UNIVERSITE SAAD DAHLEB - BLIDA 1

Faculté de Technologie

Département des Sciences de l'Eau et Environnement

MEMOIRE DE MASTER

Filière: Hydraulique

Spécialité : Ressources Hydrauliques

Thème:

Evaluation de l'impact des extensions de la ville de Tipaza sur le fonctionnement du système d'alimentation en eau potable

Présenté par

LAOUDI Hichem

GHORAB Sid Ali

Soutenu le: 21/09/2020.

Devant le jury composé de :

M. D. BENSAFIA M.C.B. U. de blida 1 Président

M. M. BESSENASSE Professeur. U. de blida 1 Examinateur

M. M.BELKACEM FILALI M.A.A. U. de blida 1 Promoteur

Promotion 2019/2020

Je dédie ce modeste travail en signe de respect et de reconnaissance à :

- ♣ Ma très chère mère pour ces sacrifices afin d'atteindre mon but.

 Qu'elle trouve ici l'expression de ma tendre affection.
- ♣ Mes frères.
- Mes très chères sœurs.
- **4** Toute ma famille.
- ♣ Tous mes amis sans exception.

LAOUDI Hichem

Je dédie ce modeste travail en signe de respect et de reconnaissance à :

- ♣ Ma très chère mère pour ces sacrifices afin d'atteindre mon but.
 Qu'elle trouve ici l'expression de ma tendre affection.
- ♣ Mes frères.
- Mes très chères sœurs.
- **4** Toute ma famille.
- ♣ Tous mes amis sans exception.

GHORAB Sid Ali

 \mathcal{S}_{e} remercie également tous mes professeurs et particulièrement $M^{r.}$ BELKACEM FILALI.M , $M^{r.}$. D. BENSAFIA , M. BESSENASSE

pour l'aide précieuse, qu'ils m'ont apporté durant l'élaboration de ce modeste travail. .

Aussi, je me permets d'exprimer tout mon respect aux membres de jury qui me feront l'honneur d'apprécier notre travail.

LAOUDI Hichem

 \mathcal{J}_e remercie également tous mes professeurs et particulièrement M^r . BELKACEM FILALI.M , M^r . D. BENSAFIA , M. BESSENASSE

pour l'aide précieuse, qu'ils m'ont apporté durant l'élaboration de ce modeste travail. .

Aussi, je me permets d'exprimer tout mon respect aux membres de jury qui me feront l'honneur d'apprécier notre travail.

GHORAB Sid Ali

SOMMAIRE

Chapitre I		
	Présentation de la ville de	Tipaza
I.1 Introduction		
I.2. Données naturels du site		
I.2.1 Historique de la ville		
I.2.2 Situation géographique		
I.2.3 Situation topographique		
I.2.4 Géotechnique		
I.2.5 Géologie		
I.2.6 Hydrogéologie		
I.2.7 Sismicité		
I.2.8 Situation climatique		
I.3 Donnée hydrauliques		
I.3.1 Alimentation en eau potable		
I.3.1.1 Historique du système d'AEP		
I.3.1.2 Réseau d'AEP		
I.3.1.3 Ressource en eau.		
I.3.2 Assainissement		
Chapitre II		14
	Calcul des	besoins
II.1Introduction		16
II.2 Situation démographique	••••••	1 \ 1 <i>6</i>
II.3 Estimation des besoins par étage		
II.3.1 Premier étage		
II.3.1.1 Estimation des besoins de la population du	nremier étage	17 17
II.3.1.2 Estimation des besoins des équipements		
II.3.1.3 Etude des variations du débit		
II.3.2 Deuxième étage		27
II.3.2.1 Estimation des besoins de la population du		
II.3.2.2 Estimation des besoins des équipe	ements	2
II.3.2.3 Etude des variations du débit		29
II 4 Conclusion		27

Chapitre III

Calcul hydraulique

III.1 Introduction III.2 Calcul du réseau de distribution III.2.1 Choix du système de distribution III.2.2 Choix du type de réseau III.2.3 Principe du tracé du réseau maillé III.2.4 Choix du matériau des conduites	39 40 40 41
III.2.5 Calcul hydraulique du réseau de distribution	
CONCLUSION GENERALE BIBLIOGRAPHIE ANNEXES	128

LISTE DES TABLEAUX

CHAPITRE I : PRESENTATION DE LA VILLE DE TIPAZA	
Tab I.1: Températures moyennes annuelles	07
Tab I.2: Variation annuelle de l'humidité	08
Tab I.3: Vents moyens mensuels	
Tab I.4: Pluie maximale journalière moyens mensuels	09
CHAPITRE II : CALCUL DES BESOINS EN EAU	
Tab II.1: Répartition de la population à differents horizons de calcul	
Tab II.2: Débit moyen des équipements du premier étage.	
Tab II.3: Variation du coefficient β_{max} en fonction du nombre d'habitants	
Tab II.5: Variation du coefficient β_{min} en fonction du nombre d'habitant	21
Tab II.6: β _{min} et K _{min,h} pour notre cas	. 21
Tab II.7: Débit minimum journalier et maximum journalier	. 22
Tab II.8: Débits moyens horaires et maximum horaires	. 23
Tab II.9: Répartition des débits horaires en fonction du nombre d'habitants	
Tab II.10: Répartition horaire du Q _{max,j}	
Tab II.12: Variation du coefficient β _{max} en fonction du nombre d'habitants	
Tab II.13: Valeurs de β _{max} et K _{max,h} pour notre cas	. 31
Tab II.14: variation du coefficient β_{min} en fonction du nombre d'habitants	. 31
Tab II.15: β _{min} et K _{min,h} pour notre cas	
Tab II.16: Débit minimum journalier et maximum journalier	
Tab II.17: Débits moyens horaires et maximum horaires	
Tab II. To. Repartition noralle du Qiliax, j	. 33
CHAPITRE III : CALCUL HYDRAULIQUE	
Tab III.1: Récapitulatif du calcul des débits: cas de pointe	. 45
Tab III.2: Calcul des débits routes et des débits aux nœuds: cas de pointe (étage	
2*500)	
Tab III.3: Calcul des debits routes et des debits aux nœuds: cas de pointe + incendi	
Tab III.4: Récapitulatif du calcul des débits: cas de pointe	. 49
Tab III.5: Calcul des débits routes et des débits aux nœuds: cas de pointe (étage 2000).	. 50
Tab III.6: Calcul des débits routes et des débits aux nœuds: cas de pointe + incendi	
Tab III.7: Relation entre les diamètres avantageux et les débits	_
Tab III.8: Débit en fonction des diamètres avantageux	
Tab III.9: Etat des arcs du réseau (pointe)	. 59
TabIII.10:Etat des nœuds duréseau (pointe)	
Tab III.11: Etat des arcs du réseau (pointe + inc)	. 62

Tab III.12: Etat des nœuds du réseau (pointe + inc)	64
Tab III.13: Coefficients K', m, β, pour différents types de tuyaux	
Tab III.14: Les nouvelles cotes piézométriques pour la zone 1	
Tab III.15: Débits en fonction des diamètres avantageux	
Tab III.16: Etat des arcs duréseau (Zone 1)	
Tab III.17: Etat des nœuds duréseau (Zone 1)	81
Tab III.18: Etat des arcs duréseau (pointe + inc Zone 1)	
Tab III.19: Etat des nœuds duréseau (pointe + inc Zone 1)	
Tab III.20: Les nouvelles cotes piézométriques pour Zone 2	87
Tab III.21: Habitants estimés pour la zone 2	89
Tab III.22: Débits moyens des équipements de la zone 2	90
Tab III.23: variation du coefficient βmax en fonction du nombre d'habitants	
Tab III.24: Valeurs de βmax et Kmax,h pour notre cas	92
Tab III.25: Variation du coefficient βmin en fonction du nombre d'habitants	92
Tab III.26: βmin et Kmin,h pour notre cas	
Tab III.27: Le débit minimum journalier et maximum journalier	93
Tab III.28: Débits moyens horaires et maximal horaires	94
Tab III.29: Répartitionhorairedu Qmax,j	95
Tab III.30: Récapitulatif du calcul des débits: cas de pointe (Zone 2)	97
Tab III.31: Calcul des débits routes et des débits aux noeuds: cas de pointe (Zone	e 2)
	98
Tab III.32: Calcul de débits routes et des débits aux nœuds: cas de pointe + incer	
Tab III.33: Débit en fonction des diamètres avantageux	
Tab III.34: État des arcs du Réseau: (cas de pointe Zone 2)	
Tab III.35: État des noeuds du Réseau: (cas de pointe Zone 2)	
Tab III.36: État des Arcs du Réseau: (cas de pointe + inc Zone 2)	
Tab III.37: État des noeuds du Réseau: (cas de pointe + inc Zone 2)	
Tab III.38: Nouvelles cotes piézométriques pour la zone 3	
Tab III.39: Habitants estimés pour la zone 3.	
Tab III.40: Répartition horaire du Qmaxj pour la zone 3	
Tab III.41: Récapitulatif du calcul des débits: cas de pointe	
Tab III.42: Calculs des débits routes et des débits aux nœuds: (cas de pointe Zon	-
Tab III.43: Calcul de débits routes et des débits aux nœuds:	
Tab III.44: Débit en fonction des diamètres avantageux	
Tab III.45: État des Arcs du Réseau (cas de pointe Zone 3)	
Tab III.46: Etat des nœuds duréseau (cas de pointe Zone 3)	
Tab III.47: État des Arcs du Réseau (cas de pointe + inc Zone 3)	
Tab III.48: État des nœuds duréseau (cas de pointe + inc Zone 3)	122

LISTE DES FIGURES

CHAPITRE I: PRESENTATION DE LA ZONE D'ETUDE
Fig I.1: Localisation de Tipaza
Fig I.2: Plan de situation de la ville de Tipaza
Fig I.3: Carte de zonage sismique du territoire national
Fig I.4:Image satellitaire de la zone d'étude
fig I.5 : Schéma des ressources des eaux qui sont alimenté le réservoir principal11
CHAPITRE II : CALCUL DES BESOINS EN EAU
Fig II.1: Consommation horaire de la population (étage 2*500)
Fig II.2: Courbe intégrale (étage 2*500)
Fig II.3: Consommation horaire de la population (étage 2000EST)
Fig II.4: Courbe intégrale (étage 2000EST)
CHAPITRE III : CALCUL HYDRAULIQUE
Fig III.1: Schéma du réseau en cas de pointe
Fig III.2: Schéma du réseau en cas de pointe et d'incendie
Fig III.3: Ligne piézométrique de la conduite C12 après régulation des pressions 72
Fig III.4: Deux configurations possibles du théorème de Thalès
Fig III.5: Schéma du réseau de la zone 1 en cas de pointe
Fig III.6: Schéma du réseau de la zone 1 en cas de pointe et d'incendie 85
Fig III.7: Consommation horaire de la population zone 2
Fig III.8: Courbe intégrale zone 2
Fig III.9: Ligne piézométrique de la conduite C34 après régulation des pressions. 100
Fig III.10: Schéma du réseau de la zone 2 en cas de pointe
Fig III.11: Schéma du réseau de la zone 2 en cas de pointe et d'incendie 108
Fig III.12: Conduite d'extrémité
Fig III.13: Conduite à service en route
Fig III.14: Conduite mixte
Fig III.15: Consommation horaire de la population zone 3
Fig III.16: Courbe intégrale zone 3
Fig III.17: Schéma du réseau de la zone 3 en cas de pointe
Fig III.18: Schéma du réseau de la zone 3 en cas de pointe et d'incendie 123

LISTE DES PLANCHES

PLANCHE N°1: Plan de masse du POS AU3 de la ville de Tipza.

PLANCHE N°2: Tracé du réseau de distribution restructuré.

PLANCHE N°3: Profil en long du réseau de distribution restructuré.

PLANCHE N°4: Profil en long de l'adduction gravitaire entre le réservoir RV5000 et

le réservoir

RV 2*500.

PLANCHE N°5: Réservoir 1000 m3

LISTE DES ANNEXES

CHAPITRE III: CALCUL HYDRAULIQUE

Tab III.49: État des Arcs du Réseau restructuré (cas de pointe)	Annexe 1
Tab III.50: État des noeuds du Réseau restructuré (cas de pointe)	Annexe 2
Tab III.51: Etat des arcs du réseau restructuré (cas de pointe + inc)	Annexe 3
Tab III.52: Etat des noeuds du réseau restructuré (cas de pointe + inc)	Annexe 4
Fig III.19: Schéma du réseau restructuré en cas de pointe	Annexe 5
Fig III.20: Schéma du réseau restructuré en cas de pointe et d'incendie	Annexe 6

الملخص

تعرف مدينة تيبازة في الأونة الأخيرة عملية توسعكبيرة للتنمية الإجتماعية و الإقتصادية، يتسبب هذا التطور في تدهور نظام التزويدبالمياها الصالحة للشربالحالى.

لذلك قمنابالتخطيطلإعادة هيكلة نظامالتز ويدللحفاظ على تشغيله بفعاليةوفيظر وفمثلى.

من خلال هذه المذكرة، كان علينا الإحاطة بأهم النقاط الضرورية لتقديم أحسن متغير منالجانبالتقنيو الإقتصادي لتحقيق المشروع.

الكلمات المفتاحية :تيبازة - هيكلة - متغير - الجانب التقنى

<u>Résumé</u>

Récemment, la ville de Tipaza connait un processus d'expansion de développement social du chef lieu. Ces extensions engendrent de sérieuses perturbations au système d'alimentation en eau potable existant.

Pour cela nous avons prévu de restructuré le système d'alimentation en eau potable afin de pérenniser son fonctionnement dans les meilleurs conditions optimales de service.

A travers ce mémoire nous allons étudier tous les points importants afin de présenter une variable technico-économique optimale pour la réalisation du projet.

Mots clés: Tipaza - Extensions - Restructuré – Technico-économique.

Abstract

The town of Tipaza is undergoing a process of great expansion of social and economic development, and this development is causing disruption to the supply of safe drinking water

So we have planned to restructure the supply system to keep it running in optimum conditions.

Through this master memory we had to study the most important points necessary to provide the best technical and economic variable for completion of the project.

Keywords: Tipaza- Expansion- Restructure- Technical and economic

INTRODUCTION GENERALE

Introduction générale:

Ouvrir un robinet d'eau potable est aujourd'hui un geste simple et tout naturel pour la plupart des consommateurs, aussi bien en zones rurales qu'on l'agglomération, la disponibilité de cette élément vital, demande la mise en œuvre de moyens technique et humains considérable, que se soit pour assurer une bonne alimentation ou bien pour préserver cette ressource des éventuelles pertes.

Les gestionnaires de l'eau avaient l'objectif d'améliorer le service d'alimentation en eau Potable, et par conséquent rétablir une distribution de qualité et de quantité (24h/24 et 7j/7), mais dés le début de leur mission, ils ont été confronté à plusieurs problèmes, comme par exemple; la vétusteté et la méconnaissance du réseau, les importantes dénivelées et le manque de mise à jour de données et de plans...etc.

C'est dans cette entrave qu'intervient la politique du POS, en outre de gérer les extensions relatifs à la zone, elle propose de rehausser l'image du chef lieu de la wilaya en tant que principal pôle de toute la région (wilaya de Tipaza) et doter le site d'une structure complète d'équipements multifonctionnels à caractère central.

Le POS AU3, localisé dans la partie est de la ville de Tipaza, à subi plusieurs extensions à savoir l'extension du pole universitaire, le pole touristique et le pole urbain; ses promotions lui ont conféré des fonctions politiques et administratives, d'ou un flux migratoire vers ce nouveau centre pourvoyeur d'emploi, c'est pourquoi on a une demande croissante en eau potable. En outre, le réseau actuel est devenu sous dimensionné.

C'est dans ce cadre que s'inscrit notre projet, un projet ambitieux basé sur une étude complète du système d'alimentation en eau potable de la région d'une part, et d'autre part la projection d'infrastructures hydrauliques et génie civil dans le but de satisfaire les besoins futures suivant l'éclatement démographique de la zone en question incluant l'extension des trois pôles, et ce en se basant sur des variantes qui respecterons à la fois l'aspect technique et l'économie du projet en plus d'une gestion stratégique on va minimiser les coûts et les pertes. Le réseau d'AEP de la ville est un réseau étagé présentant des fluctuations de pression importantes.

Ce travail est organisé en quatre chapitres : Le premier chapitre comporte une description de la zone d'étude Le deuxième chapitre comporte les Calcul des besoins Le troisième chapitre comporte les Calcul hydraulique Le Quatrième chapitre comporte les Calcul des réservoirs

CHAPITRE – I – PRESENTATION DE LA VILLE DE TIPAZA

I.1 Introduction:

Pour l'étude du projet d'extension de l'eau potable, il apparaîtra indispensable d'établir une description de la zone d'étude en mettant l'accent sur les différentes ressources en eau et sur les conditions de fonctionnement du système d'alimentation en eau potable actuel.

Ceci dit, cela va nécessiter une étude convenable du site, et ce afin de connaitre les caractéristiques physiques du lieu.

Pour notre projet, les facteurs qu'on peut qualifié d'indispensable qui peuvent influencer l'étude sont:

- -Les données naturelles du site.
- -Les données relatives au développement futur de l'agglomération.
- -Les données propres à l'alimentation en eau potable de la zone d'étude.

Et ce pour un choix approprié de la variante d'aménagement hydraulique.

I.2 Données naturels du site:

Cette partie vise à exposer l'ensemble de données relatives au site de notre étude. **I.2.1 Historique de la ville:**

D'après les informations recueillis sur des ouvrages, Tipaza est un mot phénicien qui signifie "lieu de passage" ou bien "escale", en effet, ce sont les phéniciens qui furent les premiers à s'installer dans cette région au 5éme siècle avant JC aussi connu sous le nom de "siècle de Périclès", ils ont fait de Tipaza un port d'escale pour leurs transit, par la suite elle fut dirigée par les romains, l'existence actuelle de plusieurs ruines peuvent témoigner du passage de cette civilisation, par la suite, elle fut gouvernée par les berbères puis les turcs, c'est à cette époque là que la ville a pu se développer, pour finalement devenir une colonie française pendant plus d'un siècle.

Fig I.1: Localisation de Tipaza

I.2.2 Situation géographique:

La Commune de Tipasa érigée chef-lieu de la wilaya en 1984, se situeà l'ouest du Sahel d'Alger et dans la partie Est du Massif du Chenoua et la vallée de l'oued Nador. Elle se trouve à 70 km d'Alger etcouvre une superficie d'environ 7000 Ha. Elle est limitée :

- -Au Nord par la mer méditerranée
- -Au Sud par les Communes de Sidi Rached et de Nador
- -A l'Est par la Commune d'AïnTagourait
- -A l'Ouest, par la Commune de Cherchell.

Le POS AU3, objet de notre étude se trouve à l'entrée de la ville. Il est limité :

- -Au nord par la route nationale N°11
- -Au sud par l'oued Merzoug
- -A l'est par CW106 (partie nord) etPar la piste agricole reliant le CW 106 à la voie principale de la cité oued Merzoug(pour la partie Sud)
 - -Et à l'ouest par le tissu urbain (haiRabta et cité oued Merzoug)

❖ Superficie

Le site couvre une aire d'environ 230 hectares.

Fig I.2: Plan de situation de la ville de Tipaza

I.2.3 Situation Topographique:

Dans toute étude du BTPH, les données topographiques sont indispensables pour une bonne compréhension de l'état du site.

I.2.3.1 ville de Tipaza:

En référence à la carte topographique de la ville de Tipaza, on constate que le terrain naturel présente une dénivelée du sud vers le nord, le point le plus élevé se trouve dans les environs de 250m par rapport à la mer.

I.2.3.2 POS AU3:

La zone de notre étude est constitué par des collines du sahel qui s'allongent parallèlement à la cote depuis les hauteurs du massif montagneux de l'est jusqu'à la dépression de l'oued Nador.

La pente du terrain est moyenne, et va du nord vers le sud, l'altitude varie de 20 à 250m.

On conclue que le terrain en question est accidenté et présente une forte dénivelée.

I.2.4 Géotechnique:

La géotechnique nous renseigne sur la portance des sols, elle se base sur la nature géologique et sur les propriétés des roches, c'est le résultat de croisement des paramètres suivants: La géologie, la topographie et l'hydrogéologie. Pour notre zone d'étude, la classe de terrains est la classe du terrains favorable: ce sont des terrains constitués d'un grés marin et poudingues pour les dunes et de calcaires dur construits pendant l'astien.

Ces terrains sont aptes à l'urbanisation. La nappe n'est pas superficielle, elle ne pose aucun problème pour les fondations.

I.2.5 Géologie:

La géologie fait partie des paramètres les plus importants dans le zoning d'une région ou d'un terrain à étudier, cela concerne surtout la lithologie, la pétrographie, pétro physique et le pendage des couches qui en combinaison avec les autres paramètres (pentes, niveau des nappes etc...).

Ces derniers peuvent engendrer des affaissements, des glissements de terrains ou des phénomènes plus ou moins néfastes pour la stabilité des constructions futures.

En ce qui concerne notre région, le sol se caractérise par les textures suivantes :

- > Sable argileux : plus ou moins rubéfiés, l'épaisseur de cette couche est très variable.
- > Faciès argileux : est entrecoupé par une formation éruptive.
- ➤ Faciès calcaire ou calcairo-gresseux : avec ou sans galets, typiquement mollassique.
- ➤ Alluvions actuelles : formant les terrasses inférieures des oueds et aussi répandues par étalement des vallées composées de limon argileux et sableux avec ou sans cailloutis, l'épaisseur de cette formation varie entre 10 et 30 m.

I.2.6 Hydrogéologie:

Les faciès géologiques de la commune de Tipasa ont une composition lithologique et une superposition stratigraphique tel que certains permettent la formation de nappes aquifères, alors que d'autres ne s'y prêtent pas.

L'étude hydrogéologique de la commune été basée sur l'inventaire des points d'eau avec des relevés piézométriques, le résultat de cette étude montre que le sous-sol renferme une nappe phréatique continue sous les dunes consolidées, alimentée par les précipitations hivernales, le niveau de la nappe est fluctuant pendant l'année : il se lève à 10m en hiver au-dessous du terrain naturel.

I.2.7 Sismicité :

D'après le document réglementaire D.T.R.- B.C.-48 concernant les règles parasismiques algériennes R.P.A (édition 99) modifié et complété après le séisme du 21 Mai 2003, élaboré par le CGS (Centre National de Recherche Appliquée en Génie Parasismique) le territoire national est divisé en cinq (05) zones de sismicité croissante, c'est à dire :

-Zone 0 : sismicité négligeable

-Zone I : sismicité faible

-Zone IIa : sismicité moyenne-Zone IIb : sismicité moyenne-Zone III : sismicité élevée

Sur la base de ce qui précède, le site étudié « POS AU 03 concernant l'analyse physique relative au site affecté pour l'aménagement du pole d'excellence w. Tipasa »:

Ce site se situe dans la **Zone III** qui correspond à une région de sismicité élevée.

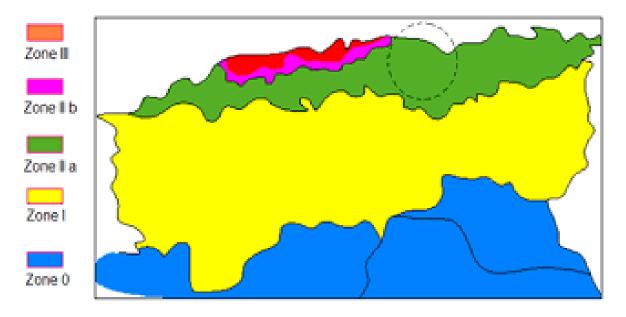


fig I.3: Carte de zonage sismique du territoire national

I.2.8 situation climatique:

L'étude de la climatologie est indispensable dans tout projet hydraulique, elle comprend (la pluviométrie, les températures, le taux d'humidité de l'air les vents etc...).

I.2.8.1 climat :

Le climat de la ville de Tipaza est de type méditerranéen à tendance subhumide comprenant deux saisons:

- L'une d'hiver s'étalant d'octobre à mars avec un climat doux et humide.
- ➤ Et l'autre d'été allant d'avril à septembre avec un climat chaud et sec.

a) Les températures:

La commune présente d'un climat méditerranéen doux.

Les hivers sont doux et humides d'octobre à mars suivis d'une saison sèche et chaude qui s'étant d'avril à septembre.

La température moyenne annuelle est de 17,55°c avec un minimum de 1,2°c et un max de 42,6°c

Le tableau I – 2 nous donne un aperçu sur la variation des températures moyennes durant l'année

Tab I.1 : températures moyennes annuelles :

mois	jan	Fev	mar	avr	mai	juin	juil	août	sep	oct	nov	dec
Températures °c	8.3	7.7	12	14.7	19.02	23.5	26.2	25.5	26.3	21.9	13.7	11.7

Source: [ONM] (OFFICE NATIONAL DE METEOROLOGIE 2008)

b) Humidité:

La région relative à notre étude présente une forte humidité en saison hivernale d'octobre à mars contrairement en été d'avril à septembre où la saison est plutôt chaude et sèche.

Le tableau suivant illustre la variation de l'humidité en fonction des mois

Tab I.2: variation annuelle de l'humidité

mois	Jan	Fev	mar	avr	mai	juin	juil	août	sep	oct	nov	dec
Humidité %	79	79	77	73	70	75	70	70	71	76	62	76

Source: [ONM] (OFFICE NATIONAL DE LA METEOROLOGIE 2008)

c) Les vents:

En hiver c'est la prédominance des vents d'ouest ils ont une direction ouest, nord ouest. Le reste de l'année ils peuvent être très forts et dévastateurs comme la tempête qui a frappé la région en avril 1989.elle a une force qui est inférieure ou égale à 6,5 sur une échelle de 0à9 elle peut atteindre 100km/h tandis qu'en été les brises maritimes. Rafraichissantes n'arrivent pas à franchir les collines.

Les vents moyens mensuels durant l'année sont décrits dans le tableau suivant:

Tab I.3: vents moyens mensuels

Mois	jan	Fev	mar	avr	mai	juin	juil	août	sep	oct	nov	dec
Vitesse (km/h)	2.83	3.02	3.3	4.31	4.13	3.78	3.91	3.78	1.82	1.44	2.06	2.52

Source: [ONM] (OFFICE NATIONAL DE METEOROLOGIE 2008)

I.2.8.2 Pluviométrie:

Les pluies sont irrégulières et entraînent parfois des dégâts importants sur les cultures. Le maximum des précipitations est enregistré du mois de Janvier à Mai avec 71.4 mm tandis que le minimum est au mois de Juillet et Août avec 1.5mm.

Les pluies sont généralement irrégulières souvent torrentielles. La sécheresse caractérise le mois de Juin, Juillet, et Août, elle peut toutefois impacter le mois de mai lorsqu'elle est précoce et atteindre le mois d'octobre lorsqu'elle est tardive.

Tab I.4: pluie maximale journalière pour l'année 2005 – 2006

mois	Jan	Fev	Mar	Avr	Mai	Juin	Juil	Aoû	Sep	Oct	Nov	Dec
Pluviométrie (mm)	41.3	16.8	39.1	160	6.4	2.3	5.1	7.1	20	58.1	50.4	64.6

Source : [ANRH]

La somme des précipitations pour l'année 2005-2006 est $\Sigma p = 471.2 \text{ mm}$.

I.3 Données hydrauliques:

Dans ce qui suit nous allons exposer l'ensemble des données hydrauliques du site.

I.3.1 Alimentation en eau potable:

On traitera les données du réseau d'AEP existant et des ressources en eau de la zone du POS AU3.

I.3.1.1 Historique du système d'AEP:

Le réseau d'AEP de la commune de Tipaza se caractérise par la pose du réseau d'adduction au début des années 80 du siècle précédent, la première phase était composée de conduites en acier et la deuxième de conduites en fonte ductile puis plus récemment les adductions ont été réalisées en PEHD. Le réseau de distribution a connu des périodes de pose de conduites rapprochés débutant des années 80 jusqu'à la période actuelle. La réalisation des réservoirs a été entamée vers la fin des années 80. (Source Mission C Model Tipaza 2019)

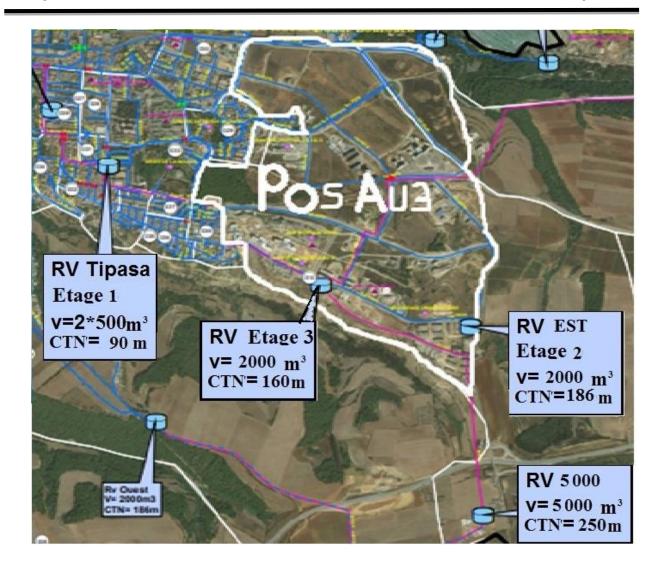


fig I.4:Image satellitaire de la zone d'étude

I.3.1.2 Réseau d'AEP:

Le réseau d'AEP de la zone du POS AU3 est étagé de type maillé, l'AEP s'effectue par le biais de deux étages, desservie de façon gravitaire, le premier étage (étage 2*500), qui sera alimenté à partir des réservoirs existants 2×500m³ situés àCTN=90 m qui distribuent un débit de 3595m³/j, ces derniers sont alimentés gravitaire ment par le réservoir de l'étage 3 CTN=160m où l'arrivée de l'eau à ces réservoirs sera assurée à partir du réservoir de capacité 5000 m³ CTN=250 m.

Quant au deuxième étage (étage 2000 EST), le réseau sera alimenté par un réservoir de stockage de capacité 2000m³ CTN=186m qui distribue un débit de 4130m³/j, il est alimenté gravitaire ment à partir du réservoir 5000 m³ CTN=250m celui cité précédemment.

Dans un souci de renforcement de l'AEP de Tipaza, deux autres réservoirs sont actuellement en cours de réalisation à coté du réservoir 5000 existant à la cote du terrain naturel 250 m.

Les données concernant les volumes mis au réseau de la commune de Tipaza (ressource mobilisables) ont été fournis par la DRE et étaient estimés après une campagne de mesure réalisée en Mai 2017.

Les données des volumes distribués dans chaque étage sont des données calculés dans l'horizon 2020 une fois les réservoirs projetés seront opérationnels.

I.3.1.3 Ressource en eau:

Suivant les plans recueillis auprès de la direction d'étude de la SEAAL, la zone du POS AU3 est alimentée par le réservoir 5000m³ qui alimente les deux étages du réseau, ce dernier se remplit comme suite:

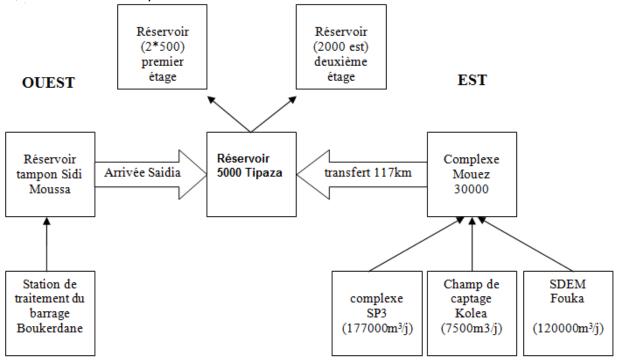


fig I.5 : Schéma des ressources des eaux qui sont alimenté le réservoir principal

<u>A l'est de la zone</u> à partir du système de transfert 117km qui véhicule un débit de 26000m³/j, ce système de canalisation démarre à partir du réservoir 30 000m³ Mouez;

Réservoir Mouez

-Ce réservoir se remplit actuellement par la station de dessalement d'eau de mer de Fouka (120000m³/j) par le biais d'une conduite de diamètre nominal 900mm en fonte;

- Il se remplit également à partir du champ de captage de Kolea (station de pompage 7500m3/j)
- -Actuellement, et dans une politique de sécurisation du réservoir Mouez, des travaux sont en cours de réalisation dans le but de remplir le réservoir à partir du complexe SP3, ce complexe sera alimenté par l'arrivée Spik de Gué de Constantine 85000m3/j et des deux champs de captage de Mazafran (le premier 42000m³/j et le deuxième 50000m³/j)

<u>A l'ouest</u> de la zone, le réservoir de capacité 5000m³ est replie par une partie des eaux du réservoir tampon sidi Moussa qui, a son tour se remplie par la station de traitement de Sidi Amar qui traite les eaux du barrage Boukerdane.

Actuellement le réseau est sous dimensionné cela va nécessiter une extension du réseau actuel afin de permettre une alimentation en eau potable en H24 des différents types de consommateurs de la région du POS AU3 de même pour l'agglomération future qui est en plein développement avec l'aménagement du pole universitaire et touristique ainsi que divers infrastructures relatives a la zone d'étude.

I.3.2 Assainissement:

- -Deux réseaux d'assainissement en système unitaire où le premier réseau prendra en charge le bassin versant Nord et le deuxième réseau prendra en charge le bassin versant sud (oued MERZOUG).
- -Pour le bassin versant Nord, quatre collecteurs principaux sont proposée qui prendront en charge les eaux usées et pluviales de cette partie ainsi qu'un déversoir d'orage à partir duquel les eaux usées seront raccordées au réseau d'assainissement existant qui se dirige par la suite vers la station de relevage, par contre, les eaux pluviales seront raccordées sur une conduite d'eau pluviale existante de diamètre 1500 mm.
- -Pour le bassin versant Sud, un collecteur principal est proposé qui prendra en charge les eaux usées et pluviales de cette partie ainsi qu'un déversoir d'orage à

partir duquel les eaux usées seront raccordées et prises en charge en dehors du périmètre d'études et les eaux pluviales seront rejetées vers oued Merzoug.

I.4 Conclusion:

Dans ce chapitre nous avons définit les éléments nécessaires pour l'élaboration de notre projet d'extension du réseau d'AEP de la zone POS AU3, en effet, les données du terrain relatifs au site ainsi que les données climatologiques et hydrauliques vont nous permettre d'adopter une approche convenable et correcte pour la réalisation de notre étude.

CHAPITRE – 2– CALCUL DES BESOINS EN EAU

II.1. Introduction:

Dans ce chapitre, nous travaillons sur une étude proactive du projet et Accomplir les dimensions

du réseau d'eau À partir des composantes de l'agglomération des population et industrie, nous pouvons estimer le degré de consommation Pour le côté est de la ville de Tipasa.

II.2 Situation démographique:

Selon les informations recueillis auprès de la DUC de Tipaza, la population communale en l'an 2008 a été estimée à 28 840 habitants dont 15 045 soit 52% regroupés dans l'agglomération du POS AU3.

Selon les prévisions du PDAU, la population de la ville de Tipaza serait de 80 000 habitants à l'horizon 2025.

On peut estimer le nombre d'habitants pour des horizons futurs, en utilisant la loi des accroissements géométriques donnée par la relation suivante :

$$P_t = P_0 (1 + T)^N II.1$$

Avec:

P_t: Nombre d'habitants à l'horizon futur.

 P_0 : Nombre d'habitants à l'année de base 2008(P_0 =15 045 hab.).

T: taux d'accroissement égale d'après le PDAU de Tipaza à 2.5% pour notre région.

N :écart d'années entre les deux horizons (2019-2050) N =31ans.

Tab II.1: Répartition de la population à différents horizons de calcul

Horizon	2019	2035	2050		
Estimation	19741	29305	42442		

Chapitre 2:

Les calculs des deux étages serons traités séparément.

II.3 Estimation des besoins par étage:

D'après le principe d'aménagement, les besoins en eau des deux étages ont été estimés sur la Base du programme d'habitat et d'équipements proposés et d'après la dotation de consommation qui sera de 200 l/j/habitant.

La consommation moyenne journalière Qmoy est définie comme étant le produit de la dotation moyenne journalière par le nombre de consommateurs d'où:

Qmoy =
$$D \times N / 1000 (m^3/j)$$

II.2

Avec:

D : Dotation journalière en l/j/hab.

N : Population du premier étage.

II.3.1 Premier étage:

Dans cette partie, nous donnerons les différents calculs des besoins en eau du premier étage (étage 2*500).

II.3.1.1 Estimation des besoins de la population du premier étage:

D'après les informations recueillis auprès de la direction de la DUC de Tipaza, la population du premier étage est estimée à 68% de la population totale du POS.

Qmoy $_{POP} = 28861*200 /1000 (m^3/j).$

 $Qmoy_{POP} = 5772,2 (m^3/j).$

II.3.1.2 Estimation des besoins des équipements:

L'ensemble des équipements et infrastructures présents au niveau du premier étage du POS sont résumés dans le tableau suivant:

Tab II.2 Débit moyen des équipements existants du premier étage

Type d'équipement	Unité de mesure	nombre d'unités	Dotation (l/j/unité)	Qmoy (m3/j)
hôtel	lits	300	250	75
Ecole supérieur du tourisme	Élèves	3500	10	35
Hôpital	Lits	120	200	24
Ecole paramédicale	Élèves	800	10	8
Grande mosquée	fidèles	1000	10	20
Marche+centre commercial	m²	740	10	7,4
Centre spécialisé dans la sauvegarde de la jeunesse	m²	400	10	4
Centre medio pédagogique	Employés	500	10	5
Crèche +jardin d'enfant	enfants	100	10	1
4 Ecoles primaires + 1CEM	Élèves	2560	20	51,2
		1		Qmoy _{eq} =

230,6 m3/j

 $Qmoy_{TOT1} = Q moy_{pop} + Q moy_{eq}$

 $Qmoy_{TOT1} = 5772,2 + 230,6$

Q $moy_{TOT1} = 6002,8 m3/j.$

II.3.1.3 Etude des variations du débit:

Au cours du temps on observe des variations de la consommation, ces dernières ne sont pas uniformément réparties dans le temps à cause de l'irrégularité des consommations horaires, journalières et mensuelles comme suit:

- Variations annuelles qui dépendent du niveau de vie des abonnés de l'agglomération considérée;
- Variations mensuelles et saisonnières qui dépendent de l'activité de la ville ;
- > Variations hebdomadaires qui dépendent du jour de la semaine ;
- Variations journalières qui dépendent du graphique de consommation de la population.

En raison de ces variations, et pour pallier à ce problème d'irrégularité, nous appliquons au débit moyen calculé le coefficient d'irrégularité journalière et le coefficient de d'irrégularité horaire.

II.3.1.3.1 Coefficients d'irrégularité:

a) Coefficient d'irrégularité maximale (Kmax,j):

Il est définit comme étant le rapport entre la consommation maximale journalière et la consommation moyenne journalière:

$$K_{\text{max,j}} = Q_{\text{max,j}} / Q_{\text{moy,j}} \mathbf{0.1}$$

Ce coefficient $K_{\text{max},j}$ varie entre 1,1 et 1,3, il consiste à prévenir les fuites et les gaspillages au niveau du réseau en majorant la consommation moyenne de 10% à 30%.

Dans notre cas nous prenons $K_{\text{max},j}=1,2$.

b) Coefficient d'irrégularité minimale (Kmin,j):

Il est défini comme étant le rapport de la consommation minimum par la consommation moyenne journalière, donné par la relation suivante :

0.2

$$K_{\min,j} = Q_{\min,j}/Q_{\max,j}$$

Ce coefficient K_{min,j} varie de 0,7 à 0,9.

Dans notre cas on prends $K_{min,j}=0.8$

c) Coefficient d'irrégularité maximal horaire (K_{max,h}):

Il est définit comme étant le rapport entre la consommation horaire maximale et la consommation horaire moyenne.

$$K_{\text{max h}} = Q_{\text{max h}}/Q_{\text{moy h}}$$
 0.5

Ce coefficient représente l'augmentation de la consommation horaire pour la journée. Il tient compte de l'accroissement de la population ainsi que leurs degré du confort; D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} ;

Tel que:

$$K_{\text{max},h} = \alpha_{\text{max}}.\beta_{\text{max}}$$
 0.6

Avec:

 α_{max} : coefficient qui tient compte du développement industriel, du retard de consommation et des habitudes de la population, il varie de 1,2 à 1,4. Pour notre cas on prend α_{max} = 1,3.

 β_{max} : coefficient étroitement lié à l'accroissement de la population.

Tab 0.3:Variation du coefficient β_{max} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
$oldsymbol{eta_{ ext{max}}}$	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1

Dans notre cas on prends β_{max} =1,15

Tab II.4: Valeurs de β_{max} et $K_{max,h}$ pour notre cas.

Zone	Coefficient $eta_{ ext{max}}$	Kmax,h
POS AU3 (étage 1)	1,15	1,495

Le coefficient horaire maximum est de l'ordre 1,4 à 1,7 donc selon l'ouvrage: Alimentation en eau potable des agglomérations de Mr **André DUPONT** notre agglomération est à caractère domestique.

d) Coefficient d'irrégularité minimal horaire (K_{mix,h}):

Ce coefficient permet de déterminer le débit minimum horaire qui nous permet d'évaluer le fonctionnement de notre réseau du point de vue pression dans le réseau:

$$K_{min,h} = \alpha_{min}.\beta_{min}$$
0.7

Avec:

 α_{min} : coefficient qui tient compte du développement industriel, du retard de consommation et des habitudes de la population. Il varie de 0,4 à 0,6. Pour notre cas on prend $\alpha_{min} = 0,5$.

 β_{min} : coefficient étroitement lié à l'accroissement de la population.

Tab 0.5:Variation du coefficient β_{min} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,7

Dans notre cas: $\beta_{min}=0,6$

Tabl II.6: β_{min} et $K_{min,h}$ pour notre cas.

Zone	Coefficient $eta_{ ext{min}}$	K _{min,h}
POS AU3 (étage 1)	0,6	0,3

Chapitre 2:

II.3.1.3.2 Détermination des débits journaliers:

a) Consommation maximale journalière (Q_{max,i})

Ce débit est relatif à la journée où la consommation est la plus grande durant l'année, elle est utilisée comme étant l'élément essentiel dans les calculs de dimensionnement en d'AEP.

Ce débit est donné par la relation suivante:

$$Q_{max,i} = K_{max,i} \cdot Q_{mov,i} II.3$$

Avec:

Q_{max,j}: débit maximum journalier en m³/j;

Q_{moy,j}: débit moyen journalier en m³/j;

K_{max,j}: coefficient d'irrégularité maximale journalière.

On prend $K_{max,j} = 1,2$

b) Consommation minimale journalière (Q_{min,j}):

C'est le débit de la journée de faible consommation pendant l'année

$$Q_{min,j} = K_{min,j} \cdot Q_{mov,j} \cdot 0.9$$

On prend K_{min,j}:0.8

Les débits minimum journaliers et maximum journalier sont représenté dans le tableau suivant :

Tab 0.7:Débit minimum journalier et maximum journalier.

Zone	Besoins Domestiques (m³/j)	Besoins Des équipements (m³/j)	Q _{min,j} (m³/j)	Q _{max,j} (m ³ /j)
POS AU3 (étage 1)	5772,2	230,6	4802,24	7203,36

Chapitre 2:

II.3.1.3.3 Détermination des débits horaires:

a) Débit moyen horaire:

Le débit moyen horaire est donné par la relation suivante :

$$Q_{\text{moy,h}} = Q_{\text{max,j}}/24$$

0.10

Avec:

Q_{mov, h}: débit moyen horaire en m³/h;

Q_{max,j}: débit maximum journalier en m³/j;

b) Détermination du débit maximum horaire:

Ce débit est déterminé par la relation suivante:

 $Q_{max,h} = K_{max,h} \cdot Q_{moy,h} II.4$

Avec:

Q_{mov,h}: débit moyen horaire en m3/h;

K_{max,h}: coefficient d'irrégularité maximale horaire;

Le tableau suivant résume les résultats de calcul des débits moyens horaires et maximum horaires:

Tab 0.8:Débits moyens horaires et maximum horaires.

Zone	Q _{max,j} (m ³ /j)	Q _{moy,h} (m ³ /h)	K _{max,h}	Q _{max,h} (m ³ /h)
POS AU3 (étage 1)	7203,36	300,14	1,495	448,70

c) L'évaluation de la consommation horaire en fonction du nombre d'habitants:

Le débit horaire d'une agglomération varie en fonction de la population. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau suivant:

Tab II.9: Répartition des débits horaires en fonction du nombre d'habitants

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération, cette représentation est illustrée dans le tableau suivant:

Heures	Nombre d'habitants								
(h)	Moins de 10000	10001à 50000	50001à 100000	Plus de 100000	Agglomération de type rurale				
0-1	1.00	1.5	03	3.35	0.75				
1-2	1.00	1.5	3.2	3.25	0.75				
2-3	1.00	1.5	2.5	3.3	01				
3-4	1.00	1.5	2.6	3.2	01				
4-5	2.00	2.5	3.5	3.25	03				
5-6	3.00	3.5	4.1	3.4	5.5				
6-7	5.00	4.5	4.5	3.85	5.5				
7-8	6.50	5.5	4.9	4.45	5.5				
8-9	6.50	6.25	4.9	5.2	3.5				
9-10	5.50	6.25	4.6	5.05	3.5				
10-11	4.50	6.25	4.8	4.85	06				
11-12	5.50	6.25	4.7	4.6	8.5				
12-13	7.00	5.00	4.4	4.6	8.5				
13-14	7.00	5.00	4.1	4.55	06				
14-15	5.50	5.50	4.2	4.75	05				
15-16	4.50	6.00	4.4	4.7	05				
16-17	5.00	6.00	4.3	4.65	3.5				
17-18	6.50	5.50	4.1	4.35	3.5				
18-19	6.50	5.00	4.5	4.4	06				
19-20	5.00	4.50	4.5	4.3	06				
20-21	4.50	4.00	4.5	4.3	06				
21-22	3.00	3.00	4.8	3.75	03				
22-23	2.00	2.00	4.6	3.75	02				
23-24	1,00	1.50	3.3	3.7	01				

Tab 0.10:Répartition horaire du $Q_{\text{max,j}}$.

	C%			
heures	popul	Q(m3/h)	C%(cumul)	Q Cumule
0-1	1,5	108,0504	1,5	108,0504
1-2	1,5	108,0504	3	216,1008
2-3	1,5	108,0504	4,5	324,1512
3-4	1,5	108,0504	6	432,2016
4-5	2,5	180,0840	8,5	612,2856
5-6	3,5	252,1176	12	864,4032
6-7	4,5	324,1512	16,5	1188,5544
7-8	5,5	396,1848	22	1584,7392
8-9	6,25	450,2100	28,25	2034,9492
9-10	6,25	450,2100	34,5	2485,1592
10-11	6,25	450,2100	40,75	2935,3692
11-12	6,25	450,2100	47	3385,5792
12-13	5	360,168	52	3745,7472
13-14	5	360,168	57	4105,9152
14-15	5,5	396,1848	62,5	4502,1000
15-16	6	432,2016	68,5	4934,3016
16-17	6	432,2016	74,5	5366,5032
17-18	5,5	396,1848	80	5762,688
18-19	5	360,1680	85	6122,8560
19-20	4,5	324,1512	89, 5	6447,0072
20-21	4	288,1344	93,5	6735,1416
21-22	3	216,1008	96,5	6951,2424
22-23	2	144,0672	98,5	7095,3096

Chapitre 2:

23-24	1,5	108,0504	100	7203,36
total	100	7203,36		

On note: le débit de pointe est repéré de 8h du matin jusqu'à midi avec un débit de Qp₁=450,2100 m³/h

Remarque:

On remarque que le débit demandé est supérieur au débit distribué dans le premier étage (2*500) tel que le débit distribué est égale à: 3595m³/j. (source Mission C model commune Tipaza SEAAL 2019)

d) Représentation graphique de la consommation:

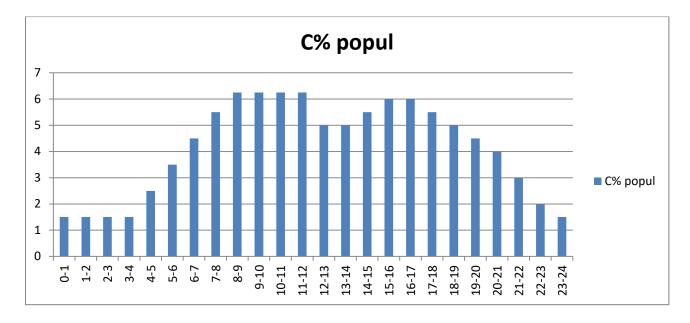


fig II.1: Consommation horaire de la population

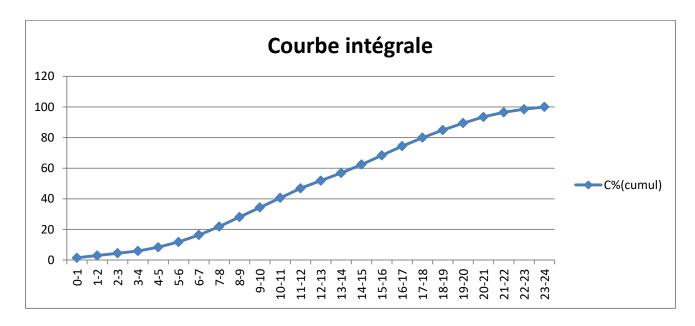


fig II.2: Courbe intégrale

II.3.2 Deuxième étage:

II.3.2.1 Estimation des besoins de la population du deuxième étage:

D'après les informations recueillis auprès de la direction de la DUC de Tipaza, la population du deuxième étage est estimée à 32% de la population totale du POS.

Qmoy $_{POP} = 13582* 200 / 1000 (m^3/j).$

 $Qmoy_{POP} = 2716,4 (m^3/j).$

II.3.2.2 Estimation des besoins des équipements:

L'ensemble des équipements et infrastructures présents au niveau du deuxième étage du POS sont résumés dans le tableau suivant:

Tab II.11 Tableau donnant le débit moyen des équipements existants du deuxième étage

	Type d'équipement	Unité de mesure	nombre d'unités	Dotation (l/j/unité)	Qmoy (m3/j)
				, ,	
	Polyclinique	Lits	34	200	6,8
	Centre de recherche en économie appliquée	m²	740	20	14,8
	Parc Urbain	m ²	190000	0,5	95
	Mosquée	Fideles	800	10	8
	Ecole Nationale de trésor et comptabilité	Places	500	20	10
	Cité Universitaire	Lits	2000	150	300
Pole	Restaurant Universitaire	Personnes	500	50	25
	Institut d'archéologie	Places	500	20	10
	Institut des sciences économiques et commercial	Places	1500	20	30
Universitaire	Institut des droit et de sciences sociales	Places	2000	20	40
	Services Intégrés (Poste, APC, banque)	m ²	10000	0,5	5
	Maison de jeunes et salle polyvalente	m ²	4400	0,5	2,2
	Théâtre et cinéma	m ²	31000	0,5	15,5
	Centre nationale d'artisanats	m ²	30000	0,5	15
	Lycée+CEM	Elèves	920	20	18,4
	Gare routière	m ²	30000	0,5	15
	Centre de rééducation des sportifs	m ²	25000	1	25
	L			I	Qmoy _{eq} =
					635,7 m3/j

 $Qmoy_{TOT2} = Q moy_{pop} + Q moy_{eq}$

 $Qmoy_{TOT2} = 2716,40 +635,7 = 3352,10 m3/j.$

II.3.2.3 Etude des variations du débit:

Au cours du temps on observe des variations de la consommation, ces dernières ne sont pas uniformément réparties dans le temps à cause de l'irrégularité des consommations horaires, journalières et mensuelles comme suit:

- Variations annuelles qui dépendent du niveau de vie des abonnés de l'agglomération considérée;
- Variations mensuelles et saisonnières qui dépendent de l'activité de la ville ;
- Variations hebdomadaires qui dépendent du jour de la semaine ;
- Variations journalières qui dépendent du graphique de consommation de la population.

En raison de ces variations et pour pallier à ce problème d'irrégularité, nous appliquons au débit moyen calculé le coefficient d'irrégularité journalière et le coefficient de d'irrégularité horaire.

II.3.2.3.1 Coefficients d'irrégularité:

a) Coefficient d'irrégularité maximale (Kmax,j):

Il est définit comme étant le rapport entre la consommation maximale journalière et la consommation moyenne journalière:

$$K_{\text{max,j}} = Q_{\text{max,j}} / Q_{\text{moy,j}}$$

Ce coefficient $K_{\text{max,j}}$ varie entre 1,1 et 1,3, il consiste à prévenir les fuites et les gaspillages au niveau du réseau en majorant la consommation moyenne de 10% à 30%.

Dans notre cas nous prenons $K_{max,j}=1,2$.

b) Coefficient d'irrégularité minimale (Kmin,j):

Il est défini comme étant le rapport de la consommation minimum par la consommation moyenne journalière, donné par la relation suivante :

$$K_{min,j} = Q_{min,j} / Q_{mov,j}$$

Ce coefficient K_{min,j} varie de 0,7 à 0,9.

Dans notre cas on prends K_{min,i}=0,8

Chapitre 2:

c) Coefficient d'irrégularité maximal horaire (K_{max,h}):

Il est définit comme étant le rapport entre la consommation horaire maximale et la consommation horaire moyenne.

$$K_{\text{max h}} = Q_{\text{max h}}/Q_{\text{moy h}}$$

Ce coefficient représente l'augmentation de la consommation horaire pour la journée. Il tient compte de l'accroissement de la population ainsi que leurs degré du confort; D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} ;

Tel que:

 $K_{\text{max},h} = \alpha_{\text{max}} \cdot \beta_{\text{max}}$

Avec:

 α_{max} : coefficient qui tient compte du développement industriel, du retard de consommation et des habitudes de la population, il varie de 1,2 à 1,4. Pour notre cas on prend $\alpha_{max} = 1,3$.

 β_{max} : coefficient étroitement lié à l'accroissement de la population.

Tab 0.12:Variation du coefficient β_{max} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
$oldsymbol{eta_{ ext{max}}}$	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1

Dans notre cas on prends β_{max} =1,3

Tab II.13: Valeurs de β_{max} et $K_{max,h}$ pour notre cas.

Zone	Coefficient $eta_{ ext{max}}$	K _{max,h}
POS AU3 (étage 2)	1,3	1,69

Le coefficient horaire maximum est de l'ordre 1,4 à 1,7 donc selon l'ouvrage: Alimentation en eau potable des agglomérations de Mr **Bonin**, **J** notre agglomération est à caractère domestique.

d) Coefficient d'irrégularité minimal horaire (K_{mix,h}):

Ce coefficient permet de déterminer le débit minimum horaire qui nous permet d'évaluer le fonctionnement de notre réseau du point de vue pression dans le réseau:

 $K_{min,h} = \alpha_{min}.\beta_{min}$

Avec:

 α_{min} : coefficient qui tient compte du développement industriel, du retard de consommation et des habitudes de la population. Il varie de 0,4 à 0,6. Pour notre cas on prend $\alpha_{min} = 0,5$.

 β_{min} : coefficient étroitement lié à l'accroissement de la population.

Tab 0.14: Variation du coefficient β_{min} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,7

Dans notre cas: $\beta_{min}=0,4$

Tabl II.15: β_{min} et $K_{min,h}$ pour notre cas.

Zone	Coefficient $eta_{ ext{min}}$	K _{min,h}
	0,4	0,2

II.3.2.3.2 Détermination des débits journaliers:

a) Consommation maximale journalière (Q_{max,j}):

Ce débit est relatif à la journée où la consommation est la plus grande durant l'année, elle est utilisée comme étant l'élément essentiel dans les calculs de dimensionnement en d'AEP.

Ce débit est donné par la relation suivante:

 $Q_{\text{max,j}} = K_{\text{max,j}} \cdot Q_{\text{moy,j}}$

Avec:

Q_{max,j}: débit maximum journalier en m³/j;

Q_{moy,j}: débit moyen journalier en m³/j;

K_{max,j}: coefficient d'irrégularité maximale journalière.

On prend $K_{max,j} = 1,2$.

b) Consommation minimale journalière (Q_{min,j}):

C'est le débit de la journée de faible consommation pendant l'année

 $Q_{min,j} = K_{min,j} \cdot Q_{moy,j}$

On prend K_{min,i}:0.8

Chapitre 2:

Tab 0.16:Débit minimum journalier et maximum journalier.

Les débits minimum journaliers et maximum journalier sont représenté dans le tableau suivant :

Zone	Besoins Domestiques (m³/j)	Besoins Des équipements (m³/j)	Q _{min,j} (m ³ /j)	Q _{max,j} (m ³ /j)
POS AU3 (étage 2)	2716,40	635,7	2681,68	4022,52

II.3.2.3.3 Détermination des débits horaires:

a) Débit moyen horaire:

Le débit moyen horaire est donné par la relation suivante :

 $Q_{\text{moy,h}} = Q_{\text{max,j}}/24$

Avec:

 $Q_{moy, h}$: débit moyen horaire en m^3/h ;

 $Q_{\text{max},j}$: débit maximum journalier en m^3/j ;

b) Détermination du débit maximum horaire

Ce débit est déterminé par la relation suivante:

 $Q_{\text{max},h} \text{=} \; K_{\text{max},h}.Q_{\text{moy},h}$

Avec:

Q_{mov,h}: débit moyen horaire en m3/h;

K_{max,h}: coefficient d'irrégularité maximale horaire;

Le tableau suivant résume les résultats de calcul des débits moyens horaires et maximum horaires:

Tab 0.17:Les débits moyens horaires et maximum horaires.

Zone	Q _{max,j} (m ³ /j)	Q _{moy,h} (m ³ /h)	K _{max,h}	Q _{max,h} (m ³ /h)
POS AU3 (étage 2)	4022,52	167,605	1,69	283,25

c) L'évaluation de la consommation horaire en fonction du nombre d'habitants

Le débit horaire d'une agglomération varie en fonction de la population. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau II.9 ci-dessus.

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération, cette représentation est illustrée dans le tableau suivant:

Tab 0.18:répartition horaire du Q_{max,j}.

heures	С%	Q(m3/h)	C%(cumul)	Q Cumule
0-1	1,5	60,3378	1,5	60,3378
1-2	1,5	60,3378	3	120,6756
2-3	1,5	60,3378	4,5	181,0134
3-4	1,5	60,3378	6	241,3512
4-5	2,5	100,563	8,5	341,9142
5-6	3,5	140,7882	12	482,7024
6-7	4,5	181,0134	16,5	663,7158
7-8	5,5	221,2386	22	884,9544
8-9	6,25	263,47506	28,25	1136,3619
9-10	6,25	263,47506	34,5	1387,7694
10-11	6,25	263,47506	40,75	1639,1769
11-12	6,25	263,47506	47	1890,5844
12-13	5	201,1260	52	2091,7104
13-14	5	201,1260	57	2292,8364
14-15	5,5	221,2386	62,5	2514,0750
15-16	6	241,3512	68,5	2755,4262
16-17	6	241,3512	74,5	2996,7774
17-18	5,5	221,2386	80	3218,0160
18-19	5	201,1260	85	3419,1420
19-20	4,5	181,0134	89, 5	3600,1554
20-21	4	160,9008	93,5	3761,0562
21-22	3	120,6756	96,5	3881,7318
22-23	2	80,4504	98,5	3962,1822
23-24	1,5	60,3378	100	4022,5200
total	100	4022,5200		

On note: le débit de pointe est repéré de 8h du matin jusqu'à midi avec un débit de:

Qp₂= 263,47506 m³/h

Remarque:

Le débit distribué dans le deuxième étage (2000 est) est égale à: 4130m³/j. (source Mission C model commune Tipaza SEAAL 2019)

Le débit de pointe total sera égale à la somme des débits de pointe du premier et du deuxième étage:

 $Q_p = 450,2100+263,47506 = 686,1525 \text{ m}^3/\text{h} = 198,2458 \text{ l/s}$

d) représentation graphique de la consommation:

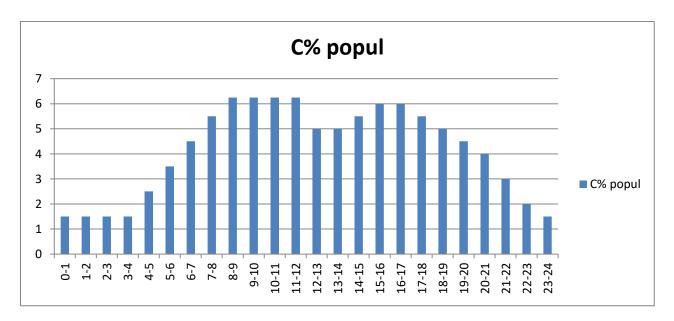


fig II.3: Consommation horaire de la population

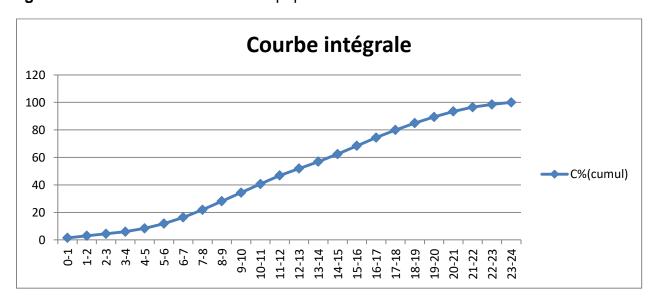


fig II.4: Courbe intégrale

Chapitre 2:

II.4 Conclusion:

Dans cette partie nous avons réalisé le calcul de besoin future en eau, à savoir: l'évaluation de la population à l'horizon de calcul ainsi que la détermination des débits de consommation des différentes catégories de consommateurs dans les deux étages de notre agglomération.

CHAPITRE – 3– CALCUL HYDRAULIQUE

III.1 Introduction:

Dans ce du chapitre, on va dimensionner notre réseau d'AEP, réaliser une simulation hydraulique et réguler les vitesses et les pressions, en effet, ayant un terrain qui présente une dénivelé importante, il va de soit que les vitesses et les pressions doivent être vérifiés et régulés de telle façon à avoir un fonctionnement exemplaire du système. Pour le calcul des dimensions du réseau, Nous devons nous attendre aux hypothèses les plus inappropriées. Les canalisations doivent être dimensionnées à partir du débit de pointe avec une pression de service suffisante. Avant de lancer cette simulation, nous allons tout d'abord déterminer les débits route et les débits aux nœuds pour chaque pièce.

III.2 Calcul du réseau de distribution:

III.2.1 Choix du système de distribution:

Dans notre cas on a choisi le système de distribution avec un réservoir de tête. Dans ce système, la distribution sera gravitaire à partir du réservoir vers le réseau de distribution.

III.2.2 Choix du type de réseau :

Le choix du type de réseau s'effectue suivant l'importance et la structure de l'agglomération ainsi on distingue trois types de réseaux:

- > Réseau ramifié.
- Réseau étagé.
- Réseau maillé.

III.2.2.1 Le réseau ramifié :

Le réseau ramifié est constitué par une conduite principale et des conduites secondaires (branches) tout au long de la conduite principale : c'est un réseau arborescent qui n'assure aucune distribution de retour. Il suffit qu'une panne se produise sur la conduite principale pour que toute la population à l'aval soit privée d'eau.

III.2.2.2 Le réseau étagé :

Le réseau étagé est caractérisé par des différences de niveau très importantes, ce qui fait que la distribution d'eau par le réservoir donne de fortes pressions aux points les plus bas.

En effet, ce système nécessite l'installation d'un réservoir intermédiaire, alimenté par le premier qui permet de régulariser la pression dans le réseau.

III.2.2.3 Le réseau maillé :

Un réseau maillé est constitué d'une série de tronçons disposés de telle manière qu'il soit possible de décrire une ou plusieurs boucles fermées en suivant le tracé. Contrairement aux réseaux ramifiés, l'alimentation en retour est possible, une simple manœuvre de robinet permet d'isoler le tronçon accidenté sur une éventuelle réparation et l'alimentation en aval se poursuit normalement.

Ils sont utilisés généralement dans les zones urbanisées et tendent à se généraliser dans les agglomérations rurales, sous forme associés à des réseaux ramifiés (limitation des nombres de mailles en conservant certaines ramifications).

Les réseaux de distribution de la ville de Tipaza sont de types maillés, nous avons donc opté pour ce choix vu les avantages qu'il présente.

III.2.3 Principe du tracé du réseau maillé :

Pour le tracé du réseau maillé nous devons suivre les étapes suivantes:

- Repérer les consommateurs importants par exemple les usines et les zones de forte densité
- Repérer les quartiers ayant une densité de population importante.
- ➤ Déterminer l'itinéraire (sens) principal pour assurer la distribution à ces consommateurs.
- Suivant ce sens, tracer les conduites principales en parallèle.
- > Ces conduites principales doivent être bien reparties pour avoir une bonne distribution d'eau.
- ➤ Pour alimenter l'intérieur des quartiers, ces conduites principales sont reliées entre elles par des conduites secondaires pour former des boucles (mailles).

Source:

([1]André DUPONT ; Hydraulique urbaine, Tome 2, Edition Eyrolles, 1979, 484 p).

III.2.4 Choix du matériau des conduites :

Le choix du matériau utilisé est en fonction de la pression, l'agressivité et la température dû aux eaux et au sol, et l'ordre économique (coût, disponibilité sur le marché, pose de canalisation), ainsi que la bonne jonction de la conduite avec les équipements auxiliaires (joints, coudes, vannes) permettent de faire le bon choix.

Parmi les matériaux à utiliser on distingue entre autres : L'acier, la fonte ductile, le PVC (polyvinyle de chlorure) et le PEHD (polyéthylène haute densité).

III.2.4.1 Tuyaux en fonte :

Les tuyaux en fonte présentent plusieurs avantages mais beaucoup plus des inconvénients.

III.2.4.1.1 Les avantages :

- > Bonne résistance aux sollicitations du fluide ;
- Bonne résistance aux chocs et aux charges compressibles ;
- Longueur des conduites variant de 6 à 16m, ce qui réduit le nombre de joint, par conséquent, une réduction des risques de fuite
- > Facilité de pose.

III.2.4.1.2 Les inconvénients :

- Sensible à la corrosion des sols agressifs, ce qui nécessite une protection cathodique et une maintenance rigoureuse;
- Risque de déformation des conduites pendant leur transport et un cout très élevé pendant la pose;
- Mauvaise résistance au cisaillement ;
- Une durée de vie d'environ 30 ans.

III.2.4.2 Tuyaux en acier :

Les tuyaux en acier sont beaucoup plus légers que les tuyaux en fonte d'où l'économie sur le transport et la pose.

III.2.4.2.1 Les avantages :

Résistances aux contraintes (choc, écrasement.);

Les tuyaux en acier permettent aussi une pression élevée.

III.2.4.2.2 Les inconvénients :

Leur principal inconvénient est la corrosion c'est-à-dire sensible a la corrosion des sols agressifs, ce qui nécessite une protection cathodique et une maintenance rigoureuse

III.2.4.3 Tuyaux en P.E.H.D:

III.2.4.3.1 Les avantages :

- ➤ Bonne résistance à la corrosion interne, externe, microbiologique et à l'entartage.
- Disponibilité sur le marché.
- Facilité de pose (grande flexibilité), Fiabilité au niveau des branchements (réduction de risque de fuite).
- > Possibilité d'enroulement en couronne pour les petits diamètres ;
- Bonne caractéristique hydraulique (coefficient de rugosité très faible);
- ➤ Durée de vie prouvée par l'expérience et le test de vieillissement théoriquement de 50 ans à une température de 20°c.

III.2.4.3.2 Les inconvénients :

Nécessite une grande technicité pour la jonction.

Dans notre cas, il serai convenable d'opter pour le polyéthylène vu les avantages qu'il procure.

III.2.5 Calcul hydraulique du réseau de distribution :

Le calcul du réseau de distribution se fera pour les deux cas suivants :

- > Cas de pointe.
- Cas de pointe plus incendie.

On procède comme suit:

- On détermine la longueur de chaque tronçon du réseau maillé ;
- > On calcule le débit en route pendant l'heure de pointe ;
- On détermine le débit spécifique en considérant le débit en route.

Chapitre 3:

Remarque:

A l'issue de notre tracé, et selon les données topographiques, on a remarqué qu'à partir du nœud n16 (limite du premier étage), la dénivelée devient importante, ce qui engendrera des fluctuations importantes au niveau des pression (problème récurrent dans les réseaux étagés). Aux points bas, on aura de fortes pressions et aux points hauts de faibles pressions d'où la particularité et la difficulté de notre travail, qui réside essentiellement dans la régulation de la pression, et ce, en faisant un équilibre entre les points hauts et les points bas en choisissant la meilleure variante parmi ceux proposés.

III.2.5.1 Détermination des débits :

III.2.5.1.1 Débit route :

Il est défini comme étant le débit reparti uniformément le long d'un tronçon du réseau, il est déterminé par la relation suivante :

$$\sum \mathbf{Q}_r = \mathbf{Q}_{\max h} - \sum \mathbf{Q}_{conc} \; ; \qquad \text{(I/s)}$$

 $\sum Qr$: Débit route total

Q_{maxh}: Débit maximal horaire

 $\sum Q_{\rm conc}$: Somme des débits concentrés

III.2.5.1.2 Débit spécifique :

Le débit spécifique est défini comme étant le rapport entre le débit route et la somme des longueurs de tous les tronçons. On détermine le débit spécifique par mètre linéaire selon la relation suivante:

$$Q_{sp} = \frac{\sum Qr}{\sum Li} \text{ (I/s/m) III.2}$$

Q_{sp} : débit spécifique (l/s/m)

 ΣLi : somme des longueurs des tronçons du réseau (m)

III.2.5.1.3 Débits nodaux :

Le débit au nœud est concentré dans chaque point de jonction des conduites du réseau, on doit raisonner sur la base de la relation suivante :

$$Q_{n, i} = 0.5 \sum Q_{r, i-k} + \sum Q_{conc}(I/s)$$
 III.3

Avec: Q_{n, i}: débit au nœud i

 $\Sigma Q_{r,i-k}$: somme des débits route des tronçons reliés au nœud i

 ΣQ_{conc} : somme des débits concentrés au nœud.

Nous avons déterminer les formules qui nous permettrons de dimensionner notre réseau dans les deux cas à savoir: cas de pointe et cas de pointe + incendie.

Il est important de souligner que dans notre cas d'étude la somme des débits concentrés aux différents nœuds du réseau de distribution dans le cas de pointe est nulle (ΣQ conc=0).

III.2.5.1.4 Débit d'incendie :

Il est plus que primordial de prévoir dans chaque réservoir, une réserve d'eau qui servira à l'extinction d'un éventuel incendie.

Le débit qu'il va falloir mobiliser est de l'ordre de 60m³/h soit 16,67 l/s et ce pour une durée de 2 heures.

On prévoit dans notre cas un débit de 17 l/s et une pression minimale à atteindre de 10m.

Ce débit doit être ajouté au nœud le plus éloigné dans le réseau, en outre lorsque la consommation est la plus importante (cas de pointe).

III.2.5.2 Dimensionnement des deux étages :

III.2.5.2.1 Calcul des débits :

III.2.5.2.1.1 Premier étage (2*500) :

A) Cas de pointe :

Le cas de pointe est détecté à partir du graphique de consommation entre 8 heures et 12 heures comme suit:

$$Q_{maxh} = Q_{pte} = 450,21 \text{ m}^3/h = 125,058 \text{ l/s et } Q_{conc} = 0 \text{ l/s}$$

Donc
$$Q_{route} = Q_{pte} - Q_{conc} = 125,058 - 0 = 125,058$$
 l/s

 Σ Li = 5644,93 m; donc : Q_{sp}=125,058 /5644,93 = 0,0222/s/m

Au final, le débit spécifique est : Q_{sp}=0,0222/s/m

Tab III.1: Récapitulatif du calcul des débits: cas de pointe

	Q _{pte} (I/s)	125,058
Heure de pointe (08 heures à	Q _{route} (I/s)	125,058
12 heures)	ΣLi (m)	5644,93
	Q _{sp} (l/s/m)	0,022

Remarque:

Les calculs effectués vont nous permettre de calculer les débits routes dans chaque tronçon ainsi que les débits nodaux.

Les résultats de calculs des débits routes (repérés dans chaque tronçon) ainsi que les débits nodaux à partir des débits spécifiques en cas de pointe sont représentés dans le tableau Tab III.2 comme suit:

Tab III.2: Calculs des débits routes et des débits aux nœuds: cas de pointe (étage 2*500)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(I/s)	(l/s)
1	C1	322,08		7,15	5,736	5,736
	C10	194,69		4,322		
2	C1	322,08		7,15	6,064	6,064
	C2	224,23		4,978		
3	C2	224,23		4,978	5,594	5,594
	C3	279,65		6,21		
_	C3	279,65		6,21		
4	C4	366,89		8,145	13,99	13,99
	C12	613,71		13,624		
	C4	366,89		8,145		17,101
5	C11	576,76		12,804	17,101	
	C5	162		3,596		
	C15	435		9,657		
_	C5	162	0,022	3,596		
6	C6	280	0,022	6,216	8,563	8,563
	C17	329,43		7,313		
	C6	280		6,216		
7	C7	56,13		1,247	7,61	7,61
	C18	352,6		7,757		
8	C7	56,13		1,247	3,097	3,097
	C8	222,8		4,946		
9	C8	222,8		4,946	4,27	4,27
	C9	161,84		3,593		
	C10	174,69		3,88		
10	C11	576,76		12,804	10,139	10,139
	C9	161,84		3,593		
Nœuds	Tronçon	Longueur		Qr	0,5∑Qr	Qn

N°	N°	(m)	(1/	/s)	(l/s)	(l/s)
11	C12	613,71	1;	3,624	7,935	7,649
	C13	75,36	1,	,673		
12	C13	75,36	1,	,673	4,722	4,722
	C14	350	7,	,77		
13	C14	350	7,	,77	12,794	12,794
	C15	435	9,	,657		
	C16	367,59	8,	,161		
14	C16	367,59	8,	,161	7,737	7,737
	C17	329,43	7,	,313		
15	C18	352,6	7,	,757	6,922	6,922
	C19	274,17	6,	,087		

B) Cas de pointe + incendie :

En cas d'incendie, il ya lieu de prévoir un volume d'incendie de 120 m³, pour un incendie de deux heures, soit un débit de 17 l/s à ajouter au débit de pointe horaire avec:

$$Q_{p+inc}$$
= 125,058 + 17 = 142,058 l/s

On opte pour l'ajout de ce débit d'incendie au niveau du nœud n13 (pour le premier étage) et ce pour divers raisons:

- C'est un point haut et éloigné;
- ➤ Présence d'un grand parc urbain de 197000m²à gauche du nœud (extension forestière par plantation d'arbustes qui pourrai constituer un risque élevé d'incendie);
- Présence d'une forêt à droite du nœud ;
- Présence d'une grande partie d'habitations collectifs (construction d'immeubles de l'AADL) et d'infrastructures divers où le risque d'incendie est élevé.

Dans ce cas, le calcul s'effectue de la même manière que le cas précédent, cependant on doit s'assurer que le débit d'incendie donné par le réservoir d'alimentation (17 l/s) se trouve au point le n13.

Tab III.3 : Calcul des débits routes et des débits aux nœuds: cas de pointe + incendie (étage 2*500)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(I/s/m)	(l/s)	(l/s)	(I/s)
1	C1	322,08		7,15	5,736	5,736
	C10	194,69		4,322		
2	C1	322,08		7,15	6,064	6,064
	C2	224,23		4,978		
3	C2	224,23		4,978	5,594	5,594
	C3	279,65		6,21		
	C3	279,65		6,21		
4	C4	366,89		8,145	13,99	13,99
	C12	613,71		13,624		
	C4	366,89		8,145		1 17,101
5	C11	576,76		12,804	17,101	
	C5	162		3,596		
	C15	435		9,657		
	C5	162		3,596		8,563
6	C6	280	0,022	6,216	8,563	
	C17	329,43		7,313		
_	C6	280		6,216		
7	C7	56,13		1,247	7,61	7,61
	C18	352,6		7,757		
8	C7	56,13		1,247	3,097	3,097
	C8	222,8		4,946		
9	C8	222,8		4,946	4,27	4,27
	C9	161,84		3,593		
	C10	174,69		3,88		
10	C11	576,76		12,804	10,139	10,139
	C9	161,84		3,593		
11	C12	613,71		13,624	7,935	7,649
	C13	75,36		1,673		

Chapitre 3:

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(I/s/m)	(l/s)	(I/s)	(l/s)
12	C13	75,36		1,673	4,722	4,722
	C14	350		7,77		
	C14	350		7,77		
13	C15	435	0,022	9,657	12,794	29,794
	C16	367,59		8,161		
14	C16	367,59		8,161	7,737	7,737
	C17	329,43		7,313		
15	C18	352,6		7,757	6,922	6,922
	C19	274,17		6,087		

III.2.5.2.1.2 Deuxième étage (étage 2000 EST) :

A) Cas de pointe :

Le cas de pointe est détecté à partir du graphique de consommation entre 8 heures et 12 heures comme suit:

$$Q_{maxh}=Q_{pte}= 263,47506m^3/h = 73,187$$
 l/s et $Q_{conc}=0$ l/s

Donc
$$Q_{route} = Q_{pte} - Q_{conc} = 73,187 - 0 = 73,187 \text{ l/s}$$

$$\Sigma$$
Li = 5461,22 m; donc : Q_{sp}=73,187 /5461,22 = 0,0134l /s/m

Au final, le débit spécifique est : Q_{sp} =0,0134l/s/m

Tab III.4: Récapitulatif du calcul des débits: cas de pointe

Harris da in	! 4 .	(00	h	Q _{pte} (I/s)	73,187
Heure de p	oointe	(08	neures	Q _{route} (I/s)	73,187
à12heures)				∑Li (m)	5461,22
				Q _{sp} (I/s/m)	0,0134

Remarque:

Les calculs effectués vont nous permettre de calculer les débits routes dans chaque tronçon ainsi que les débits nodaux.

Les résultats de calculs des débits routes (repérés dans chaque tronçon) ainsi que les débits nodaux à partir du débits spécifique en cas de pointe sont représentés dans le tableau Tab III.5 comme suit:

Tab III.5: Calcul des débits routes et des débits aux nœuds: cas de pointe (étage 2000EST)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(l/s)	(l/s)
	C20	21,54		0,258		
16	C21	229,45		2,822	3,777	3,777
	C25	363,83		4,475		
	C21	229,45		2,822		
17	C22	172,66		2,173	5,511	5,511
	C24	490		6,027		
18	C22	172,66		2,124	3,103	3,103
	C23	331,88	0,012	4,082		
	C23	331,88	0,012	4,082		9,562
19	C24	490		6,027	9,562	
	C27	299,12	_	3,7		
	C28	432,13		5,315		
20	C27	299,12		3,7	3,838	3,838
	C26	323,29		3,976		
Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(l/s)	(l/s)
	C41	51,37		0,632		
21	C25	363,83		4,475	4,542	4,542
	C26	323,29		3,976		
	C41	51,37	1	0,632		
22	C31	344,5	1	4,237	4,744	4,744
	C32	375,39	0,012	4,62		
23	C32	375,39	1	4,173	4,732	4,732

Chapitre 3:

	C33	430,12	5,29		
24	C33	430,12	5,29	4,14	4,14
	C34	242,8	2,99	·	
25	C34	242,8	2,99	4,55	4,55
	C35	497,03	6,11		
26	C35	497,03	6,11	3,368	3,368
	C36	63,64	0,626	1	
27	C30	429,73	5,29	5,155	5,155
	C31	344,5	4,24		
	C36	63,64	0,78		
28	C30	429,73	5,29	4,95	4,95
	C39	374,95	4,61		
29	C39	374,95	4,61	2,81	2,81
	C38	45,96	0,57		
	C40	35,37	0,435		
30	C38	45,96	0,57	2,942	2,942
	C28	432,13	5,315		

B) Cas de pointe + incendie :

En cas d'incendie, il ya lieu de prévoir un volume d'incendie de 120 m³, pour un incendie de deux heures, soit un débit de 17 l/s à ajouter au débit de pointe horaire avec:

$$Q_{p+inc}$$
= 73,187 + 17 = 90,187 l/s

On ajoute ce débit au niveau du nœud n28 pour les raisons suivantes :

- C'est un point haut ;
- Présence de la résidence universitaire et divers habitations collectifs au voisinage du point.

Il est toujours important de positionner le nœud de débit d'incendie au point le plus défavorable, et ce pour satisfaire la demande en tout point.

Dans ce cas, le calcul s'effectue de la même manière que le cas précédent, cependant on doit s'assurer que le débit d'incendie donné par le réservoir d'alimentation (17 l/s) se trouve au point le n28.

Les résultats de calcul du cas de pointe et d'incendie sont représentés dans le tableau III.6.

Tab III.6 : calcul des débits routes et des débits aux nœuds: cas de pointe + incendie (étage 2000EST)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(l/s)	(I/s)
16	C20	21,54		0,258	3,777	3,777
	C21	229,45		2,822	3,111	
	C25	363,83		4,475		
17	C21	229,45		2,822	5,511	5,511
17	C22	172,66		2,173	7 3,311	3,311
	C24	490	1	6,027		
18	C22	172,66		2,124	3,103	3,103
	C23	331,88		4,082		
	C23	331,88		4,082		9,562
19	C24	490		6,027	9,562	
	C27	299,12		3,7		
	C28	432,13]	5,315		
20	C27	299,12		3,7	3,838	3,838
	C26	323,29		3,976		
21	C41	51,37	0,012	0,632	4,542	4,542
	C25	363,83		4,475	1,042	
	C26	323,29		3,976		
22	C41	51,37		0,632	4,744	4,744
22	C31	344,5		4,237		
	C32	375,39		4,62		
23	C32	375,39		4,173	4,732	4,732
	C33	430,12	- -	5,29		
24	C33	430,12		5,29	4,14	4,14
	C34	242,8		2,99		
25	C34	242,8		2,99	4,55	4,55
	C35	497,03		6,11		
26	C35	497,03		6,11	3,368	3,368
	C36	63,64		0,626		

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(l/s)	(I/s)
27	C30	429,73		5,29	E 155	E 155
21	C31	344,5	4,24		5,155	5,155
	C36	63,64		0,78		
28	C30	429,73		5,29	4,95	21,95
	C39	374,95		4,61		
29	C39	374,95		4,61	0.04	2,81
	C38	45,96		0,57	2,81	
	C40	35,37		0,435		
30	C38	45,96		0,57	2,942	2,942
	C28	432,13		5,315		

III.2.5.2.2 Calcul hydraulique du réseau de distribution :

III.2.5.2.2.1 Détermination des diamètres avantageux :

Les diamètres avantageux sont donnés dans le tableau 4 en fonction des débits véhiculés dans chaque tronçon.

Tab III.7 : Relation entre les diamètres avantageux et les débits

Diamètres	50	75	100	125	150	175	200	250	300
Débits limites (l/s)	√3	3 a 7,3	7,3 à 10,6	10,6 à 15,10	15,10 à 19,8	19,8 à 26,5	26,5 à42	42 a 65	65 a 93

Suite à la répartition arbitraire des débits que nous avons effectués, nous pouvons alors déterminer le diamètre avantageux dans chaque tronçon.

Tab III.8 : Débit en fonction des diamètres avantageux

tronçons	débit de transit	Dext	Dint	
,	(l/s)	(mm)	(mm)	
C1	2,25	75	63,8	
C2	3,81	75	63,8	
C3	9,41	110	96,8	
C4	25,29	200	176,2	
C5	59,11	250	220,4	
C6	96,28	315	277,6	
C7	11,32	125	110,2	
C8	8,22	110	96,8	
C9			63,8	
C10	8	110	96,8	
C11	14,18	125	110,2	
C12	1,89	75	63,8	
C13	5,67	75	63,8	
C14	10,48	110	96,8	
C15	2,55	75	63,8	
C16	20,86	200	176,2	
C17	28,60	200	176,2	
C18	115,2	315	277,6	
C19	122,12	315	277,6	
C20	0,14	75	63,8	
C21	13,11	110	96,8	
C22	2,92	75	63,8	
C23	6,03	75	63,8	
C24	15,70	160	141	
C25	9,47	110	96,8	
C26	1,70	75	63,8	
C27	5,54	75	63,8	
C28	36,83	200 176		
C30	20,05	200	176,2	
C31	1,83	75	63,8	

	débit de transit	Dext	Dint
tronçons	(l/s)	(mm)	(mm)
C32	3,71	75	63,8
C33	1,02	75	63,8
C34	5,16	75	63,8
C35	9,71	110	96,8
C36	13,08	125	110,2
C37	fermée	315	277,6
C38	39,77	200	176,2
C39	25,01	200	176,2
C41	6,63	75	63,8
C40	68,47	315	277,6

Dans chaque tronçon du réseau transitent deux débits différents suivant les deux cas (cas de pointe et cas de pointe plus incendie). Le diamètre de ce tronçon sera déterminé ainsi, en considérant le débit maximum parmi les deux débits et en respectant la fourchette de la vitesse admissible pour un réseau d'AEP.

Les vitesses recommandés dans un réseau d'AEP, est compris entre 0,3 à 1,5m/s, voire 2m/s en cas d'incendie.

Il ya lieu d'éviter, dans la mesure du possible, les vitesses faibles, car elles favorisent les dépôts de sable et rendent difficile l'évacuation de l'air dissous dans l'eau vers les points hauts.

Il faut également éviter, dans la mesure du possible, les vitesses supérieures à 1,5 m/s en cas de pointe et 2 m/s en cas d'incendie, car elles impliquent des pertes de charge importantes.

La simulation du comportement hydraulique et la correction des diamètres se fait à la base du logiciel EPANET 2.0.

III.2.5.2.2.2 Présentation du logiciel EPANET 2.0:

1. Définition :

C'est un logiciel de simulation du comportement hydraulique et de la qualité de l'eau instantanément ou sur de longues durée dans les réseaux sous pression. Il calcule le débit dans chaque tuyau, la pression à chaque nœuds, le niveau de l'eau dans les réservoirs et la concentration en substance chimiques dans les différentes parties du réseau, au cours d'une durée de simulation. Le logiciel est capable également de calculer le temps de séjours et de suivre l'origine de l'eau. Il a pour objectif de fournir une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution.

2. Exemple d'application :

- Calage d'un modèle hydraulique ;
- Définition d'un programme de prélèvement d'échantillons.

EPANET 2.0 peut être considéré comme étant un outil d'aide à la gestion d'un réseau, et ce en fournissant de l'aide pour la recherche de stratégies pour gérer un réseau tel que :

- Modifier le réseau de pompage ou de marnage des réservoirs ;
- > Planifier l'entretien et le remplacement de certaines canalisations.

Dans notre cas, on s'intéresse à la simulation du comportement hydraulique.

3. Etapes d'utilisation d'EPANET 2.0:

Pour modéliser un système de distribution d'eau sur EPANET 2.0, les étapes sont les suivantes:

- > Dessiner un réseau représentant le système de distribution ou importer le schéma;
- Saisir les propriétés des éléments;
- Décrire le fonctionnement du système;

- > Sélectionner un ensemble d'option de simulation;
- Lancer une simulation hydraulique et visualiser les résultats.

4. Données propres au logiciel :

La rugosité est donnée selon la nature des matériaux utilisés. Dans notre cas on a opté pour le PEHD (ϵ =0,0015 mm).

Les pertes de charge sont données par le logiciel suivant la formule de DARCY-WEISBACH :

$$\Delta H = \frac{8\lambda LQ^2}{\pi^2 q D^5} III.4$$

Tel que:

$$\lambda$$
= (1.14 - 0,86 ln (ε/D))⁻² (La formule de NIKHRADZE) III.5

Avec:

ΔH : perte de charge (m)

λ :coefficient de frottement

ε : la rugosité de la conduite (mm)

L : longueur du tronçon (m)

Q : débit dans le tronçon (m³/s)

g: l'accélération de gravité g=9.81 (m/s²)

D : diamètre de la conduite.

III.2.5.2.2.3 Pression au sol:

La pression au sol en un point donné est la différence entre la cote piézométrique et la cote du sol en ce point, elle est formulée ainsi:

$$P_{sol} = CPZ - CTN, m$$
 III.6

CPZ: cote piézométrique, en m

CTN: cote du terrain naturel, en m

La cote piézométrique entre deux points 1 et 2 est traduite par la relation:

$$CPZ1 = CPZ2 \pm \Delta H$$
 III.7

Chapitre 3:

∆ H : perte de charge du tronçon 1-2

± : Signe qui dépend du sens d'écoulement

Selon la hauteur des immeubles, on prévoit les pressions suivantes:

12 à 15 m : pour un étage.

16 à 19 m : pour 2 étages.

20 à 23 m : pour 3 étages.

24 à 27 m : pour 4 étages.

D'une façon générale, on peut écrire :

 $P_{sol} = 10 + 4n$

n : nombre de l'étage

4 : hauteur de l'étage, en m

Pour notre cas, nous prévoyons une pression qui suffira pour 5 étages (nombre d'étages de la majorité des immeubles de notre zone) soit une pression à assurer de 30 m.

III.2.5.2.2.4 Résultats de la simulation:

A) Cas de pointe :

A.1) Résultats de simulation au niveau des arcs:

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.9.

Tab III.9:État des Arcs du Réseau

ID Arc	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
	m	mm	LPS	m/s	m/km
Tuyau C14	350	110,2	10,48	1,10	12,10
Tuyau C16	367,59	141	20,86	1,34	12,96
Tuyau C5	162	220,2	59,11	1,55	9,99
Tuyau C4	366,89	141	25,29	1,62	18,76
Tuyau C10	194,69	96,8	-7,99	1,09	13,89
Tuyau C1	322,08	63,8	-2,25	0,70	10,34
Tuyau C20	21,54	141	0,14	0,01	0,00
Tuyau C27	299,12	79,2	-5,54	1,12	19,12
Tuyau C31	344,5	63,8	-1,83	0,57	6,99
Tuyau C32	375,39	96,8	-3,71	0,50	3,27
Tuyau C34	242,8	110,2	5,16	0,54	3,17
Tuyau C25	363,83	110,2	9,47	0,99	9,96
Tuyau C26	323,29	63,8	-1,70	0,53	6,14
Tuyau C11	576,76	110,2	14,18	1,49	21,59
Tuyau C9	161,84	63,8	-3,95	1,24	30,04
Tuyau C12	613,71	63,8	1,89	0,59	7,45
Tuyau C15	435	63,8	-2,55	0,80	13,03
Tuyau C18	352,6	352,6	-115,20	1,18	3,32
Tuyau C17	329,43	176,2	28,60	1,17	7,66
Tuyau C8	222,8	79,2	8,22	1,67	40,76
Tuyau C7	56,13	110,2	-11,32	1,19	14,01
Tuyau C3	279,65	96,8	9,41	1,28	18,99
Tuyau C2	224,23	63,8	3,81	1,19	28,07
Tuyau C6	280	352,6	-96,28	0,99	2,35
ID Arc	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
	m	mm	LPS	m/s	m/km
Tuyau C13	75,36	79,2	-5,76	1,17	20,58
Tuyau C21	229,45	176,2	-13,11	0,54	1,75
Tuyau C22	172,66	79,2	-2,92	0,59	5,70
Tuyau C24	490	141	-15,70	1,01	7,51

Chapitre 3:

Tuyau C23	331,88	96,8	-6,03	0,82	8,13
Tuyau C28	432,13	220,4	36,83	0,97	4,01
Tuyau C30	429,73	141	20,06	1,28	12,01
Tuyau C41	51,37	110,2	6,63	0,69	5,07
Tuyau C33	430,12	63,8	-1,02	0,32	2,39
Tuyau C35	497,03	141	-9,71	0,62	3,03
Tuyau C36	62,64	141	-13,08	0,84	5,31
Tuyau C40	35,37	352,6	67,59	0,69	1,20
Tuyau C38	45,96	220,4	-39,77	1,04	4,64
Tuyau C39	394,95	176,2	25,01	1,03	5,93
Tuyau C19	274,17	440,6	-122,12	0,80	1,21

En cas de pointe, les vitesses sont pratiquement toutes acceptables (dans l'intervalle préconisé) à l'exception du tronçon C20 où cette dernière est en dessous de l'intervalle avec 0,01 m/s et les tronçons C4 et C8 où cette dernière est légèrement au dessus de l'intervalle avec respectivement 1,62 m/s et 1,67 m/s

A.2) Les résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau

Tab III.10.

Tab III.10: Etat des nœuds du réseau

ID Noeud	Altitude	Demande	Charge	Pression
	m	LPS	m	m
Noeud n12	86,52	4,722	177,70	91,18
Noeud n14	79,36	7,737	186,69	107,33
Noeud n11	82,98	7,649	176,15	93,17
Noeud n6	51,33	8,563	189,22	137,89
Noeud n13	72,83	12,794	181,93	109,10
Noeud n9	29,53	4,27	180,01	150,48
Noeud n4	55	13,99	180,72	125,72
Noeud n2	35	6,064	169,11	134,11
Noeud n10	24,64	10,139	175,15	150,51
Noeud n5	49,7	17,101	187,60	137,90
Noeud n1	25,74	5,736	172,44	146,70
Noeud n21	111,45	4,542	178,31	66,86
Noeud n16	73,41	3,777	181,93	108,52
Noeud n19	125,52	9,562	186,01	60,49
Noeud n22	112,99	4,744	178,05	65,06
Noeud n20	143,71	3,838	180,29	36,58
Noeud n23	114,42	4,732	176,82	62,40
Noeud n25	143,17	4,55	178,62	35,45
Noeud n24	127,55	4,14	177,85	50,30
Noeud n27	161,5	5,155	180,45	18,95
Noeud n26	156,62	3,368	180,12	23,50
Noeud n30	181,42	2,942	187,74	6,32
Noeud n7	48,79	7,61	189,88	141,09
Noeud n15	66,2	6,922	191,05	124,85
Noeud n8	40,139	3,097	189,09	148,95
Noeud n3	44,6	5,594	175,41	130,81
Noeud n18	85,44	3,103	183,32	97,88
Noeud n17	85,889	5,511	182,33	96,44
Noeud n28	177,61	4,95	185,62	8,01
Noeud n29	184,83	2,81	187,96	3,13
Noeud	68	Sans Valeur	191,38	123,38
RV2000EST	186	Sans Valeur	191,00	5,00

Les pressions au niveau de l'étage premier (2*500) sont tous excessivement élevés, de même que pour le deuxième étage à l'exception de quatre nœuds n20, n25, n26 et n27; d'où l'ambigüité de notre étude qui est de palier à cette pression exagérée et permettre l'apparition de pressions acceptables pour un bon fonctionnement du réseau.

B) Cas de pointe + incendie :

B.1) Résultats de simulation au niveau des arcs:

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.11.

Tablil.11: Etat des arcs du réseau (pointe + inc)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C14	350	110,2	10,48	1,10	12,10
Tuyau C16	367,59	141	20,86	1,34	12,96
Tuyau C5	162	220,2	59,11	1,55	9,99
Tuyau C4	366,89	141	25,29	1,62	18,76
Tuyau C10	194,69	96,8	-7,99	1,09	13,89
Tuyau C1	322,08	63,8	-2,25	0,70	10,34
Tuyau C20	21,54	141	-16,86	1,08	8,62
Tuyau C27	299,12	79,2	-6,74	1,37	27,82
Tuyau C31	344,5	63,8	-2,67	0,84	14,26
Tuyau C32	375,39	96,8	-3,01	0,41	2,22
Tuyau C34	242,8	110,2	5,86	0,61	4,02
Tuyau C25	363,83	110,2	6,72	0,71	5,21
Tuyau C26	323,29	63,8	-2,90	0,91	16,70
Tuyau C11	576,76	110,2	14,18	1,49	21,59
Tuyau C9	161,84	63,8	-3,95	1,24	30,04
Tuyau C12	613,71	63,8	1,89	0,59	7,45
Tuyau C15	435	63,8	-2,55	0,80	13,03

Chapitre 3:

Tuyau C18	352,6	352,6	-115,20	1,18	3,32
Tuyau C17	329,43	176,2	28,60	1,17	7,66
Tuyau C8	222,8	79,2	8,22	1,67	40,76
ID Arc	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
	m	mm	LPS	m/s	m/km
Tuyau C7	56,13	110,2	-11,32	1,19	14,01
Tuyau C3	279,65	96,8	9,41	1,28	18,99
Tuyau C2	224,23	63,8	3,81	1,19	28,07
Tuyau C6	280	352,6	-96,28	0,99	2,35
Tuyau C13	75,36	79,2	-5,76	1,17	20,58
Tuyau C21	229,45	176,2	-27,37	1,12	7,04
Tuyau C22	172,66	79,2	-6,18	1,25	23,55
Tuyau C24	490	141	-26,70	1,71	20,84
Tuyau C23	331,88	96,8	-9,28	1,26	18,51
Tuyau C28	432,13	220,4	52,28	1,37	7,85
Tuyau C30	429,73	141	21,60	1,38	13,85
Tuyau C41	51,37	110,2	5,09	0,53	3,08
Tuyau C33	430,12	63,8	-1,72	0,54	6,25
Tuyau C35	497,03	141	-10,41	0,67	3,45
Tuyau C36	62,64	141	-13,78	0,88	5,86
Tuyau C40	35,37	352,6	101,59	1,04	2,61
Tuyau C38	45,96	220,4	-55,22	1,45	8,72
Tuyau C39	394,95	176,2	43,55	1,79	17,23
Tuyau C19	274,17	440,6	-122,12	0,80	1,21

Les vitesses sont majoritairement acceptables. On note néanmoins quatre vitesses légèrement au dessus de l'intervalle.

B.2) Les résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau Tab III.12.

Tab III.12: Etat des nœuds du réseau (pointe + inc)

	Altitude	Demande	Charge	Pression
ID Noeud	m	LPS	m	m
Noeud n12	86,52	4,722	167,87	81,35
Noeud n14	79,36	7,737	176,87	97,51
Noeud n11	82,98	7,649	166,32	83,34
Noeud n6	51,33	8,563	179,39	128,06
Noeud n13	72,83	29,794	172,11	99,28
Noeud n9	29,53	4,27	170,18	140,65
Noeud n4	55	13,99	170,89	115,89
Noeud n2	35	6,064	159,29	124,29
Noeud n10	24,64	10,139	165,32	140,68
Noeud n5	49,7	17,101	177,77	128,07
Noeud n1	25,74	5,736	162,62	136,88
Noeud n21	111,45	4,542	170,40	58,95
Noeud n16	73,41	3,777	172,29	98,88
Noeud n19	125,52	9,562	184,12	58,60
Noeud n22	112,99	4,744	170,24	57,25
Noeud n20	143,71	3,838	175,79	32,08
Noeud n23	114,42	4,732	169,41	54,99
Noeud n25	143,17	4,55	173,07	29,90
Noeud n24	127,55	4,14	172,09	44,54
Noeud n27	161,5	5,155	175,15	13,65
Noeud n26	156,62	3,368	174,78	18,16
Noeud n30	181,42	2,942	187,51	6,09
Noeud n7	48,79	7,61	180,05	131,26
Noeud n15	66,2	6,922	181,22	115,02
Noeud n8	40,139	3,097	179,26	139,13
Noeud n3	44,6	5,594	165,58	120,98
Noeud n18	85,44	3,103	177,97	92,53
Noeud n17	85,889	5,511	173,91	88,02
Noeud n28	177,61	21,95	181,10	3,49
Noeud n29	184,83	2,81	187,91	3,08
Noeud	68	-122,124	181,55	113,55
RV2000EST	186	Sans Valeur	191,00	5,00
		1		1

Les résultats de calcul ont montrés ce qui suit :

- ➤ En cas de pointe; le nœud où la pression est la plus importante est le nœud n10, d'une cote piézométrique de : 175,15 m, avec une cote de terrain de : 24,64 m, soit une pression au sol de 150,51 m.
- ➤ En cas de pointe; le nœud où la pression est la plus faible est le nœud n29, d'une cote piézométrique de : 187,96 m, avec une cote de terrain de : 184,83 m, soit une pression au sol de 3,13 m.
- ➤ En cas de pointe plus incendie; le nœud où la pression est la plus importante est le nœud n10, d'une cote piézométrique de : 165,32 m et une cote au sol : 24,64 m, soit une pression au sol de 140,68 m.
- ➤ En cas de pointe plus incendie; le nœud où la pression est la plus faible est le nœud n29, d'une cote piézométrique de : 181,10 m et une cote au sol : 177,61 m, soit une pression au sol de 3,08 m.

Les pressions ont très légèrement diminués en cas de pointe et d'incendie.

Les résultats en cas de pointe et d'incendie sont représentés dans les schémas suivants :

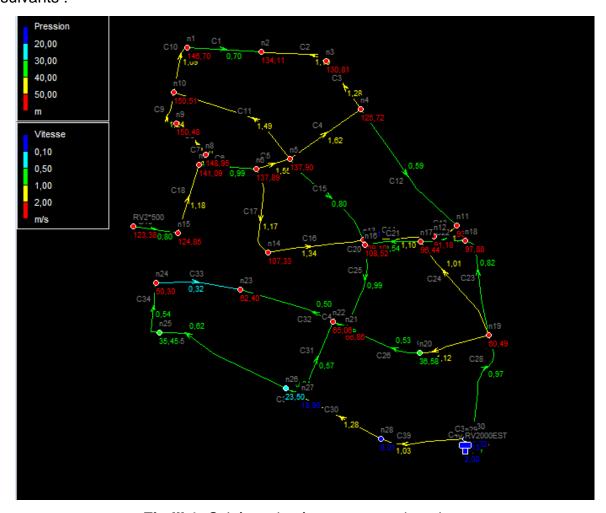


Fig III.1: Schéma du réseau en cas de pointe

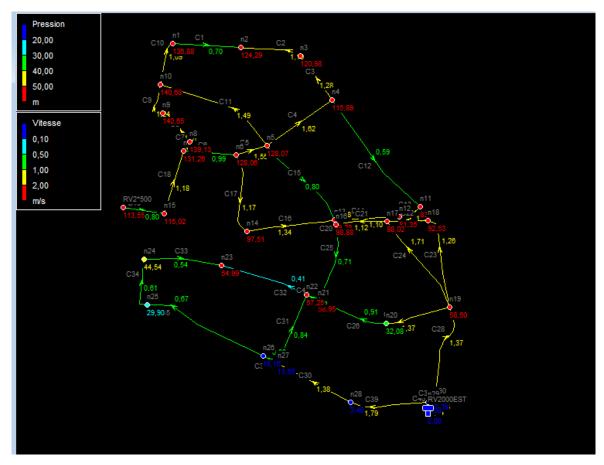


Fig III.2: Schéma du réseau en cas de pointe et d'incendie

Après simulation hydraulique, on àobservé au niveau des nœuds des pressions très importantes en particulier aux points bas de notre réseau (étage 2*500).

Afin de pallier à ce problème (partie clé de notre travail), on propose deux variantes.

III.2.5.3 Etude des variantes :

Avantdedonnerlespropositions des variantes, il est impératif de respecter l'aspect technico-économique du projet, et ce en choisissant la meilleure solution en vue d'un fonctionnement durable et une exploitation pérenne.

Nous allons proposer deux variantes, et nous choisirons la plus adéquate avec les exigences de la zone d'étude.

Les variantes qu'on propose sont les suivantes :

a) Variante 1:

Installation des réducteurs de pression au niveau des nœuds où la pression est excessivement élevée, et ce afin de réduire ces pressions.

Inconvénients:

cette solution n'est pas économique dans la mesure où ces réducteurs sont directement importés d'Europe (cout élevé d'achat, de livraison et d'installation), de plus, ces dernières nécessitent une gestion régulière et rigoureuse.

Les réducteurs de pression sont très sensibles aux eaux salines (il est important de rappeler que le débit prépondérant arrivant au réservoir d'alimentation de notre réseau provient de la SDEM Fouka), cela engendrera, dans le long terme, divers problèmes liés à la gestion tel que le colmatage, les fuites et la diminution du rendement de ces appareil, cela provoquera automatiquement le remplacement prématuré de ces réducteurs de pression par des autres.

b) Variante 2:

On procède à une restructuration du réseau, c'est à dire: On modifie la morphologie du réseau de tel sorte à créer de nouveaux étages pour permettre un meilleur fonctionnement du réseau. Pour cela, on réalise l'implantation de réservoirs de type semi-enterré qui vont servir de régulateurs de pression en amont de chaque zone. Pour se faire, on subdivise notre réseau en trois zones, dans chaque zone on prévoit l'implantation d'un réservoir semi-enterré afin de permettre la réduction de pressions élevées en aval du réservoir projeté, ou encore, augmenter les pressions faibles.

Pour se faire, on raisonne comme suit :

On impose une pression de service de 50 m au niveau du nœud n10 là où la pression est la plus grande avec 150,51 m, puis en calcul les nouvelles cotes piézométriques en appliquant la formule de Darcy-Weisbach jusqu'à atteindre des pressions acceptables.

Là où la ligne piézométrique traversera la cote du terrain, ça sera le point d'implantation de notre premier réservoir (zone 1).

En amont du point d'implantation du réservoir, on impose encore une fois une pression, cette fois de 60 m, et on refait les mêmes calculs que pour la zone 1, ça sera la (zone 2).

De même pour la (zone 3) jusqu'à obtenir des pressions acceptable sur tout le réseau.

Il est claire que la variante 2 nécessite la mobilisation de moyens importants en vue de l'implantation des réservoirs, toutefois, dans une projection de long terme, cette variante semble la plus fiable.

On optera donc pour la variante 2, et ce pour les raisons technico-économiques cités ci-dessus.

Dans notre cas d'étude, les réservoirs semi-enterrées sont les mieux adaptés aux terrain accidentés (présentant une forte dénivelé) et aux zones présentant un risque de sismicité élevé. En effet, ces ouvrages disposent d'une grande stabilité au glissement et au renversement engendré respectivement par la topographie du terrain et par l'effet hydrodynamique sur les parois internes du réservoir.

III.2.5.4 Restructurations du réseau :

a) Zone 1:

a.1) Calcul des nouvelles cotes piézométriques de la zone 1:

La formule de Darcy-Weisbach est représentée comme suit :

$$\Delta H = \frac{K' L Q^{B}}{D^{m}} \quad III.9$$

Avec:

K': Coefficient de frottement

L: Longueur du tronçon

Q: Débit véhiculé par la conduite (m³/s);

 β : Exposant tenant compte du régime d'écoulement ;

D: Diamètre avantageux calculé de la conduite (m);

m : Exposant tenant compte du type du matériau.

Selon le type de matériau les coefficients \mathbf{K}' , \mathbf{m} et β sont donnés dans le tableau suivant:

Tab III.13:Coefficients K', m, β, pour différents types de tuyaux

Tuyau	K'	m	β
Acier et fonte	0,00179 - 0,001735	5,1 - 5,3	1,9 - 2
PEHD	0,00179	4,774	1,77
Amiante-ciment	0,00118	4,89	1,85
Plastique	0,001052	4,772	2

On déduit alors le diamètre calculé de la conduite gravitaire :

Pour notre étude, on prend : K' = 0.00179 et $\beta = 1.77$ et m = 4.774

Pour le nœud n1:

$$\Delta H_{\text{1-10}} = Cp_{\text{10 (imposée)}} - Cp_{\text{1}} \Rightarrow Cp_{\text{1}} = Cp_{\text{10 (imposée)}} - \Delta H_{\text{1-10}}$$

$$\Delta H = \frac{K'.L.Q^{B}}{D^{m}}; \Delta H_{1-10} = \frac{0,00179.194,69.(0,00799)^{1.77}}{0,0968^{4.774}} = 2,547 \text{ m}$$

Les pertes de charge singulières sont estimés à 15% des pertes de charge linéaires.

 \Rightarrow ∆H ₁₋₁₀ = 1,15. 2,547 = 2,93m

 $Cp_1 = (50+24,64) -2,93 = 71,71 \text{ m}$

La nouvelle cote piézométrique calculée au point n1 est égale à 71,71m

D'où la nouvelle pression en ce même point sera égale à 45,97 m

Les résultats des nouvelles cotes piézométriques et les nouvelles pressions sont mentionnés dans le tableau suivant :

Tab III.14: Les nouvelles cotes piézométriques pour la zone 1.

Nœuds	⊿ H (m)	CTN (m)	Cp (m)	Pression (m)	
N10	2,93	24,64	74,64	50	
N1	2,00	25,74	71,71	45,97	
	3,20				
N2		. 35	68,51	33,51	
	5,66				
N3		44,6	74,17	29,57	
	5,62				
N4		55	79,79	24,79	
	7,09				
N5			49,7	86,88	37,18
N6	1,67	51,33	88,59	37,22	
-Nœuds	⊿ H (m)	CTN (m)	Cp (m)	Pression (m)	
N6	0,73	51,33	88,59	37,22	
N7	_ 0,73	48,79	89,32	40,53	
		- ,	, -	-,	
N8	0,85	40,139	88,47	48,33	
N9	9,19	29,53	79,28	49,75	

Nœuds	⊿ H (m)	CTN (m)	Cp (m)	Pression (m)
N7		48,79	89,32	40,53
N15	1,26	66,2	90,58	24,38
RV 2*500	0,33	68	90,91	22,91
Nœuds	⊿ H (m)	CTN (m)	Cp (m)	Pression (m)
N4	4,48	55	79,79	24,79
N11	4,40	82,98	75,31	-7,67
N12	1,66	86,52	76,96	-9,55
N13	4,62	72,83	81,58	9,20
N14	5,05	79,36	86,63	7,27

D'après les calculs effectués, on note que la ligne de charge traverse la cote du terrain dans le tronçon n4 n11 (C12), on implantera donc notre réservoir dans ce point.

a.2) Restructuration du réseau de la zone 1:

Remarque:

Dans cette première zone, nous n'avons pas proposé de restructuration, en effet, cette zone englobe l'intégralité du premier étage, par conséquent, le débit de pointe dans cette zone sera égale à celui calculé dans le chapitre deux qui est de 122,124

l/s. Ce dernier va servir de donnée pour le dimensionnement du réservoir de la zone1.

Le débit journalier de la zone 1 est de 7203,36 m³/j alors que celui fournit par le réservoir existant (2*500) est de 3595 m³/j. On conclue donc que le débit journalier de dimensionnement du réservoir projeté de la zone 1 est de : 3439,34 m³/j.

a.3) Positionnement du réservoir projeté (RV zone1) :

a.3.1) Méthode de calcul :

Afin de connaitre avec exactitude le point d'implantation du réservoir, nous utiliserons une méthode mathématique basée sur la géométrie, il s'agira de l'utilisation du théorème de Thalès suivant la figure illustrative ci-dessous :

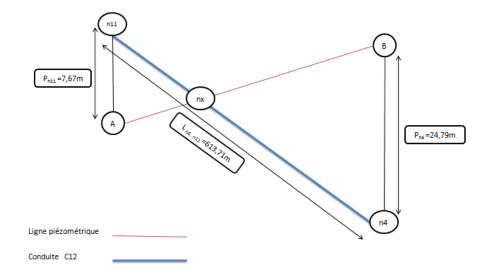


Fig III.3: Ligne piézométrique de la conduite C12 après régulation des pressions

Remarque:

Le point noté nx représente le point d'implantation du réservoir de la zone 1.

 P_{n11} et P_{n4} représentent respectivement les pressions au niveau des nœuds n11 et n4.

En appliquant le théorème de Thalès, on déterminera la longueur entre le point n4 (point de référence) et le point d'implantation du réservoir qu'on notera nx.

Les inconnus dans ce cas seront $L_{n4, nx}$ et $L_{nx, n11}$.

Après détermination de la longueur entre les deux points $L_{n4, nx}$, il est aisé de déterminer la cote du radier du réservoir projeté (Zone 1) par la loi de Darcy - Weisbach.

a.3.2) Généralités sur le théorème de Thalès :

Le **théorème de Thalès** est un <u>théorème</u> de <u>géométrie</u> qui affirme que, dans un plan, à partir d'un <u>triangle</u>, une droite parallèle à l'un des côtés définit avec les droites des deux autres côtés un nouveau triangle, semblable au premier.

En <u>anglais</u>, il est connu sous le nom de **intercepttheorem** (soit **théorème d'interception**); en <u>allemand</u>, il est appelé **Strahlensatz**, c'est-à-dire **théorème des rayons**.

Ce résultat est attribué au <u>mathématicien</u> et <u>philosophe grec Thalès de Milet</u>. Ce dernier aurait calculé la hauteur d'une <u>pyramide</u> en mesurant la longueur de son ombre au sol et la longueur de l'ombre d'un bâton de hauteur donnée.

Le théorème de Thalès sert à calculer des longueurs en <u>trigonométrie</u>, à condition de disposer de deux droites parallèles. Cette propriété est utilisée dans des instruments de calcul de longueurs.

En pratique, le théorème de Thalès permet de calculer des rapports de longueur et de mettre en évidence des relations de <u>proportionnalité</u> en présence de <u>parallélisme</u>.

a.3.3) Exemple d'application :

Soit un triangle ABC, et deux points D et E des droites (AB) et (AC) de sorte que la droite (DE) soit parallèle à la droite (BC) (comme indiqué sur les illustrations cidessous).

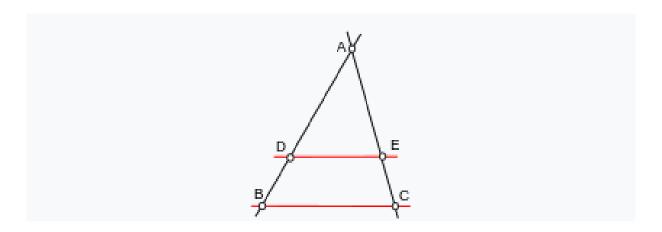
Alors on a: (III.10)

$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}.$$

la deuxième égalité n'est possible que parce que l'on part du point A et que l'on reste sur la même droite pour fabriquer le premier rapport. En effet, tout autre rapport partant d'un autre point ne permettrait pas d'avoir une égalité.

$$_{\rm avec} \ \frac{DE}{BC} \ _{\rm ou} \ \frac{BC}{DE}.$$

Par exemple bien que:


$$\frac{DA}{DB} = \frac{EA}{EC}, \text{ on a } \frac{DA}{DB} \neq \frac{DE}{BC} \text{ et } \frac{DA}{DB} \neq \frac{BC}{DE}. \text{ De même, } \frac{AD}{AE} \neq \frac{BC}{DE} \text{ et } \frac{AD}{AE} \neq \frac{DE}{BC}. \text{ or a } \frac{AD}{AE} \neq \frac{BC}{BC} \text{ et } \frac{AD}{AE} \neq \frac{DE}{BC}. \text{ or a } \frac{DE}{AE} \neq \frac{DE}{BC}. \text{ or a } \frac{DE}{AE}. \text{ or a } \frac{DE}{AE} \neq \frac{DE}{BC}. \text{ or a } \frac{DE}{AE}. \text{ o$$

Ce théorème est donc constitué de deux égalités bien distinctes qu'il serait bon de bien séparer comme c'est le cas ici.

La première étant toujours vraie et pouvant être fabriquée de toute sorte de

$$\frac{AD}{AE} = \frac{DB}{EC}$$
.

façons, par exemple $\overline{AE}^{-}\overline{EC}^{-}$. Et la deuxième égalité, qui elle n'est vraie que dans des conditions beaucoup plus restrictives.

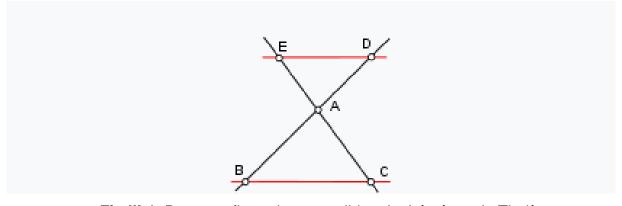


Fig III.4: Deux configurations possibles du théorème de Thalès

Ce théorème démontre que les triangles *ABC* et *ADE* sont homothétiques : il existe une homothétie de centre *A* envoyant *B* sur *D* et *C* sur *E*. L'un des rapports donnés ci-dessus est, au signe près, le rapport de l'homothétie. Plus précisément, le

rapport de l'homothétie est $+\frac{AD}{AB}$ dans la première configuration et $-\frac{AD}{AB}$ dans seconde.

Le théorème de Thalès est parfois énoncé plus simplement en affirmant qu'une droite parallèle à un des côtés du triangle coupe ce triangle en un triangle semblable.

Il peut être mis en œuvre dans différentes constructions géométriques faisant intervenir compas et règle. Par exemple, il peut justifier une construction permettant de diviser un segment en un nombre donné de parts égales.

Pour être plus rigoureux, l'énoncé ci-dessus donné nécessite l'utilisation d'une distance euclidienne pour donner un sens aux longueurs mentionnées (AB, BC...). Un énoncé plus général et précis est donné dans le cadre de la géométrie affine. Dans ce cadre, la notion de longueur est remplacée par celle de mesure algébrique, et seul le rapport a un sens.

(Source : Wikipedia, théorème de Thalès)

a.3.4) Calcul de la longueur (n4,nx) :

En appliquant le théorème de Thalès selon la figure III.3 illustrant la conduite C12 et la ligne piézométrique reliant les points n4 et n11, on peut déterminer la longueur $L_{n4. \, nx}$ comme suit :

Comme définit plus haut, le parallélisme est une condition fondamentale pour l'application du théorème.

On a $L_{n11, A}$ est parallèle à $L_{n4, B}$, donc le théorème est applicable.

Donc
$$\frac{\text{Lnx, n11}}{\text{Lnx, n4}} = \frac{\text{Lnx, A}}{\text{Lnx, B}} = \frac{\text{Ln11, A}}{\text{Ln4, B}}$$

Avec:

L_{nx. n11}: Longueur entre le nœud noté nx et le nœud n11 en (m).

L_{nx n4}: Longueur entre le nœud noté nx et le nœud n4 en (m).

L_{n11. A}: Longueur entre le nœud noté n11 et le point A en (m).

L_{n4 B}: Longueur entre le nœud noté n4 et le point B en (m).

L_{nx, n11} et L_{nx, n4} sont les connus à déterminer;

Chapitre 3:

$$\Rightarrow \frac{\text{Ln11, A}}{\text{Ln4, B}} = 0.3094 = \frac{\text{Lnx, n11}}{\text{Lnx, n4}}$$

$$\Rightarrow$$
 L_{nx,n11} = 0,3094. L_{nx,n4}

On sait que:

$$L_{nx,n11} + L_{nx,n4} = L_{n4, n11} = 613,71 \text{ m}.$$

0,3094.
$$L_{nx,n4} + L_{nx,n4} = 613,71 \text{ m}.$$

1,3094.
$$L_{nx,n4} = 613,71 \text{ m}.$$

D'où :
$$L_{nx,n4} = \frac{613,71}{1,3094} = 468,69 \text{ m}.$$

On déduit alors la longueur L_{nx,n11} comme suit :

$$L_{nx,n11} + L_{nx,n4} = 613,71 \text{ m}.$$

$$\Rightarrow$$
 L_{nx,n11} = 613,71 - L_{nx,n4} = 613,71 - 468,69

$$\Rightarrow$$
L_{nx,n11} = 145,02 m.

Une fois les longueurs déterminés on passe au calcul de la cote d'implantation de notre réservoir. Pour se faire, on appliquera la formule de Darcy - Weisbach entre le nœud n4 et le nœud nx.

$$\Delta H_{n4,nx} = \frac{K'.L(n4 - nx).Q(n4 - nx)^{B}}{D(n4 - nx)^{m}} = C_{pn4} - Cp_{nx}$$

Sachant que Cp_{nx}n'est que la cote du radier du réservoir à implanter.

$$\Rightarrow Cp_{nx} = C_{pn4} - \frac{K' \cdot L(n4 - nx) \cdot Q(n4 - nx)^{B}}{D(n4 - nx)^{m}}$$

$$\Rightarrow \text{Cp}_{\text{nx}} = 79,79 - \frac{0,00179.468,69.0,00189^{1,77}}{0,0638^{4,774}}$$

$$\Rightarrow$$
Cp_{nx}= 76,81 m.

On conclue que le réservoir de la zone 1 sera implanté à une cote du terrain de 76,81 m et à une distance de 468,69 m du point de référence n4

a.4) Etude de faisabilité :

L'étude de faisabilité dans la gestion des projets est une étude qui s'attache à vérifier que le projet soit techniquement faisable et économiquement fiable. Dans une optique plus large, on distingue les volets suivants: étude technique, commerciale, économique, juridique et d'organisation.

a.4.1) Faisabilité d'implantation dans les POS :

Le réservoir RV Zone 1 sera implanté dans la zone dite ZH1llot n°6, située entre le chemin de la wilaya n°106 et la route nationale RN11.

Avant toute réalisation de projets dans les zones adoptant la politique des plans d'occupation des sols, il y'a lieu de prendre connaissance de la nature des travaux d'aménagements tolérés dans les textes juridiques fixant les procédures d'élaboration et d'approbation des plans d'occupation du sol selon les règlements d'urbanisme général.

On distingue deux types d'occupation des sols:

- 1) TYPES D'OCCUPATION DU SOL AUTORISES OU SOUMIS A CONDITONS SPECIALES
- Des équipements publics
- > Immeubles de bureaux
- Espaces verts
- > Terrains de sport
- 2) TYPES D'OCCUPATION DES SOLS INTERDITS
- Les constructions présentant un caractère précaire
- Constructions à usage d'habitations à faible densité
- Les dépôts de ferrailles ou autres nuisibles à l'hygiène et au respect de l'environnement

Dans notre cas, l'occupation du sol sera fera l'objet d'un équipement public.

a.4.2) Prospection géotechnique :

L'étude géotechnique est très importante dans l'étude de faisabilité des projets génie civil et hydrauliques. Elle consiste à effectuer la reconnaissance des sols, elle

doit d'abord permettre de localiser les différentes couches de terrain et de préciser la configuration générale de zone à étudier. Elle doit ensuite donner des informations sur les caractéristiques mécaniques de chaque couche

pour effectuer la reconnaissance du sol, plusieurs techniques sont utilisés, on site :

- prélèvement d'échantillon en vue de les analyser au laboratoire tel que l'essai granulométrique, essai de compression...
- > essais in situ tel que le sondage carotté et l'essai de pénétration dynamique.

D'après les informations recueillis auprès de la DUC de Tipaza, ces essais de reconnaissance ont montrés que le terrain de la zone en question retenue pour la construction ne présente pas de risque particulier d'instabilité naturelle.

De plus, la nappe n'est pas superficielle, elle ne pose donc aucun problème pour les fondations.

Par conséquent, l'implantation du réservoir dans cette zone est tout à fait possible en prenant en compte la stabilité de l'ouvrage face à l'activité sismique de la zone dans l'étude génie civil.

a.5) Dimensionnement du réseau de la zone 1 après implantation du réservoir :

De même que précédemment, on appliquera la méthode du diamètre avantageux.

Remarque:

Le débit sortant du réservoir (2*500) est égale à 62,41 l/s, et celui du réservoir projeté est égale à 59,71 l/s.

Cette zone sera donc alimentée par deux réservoirs.

A partir de ces informations, on peut procéder à la distribution arbitraire des débits et attribuer à chaque débit le diamètre correspondant selon le tableau III.15.

Tab III.15: Débits en fonction des diamètres avantageux

tronçons	débit de transit	Dext	Dint
	(l/s)	(mm)	(mm)
C1	0,12	75	63,8
C2	6,18	110	96,8
C3	11,78	125	110,2
C4	0,96	75	63,8
C5	20,79	110	96,8
C6	32,52	125	110,2
C7	15,36	125	110,2
C8	12,26	110	96,8
C9	8	75	63,8
C10	5,62	75	63,8
C11	5,39	75	63,8
T12	59,71	315	277,6
T13	26,73	200	176,2
T14	22,82	200	176,2
T15	18,10	200	176,2
T16	17,36	200	176,2
C15	0,74	75	63,8
C16	4,57	125	110,2
C17	3,17	75	63,8
C18	55,49	200	176,2
C19	62,41	200	176,2

a.6) Résultat de simulation :

a.6.1) Cas de pointe :

a.6.1.1) Résultats de simulation au niveau des arcs :

Les vitesses et les pertes de charge sont données dans le tableau III.16.

Tab III.16: État des Arcs du Réseau (Zone 1)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C16	367,59	110,2	-4,85	0,51	2,83
Tuyau C5	162	220,4	26,32	0,69	2,12
Tuyau C4	366,89	63,8	0,80	0,25	1,53
Tuyau C10	194,69	79,2	-2,76	0,56	5,13
Tuyau C1	322,08	63,8	2,97	0,93	17,48
Tuyau C11	576,76	96,8	7,78	1,06	13,21
Tuyau C9	161,84	63,8	-2,74	0,86	15,02
Tuyau C18	352,6	352,6	-55,49	0,57	0,83
Tuyau C17	329,43	79,2	2,88	0,59	5,55
Tuyau C8	222,8	79,2	7,01	1,42	30,03
Tuyau C7	56,13	220,4	-10,11	0,27	0,36
Tuyau C3	279,65	141	14,63	0,94	6,57
Tuyau C2	224,23	141	9,04	0,58	2,64
Tuyau C6	280	220,4	-37,77	0,99	4,21
Tuyau C15	319,69	63,8	0,64	0,20	1,03
Tuyau T16	115,31	220,4	17,65	0,46	1,00
Tuyau C19	274,17	352,6	-62,41	0,64	1,03
Tuyau T12	234,84	352,6	57,20	0,59	0,88
Tuyau T13	233,85	220,4	-27,82	0,73	2,35
Tuyau T14	149,27	220,4	21,73	0,57	1,48
Tuyau T15	104,30	220,4	17,01	0,45	0,93

Remarque:En cas de pointe, les vitesses sont pratiquement toutes acceptables (dans l'intervalle préconisé) à l'exception des trois tronçons C4, C7, C15 où ces dernières sont légèrement en dessous de l'intervalle avec respectivement 0,25 m/s, 0,27 m/s et 0,20 m/s.

a.6.1.2) Résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant:

Tab III.17: Etat des nœuds du réseau (Zone 1)

	Altitude	Demande	Charge	Pression
		Base		
ID Noeud	m	LPS	m	m
Noeud n14	70,36	7,737	80,13	9,77
Noeud n6	51,33	8,563	81,96	30,63
Noeud n13	70,83	12,794	81,17	10,34
Noeud n9	29,53	4,27	76,42	46,89
Noeud n4	55	13,99	81,05	26,05
Noeud n2	35	6,064	78,62	43,62
Noeud n10	24,64	7,764	73,99	49,35
Noeud n5	49,7	17,101	81,61	31,91
Noeud n1	25,74	5,736	72,99	47,25
Noeud n7	48,79	7,61	83,14	34,35
Noeud n15	66,2	6,922	83,43	17,23
Noeud n8	40,139	3,097	83,12	42,98
Noeud n3	44,6	5,594	79,22	34,62
Noeud p11	66,66	7,649	81,60	14,94
Noeud p12	70,14	4,722	81,38	11,24
Noeud p13	61,79	0	81,29	19,50
Noeud	68	-62,41	83,71	15,71
RV2*500				
Réservoir	76,81	Sans Valeur	81,81	5,00
Zone1				

Les pressions au niveau de la zone 1 ont été réduits avec succès comme prévu lors des calculs des nouvelles pressions (voir le tableau tab III.14).

La pression maximale quant à elle, est repérée comme prévu au niveau du nœud n10 avec 49,35 m.

a.6.2) Cas de pointe + incendie:

a.6.2.1) Résultats de simulation au niveau des arcs:

Le débit d'incendie est rajouté au niveau du nœud n13, et ce pour les raisons cités plus haut au titre numéro III.1.2.5.2.1.1, partie B) Cas de pointe et d'incendie.

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.18.

Tab III.18: État des Arcs du Réseau (pointe + inc Zone 1)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C16	367,59	110,2	-4,55	0,48	2,50
Tuyau C5	162	220,4	26,04	0,68	2,08
Tuyau C4	366,89	63,8	0,35	0,11	0,35
Tuyau C10	194,69	79,2	-2,69	0,55	4,88
Tuyau C1	322,08	63,8	3,05	0,95	18,31
Tuyau C11	576,76	96,8	7,73	1,05	13,06
Tuyau C9	161,84	63,8	-2,72	0,85	14,75
Tuyau C18	352,6	352,6	-55,49	0,57	0,83
Tuyau C17	329,43	79,2	3,19	0,65	6,71
Tuyau C8	222,8	79,2	6,99	1,42	29,82
Tuyau C7	56,13	220,4	-10,08	0,26	0,35
Tuyau C3	279,65	141	14,71	0,94	6,63
Tuyau C2	224,23	141	9,11	0,58	2,68
Tuyau C6	280	220,4	-37,79	0,99	4,21
Tuyau C15	319,69	63,8	0,85	0,27	1,72
Tuyau T16	115,31	220,4	34,34	0,90	3,51
Tuyau C19	274,17	352,6	-62,41	0,64	1,03
Tuyau T12	234,84	352,6	74,20	0,76	1,43
Tuyau T13	233,85	220,4	-28,35	0,74	2,44
Tuyau T14	149,27	220,4	38,21	1,00	4,30
Tuyau T15	104,30	220,4	33,49	0,88	3,35

En cas de pointe et d'incendie, les vitesses sont pratiquement toutes acceptables (dans l'intervalle préconisé) à l'exception des trois tronçons C4, C7, C15 où ces dernières sont légèrement en dessous de l'intervalle avec respectivement 0,11 m/s, 0,26 m/s et 0,27 m/s.

a.6.2.2) Résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant:

Tab III.19 :Etat des nœuds du réseau (pointe + inc Zone 1)

	Altitude	Demande	Charge	Pression
		Base		
ID Noeud	m	LPS	m	m
Noeud n14	70,36	7,737	79,16	8,80
Noeud n6	51,33	8,563	81,37	30,04
Noeud n13	70,83	29,794	80,08	9,25
Noeud n9	29,53	4,27	75,89	46,36
Noeud n4	55	13,99	80,90	25,90
Noeud n2	35	6,064	78,45	43,45
Noeud n10	24,64	7,764	73,50	48,86
Noeud n5	49,7	17,101	81,03	31,33
Noeud n1	25,74	5,736	72,55	46,81
Noeud n7	48,79	7,61	82,55	33,76
Noeud n15	66,2	6,922	82,84	16,64
Noeud n8	40,139	3,097	82,53	42,39
Noeud n3	44,6	5,594	79,05	34,45
Noeud p11	66,66	7,649	81,47	14,81
Noeud p12	70,14	4,722	80,83	10,69
Noeud p13	61,79	0	80,48	18,69
Noeud	68	-62,41	83,12	15,12
RV2*500				
Réservoir	76,81	Sans Valeur	81,81	5,00
Zone1				

Remarque:

Les pressions sont toutes régulés à l'exception des deux points hauts n13 et n14 où la pression à très légèrement diminuée dans le cas de l'incendie.

Les résultats en cas de pointe et d'incendie sont représentés dans les schémas suivants :

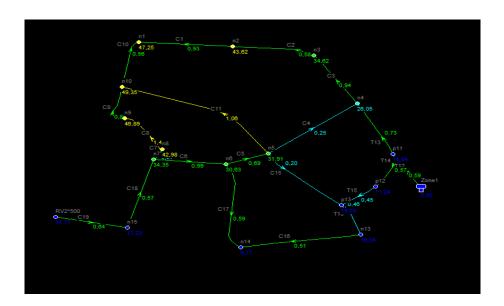


Fig III.5: Schéma du réseau de la zone 1en cas de pointe

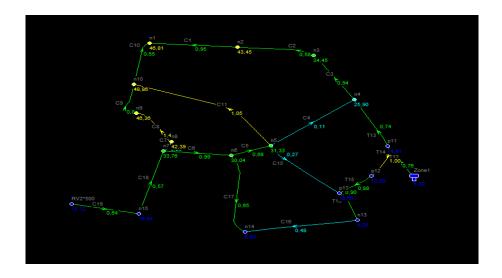


Fig III.6: Schéma du réseau de la zone 1en cas de pointe et d'incendie

b) Zone 2:

Dans cette zone, on remarque que la dénivelée est encore plus importante que les deux zones précédentes, par conséquent, il apparait plus judicieux d'imposer, en amont du réservoir de la zone 1 projeté, une pression de 60m pour éviter une chute rapide de pression dans les points les plus hauts de la zone.

b.1) Calcul des nouvelles cotes piézométriques de la zone 2:

De la même façon que pour la zone 1, on procède au calcul des nouvelles cotes piézométriques.

La formule de Darcy-Weisbach est représentée comme suit :

$$\Delta H = \frac{K'.L.Q^{B}}{D^{m}}$$

On impose un pression de 60 m au niveau du nœud n11 en amont du réservoir projeté.

Pour le nœud n12:

$$\Delta H_{11-12} = Cp_{12} - Cp_{11(impos\acute{e}e)} \Rightarrow Cp_{12} = Cp_{11(impos\acute{e}e)} + \Delta H_{11-12}$$

$$\Delta H = \frac{K'.L.Q^B}{D^m}$$
, $\Delta H_{11-12} = \frac{0,00179.75,36.(0,00576)^{1,77}}{0,0792^{4,774}} = 1,44 \text{ m}$

Les pertes de charge singulières sont estimés à 15% des pertes de charge linéaires.

$$\Rightarrow \Delta H_{11-12} = 1,15.1,44 = 1,656m$$

$$Cp_{12}=(60+82,98) + 1,656 = 144,64 m$$

La nouvelle cote piézométrique calculée au point n12 est égale à 144,64 m d'où la nouvelle pression en ce même point sera égale à 58,12 m

Les résultats des nouvelles cotes piézométriques et les nouvelles pressions sont mentionnés dans le tableau suivant :

Tab III.20: Les nouvelles cotes piézométriques pour la zone 2.

Nœuds	H (m)	CTN (m)	Cp (m)	Pression (m)
N11		82,98	142,98	60
N12	1,656	86,52	144,64	58,12
N17	1,46	85,889	146,10	60,21
	(conduite			
	projetée)			
N16	0,03	73,41	146,07	72,66
N21	4,13	111,45	141,94	30,49
	1,96			
N20		143,71	143,79	0,09
	6,04			
N19		125,52	149,82	24,31
N18	3,06	85,44	146,76	61,32

Nœuds	H (m)	CTN (m)	Cp (m)	Pression (m)
N21		111,45	141,94	30,49
N22	0,31	112,99	141,63	28,64
N23	1,48	114,42	140,15	25,73
N24	0,98	127,55	141,13	13,58
N25	0,90	143,17	142,03	-1,14

D'après les calculs effectués, on note que la ligne piézométrique traverse le terrain dans le tronçon n24 n25 (C34), on implantera donc notre réservoir dans ce point.

b.2) Restructuration du réseau de la zone 2 :

Dans cette zone, on à proposés une légère restructuration du réseau en projetant une nouvelle conduite entre les nœuds n12 et n17 d'une longueur de 110,65m.

Cette zone contiendra 11 nœuds et 13 conduites.

Remarque:

Cette zone n'englobe qu'une partie de l'étage supérieur, ceci étant dit, nous devons calculer les nouveaux besoins en eau de cette zone afin de connaître avec exactitude le débit de dimensionnement de cette deuxième zone et celui du réservoir projeté.

b.3.1) Calcul des nouveaux besoins en eau:

b.3.1.1) Estimation des besoins des habitations:

D'après les informations recueillis auprès de la DUC de Tipaza, la zone 2, englobe 25% des habitants de l'ancien étage 2.

Tab III.21: Habitants estimés pour la zone 2.

Habitants (étage 2) en	Pourcentage estimé	Habitants (zone 2) en
2050	par la DUC	2050
13258	25 %	3315

Qmoy $_{POP} = 3315^* \ 200 \ / 1000 \ (m^3/j).$

 $Qmoy_{POP} = 663 (m^3/j).$

b.2.1.2) Estimation des besoins des équipements:

L'ensemble des équipements et infrastructures présents au niveau de la zone 2 sont résumés dans le tableau suivant:

Tab III.22: Débits moyens des équipements de la zone 2

Type d'équipement	Unité de mesure	nombre d'unités		Qmoy (m3/j)
Polyclinique	Lits	34	200	6,8
Centre de recherche en économie appliquée	m²	740	20	14,8
Parc Urbain	m ²	190000	0,5	95
Ecole Nationale de trésor et comptabilité	Places	500	20	10
Institut d'archéologie	Places	500	20	10
Institut des sciences économiques et commercial	Places	1500	20	30
Institut des droit et de sciences sociales	Places	2000	20	40
Théâtre et cinéma	m ²	31000	0,5	15,5
Centre nationale d'artisanats	m ²	30000	0,5	15
Lycée+CEM	Elèves	920	20	18,4
Gare routière	m ²	30000	0,5	15
Centre de rééducation des sportifs	m²	25000	1	25
				Qmoy _{eq} = 295,5 m3/j

 $Qmoy_{TOT (zone 2)} = 663 + 295,5 = 958,5 \text{ m}^3/\text{j}.$

b.2.1.3) Coefficients d'irrégularité:

a) Coefficient d'irrégularité maximale (Kmax,j):

Il est définit comme étant le rapport entre la consommation maximale journalière et la consommation moyenne journalière:

$$K_{\text{max,j}} = Q_{\text{max,j}} / Q_{\text{moy,j}}$$

Ce coefficient $K_{\text{max,j}}$ varie entre 1,1 et 1,3, il consiste à prévenir les fuites et les gaspillages au niveau du réseau en majorant la consommation moyenne de 10% à 30%.

Dans notre cas nous prenons $K_{max,j}=1,2$.

b) Coefficient d'irrégularité minimale (Kmin,j):

Il est défini comme étant le rapport de la consommation minimum par la consommation moyenne journalière, donné par la relation suivante :

$$K_{min,j} = Q_{min,j} / Q_{moy,j}$$

Ce coefficient K_{min,j} varie de 0,7 à 0,9.

Dans notre cas on prends K_{min,j}=0,8

c) Coefficient d'irrégularité maximal horaire (K_{max,h}):

Il est définit comme étant le rapport entre la consommation horaire maximale et la consommation horaire moyenne.

$K_{\text{max h}} = Q_{\text{max h}}/Q_{\text{moy h}}$

Ce coefficient représente l'augmentation de la consommation horaire pour la journée. Il tient compte de l'accroissement de la population ainsi que leurs degré du confort; D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} ;

Tel que:

 $K_{max,h} = \alpha_{max}.\beta_{max}$

Avec:

 α_{max} : coefficient qui tient compte du développement industriel, du retard de consommation et des habitudes de la population, il varie de 1,2 à 1,4. Pour notre cas on prend $\alpha_{max} = 1,3$.

 β_{max} : coefficient étroitement lié à l'accroissement de la population.

Tab 01.23: Variation du coefficient β_{max} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
$oldsymbol{eta_{ ext{max}}}$	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1

Dans notre cas on prends β_{max} =1,55

Tab III.24: Valeurs de β_{max} et $K_{max,h}$ pour notre cas.

Zone	Coefficient $eta_{ ext{max}}$	K _{max,h}
POS AU3 (zone 2)	1,55	2,015

d) Coefficient d'irrégularité minimal horaire (K_{mix,h}):

Ce coefficient permet de déterminer le débit minimum horaire qui nous permet d'évaluer le fonctionnement de notre réseau du point de vue pression dans le réseau:

 $K_{min,h} = \alpha_{min}.\beta_{min}$

Avec:

 α_{min} : coefficient qui tient compte du développement industriel, du retard de consommation et des habitudes de la population. Il varie de 0,4 à 0,6. Pour notre cas on prend $\alpha_{min}=0,5$.

 β_{min} : coefficient étroitement lié à l'accroissement de la population.

Tab 01.25: Variation du coefficient β_{min} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,7

Dans notre cas: $\beta_{min}=0,15$.

Tab III.26: β_{min} et $K_{min,h}$ pour notre cas.

Zone	Coefficient $eta_{ ext{min}}$	$K_{min,h}$
POS AU3 (étage 2)	0,15	0,075

b.2.1.4) Détermination des débits journaliers:

a) Consommation maximale journalière (Q_{max,j}):

Ce débit est relatif à la journée où la consommation est la plus grande durant l'année, elle est utilisée comme étant l'élément essentiel dans les calculs de dimensionnement en d'AEP.

Ce débit est donné par la relation suivante:

 $Q_{\text{max,j}} = K_{\text{max,j}} Q_{\text{moy,j}}$

Avec:

Q_{max,j}: débit maximum journalier en m³/j;

Q_{mov,j}: débit moyen journalier en m³/j;

 $K_{\text{max},j}$: coefficient d'irrégularité maximale journalière.

On prend $K_{\text{max,j}} = 1,2$.

b) Consommation minimale journalière (Qmin,j):

C'est le débit de la journée de faible consommation pendant l'année

 $Q_{min,j} = K_{min,j} \cdot Q_{moy,j}$

On prend K_{min,j}:0.8

Les débit minimum journalier et maximum journalier sont représenté dans le tableau suivant :

Tab 01.27Débit minimum journalier et maximum journalier.

Zone		Besoins Domestiques (m³/j)	Besoins Des équipements (m³/j)	Q _{min,j} (m ³ /j)	Q _{max,j} (m ³ /j)
POS (zone 2)	AU3	663	295,5	766,4	1149,6

b.2.1.5) Détermination des débits horaires:

a) Débit moyen horaire:

Le débit moyen horaire est donné par la relation suivante :

$$Q_{\text{mov,h}} = Q_{\text{max,i}}/24$$

Avec:

Q_{moy, h}: débit moyen horaire en m³/h;

Q_{max,j}: débit maximum journalier en m³/j;

b) Débit maximum horaire

Ce débit est déterminé par la relation suivante:

 $Q_{max,h} = K_{max,h} \cdot Q_{moy,h}$

Avec:

Q_{mov,h}: débit moyen horaire en m3/h;

K_{max,h}: coefficient d'irrégularité maximale horaire;

Le tableau suivant résume les résultats de calcul des débits moyens horaires et maximum horaires:

Tab 01.28:Débits moyens horaires et maximum horaires.

Zone	Q _{max,j} (m ³ /j)	Q _{moy,h} (m ³ /h)	K _{max,h}	Q _{max,h} (m ³ /h)
POS AU3 (zone 2)	1149,6	47,9	2,015	96,518

c) L'évaluation de la consommation horaire en fonction du nombre

d'habitants:

Le débit horaire d'une agglomération varie en fonction de la population. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau suivant Tab II.9 du chapitre deux.

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération.

cette représentation est illustrée dans le tableau suivant Tab III.29.

Tab 01.29:répartition horaire du Q_{max,j}.

heures	С%	Q(m3/h)	C%(cumul)	Q
0-1	1.00	11,496	1	11,496
1-2	1.00	11,496	2	22,992
2-3	1.00	11,496	3	34,488
3-4	1.00	11,496	4	45,984
4-5	2.00	22,992	6	68,976
5-6	3.00	34,488	9	103,464
6-7	5.00	57,48	14	160,944
7-8	6.50	74,724	20,5	235,668
8-9	6.50	74,724	27	310,392
9-10	5.50	63,228	32,5	373,62
10-11	4.50	51,732	37	425,352
11-12	5.50	63,228	42,5	488,58
12-13	7.00	80,472	49,5	569,052
13-14	7.00	80,472	56,5	649,524
14-15	5.50	63,228	62	712,752
15-16	4.50	51,732	66,5	764,484
16-17	5.00	57,48	71,5	821,964
17-18	6.50	74,724	78	896,688
18-19	6.50	74,724	84,5	971,412
19-20	5.00	57,48	89,5	1028,892
20-21	4.50	51,732	94	1080,624
21-22	3.00	34,488	97	1115,112
22-23	2.00	22,992	99	1138,104
23-24	1,00	11,496	100	1149,6
total	100	1149,6		

On note: le débit de pointe est repéré entre midi et 14 heures.

 $Q_{p(zone\ 2)} = 80,472 \text{ m}^3/\text{h}$

d) représentation graphique de la consommation:

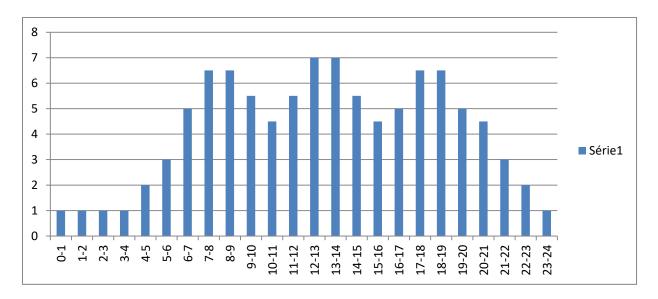


Fig III.7: Consommation horaire de la population zone 2

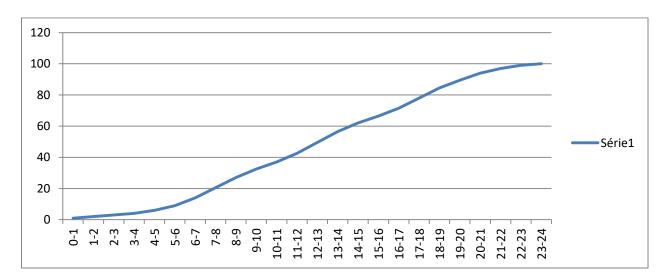


Fig III.8: Courbe intégrale zone 2

b.2.2) Calcul hydraulique:

A) Cas de pointe :

Le cas de pointe est détecté à partir du graphique de consommation entre midi et 14 heures comme suit:

$$Q_{maxh}=Q_{pte}=80,472 \text{ m}^3/\text{h}=22,35 \text{ l/s et } Q_{conc}=2 \text{ l/s}$$

Donc
$$Q_{route} = Q_{pte} - Q_{conc} = 22,35 - 2 = 20,35 \text{ l/s}$$

 Σ Li = 3883,24 m; donc : Q_{sp}= 20,35/3883,24 = 0,0053 l/s/m

Au final, le débit spécifique est : Q_{sp}=0,0053 l/s/m

Tab III.30: Récapitulatif du calcul des débits: cas de pointe (Zone 2)

	Q _{pte} (I/s)	22,35
Heure de pointe (08	Q _{route} (I/s)	20,35
heures	Σ Li (m)	3883,24
à12heures)	Q _{sp} (I/s/m)	0,0053
a iziieules)	Q _{sp} (I/s/m)	0,0053

Remarque:

Les calculs effectués vont nous permettre de calculer les débits routes dans chaque tronçon ainsi que les débits nodaux.

Les résultats de calculs des débits routes (repérés dans chaque tronçon) ainsi que les débits nodaux à partir du débits spécifique en cas de pointe sont représentés dans le tableau Tab III.31 comme suit:

Tab III.31: Calculs des débits routes et des débits aux nœuds: cas de pointe (Zone 2)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(I/s)	(I/s)
12	C13	75,36		0,437	0,539	0,539
12	C42 (projeté)	110,65	1	0,642	0,559	0,559
16	C21	229,45	1	1,331	1,721	1,721
10	C25	363,83	1	2,110	1,721	1,721
	C21	229,45	-	1,331		
17	C42 (projeté)	110,65	-	0,642	2,908	2,908
	C22	172,66	-	1,001	2,900	2,900
	C24	490	-	2,842	-	
18	C22	172,66	-	1,001	1,463	1,463
10	C23	331,88	1	1,925		
	C23	331,88	1	1,925		
19	C24	490	0,0053	2,842	3,251	3,251
	C27	299,12		1,735		
20	C27	299,12		1,735	1,805	1,805
	C26	323,29		1,875	1,000	1,000
21	C26	323,29		1,875	1,086	1,086
	C41	51,37		0,298	1,000	1,000
22	C41	51,37		0,298	1,237	1,237
	C32	375,39		2,177	1,237	1,237
23	C32	375,39		2,177	2,336	2,336
23	C33	430,12		2,495	_,	2,330
24	C33	430,12		2,495	1,897	1,897
	C34	223,99		1,299	Í	

B) Cas de pointe + incendie :

En cas d'incendie, il ya lieu de prévoir un volume d'incendie de 120 m³, pour un incendie de deux heures, soit un débit de 17 l/s à ajouter au débit de pointe horaire avec:

$$Q_{p+inc} = 22,35 + 17 = 39,35 \text{ l/s}$$

On opte pour l'ajout de ce débit d'incendie au niveau du nœud n19 (pour la zone 2) et ce pour les raisons suivantes :

- C'est un point haut;
- > Présence de divers équipements à protéger;

Dans ce cas, le calcul s'effectue de la même manière que le cas précédent, cependant on doit s'assurer que le débit d'incendie donné par le réservoir d'alimentation (17 l/s) se trouve au point n20.

Tab III.32 : Calcul de débits routes et des débits aux nœuds: cas de pointe + incendie (Zone 2)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(l/s)	(l/s)	(I/s)
12	C13	75,36		0,437	0,539	0,539
12	C42 (projeté)	110,65		0,642	0,000	0,000
16	C21	229,45		1,331	1,721	1,721
	C25	363,83		2,110	1,,,,,,	1,721
	C21	229,45		1,331		
17	C42 (projeté)	110,65		0,642	2,908	2,908
	C22	172,66		1,001	2,500	2,300
	C24	490		2,842		
18	C22	172,66		1,001	1,463	1,463
	C23	331,88		1,925	1,100	
	C23	331,88]	1,925		
19	C24	490	0,0053	2,842	3,251	20,251
	C27	299,12		1,735		
20	C27	299,12		1,735	1,805	1,805
	C26	323,29		1,875	1,000	
21	C26	323,29		1,875	1,086	1,086
	C41	51,37		0,298] ',	1,000
22	C41	51,37		0,298	1,237	1,237
	C32	375,39		2,177	1,207	1,207
23	C32	375,39		2,177	2,336	2,336
	C33	430,12		2,495		2,550
24	C33	430,12		2,495	1,897	1,897
_ '	C34	223,99		1,299	1,557	

b.3) Positionnement du réservoir projeté (RV zone 2) :

b.3.1) Méthode de calcul:

De même que pour la zone 1, on procède à la détermination de la longueur entre le point de référence qui sera n24 et celui de l'implantation du réservoir noté ny par l'application du théorème de Thalès.

On appliquera après la formule de Darcy-Weisbach pour le calcul de la cote du radier du réservoir de la zone 2.

En appliquant le théorème de Thalès, on déterminera la longueur entre le point n24 (point de référence) et le point d'implantation du réservoir qu'on notera ny.

Le théorème de Thalès sera appliqué suivant la figure illustrative ci-dessous

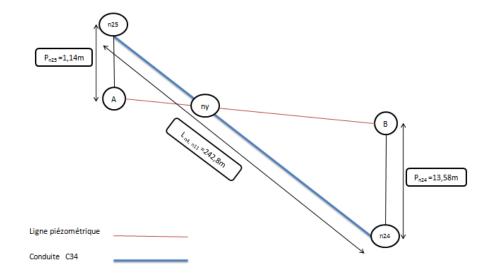


Fig III.9: Ligne piézométrique de la conduite C34 après régulation des pressions

Remarque:

Le point noté ny représente le point d'implantation du réservoir de la zone 2.

 P_{n24} et P_{n25} représentent respectivement les pressions au niveau des nœuds n24 et n25.

Les inconnus dans ce cas seront $L_{n24, ny}$ et $L_{ny, n25}$.

b.3.4) Calcul de la longueur (n24,ny) :

En appliquant le théorème de Thalès selon la figure III.4 illustrant la conduite C34 et la ligne piézométrique reliant les points n24 et n25, on peut déterminer la longueur $L_{n24, \, ny}$ comme suit :

Comme définit plus haut, le parallélisme est une condition fondamentale pour l'application du théorème.

On a $L_{n25, A}$ est parallèle à $L_{n24, B}$, donc le théorème est applicable.

Donc
$$\frac{\text{Lny, n25}}{\text{Lny, n24}} = \frac{\text{Lny, A}}{\text{Lny, B}} = \frac{\text{Ln25, A}}{\text{Ln24, B}}$$

Avec:

L_{ny, n25}: Longueur entre le nœud noté ny et le nœud n25 en (m).

L_{nv. n24}: Longueur entre le nœud noté ny et le nœud n24 en (m).

L_{n25, A}: Longueur entre le nœud noté n25 et le point A en (m).

L_{n24, B}: Longueur entre le nœud noté n24 et le point B en (m).

L_{ny, n25} et L_{ny, n24} sont les connus à déterminer;

$$\Rightarrow \frac{\text{Ln25, A}}{\text{Ln24, B}} = 0.084 = \frac{\text{Lny, n25}}{\text{Lny, n24}}$$

$$\Rightarrow$$
 L_{ny,n25} = 0,084. L_{ny,n24}

On sait que:

$$L_{ny,n25} + L_{ny,n24} = L_{n24, n25} = 242,8 \text{ m}.$$

0,084.
$$L_{ny,n24} + L_{ny,n24} = 242,8 \text{ m}.$$

1,084.
$$L_{ny,n24} = 242,8 \text{ m}.$$

$$\mbox{D'où}: \mbox{$L_{\mbox{\scriptsize ny,n24}}$=$} \frac{242,\!8}{1,\!084} = 223,\!99 \mbox{ m}. \label{eq:dispersion}$$

On déduit alors la longueur L_{nv.n25} comme suit :

$$L_{ny,n25} + L_{ny,n24} = 242,8 \text{ m}.$$

$$\Rightarrow$$
 L_{nv,n25} = 242,8 - L_{nv,n24} = 242,8 - 223,99

$$\Rightarrow$$
L_{nv.n25} = 18,81 m.

Une fois les longueurs déterminés on passe au calcul de la cote d'implantation de notre réservoir. Pour se faire, on appliquera la formule de Darcy - Weisbach entre le nœud n24 et le nœud ny.

$$\Delta H_{n24,ny} = \frac{K'.L(n4 - nx).Q(n4 - nx)^{B}}{D(n4 - nx)^{m}} = C_{pny} - Cp_{n24}$$

Sachant que Cp_{nv}n'est que la cote du radier du réservoir à implanter.

$$\Rightarrow Cp_{ny} = C_{pn24} + \frac{K'.L(n24 - ny).Q(n24 - ny)^{B}}{D(n24 - ny)^{m}}$$

$$\Rightarrow Cp_{ny} = 141,13 + \frac{0,00179.223,99.0,00516^{1,77}}{0.1102^{4,774}}$$

$$\Rightarrow$$
 Cp_{nv}= 141,86 m.

On conclue que le réservoir de la zone 2 sera implanté à une cote du terrain de 141,86 m et à une distance de 223,99 m du point de référence n24.

b.4) Etude de faisabilité :

Le réservoir RV Zone 2 sera implanté dans la zone dite zone homogène ZEV llot n°10 de superficie 216244 m², située entre la forêt existante et les habitations collectifs.

Cependant, selon les prescriptions d'aménagement, la forêt, qui est un élément essentiel du site et qui constitue un relief forestier important, doit être prise en compte dans la composition urbaine lors de l'implantation du réservoir qui ne doit pas défavoriser la facade forestière.

En référence au plan de masse relatif à la zone d'étude et à la prospection géotechnique telle stipulée au titre a.4.2, il est tout à fait possible d'implanter un réservoir au point calculé.

b.5) Dimensionnement du réseau de la zone 2 après implantation du réservoir :

De même que précédemment, on appliquera la méthode du diamètre avantageux.

Remarque:

Le débit qui devrait sortir du réservoir projeté (zone 2) pour alimenter la zone 2 est de 22,35 l/s.

A partir de cette information, on peut procéder à la distribution arbitraire des débits et attribuer à chaque débit le diamètre correspondant selon le tableau III.33.

Tab III.33 : Débit en fonction des diamètres avantageux

tronçons	débit de transit	Dext	Dint
	(l/s)	(mm)	(mm)
C34	22,35	200	176,2
C33	20,45	200	176,2
C32	18,12	160	141
C41	16,88	160	141
C25	2,48	75	63,8
C26	13,31	125	110,2
C27	11,51	110	96,8
C23	3,06	75	63,8
C24	5,19	75	63,8
C22	1,60	75	63,8
C21	0,76	75	63,8
C42 (projetée)	4,65	75	63,8
C13	4,11	75	63,8

b.6) Résultat de simulation :

b.6.1) Cas de pointe :

b.6.1.1) Résultats de simulation au niveau des arcs :

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.34.

Tab III.34:État des Arcs du Réseau: (cas de pointe Zone 2)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C27	299,12	220,4	8,93	0,23	0,28
Tuyau C32	375,39	220,4	16,01	0,42	0,83
Tuyau C25	363,83	63,8	-2,95	0,92	17,22
Tuyau C26	323,29	277,6	10,74	0,18	0,13
Tuyau C13	75,36	63,8	-2,00	0,63	8,28
Tuyau C21	229,45	63,8	1,23	0,38	3,35
Tuyau C22	172,66	63,8	-1,56	0,49	5,24
Tuyau C24	490	63,8	-2,65	0,83	14,10
Tuyau C23	331,88	63,8	-3,03	0,95	18,09
Tuyau C41	51,37	220,4	-14,77	0,39	0,72
Tuyau C33	430,12	277,6	-18,35	0,30	0,34
Tuyau C34	223,99	277,6	-20,24	0,33	0,41
Tuyau C42	110,65	63,8	2,54	0,79	12,96

Remarque:

En cas de pointe, les vitesses sont toutes acceptables (dans l'intervalle préconisé) à l'exception des deux tronçons C26 et C27 où cette dernière est légèrement en dessous de l'intervalle avec respectivement 0,18 m/s et 0,23 m/s.

b.6.1.2) Résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant:

Tab III.35: Etat des nœuds du réseau: cas de pointe (Zone 2)

	Altitude	Demande	Charge	Pression
		Base		
ID Noeud	m	LPS	m	m
Noeud n12	86,52	0,539	137,80	51,28
Noeud n11	82,98	2	137,18	54,20
Noeud n21	111,45	1,086	146,27	34,82
Noeud n16	73,41	1,721	140,00	66,59
Noeud n19	125,52	3,251	146,14	20,62
Noeud n22	112,99	1,237	146,31	33,32
Noeud n20	137,71	1,805	146,23	8,52
Noeud n23	114,42	2,336	146,62	32,20
Noeud n24	127,55	1,897	146,77	19,22
Noeud n18	85,44	1,463	140,14	54,70
Noeud n17	85,889	2,908	139,24	53,35
Réservoir	141,86	Sans Valeur	146,86	5,00
Zone2				

Remarque:

Les pressions au niveau de cette zone 2 sont pratiquement toutes régulés à l'exception du nœud n20.

b.6.2) Cas de pointe + incendie:

b.6.2.1) Résultats de simulation au niveau des arcs:

Le débit d'incendie est rajouté au niveau du nœud n19, et ce pour les raisons cités plus haut au titre numéro b.2.2), partie B) Cas de pointe et d'incendie.

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.36.

Tab III.36: État des Arcs du Réseau (pointe + inc Zone 2)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C27	299,12	220,4	25,84	0,68	2,05
Tuyau C32	375,39	220,4	33,01	0,87	3,26
Tuyau C25	363,83	63,8	-3,04	0,95	18,28
Tuyau C26	323,29	277,6	27,64	0,46	0,74
Tuyau C13	75,36	63,8	-2,00	0,63	8,28
Tuyau C21	229,45	63,8	1,32	0,41	3,84
Tuyau C22	172,66	63,8	-1,52	0,47	4,94
Tuyau C24	490	63,8	-2,61	0,82	13,63
Tuyau C23	331,88	63,8	-2,98	0,93	17,55
Tuyau C41	51,37	220,4	-31,77	0,83	3,03
Tuyau C33	430,12	277,6	-35,35	0,58	1,17
Tuyau C34	223,99	277,6	-37,24	0,62	1,29
Tuyau C42	110,65	63,8	2,54	0,79	12,97

En cas de pointe et d'incendie, les vitesses sont toutes acceptables (dans l'intervalle préconisé).

b.6.2.2) Résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant:

Tab III.37: Etat des nœuds du réseau: (cas de pointe + inc Zone 2)

	Altitude	Demande	Charge	Pression
		Base		
ID Noeud	m	LPS	m	m
Noeud n12	86,52	0,539	135,73	49,21
Noeud n11	82,98	2	135,10	52,12
Noeud n21	111,45	1,086	144,69	33,24
Noeud n16	73,41	1,721	138,04	64,63
Noeud n19	125,52	20,251	143,84	18,32
Noeud n22	112,99	1,237	144,85	31,86
Noeud n20	137,71	1,805	144,46	7,75
Noeud n23	114,42	2,336	146,07	31,65
Noeud n24	127,55	1,897	146,57	19,02
Noeud n18	85,44	1,463	138,02	52,58
Noeud n17	85,889	2,908	137,16	51,27
Réservoir	141,86	Sans Valeur	146,86	5,00
Zone2				

En cas de pointe et d'incendie, les pressions restent acceptables.

Il y'a toutefois lieu de noter que le nœud n20 qui est dès lors un point élevé par rapport aux autres nœuds présente une pression légèrement basse dans ce cas d'incendie.

Les résultats en cas de pointe et d'incendie sont représentés dans les schémas suivants :

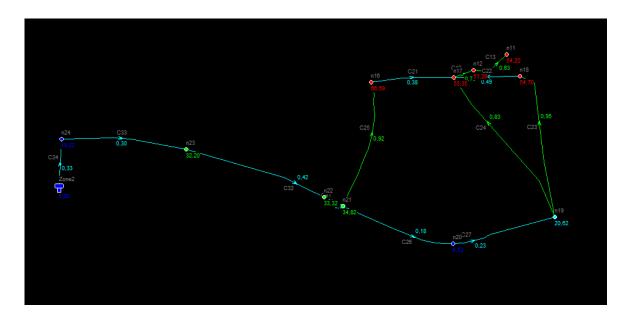


Fig III.10: Schéma du réseau de la zone 2 en cas de pointe

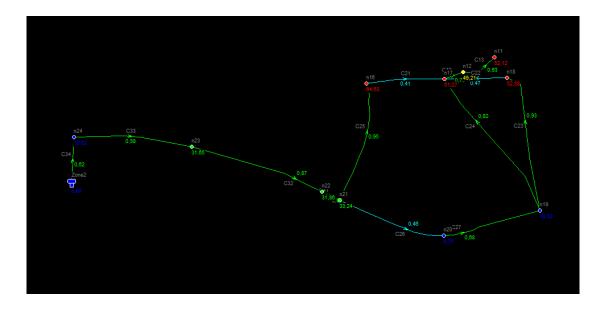


Fig III.11: Schéma du réseau de la zone 2 en cas de pointe et d'incendie

c) Zone 3:

Dans cette zone là, on ne va pas implanter de réservoir, c'est le réservoir existant RV2000EST qui va servir de régulateur de pression.

pour se faire, on va tout simplement effectuer le calcul inverse des nouvelles cotes piézométriques en effectuant les mêmes calculs que précédemment à partir du réservoir RV2000EST jusqu'au nœud n25.

c.1) Calcul des nouvelles cotes piézométriques de la zone 3:

Pour le nœud n29:

 $C_{R(RV2000EST)}$ - $Cp_{n29} = \Delta H_{RV2000EST-n29}$

$$\Delta H_{\text{RV2000EST-n29}} = \frac{K'.L.Q^{\text{B}}}{D^{m}}$$

$$\Delta H_{\text{RV2000EST-n29}} = \frac{0,00179.35,37.(0,067,59)^{1,77}}{0.3526^{4,774}} = 0,049 \text{ m}$$

 $Cp_{n29} = C_{R(RV2000EST)} - \Delta H_{RV2000EST-n29} = 186 - 0,049 = 185,95 \text{ m}.$

La nouvelle cote piézométrique calculée au point n29 est égale à 185,95m

d'où la nouvelle pression en ce même point sera égale à 1,121 m

Les résultats des nouvelles cotes piézométriques et pressions sont dans le tableau suivant :

Tab III.38: Nouvelles cotes piézométriques pour la zone 3.

	⊿ H (m)	CTN (m)	Cp (m)	Pression (m)
C _R		186	/	/
(RV2000EST)	0,038			
N29		184,83	185,95	1,12
N28	2,58	177,61	183,37	5,76
N27	5,51	161,5	177,86	16,35
N26	0,38	156,62	177,48	20,86
N25	1,76	143,17	175,71	32,54
N29		184,83	185,95	1,12
N30	0,24	181,42	185,71	4,29

Il y'a lieu de noter que les pressions au niveau des nœuds n28, n29 et n30 sont relativement faibles, nous tenterons de remédier à ce problème en ajustant les diamètres du réseau restructuré.

c.2) Restructuration du réseau de la zone 3:

Dans cette zone, nous avons proposé un tracé de réseau ramifié contenant trois ramifications qui acheminent l'eau vers les différentes habitations collectives.

Dans le cas des conduites ramifiés, nous aurons trois types de conduites :

- a) Conduite d'extrémité;
- b) Conduite à service en route ;
- c) Conduite mixte.

Les schémas suivants illustrent le fonctionnement de chaque conduite.

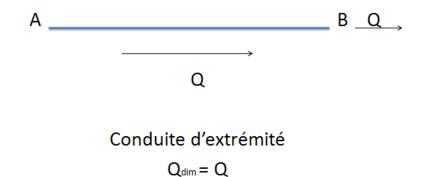


Fig III.12 : Conduite d'extrémité

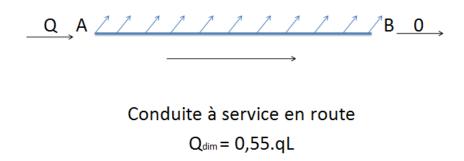


Fig III.13: Conduite à service en route

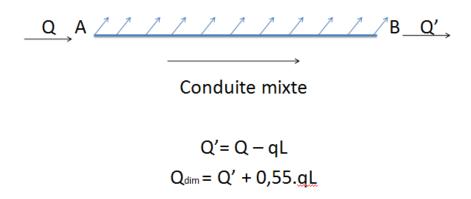


Fig III.14: Conduite mixte

Dans notre cas, on aura à dimensionner la conduite à service en route tel que le débit rentrant sera intégralement consommé par l'agglomération.

Le nouveau tracé contiendra en tout onze conduites et onze nœuds avec des cotes de terrain variant de 140,68 m à 186 m.

Cette zone constitue les points les plus hauts du réseau d'AEP de notre zone d'étude, l'alimentation en eau s'effectue à partir du réservoir existant (RV 2000 EST) CTN= 186m, ce dernier va alimenter la zone 3 et le reste du débit va remplir le réservoir de la zone 2 projeté CTN = 141,86m.

c.2.1) Calcul des nouveaux besoins en eau:

La population estimée pour la zone 3 est de 75% des habitants totaux du deuxième étage.

On note 9944 habitants.

Tab III.39: Habitants estimés pour la zone 3.

Habitants (étage 2) en	Pourcentage estimé	Habitants (zone 3) en	
2050	par la DUC	2050	
13258	75 %	9944	

Connaissant le débit maximum journalier total de l'étage 2, et celui de la zone 2, il est tout à fait possible de déterminer le débit maximum journalier au niveau de la zone 3

$$Q_{\text{maxj(\'etage2)}} = 3944,1 \text{ m}^3/\text{j}$$

$$Q_{\text{maxj(zone2)}} = 1149,6 \text{ m}^3/\text{j}$$

$$\Rightarrow$$
 Q_{maxj(zone3)}= Q_{maxj(étage2)} - Q_{maxj(zone2)} = 2794,5 m³/j.

Tab III.40 : Répartition horaire du Q_{maxj} pour la zone 3

heures	С%	Q(m3/h)	C%(cumul)	Q
0-1	1.00	27,945	1	27,945
1-2	1.00	27,945	2	55,89
2-3	1.00	27,945	3	83,835
3-4	1.00	27,945	4	111,78
4-5	2.00	55,89	6	167,67
5-6	3.00	83,835	9	251,505
6-7	5.00	139,725	14	391,23
7-8	6.50	181,642	20,5	572,872
8-9	6.50	181,642	27	754,514
9-10	5.50	153,697	32,5	908,211
10-11	4.50	125,725	37	1033,936
11-12	5.50	153,697	42,5	1187,633
12-13	7.00	195,615	49,5	1383,248
13-14	7.00	195,615	56,5	1578,863
14-15	5.50	153,697	62	1732,56
15-16	4.50	125,725	66,5	1858,285
16-17	5.00	139,725	71,5	1998,01
17-18	6.50	181,642	78	2179,652
18-19	6.50	181,642	84,5	2361,294
19-20	5.00	139,725	89,5	2501,019
20-21	4.50	125,725	94	2626,744
21-22	3.00	83,835	97	2710,579
22-23	2.00	55,89	99	2766,469
23-24	1,00	27,945	100	2794,5
total	100	2794,5		

On note: le débit de pointe est repéré entre midi et 14 heures.

 $Q_{p(zone\ 2)} = 195,615 \text{ m}^3/\text{h}$

d) représentation graphique de la consommation:

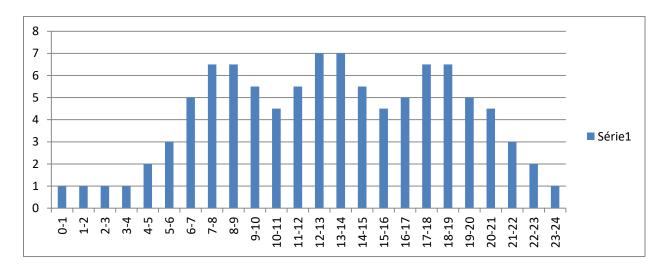


Fig III.15: Consommation horaire de la population zone 3

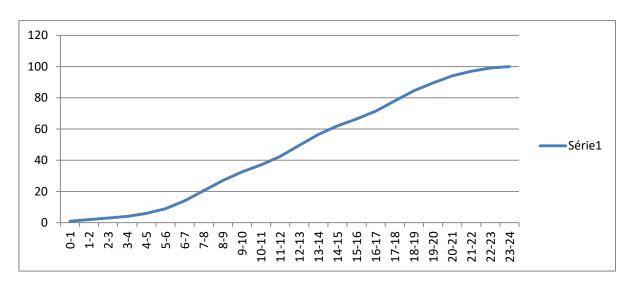


Fig III.16: Courbe intégrale zone 3

c.2.2) Calcul hydraulique:

A) Cas de pointe :

$$Q_{maxh} = Q_{pte} = 195,615 \text{ m}^3/\text{h} = 54,34 \text{ l/s}$$

Remarque:

On considère les extrémités des ramifications comme étant des débits concentrés constants qu'on pose égales à 2 l/s chacun. ΣQ_{conc} = 8 l/s.

Donc
$$Q_{route} = Q_{pte} - Q_{conc} = 54,34 - 8 = 46,34 \text{ l/s}$$

 Σ Li = 1872,82 m; donc : Q_{sp}= 46,34/1872,82 = 0,025 l/s/m

Au final, le débit spécifique est : Q_{sp}=0,025 l/s/m

Tab III.41: Récapitulatif du calcul des débits: cas de pointe

	Q _{pte} (I/s)	54,34
Heure de pointe (08	Q _{route} (I/s)	46,34
heures	∑Li (m)	1872,82
à12heures)	Q _{sp} (I/s/m)	0,025

Remarque:

Les calculs effectués vont nous permettre de calculer les débits routes dans chaque tronçon ainsi que les débits nodaux.

Les résultats de calculs des débits routes (repérés dans chaque tronçon) ainsi que les débits nodaux à partir du débits spécifique en cas de pointe sont représentés dans le tableau Tab III.43.

Tab III.42: Calculs des débits routes et des débits aux nœuds: (cas de pointe Zone 3)

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(I/s/m)	(I/s)	(l/s)	(I/s)
25	C42	18,81		0,490	3,262	3,262
25	C43	232,13		6,035	3,202	
	C43	232,13		6,035		
31	C44	80,51		2,093	4,630	4,630
	C45	43,55		1,132		
32	C45	43,55		1,132	6,170	6,170
32	C46	147,105	0,025	3,824		
	C47	283,99		7,384		
	C47	172,66		4,489	12,145	12,145
27	C48	331,88		8,629		
	C49	429,73		11,173		
28	C49	331,88		8,629	10,684	10,684
20	C39	490		12,74	10,004	10,004
	C39	299,12		7,777		
29	C38	323,29		8,405	8,551	8,551
	C40	35,37		0,920	1	

B) Cas de pointe + incendie :

En cas d'incendie, il ya lieu de prévoir un volume d'incendie de 120 m³, pour un incendie de deux heures, soit un débit de 17 l/s à ajouter au débit de pointe horaire avec:

$$Q_{p+inc} = 54,34 + 17 = 71,34 \text{ l/s}$$

Ce débit sera rajouté au niveau du nœud n28 (pour la zone 3) pour les raisons cités au titre III.1.2.5.2.1.2 partie b) cas de pointe et d'incendie.

Les résultats pour le calcul du cas de pointe et d'incendie sont représentés dans le tableau III.43.

Tab III.43: calcul de débits routes et des débits aux nœuds: cas de pointe + incendie Zone 3

Nœuds	Tronçon	Longueur	Qsp	Qr	0,5∑Qr	Qn
N°	N°	(m)	(l/s/m)	(I/s)	(l/s)	(I/s)
25	C42	18,81		0,490	3,262	3,262
25	C43	232,13		6,035	3,202	
	C43	232,13		6,035		
31	C44	80,51		2,093	4,630	4,630
	C45	43,55		1,132		
32	C45	43,55		1,132		6,170
32	C46	147,105	0,026	3,824	6,170	
	C47	283,99		7,384		
	C47	172,66	0,020	4,489	12,145	12,145
27	C48	331,88		8,629		
	C49	429,73	-	11,173		
28	C49	331,88		8,629	10,684	27,684
20	C39	490		12,74	10,004	21,004
	C39	299,12		7,777		
29	C38	323,29	_	8,405	8,551	8,551
	C40	35,37		0,920	-	

c.3) Dimensionnement du réseau de la zone 3 :

De même que précédemment, on appliquera la méthode du diamètre avantageux.

On procède à la distribution arbitraire des débits et on va attribuer à chaque débit le diamètre correspondant.

Tab III.44 : Débit en fonction des diamètres avantageux

tronçons	débit de transit	Dext	Dint
	(l/s)	(mm)	(mm)
C40	54,34	250	220,4
C38	2	75	63,8
C39	42,89	250	220,4
C49	32,21	200	176,2
C48	2	75	63,8
C47	18,06	160	141
C46	2	75	63,8
C45	9,89	110	96,8
C44	2	75	63,8
C43	3,26	75	63,8
C42	0	250	220,4

b.6) Résultat de simulation :

b.6.1) Cas de pointe :

b.6.1.1) Résultats de simulation au niveau des arcs :

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.45.

Tab III.45: État des Arcs du Réseau (cas de pointe Zone 3)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C49	429,73	277,6	32,21	0,53	0,98
Tuyau C40	35,37	352,6	53,44	0,55	0,77
Tuyau C38	45,96	63,8	-2,00	0,63	8,28
Tuyau C48	160,71	63,8	2,00	0,63	8,28
Tuyau C46	147,105	63,8	2,00	0,63	8,28
Tuyau C45	43,55	110,2	9,89	1,04	10,83
Tuyau C43	232,13	79,2	3,26	0,66	7,00
Tuyau C44	80,513	63,8	2,00	0,63	8,28
Tuyau C47	283,99	141	18,06	1,16	9,82
Tuyau C42	18,81	220,4	0,00	0,00	0,00
Tuyau C39	394,95	352,6	42,89	0,44	0,51

En cas de pointe, les vitesses sont toutes acceptables (dans l'intervalle préconisé)

b.6.1.2) Résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant:

Tab III.46: Etat des nœuds du réseau (cas de pointe Zone 3)

	Altitude	Demande	Charge	Pression
		Base		
ID Noeud	m	LPS	m	m
Noeud n25	143,17	3,262	185,46	42,29
Noeud n27	161,5	12,145	190,35	28,85
Noeud n30	181,42	2	190,59	9,17
Noeud n28	177,61	10,684	190,77	13,16
Noeud n29	181,93	8,551	190,97	9,04
Noeud n35	141,58	2	189,02	47,44
Noeud n32	156,68	6,170	187,56	30,88
Noeud n34	151,29	2	186,34	35,05
Noeud n31	151,8	4,630	187,09	35,29
Noeud n33	140,68	2	186,42	45,74
Noeud Zone2	141,86	0	185,46	43,60
RV2000EST	186	Sans Valeur	191,00	5,00

Grace à la restructuration proposée, on à réussi à élever les pressions dans ces points hauts, en effet, l'ancien tracé àprovoqué une chute de pressions au niveau des nœuds n28, n29 et n30, actuellement, les pressions au niveau de ces nœud sont tous acceptables.

b.6.2) Cas de pointe + incendie:

b.6.2.1) Résultats de simulation au niveau des arcs:

Le débit d'incendie est rajouté au niveau du nœud n28, et ce pour les raisons cités plus haut au titre numéro III.1.2.5.2.1.2, partie B) Cas de pointe et d'incendie.

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.47.

Tab III.47:État des Arcs du Réseau (cas de pointe + inc Zone 3)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C49	429,73	277,6	32,21	0,53	0,98
Tuyau C40	35,37	352,6	70,44	0,72	1,30
Tuyau C38	45,96	63,8	-2,00	0,63	8,28
Tuyau C48	160,71	63,8	2,00	0,63	8,28
Tuyau C46	147,105	63,8	2,00	0,63	8,28
Tuyau C45	43,55	110,2	9,89	1,04	10,83
Tuyau C43	232,13	79,2	3,26	0,66	7,00
Tuyau C44	80,513	63,8	2,00	0,63	8,28
Tuyau C47	283,99	141	18,06	1,16	9,82
Tuyau C42	18,81	220,4	0,00	0,00	0,00
Tuyau C39	394,95	352,6	59,89	0,61	0,96

Remarque: En cas de pointe et d'incendie, les vitesses sont toutes acceptables (dans l'intervalle préconisé).

b.6.2.2) Résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant:

Tab III.48 :Etat des nœuds du réseau (cas de pointe + inc Zone 3)

	Altitude	Demande	Charge	Pression
		Base		
ID Noeud	m	LPS	m	m
Noeud n25	143,17	3,262	185,27	42,10
Noeud n27	161,5	12,145	190,16	28,66
Noeud n30	181,42	2	190,57	9,15
Noeud n28	177,61	27,684	190,58	12,97
Noeud n29	181,93	8,551	190,95	9,02
Noeud n35	141,58	2	188,83	47,25
Noeud n32	156,68	6,170	187,37	30,69
Noeud n34	151,29	2	186,15	34,86
Noeud n31	151,8	4,630	186,89	35,09
Noeud n33	140,68	2	186,23	45,55
Noeud Zone2	141,86	0	185,27	43,41
RV2000EST	186	Sans Valeur	191,00	5,00

En cas de pointe et d'incendie, les pressions n'ont pas trop changés par rapport au cas de pointe et la pression minimale dans le point n28 est assurée.

Les résultats de simulation pour la zone 3 sont représentés dans les schémas suivants :

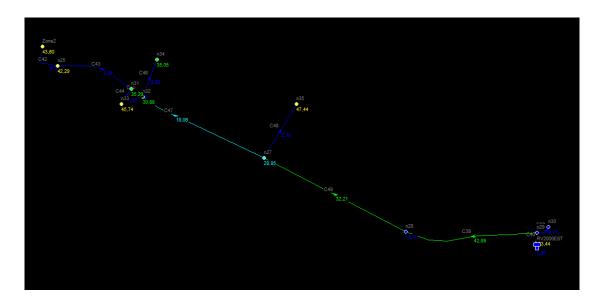


Fig III.17: Schéma du réseau de la zone 3en cas de pointe



Fig III.18: Schéma du réseau de la zone 3en cas de pointe et d'incendie

III.1.2.5.5 Résultats de la simulation de l'intégralité du réseau restructuré :

A) Cas de pointe :

A.1) Résultats de simulation au niveau des arcs:

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.49 en annexe 1.

Remarque:

En cas de pointe, les vitesses sont pratiquement acceptables (dans l'intervalle préconisé) à l'exception de quelques tronçons où cette dernière est légèrement en dessous de l'intervalle.

A.2) Les résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau suivant Tab III.50 en annexe 2.

Remarque:

Les pressions en cas de pointe (une fois le réseau restructuré) sont dans les normes et ne devrons pas compromettre la pérennité du système.

B) Cas de pointe + incendie :

B.1) Résultats de simulation au niveau des arcs:

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau III.51 en annexe 3.

Remarque:

En cas de pointe, les vitesses sont pratiquement acceptables (dans l'intervalle préconisé) à l'exception de quelques tronçons où cette dernière est légèrement en dessous de l'intervalle.

B.2) Les résultats de simulation au niveau des nœuds:

Les charges et les pressions au niveau de chaque nœud sont données dans le tableau III.52 en annexe 4.

Les pressions en cas de pointe et d'incendie sont acceptables.

Les résultats de calcul ont montrés ce qui suit :

- ➤ En cas de pointe; le nœud où la pression est la plus importante est le nœud n16, d'une cote piézométrique de : 140 m, avec une cote de terrain de : 73,41 m, soit une pression au sol de 66,59 m.
- ➤ En cas de pointe; le nœud où la pression est la plus faible est le nœud n20, d'une cote piézométrique de : 146,23m, avec une cote de terrain de : 137,71 m, soit une pression au sol de 8,52 m.
- ➤ En cas de pointe plus incendie; le nœud où la pression est la plus importante est le nœud n16, d'une cote piézométrique de : 138,04 m avec une cote de terrain de : 73,41 m, soit une pression au sol de 64,63 m.
- ➤ En cas de pointe plus incendie; le nœud où la pression est la plus faible est le nœud n20, d'une cote piézométrique de : 144,46 m et une cote au sol : 137,71 m, soit une pression au sol de 6,75 m.

Les pressions ont très légèrement diminués en cas de pointe et d'incendie.

Les résultats en cas de pointe et d'incendie sont représentés dans les schémas Fig III.19 en annexe 5 et III.20 en annexe 6.

III.1.3 Conclusion:

Le poumon du travail consistait à réduire les pression au niveau des points bas et élever ces dernières aux points hauts. Pour se faire nous avons proposés deux variantes à étudier à savoir :

- 1) Installation de réducteurs de pression
- 2) Restructuration du réseau

On à vite constaté que la première variante est inadaptée dans la mesure où ces derniers nécessitent une gestion rigoureuse et malgré cela, ils se dégradent très rapidement.

La restructuration consistait à modifier la morphologie du réseau de tel sorte à créer de nouveaux étages pour permettre un meilleur fonctionnement du réseau. Pour cela, on a réalisé l'implantation de deux réservoirs de type semi-enterrées qui ont servi de régulateurs de pression en amont de chaque zone. Pour se faire, on a subdivisé notre réseau en trois zones, chaque zone est alimentée par un réservoir semi-enterré afin de permettre la régulation des pressions en aval du réservoir projeté.

Pour chaque zone nous avons calculé les nouvelles cotes piézométriques, restructuré le réseau, c'est à dire, (calculer les nouveaux besoins en eau, déterminer le débit de pointe pour chaque zone, et proposer un nouveau tracé), on à également positionner les réservoirs en se référent au théorème de Thalès, et étudier la faisabilité de l'implantation de ces réservoirs avec des prospections géographiques et géotechniques.

Les résultats de simulation on bel et bien montrés que le réseau fonctionne à son rendement optimal et que les pressions ont été régulés.

CONCLUSION GENERALE

CONCLUSION GENERALE:

L'étude effectuée au niveau de la zone du POS AU3 nous a permis d'aboutir à une solution appréciable.

En effet, cette étude avait pour ambition d'évaluer l'impact des extensions de la ville sur le fonctionnement du système d'alimentation en eau potable à l'horizon 2050.

Nous allons, à travers cette conclusion dresser une représentation synoptique et significative de l'étude effectuée.

Il a fallu, dans un premier temps définir la zone d'étude, estimer les besoins en eau futures, procéder au calcul hydraulique où nous avons démontré l'apparition de pressions importantes qui causerons des dysfonctionnements du système d'alimentation de la ville.

Les leitmotive du travail consistait à trouver des solutions pour pallier ces pressions exagérés et ce par l'élaboration de la méthodologie de la restructuration du réseau étagé. Néanmoins nous avons élaboré un modèle assez fiable, à l'aide des essais expérimentaux, Effectués dans une zone en régulation, et à l'étage de distribution T3. Ce modèle constitue

Donc un outil d'aide aux diagnostics, à la prévision du comportement et des scénarios Possibles de ce réseau, que ce soit avant ou après élaboration de la modulation de pression.

Cette étude reste à affiner, et peut servir à l'élaboration d'un programme, ou d'un outil Automatisé, sous le logiciel *EPANET,* qui servira à modéliser et à simuler les fuites Automatiquement, avant et après modulation de pression.

Les résultats de simulation ont bel et bien montré que le réseau fonctionne à son rendement optimal et que les pressions ont été régulés.

BIBLIOGRAPHIE

REFERENCES BIBLIOGRAPHIQUES

- [1]André DUPONT; Hydraulique urbaine, Tome 2, Edition Eyrolles, 1979, 484 p.
- [2] ANRH; Agence Nationale des Ressources Hydrauliques 2008.
- [3] Bonin, J; Hydraulique Urbaine Appliquée aux agglomérations de petite et moyenne importance. Edition Eyrolles, 1986, 228 p.
- [4] Document Règlement d'urbanisme POS AU3, DUC Tipaza, Document interne, 2018.
- [5]DRE; La direction des ressources en eaux de Tipaza, rapport technique, 2018.
- **[6]EPANET 2.0;**Application for Modeling Drinking Water Distribution Systems, USERS MANUAL, EPA/600/R-00/057 September 2000.
- [7] Gomella C; Guide de l'alimentation en eau dans les agglomérations urbaine et rurales Tome 1: la distribution, Edition EYROLLES, Paris, 1985, p 227.
- [8] Godart, H; Adduction et distribution d'eau. Techniques de l'ingénieur, Ref : C5195, (2000).
- [9] M. CARLIER; Hydraulique générale et appliquée, édition Eyrolles, Paris 1972, p.289.
- [10] ONM; OFFICE NATIONAL DE METEOROLOGIE, 2008.
- [11] SEAAL; Schéma Directeur d'Alimentation en Eau Potable de la Wilaya de Tipaza, modélisation du réseau et dimensionnement, Mission C, rapport de modélisation 2019.
- [12] Valiron, F; Mémento du gestionnaire d'alimentation en eau et de l'assainissement. Tome I: eau dans la ville alimentation en eau. Edition Lavoisier,1994,1262 p.

LES ANNEXES

Tab III.49: État des Arcs du Réseau restructuré (cas de pointe)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C14	350	63,8	2,54	0,79	12,97
Tuyau C16	367,59	110,2	-5,15	0,54	3,16
Tuyau C5	162	220,4	26,00	0,68	2,07
Tuyau C4	366,89	63,8	0,32	0,10	0,29
Tuyau C10	194,69	79,2	-2,19	0,44	3,32
Tuyau C1	322,08	63,8	3,55	1,11	24,48
Tuyau C27	299,12	220,4	8,93	0,23	0,28
Tuyau C32	375,39	220,4	16,01	0,42	0,83
Tuyau C25	363,83	63,8	-2,95	0,92	17,22
Tuyau C26	323,29	277,6	10,74	0,18	0,13
Tuyau C11	576,76	96,8	8,96	1,22	17,32
Tuyau C9	161,84	63,8	-3,36	1,05	22,07
Tuyau C18	352,6	352,6	-55,49	0,57	0,83
Tuyau C17	329,43	79,2	2,58	0,52	4,52
Tuyau C8	222,8	79,2	7,63	1,55	35,32
Tuyau C7	56,13	220,4	-10,73	0,28	0,40
Tuyau C3	279,65	141	15,21	0,97	7,07
Tuyau C2	224,23	141	9,61	0,62	2,97
Tuyau C6	280	220,4	-37,15	0,97	4,08
Tuyau C13	75,36	63,8	-2,00	0,63	8,28
Tuyau C21	229,45	63,8	1,23	0,38	3,35
Tuyau C22	172,66	63,8	-1,56	0,49	5,23
Tuyau C24	490	63,8	-2,65	0,83	14,10
Tuyau C23	331,88	63,8	-3,03	0,95	18,09
Tuyau C41	51,37	220,4	-14,77	0,39	0,72
Tuyau C33	430,12	277,6	-18,35	0,30	0,34
Tuyau C40	35,37	352,6	53,44	0,55	0,77
Tuyau C38	45,96	63,8	-2,00	0,63	8,28
Tuyau C39	394,95	352,6	42,89	0,44	0,51
Tuyau C19	274,17	352,6	-62,41	0,64	1,03

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau T13	233,85	220,4	-28,88	0,76	2,53
Tuyau T14	149,27	220,4	23,05	0,60	1,65
Tuyau T15	104,30	220,4	18,33	0,48	1,07
Tuyau C15	319,69	63,8	-0,38	0,12	0,40
Tuyau T16	115,31	220,4	17,95	0,47	1,03
Tuyau T12	234,84	352,6	-59,58	0,61	0,95
Tuyau G12	145,02	352,6	0,00	0,00	0,00
Tuyau C34	223,99	277,6	-20,24	0,33	0,41
Tuyau C42	18,81	220,4	0,00	0,00	0,00
Tuyau C48	160,71	63,8	2,00	0,63	8,28
Tuyau C46	147,105	63,8	2,00	0,63	8,28
Tuyau C44	80,513	63,8	2,00	0,63	8,28
Tuyau C47	283,99	141	18,06	1,16	9,82
Tuyau C45	43,55	110,2	9,89	1,04	10,83
Tuyau C43	232,13	79,2	3,26	0,66	7,00
Tuyau C49	429,73	277,6	-32,21	0,53	0,98

Tab III.50 :Etat des nœuds du réseau restructuré cas de pointe

	Altitude	Demande	Charge	Pression
ID Noeud	m	LPS	m	m
Noeud n12	86,52	0,539	134,70	48,18
Noeud n14	70,36	7,737	79,95	9,59
Noeud n11	82,98	2	134,07	51,09
Noeud n6	51,33	8,563	81,44	30,11
Noeud n13	70,83	12,794	81,11	10,28
Noeud n9	29,53	4,27	74,69	45,16
Noeud n4	55	13,99	81,00	26,00
Noeud n2	35	6,064	78,35	43,35
Noeud n10	24,64	10,139	71,12	46,48
Noeud n5	49,7	17,101	81,10	31,40
Noeud n1	25,74	5,736	70,47	44,73
Noeud n21	111,45	1,086	146,27	34,82
Noeud n16	73,41	1,721	140,00	66,59
Noeud n19	125,52	3,251	146,14	20,62
Noeud n22	112,99	1,237	146,31	33,32
Noeud n20	137,71	1,805	146,23	8,52
Noeud n23	114,42	2,336	146,62	32,20
Noeud n25	143,17	3,262	185,46	42,29
Noeud n24	127,55	1,897	146,77	19,22
Noeud n30	181,42	2	190,59	9,17
Noeud n7	48,79	7,61	82,58	33,79
Noeud n15	66,2	6,922	82,87	16,67
Noeud n8	40,139	3,097	82,56	42,42
Noeud n3	44,6	5,594	79,02	34,42
Noeud n18	85,44	1,463	140,14	54,70
Noeud n17	85,889	2,908	139,24	53,35
Noeud n28	177,61	10,684	190,77	13,16
Noeud n29	181,93	8,551	190,97	9,04
Noeud RV2*500	68	-62,41	83,15	15,15
Noeud p11	66,66	7,649	81,59	14,93

Noeud p12	70,14	4,722	81,34	11,20
	Altitude	Demande	Charge	Pression
ID Noeud	m	LPS	m	m
Noeud p13	61,79	0	81,23	19,44
Noeud n31	151,8	4,630	187,09	35,29
Noeud n32	156,68	6,170	187,56	30,88
Noeud n33	140,68	2	186,42	45,74
Noeud n34	151,29	2	186,34	35,05
Noeud n27	161,5	12,145	190,35	28,85
Noeud n35	141,58	2	189,02	47,44
RV2000EST	186	Sans Valeur	191,00	5,00
Réservoir Zone1	76,81	Sans Valeur	81,81	5,00
Réservoir Zone2	141,86	Sans Valeur	146,86	5,00

Tabili.51: Etat des arcs du réseau restructuré (cas de pointe + inc)

	Diamètre	Longueur	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau C14	350	63,8	2,54	0,79	12,97
Tuyau C16	367,59	110,2	-4,84	0,51	2,81
Tuyau C5	162	220,4	25,72	0,67	2,03
Tuyau C4	366,89	63,8	-0,62	0,20	0,91
Tuyau C10	194,69	79,2	-2,12	0,43	3,14
Tuyau C1	322,08	63,8	3,62	1,13	25,37
Tuyau C27	299,12	220,4	25,84	0,68	2,05
Tuyau C32	375,39	220,4	33,01	0,87	3,26
Tuyau C25	363,83	63,8	-3,04	0,95	18,28
Tuyau C26	323,29	277,6	27,64	0,46	0,74
Tuyau C11	576,76	96,8	8,92	1,21	17,16
Tuyau C9	161,84	63,8	-3,34	1,04	21,77
Tuyau C18	352,6	352,6	-55,49	0,57	0,83
Tuyau C17	329,43	79,2	2,90	0,59	5,60
Tuyau C8	222,8	79,2	7,61	1,54	35,11
Tuyau C7	56,13	220,4	-10,70	0,28	0,40
Tuyau C3	279,65	141	15,27	0,98	7,13
Tuyau C2	224,23	141	9,68	0,62	3,01
Tuyau C6	280	220,4	-37,17	0,97	4,08
Tuyau C13	75,36	63,8	-2,00	0,63	8,28
Tuyau C21	229,45	63,8	1,32	0,41	3,84
Tuyau C22	172,66	63,8	-1,52	0,47	4,94
Tuyau C24	490	63,8	-2,61	0,82	13,63
Tuyau C23	331,88	63,8	-2,98	0,93	17,56
Tuyau C41	51,37	220,4	-31,77	0,83	3,03
Tuyau C33	430,12	277,6	-35,35	0,58	1,17
Tuyau C40	35,37	352,6	70,44	0,72	1,30
Tuyau C38	45,96	63,8	-2,00	0,63	8,28
Tuyau C39	394,95	352,6	59,89	0,61	0,96
Tuyau C19	274,17	352,6	-62,41	0,64	1,03

	Diamètre	Longueur	Débit	Vitesse	Pert.Charge Unit.
ID Arc	m	mm	LPS	m/s	m/km
Tuyau T13	233,85	220,4	-29,89	0,78	2,69
Tuyau T14	149,27	220,4	39,04	1,02	4,48
Tuyau T15	104,30	220,4	34,32	0,90	3,51
Tuyau C15	319,69	63,8	0,32	0,10	0,23
Tuyau T16	115,31	220,4	34,64	0,91	3,57
Tuyau T12	234,84	352,6	-76,58	0,78	1,52
Tuyau G12	145,02	352,6	0,00	0,00	0,00
Tuyau C34	223,99	277,6	-37,24	0,62	1,29
Tuyau C42	18,81	220,4	0,00	0,00	0,00
Tuyau C48	160,71	63,8	2,00	0,63	8,28
Tuyau C46	147,105	63,8	2,00	0,63	8,28
Tuyau C44	80,513	63,8	2,00	0,63	8,28
Tuyau C47	283,99	141	18,06	1,16	9,82
Tuyau C45	43,55	110,2	9,89	1,04	10,83
Tuyau C43	232,13	79,2	3,26	0,66	7,00
Tuyau C49	429,73	277,6	-32,21	0,53	0,98

Tab III.52: Etat des nœuds du réseau restructuré (cas de pointe + inc)

	Altitude	Demande	Charge	Pression
ID Noeud	m	LPS	m	m
Noeud n12	86,52	0,539	132,63	46,11
Noeud n14	70,36	7,737	78,97	8,61
Noeud n11	82,98	2	132,00	49,02
Noeud n6	51,33	8,563	80,82	29,49
Noeud n13	70,83	29,794	80,01	9,18
Noeud n9	29,53	4,27	74,12	44,59
Noeud n4	55	13,99	80,82	25,82
Noeud n2	35	6,064	78,15	43,15
Noeud n10	24,64	10,139	70,59	45,95
Noeud n5	49,7	17,101	80,49	30,79
Noeud n1	25,74	5,736	69,98	44,24
Noeud n21	111,45	1,086	144,69	33,24
Noeud n16	73,41	1,721	138,04	64,63
Noeud n19	125,52	20,251	143,84	18,32
Noeud n22	112,99	1,237	144,85	31,86
Noeud n20	137,71	1,805	144,46	6,75
Noeud n23	114,42	2,336	146,07	31,65
Noeud n25	143,17	3,262	185,27	42,10
Noeud n24	127,55	1,897	146,57	19,02
Noeud n30	181,42	2	190,57	9,15
Noeud n7	48,79	7,61	81,96	33,17
Noeud n15	66,2	6,922	82,25	16,05
Noeud n8	40,139	3,097	81,94	41,80
Noeud n3	44,6	5,594	78,83	34,23
Noeud n18	85,44	1,463	138,02	52,58
Noeud n17	85,889	2,908	137,16	51,27
Noeud n28	177,61	27,684	190,58	12,97
Noeud n29	181,93	8,551	190,95	9,02
Noeud RV2*500	68	-62,41	82,54	14,54
Noeud p11	66,66	7,649	81,45	14,79

Noeud p12	70,14	4,722	80,78	10,64
Noeud p13	61,79	0	80,42	18,63
Noeud n31	151,8	4,630	186,89	35,09
Noeud n32	156,68	6,170	187,37	30,69
Noeud n33	140,68	2	186,23	45,55
Noeud n34	151,29	2	186,15	34,86
Noeud n27	161,5	12,145	190,16	28,66
Noeud n35	141,58	2	188,83	47,25
RV2000EST	186	Sans Valeur	191,00	5,00
Réservoir Zone1	76,81	Sans Valeur	81,81	5,00
Réservoir Zone2	141,86	Sans Valeur	146,86	5,00

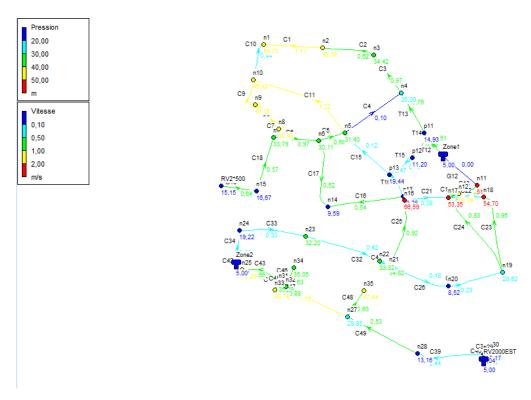


Fig III.19: Schéma du réseau restructuré en cas de pointe

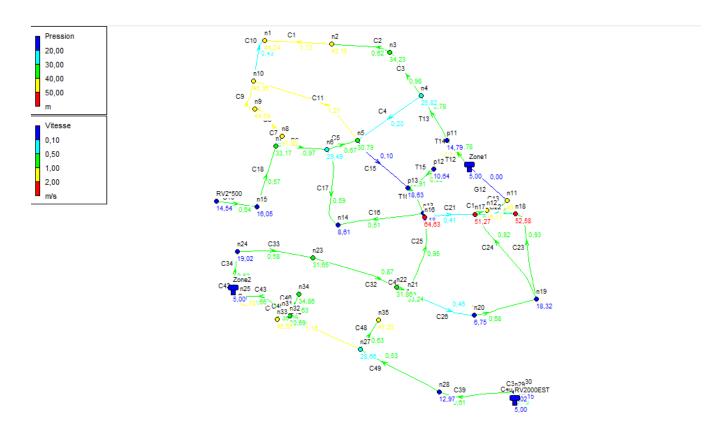


Fig III.20: Schéma du réseau restructuré en cas de pointe et d'incendie