying Internet protocols is fundamental to the design and

implementation of true „Web applications‟. [1]

 The Web such as global database that user can share information through his

device connected to the internet . There are many of resources explain the stages of the

Web technology through its development whenever it is become easier for users it is

become more complex for developer. The Web is involved from simple to more advance

structures.[28]

1.2.2.3. Web page

 A web page or webpage is a document, commonly written in HTML, which is viewed in

an Internet browser. A web page can be accessed by entering a URL address into a

browser's address bar. A web page may contain text, graphics, and hyperlinks to other web

pages and files.[19]

 A web page is often used to provide information to viewers, including pictures or videos

to help illustrate important topics. A web page may also be used as a method to sell

products or services to viewers. Multiple web pages make up a website, like our Computer

Hope website[1].

1.2.2.4. Web site

 A Web site is more than just a group of Web pages that happen to be connected to each

other through hypertext links.

 There are also architectural concerns. As a site grows in size and becomes more complex,

it becomes critically important to organize its content properly. This includes not just the

layout of content on individual pages, but also the interconnections between the pages

themselves.[19]

1.2.2.5. Web applications

 A Web application is something more than just a „Web site.‟ It is a client/server

application that uses a Web browser as its client program, and performs an interactive

service by connecting with servers over the Internet. A Web site simply delivers content

from static files. A Web application presents dynamically tailored content based on request

parameters, tracked user behaviors, and security considerations.[19]

Web Application Architecture

Page | 5

1.2.2.6. Web Servers

 In computing, a server is a computer program or a device that provides functionality for

other programs or devices, called "clients". This architecture is called the client–server

model. Servers can provide various functionalities, often called „services‟, such as sharing

data or resources among multiple clients, or performing computation for a client.[15]

 Web servers enable HTTP access to a „Web site,‟ which is simply a collection of

documents and other information organized into a tree structure, much like a computer‟s

file system. In addition to providing access to static documents, modern Web servers

implement a variety of protocols for passing requests to custom software applications that

provide access to dynamic content.[15]

1.2.2.7. Web browsers

 A web browser is a software application for accessing information on the World Wide

Web. When a user requests a web page from a particular website, the web browser

retrieves the necessary content from a web server and then displays the page on the screen.

 A web browser is not the same thing as a search engine, though the two are often

confused. For a user, a search engine is just a website, such as Google Search, that stores

searchable data about other websites. However, to connect to a website's server and display

its web pages, a user must have a web browser installed.[15]

 Web browsers are used on a range of devices, including desktops, laptops, tablets, and

smartphones.

 This is the list of the most popular and the most used web browsers:

 Chrome

 Internet Explorer

 Firefox

 Edge

 Opera

Figure 01 illustrates the most popular web browsers between 2000 and 2020.

Web Application Architecture

Page | 6

Figure 1.1: Most Popular Web Browsers 2000-2020

1.2.2.8. Internet Protocols

1.2.2.8.1. TCP/IP

 TCP/IP, is a suite of communication protocols used to interconnect network devices on

the internet. TCP/IP can also be used as a communications protocol in a private computer

network (an intranet or an extranet).[3]

 TCP/IP specifies how data is exchanged over the internet by providing end-to-end

communications that identify how it should be broken into packets, addressed, transmitted,

routed and received at the destination.[6]

 TCP/IP requires little central management, and it is designed to make networks reliable,

with the ability to recover automatically from the failure of any device on the network.

1.2.2.8.2. HTTP

 HTTP is an application protocol for distributed, collaborative, hypermedia information

systems. HTTP is the foundation of data communication for the World Wide Web, where

hypertext documents include hyperlinks to other resources that the user can easily access

by a mouse click or by tapping the screen in a web browser.[29]

1.2.2.8.3. Public Pages

 We say that a page is public when the user can see it without logging in. Most pages are

only viewable by authenticated users. A limited number of pages are public so that users

Web Application Architecture

Page | 7

do not have to log in to view them, such as the landing page, the error page, and the

register and login pages.

1.2.2.8.4. Private Pages

 We say that a page is private when the user can only see it if he is logged in and

authenticated. The private pages are available only to internal personnel or to registered

users or partners with passwords. In web applications, most pages are private.

1.2.3. History

 The roots of Web technology can be found in the original Internet protocols (known

collectively as TCP/IP), developed in the 1980. These protocols were an outgrowth of

work done for the United States Defense Department to design a network called the

ARPANET.[6]

 The ARPANET was named for ARPA, the Advanced Research Projects Agency of the

United States Department of Defense. It came into being as a result of efforts funded by

the Department of Defense in the 1970 to develop an open, common, distributed, and

decentralized computer networking architecture.[3]

1.2.4. TCP/IP Application Services

1.2.4.1. Telnet

 The Telnet protocol operates within the Application layer. It was developed to support

Network Virtual Terminal functionality, which means the ability to „log in‟ to a remote

machine over the Internet. The latest specification for the Telnet protocol is defined in

Internet RFC 854.[6]

 Telnet clients are configured by default to connect to port 23 on the server machine, but

the target port number can be over-ridden in most client programs. This means you can

use a Telnet client program to connect and „talk‟ to any TCP server by knowing its

address and its port number.[3]

1.2.4.2. Message forums

 Message forums are online services that allow users to write messages to be posted on

the equivalent of an electronic bulletin board, and to read similar messages that others have

posted. These messages are usually organized into categories so that people can find the

kinds of messages they are looking for.[29]

Web Application Architecture

Page | 8

1.2.4.3. Live messaging

 Today, the vast majority of Internet users eschew command-line interfaces, and the notion

of being logged in to a particular system is alien to most people. Thus, a protocol like talk

would not work in its original form in today‟s diverse Internet world. Proprietary „instant

messaging‟ systems exist, but they are exclusionary, and the intense competition and lack

of cooperation between instant messaging providers further limits the degree of

interoperability we can expect from them.[20]

1.2.4.4. E-mail

 Electronic mailing lists provided communities where people with like interests could

exchange messages. These lists were closed systems, in the sense that only subscribers

could post messages to the list, or view messages posted by other sub- scribers. Obviously,

lists grew, and list managers had to maintain them. Over time, automated mechanisms

were developed to allow people to subscribe without human intervention. These mailing

lists evolved into message forums, where people could publicly post messages, on an

electronic bulletin board, for everyone to read.[3]

 The transmission of electronic mail is performed through the SMTP protocol. The

reading of electronic mail is usually performed through either POP or IMAP.

1.2.4.5. File servers

 For years before the existence of the Internet, files were shared using BBS. People would

dial in to a BBS via a modem, and once connected, they would have access to directories

of files to download (and sometimes to „drop‟ directories into which their own files could

be uploaded). Various file transfer protocols were used to enable this functionality over

telephone dialup lines.[12]

 To facilitate this functionality over the Internet, the File Transfer Protocol (FTP) was

created.

 An FTP server operates in a manner similar to an e-mail server. Commands exist to

authenticate the connecting user, provide the user with information about available files,

and allow the user to retrieve selected files.[8]

 FTP servers also allow users to traverse to different directories within the server‟s local

file system, and to upload files into those directories.

Web Application Architecture

Page | 9

1.2.5. Web Versions

1.2.5.1. Web 1.0

 It represents the basic of Web it was used even 2003, invented by Tim Berners-Lee and it

is just the readable site with raw data of the World Wide Web. The user can only Search

and read the information through browser, he cannot share and commend on the

site.[7]

 In other words, it is static information. In Web 1.0, a few of person that must be has

knowledge of how the Web pages are designed (interlinked) can create and modified

the Web pages compare with large number of users there not necessary to have

knowledge about how the Web pages are designed. In the Web 1.0 technique, some

companies design applications that allow users download information from the Web but

they have not seeing the procedure of how the applications works. Technologies used

in Web1.0 are HTML, HTTP and URI.[7]

 In addition, other protocols used in web1.0 like XML, XHTML and CSS. There are

combined technologies between server and client such as ASP, PHP, JSP, CGI, and PERL.

The server side uses JavaScript, VBscript and flash on the client. Web 1.0 it is very slow

and the user need to refresh the site every time when new information added to the web

pages. The web1.0 problem it just works one direction. In other word, the user cannot post

or modify the web page.[18]

Figure 02 illustrates the web1.0.

Web Application Architecture

Page | 10

Figure 1.2: Web 1.0

1.2.5.2. Web 2.0

 It is the second version of web. In 2004 it presented formally by Dale Dougherty who

was vice-president of O‟Reilly Media It is also called the read and write web , it is

representing a new method to use the current technologies of internet, and the web could

become bidirectional.[7]

 Actually, the web1.0 presents to the user accessing possibility to upload and download

from the webpage like provider but in limited controlling. In other words, actual interactive

of user to allow simply upload as well as download.

 The users of web 2.0 have more interaction with less control. Technology infrastructure

of web2.0 consist of some rules such as RSS, Atom, RDF witch used by the designer

for creation the web 2.0 services, also the web2.0 uses Ajax technology in internet such as

JavaScript and XML, DOM, REST, XML and CSS. The web2.0 allows the users the

ability to creation social activities and communicates with each other. But these properties

also consider issues because the user can be hacked in privacy and personal

information security.[7]

Web Application Architecture

Page | 11

Figure 03 illustrates the web2.0 architecture.

Figure 1.3: Web 2.0 architect

1.2.5.3. Web 3.0

 It is also the third and current version of web started in 2014 known as executable web

that allows user the ability to interact with dynamic applications. In other word, sometimes

is called the Semantic Web and personalization.

 Web 3.0 will be a complete reinvention of the web. Conrad Wolfram theory about

web3.0 tries to make the computer be able thinking and more intelligence for search

about new data instead the humans . Web 3.0 is a new method that used in various fields

on the internet. In other word, convert the web into huge database.

 In Web 3.0, proposed to be the computers like human to describe the specific information

in high speed and bring the information for the user as meaning of word and do not search

for the same word in web. One example of Web 3.0 is Google, which is technology

infrastructure of web3.0. [7]

Figure 04 illustrates the web3.0.

Web Application Architecture

Page | 12

Figure 1.4: Web 3.0

1.2.5.4. Portals and Search Engines

 A Web portal is a type of sites designed to presents to the user the ability to visit and

providing a link to other site. It is created for some purpose like distributed applications,

the share information between the users. In other word, it also can be represented as huge

database of components that different number of user can uses it at the same time.[20]

 The web portal allows the user in search navigation and information integration, also

provides some other features business intelligence and distribution games. There are

some examples of Web portal like MSN, NAVER.

 A search engine is also term can have called search sites that designed to provides to the

user capabilities to access the information from any website stored on a server, such as on

the World Wide Web. In other word, is a web system uses some criteria to find the

information and bring all sites of web that contains this word or phrases.[18]

1.2.6. The Semantic Web

1.2.6.1. Overview

 The web becomes day to day larger and the search about any word or phrase is issue

because many sites contain this word and many of them do not have the correct

information. Tim Berners-Lee proposed the new term is Semantic Web. It is last version of

the web that helps us find the exact information that we are searching for by machines

Web Application Architecture

Page | 13

instead of human. Semantic web uses techniques that search depending on meaning of

word and what the user think about .

 Semantic Web uses some criteria using in search like the location of the user , and

previous searches of user by providing the inclusion of semantic content in Web

pages. In other word, the Semantic Web uses a technology that allows machines to

understand the user and respond the user requests subject to their meaning.[7]

 The semantic web has levels and until today all the levels have not completed. Example

for semantic web is GOOGLE. The semantic web is not so much a technology as an

infrastructure, enabling the creation of meaning through standards, markup languages,

and related processing tools. Each layer of the semantic web technology stack provides

services to the layer above and draws on the services of the layers below.

1.2.6.2. Semantic Web Technology

 The technology of semantic web uses standard semantics for the data around us to give

the full meaning. World Wide Web inventor envisions this technology with Linked Data

technology. According to Sir Tim Berner-Lee there are relationships between data in

all formats and sources. This technology gives the ability for machines to store, manage

and return information according to their meaning and their relationships.[7]

1.2.6.3. Semantic Web Stack

 It is one of the semantic web layers also known as semantic web cake. The semantic web

is representation of the language, the technologies that use semantic web are shown by

the stack

1.3. Theory

1.3.1. MVC

1.3.1.1. MVC Architecture

 Model-View-Controller (or MVC) is probably one of the most popular architectures for

applications. As with many other cool things in computer history, the MVC model was

conceived at PARC for the Small-talk language as a solution to the problem of organizing

applications with graphical user interfaces. It was created for desktop applications, but

since then, the idea has been adapted to other mediums including the Web.[5]

 We can describe the MVC architecture in simple terms:

https://youtu.be/NdSD07U5uBs?t=29m2s
https://en.wikipedia.org/wiki/PARC_(company)

Web Application Architecture

Page | 14

 Model: the part of our application that will deal with the database or any data-

related functionality.

 View: everything the user will see the pages that we are going to send to the client.

 Controller: the logic of our site, and the glue between models and views. Here we

call our models to get the data, and then we put that data on our views to be sent to

the users.[5]

Figure 05 illustrates the mvc architecture.

Figure 1.5: MVC Architecture

1.3.1.2. MVC Advantages and Drawbacks

 The structure allows flexibility since responsibilities are clearly separated. This leads to:

 better and easier code maintenance and re-usability

 easier to coordinate in teams due to the separation

 ability to provide multiple views

 support for asynchronous implementations

 However, it has some disadvantages like:

 an increased complex setup process

 dependencies, the changes in the model or controller affect the whole entity.[5]

Web Application Architecture

Page | 15

1.3.2. Programming Languages

1.3.2.1. Overview

 A programming language is a formal language comprising a set of instructions that

produce various kinds of output. Programming languages are used in computer

programming to implement algorithms.

1.3.2.2. High-level Programming Languages

 High-level programming languages are designed to be easy to read and understand. This

allows programmers to write source code in a natural fashion, using logical words and

symbols.

 Many high-level languages are similar enough that programmers can easily understand

source code written in multiple languages.examples of high-level languages

include C++, Java, Perl, and PHP. Languages as C++ and Java are called "compiled

languages" since the source code must first be compiled in order to run.

 Languages as Perl and PHP are called "interpreted languages" since the source code can

be run through an interpreter without being compiled. Generally, compiled languages are

used to create software applications, while interpreted languages are used for

running scripts, such as those used to generate content for dynamic websites.

1.3.2.3. Low-level Programming Languages

 Low-level programming languages include assembly and machine languages. An

assembly language contains a list of basic instructions and is much more difficult to read

than a high-level language. In rare cases, a programmer may decide to code a basic

program in an assembly language to ensure it operates as efficiently as possible.

 An assembler can be used to translate the assembly code into machine code. The machine

code, or machine language, contains a series of binary codes that are understood directly

by a computer's CPU.

1.3.3. Web Application Frameworks

 A web framework is a website development technology that is used to make the web

applications which including web services, web resources,

Web Application Architecture

Page | 16

 A web development framework is a set of resources and tools for software developers to

build and manage web applications, web services and websites. Web development

framework can be built upon a pre-defined infrastructure such as the Linux.

 The web development framework also provides the foundations and system level services

for software developers to build a content management system for managing digital

information on the Web development framework

1.4. Conclusion

 In this chapter, we described in details the web applications architecture, which contains

the main concepts that any web developer needs. In the next chapter we will present our

project structure, which consists mainly in a MERN application and a cross-platform

mobile application which was created using dart and flutter framework. We will talk in

depth about the languages and the technologies we have used to make these applications.

Project technologies and structure

Page | 17

Chapter 2 Project technologies and structure

2.1. Introduction

 This chapter describes the structure of the find-Me application. It provides a detailed

information on the different web stacks, and explanes all the technologies and the

programming languages that we used in the choosen stack.

 This chapter also describes the real time integration and all the technologies we have used

in it.

2.2. Web application development

2.2.1. Various Fields

2.2.1.1. Front-end

 Web application development is the combination of the front-end and the back-end

development. Front-end web development, also known as client-side development,

involves the practice of creating GUI for clients (users) so that the users can interact

with the application. It involves the use of primary web technologies and tools such as

HTML, CSS, and JavaScript.

 HTML is a mark-up language, which provides the structure to a web page. It defines

how a web page would look like so it can be considered the skeleton of any web

application. CSS, on the other hand, is a style sheet language, which provides style and

visual enhancements to the documents written in HTML.[4]

 JavaScript is the most advanced language among these technologies. It performs

HTML DOM manipulation to provide a dynamic interface to users. Moreover, it

provides an interactive interface to the users by creating pop-up messages, validating

form inputs, and changing the layout based on events like user-input or mouse clicks.

The browser to provide a front-end web interface controls all these technologies.[11]

2.2.1.2. Back-end

 Back-end web development, also known as server-side development, involves the

development of computer programs and databases to serve the client. A web

application in its primary days did not need to have a front-end but a functioning

server-side application was enough for it to be considered a web application.[9]

Project technologies and structure

Page | 18

 Several changes have been made in this field since then. Today‟s sophisticated web

applications cannot run without both the front-end and back-end services. Back-end

technologies usually consist of the programming languages such as PHP, Ruby, Python,

Java, Node.js, and different frameworks.[4]

2.2.1.3. Back-end/Front-end communication

 A web application, in its most elementary form, sends an HTTP request to a server to

establish connection, and the server sends an HTTP response to the client. A typical

example of communication in a web application is illustrated in figure 6.

Figure 2.1: Web application model

Figure 01 illustrates the communication among the three layers of a web application

model. The first layer is a client-side web browser, the second layer is a server-side

dynamic content generator, and the third layer is a database server.[9]

 A user sends an initial request using the HTTP protocol through the browser over the

internet to the server. The web server then processes the request by accessing the

database server and retrieving the requested data.[11]

 The web server then sends the response to the user over the internet through the

browser. The response usually contains the data requested by the user.

Project technologies and structure

Page | 19

2.2.2. Restful Api

2.2.2.1. Overview

 REST is an architectural style used in web development in order to create web

services. REST only defines the principles on which a web service is developed for the

client- server communication. It is not a set of rules (protocols) for creating web

services. Any web services or APIs that are designed with the REST architecture are

called RESTful APIs, or just REST APIs. REST provides good performance,

scalability, and reliability in a distributed computing system.[4]

2.2.2.2. Basic design principles

 An implementation of REST APIs must follow at least four basic design principles:

 Use of HTTP methods: REST APIs must follow the HTTP methods

explicitly. They must use GET to retrieve a resource from the server,

POST to create a resource, PUT to modify or update a resource, and

DELETE to delete a resource.

 Stateless communication: Communication between the client and the

server must be stateless, meaning that every request from the client

must contain all the information required for the server to process them.

The server should not require any stored data to process the request.

 Use of directory-structure like URIs: REST APIs must use the URIs

that are straightforward, properly structured, and easily understood.

 Data transfer in XML or JSON: The data transferred between the client

and the service-exchange must be in XML or JSON format.

2.2.2.3. Communication On the Client-side

 REST web services must have a clear separation of client-side logic and server-side

logic. A uniform interface separates clients and servers, which allows developers to

work on the individual part of web application and improve one without affecting

another.[4]

 Clients and intermediaries should be able to cache server responses to avoid reuse of

stale data in response to future requests. Clients also cannot assume a direct

Project technologies and structure

Page | 20

connection to the server. In most cases, intermediaries between the client and the

server serve the request-response cycle.

Figure 02 illustrates the Rest Api data exchange.

Figure 2.2: REST API

2.2.3. Single Page Application

 Single Page Application is a web application, which fits into a single web page. In

contrast to the traditional full-page loads, An SPA loads all the resources required to

navigate throughout the web application on the first page load.

 It then dynamically changes the contents as the user interacts with the application, so

no full-page request will ever be made again. However, URLs are updated in the

address bar of the browser with a hash tag following the name of the resources

accessed.[9]

 Figure 03 illustrates the distinction between the lifecycle of a traditional web page

and an SPA web page.

Project technologies and structure

Page | 21

Figure 2.3: Comparison of traditional page lifecycle and SPA lifecycle

2.3. Full Stack

2.3.1. Overview

 Various web and native applications are developed using „stacks‟ of various technologies.

The word „stack‟ was first referred to the LAMP stack, Linux as the OS, Apache as the

http server, MySql the relational database and PHP as the programming language on which

the application is developed.[4]

 However, multipage applications are on the decent and single page applications are more

popular because of their seamless user experience and lighter server calls which makes

rendering the part of page easier without refreshing the page. So, the front-end frameworks

or libraries those can produce single page applications are on demand. React being one of

them.

 MongoDB. NoSql databases are also called Not-Only-Sql because they also support SQL

like query languages. MySql (SQL) stores data in rows and columns, NoSQL databases

store their data in different structures: key-value pairs, wide columns, graphs, or

documents. Simplicity, scalability, flexibility, availability and speed of NoSql, databases

like MongoDB have gained fame.[11]

 Popular languages like PHP, Ruby and Python are among the early server side

languages. Since, Javascript has made it possible to create dynamic front end, its

development has also had an impact on back-end, in the form of NodeJS and ExpressJS.[9]

Project technologies and structure

Page | 22

2.3.2. Full Stack JavaScript

2.3.2.1. JavaScript

 JavaScript is a lightweight, interpreted, or just-in-time compiled programming language

with first-class functions. While it is most well-known as the scripting language for Web

pages, many non-browser environments also use it, such as Node.js, Apache

CouchDB and Adobe Acrobat. JavaScript is a prototype-based, multi-paradigm, single-

threaded, dynamic language, supporting object-oriented, imperative, and declarative

styles.[4]

2.3.2.2. Rise of Full Stack JavaScript

 Developers started to realize that use of two separate languages in the development of

the client and the server was complicating the tasks of web programming. Several

attempts were made to unify the two sides by creating client components on the server

and compiling them into JavaScript, but they failed. The only solution to this problem

was the implementation of JavaScript on the server-side, and Node.js was

introduced.[9]

 Node.js is actually the backbone of Full Stack JavaScript web development. It finally

put the power of JavaScript on the server with the idea of non-blocking programming

paradigm. Node.js became popular in a short time due to its easy-to-use components.

It allowed the developers to quickly set up a server and start building applications on

top of it. Several frameworks started to emerge to facilitate Node.js implementation

such as Express and Connect.js. Express became the most prominent one. Node.js

ecosystem continued to expand and a package manager like „npm‟ was introduced.[4]

Figure 04 illustrates the full stack JavaScript with different technologies.

https://en.wikipedia.org/wiki/JavaScript#Uses_outside_Web_pages
https://developer.mozilla.org/en-US/docs/Glossary/Node.js
https://couchdb.apache.org/
https://couchdb.apache.org/

Project technologies and structure

Page | 23

Figure 2.4: Full Stack JavaScript

2.3.2.3. Using The MERN Stack

 Figure 05 illustrates our project architecture. We use the MERN Stack, mongoDB as

database, the Back-end app with express and the Front-end app with react.js. To be

described in detail in the next chapter.[9]

Project technologies and structure

Page | 24

Figure 2.5: Block diagram of The Project Architecture

2.4. Tools

2.4.1. Visual Studio Code

 VS Code is a popular source code editor by Microsoft. It can be used with many

languages but since it is based on Electron, one of the Node.js frameworks, MERN

development is easy and efficient. It is free for developers use and is open source under

MIT license. Built-in terminal support makes it much easier for web-development.[11]

2.4.2. Postman

 Postman is a scalable API testing tool. It started in 2012 as a side project by Abhinav

Asthana to simplify API workflow in testing and development. API stands for Application

Programming Interface, which allows software applications to communicate with each

other via API calls[11].

2.4.3. MongoDB Compass

 MongoDB Compass is the Graphic User Interface of MongoDB. It helps in analyzing the

data content without the requirement of any prior knowledge of the query syntax in

MongoDB. You can use it to explore the business data as a visual representation in the

required environment. In addition, you can also use this Compass to manage indexes,

optimize the performance of a query, and also to implement the validation of the

document.[11]

Project technologies and structure

Page | 25

2.5. MERN Stack

2.5.1. Overview

 MERN stack as briefly discussed above consists of 4 independent frameworks and

libraries, Mongo DB, Express JS, React JS and Node, hence the abbreviation MERN.

Figure 06 described the individual aspects of MERN stack.[2]

Figure 2.6: MERN stack architecture

2.5.2. Mongo DB

2.5.2.1. NoSQL Database

 Ever since the inception of the SQL database in 1980 by IBM based on the relational

database model invented by Edgar Codd in 1973, relational databases, also known as

RDBMS have been the predominant method of storing digital data. Historically the most

popular databases have been Microsoft SQL Server, Oracle Database and MySQL.[2]

 In SQL data is represented as rows in an Excel-like tables where each unique attribute of

the schema is represented by a column in the table. The attributes are limited to SQL‟s

predetermined set of basic data types such as integer, string, and date , which causes issues

when the data that requires storing is irregular or dynamic.[22]

 One solution that arose to solve this lack of flexibility is NoSQL, also known as „Not Only

SQL‟. The term was coined by Carlo Strozzi in 1998. The NoSQL model offers more

fluidity by not requiring a distinct schema, and by scaling horizontally. where the resources

of a system consisting of multiple separate hardware units connected to a single logical

cluster are increased by adding additional nodes to the cluster. Because each node in the

cluster is running a copy of the software, additional nodes can be added without an

interruption to the system‟s operation.[16]

Project technologies and structure

Page | 26

 NoSQL databases are commonly divided into four categories:

 Document databases

 Key-value databases

 Column databases

 Graph databases

 NoSQL databases tend to have faster performance for read and write operations by not

requiring joins to relate data and by dropping much of the overhead found in SQL

operations.

2.5.2.2. JavaScript Object Notation

 JSON is a format commonly used with browsers, which makes MongoDB an excellent

fit for storing data for web applications, since the same JSON data can be transported

between the browser and the database without having to be converted into another format

between them, as is the case with SQL.[25]

 JSON is a lightweight data-interchange format. It is easy for humans to read and write. It

is easy for machines to parse and generate. JSON is a text format that is completely

language independent but uses conventions that are familiar to programmers of the C-

family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many

others. These properties make JSON an ideal data-interchange language.[2]

JSON is built on two structures:

 A collection of name/value pairs.

 An ordered list of values.

2.5.2.3. Basic Information

 MongoDB is an open-source NoSQL database under the document database category,

created in 2007 in the U.S by Dwight Merriman, Eliot Horowitz and Kevin Ryan. Mongo

operates under the GPL and is written in C++. As the most popular non-relational database

at present by a significant margin.

 The SQL style of storing the entry divides the types of data that constitute the entry into

5 different schemas which are connected to the single entity through the unique identifiers

(primary keys), whereas in MongoDB the same data is stored in a single JSON object, also

Project technologies and structure

Page | 27

referred to as a „document‟ containing all the inner components in further nested objects as

attributes of the main container object.[25]

2.5.3. Node.js

2.5.3.1. Basic Information

 Node.js is an open source platform that utilizes Google Chrome‟s JavaScript runtime V8

Engine. Node.js can be characterized as being to JavaScript what the JRE is to java. Node.js

compiles and executes JavaScript code inside of a virtual machine and thereby enables

JavaScript code to be run on the server side.[26]

2.5.3.2. The Node.js event loop

 The event loop is what allows Node.js to take advantage of multi-threaded system

kernels while still maintaining non-blocking I/O. What is meant by I/O in the context of

Node.js is usually accessing external resources like disks or network resources, which are

the most expensive due to the time they take to complete.[22]

Figure 07 illustrates the Nodejs event loop.

Figure 2.7: Node.js event loop

 The Node.js process is a loop that performs polling and blocking calls to the system

kernel on a constant basis while active. The operating system kernel in turn notifies

Node.js when an operation is complete, after which its associated callback function is

added to the poll queue for eventual execution. Node.js exits when it runs out of events to

process, but in the context of a web server where listening for new requests is in and of

Project technologies and structure

Page | 28

itself a series of events, the process can be conceptualized essentially as a closed while-

loop, repeating its internal phases continually.

 The Node.js event loop is internally implemented by a C library called libuv, which is a

multi-platform open source support library for base level asynchronous I/O management.

Libuv is primarily designed for its use in Node.js and can take advantage of the native

polling queue mechanisms of each operating system to achieve high performance levels

and effective offloading of I/O operations to the system kernel whenever possible.[2]

2.5.3.3. Node Package Manager

 NPM is a package manager for the JavaScript programming language. It is the default

package manager for the JavaScript runtime environment Node.js. It consists of a

command line client, also called npm, and an online database of public and paid-for private

packages, called the npm registry.[2]

 NPM comes with Node.js upon installation and is accessed from the command line.

Installing packages can be done globally or locally through the npm install command. The

code block itself is then fetched from the NPM registry via HTTP and saved into a

node_modules folder, which is created if it does not exist. The name of the package on the

website always corresponds to its name in the registry, making it directly accessible using

the install command „npm install <package name>‟.[2]

2.5.4. Express.js

 ExpressJS is the web application framework of Javascript that runs the back-end

application code. Express runs as a module within the Node.js environment. It can handle

the routing of requests to the right parts of the application. With a myriad of HTTP utility

methods and middleware, creating a robust API is quick and easy with the use of

Express.js.[26]

2.5.5. React.js

 R2.eact is a JavaScript library for building user interfaces. It is maintained by Facebook

and a community of individual developers and companies. It runs in web browsers. React

breaks front-end application down into components. Each component can hold its own

state and a parent can pass its state down to its child components and those components

can pass changes back to the parent with callback functions.[22]

https://en.wikipedia.org/wiki/JavaScript_library
https://en.wikipedia.org/wiki/User_interfaces
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Facebook

Project technologies and structure

Page | 29

 React components are typically implemented using JSX that is an extension of

JavaScript that allows HTML syntax to be embedded within the code. React can be used as

a base in the development of single-page or mobile applications. Complex React

applications usually require the use of additional libraries for state management, routing,

and interaction with an API.

 React.js emerged as a solution to the problem, delivering the application components in

an initial JavaScript bundle and then efficiently managing renders to the DOM, allowing

for easily reusable and customizable HTML views.[16]

2.6. Mobile App Integration

2.6.1. Native Apps

 Native apps are what comes to most of our minds when we think of mobile apps and are

downloaded from the App Store or Google Play. What distinguishes native apps from

mobile web and hybrid apps is that they are developed for specific devices. For instance,

Android apps are written in Java and iPhone apps are written in Objective-C.[26]

 The advantage of choosing a native app is that it is the fastest and most reliable when it

comes to user experience. Native apps can also interact with all of the device‟s operating

system features, such as the microphone, camera, contacts lists, etc. However, a bigger

budget is required if you want to build your app for multiple platforms (i.e. iPhones and

Android) and to keep your native app updated.[22]

2.6.2. Hybrid Apps

 A hybrid app combines elements of both native and web applications. Hybrid apps can

be distributed through the app stores just like a native app, and they can incorporate

operating system features. Like a web app, hybrid apps can also use cross-compatible web

technologies.[25]

 Hybrid apps are typically easier and faster to develop than native apps. They also require

less maintenance. On the other hand, the speed of a hybrid app will depend completely on

the speed of the user‟s browser. This means hybrid apps will almost never run as fast as a

native app runs.

 The advantage of hybrid apps is that you can build them on a single base, which allows

you to add new functionalities to multiple versions of your app. With native apps, you will

need to replicate every new feature you want to introduce for each platform.[16]

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/State_management
https://en.wikipedia.org/wiki/Web_framework#URL_mapping
https://en.wikipedia.org/wiki/API

Project technologies and structure

Page | 30

2.6.3. Cross Platform Software

2.6.3.1. Overview

 Cross-platform software is a type of software application that which works on multiple

operating systems or devices, which are often referred to as platforms. A platform means

an operating system such as Windows, Mac OS, Android or iOS. When a software

application works on more than one platform, the user can utilize the software on a wider

choice of devices and computers.[2]

2.6.3.2. Dart

 Dar t is an object-oriented programming language developed by google. Whilst technically not

restricted, it is primarily used for creating front-end user inter faces for the web (with angularDart or

flutter for Web) and mobile apps (flutter).

 It is under active development, compiled to native machine code (when used for building mobile

apps), inspired by modern features of other programming languages (mainly Java, JavaScript, C#)

and strongly typed.

 As already mentioned, dart is a compiled language. That means, that your code is not executed

like you write it, but instead, a compiler parses and transforms it to machine code.

2.6.3.3. Flutter

 Flutter is actually a combination of two things an sdk (software development kit) and a

framework built. Flutter aims to make cross platform development (of mobile apps) a breeze. The

goal is to allow you to have one code-base that generates apps for multiple platforms (like iOS and

android).

Figure 08 illustrates the Advantages of flutter.

Project technologies and structure

Page | 31

Figure 2.8: Advantages of Flutter

To achieve this goal, flutter is compiled to native machine code (to achieve good performance) and

offers many utility tools and featugres to speed up your development work.

2.7. Real-Time Functionality

2.7.1. WebSockets

 Modern web applications are incorporating real-time capabilities, which enable the

application to continuously present the user with recently updated information. Unlike

traditional applications, in real-time applications the common roles of browser and server

can be reversed since the server needs to update the browser with new data, regardless of

the browser request state. This means that unlike the common HTTP behavior, the server

won‟t wait for the browser‟s requests. Instead, it will send new data to the browser

whenever this data becomes available.[22]

 WebSocket is a computer communications protocol, providing full-duplex

communication channels over a single TCP connection.

 The WebSocket API is an advanced technology that makes it possible to open a two-way

interactive communication session between the user's browser and a server. With this API,

you can send messages to a server and receive event-driven responses without having to

poll the server for a reply.

2.7.2. Socket.io

 Socket.IO enables real-time, bidirectional and event-based communication. It works on

every platform, browser or device, focusing equally on reliability and speed. Sockets have

Project technologies and structure

Page | 32

traditionally been the solution around which most real-time chat systems are architected,

providing a bi-directional communication channel between a client and a server.

 Socket.IO is a JavaScript library that helps improving work with WebSockets. It consists

of two parts, server part (for Node.JS) and client part (for web browsers). Both of them

have similar APIs based on event-driven architecture. Socket.IO allows using additional

features such as sending data to a large number of sockets at the same time (broadcasting)

or storing the data.[22]

2.8. Conclusion

 In this chapter, we talked about our project structure and the technologies we have used

in it. We presented the various web stacks especially the JavaScript stacks. We compared

these stacks languages, frameworks and we decided to use the MERN stack to make the

FindMe application

In the next chapter, we will analyze our project and we will describe the Find Me system

logic using diagrams and flowcharts.

Find Me System Analysis And Design

Page | 33

Chapter 3 Find Me System Analysis And Design

3.1. Introduction

 In this chapter, we will start with a preliminary study on the FindMe application.Then we

will describe the system structural and the project model using the first three levels of the

data flow diagram.

 This chapter provides a detailed explanation of the authentication, the search mechanism,

the account management, the track manipulation and the chat mechanism. It also explains

the database architecture of the FindME system.

3.2. Preliminary study

3.2.1. System Description

 As we mentioned in the introduction, we have made a Web application (MERN app) and

a cross platform application work on both iOS and Android that help find the missing

people that is called „FindMe‟.

 Starting with the MERN app, „FindMe‟ Web is prompted with a landing page where

users can enter their details in the sign-up form or they can also sign in with Facebook to

be authorized to use „FindMe‟. After signing in they are routed to the „home-page‟ where

each user sees other users public „tracks‟ (track is a collection of an information about the

missing person) and the people that are found in the last 24 hours. They have the option of

filtering the „tracks‟ to see them based on the location and if the „track‟ is found or not.

Here the user can search automatically using a photo of someone; he can find this option in

the landing page because you do not need to be authorized to look for someone.

 In „FindMe‟ there is a navigation bar that allows the users to navigate easily, the first link

„Home‟ is for homepage ,the second link „My Tracks‟ takes to „my-tracks-page‟ where the

user can create ,edit and delete his own „track‟, this „track‟ contains a photo and an

information about this lost person and the user who wants to find him. ‟They Found Me‟

link takes to a page that display the related „tracks‟ to the found persons where the user can

confirm or delete this temporary „track‟. All the „tracks‟ that are related to this person will

be deleted.

 The navbar contains three links represented by icons; the notification link takes to the

„notification-page‟ where we notify the user that a person in his „tracks‟ is found. The chat

link takes to the „chat-page‟ where the user send and receive messages and contact other

Find Me System Analysis And Design

Page | 34

user, every conversation is related to a „track‟. If the „track‟ is deleted this conversation

will be blocked. There is a logout link and an account link that takes the user to a page

where he can edit his email, password and delete his account.

3.2.2. System Functionality

 In this section, we present our system functionality and all the actions that the user can

do. The system actions are divided into 4 parts. Note that „FindMe‟ is a real time

application.

3.2.2.1. Account Actions

 The account actions:

 Register (sign-up).

 Login with email or Facebook.

 Logout.

 Password recovery using the account email.

 Change account email or password.

 Delete account.

3.2.2.2. Track Actions

 The „track‟ actions:

 Create „track‟.

 Edit „track‟.

 Delete „track‟.

 Automatic search.

 Confirm Temporary „track‟.

 Delete temporary „track‟.

3.2.2.3. Chat Actions

 The chat actions:

 Send message.

 Remove message.

 Block conversation

3.2.2.4. Under the Hood Actions

 The „under the hood‟ actions:

Find Me System Analysis And Design

Page | 35

 Get the user account.

 Send validation emails.

 Get the user „tracks‟.

 Get the users public „tracks‟.

 Filter the users public „tracks‟.

 Get the people that are found in the last 24 hours.

 Get the conversation messages.

 Get the conversations last messages.

 Notify the users.

3.2.3. Project Requirements

 The project requires:

 Single page Web application.

 The application should be built with the MVC architecture.

 Node.js backend with Express and MongoDB.

 ReactJS front-end.

 Good application structure so our app can grow.

 Responsive Web application.

 Cross platform application work on iOS and Android.

 Based on the requirements, the Web application was built in the MVC architecture. There

is a complete separation between the server-side and the client-side logic. The model is

implemented in the server, and the view and the controller are implemented in the client.

Moreover, the application (web and mobile) does not communicate directly to the server,

but uses REST APIs to feed the data. The Web application uses the routes created in

ReactJs to navigate throughout the web pages but all data are served by updating a single

page.

3.3. Structural/ Procedural design

3.3.1. Flowchart diagram

 This is a visual representation of the sequence of steps and decisions needed to perform a

process. Figure01 represents the sequence of activities a user undergo when using the

application based on its functionalities.

Find Me System Analysis And Design

Page | 36

Figure 3.1: Flowchart diagram for the application

3.3.2. Object Oriented Design

 Use cases share different kinds of relationships. Defining the relationship between two

use cases is the decision of the software analysts of the use case diagram.

 A relationship between two use cases is basically modeling the dependency between the

two use cases.

 The reuse of an existing use case by using different types of relationships reduces the

overall effort required in developing a system.

 A use case diagram is usually simple. It summarizes in details the system‟s users and

their interactions with the system. It does not show the detail of the use cases:

 It only summarizes some of the relationships between use cases, actors, and

systems.

 It does not show the order in which steps are performed to achieve the goals of

each use case. Figure represents the Find-Me use case diagram.

Login

Start

succeess Register

 „Track‟

manipulation

 Automatic

 search

 Manual

 search

 chat

 Logout

Yes

No

Find Me System Analysis And Design

Page | 37

Figure 3.2: Find Me Use Case Diagram

3.4. Project Model

3.4.1. Data Flow Diagram (DFD)

 A data flow diagram (DFD) maps out the flow of information for any process or system.

It uses defined symbols like rectangles, circles and arrows, plus short text labels, to show

data inputs, outputs, storage points and the routes between each destination.

 Data flowcharts can range from simple, even hand-drawn process overviews, to in-

depth, multilevel DFDs that dig progressively deeper into how the data is handled. They

can be used to analyze an existing system or model a new one. Like all the best diagrams

and charts, a DFD can often visually “say” things that would be hard to explain in words,

and they work for both technical and nontechnical audiences, from developer to CEO.

 That is why DFDs remain so popular after all these years. While they work well for data

flow software and systems, they are less applicable nowadays to visualizing interactive,

real-time or database-oriented software or systems.

Find Me System Analysis And Design

Page | 38

3.4.2. DFD Level 0

 A level 0 data flow diagram, also known as a context diagram, shows a data system as a

whole and emphasizes the way it interacts with external entities. This DFD level 0 example

shows how such a system might function within a typical retail business.

Figure 03 illustrates our Project (FindMe) zero level DFD.

Figure 3.3: FindMe Zero Level DFD

3.4.3. DFD Level 1

 A level 1 data flow diagram is more detailed than a level 0 DFD but not as detailed as a

level 2 DFD. It breaks down the main processes into sub-processes that can then be

analyzed and improved on a more intimate level.

Figure 04 illustrates our Project (FindMe) first level DFD. The visitor is just a not

authenticated user.

Find Me System Analysis And Design

Page | 39

Figure 3.4: FindMe First Level DFD

3.4.4. DFD Level 2

3.4.4.1. Overview

 A level 2 data flow diagram offers a more detailed look at the processes that make up an

information system than a level 1 DFD does. It can be used to plan or record the specific

makeup of a system.

3.4.4.2. Authentication

3.4.4.2.1. Definition

 In computing, authentication is the process of verifying the identity of a person or device.

A common example is entering a username and password when you log in to a website.

Entering the correct login information lets the website know:

 Who you are.

Chat
Message

User

Register

 Login

Users

New Image Image

Search

New Track

Loop through

all the images

Image Found

Track

Visiter

Find Me System Analysis And Design

Page | 40

 That it is actually you accessing the website.

 While a username/password combination is a common way to authenticate your identity,

many other types of authentication exist. For example, you might use a four or six-

digit passcode to unlock your phone. A single password may be required to log on to

your laptop or work computer. Every time you check or send email, the mail server verifies

your identity by matching your email address with the correct password. Your web

browser or email program often saves this information so you do not have to enter it each

time.

 Biometrics may also be used for authentication. For example, many smartphones have a

fingerprint sensor that allows you to unlock your phone with a simple tap of your thumb or

finger. Some facilities have retinal scanners, which require an eye scan to allow authorized

individuals to access secure areas. Apple's Face ID authenticates users by facial

recognition.

3.4.4.2.2. JSON Web Token (JWT)

 JWT is a JSON web object, which helps creating a safe data communication between two

parties, which in application‟s context are the application‟s server, and the end-user. The

token is composed of a header, a payload and a signature.

 Header provides information how signature is to be computed. Payload is the data stored

in the token, like the user information. The payload is encrypted or hashed to produce a

signature. It is used for the authentication of users in the application.

Figure 05 illustrates the way JWT attaches with the application to provide security and

privacy to the contents.

https://techterms.com/definition/biometrics
https://techterms.com/definition/smartphone

Find Me System Analysis And Design

Page | 41

User

 Signup

 Login

 Validate signup

. details
Register new

. user

User

 Validate login

. credentials
 Verify login

. credentials

Get users details

from facebook

 Verify and

. validate user

 Login with

. facebook
 Authorize the

. user

User details

User credentials

Facebook

credentials

User details

from facebook

Figure 3.5: JWT to access the application server

3.4.4.2.3. Authentication second level DFD

Find Me System Analysis And Design

Page | 42

Figure 3.6: Authentication Second level DFD

Figure 06 illustrates our system authentication second level DFD.

3.4.4.3. Account Management

 The account management system data flow diagram is often used as preliminary step to

create an overview of the account without going into great details. It normally consists of

overall application data-flow and processes of the account process.

Figure 07 illustrates our system account management second level DFD.

Figure 3.7: Account management Second level DFD

3.4.4.4. Track Management

 Here we present our system „track‟ manipulation .Every authenticated user has the ability

to create,edit ,and delete his own track , and make it public to be seen by the other users, or

private that only the owner can see it. Every track must have a phone number, the lost

User

Forgot

password

Forgot

password

Login to

system

Check

credentials

Check roles

of access

Manage the

account

Delete account Edit password Edit email

Delete related

„Tracks‟

Delete related

conversations

Delete related

messages

Find Me System Analysis And Design

Page | 43

person full name and one picture to make the communication and the search possible. The

„track‟ can have other optional information like the date of birth and the gender.

Figure 08 illustrates the „Track‟ management second level DFD.

Figure 3.8: ‘Track’ management Second level DFD

3.4.4.5. Communication System

 FindMe has a communication system to make the user experience much better. The

principle is simple, each public „track„ has a connect button where the user can

communicate with the „track‟ creator. When the user push the connect button and send the

first message a new conversation will be created related to this „track‟, if the track is

deleted or the lost person is found this conversation will be blocked automatically.

 Users can send, delete messages and block the conversation. FindMe has a real time

communication System where the two members (sender/receiver) view all conversation

updates at the same time.

User

Create

„Track‟

Edit

„Track‟

Delete

„Track‟

Data

validation

„Track‟ data

Show

„Track‟ data

„Track‟ data

Delete „Track‟

confirmation

 Track

 Delete related

. conversations

 Delete related

. messages

Find Me System Analysis And Design

Page | 44

Figure 09 illustrates our chat management second level DFD.

Figure 3.9: Second Level DFD of inter-user communication system

3.4.4.6. Face Recognition

3.4.4.6.1. Machine Learning

 Machine learning is the art of science of getting computers to act as per the algorithms

designed and programmed. Machine learning is an application of artificial intelligence (AI)

that provides systems the ability to automatically learn and improve from experience

without being explicitly programmed. Machine learning focuses on the development of

computer programs that can access data and use it to learn for themselves.[17]

Track

User User

Message

„Track‟ Id

 Contact user

User identity User identity

 Send

. messages

Message

Message Message Remove

. messages

 Block

. conversation

Find Me System Analysis And Design

Page | 45

 Many researchers think machine learning is the best way to make progress towards

human-level AI. Machine learning includes the following types of patterns:

 Supervised learning pattern

 Unsupervised learning pattern

3.4.4.6.2. Deep Learning

 Deep learning is a subfield of machine learning where concerned algorithms are inspired

by the structure and function of the brain called artificial neural networks.

 All the value today of deep learning is through supervised learning or learning from

labelled data and algorithms.[17]

 Each algorithm in deep learning goes through the same process. It includes a hierarchy

of nonlinear transformation of input that can be used to generate a statistical model as

output.

Consider the following steps that define the Machine Learning process:

 Identifies relevant data sets and prepares them for analysis. Chooses the type of

algorithm to use.

 Builds an analytical model based on the algorithm used.

 Trains the model on test data sets, revising it as needed. Runs the model to

generate test scores.

3.4.4.6.3. Difference between Machine Learning and Deep Learning

3.4.4.6.3.1.Hardware Dependencies

 Deep learning algorithms are designed to heavily depend on high-end machines unlike

the traditional machine learning algorithms. Deep learning algorithms perform a number of

matrix multiplication operations, which require a large amount of hardware support.[17]

3.4.4.6.3.2.Amount of Data

 Machine learning works with large amounts of data. It is useful for small amounts of

data too. Deep learning on the other hand works efficiently if the amount of data increases

rapidly.

Figure 10 shows the working of machine learning and deep learning with the amount of

data:

Find Me System Analysis And Design

Page | 46

Figure 3.10: Machine Learning and Deep Learning Amount of Data

3.4.4.6.4. Problem Solving Approach

 The traditional machine learning algorithms follow a standard procedure to solve the

problem. It breaks the problem into parts, solve each one of them and combine them to get

the required result. Deep learning focuses in solving the problem from end to end instead

of breaking them into divisions.[17]

3.4.4.6.4.1.Execution Time

 Execution time is the amount of time required to train an algorithm. Deep learning

requires a lot of time to train as it includes many parameters, which takes a longer time

than usual. Machine learning algorithm comparatively requires less execution time.

3.4.4.6.4.2.Interpretability

 Interpretability is the major factor for comparison of machine learning and deep

learning algorithms. The main reason is that deep learning is still given a second thought

before its usage in industry.

3.4.4.6.4.3.Future Trends

 With the increasing trend of using data science and machine learning in the industry, it

will become important for each organization to inculcate machine learning in their

businesses.

Find Me System Analysis And Design

Page | 47

 Deep learning is gaining more importance than machine learning. Deep learning is

proving to be one of the best techniques in state-of-art performance.

Machine learning and deep learning prove beneficial in research and academics field.

3.4.4.6.5. Machine Learning Model

 A machine learning model is made of up of nodes which are similar to Neurons in our

human brains. These neurons are structured as layers. There is an Input Layer, Hidden

Layer, and Output Layer.

 The Input layer takes the input, pre-processes it for the next layers and sends it to the

hidden layer.

 The hidden layer itself can have multiple layers within itself, which do the

inferencing/processing of the input to get to output. There is some „weight‟ associated with

each node of the model (just like Neurons in our brain). These weights are tuned while the

model is being trained until we get the desired accuracy in the output.[17]

 The output layer gets the inferred output from the Hidden layer and gives the output in

the desired format.

3.4.4.6.6. TensorFlow

3.4.4.6.6.1.Overview

 TensorFlow is an open source framework developed by Google researchers to

run machine learning, deep learning and other statistical and predictive analytics

workloads. Like similar platforms, it's designed to streamline the process of developing

and executing advanced analytics applications for users such as data scientists, statisticians

and predictive modelers.

 The TensorFlow software handles data sets that are arrayed as computational nodes in

graph form. The edges that connect the nodes in a graph can represent multidimensional

vectors or matrices, creating what are known as tensors. Because TensorFlow programs

use a data flow architecture that works with generalized intermediate results of the

computations, they are especially open to very large-scale parallel processing applications,

with neural networks being a common example.

 TensorFlow applications can run on either conventional CPUs or GPUs, as well as

Google's own TPUs, which are custom devices expressly designed to speed up TensorFlow

Find Me System Analysis And Design

Page | 48

jobs. Google's first TPUs, detailed publicly in 2016, were used internally in conjunction

with TensorFlow to power some of the company's applications and online services,

including its RankBrain search algorithm and Street View mapping technology.[17]

3.4.4.6.6.2.Tensor Data Structure

 Tensors are used as the basic data structures in TensorFlow language. Tensors represent

the connecting edges in any flow diagram called the Data Flow Graph. Tensors are defined

as multidimensional array or list.[17]

 Tensors are identified by the following three parameters:

 Rank: unit of dimensionality described within tensor is called rank. It identifies the

number of dimensions of the tensor. A rank of a tensor can be described as the

order or n-dimensions of a tensor defined.

 Shape: the number of rows and columns together define the shape of Tensor.

 Type: type describes the data type assigned to Tensor‟s elements.

A user needs to consider the following activities for building a Tensor:

 Build an n-dimensional array

 Convert the n-dimensional array.

Figure 11 illustrates the various dimensions of TensorFlow.

Figure 3.11: Various Dimensions of TensorFlow

Find Me System Analysis And Design

Page | 49

3.4.4.6.6.3.Convolutional Neural networks

 Convolutional Neural networks are designed to process data through multiple layers of

arrays. This type of neural networks is used in applications like image recognition or face

recognition. The primary difference between CNN and any other ordinary neural network

is that CNN takes input as a two-dimensional array and operates directly on the images

rather than focusing on feature extraction, which other neural networks focus on.

 The dominant approach of CNN includes solutions for problems of recognition. Top

companies like Google and Facebook have invested in research and development towards

recognition projects to get activities done with greater speed.[17]

3.4.4.6.7. Face Recognition with Javascript

3.4.4.6.7.1.Face-api.js

 To make a facial recognition app, we can use a library like face-api.js. Face-api.js is a

JavaScript module, built on top of tensorflow.js core, which implements several CNNs to

solve face detection, face recognition and face landmark detection, optimized for the web

and for mobile devices. [23]

3.4.4.6.7.2.Solving Face Recognition with Deep Learning

 To keep it simple, what we actually want to achieve, is to identify a person given an

image of his face, e.g. the input image. The way we do that, is to provide one (or more)

image(s) for each person we want to recognize, labeled with the person's name, e.g.

the reference data. Now we compare the input image to the reference data and find

the most similar reference image. If both images are similar enough we output the person‟s

name, otherwise we output ‘unknown‟.[23]

 However, two problems remain. Firstly, what if we have an image showing multiple

persons and we want to recognize all of them?

 Secondly, we need to be able to obtain such kind of a similarity metric for two face

images in order to compare them.

3.4.4.6.7.3.Face Detection

 The most accurate face detector is SSD (Single Shot Detector) , which is a CNN based

on MobileNet V1, with some additional box prediction layers stacked on top of the

network.

Find Me System Analysis And Design

Page | 50

Furthermore, face-api.js implements an optimized Tiny Face Detector, basically an even

tinier version of Tiny Yolo v2 utilizing depthwise separable convolutions instead of

regular convolutions, which is a much faster, but slightly less accurate face detector

compared to SSD MobileNet V1.

 Lastly, there is also a MTCNN implementation, which is mostly around nowadays for

experimental purposes however.

 The networks return the bounding boxes of each face, with their corresponding scores,

e.g. the probability of each bounding box showing a face. The scores are used to filter the

bounding boxes, as it might be that an image does not contain any face at all. Note, that

face detection should also be performed even if there is only one person in order to retrieve

the bounding box.

3.4.4.6.7.4.Face Landmark Detection and Face Alignment

 First problem solved! However, we want to point out that we want to align the bounding

boxes, such that we can extract the images centered at the face for each box before passing

them to the face recognition network, as this will make face recognition much more

accurate.

For that purpose face-api.js implements a simple CNN, which returns the 68 point face

landmarks of the image. From the landmark positions, the bounding box can be centered

on the face.[23]

3.4.4.6.7.5.Face Recognition

 Now we can feed the extracted and aligned face images into the face recognition

network, which is based on a ResNet-34 like architecture and basically corresponds to the

architecture implemented in dlib The network has been trained to learn to map the

characteristics of a human face to a face descriptor (a feature vector with 128 values),

which is also oftentimes referred to as face embedding.[23]

 Now to come back to our original problem of comparing two faces: We will use the face

descriptor of each extracted face image and compare them with the face descriptors of the

reference data. More precisely, we can compute the Euclidian distance between two face

descriptors and judge whether two faces are similar based on a threshold value (for 150 x

150 sized face images 0.6 is a good threshold value). Using Euclidian distance works

surprisingly well, but of course you can use any kind of classifier of your choice.[23]

Find Me System Analysis And Design

Page | 51

3.4.4.7. Search Mechanism

3.4.4.7.1. Manual Search

 FindMe has the flexibility that allows the users to use both manual and automatic

search.

 The manual search principle is simple, after signing in the users are routed to „home-

page‟ where the authenticated user sees other users public „tracks‟, he can also filter them

as he wishes and contact the „track‟ creator for more details about the missing person.

Figure12 illustrates the manual search second level DFD.

Figure 3.12: Manual Search Second Level DFD

3.4.4.7.2. Automatic Search Mechanism

 Both users and visitors (not authenticated users) can use the search feature. First, the

user takes a picture using FindMe mobile application or sends a picture using the web

application; this picture will be stored temporary on our server.

User

 See all

. „Tracks‟

 „Tracks‟

. filtering

 See filtered

. „Tracks

 Contact the

. owner
 Positive result

More data

More data
 negative result

 missing person

Find Me System Analysis And Design

Page | 52

 FindMe search system extracts the faces from this picture and compares it with all the

missing people faces that are already stored when the users create their „tracks‟. If any

matches are detected, the server will send the phone numbers, the emails, and the full name

to picture sender (positive result).This picture will be deleted when the process ends.

 Face-api.js is responsible for detecting the picture faces and all the heavy things. The

face recognition process may take some times so we need a high performance server. We

advise users to store and send pictures containing one face to accelerate this process.

Figure 13 illustrates the automatic search mechanism second level DFD.

Figure 3.13: Automatic Search Mechanism Second Level DFD

User Send image
Store the

image

Image

Image valiadtion

Ectract faces

No faces

detected

 Faces

. detected

 No matches

. detected

Matches

detected

Face recognition

Face recognition

Face detection
Loop through all the images

 Find realted

. „Track‟

Information

Image Id

Extrac

t

informatio

n
User location

User location

 Error message

 Notify users Send information

Find Me System Analysis And Design

Page | 53

3.4.5. DataBase Architecture

3.4.5.1. Mongoose

 Mongoose is a JavaScript framework that is commonly used in a Node.js application

with a MongoDB database. It is an Object Document Mapper .This means that Mongoose

allows you to define objects with a strongly-typed schema that is mapped to a MongoDB

document.

 Mongoose provides an incredible amount of functionality around creating and working

with schemas.It enabled our project to connect mongodb with node.js easily.

3.4.5.2. Models And Database Schema

Figure 14 illustrates these mongoose schemas associations (relations).

Figure 3.14: Data Base Schema Assossiations Diagram

These files represent the data structure of the application. It implements data logic and

handles the storage to MongoDB. Everything in Mongoose starts with a Schema. Each

 User Chat

Has many

Belongs to many

 Message

Has many

TrackIsFound

 Track

Has many

Has many

 Image

Has one Has one

Notification-

Generator
 Notification

Has one

Find Me System Analysis And Design

Page | 54

schema maps to a MongoDB collection and defines the shape of the documents within that

collection

The user belongs to many conversations, each conversation has many messages and

belongs to one „track‟,The user has many „tracks‟ and temporary „tracks‟ (TheyFoundMe)

that‟s related to the found person „track‟ after the positive result of the search.

3.4.5.3. Data Model Schema

3.4.5.3.1. User

 User model schema represents the account data structure.

Table 1: User Data Model Schema

 Key Name Data Type

 _id ObjectId

 email String

 userName String

 password String

 facebookId String

 resetExpiretion Date

 resetToken String

 editExpiretion Date

 editToke String

 createdAt Date

3.4.5.3.2. Track

 Track model schema represents the „tracks‟ data structure.

Find Me System Analysis And Design

Page | 55

Table 2: Track Data Model Schema

 Key Name Data Type

 _id ObjectId

 Name String

 Surname String

 dateOfBirth Date

 Gender String

 lostAt Date

 lostIn String

 isFound Boolean

 foundAt Date

 foundIn Date

 imageName String

 Emails [String]

 phoneNumbers [String]

 userId ObjectId

 Access String

 createdAt Date

Find Me System Analysis And Design

Page | 56

3.4.5.3.3. TrackIsFound

 It represents the data structure of the „tracks‟ that are found.

Table 3: TrackIsFound Data Mode Schema

 Key Name Data Type

 _id ObjectId

 Name String

 Surname String

 imageName String

 Location String

 foundAt Date

 userId ObjectId

 trackId ObjectId

3.4.5.3.4. Temp User

Table 4: TempUser Data Model Schema

 Key Name Data Type

 _id ObjectId

 Email String

 Username String

 Password String

 Token String

 Expiration Date

 createdAt Date

 When the user creates the account for the first time, the tempUser will be created to store

the user data.

Find Me System Analysis And Design

Page | 57

 After the email confirmation, this tempUser will be deleted.

3.4.5.3.5. Image

 It represents the data structure of the images in our application.

Table 5: Image Data Model Schema

 Key Name Data Type

 _id ObjectId

 imageName String

 Access String

 trackId ObjectId

 chatId ObjectId

 messageId ObjectId

 userId ObjectId

 createdAt Date

3.4.5.3.6. Chat

It represents the data structure of the users conversations.

Table 6: Chat Data Model Schema

 Key Name Data Type

 _id ObjectId

 Between [ObjectId]

 trackId ObjectId

 isBlocked Boolean

 lastMessageCreatedAt Date

 createdAt Date

3.4.5.3.7. Message

 It represents the data structure of the users messages.

Find Me System Analysis And Design

Page | 58

Table 7: Message Data Model Schema

 Key Name Data Type

 _id ObjectId

 Text String

 File String

 fileType String

 filename String

 userId ObjectId

 trackId ObjectId

 chatId ObjectId

 Seen Boolean

 Removed Boolean

 createdAt Date

3.4.5.3.8. Notification

 It represents the data structure of the users notifications.

Table 8: Notification Data Model Schema

 Key Name Data Type

 _id ObjectId

 firstName String

 lastName String

 userId ObjectId

 trackIsFoundId ObjectId

 createdAt Date

3.4.5.3.9. NotificationGenerator

 It represents the data structure of the users notifications counter.

Find Me System Analysis And Design

Page | 59

Table 9: NotificationGenerator Data Model Schema

 Key Name Data Type

 _id ObjectId

 messagesCounter Number

 notificationsCounter Number

 userId ObjectID

 createdAt Date

3.5. Conclusion

 In this chapter we described the functionality of the FindMe application and our project

requirements. We also described the project model using the data flow diagrams.

 In the next chapter we will start with the implementation and we will present the result

that we have obtained.

Implementation and results

Page | 60

Chapter 4 Implementation and results

4.1. Introduction

 This chapter describes the implementation of the FindMe application, which is represented

on setting up the project. In this chapter, we will present the important part of the code, and

we will display the user interfaces.

This chapter also provides a simple discussion about our project limitations.

4.2. Setting Up The Project

4.2.1. Setting Up The Back-end

4.2.2. Initiating The Back-end Project

To initiate the back-end project let us create a new empty project folder using the terminal:

$ mkdir find_me

Then we change into that newly created folder by using:

$ cd find_me

Let‟s create a „package.json‟ file inside that folder by using the following command:

$ npm init –y

 All npm packages contain a file, usually in the project root; called „package.json‟ .This

file holds various metadata relevant to the project. This file is used to give information to

npm that allows it to identify the project as well as handle the project's dependencies.

 It can also contain other metadata such as a project description, the version of the project

in a particular distribution, license information, even configuration data - all of which can

be vital to both npm and to the end users of the package. The „package.json‟ file is

normally located at the root directory of a Node.js project.

 With the „package.json‟ file available in the project folder we‟re ready to add some

dependencies to the project.

Figure 01 shows our back-end project „package.json‟ file.

Implementation and results

Page | 61

Figure 4.1: Back-End package.json File

To install the dependencies we just setup,we just go into our console and type „npm

install‟, we will see our application working to bring in those modules into the

„node_modules‟ directory that it creates.

4.2.2.1. Setting Up The app.js File

 This is the back-end project entry point. We have now pulled in our modules, configured

our application for things like database, some express settings, routes, and then started our

server. The entire code for the file is here and it is commented for help understanding.

Figure 02 shows the „app.js‟ file.

Implementation and results

Page | 62

Figure 4.2: Back-End Project app.js File

4.2.2.2. Routes

4.2.2.2.1. Auth.js (Route)

 This file contains the routes, which are responsible for the account manipulation and the

user authentication endpoints. Therefore, this is the link between the account management

back-end logic and the front-end.

Figure 03 illustrates the register route source code.

Implementation and results

Page | 63

Figure 4.3: Regiter Route Source Code

4.2.2.2.2. Track.js (Route)

 This file contains the routes, which are responsible for the „track‟ manipulation endpoints.

Therefore, this is the link between the „track‟ management back-end logic and the front-

end.

Figure 04 illustrates the „create track‟ route source code.

Figure 4.4: ‘Create-Track’ Route Source Code

4.2.2.2.3. Chat.js (Route)

 This file contains the routes, which are responsible for the chat endpoints. So this is the

link between the chat back-end logic and the front-end.

Implementation and results

Page | 64

Figure 05 illustrates all the chat routes source code.

Figure 4.5: Chat Routes Source Code

4.2.2.3. Controllers

4.2.2.3.1. Auth.js (Controller)

 This file contains the middlewares, which are responsible for the account manipulation

and the user authentication logic.

Figure 06 illustrates the register middleware source code.

Implementation and results

Page | 65

Figure 4.6: Register Middleware Source Code

4.2.2.3.2. Track.js (Controller)

 This file contains the middlewares, which are responsible for the „track‟ manipulation and

the track management logic.

Figure 07 illustrates the „create-track‟ middleware source code.

Implementation and results

Page | 66

Figure 4.7: ‘Create-Track’ Middleware Source Code

4.2.2.3.3. Conversation.js (Controller)

This file contains the middlewares which are responsible for the chat and the chat

management logic.

Figure 08 illustrates the „send-message‟ middleware source code.

Implementation and results

Page | 67

Figure 4.8: ‘Send-Message’ Middleware Source Code

4.2.3. Setting Up The React Application

4.2.3.1. Initiating The Front-end Project

 We create the initial React project by using the „create-react-app‟ script. What‟s great

about „create-react-app‟ is that this script can be executed by using the npx command

without the need to install it first on our system. Just execute the following command :

$ npx create-react-app client

 Executing this command creates a new project directory „client‟. Inside this folder we will

find the default React project template with all dependencies installed.

4.2.3.2. Setting Up React Router

The next thing we needs to be added to the project is the React Router package (react-

router-dom) :

Implementation and results

Page | 68

$ npm install react-router-dom

With this package installed we‟re ready to add the routing configuration in app.js.

4.2.3.3. Setting Up The Index.js File

 This file is the entry point for our app which contains a root div element, then we add

the render method, the only required method in a class component, which is used to render

DOM nodes.

 Inside the render rmethod , we're going to put what looks like a simple HTML element.

This is called JSX, and we'll talk about it in the next section.

Figure 09 illustrates the index.js file source code.

Figure 4.9: Index.js Source Code

4.2.3.4. JSX

 As you've seen, we've been using what looks like HTML in our index.js code, but it's not

quite HTML. This is JSX, which stands for JavaScript XML.

 With JSX, we can write what looks like HTML, and also we can create and use our own

XML-like tags.

Implementation and results

Page | 69

 Using JSX is not mandatory for writing React. Under the hood, it's

running „createElement’, which takes the tag, object containing the properties, and

children of the component and renders the same information.

 JavaScript expressions can also be embedded inside JSX using curly braces, including

variables, functions, and properties.

 JSX is easier to write and understand than creating and appending many elements in

vanilla JavaScript, and is one of the reasons people love React so much.

4.2.3.5. Setting Up The App.js File

 We've created one component (the App component). Almost everything in React consists

of components, which can be class components or simple components. Most React apps

have many small components, and everything loads into the main App component.

Figure 10 illustrates the app.js file source code.

Figure 4.10: Front-End Project app.json File

Implementation and results

Page | 70

4.2.3.6. State Management

4.2.3.6.1. AuthContext.js

 This file contains all the functions and the logic that is responsible for front-end

authentication manipulation.

Figure 11 illustrates the register method source code.

Figure 4.11: Rgister Method Source Code

4.2.3.6.2. TrackContext.js

 This file contains all the functions and the logic that is responsible for front-end track

manipulation.

Figure 12 illustrates the „create-track‟ method source code.

Implementation and results

Page | 71

Figure 4.12: ‘Create-track’ Method Source Code

4.2.3.6.3. ChatContext.js

 This file contains all the functions and the logic that is responsible for front-end chat

management.

Figure 13 illustrates the „load-messages‟ method source code.

Implementation and results

Page | 72

Figure 4.13: ‘Load-Messages’ Method Source Code

4.3. User Interfaces

4.3.1. Public Pages

4.3.1.1. The FindMe Landing Page

 A landing page is the first page you land on after clicking the website link. In this sense, a

landing page could be almost anything.

 FindMe landing page contains login, signin buttons, and a button to start the automatic

search.

Figure 14 and figure 15 show the landing page user interface dsiplayed on all screens.

Implementation and results

Page | 73

Figure 4.14: Large Screen Landing Page User Interface

Figure 4.15: Small Screen Landing Page User Interface

4.3.1.2. Automatic Search UI

 Here the user can browse an image and search for anyone by clicking on the „look for

someone‟ button. The search result will appear here on the same page. This page will

appear to all users (authenticated and not authenticated users).

Implementation and results

Page | 74

Figure 16 bellow shows the automatic search page user interface (same page displayed on

all screens).

Figure 4.16: Automatic Search User Interface

4.3.1.3. Authentication Pages

4.3.1.3.1. Signup Ui (Registration)

The Signup page (also known as a registration page) enables other users to independently

register and gain access to FindMe system. The user needs to enter his email, username

and password to create an account .In this page the user has an option to create an account

using his Facebook profile (the username will be generated automatically).

Figure 17 shows the signup user interface (same page dispayed on all screens)

Implementation and results

Page | 75

Figure 4.17: Signup User Interface

4.3.1.3.2. Email Confirmation UI

The confirmation email is a kind of a transactional email sent to a customer after a certain

condition is triggered.

To complete the registration, the user must confirm his email .An automatic response email

will be send to the user it contains a confirmation code.

Figure 18 shows the email confirmation user interface (same page dispayed on all screens).

Implementation and results

Page | 76

Figure 4.18: Email Confirmation User Interface

4.3.1.3.3. Login UI

 The login page allows a user to gain access to an application by entering their username

(or email) and password or by authenticating using Facebook.

Figure 19 shows the login user interface (same page displayed on all screens).

Implementation and results

Page | 77

Figure 4.19: Login User Interface

The user navigates to the application and is presented with a login page as a way to gain

access to the application. There are two possible results:

 Authentication is successful and the user is directed to the application home page.

 Authentication fails and the user remains on the login page. If authentication fails,

the screen shows an informational or error message about the failure.

 The user is automatically logged out and redirected to the login page, which will display

an informational message explaining what happened.

4.3.1.3.4. Password Recovery

 If the user has forgotten his password. A link is available in the login page to begin the

process to reset this password. Once the user clicks on this link, an automatic response

email will be sent to the user. It contains a confirmation code and the contents of the login

page are replaced with fields specific to recovery the password.

Implementation and results

Page | 78

Figure 20 and 21 illustrate the UI password recovery steps.

Figure 4.20: Forgot Password User Interface

Implementation and results

Page | 79

Figure 4.21: Reset Password User Interface

4.3.1.4. Error Page UI (Not Found Page)

 When a visitor clicks on a link to a deleted or moved page, he will see the 404 error page.

He will also see it if he mistypes a URL, or clicks on a broken or truncated link

Figure 22 shows the error page user interface (same page dispayed on all screens).

Implementation and results

Page | 80

Figure 4.22: Error Page User Interface

4.3.2. Private Pages

4.3.2.1. Home page

4.3.2.1.1. Components

4.3.2.1.1.1.Components Distrobution

The Home UI pops in after successful registration of user details (or login) .The home page

is the biggest part in FindMe Web client that uses React.js components principle, so we

decided to divide the UI explanation into 3 main parts (components) :

Filter component.

Right sidebar component.

Track component.

4.3.2.1.1.2.Track Component

 We can imagine the track as a post on the social media apps. The track contains the

missing person data and the image that FindMe automatic search based in.

 The user can see only the public tracks and his own tracks; the home page displays all the

public tracks that the users have.

 We have 4 types of tracks:

Implementation and results

Page | 81

 The other users track that is created by a different user, this track provides a

communication feature with the owner represented by the „connect‟ button. Figure 23

illustrates the users track UI.

Figure 4.23: Other Users Track User Interface

 The owner track that belongs to the same user, this track provides a delete and edit button

where the creator has the freedom to do anything with this track.

 Figure 24 illustrates the owner track UI.

Implementation and results

Page | 82

Figure 4.24: Owner Track User Interface

The temporary track, this track will be created when the user-missing person is found. The

track provides a delete and confirm button. Figure 25 illustrates the temporary track UI.

Figure 4.25: Temporary Track User Interface

The found person track, it‟s created when the user confirm the temporary track, this track

provides only a delete option and contains this person data as will the information that are

related to the person finding . Figure 26 illustrates the found person track user interface.

Implementation and results

Page | 83

Figure 4.26: Found Person Track User Interface

4.3.2.1.1.3.Filter Component

 This component gives the user the ability to manage the home page tracks sorting. The

user has the option of filtering the „tracks‟ to see them based on the location and if the

„track‟ is found or not. Figure 27 illustrates the filter UI.

Figure 4.27: Filter User Interface

4.3.2.1.2. Right Sidebar Component

This component provides a search button and displays the recent found people for the last

24 hours. Figure 28 illustrates the right sidebar component UI.

Implementation and results

Page | 84

Figure 4.28: Right SideBar Component User Interface

4.3.2.1.3. Home UI

 Now we present the full page with all the components together.

 On Small screens the „recent found‟ part (component) disappears and the automatic

search part is displayed above the filter component.

 Figure 29 and figure 30 show the home page user interface displayed on all screens.

Implementation and results

Page | 85

Figure 4.29: Home User Interface Displayed On Large Screen

Figure 4.30: Home User Interface Displayed On Small Screen

4.3.2.2. My Tracks UI

 Here the user can create a new track. This page also allows users to reach their tracks, edit

and delete them.

Implementation and results

Page | 86

Figure 31 shows my tracks user interface (same page displayed on all screens).

Figure 4.31: My Tracks User Interface

4.3.2.3. Create Track UI

 Create track and edit track have the same UI (it is the same component). Here the user

enters the correct missing person information.

There is a required information that must be included like:

 First name.

 Last name.

 Phone number.

 The missing person picture.

 Figure 32 shows create track user interface (same page displayed on all screens).

Implementation and results

Page | 87

Figure 4.32: Create Track User Interface

4.3.2.4. They Found Me UI

 Here the user can find the tracks that have a match with some people photos (temporary

tracks). If he confirms any track, other users will be notified and this track will be marked

so others can notice it.

 This track confirmation leads to delete all the temporary tracks that are related to the

same missing person.

 Figure 33 shows they found me user interface (same page displayed on all screens).

Implementation and results

Page | 88

Figure 4.33: They Found Me User Interface

4.3.2.5. Notifications UI

 The notification is a message that is automatically sent to the user to tell him there has

been an activity on the application, in our case this message is just an information about

finding a missing person .

Figure 34 shows the notifications user interface.

Figure 4.34: Notifications User Interface

Implementation and results

Page | 89

4.3.2.6. Chat UI

Figure 35 and figure 36 show the chat user interface displayed on both large and small

screens.

Figure 4.35: Chat User Interface On Large Screen

Figure 4.36: Chat User Interface On Small Screen

The chat UI consists of several parts (components) :

A chat message lists for displaying attachments, messages, and channels.

Implementation and results

Page | 90

A chat message component that is simply a what a user shares.

A chat message input component, because Composing the perfect message takes a robust

and flexible message input Ui , attaching images and files.

4.3.2.7. Account Settings Page

4.3.2.7.1. Profile UI

 The profile contains the user personal information. Here the user can edit his email and

password.

 Email editing passes through a validation process (validation email). Figure 37 shows the

profile user interface

Figure 4.37: Profile User Interface

4.3.2.7.2. Danger Zone UI

 Here the user can delete his account using the password confirmation for the accounts that

are created using the email. Figure 38 shows the danger zone user interface.

Conclusion

Page | 91

Figure 4.38: Danger Zone User Interface

4.4. Limitations

We have tried to implement all the major functions in our applications but it still has

several limitations:

 FindMe supports only English.

 FindMe is available only in Algeria.

 The mobile app is limited and supports only the automatic search feature.

 The face recognition process takes times and needs a high performance server.

4.5. Conclusion

In this chapter we described the implementation of the FindMe application, we explains

how to initialize the front-end and the back-end. We presented the important part of the

code then we displayed the UI of the main pages of the web and the mobile application.

Finally, we talked about our project limitations and the main parts that could be improved

on the future.

Conclusion

Despite the limited time, we have completed our project in the given time period

successfully. This project was an opportunity for us to learn many things including coding,

Conclusion

Page | 92

working in a team. We were also able to put our knowledge and our skills that we got in

these last five university years into this project. This project also helped us getting familiar

with platforms like Android, Ios, and Web.

We have created a functional, interactive, modular, evolvable, Web application called

FindMe to help finding the missing people using their faces photos. FindMe provides a

high quality system and a new searching mechanism (both manual and automatic) using

the face recognition and the Google cloud Deep Learning that will play an important role

in our lives. We have implemented the web client side with ReactJS, which is responsive

for all the screens, and the server side with node.js and mongoDB. We have implemented

the mobile application with flutter (framework of dart) which works on both IOS and

Andriod. We have obtained a code of more than sixty thousand lines, resulting from

generated codes, and our own source codes.

Today, the world is suffering from the corona virus that made creating FindMe difficult,

we were not able to meet. We have tried to implement all the major functions in our

application but it still has several limitations that we will improve in the future.

Future improvements include the design and implementation of a wearable IOT device,

with appropriate embedded software and electronics, which complements the FindMe

application. Persons with risk of getting lost (mentally disabled, Alzheimer sick people,

children) could wear such a device, and in case of a missing person event, the application

should register the photo and the name, and trigger the IOT to trace the missing person.

We can add more features to the mobile application. We can also work on making FindMe

available in other languages than English, and making it available in other world regions,

by giving it access to world missing person databases. The most important improvement

should be the development of our own deep learning algorithm to process people's searches

faster.

Conclusion

Page | 93

Biographies

1- Berners-Lee, T. (2000) Weaving the Web: The Original Design and Ultimate

Destiny of the World Wide Web. New York: HarperBusiness.

2- Build a Login/Auth App with the MERN stack [Internet] Bits and Pieces

November 2018.

3- Comer, D. (1991) Internetworking with TCP/IP (Volume 1: Principles, Protocols,

and Archi- tecture). Englewood Cliffs, NJ: Prentice-Hall.

4- Dana Nourie. Java technologies for Web Applications - Oracle

official website Accessed 2 June 2016.

5- Daniel Deutsch ,04 February 2017 - Understanding MVC Architecture with React

6- Davidson, J. (1988) An Introduction to TCP/IP. New York: Springer-Verlag.

7- Jacksi, Karwan & Abass, Shakir. (2019). Development History Of The World Wide

Web. International Journal of Scientific & Technology Research.

8- Hafner, K. and Lyon, M. (1996) Where Wizards Stay Up Late: The Origins of the

Internet. New York: Simon & Schuster.

9- Hanin M. Abdullah, Ahmed M. Zeki,2014.p.85-89. Frontend and Backend Web

technologies in Social Networking Sites: Facebook as an Example. Advanced

Computer Science Applications and Technologies (ACSAT), IEEE 3rd

International Conference .

10- Hernandez A,Accessed10 July 2016. Init.js: A Guide to the

Why and How of Full-Stack JavaScript Toptal LLC developers‟

official website.

11- JQuery API-JQuery officialwebsite accessed 10july 2016.

12- Krol, E. (1994) The Whole Internet User‟s Guide and Catalog, Second Edition.

Sebastopol, California: O‟Reilly.

13- Mimi Gentz,24 June 2016 Accessed 3june 2016. NoSQL vs SQL -

Microsoft Azure official website.

14- Mozilla developers, 7July 2016’ official website.

15- Nelson, T. H. (1982) Literary Machines 931. Sausalito, California: Mindful

Press.

Conclusion

Page | 94

16- React.js, 3 September 2018: a better introduction to the most powerful UI

library ever created hackernoon.com.

17- R. Max Wideman (2004),A Management Framework: For Project,

ProgramandPortfolio Integration. P. 30Banker, Kyle (March 28, 2011),MongoDB in

Action(1sted.), Manning, p. 375, ISBN 978-1-935182-87-0.

18- Rodriguez A,9 February 2015-Accessed 5 June 2016. RESTful Web

services: The basics - IBM official website.

19- Rosenfeld, L. and Morville, P. (1998) Information Architecture for the World

Wide Web.Sebastopol, California: O‟Reilly & Associates.

20- Stephenson, N. (1999) In the Beginning Was the Command Line. New York, NY:

Avon Books.

21- The modern application stack Mongodb Official Website - 26 January 2017

22- Vincent Mühler,25 June 2018 - face-api.js "JavaScript API for Face Recognition in

the Browser with tensorflow.js" .

23- Web Applications: What are They? What of Them - Acunetix official web-

site Accessed 3 June 2016.

24- What exactly is Node.js? freeCodeCamp - 18 April 2018.

25- What is ReactJS and Why should we use it? .c-sharpcorner.com - 14 November

2018.

26- What‟s AJAX? - Mozilla developers‟ official website.Accessed 10 July 2016

27- Williams, R. and Tollett, J. (2000) The Non-Designer‟s Web Book. Berkeley,

California: Peachpit Press.

28- Wood, D. (1999) Programming Internet Email. Sebastopol, California: O‟Reilly

