RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ de BLIDA 1 Faculté de Technologie Département de Génie des Procédés

Mémoire

En vue de l'obtention du diplôme de

MASTER EN GENIE DES PROCEDES

Spécialité : Génie chimique

Intitulé du mémoire

Optimisation Energétique d'une Turbine à gaz par L'Intégration d'un récupérateur de Chaleur. Cas de l'unité CPF de Rourde-Enouss

Présenté par : Encadré par :

BOUHAOUYA Youcef Mr. TOUIL Djamel USDB

OTSMANE Islam

Année universitaire 2019/2020

REMERCIMENT

Avant tout nous remercions Dieu, le Tout-Puissant, qui nous a donné la force, le courage et la patience pour poursuivre nos études et réaliser ce mémoire.

De prime abord, on tient à exprimer notre profonde reconnaissance et nos vifs remerciements à Monsieur TOUIL DJAMEL, qui nous a fait l'honneur d'encadrer ce travail avec une grande disponibilité. Sa confiance, ses encouragements, son support et la passion de son travail ont été très stimulants. Merci milles fois pour le temps que vous nous avez consacré.

Nous tenons à remercier tous les membres de l'unité CPF Rhourde-Nouss SONATRACH, ingénieurs et techniciens pour leur gentillesse, le partage des connaissances scientifiques, leur collaboration et leur soutien.

On remercie vivement les membres de jury d'avoir accepté de juger ce travail. A notre Président de jury de nous avoir honorer par sa présidence de jury de ce travail.

On tient aussi très sincèrement à remercier tous nos professeurs de la faculté de Technologie de l'Université de BLIDA1 qui ont façonné notre connaissance année en année ; sans eux, on n'aurait pas eu les ressources intellectuelles nécessaires pour mener ce travail de grande envergure.

A tous ceux qui ne se sentent pas nommément cités en leur disant merci!

Résumé

Les turbines à gaz ont connu une grande importance dans les systèmes de production de puissance par la reconversion de l'énergie thermique due à la combustion des hydrocarbures en énergie mécanique. L'incorporation d'un récupérateur de chaleur au cycle simple d'une turbine à gaz, pour le préchauffage d'air de combustion est identifiée par la littérature, comme un système d'amélioration de la rentabilité énergétique. Le procédé de la turbine à gaz SGT-100-2S, de l'unité CPF de Rhourde-Nouss de traitement de gaz est approchée par une modélisation thermodynamique. Le modèle validé par les mesures réelles, permet de prédire la sensibilité du rendement énergétique de la turbine à gaz aux différents paramètres opératoires. Les principaux résultats ont montré que le rendement énergétique global de la turbine à gaz est influencé par la température d'air d'aspiration du compresseur, le facteur de partition d'air, le rendement de combustion et l'efficacité thermique de l'échangeur.

الخلاصة:

تمتع توربينات الغاز بأهمية كبيرة في أنظمة توليد الطاقة من خلال تحويل الطاقة الحرارية من احتراق الهيدروكربونات اليلى طاقة ميكانيكية. تم تحديد دمج وحدة استرداد الحرارة في الدورة البسيطة للتوربينات الغازية ، للتسخين المسبق لهواء الاحتراق كنظام لتحسين كفاءة الطاقة. يتم التعامل مع عملية توربينات الغاز SGT-100-2S ، من وحدة معالجة غاز Rhourde-Nouss CPF ، من طريق النمذجة الديناميكية الحرارية. هذا النموذج ، الذي تم التحقق من صحته من خلال قياسات حقيقية ، يجعل من الممكن التنبؤ بحساسية كفاءة الطاقة في التوربينات الغازية لمعايير التشغيل المختلفة. أظهرت النتائج الرئيسية أن كفاءة الطاقة الكلية للتوربينات الغازية تتأثر بدرجة حرارة هواء الشفط للضاغط و عامل تقسيم الهواء وكفاءة الاحتراق والكفاءة الحرارية للمبادل .

Abstract:

Gas turbines have enjoyed great importance in power generation systems by converting thermal energy from the combustion of hydrocarbons into mechanical energy. The incorporation of a heat recovery unit in the simple cycle of a gas turbine, for preheating combustion air is identified by the literature as a system for improving energy efficiency. The SGT-100-2S gas turbine process, from the Rhourde-Nouss CPF gas treatment unit, is approached by thermodynamic modeling. The model, validated by real measurements, makes it possible to predict the sensitivity of the energy efficiency of the gas turbine to the various operating parameters. The main results showed that the overall energy efficiency of the gas turbine is influenced by the suction air temperature of the compressor, the air partition factor, the combustion efficiency and the thermal efficiency of the exchanger.

Table des matières

Liste des symboles	i
Liste des tableaux	ii
Liste des figures	iii
Introduction générale	1
Chapitre I : Généralités sur les turbines à gaz	
I. Introduction	2
I.1. Définition de la turbine à gaz	2
I.2. Composantes et fonctionnement de la turbine à gaz	3
I.3. Les principaux cycles de la turbine à gaz	4
I.3.1 Cycle de base	4
I.3.2 Cycle réel	5
I.4 Classification de la turbine à gaz	5
I.4.1. Turbine mono-arbre	5
I.4.2 Turbine bi-arbre	6
I.6 Avantages et inconvénients des turbines à gaz	7
I.7 Paramètres opératoires de la turbine à gaz de l'unité de Rhourde Nouss	7
I.7.1. T Présentation de l'unité de Rhourde Nouss	8
I.7.2 Description de la turbine à gaz étudié	9
I.7.3 Collecte et relevé des paramètres opératoires	10
Chapitre II : Revue bibliographique sur les Techniques d'Amélioration du Rendement Energétique de la turbine à gaz	
Introduction	12
II.1 Technique d'amélioration du rendement énergétique	12
II.1.1 Cycle combiné	12
1.1.1 Principe de fonctionnement	13
II.1.2 Injection de la vapeur d'eau dans la chambre de combustion	13
II.1.3. Refroidissement d'air d'admission des turbines à gaz	14
1.3.1 refroidisseur évaporatif par module humidifié	15
1.3.2 Refroidissement par atomisation ou pulvérisation d'eau	16
1.3.3 Systèmes de réfrigération mécanique	17
II.1.4 Système de refroidisseur par absorption	
II.1.5 Régénération	21

Chapitre III : Modélisation Thermodynamique de la turbine à gaz

Introduction	23
III.1 Modélisation thermodynamique	23
III.1.1 Hypothèses simplificatrices	23
III.1.2 Equations du modèle	24
1.3.1 Bilans massiques	24
1.3.2 Transformations thermodynamiques du gaz	25
1.3.3 Données de calcul du modèle	27
III.1.3 Résolution du modèle	28
III.2 Résultats et interprétations.	29
Chapitre IV : Résultats et interprétations	
Introduction	31
IV.1 Variables opératoires de décision	31
1.2 Tests de sensibilité du rendement énergétique de la turbine à gaz	31
IV.2.1 Influence de Température d'air d'aspiration du compresseur	32
IV.2.2 Influence de la température de fuel gaz	33
IV.2.3 Influence du facteur de partition d'air	34
IV.2.4 Influence du facteur d'excès d'air	35
IV.2.5 Influence de l'efficacité thermique de l'échangeur	36
IV.2.6 Influence du rendement de la combustion	37
IV.2.7 Influence du rendement mécanique de la THP	37
IV.2.8 Influence des rendements isentropiques de compression et de détente	38
Conclusion générale	40
Annexes	
Bibliographie	

Liste des symboles

Variables	Désignations	Unités
ṁ	Débit massique	[kg/s]
V st air	Volume d'air stœchiométrique	[Nm³air/Nm³FG]
T	Température	[°C]
Ср	Capacité calorifique	[kJ/kg.°C]
M	Masse molaire	[g/mol]
PCI	Pouvoir calorifique inferieure	[MJ/kg]
R	Constante molaire des gaz parfaits	[kJ/kmol.K]
P	Pression	[bar]
Q	Puissance thermique	[W]
W	Travail	[J]
Variables grecques		
α	Facteur de partition d'air	[-]
λ	Facteur d'air	[-]
γ	Coefficient adiabatique de l'air	[-]
τ	Taux de compression	[-]
ρ	Masse volumique	[kg/m3]
φ	Efficacité thermique de l'échangeur	[-]
η	Rendement	[-]
Abréviations		
BP:	Basse pression	
HP:	Haute pression	
CC:	Chambre de combustion	
CA:	Compresseur axial	
TAG:	Turbine à gaz	
STIG:	Steam Injected Gas Turbine	
HRSG:	Heat recovery steam generator	
DLE:	Dry low emission	
CPF:	Central Processing Facility	
ISO:	Organization standard international	

Liste des tableaux

Tableau I.1. Avantages et Inconvénients de la Turbine à gaz	7
Tableau I.2. Caractéristique de la turbine Siemens SGT 100-2S	10
Tableau I.3. Paramètres opératoires de la Turbine Siemens SGT 100-2S	11
Tableau I.4. Analyse chimique du Fuel gaz	11
Tableau II.1. Caractéristique de l'eau pulvérisé.	17
Tableau III.1. Valeurs des données de calcul du modèle	28
Tableau III.2 Comparaison des paramètres opératoires calculés et du design	29
Tableau IV 1 Domaine de variation des paramètres	32

Liste des figures

Figure I.1. Turbine à gaz SGT-400.	2
Figure I.2. Composantes d'une turbine à gaz.	3
Figure I.3. Pression et Température des Sections de la turbine à gaz	4
Figure I.4. Cycle de Joule (Brayton)	5
Figure I.5. Cycle réel de la turbine à gaz.	5
Figure I.6. Turbine à gaz mono arbre	6
Figure I.7. Turbine à gaz bi-arbre.	6
Figure I.8. Situation géographique de la région Rhourde Nouss	8
Figure I.9. Turbine à gaz SGT100-2S	9
Figure II.1. Schéma d'un cycle combiné	13
Figure II.2. Schéma de la turbine à gaz injectée par vapeur	14
Figure II.3. Influence de la température ambiante sur les performances de la turbine	14
Figure II.3. Refroidisseur évaporatif	15
Figure II.3. Refroidissement par pulvérisation d'eau	16
Figure II.3. Cycle thermodynamique d'une machine frigorifique à compression	17
Figure II.3. Utilisation d'une machine frigorifique à compression en mode directe	18
Figure II.3. Refroidisseur d'air à absorption pour les turbines à gaz	19
Figure II.3. Structure d'une machine frigorifique à absorption	19
Figure II.3. Un moteur à turbine à gaz avec régénérateur	21
Figure II.3. Diagramme T-s d'un cycle de Brayton avec régénération	21
Figure III.1. Représentation de la turbine à gaz avec récupération de chaleur	
Figure III.2. Organigramme de résolution du modèle	30
Figure IV.1. Rendement de la TAG et la puissance utile en fonction de T ₁	33
Figure IV.2. Travail du compresseur en fonction de T1	33
Figure IV.3. Rendement de la TAG et la puissance utile en fonction de T _{FG}	34
Figure IV.4. Rendement de la TAG et la puissance utile en fonction de α	34
Figure IV.5. Rendement et Puissance utile en fonction de λ	35
Figure IV.6. Débit et température des gaz de combustion en fonction de λ	35
Figure IV.7. Rendement et Puissance utile en fonction de φ	36
Figure IV.8. Rendement et Puissacne utile en fonction de η_c	37
Figure IV.9. Rendement et Puissacne utile en fonction de η_m	37
Figure IV.10. Rendement et Puissacne utile en fonction de η_{is}	
Figure IV.11. Rendement et Puissacne utile en fonction de η'_{is}	
Figure IV.12. Rendement et Puissacne utile en fonction de $\eta_{is}^{"}$	

Introduction générale

La turbine à gaz est un moteur à combustion interne, dont le rôle est la reconversion de l'énergie thermique due à la combustion d'un hydrocarbure en énergie mécanique (couple mécanique sur l'arbre de la turbine). La turbine à gaz prend l'air atmosphérique et le comprime dans son propre compresseur, augmente la puissance énergétique de l'air dans sa chambre de combustion et convertie cette puissance en énergie mécanique utile pendant le processus de détente qui a lieu dans la section turbine. L'énergie mécanique qui en résulte est transmise par l'intermédiaire d'un accouplement en puissance utile à une machine réceptrice « alternateurs, pompes centrifuges, compresseurs de gaz...).

Le cycle d'une turbine à gaz est très souple dans lequel ses paramètres de performance puissent être améliorés en ajoutant des composants supplémentaires à un cycle simple. A cet effet différentes méthodes (régénération, refroidissement intermédiaire, préchauffage et injection d'eau ou de vapeur d'eau, refroidissement de l'air de combustion) ont été utilisées afin d'améliorer les performances des turbines à gaz.

L'objectif de ce travail est d'étudier l'amélioration des performances d'une turbine à gaz par l'intégration d'un récupérateur de chaleur pour le préchauffage de l'air comburant introduit dans la chambre de combustion. Ce système utilise les gaz de combustion, rejetées dans l'environnement comme source de chaleur.

Grâce à un stage pratique dans le site industriel CPF de Traitement de gaz de Rhourde-Nouss (SONATRACH), la turbine à gaz SGT-100 2S de la compagnie Siemens a été sélectionnée comme exemple d'application et cas d'étude.

Le présent travail est reparti en quatre chapitres.

- Le premier chapitre consiste à la présentation de l'unité CPF, en particulier la description du fonctionnement du procédé des turbines à gaz.
- Les différentes techniques d'amélioration du rendement énergétique d'une turbine à gaz proposées dans la littérature ont été présenté dans le deuxième chapitre.
- Dans le troisième chapitre, nous présentons la modélisation thermodynamique de la turbine à gaz muni d'une récupération thermique des gaz d'échappement ainsi que les étapes de sa résolution par le logiciel MATLAB.
- Enfin, les résultats obtenus pour la sensibilité de la performance énergétique de la turbine à gaz à différents paramètres opératoires sont présentés et discutés dans le quatrième chapitre.

Chapitre I

Généralités sur les Turbines à Gaz

Introduction

Les turbines à gaz, ces machines thermiques qui servent à la conversion de l'énergie thermique en énergie mécanique (sur la base des transformations thermodynamiques) ont connu ces dernières années un développement important dans de nombreuses applications industrielles en particulier dans le domaine des hydrocarbures et les centrales thermiques. En Algérie l'industrie du pétrole utilise essentiellement les turbines à gaz pour produire l'électricité dans les zones isolées du territoire ainsi que dans le transport par pipe-lines des hydrocarbures gazeux (gaz naturel) et liquides (condensats).

I.1 Définition de la turbine à gaz

Une turbine est hydraulique, à vapeur ou à gaz, selon la nature du fluide utilisé, dit fluide moteur. Une turbine à gaz, appelée aussi turbine à combustion, est une machine tournante thermodynamique appartenant à la famille des moteurs à combustion interne (figure I.1) dont le rôle est de produire de l'énergie mécanique (rotation d'un arbre) à partir de l'énergie contenue dans un combustible liquide ou gazeux [1]. Elle est utilisée dans les stations de pompage et de recompressions des gazoducs et oléoducs, sur les plates-formes pétrolières off-shore ainsi que les installations industrielles dites à énergie totale où le turbomoteur peut fournir simultanément trois formes d'énergie : électrique (alternateur), pneumatique (par prélèvement d'air sur le compresseur), calorifique (récupérateur de chaleur des gaz d'échappement) [2].

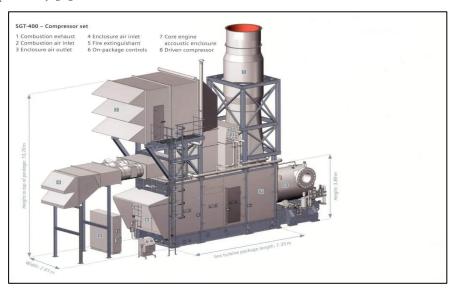


Figure I.1. Turbine à gaz SGT-400

I.2 Composantes et Fonctionnement de la turbine à gaz

L'ensemble de la turbine à gaz est constitué par trois composantes essentielles (figure I.2) :

- Un compresseur qui a pour rôle de comprimer l'air ambiant à une pression $10 \le P \le 30$;
- Une chambre de combustion, dans laquelle un combustible gazeux ou liquide est brulé avec l'air afin de limiter la température des gaz d'échappement ;
- Une turbine, généralement axiale, dans laquelle sont détendus les gaz qui sortent de la chambre

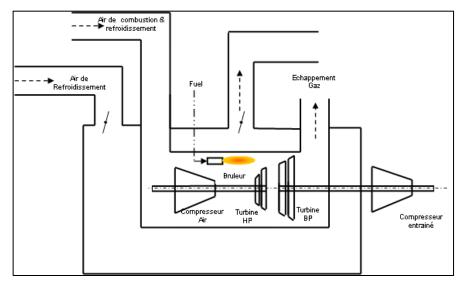


Figure I.2. Composantes d'une turbine à gaz

L'air aspiré de l'environnement extérieur, est comprimé dans le compresseur avant de pénétrer dans la chambre de combustion. Cette opération est réalisée en consommant une quantité d'énergie mécanique soustraite à l'énergie fournie par la turbine. A l'intérieur de la chambre de combustion, la réaction chimique entre l'air et le combustible produit une augmentation de la température à une pression relativement constante.

En effet, la chute de pression entre l'évacuation du compresseur et l'admission à la turbine se trouve généralement comprise entre 2% et 4% de la pression initiale ; dans cette réaction la chaleur calorifique du combustible est transformée en énergie thermique pour les gaz.

Enfin, dans la turbine de détente les gaz chauds se détendent jusqu'à la pression ambiante et leur température diminue en conséquence. Cette phase produit une grande quantité d'énergie mécanique en partie requise par le compresseur, mais surtout dirigée au réseau à travers le générateur de puissance [3]. Le profil des pressions et des températures à différentes sections de la turbine à gaz [3] sont données par la figure I.3.

I.3. Les principaux cycles de la turbine à gaz

I.3.1 Cycle de base

Dans sa forme la plus simple, la turbine à gaz fonctionne selon le cycle dit de Joule ou de Brayton :

- une compression adiabatique qui consomme de l'énergie mécanique 1-2 ;
- une combustion isobare 2-3;
- une détente adiabatique jusqu'à la pression ambiante qui produit de l'énergie mécanique 3-4

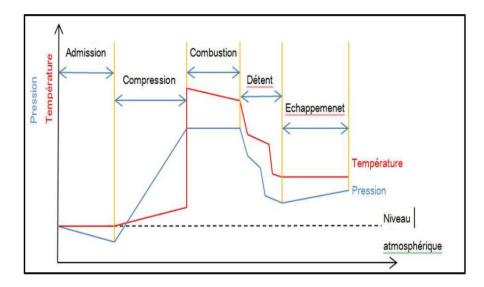


Figure I.3. Pression et Température des Sections de la turbine à gaz

Le cycle de Joule (figure I.4), comporte deux processus isentropiques (adiabatiques et réversibles) et un processus isobare. Le gaz est comprimé d'une manière adiabatique jusqu'au point (2), puis il reçoit de la chaleur (généralement par combustion interne) pour atteindre la température maximale du cycle à l'entrée de la turbine point (3). L'expansion dans la turbine se produit d'une manière adiabatique jusqu' à la pression d'aspiration du compresseur (généralement c'est la pression atmosphérique).

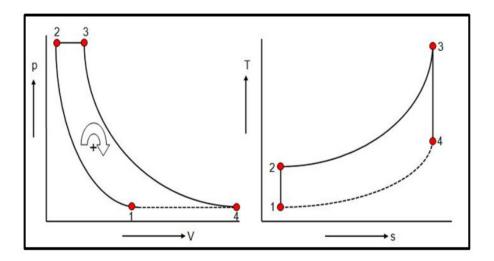


Figure I.4. Cycle de Joule (Brayton)

I.3.2 Cycle réel

L'étude de ce cycle réel devrait, en toute rigueur, tenir compte de toutes les imperfections des différentes parties de cette machine, en fait, nous ferons intervenir les rendements du compresseur et de la turbine, nous adapterons que les fluides traversant la turbine et le compresseur sont des gaz parfaits et le coefficient adiabatique γ = cte. Le cycle réel d'une turbine à gaz [3] est représenté en figure I.5.

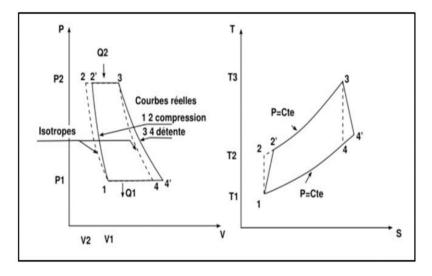


Figure I.5. Cycle réel de la turbine à gaz

I.4. Classification de la turbine à gaz

I.4.1Turbine mono-arbre

Le compresseur et les sections de la turbine se composent d'un seul rotor simple, où la turbine produit l'énergie pour entrainer le compresseur ainsi que l'énergie pour entrainer la charge. Les turbines à un seul arbre sont favorables dans le cas où la charge est constante. Les turbines à gaz à un seul arbre sont aptes à l'entrainement des machines qui fonctionnent

à vitesse constante, tels que les alternateurs et, pour cette raison, sont employées dans la génération d'énergie électrique (figure I.6).

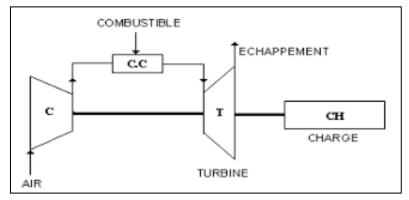


Figure I.6. Turbine à gaz mono arbre

I.4.2Turbine bi-arbre

La turbine à gaz se compose de deux roues turbines indépendantes mécaniquement. La roue turbine HP entraîne le rotor du compresseur axial et les accessoires, tandis que la roue BP deuxième étage sert à entraîner l'organe récepteur (ex : les compresseurs). Le but des roues turbine non reliés est de permettre aux deux roues de fonctionner à des vitesses différentes pour satisfaire aux exigences de charge variable de l'organe récepteur (figure I.7)

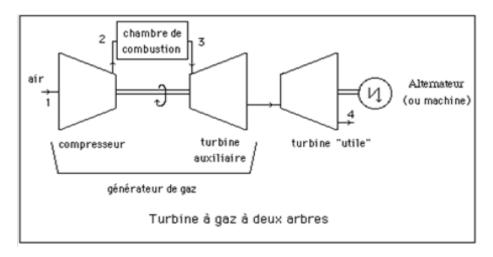


Figure I.7. Turbine à gaz bi-arbre

I.5. Avantages et inconvénients des turbines à gaz

Le tableau I.1 donne quelques avantages et inconvénients de la turbine à gaz industrielle

Tableau I.1. Avantages et Inconvénients de la Turbine à gaz

Avantages	Inconvénients
Puissance massique et volumique très élevées du	Prix d'installation supérieur à celui d'un
fait d'un fonctionnement continu,	groupe diesel pour une Puissance au-
	dessous d'environ 3MW,
Simplicité apparente de construction (un rotor	Temps de lancement beaucoup plus long
dans un carter et brûleur) et équilibrage (peu de	que celui d'un groupe diesel ; 30 à 120 s
vibrations),	pour une turbine, 8 à 20 s pour un groupe
	diesel.
Pollution limitée en HC et NOx du fait de l'excès	Rendement inférieur à celui d'un moteur
d'air et de la température limitée,	diesel (cycle simple). À titre indicatif 28
	à 33 % pour une turbine de 3000 KW, 32
	à 38 % pour un groupe diesel.
Aptitude à la récupération de chaleur	
(cogénération),	
Longévité en marche stationnaire, [4]	

I.6. Paramètres opératoires de la Turbine à gaz de l'unité de Rhourde Nouss

Cette partie est consacrée à la description de la turbine à gaz étudiée de l'unité de Rhourde Nouss.

La campagne de collecte et de relevés des paramètres opératoires (tableau I.3) s'est déroulée lors de notre stage in situ du 4 au 22 Mars 2020. Les données opératoires non relevées sont estimées soit à partir des spécifications de fonctionnement ou prises celles du design.

I.7.1. Présentation de l'unité de Rhourde Nouss

Dans les soucis de répondre à des impératifs de marchés intérieur et extérieur en matière de la qualité et des quantités de produits pétroliers, la société nationale SONATRACH a engagé des investissements très important particulièrement dans le développement de l'industrie gazière. A cet effet d'énormes unités ont été réalisées pour le traitement du gaz naturel qui se trouve généralement en solution avec du pétrole brut ou du condensât. La région de Rhourde Nouss représente un parfait exemple des efforts déployé par la SONATRACH dans ce domaine. C'est une région essentiellement à vocation gazière, elle est la deuxième région en Algérie après la région de Hassi R'Mel [5].

• Situation géographique

La direction régionale de Rhourde Nouss fait partie de willaya d'Illizi. Elle est située à 350 Km au Sud/Sud-est de Ouargla, à 1200 Km au Sud/Sud-est d'Alger et à 270 Km au Sud/Sud-est de Hassi Messaoud. L'altitude moyenne est de 275m par rapport au niveau de la mer, son climat est désertique (sec avec un très faible taux d'humidité). écart important de température entre l'hiver et l'été (-5°C à 55°C), elle enregistre une pluviométrie très faible (2 à 4 mm/an), terrain accidenté (limite de l'erg oriental), fréquence importante des vents de sable. La région de Rhourde-Nouss est composée de plusieurs champs (Gisements) sur un rayon de 100 Km par rapport au siège de la direction régionale qui est située dans le champ de Rhourde-Nouss centre. [5]

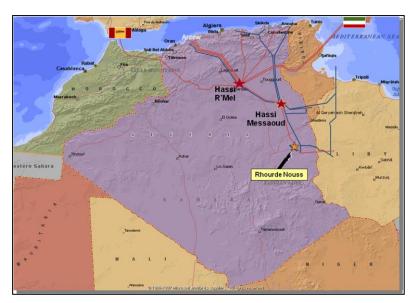


Figure I.8. Situation géographique de la région Rhourde Nouss

• Service CPF (Central Processing Facility)

L'unité de traitement de gaz de Rhourde Nouss indiqué par CPF (Central Processing Facility) est conçue pour traiter 11 millions Sm³/jour de gaz (base sèche) provenant de 33 puits de production dans quatre (4) champs, dans la région de Rhourde Nouss. L'usine comprend la séparation du mélange multiphasique (Slug Catcher), le traitement du gaz, la compression et la déshydratation du CO2, le prétraitement du condensat instable, le traitement de l'eau produite (déshuilage) et les utilités. L'unité a une production nominale de 10 millions Sm³/jour de gaz lourd et de vente. Le gaz d'exportation est envoyé vers le gazoduc GR4 du réseau de transport TRC.

I.7.2 Description de la turbine à gaz étudiée

La turbine à gaz SGT-100 (figure I.9) est installée à l'usine CPF, pour entraîner le compresseur de gaz de vente. Cette turbine est utilisée par l'industrie pétrolière et gazière depuis 1992. De nombreuses heures de fonctionnement dans les applications de production d'énergie et d'entraînement mécanique ont fourni aux opérateurs pétroliers et gaziers la fiabilité de fonctionnement attendue dans cette industrie exigeante.

L'agencement compact, la maintenabilité sur site ou hors site et la fiabilité inhérente en font une turbine à gaz idéale pour l'industrie pétrolière et gazière exigeante. La turbine à gaz a une conception industrielle robuste qui permet un rendement élevé et d'excellentes performances d'émissions sur une large gamme de combustibles gazeux et liquides.

Le système de combustion standard à faibles émissions sèches (DLE) peut fonctionner avec des combustibles liquides et gazeux avec de faibles niveaux d'émissions de NOx et de CO. En même temps, il permet la réception de la pleine charge et le délestage avec changement automatique de carburant - sans affecter le fonctionnement de la turbine [6].

Le tableau I.2 donne les caractéristiques de la turbine SGT 100-2S

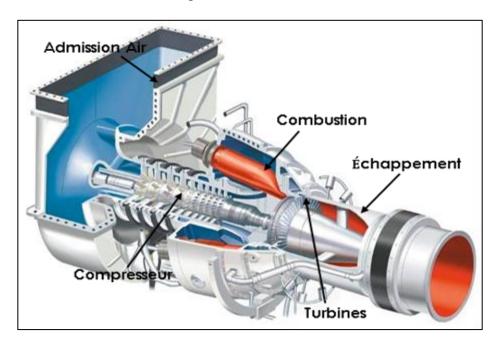


Figure I.9. Turbine à gaz SGT100-2S

Tableau I.2. Caractéristique de la turbine Siemens SGT 100-2S

Vue d'ensemble				
Fabricant	Siemens ILT			
Model	SGT 100 2S			
Cycle	Simple			
Type de fonctionnement	Continu			
Commande	MARK VI			
Système de démarrage	Moteur électrique			
Transmission mécanique	5.7 MW			
Vitesse de la turbine	13000 tours/min			
Rendement thermique	32.9%			
Compresseur axial				
Nombre des étages du compresseur axial	10 étages			
Type de compresseur	Axial			
Types d'aubes directrice d'entrée	Variable			
Rapport de pression	14			
Débit d'air (ISO)	12 kg/s			
Rendement	94%			
Turbine				
Vitesse HP	20000 tours/min			
Vitesse BP	14332 tours/min			
Rendement mécanique	32.9%			
Combustion				
Chambres de combustion	6			
Combustible	Fuel gaz			
Rendement	90%			

I.7.3 Collecte et relevé des paramètres opératoires

Les tableaux I.3 et I.4 donnent respectivement les paramètres opératoires de la turbine à gaz ainsi que la composition chimique du fuel gaz (combustible gazeux) donné par le laboratoire de l'unité. La valeur du pouvoir calorifique inférieur du fuel gaz (PCI) est estimée par la moyenne pondérée des valeurs de celles de ses constituants.

Tableau I.3. Paramètres opératoires de la turbine Siemens SGT 100-2S

			Jour 1		Jour 2		Jour 3	Moy
Par	amètre	Matin	Après midi	Matin	Après midi	Matin	Après midi	
	Température (°C)	18.5	21.9	20.1	23.7	23.8	31.8	23.8
Air	Pression (bar)	1.013	1.013	1.013	1.013	1.013	1.013	1.013
compresseur	Humidité (%)	38	20	36	29	25	14	27
(Entrée)	Débit (kg/s)	12	12	12	12	12	12	12
Air	Pression (bar)	8.86	8.93	8.05	8.77	9.10	8.82	8.75
compresseur (Sortie)	Taux de compression	8.74	8.81	7.94	8.65	8.98	8.7	8.63
	Température (°C)	25	26	26	31	25	29	27
Fuel gaz	Pression (bar)	8	8.58	8.73	8.66	8.76	8.6	8.55
	Débit	0.2	0.2	0.2	0.21	0.21	0.2	0.2
Chambre de combustion	Température (°C)	1000	1014	1017	1018	1026	1026.5	1016.9
Turbine HP	Température (°C)	762	762	762	762	762	762	762
(Sortie)	Pression (bar)	2.72	2.7	2.75	2.68	2.74	2.71	2.71
Turbine BP (Sortie)	Température (°C)	450	452	451	450	449	456	450.9
(Borne)	Pression (bar)	1.013	1.013	1.013	447.2	1.013	1.013	1.013
Gaz d'échappement	Température (°C)	450	452	451	447.2	449	456	450.9
John poment	Pression (bar)	1.013	1.013	1.013	1.013	1.013	1.013	1.013

Tableau I.4. Analyse chimique du Fuel gaz

Composants	Xi (%moles)	PCI*Xi (kJ/mol)	PCI (kJ/kg)
% H2O	0.4	0	0
%N2	1.28	0	0
%C1	89.39	715.5	50030
%C2	7.1	101.8	47794
%C3	1.33	27.12	46357
%IC4	0.23	6.08	45613
%NC4	0.2	5.3	45752
%IC5	0.03	0.97	45241
%NC5	0.02	0.65	45357
%C6	0.02	0.76	44752
PCI (Fuel gaz)	•	857.88	47125.9

<u>Chapitre II</u> Revue bibliographique sur les Techniques d'Amélioration du Rendement Energétique de la turbine à gaz

Introduction

Généralement les turbines à gaz sont conçues à partir de conditions ambiantes bien précises (conditions ISO) à savoir une température ambiante de 15°C, une humidité relative de 60%, et une altitude de 0 mètre. Cependant, en exploitation ces conditions ne sont pas toujours réunies puisqu'elles dépendent des conditions météorologiques variables d'un jour à l'autre et d'une région à l'autre. A cet effet, les performances et le rendement thermique d'exploitation de ces machines se trouve affecté et varient au cours de l'année. Ainsi, nous présentons dans ce chapitre quelques techniques d'amélioration du rendement énergétique, citées par la bibliographie.

II. 1 Techniques d'amélioration du rendement énergétique

Le cycle d'une turbine à gaz est un cycle très souple de sorte que ses paramètres de performance puissent être améliorés, en ajoutant des composants supplémentaires au cycle simple. Différentes méthodes (régénération, refroidissement intermédiaire, préchauffage et injection d'eau ou de vapeur d'eau, refroidissement de l'air de combustion) ont été utilisées afin d'améliorer les performances des turbines à gaz. L'avantage de toutes ces méthodes est d'augmenter la puissance spécifique comparée à un cycle sec de turbine à gaz. L'addition de l'eau ou de vapeur d'eau dans le cycle de turbine à gaz aide également à la diminution des émissions à l'échappement.

II.1.1 Cycle combiné

De nos jours, le cycle combiné est l'un des systèmes les plus utilisés dans les centrales électriques ; c'est une technologie hybride qui comprend un Cycle de Brayton sur la partie de production de l'énergie électrique et un Cycle de Rankine Cycle sur le côté de production de l'énergie thermique.

Le gaz d'échappement à haute température qui sort d'une turbine à gaz est réutilisé pour générer une vapeur à haute pression qui passe ensuite par une turbine à vapeur pour générer plus d'électricité. Il est clair que cette combinaison fournit des efficacités plus élevées que celles des cycles uniques, jusqu'à 55%, et est généralement utilisée dans production de l'électricité à grande échelle. La chaleur peut toujours être récupérée du cycle de la turbine

à vapeur pour des applications supplémentaires, exactement comme dans les installations à simple turbine à vapeur. Pour une efficacité plus élevée et plus d'électricité générée, il est évident que les cycles combinés sont plus intéressants du point de vue économique. En effet, au cours des quarante dernières années, les centrales à cycle combiné ont eu un grand succès dans l'industrie de la génération de l'électricité [6].

II.1.1 Principe de fonctionnement :

Le principe de cycle combiné est de récupérer l'enthalpie des gaz d'échappements de la turbine à gaz par le biais d'une chaudière de récupération alimentant un cycle de vapeur. Les niveaux de température des gaz d'échappement des turbines à gaz sont de l'ordre de grandeur maximale des températures des installations motrices à vapeur. Cette constatation est à l'origine du couplage entre les cycles de Joule (et dérivés) et de Rankine (et dérivés) qui donne lieu à ce qu'il est convenu d'appeler des cycles combinés (figure II.1). Les cycles combinés au gaz naturel permettent de réduire de moitié les émissions atmosphériques de dioxyde de carbone (CO2), de diviser par trois les oxydes d'azote (NOx) et de réduire fortement les émissions d'oxydes de soufre (SO2) [7].

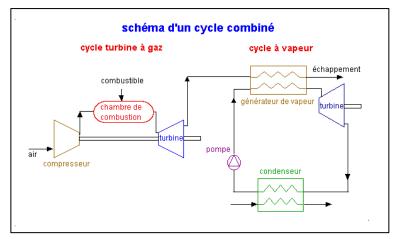


Figure II.1 : Schéma d'un cycle combiné

II.1.2. Injection de la vapeur d'eau dans la chambre de combustion

En 1976 Cheng proposa un cycle de turbine à gaz [8] dans lequel la chaleur des gaz d'échappement sert à produire de la vapeur dans un récupérateur de chaleur, comme le montre la figure II.2. Cette méthode est appelée méthode de STIG (Steam Turbine Injection Generator). La vapeur produite par le générateur de vapeur (HRSG) est injectée dans la chambre de combustion, et avec l'air du compresseur toutes les deux reçoivent l'énergie du carburant et se détendent à l'intérieur de la même turbine pour amplifier la puissance de la turbine ainsi que son rendement. Il convient de noter que la pression exigée de la vapeur

injectée est obtenue à partir d'une pompe. Les cycles s'appellent généralement le « cycle de CHENG » ou « cycle d'injection de vapeur ». L'ordre de grandeur du travail de pompage est 2-3 fois plus petit que celui du compresseur à cause de la faible grandeur du débit volumique de l'eau par rapport à celui de l'air, la puissance nette produite par la vapeur est beaucoup plus grande que celle de l'air en termes d'unité de masse d'écoulement. Le travail utile de la turbine étant la différence du travail de la turbine à celui du compresseur et la chaleur spécifique de la vapeur surchauffée est le double de celui de l'air, en conséquence la méthode de STIG peut être très efficace pour amplifier le rendement et la puissance nette des turbines à gaz. En outre, la réalisation de ce système d'injection de vapeur nécessite la présence une pompe, un échangeur de chaleur (évaporateur) et un injecteur de vapeur [9].

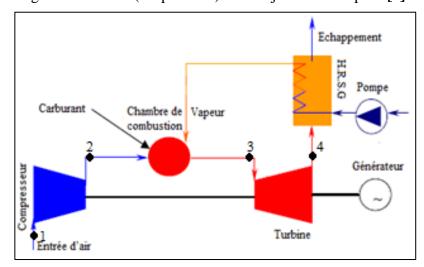


Figure II.2 : Schéma de la turbine à gaz injectée par vapeur

II.1.3. Refroidissement d'air d'admission des turbines à gaz

Une augmentation de la température ambiante fait diminuer la densité de l'air aspiré par le compresseur ce qui entraine une baisse de son débit massique, et en conséquence une baisse dans la puissance de la turbine à gaz ainsi que le rendement (figure II.3). Si la température d'admission d'air diminue, le phénomène inverse est observé.

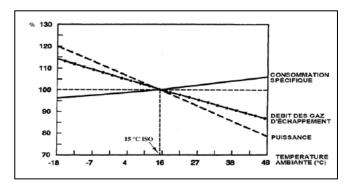


Figure II.3 : Influence de la température ambiante sur les performances de la turbine.

II.1.3.1. Refroidisseur évaporatif par module humidifié

Le refroidissement par ruissellement d'eau comme figure (II.4) consiste à faire passer l'air après filtration par un média humidifié composé de surfaces ondulées en papier de cellulose traité, ce média jeu le rôle d'un évaporateur conventionnel. L'eau s'écoule sur la surface ondulée du panneau évaporant. Une partie de l'eau est évaporée sous l'action de l'air sec et chaud qui traverse le panneau évaporant. Le reste d'eau va tomber dans un bac situé en dessous de l'évaporateur. L'air à la sortie du refroidisseur est refroidi et avant de passer par le compresseur de la turbine à gaz, il passe par un système d'élimination des gouttelettes d'eau pour assurer un bon fonctionnement du compresseur de la turbine à gaz. L'élément principal du refroidisseur par ruissellement d'eau est le média humide, il est en papier ondulé sous forme d'un nid d'abeille. L'eau s'écoule par un système de distribution positionné en dessus du media. L'efficacité des refroidisseurs évaporatifs avec média humidifié peut atteindre jusqu'à 90% [10].

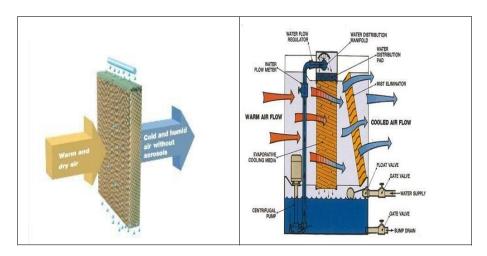


Figure II.4: Refroidisseur évaporatif

Généralement, il est recommandé de placer le refroidisseur évaporatif après le filtre à air d'admission et non pas avant. Cet arrangement protégera les médias contre la poussière et d'autres contaminants aéroportés. Les avantages et inconvénients de cette technique sont citées ci-après :

Avantages

- Facile et rapide à installer
- Le coût estimatif de l'installation est 1/8 à 1/2 par rapport au coût de climatisation frigorifiée
- Le coût estimatif de l'opération (exploitation) est de 1/4 de celui d'air frigorifié.
- Il fonctionne comme un laveur et nettoyeur d'air d'admission.

 Une augmentation des puissances produites par la turbine à gaz même dans les périodes chaudes.

Inconvénients

- Limitation sur l'amélioration de capacité
- Il n'est pas adapté aux sites humides.
- Consomme une quantité d'eau
- L'eau doit être traitée avant utilisation.

II.1.3.2. Refroidissement par atomisation ou pulvérisation d'eau :

Ce système l'humidification (figure II.5) est réalisé à partir de pulvérisation d'eau sous forme de gouttelettes au moyen de buses d'atomisation à haute pression (60 à 140 bars) [11]. L'eau s'évapore dans l'air, la température d'air diminue et l'humidité spécifique augmente. L'efficacité des humidificateurs à pulvérisation peut atteindre 100%. La taille de gouttelette d'eau pulvérisée est très fine (environ 10µm à 20µm), elle s'évapore facilement dans l'air. Avant d'utiliser un système de pulvérisation, l'eau doit être traitée dans une station de traitement ou de déminéralisation. Nous donnons ci-après les caractéristiques de cette eau (tableau II.1) et les avantages et inconvénients de cette technique.

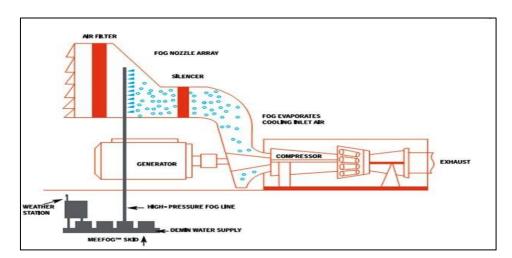


Figure II.5: Refroidissement par pulvérisation d'eau.

Tableau II.1. Caractéristiques de l'eau pulvérisé

Paramètre	Valeur
Quantité des solides dissociées	5 ppm maximum
рН	6-8
Na + K	0.1ppm maximum
Silica (SiO2)	0.1ppmmaximum
Chlorides	0.5 ppm maximum
Sulphate	0.5 ppm maximum

Avantages:

- Installation facile
- Bas coût d'investissement
- Performances des turbines à gaz supérieures à ceux au refroidissement par évaporation

Inconvénients:

- Amélioration de capacité est limitée.
- Adaptation qu'avec les sites secs.
- Nécessité d'une pompe de grande puissante.

II.1.3.3. Systèmes de réfrigération mécanique [12].

Dans ce système la chaleur est prélevée par l'utilisation d'un échangeur de chaleur où un fluide plus froid absorbe la chaleur de l'air, ce qui résulte à son refroidissement. Le cycle thermodynamique utilisé (figure II.6) est réalisé dans une machine frigorifique à compression.

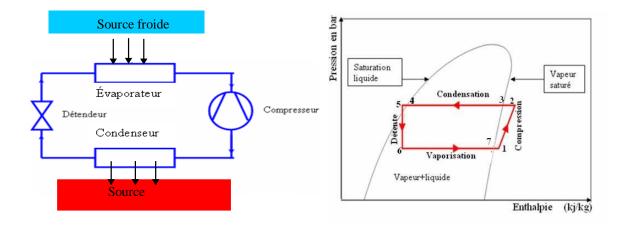


Figure. II.6: Cycle thermodynamique d'une machine frigorifique à compression

Cette machine thermodynamique est constituée d'un circuit fermé et étanche dans lequel circule un fluide frigorigène à l'état liquide ou gazeux selon les organes qu'il traverse. Ces organes sont au nombre de quatre : l'évaporateur, le compresseur, le condenseur et le détendeur. L'utilisation des systèmes de refroidissement mécanique est applicable dans les lieux où l'humidité relative est élevée. Les machines frigorifiques à compression sont utilisées de deux façons différentes à savoir en mode direct ou indirect. Nous présentons ci-après seulement le mode direct.

• Systèmes de réfrigération mécaniques de type direct :

L'air échange directement la chaleur avec le fluide frigorigène qui circule dans la machine, donc l'air qui passe à travers l'évaporateur va refroidir (figure II.7). Nous donnons cidessous les avantages et les inconvénients de cette technique

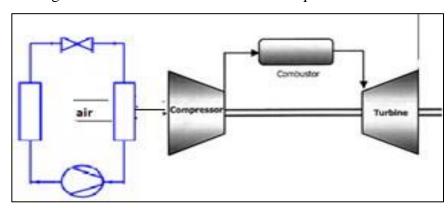


Figure. II.7: utilisation d'une machine frigorifique à compression en mode direct

Avantages

- Ils donnent une meilleure amélioration que les systèmes par évaporation d'eau.
- Une température d'air à l'admission constante.

Inconvénients:

- Le prix d'installation et d'exploitation élevé.
- Il demande une charge supplémentaire afin de faire fonctionner le groupe frigorifique.
- Il est nocif aux composantes de la turbine à gaz en cas de fuites.
- Il nécessite une maintenance périodique

II.1.4. Système de refroidisseur par absorption [13]

A la différence des groupes à compression qui ont besoin d'électricité, les groupes frigorifiques à absorption permettent de produire du froid en utilisant une source de chaleur (figure II.8). Ces machines sont utilisées essentiellement dans le cas où l'on dispose d'énergie gratuite en vapeur surchauffée, apport solaire, ou les gaz d'échappement des turbines à gaz, pour faire fonctionner une machine à absorption. Schématiquement une machine à absorption liquide comporte les éléments représentés dans la figure (II.9). Cette machine comprend comme toutes les machines à compression l'ensemble de condenseur, évaporateur, détendeur dans lequel ne transite que le frigorigène pur (l'eau). Cet ensemble est connecté à la partie chimique du procédé (absorbeur et désorbeur).

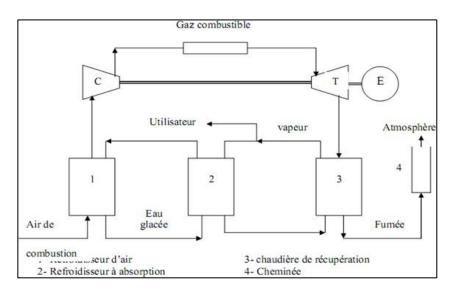


Figure II.8 : Refroidisseur d'air à absorption pour les turbines à gaz

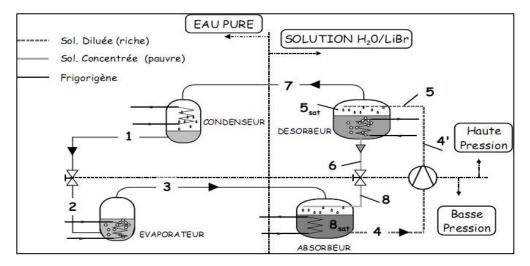


Figure II.9: Structure d'une machine frigorifique à absorption

Le condenseur : composant analogue à celui de la machine à compression, c'est la température du fluide caloporteur alimentant le condenseur qui fixe la température de condensation et donc la pression dans l'ensemble désorbeur /condenseur. La condensation du frigorigène nécessite le dégagement d'une quantité de chaleur Q_{cond} (trajet 7-1).

L'évaporateur: à la sortie du condenseur, le frigorigène liquide se détend à travers le détendeur (1-2), puis s'évapore, produisant la puissance $Q_{\text{évap}}$. La température et la pression d'évaporation dans l'ensemble évaporateur/absorbeur est fixée par la température de la source froide (médium à refroidir).

Le bouilleur ou désorbeur : la solution diluée (riche en frigorigène) va recevoir la quantité de chaleur Q_{des}, ce qui provoque la désorption d'une partie du frigorigène dissous dans la solution. Le désorbeur produit ainsi une vapeur de frigorigène (7) et une solution concentrée (pauvre en frigorigène) (6). Cet organe effectue une concentration (5-6) du sorbant (XLi B) ou un appauvrissement en frigorigène (XH2O)

L'absorbeur: la vapeur sortie de l'évaporateur (3) y rencontre la solution concentrée (pauvre) provenant du désorbeur (8). Elle est absorbée par cette solution qui s'enrichie en frigorigène. La chaleur Q_{abs} dégagée par cette transformation exothermique est évacuée par un fluide caloporteur à la température Tm en sortie d'absorbeur (4). On obtient ainsi une solution diluée (riche en frigorigène), Ce composant effectue donc une dilution (trajet 8-4) du sorbant (XLiB) ou un enrichissement en frigorigène (XH2O)

Avantages

- Il permet d'améliorer les performances des installations de turbine à gaz mieux que les systèmes de refroidissement par évaporation d'eau.
- Une faible consommation d'énergie électrique que le système à compression
- Pas sensible à la température humide d'air ambiant.
- Il permet de valoriser la chaleur perdue par les gaz d'échappement.

Inconvénients:

- Un coût d'investissement élevé
- Un temps d'implantation élevé en comparaison avec d'autres systèmes de refroidissement.
- Il n'est pas applicable avec les installations d'une turbine à gaz ouverte.

II.1.5. Régénération :

Dans les moteurs à turbine à gaz, la température des gaz d'échappement quittant la turbine est souvent considérablement plus élevée que la température de l'air sortant du compresseur. Par conséquent, l'air à haute pression quittant le compresseur peut être chauffé en lui transférant de la chaleur à partir des gaz d'échappement chauds dans un échangeur de chaleur à contre- courant, qui est également connu comme un régénérateur ou un récupérateur [14]. La turbine à gaz utilisant un régénérateur et le diagramme T- s du nouveau cycle sont représentés sur les figures II.10 et II.11.

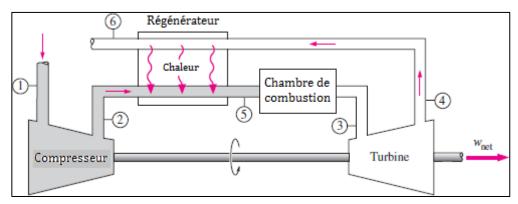


Figure II.10 : Un moteur à turbine à gaz avec régénérateur



Figure II.11 : Diagramme T-s d'un cycle de Brayton avec régénération

L'efficacité thermique du cycle de Brayton augmente à la suite de la régénération puisqu'une partie d'énergie des gaz d'échappement qui est normalement rejetée dans l'environnement est maintenant utilisée pour préchauffer l'air entrant dans la chambre de combustion. Ceci, à son tour, diminue les besoins d'apport de chaleur (donc de combustible) pour la même production de travail net. Notez, cependant, que

l'utilisation d'un régénérateur est recommandée seulement lorsque la température d'échappement de la turbine est supérieure à la température de sortie du compresseur. Dans le cas contraire, la chaleur circule dans le sens inverse (vers les gaz d'échappement), ce qui diminue l'efficacité. Cette situation est rencontrée dans les moteurs à turbine à gaz fonctionnant à des rapports de pression très élevés.

La température la plus élevée à l'intérieur du régénérateur est T₄, la température des gaz d'échappement quittant la turbine et pénétrant dans le régénérateur. En aucun cas l'air ne peut être préchauffé dans le régénérateur à une température supérieure à cette valeur. L'air quitte normalement le régénérateur à une température plus basse, T₅. Dans le cas limite (idéal), l'air sort du régénérateur à la température d'entrée des gaz d'échappement T₄.

Chapitre III: Modélisation Thermodynamique de la turbine à gaz

Introduction

Ce chapitre est consacré à la modélisation thermodynamique de la turbine à gaz de Rhourde-Nouss [15]. Cette modélisation suppose la récupération thermique des gaz d'échappement dans un échangeur de chaleur à contre courants pour le préchauffage de l'air de combustion.

III.1 Modélisation thermodynamique

Nous proposons pour la turbine à gaz, munie d'un récupérateur de chaleur pour le préchauffage de l'air de combustion, une configuration simplifiée de procédé, représentée en figure III.1. La température T_5 du gaz d'échappement 5 est employée pour préchauffer le gaz comprimé 2 dans un échangeur de chaleur extérieur appelé le récupérateur ou régénérateur. La modélisation de ce procédé est de type génie chimique [16], basée sur les bilans massiques et thermiques, ainsi que sur des équations thermodynamiques, illustrant les différentes transformations du fluide.

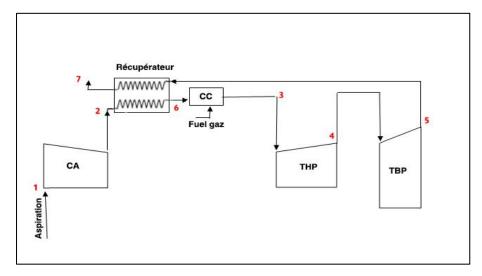


Figure III.1. Représentation de la Turbine à gaz avec récupération de chaleur

III.1.1 Hypothèses simplificatrices

Pour une simplification du modèle, nous considérons les hypothèses suivantes :

- La chambre de combustion est supposée adiabatique
- La température ambiante T₀ est prise comme température de référence
- Le fuel gaz, les gaz de combustion et l'air sont supposés gaz parfaits
- Les propriétés physiques des fluides seront considérées indépendantes de la température

- Les chaleurs spécifiques du gaz à l'entrée et à la sortie des turbines haute et basse pression sont supposées celles de l'air
- Pour la bonne tenue du matériau au contact des gaz chauds, la température T₃ est limitée à 1250°C [17].

III.1.2 Equations du modèle

1.2.1 Bilans massiques

Une partie du débit d'air sortant du compresseur (α facteur de partition) est dévié pour assurer l'étanchéité des paliers, refroidir les ailettes et les disques des roues de turbines HP et BP, le débit d'air m₂ s'écrit :

$$\dot{\mathbf{m}}_2 = \alpha \,\dot{\mathbf{m}}_1 \tag{III.1}$$

La conservation du débit d'air dans l'échangeur de chaleur donne :

$$\dot{\mathbf{m}}_2 = \dot{\mathbf{m}}_6 \tag{III.2}$$

Au niveau de la chambre de combustion, le débit d'air m₆ est divisé à un flux d'air comburant de combustion et un flux d'air de dilution pour le refroidir les parois de la chambre et réduire la température des gaz atteignant la turbine HP, soit :

$$\dot{m}_6 = \dot{m}_{air\ comb} + \dot{m}_{air\ dilution}$$
 (III.3)

Le bilan massique de la combustion du fuel gaz donne :

$$\dot{\mathbf{m}}_{aircomb} + \dot{\mathbf{m}}_{FG} = \dot{\mathbf{m}}_{GC} \tag{III.4}$$

En introduisant le facteur d'excés d'air de combustion λ définit en fonction du volume d'air stochiométrique ou pouvoir comburivore (Nm³ d'air /Nm³ de FG) défini par:

$$\lambda = \frac{V_{air}^{reel}}{V_{air}^{stoech}}$$
 (III.5)

on aura:

$$\dot{\mathbf{m}}_{air\ comb} = \lambda V_{air}^{st} \frac{\rho_{air}}{\rho_{FG}} \cdot \dot{\mathbf{m}}_{FG} \tag{III.6}$$

La substitution des équations (III.4) et (III.6) donne :

$$\dot{\mathbf{m}}_{GC} = \dot{\mathbf{m}}_{FG} \left[1 + \lambda V_{air}^{st} \frac{\rho_{air}}{\rho_{FC}} \right] \tag{III.7}$$

Le bilan massique total de la chambre de combustion s'écrit :

$$\dot{\mathbf{m}}_3 = \dot{\mathbf{m}}_6 + \dot{\mathbf{m}}_{FG} \tag{III.8}$$

Le bilan des gaz de combustion dilué est conservé lors des détentes HP et BP, soit :

$$\dot{\mathbf{m}}_3 = \dot{\mathbf{m}}_4 = \dot{\mathbf{m}}_5 \tag{III.9}$$

1.2.2 Transformations thermodynamiques du gaz

Compression

La compression poly-étagée est supposée adiabatique réversible avec un rendement isentropique $\eta_{isentropique}$. Soit,

$$PV^{\gamma} = \text{Cste}$$
 (III.10)

$$P_1 V_1^{\ \gamma} = P_2 V_2^{\ \gamma} \tag{III.11}$$

$$\frac{T_{2is}}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} \tag{III.12}$$

Cette équation permet de calculer la température isentropique en fin de compression, avec :

$$\gamma = \frac{cp_{air}}{cp_{air} - R/M}$$
 (III.13)

Le rapport de la pression de sortie à la pression d'entrée représente le taux de compression :

$$\tau_c = \frac{P_2}{P_1} \tag{III.14}$$

Le travail isentropique et réel de compression peut s'écrire :

$$W_{cis} = h_{2is} - h_1 = Cp_{air} (T_{2is} - T_1)$$
 (III.15)

$$W_c = h_2 - h_1 = Cp_{air} (T_2 - T_1)$$
 (III.16)

En introduisant le rendement isentropique $\eta_{isentropique}$ on aura :

$$\eta_{is} = \frac{W_{cis}}{W_c} = \frac{(T_{2is} - T_1)}{(T_2 - T_1)}$$
(III.17)

• Echange thermique dans le récupérateur

Considérons l'échange thermique adiabatique dans le récupérateur où la température moyenne de l'air passe de T_2 à l'entrée à la température T_6 à la sortie. Parallèlement la température des gaz de combustion passe de T_5 à T_7 à la sortie. Dans chaque section du récupérateur (T_{gaz} - T_{air}) est la force motrice de transfert de chaleur, soit :

$$\dot{m}_5 \times Cp_5 \times (T_5 - T_7) = \dot{m}_2 \times Cp_2 \times (T_6 - T_2)$$
 (III.18)

La valeur maximale du flux de transfert Q_{max} est obtenue quand le gaz de sortie sera en équilibre thermique avec l'air à l'entrée, c'est-à-dire $T_2 = T_7$, avec $T_6 < T_5$. On définit ainsi, l'efficacité thermique de transfert [18] par :

$$\phi = \frac{Q_{transf\acute{e}r\acute{e}}}{Q_{maximal}} \tag{III.19}$$

$$\phi = \frac{\dot{m}_2 C_{P2}}{\dot{m}_5 C_{P5}} \frac{(T_6 - T_2)}{(T_5 - T_2)}$$
 (III.20)

Combustion

En considérant la puissance thermique disponible dans la chambre de combustion est égale à la chaleur véhiculée par les gaz de combustion, et en introduisant le rendement de combustion η_C caractérisant la présence des imbrulés dans les gaz, on aura :

$$Q_{com} = Q_{GC} (III.21)$$

$$\dot{\mathbf{m}}_{FG} \times \mathcal{C}p_{FG}(T_{FG} - T_0) + \dot{\mathbf{m}}_{FG} \times PCI \times \eta_C + \dot{\mathbf{m}}_{air\ comb} \times \mathcal{C}p_{air\ comb} \times (T_6 - T_0) = \dot{\mathbf{m}}_{GC} \times \mathcal{C}p_{GC} \times (T_{GC} - T_0)$$
 (III.22)

• Dilution thermique et refroidissement des gaz de combustion

La dilution thermique des gaz de combustion lors de son mélange avec le débit d'air mair dilution peut être traduit par :

$$Q_3 = Q_{air\,dilution} + Q_{GC} \tag{III.23}$$

$$\dot{\mathbf{m}}_{3} \times \mathcal{C}p_{3} \times (T_{3} - T_{0}) = \dot{\mathbf{m}}_{GC} \times \mathcal{C}p_{GC} \times (T_{GC} - T_{0}) + \dot{\mathbf{m}}_{air\ dilut} \times \mathcal{C}p_{air} \times (T_{6} - T_{0})$$
(III.24)

• Détente dans la turbine haute pression (THP)

En supposant la détente dans la turbine HP adiabatique réversible avec un rendement isentropique η ' isentropique, on aura :

$$P_4 = P_3 \left(\frac{T_{4is}}{T_3}\right)^{\gamma/\gamma - 1}$$
 (III.25)

Le travail de la turbine haute pression est donné donc par la relation suivante :

$$W_{THP} = h_3 - h_4 = Cp_3 (T_3 - T_4)$$
 (III.26)

La puissance P_{THP} de la turbine HP est utilisée pour entrainer le compresseur axial avec un rendement mécanique η_m , d'où:

$$P_c = P_{THP}.\eta_m = \dot{m}_1.Cp_{air}.(T_2 - T_1)$$
 (III.27)

$$\dot{m}_3 C p_3 (T_3 - T_4). \eta_m = \dot{m}_1. C p_{air}. (T_2 - T_1)$$
 (III.28)

Le rendement isentropique de la détente HP [19] s'écrit de manière similaire à celle de la compression :

$$\eta'_{THP\ is} = \frac{W_{THP}}{W_{THPis}} = \frac{(T_3 - T_4)}{(T_3 - T_{4is})}$$
 (III.29)

• Détente dans la turbine basse pression (TBP)

En supposant de même la détente dans la turbine TBP adiabatique réversible avec un rendement isentropique η " isentropique, on aura :

$$P_5 = P_4 \left(\frac{T_{5is}}{T_4}\right)^{\gamma/\gamma - 1} \tag{III.30}$$

Le travail de la turbine basse pression ou le travail utile est donné par la relation suivante :

$$W_u = h_4 - h_5 = Cp_4 (T_4 - T_5)$$
 (III.31)

Le rendement isentropique de la détente BP [19] s'écrit de manière similaire à celle de la THP :

$$\eta_{TBP\ is}^{"} = \frac{W_u}{W_{uis}} = \frac{(T_4 - T_5)}{(T_4 - T_{5is})}$$
 (III.32)

• Rendement globale de la turbine à gaz

Le rendement utile de la turbine à gaz est défini par le rapport entre la puissance nette développé (Pu) et la puissance thermique totale fournie par le combustible, soit :

$$\eta_{TG} = \frac{P_u}{P_{th}} = \frac{\dot{m}_4 \times W_u}{\dot{m}_{FG} \times PCI}$$
 (III.33)

1.2.3 Données de calcul du modèle

Les données de calcul nécessaires à la résolution du modèle sont données au tableau III. 1. Les valeurs de ces paramètres sont celles relevés sur in-situ, ou collectés des datasheets de la turbines à gaz SGT-100-2S [17].

Tableau III.1. Valeurs des données de calcul du modèle

Symbole	Description	Unité	Valeur
$\dot{\mathrm{m}}_{FG}$	Débit du fuel gaz	kg/s	0.2
m ₁	Débit d'air à l'aspiration du compresseur	kg/s	12
V_{air}^{st}	volume d'air stochiométrique	Nm³air/Nm³FG	10.93
T_{FG}	Température du fuel gaz	°C	27
T_0	Température ambiante	°C	24
T_1	Température d'air d'aspiration du compresseur	°C	24
Cp_{FG}	Capacité calorifique du fuel gaz	kJ/kg.°C	1.93
Cp_{air}	Capacité calorifique de l'air	kJ/kg.°C	1.06
Cp_{GC}	Capacité calorifique des gaz de combustion	kJ/kg.°C	1.26
PCI	Pouvoir calorifique Inférieur du Fuel gaz	MJ/kg	47.13
R	Constante molaire des gaz parfaits	kJ/kmol.K	8.314
M_{air}	Masse molaire de l'air	kg/kmol	29
α	Facteur de partition d'air	-	0.9
λ	Facteur d'air	-	1.20
γ	Coefficient adiabatique de l'air	-	1.4
$ au_{\it C}$	Taux de compression (P_2/P_1)	-	8.7
$ ho_{air}$	Masse volumique de l'air aux CNTP	kg /Nm ³	1.29
$ ho_{FG}$	Masse volumique du fuel gaz aux CNTP	kg /Nm ³	0.84
φ	Efficacité thermique de l'échangeur	-	0-0.9
$\eta_{\it C}$	Rendement de combustion	-	0.9
η_m	Rendement mécanique de la turbine THP	-	0.98
η_{is}	Rendement isentropique de la compression	-	0.94
η_{is}'	Rendement isentropique de détente HP	-	0.92
$\eta_{is}^{\prime\prime}$	Rendement isentropique de détente BP	-	0.92

III.1.3 Résolution du modèle

La résolution des équations du modèle est effectuée au moyen du logiciel MATLAB [20]. Ce logiciel est un langage de calcul scientifique très performant intégrant le calcul, la programmation et la visualisation dans un environnement simple à utiliser. C'est un système interactif qui permet de manipuler directement des données structurées (matrices et vecteurs).

La méthodologie de résolution se déroule en plusieurs étapes de calcul, qui sont reconduites jusqu'à convergence de la température des gaz d'échappement (T₅) à la sortie de la turbine à gaz. La première étape consiste en la résolution du bilan massique et énergétique du compresseur, la seconde résout le bilan thermique sur l'échangeur de chaleur et la chambre de combustion, enfin la dernière étape évalue le bilan énergétique des détentes (HP) et (BP).

Le calcul suppose la connaissance de la température T₅ qui sera initialisée puis recalculée dans la dernière étape jusqu'à sa convergence.

L'organigramme de résolution du modèle est représenté en figure III.2. Quant au programme de calcul élaboré sur Matlab, il est envoyé en annexe.

III. 2. Résultats et interprétations

Afin de tester la validité de notre modèle, nous avons jugé bon de donner en tableau III.2, la comparaison des résultats de calculs aux données de mesures réelles de fonctionnement de cette turbine à gaz. Un écart moyen inférieur à 6% est observé. On peut dire donc que notre modèle, basé est susceptible de prédire la production d'énergie électrique dans ce type d'installation.

Tableau III.2. Comparaison des paramètres opératoires calculés et du design

Paramètre	Design	Calculé	Erreur (%)
T2 (°C)	-	322.8	-
T ₃ (°C)	1016.9	1017.1	0.019
T ₄ (°C)	762	716.16	6.01
T ₅ (°C)	450	469.9	4.42
Energie (kW)	3002	2870.23	4.38
η _{TG} (%)	32.9	30.4	7.59

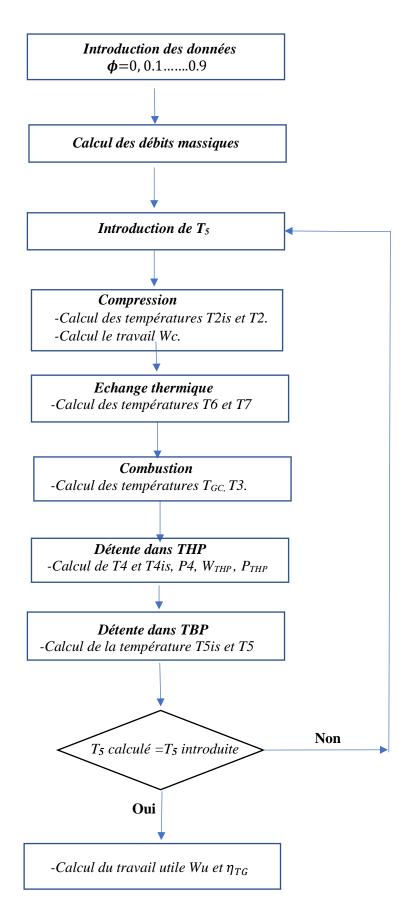


Figure III.2 : Organigramme de résolution du modèle

<u>Chapitre IV</u>: Résultats et interprétations

Introduction

Ce chapitre est consacré à l'utilisation du modèle thermodynamique proposé au chapitre III, pour faire des études de sensibilité du rendement énergétique de la turbine à gaz et sa puissance utile développée par rapport aux divers paramètres opératoires. Ceci permet d'identifier ceux qui contrôlent la performance énergétique de ce système.

IV.1. Variables opératoires de décision

Pour l'optimisation énergétique de la turbine à gaz, il est nécessaire d'identifier les variables indépendantes de décision. Ces variables sont celles qui doivent être modifiées en cours d'optimisation, c'est-à-dire les variables pour lesquelles il faut rechercher la valeur qui permet de maximiser le rendement énergétique.

Selon le modèle thermodynamique décrit au chapitre précédent, l'équation (III.33) du rendement énergétique de la turbine à gaz, dépend de la Température d'air d'aspiration du compresseur (T_1), la Température du fuel gaz (T_{FG}), le Facteur de partition d'air (α), le Facteur d'air (λ), l'Efficacité thermique de l'échangeur (ϕ), le Rendement de combustion (η_c), le Rendement mécanique de la THP (η_m) et les rendements isentropiques de la compression et des détentes (η_{is} , η'_{is} , η''_{is})

IV.2 Tests de sensibilité du rendement énergétique de la turbine à gaz

La sensibilité du rendement énergétique de la turbine à gaz est examinée sous la variation des différents paramètres mentionnés ci-dessus. Le tableau IV.1 donne leur domaine réel de variation.

Tableau IV.1. Domaine de variation des paramètres

Paramètre	Unité	Domaine
T_{FG}	(°C)	[20 – 100]
T_1	(°C)	[5-50]
α	(%)	[70 – 90]
λ	-	[1 - 1.3]
φ	(%)	[0-90]
$\eta_{\it C}$	(%)	[70 – 90]
η_m	(%)	[60 – 90]
η_{is}	(%)	[70 – 90]
η_{is}'	(%)	[70 – 90]
$\eta_{is}^{\prime\prime}$	(%)	[70 – 90]

IV.2.1. Influence de Température d'air d'aspiration du compresseur

La figure IV.1 représente l'évolution du rendement et de la puissance utile de la TAG en fonction de la température d'aspiration du compresseurT₁. Cette représentation montre nettement que le rendement de la turbine à gaz et la puissance utile sont inversement proportionnels à cette température. L'élévation de la température de 5°C en hiver à 50 °C en été, conduit à une diminution du rendement énergétique de 5%, soit une diminution de la puissance utile développée de 450kW. La diminution de la température d'aspiration entraine nécessairement la diminution de la masse volumique de l'air comprimé, ce qui provoque en conséquence, l'augmentation du travail du compresseur (figure IV.2). Ainsi, pour comprimer le débit d'air le compresseur a besoin de plus de puissance, ce qui occasionne l'abaissement du rendement de la turbine à gaz et la puissance utile.

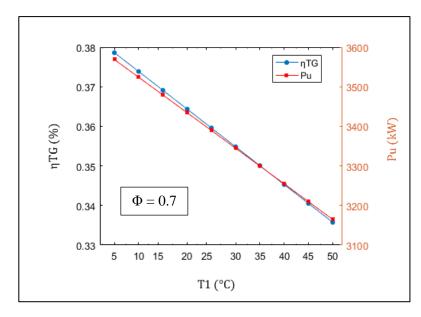


Figure IV.1. Rendement et Puissance utile de TAG en fonction de T₁

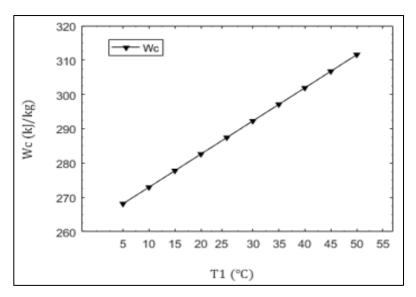


Figure IV.2. Travail du compresseur en fonction de T1

IV.2.2. Influence de la température de fuel gaz

La figure IV.3 représente l'influence de la température T_{FG} du combustible. On constate que le rendement et la puissance utile augmentent légèrement avec l'augmentation de cette température. Le préchauffage du combustible de 20 jusqu'à 100° C, n'a pas un effet significatif, il conduit seulement à une augmentation de 0.15% pour le rendement énergétique et 12kW pour la puissance utile.

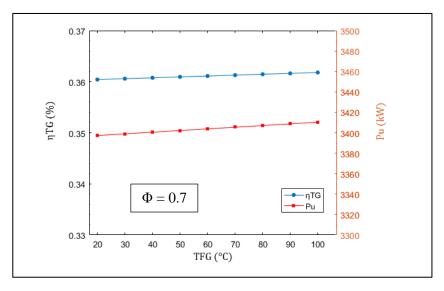


Figure IV.3.Rendement et Puissacne utile de la TAG en fonction de TFG

IV.2.3. Influence du facteur de partition d'air

La figure IV.4 représente l'influence du facteur de partition d'air. L'élévation de ce facteur, assure l'augmentation du débit d'air de dilution et en conséquence le débit des gaz de combustion qui contribue à une augmentation de la puissance utile et du rendement. A titre d'exemple, une augmentation de 10% de ce facteur améliore le rendement de 5% et la puissance utile de 300 kW.

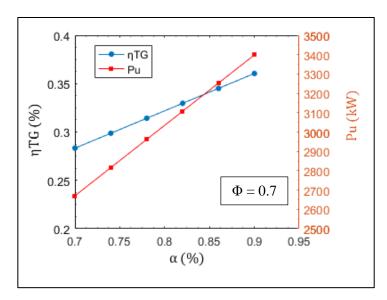


Figure IV.4. Rendement et puissacne utile en fonction de α

IV.2.4. Influence du facteur d'excès d'air

La figure IV.5 représente l'influence du facteur d'excès d'air. L'augmentation de l'excès d'air de combustion n'a pas une influence sur le rendement énergétique et la puissance utile. Leur évolution reste constante pour une variation de λ de 1 à 1.3. Ceci peut être expliqué, par les évolutions inverses de la température et du débit de combustion (figure IV.6). En effet, la diminution néfaste de la température de combustion constatée est contrebalancée et compensée par l'effet positif de l'augmentation du débit de combustion, ce qui conduit à une constance dans le potentiel énergétique de ces gaz.

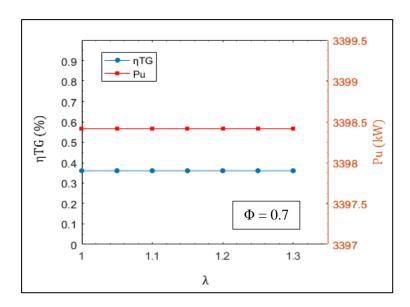


Figure IV.5. Rendement et Puissance utile en fonction de λ

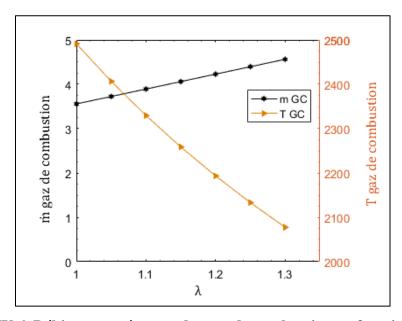


Figure IV.6. Débit et température des gaz de combustion en fonction de $\boldsymbol{\lambda}$

IV.2.5. Influence de l'efficacité thermique de l'échangeur

La figure IV.7 représente l'influence de l'efficacité thermique ϕ de l'échangeur de chaleur ou du récupérateur de chaleur. Le rendement et la puissance utile augmentent linéairement par rapport à ϕ . Pour une efficacité thermique de 80% de l'échangeur, le rendement énergétique s'est amélioré de 7% et la puissance utile de 20% par rapport au cas réel d'une TAG sans récupérateur (ϕ =0).

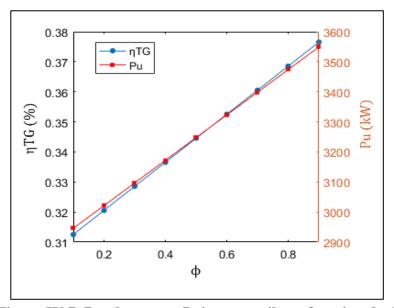


Figure IV.7. Rendement et Puissance utile en fonction de φ

IV.2.6. Influence du rendement de combustion

La figure IV.8 représente l'influence du rendement de combustion η_c sur le rendement énergétique et la puissance utile. L'augmentation du rendement η_c de 10%, entraine une amélioration du rendement énergétique de 5% et la puissance utile de 500kW. Cette amélioration de la performance sera traduite par une diminution des imbrulés dans les gaz de combustion et des pertes thermiques dans la chambre.

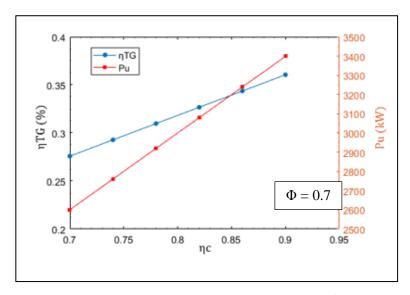


Figure IV.8. Rendement et Puissacne utile en fonction de η_c

IV.2.7. Influence du rendement mécanique de la THP :

La figure IV.9 représente l'influence du rendement mécanique η_m de la turbine haute pression sur le rendement énergétique de TAG et la puissance utile. L'augmentation de ce rendement de 10% conduit à une amélioration du rendement énergétique de 8% et de la puissance de 600kW. Cette augmentation est due à la bonne transmission entre la turbine HP et le compresseur, ce qui diminue en conséquence la perte énergétique à travers cette transmission.

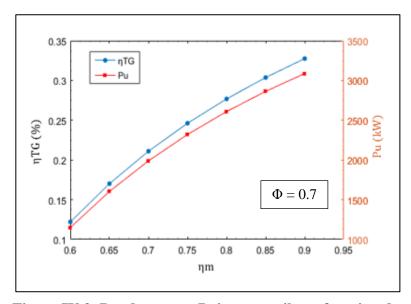


Figure IV.9. Rendement et Puissacne utile en fonction de η_m

IV.2.8 Influence des rendements isentropiques de compression et de détente

Les figures IV.10, IV.11 et IV.12 représentent respectivement l'influence des rendements isentropiques η_{is} de compression, η'_{is} de la détente THP et η''_{is} de la détente TBP. On constate que l'évolution du rendement énergétique et la puissance utile de la turbine à gaz est toujours favorable à l'augmentation de ces rendements, traduisant une tendance vers l'idéalité d'une transformation thermodynamique (adiabatique et réversible). L'augmentation du rendement isentropique de compression conduit à la diminution du travail de compression, par contre ceux de la détente font augmenter l'énergie développée par les turbines HP et BP. Selon ces représentations, on constate que l'augmentation du rendement isentropique de 10% quel que soit sa nature, entraine une amélioration du rendement énergétique de 4 à 5% et la puissance utile de 400 à 500kW.

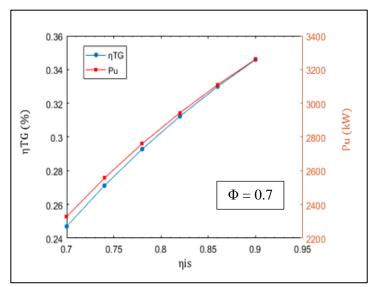


Figure IV.10. Rendement et Puissacne utile en fonction de η_{is}

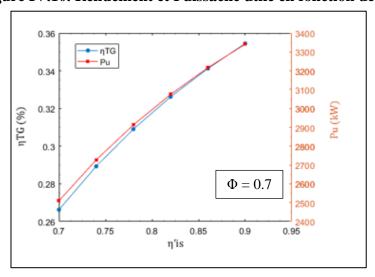


Figure IV.11. Rendement et Puissacne utile en fonction de η_{is}'

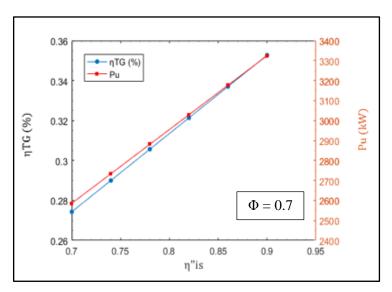


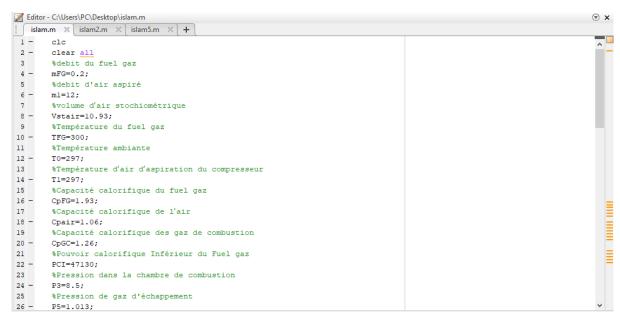
Figure IV.12. Rendement et Puissacne utile en fonction de $\eta_{is}^{\prime\prime}$

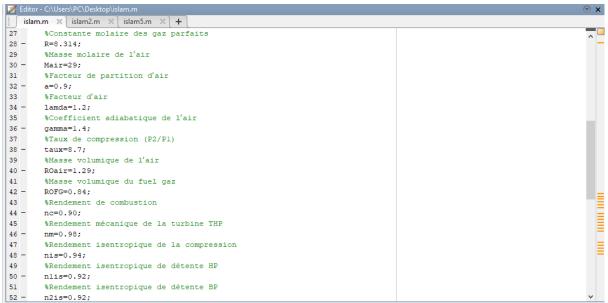
Conclusion générale

Les turbines à gaz sont utilisées pour la génération de l'électricité dans les centrales thermiques et dans l'industrie pétrolière et gazière.

Compte tenu de la situation géographique et les conditions climatiques variables en température, pression et humidité relative, l'optimisation du rendement de ces machines motrices est fortement liée à la maîtrise de ses caractéristiques. Cependant, grâce à la souplesse du cycle à la turbine à gaz, l'ajout des composantes supplémentaires contribue toujours à améliorer ses performances.

L'utilisation d'un échangeur de chaleur de récupération calorifique des gaz d'échappement pour le préchauffage d'air de combustion, rapportée par la littérature, contribue aussi à l'amélioration du rendement énergétique et la puissance utile de la turbine à gaz.


Ainsi, la modélisation thermodynamique du cycle simple d'une turbine à gaz, munie d'un récupérateur de chaleur a été réalisée. La TAG SGT 100-2S, de l'unité de traitement de gaz CPF de Rhourde Nouss a été prise comme cas d'étude.


Le modèle est validé par des mesures réelles relevées sur le site industriel. Sur la base de ce modèle, un programme sous Matlab est établi pour le calcul du rendement énergétique et la puissance utile de la turbine sous différentes conditions opératoires.

Les principaux résultats de l'étude de sensibilité du rendement énergétique ont montré que le rendement énergétique global de la turbine à gaz est influencé par la température d'air d'aspiration du compresseur, le facteur de partition d'air, le rendement de combustion, l'efficacité thermique de l'échangeur et les rendements mécanique et isentropiques. Quant au facteur d'air et la température du fuel gaz n'ont pas une influence significative.

Annexe A

Le programme de calcul


```
Z Editor - C:\Users\PC\Desktop\islam.m
                                                                                                                                              ▼ x
islam.m × islam2.m × islam5.m × +
53
54 -
         m2=a*m1
         mairc (lamda*Vstair*mFG)*(ROair/ROFG)
55 -
56 -
57 -
         m6=m2
         maird=m6-mairc
58 -
         mGC=mFG*(1+(lamda*Vstair*(ROair/ROFG)))
59 -
60 -
         m3=m6+mFG
         m4=m3; m5=m3;
61 -
62 -
         T2is=T1*taux^((gamma-1)/(gamma))
         T2=((T2is-T1)+(nis*T1))/nis
63 -
64 -
         Wc=Cpair*(T2-T1)
65 -
        TGC= (MFG*CpFG*(TFG-T0)+mFG*PCI*nc+mairc*Cpair*(T6-T0))/(mGC*CpGC))+T0
T3= (mGC*CpGC*(TGC-T0)+maird*Cpair*(T6-T0))/(m3*Cpair)+T0
66 -
67 -
         T4=T3-(ml*Wc)/(m3*Cpair*nm)
68 -
69 -
         T4is=T3-((T3-T4)./nlis);
         WTHP=Cpair*(T3-T4);
70 -
         Pc=ml*Wc;
71 -
         P4=P3*(T4is/T3)^(gamma/(gamma-1))
         T5is=((P5/P4)^((gamma-1)/gamma))*T4
T5=T4-((T4-T5is).*n2is)
72 -
73 -
74 -
75 -
         Wu=Cpair*(T4-T5)
         Pu=m4*Wu
76 -
        nTG=(m4*Wu)/(mFG*PCI)
77
78
                                                                                                                                                 ூ
Command Window
                                                                                             script
                                                                                                                                Ln 77 Col 1
```

Les résultats:

```
Z Editor - C:\Users\PC\Desktop\islam.m
                                                                                                                                                           ∀ ×
Command Window
                                                                                                                                                               ⅌
 New to MATLAB? See resources for \underline{\text{Getting Started}}.
                                                                                                                                                               ×
   m2 =
              10.8
   mairc =
            4.0285
   m6 =
              10.8
   maird =
            6.7715
   mGC =
            4.2285
fx
```

```
      ☑ Editor - C\Users\PC\Desktop\\islam.m
      ② x

      Command Window
      ③

      New to MATLAR? See resources for Getting Started.
      x

      m3 =
      11

      T2 is =
      551.05

      T2 =
      567.27

      T6 =
      567.27

      Wc =
      286.48
```

```
      ☑ Editor - C\Users\PC\Desktop\islam.m
      ⊙ x

      Command Window
      ⊙

      New to MATLAB? See resources for Getting Started.
      x

      TGC =
      2106.1

      T3 =
      1290

      T4 =
      989.16

      P4 =
      3.0551

      T51s =
      721.59
```

 $\label{eq:AnnexeB} \textbf{Annexe B}$ Tests de sensibilité du rendement énergétique de la TAG en fonction de la variation de : $T_1, T_{FG}, \phi, \alpha, \lambda, \, \eta_{\it C}, \, \eta_m, \, \eta_{\it is}, \, \eta_{\it is}' \, \, \text{et} \, \, \eta_{\it is}''.$

<i>T</i> ₁ (°C)	5	10	15	20	30	40	50
T _{2is} (°C)	242,7971	252,074	261,3509	270,6278	289,1817	307,7355	317,0125
T ₂ (°C)	257,9756	267,5255	277,0754	286,6254	305,7252	324,825	334,375
T ₆ (°C)	392,3927	395,2577	398,1226	400,9876	406,7176	412,4475	415,3125
Wc (kJ/kg)	268,1541	272,9771	277,8	282,6229	292,2687	301,9146	306,7375
T _{GC} (°C)	1911,738	1914,035	1916,331	1918,627	1923,22	1927,812	1930,108
T ₃ (°C)	1113,358	1116,171	1118,984	1121,797	1127,423	1133,048	1135,861
T _{4is} (°C)	807,2653	804,573	801,8806	799,1882	793,8034	788,4187	785,7263
T ₄ (°C)	831,7528	829,5008	827,2489	824,9969	820,493	815,989	813,7371
W _{THP} (kJ/kg)	298,5018	303,8706	309,2393	314,608	325,3455	336,083	341,4517
$P_{c}(kW)$	3217,85	3275,725	3333,6	3391,475	3507,225	3622,975	3680,85
PTHP	3283,52	3342,576	3401,632	3460,688	3578,801	3696,913	3755,969
P ₄ (bar)	3,549861	3,494115	3,439219	3,385159	3,279498	3,177031	3,126965
T ₇ (°C)	318,0269	324,5903	331,1537	337,7171	350,8439	363,9707	370,5341
T5 _{is} (°C)	499,084	501,0026	502,9244	504,8494	508,7091	512,582	514,5234
T5 (°C)	525,6975	527,2825	528,8703	530,4612	533,6518	536,8546	538,4605
Wu(kJ/kg)	324,4186	320,3514	316,2812	312,2079	304,0516	295,8826	291,7932
η_{TG}	0,378592	0,373845	0,369095	0,364342	0,354824	0,34529	0,340518

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{\mathrm{m}}_{FG}(\mathrm{kg/s})$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cp _{air} (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	[5-50]	PCI (kJ/kg)	47130	η_{is}'	0.92
ρ_{FG} (kg/Nm3)	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

T_{FG} (°C)	20	30	40	60	80	100
T _{2is} (°C)	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
T ₆ (°C)	405.93	405.93	405.93	405.93	405.93	405.93
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1919,957	1920,681	1921,406	1922,855	1924,304	1925,753
T ₃ (°C)	1123,816	1124,147	1124,478	1125,14	1125,802	1210,079
T _{4is} (°C)	796,8026	797,1336	797,4646	798,1267	798,7888	799,4509
T ₄ (°C)	822,9636	823,2946	823,6257	824,2878	824,9499	825,612
W _{THP} (kJ/kg)	318,903	318,903	318,903	318,903	318,903	318,903
P _c (kW)	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
P ₄ (bar)	3,341912	3,342759	3,343606	3,345299	3,346991	3,348683
T ₇ (°C)	405.27	405.27	405.27	405.27	405.27	405.27
T5 _{is} (°C)	506,2664	506,4454	506,6243	506,9822	507,34	507,6979
T5 (°C)	531,6022	531,7933	531,9844	532,3666	532,7488	533,131
Wu(kJ/kg)	308,8431	308,9914	309,1397	309,4364	309,7331	310,0298
η_{TG}	0,360415	0,360588	0,360761	0,361108	0,361454	0,3618

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cpair (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	[20-	α	0.9	η_m	0.98
	100]				
$T_0(^{\circ}\text{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
ρ_{FG} (kg/Nm3)	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

λ	1	1,05	1,1	1,15	1,2	1,25	1,3
ṁ _{air comb}	3,357071	3,524925	3,692779	3,860632	4,028486	4,196339	4,364193
m _{air dilution}	7,442929	7,275075	7,107221	6,939368	6,771514	6,603661	6,435807
ṁ _{GC}	3,557071	3,724925	3,892779	4,060632	4,228486	4,396339	4,564193
$T_{2is}(^{\circ}C)$	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
T ₆ (°C)	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	2218,204	2133,706	2056,496	1985,668	1920,464	1860,239	1804,443
T ₃ (°C)	1124,047	1124,047	1124,047	1124,047	1124,047	1124,047	1124,047
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	797,0343	797,0343	797,0343	797,0343	797,0343	797,0343	797,0343
T ₄ (°C)	823,1953	823,1953	823,1953	823,1953	823,1953	823,1953	823,1953
W _{THP} (kJ/kg)	318,903	318,903	318,903	318,903	318,903	318,903	318,903
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
P _c (kW)	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	3,342505	3,342505	3,342505	3,342505	3,342505	3,342505	3,342505
P ₅ (bar)	1.013	1.013	1.013	1.013	1.013	1.013	1.013
T ₇ (°C)	342,9678	342,9678	342,9678	342,9678	342,9678	342,9678	342,9678
T5 _{is} (°C)	506,3917	506,3917	506,3917	506,3917	506,3917	506,3917	506,3917
T5 (°C)	531,736	531,736	531,736	531,736	531,736	531,736	531,736
Wu(kJ/kg)	308,9469	308,9469	308,9469	308,9469	308,9469	308,9469	308,9469
ηтσ	0,360536	0,360536	0,360536	0,360536	0,360536	0,360536	0,360536

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cpair (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
ρ_{FG} (kg/Nm3)	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
$\rho_{air}(kg/Nm3)$	1.29	λ	[1-1.3]		

φ	0,1	0,2	0,3	0,5	0,7	0,9
T _{2is} (°C)	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
$T_6(^{\circ}C)$	309,8388	325,4122	340,9857	372,1327	403,2796	434,4265
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1845,573	1858,055	1870,537	1895,5	1920,464	1945,428
T ₃ (°C)	1032,305	1047,596	1062,886	1093,467	1124,047	1154,628
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	705,2924	720,5827	735,873	766,4537	797,0343	827,6149
T ₄ (°C)	731,4534	746,7437	762,0341	792,6147	823,1953	853,776
W _{THP} (kJ/kg)	318,903	318,903	318,903	318,903	318,903	318,903
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
P _c (kW)	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	3,097896	3,140064	3,181661	3,263175	3,342505	3,419718
T ₇ (°C)	434,7097	419,4194	404,1291	373,5484	342,9678	312,3872
T5 _{is} (°C)	456,84	465,0934	473,349	489,8665	506,3917	522,924
T5 (°C)	478,8091	487,6254	496,4438	514,0863	531,736	549,3922
Wu(kJ/kg)	267,803	274,6654	281,5257	295,2401	308,9469	322,6468
η _{TG}	0,312522	0,32053	0,328536	0,344541	0,360536	0,376524

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cpair (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	[0.1-0.9]	η_{is}	0.94
T_1 (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
$\rho_{FG}(\text{kg/Nm3})$	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
$\rho_{air}(kg/Nm3)$	1.29	λ	1.2		

$\eta_{\it C}$	0,7	0,74	0,78	0,82	0,86	0,9
T _{2is} (°C)	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
T ₆ (°C)	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1566,628	1637,395	1708,162	1778,93	1849,697	1920,464
T ₃ (°C)	962,3663	994,7025	1027,039	1059,375	1091,711	1124,047
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	635,3533	667,6895	700,0257	732,3619	764,6981	797,0343
T ₄ (°C)	661,5144	693,8506	726,1867	758,5229	790,8591	823,1953
W _{THP} (kJ/kg)	318,903	318,903	318,903	318,903	318,903	318,903
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
P _c (kW)	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	2,897515	2,991716	3,083238	3,172159	3,258555	3,342505
P ₅ (bar)	1.013	1.013	1.013	1.013	1.013	1.013
T ₇ (°C)	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796
T5 _{is} (°C)	419,1199	436,553	453,9977	471,4531	488,918	506,3917
T5 (°C)	438,5115	457,1368	475,7728	494,4187	513,0733	531,736
Wu(kJ/kg)	236,3831	250,9166	265,4387	279,9505	294,453	308,9469
η_{TG}	0,275855	0,292816	0,309763	0,326698	0,343622	0,360536

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cpair (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	[0.7-0.9]
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
$\rho_{FG}(\text{kg/Nm3})$	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

α	0.7	0.74	0.78	0.82	0.86	0.9
m ₂	8,4	8,88	9,36	9,84	10,32	10,8
m ₃	8,6	9,08	9,56	10,04	10,52	11
\dot{m}_4	8,6	9,08	9,56	10,04	10,52	11
ṁ ₅	8,6	9,08	9,56	10,04	10,52	11
ṁ ₆	8,4	8,88	9,36	9,84	10,32	10,8
m _{air dilution}	4,371514	4,851514	5,331514	5,811514	6,291514	6,771514
$\dot{\mathrm{m}}_{GC}$	4,228486	4,228486	4,228486	4,228486	4,228486	4,228486
$T_{2is}(^{\circ}C)$	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
$T_6(^{\circ}C)$	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1920,464	1920,464	1920,464	1920,464	1920,464	1920,464
T ₃ (°C)	1325,192	1276,456	1232,615	1192,965	1156,934	1124,047
T _{4is} (°C)	906,9193	880,2952	856,3446	834,6841	815,0003	797,0343
T ₄ (°C)	940,3811	911,9881	886,4462	863,3466	842,355	823,1953
W _{THP} (kJ/kg)	407,8992	386,3363	366,9386	349,3957	333,4537	318,903
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
$P_{c}(kW)$	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	2,939009	3,024008	3,106799	3,187439	3,265987	3,342505
T ₇ (°C)	343,5209	343,3869	343,2663	343,1573	343,0582	342,9678
T5 _{is} (°C)	622,0107	593,9764	568,768	545,9794	525,2787	506,3917
T5 (°C)	647,4803	619,4173	594,1823	571,3688	550,6448	531,736
Wu(kJ/kg)	310,4748	310,125	309,7998	309,4965	309,2128	308,9469
η _{TG}	0,283268	0,298741	0,314204	0,329657	0,345101	0,360536

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cpair (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	[0.7-0.9]	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
ρ_{FG} (kg/Nm3)	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

η_m	0,6	0,65	0,7	0,8	0,9
T _{2is} (°C)	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653
T ₆ (°C)	403,2796	403,2796	403,2796	403,2796	403,2796
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1920,464	1920,464	1920,464	1920,464	1920,464
T ₃ (°C)	1124,047	1124,047	1124,047	1124,047	1124,047
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	589,9261	631,0123	666,2291	723,4564	767,9665
T ₄ (°C)	632,6558	670,4551	702,8546	755,5036	796,4529
W _{THP} (kJ/kg)	520,8749	480,8076	446,4642	390,6562	347,25
P _{THP} (kW)	5729,624	5288,884	4911,107	4297,218	3819,75
P _c (kW)	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	1,574301	1,852637	2,117778	2,604858	3,035349
P ₅ (bar)	1.013	1.013	1.013	1.013	1.013
T ₇ (°C)	342,9678	342,9678	342,9678	342,9678	342,9678
T5 _{is} (°C)	525,4635	520,9852	517,4585	512,2593	508,6106
T5 (°C)	534,0389	532,9428	532,2902	531,7188	531,638
Wu(kJ/kg)	104,5339	145,763	180,7982	237,2119	280,7038
η_{TG}	0,121989	0,170103	0,210989	0,276823	0,327577

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cp _{air} (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	[0.6-0.9]
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
ρ_{FG} (kg/Nm3)	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

η_{is}'	0,7	0,74	0,78	0,82	0,86	0,9
T _{2is} (°C)	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
T ₆ (°C)	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1920,464	1920,464	1920,464	1920,464	1920,464	1920,464
T ₃ (°C)	1124,047	1124,047	1124,047	1124,047	1124,047	1124,047
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	694,2588	717,4906	738,3397	757,1547	774,2194	789,7673
T ₄ (°C)	823,1953	823,1953	823,1953	823,1953	823,1953	823,1953
W _{THP} (kJ/kg)	318,903	318,903	318,903	318,903	318,903	318,903
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
P _c (kW)	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	2,347359	2,550682	2,743593	2,926433	3,099646	3,263727
P ₅ (bar)	1.013	1.013	1.013	1.013	1.013	1.013
T ₇ (°C)	342,9678	342,9678	342,9678	342,9678	342,9678	342,9678
T5 _{is} (°C)	589,2055	568,9826	551,6249	536,5637	523,3716	511,721
T5 (°C)	607,9247	589,3196	573,3505	559,4942	547,3575	536,6389
Wu(kJ/kg)	228,1869	247,9083	264,8355	279,5231	292,3881	303,7498
η_{TG}	0,266291	0,289305	0,309059	0,326199	0,341212	0,354471

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cp _{air} (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	[0.7-0.9]
$\rho_{FG}(\text{kg/Nm3})$	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

η_{is}	0,7	0,74	0,78	0,82	0,86	0,9
T _{2is} (°C)	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	386,9277	367,31	349,7043	333,8163	319,4063	306,2771
T ₆ (°C)	431,0783	425,193	419,9113	415,1449	410,8219	406,8831
Wc (kJ/kg)	384,7034	363,9086	345,2466	328,4053	313,1306	299,2137
T _{GC} (°C)	1942,744	1938,027	1933,794	1929,974	1926,509	1923,352
T ₃ (°C)	1151,341	1145,562	1140,377	1135,697	1131,452	1127,585
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	712,2088	730,1674	746,284	760,8283	774,0196	786,0384
T ₄ (°C)	747,3394	763,399	777,8114	790,8178	802,6143	813,3621
W _{THP} (kJ/kg)	428,2412	405,093	384,319	365,5718	348,5684	333,0765
P _{THP} (kW)	4710,653	4456,023	4227,509	4021,289	3834,253	3663,841
P _c (kW)	4616,44	4366,903	4142,959	3940,864	3757,568	3590,565
P ₄ (bar)	2,339481	2,52788	2,707382	2,87824	3,040789	3,195409
P ₅ (bar)	1.013	1.013	1.013	1.013	1.013	1.013
T ₇ (°C)	406,6521	393,1694	381,0695	370,1501	360,2465	351,2232
T5 _{is} (°C)	530,3127	525,0983	520,4908	516,3885	512,7116	509,3965
T5 (°C)	547,6748	544,1624	541,0764	538,3428	535,9038	533,7138
Wu(kJ/kg)	211,6445	232,3908	250,9391	267,6234	282,713	296,4273
η_{TG}	0,246986	0,271197	0,292842	0,312313	0,329922	0,345926

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cp _{air} (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
Vair (Nm³ air/Nm³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	[0.7-0.9]
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
$\rho_{FG}(\text{kg/Nm3})$	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	0.92
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

$oldsymbol{\eta}_{is}^{\prime\prime}$	0,7	0,74	0,78	0,82	0,86	0,9
$T_{2is}(^{\circ}C)$	278,0494	278,0494	278,0494	278,0494	278,0494	278,0494
T ₂ (°C)	294,2653	294,2653	294,2653	294,2653	294,2653	294,2653
T ₆ (°C)	403,2796	403,2796	403,2796	403,2796	403,2796	403,2796
Wc (kJ/kg)	286,4812	286,4812	286,4812	286,4812	286,4812	286,4812
T _{GC} (°C)	1920,464	1920,464	1920,464	1920,464	1920,464	1920,464
T ₃ (°C)	1124,047	1124,047	1124,047	1124,047	1124,047	1124,047
P ₃ (bar)	8.5	8.5	8.5	8.5	8.5	8.5
T _{4is} (°C)	797,0343	797,0343	797,0343	797,0343	797,0343	797,0343
T ₄ (°C)	823,1953	823,1953	823,1953	823,1953	823,1953	823,1953
W _{THP} (kJ/kg)	318,903	318,903	318,903	318,903	318,903	318,903
P _{THP} (kW)	3507,933	3507,933	3507,933	3507,933	3507,933	3507,933
$P_{c}(kW)$	3437,775	3437,775	3437,775	3437,775	3437,775	3437,775
P ₄ (bar)	3,342505	3,342505	3,342505	3,342505	3,342505	3,342505
P ₅ (bar)	1.013	1.013	1.013	1.013	1.013	1.013
T ₇ (°C)	342,9678	342,9678	342,9678	342,9678	342,9678	342,9678
T5 _{is} (°C)	506,3917	506,3917	506,3917	506,3917	506,3917	506,3917
T5 (°C)	601,4328	588,7606	576,0885	563,4163	550,7442	538,0721
Wu(kJ/kg)	235,0683	248,5008	261,9332	275,3657	288,7982	302,2307
η _{TG}	0,274321	0,289997	0,305672	0,321348	0,337023	0,352699

Paramètres	Valeurs	Paramètres	Valeurs	Paramètres	Valeurs
$\dot{m}_{FG}(kg/s)$	0.2	Cp _{FG} (kJ/kg °C)	1.93	Cp _{air} (kJ/kg °C)	1.06
$\dot{m}_1(kg/s)$	12	Cp _{GC} (kJ/kg °C)	1.26	$ au_c$	8.7
V_{air}^{st} (Nm ³ air/Nm ³ F)	10.93	R (kJ/kmol K)	8.314	$\eta_{\it C}$	0.9
$T_{FG}(^{\circ}\mathrm{C})$	27	α	0.9	η_m	0.98
$T_0(^{\circ}\mathrm{C})$	24	ф	0.7	η_{is}	0.94
<i>T</i> ₁ (°C)	24	PCI (kJ/kg)	47130	η_{is}'	0.92
$\rho_{FG}(\text{kg/Nm3})$	0.84	M _{air} kg/kmol	29	$\eta_{is}^{\prime\prime}$	[0.7-0.9]
ρ_{air} (kg/Nm3)	1.29	λ	1.2		

Annexe C

Abstract:

Gas turbines have known great importance in power generation systems, such as power plants and hydrocarbon units through the conversion of thermal energy due to the combustion of hydrocarbons into mechanical energy. A gas turbine is a thermodynamic rotating machine belonging to the family of internal combustion engines whose role is to produce mechanical energy (rotation of a shaft) from the energy contained in a liquid or gaseous fuel.

The whole gas turbine is made up of three essential components: a compressor, a combustion chamber and a turbine.

The air drawn in from the outside environment is compressed in the compressor before entering the combustion chamber. Inside the combustion chamber, the chemical reaction between air and fuel produces an increase in temperature at a relatively constant pressure, in this reaction the heat from the fuel is converted into thermal energy for the gases. Finally, in the expansion turbine, the hot gases expand to ambient pressure and their temperature decreases accordingly. This phase produces a large amount of mechanical energy partly required by the compressor, but especially directed to the network through the power generator.

We can find two types of gas turbine: one single shaft turbine which compressor and turbine sections consist of a single simple rotor, where the turbine produces the energy to drive the compressor as well as the energy to drive the load. And twin shaft turbine which gas turbine is made up of two mechanically independent impeller turbines. The HP turbine wheel drives the axial compressor rotor and accessories, while the second stage LP wheel is used to drive the receiver

Through a practical internship at SONATRACH, the SGT-100 2S gas turbine used in the petroleum industry at the CPF gas processing unit was considered as the application machine in our study.

The cycle of a gas turbine is very flexible in which its performance parameters can be improved by adding additional components to a single cycle. For this purpose, various methods (regeneration, intermediate cooling, preheating and injection of water or steam, cooling of the combustion air) were used in order to improve the performance of gas turbines. The main object of this work is the energy optimization of a gas turbine by preheating combustion air (regeneration).

The modeling of this process is of the chemical engineering type, based on mass and thermal balances, as well as on thermodynamic equations, illustrating the various transformations of the fluid. The resolution methodology takes place in several calculation steps, which are carried over until the exhaust gas temperature (T5) converges. The first step consists in resolving the mass and energy balance of the compressor, the second resolves the thermal balance on the heat exchanger and the combustion chamber, finally the last step evaluates the energy balance of the expansions (HP) and (LP). The calculation assumes knowledge of the temperature (T5) which will be initialized and then recalculated in the last step until it converges. In order to test the validity of our model, the comparison of the results of calculations with the data of actual measurements of operation of this gas turbine. An average deviation less than 6% is observed.

Optimizing the performance of gas turbines is dependent on very sensitive parameters that affect them which are: compressor suction air temperature, fuel gas temperature, air partition factor, air excess factor, thermal efficiency of the heat exchanger, combustion efficiency, mechanical performance of THP, isentropic efficiency of compression, HP expansion isentropic efficiency, LP expansion isentropic efficiency. That is why a simulation and study of their variations was carried out.

The obtained results show that, the increase of all parameters positively influence the performance of the gas turbine. Except, the increase in compressor suction air temperature (T1) causes a decrease in the performance of the gas turbine. Also, the increase in air excess factor does not affect the performance of the gas turbine.

So, we can say that the performance of the studied gas turbine has improved with the use of the heat exchanger.

MATLAB software was used for modeling and simulation.

Références bibliographiques

- [1] Max GIRAUD, Joel SILET, Turbine à gaz aéronautique et terrestres, Technique de l'ingénieur (B4410), 1992
- [2] L. Dixon, Fluid Mechanics, thermodynamics of Turbomachinery, Pergamon Press Oxford, new York, 3rd Edition, 1978
- [3] Olav BOLLAND, Thermal power generation, Weinheim, 2010
- [4] Boissenin, Y., Moliere, M., et Remy, P., Les atouts de la turbine à gaz MS6001 B en cogénération exemple de l'usine d'électricité de Metz", Revue technique GE Alsthom N°15, 1994
- [5]: SONATRACH: projet de développement du champ de Rhourde Nouss (CTH & Rhourde Chouff); contrat No ENC 08 346 w; description du procédé.
- [6] Lincoln, Formation production électricité, pétrole et gaz et application industrielle, Siemens Industrial Turbomachinery, Ltd 2006
- [07]: Hedman, Bruce, ICF International, CHP: The State of the Market, presentation to the U.S. EPA Combined Heat and Power Partnership 2009 Partners Meeting, 1 October 2009.
- [**08**]: (Paepe et Dick, 2001)
- [**09**]: (Penning *et al*, 1996)
- [10]: R. Hosseini. A. Beshkani, M. Soltani Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler" science direct.2006pages 1055-1064
- [11]: C. Mustapha et Cyrus B. 2007. Evaporative cooling of gas turbine engines-Climatic analysis and application in high humidity regions. ASME conference proceedings, Mai 2007 vol. 3, p 761–773.
- [12]: Gas Turbine Engineering Handbook Third edition. Meherwan P. Boyce, Ph.D., P.E.
- [13]: Jean casting-Lasvignottes 'Aspects thermodynamiques et technico-économiques des machines à absorption liquide'. Cours 2005
- [14]: Advanced Gas Turbine Cycles Par M: J. H. Horlok, FRS whittle laboratory camridge ,U.K.2003.

- [15] Sonatrach, Installations de traitement de Rhourde Nouss QH, manuel opératoire de Procédé, volume 1, 09446Z, Algérie 2012
- [16] J P. Gourlia, Modélisation en génie des procédés, Technique de l'ingénieur J 1022, Technique
 - et Documentation Paris (1999) 1-7.
- [17] Sonatrach, Data sheet G05-DT-01 et 02, G50-DT-01 et 02, Rhourde Nouss, Algerie 2012
- [18] P. Le Goff, Energétique Industrielle, Tome 1, Technique et Documentation Paris (1980 a).
- [19] Y.Merah et A. Nemili Chibani, Contribution à l'amélioration des performances thermodynamiques de la turbine à gaz SGT-400 (Rhourde Nouss), Master 2, Université Aboubakr Belkaïd, Tlemcen, 2017
- [20]: Cleve Moler. <u>The Origins of MATLAB</u>. Cleve's Corner (in the Mathworks Newsletter), December 2004.