UNIVERSITE SAAD DAHLEB DE BLIDA

Faculté de Technologie Département de Génie Civil

MÉMOIRE DE MASTER EN GÉNIE CIVIL

Spécialité : construction métallique et mixte

ETUDE D'UN BLOC DES BATIMENTS R+8 & R+3 EN CHARPENTE METALLIQUE AVEC SOUS SOL

Soutenu par

Amira SERIER ABDALLAH Sara AIT AHMED

devant le jury composé de :

A.ZAHAF Professeur USDB de Blida Promoteur

Blida, septembre 2020

الملخص

في إطار مشروع نهاية الدراسة نقوم بدراسة مجموعة عمارات (عمارتين ذات طابق ارضي و 8 طوابق و أخرى ذات طابق ارضي و 8 طوابق سفلي مشترك) المتواجدة في بلكور ولاية الجزائر المصنفة ضمن المنطقة الزلزالية رقم 3 وفق القانون الجزائري لمقاومة الزلازل. هذا المشروع يتكون من طابق سفلي ذات بنية تحتية مختلطة عبارة عن موقف سيارات يجمع العمارات الثلاث, عماراتين ذات 8 طوابق و عمارة ذات 3 طوابق , حيث العمارات ذات أعمدة وروافد مشكلة من المعدن

وقد تمت الدراسة الديناميكية ذات ثلاث أبعاد بواسطة برنامج أليٌ ROBOT تحديد الأبعاد وتعزيز و تسليح كل العناصر المقاومة للمبنى صمموا طبقا للمعايير و القوانين المعمولة بها في الجزائر (RPA99V2003, CCM97, EC04, EC03).

كلمات مفتاحية: RPA99V2003, CCM97, EC04, EC03

Résumé

Dans le cadre de notre projet de fin d'études, nous avons étudié trois bloc des bâtiments (2 R+8 et R+3 avec sous sol) à usage multiple. Cette dernière a une forme rectangulaire, elle est constituée d'un sous-sols (parking commun entre les bâtiments), et 3 bloc des bâtiments (2 RDC et huit (8) étages et un RDC et trois (3) étages entre les 2 R+8).

La conception structurelle de cette tour est en charpente métallique, avec noyau central en béton armé, assurant le contreventement et renforcé par des palées de stabilité en K. ces blocs est implantée dans la zone d'ALGER, qui est classée zone sismique III selon le RPA99 version 2003. Le dimensionnement des éléments résistants a été effectué conformément aux règlements en vigueur dans notre pays tel que: RPA 99V 2003, CCM97, EC3, EC4 et BAEL 91.

CODES: charpente métallique, RPA 99V2003, CCM 97, EC03, EC04

ABSTRACT

As part of our graduation project, we studied a building of 3 blocs for multiple use. The latter

has a rectangular shape, it consists of a basements as a parking ,2 buildings with a ground floor

and eight (8) floors and another between it with three (3) floors.

The structural design of the tower is in steel with central core of reinforced concrete ensuring

bracing and reinforced stability bents K.

This buildings are located in ALGIERS, exactly in BELKOURT which is classified as a seismic

area III according to RPA99 2003 version.

The sizing of resistant elements was performed in accordance to the regulations in force in our

country such as: RPA 99V2003 CCM97, EC3, EC4 and BAEL 91.

The three buildings are separated with a seismic joint that allow multidirectional movement, also

the free movement of buildings in ordor to avoid the clashes of structures, thus ensuring the

sustainability of the structures.

This project belongs to BATI-METAL company, where we supposed to do our practical

training but unfortunatly we couldn't finish it because of the global pendimic "COVID-19", indeed

we kept in touch with the engineer that was responsible of us there for any help that we should

need in this project.

When we visit the building site it was almost done, they were in last spots of painting and

decoration, but we hoped to see the earlier stages of the building like the construction of under

ground floor and how they connect and assemble the structural profiles in reality.

CODES: Metal frame, RPA 99V2003, CCM 97, EC03, EC04

DÉDICACES

« و ما توفيقي إلا بالله عليه توكلت و إليه أنيب »

Je dédie ce travail à :

♠ Mes chers parents, ma Mère qu'elle a sacrifie toute sa vie pour nous, elle m'a toujours
encouragée et soutenue en croyant a moi tout au long de mon parcours scolaire jusqu'à
atteindre ce stade de formation. Et à mon Père qui nous a quitté trop tôt, que dieu l'accueille
dans son vaste paradis.

- ♦ Mes sœurs Lina, Dalia, Siham et mes frères Abdelfatah et Amine
- ◆ Toute ma famille SERIER et CHERIFI
- ♦ Ma binôme Sara, et tous mes amis et camarades
- ◆ A toute la Promotion 2020.
- ◆ Tous les enseignants qui m'ont dirigé vers la porte de la réussite.

Amira SERIER ABDALLAH

DEDICACE

Je dédie ce travail surement au premier lieu à mes chers parents,

Au plus beau et merveilleux papa au monde, mon très cher papa qui m'a toujours poussé pour aller de l'avant avec ses conseils tantôt avec patience et tantôt sévèrement mais qui ont toujours servi et qui m'ont mené la où je ne croyais jamais pouvoir arriver .

♥merci papa et je t'aime très fort♥

A ma maman chérie qui m'a comblée d'amour et de tendresse et qui a rendu les choses les plus difficiles semblé bien plus simple que je ne le croyais.

♥ Je t'aime ma maman♥

A mon frères et sœurs Hcino, yasmine, et louiza, et ma tante hakima qui je leurs souhaitent pleins de succès et de réussites dans la vie.

A mes grands-parents qui m'ont aidé avec leurs prières et que DIEU les gardes pour nous.

A tous les membres de ma famille qui ont partagé la joie de ce petit succès dans ma vie.

A mes amis Amira, Sabrina, Djihane ,Abdou, Diarra,mohamed, qui avez fait de cette année la plus belle année de toutes, et qui surement je n'oublierai jamais, je vous remercie du fond du cœur pour tous ce que vous avez fait pour moi et pour votre présence à mes côtés et je ne vous souhaite que du meilleur.

A mes camarades de la promo Construction Métallique chacun en son nom. je dédie ainsi cet humble travail à mes professeurs du département de Génie Civil en souhaitant qu'on ait été à la hauteur de ce qu'ils attendaient de nous.

Remerciement

- ✓ Toute notre parfaite gratitude et remerciement à Allah le plus puissant qui nous a donné la force, le courage et la volonté pour élaborer ce travail.
- ✓ C'est avec une profonde reconnaissance et considération particulière qu'on remercie notre encadreur Mr ZAHAF.A pour leurs soutiens, leurs conseils judicieux et leurs grandes bienveillances durant l'élaboration de ce projet.
- ✓ on saisit également cette opportunité pour remercier les membres de l'entreprise de BATIMETAL et particulièrement Mme SABRI, ainsi que l'ingénieur Mr BOUBKER qui nous a beaucoup aider pour élaborer ce travail.
- ✓ Ainsi on exprime notre reconnaissance à tous les membres de jury d'avoir accepté de lire ce manuscrit et d'apporter les critiques nécessaires à la mise en forme de cet ouvrage.
- ✓ Enfin, à tous ceux qui nous ont aidé de prés ou de loin pour la réalisation de ce projet de fin d'étude.

Résumé

\mathbf{r}			•		
к	em	er	CI	em	enf

Dédicace

Liste des figures

Liste des tableaux	
Table de matière	
Introduction générale	1
Chapitre 1 : Présentation de l'ouvrage	2
1.1. Introduction	3
1.2. Situation	3
1.3. Description architecturelle	4
1.3.1. Occupation des niveaux	4
1.3.2. Grandeurs de l'ouvrage	4
1.4. Description structurelle	4
1.4.1. Type de structure	4
1.5. Caractéristiques des matériaux	5
1.5.1. Le Béton	5
1.5.2. Aciers	8
Chapitre 2 : Etude climatique	11
2.1. Introduction.	12
2.2. Application du Règlement Neige et Vent 2013	12
2.3. Hypothèse de calcul	12
2. 3.1 Calcul de la pression du vent sur les parois de la structure	12
2.3.2. Détermination du coefficient dynamique Cd	13
2.3.3 Détermination des coefficients de pression extérieure	14
2.3.4 Détermination de coefficient de pression intérieur, Cpi	15
2.3.5 Valeurs de la pression du vent sur les parois verticale(qj)	16
2.3.6 Valeurs de la pression du vent sur la toiture(qj)	18
2.4. Effet de frottement	20
2.5. L'Effet de Neige	21
2.6. Hypothèse de calcul	22
2.6.2. détermination du coefficient dynamique Cd	23
2.6.3. Détermination des coefficients de pression extérieure	23
2.6.4. Détermination de coefficient de pression intérieur, Cpi	24
2.6.5. Valeurs de la pression du vent sur les parois verticale(qj)	24
2.6.6. Valeurs de la pression du vent sur la toiture(qj)	25
2.7. Effet de frottement	26
2.8. L'Effet de Neige.	27
Chapitre 3 : prédimensionnement des éléments secondaires	30
3.1. introduction.	
A. Acrotère	
3.2. Principe de calcul	
3.3. Evaluation des charges	
3.4. Surface de l'acrotère	
3.4.1. Poids propre de l'acrotère.	30
3.4.2 Revêtement en ciment	30

3.4.3. Charge d'exploitation.	31
3.5. ferraillage de la section a 1'E.L.U	32
3.5.1. Vérification de la section d'acier selon « BAEL 91 modifie 99 »	33
3.5.2. Armatures de répartitions	33
3.6. vérification à l'ELS	33
6.1. Vérification des contraintes	35
6.2. Vérification de l'effort tranchant	35
B. Escalier	35
3.7. Les éléments constitutifs	35
3.8. Dimensionnement	35
3.9.Calcul de ferraillage	41
3.10. Vérification à l'ELS	43
C. Mur rideau	43
3.11. Introduction	46
3.12. Type de Mur Rideau	46
3.13. Type de mise en place	47
3.14. Pré dimensionnement des murs rideaux	48
3.14.1. Actions du vent	48
3.14.2. Choix de matériaux	48
3.14.3. Calcul de l'épaisseur	49
3.14.4. Vitrages collés entre eux	49
3.14.5. Calcul de l'épaisseur nominale	49
3.14.6. Vérification de la flèche	50
Chapitre 4 : prédimensionnement des éléments principaux	51
4.1. Introduction	52
4.2. Les planchers	52
4.2.1. Méthode de calcul	52
4.2.2. Estimation des charges des planchers	53
4.3. Pré dimensionnement des éléments principaux	54
A. Bâtiment R+8	
4.3.1. Les Solives	54
- Solive L=	
1. phase de construction	54
1.1 Combinaisons des charges	55
1.2. Vérification de la flexion	55
1.3. Vérification de l'effort tranchant	56
1.4. Vérification de la rigidité	56
1.5. Vérification du déversement	57
2. Phase finale	58
2.1. Combinaison des charges	58
2.2. Position de l'axe neutre plastique	59
2.3. Vérification de la flexion	
2.4. Vérification de l'effort tranchant	59
2.5. Vérification de la rigidité	60
2.6. Vérification du déversement	61
3. Calcul des connecteurs	61
3.1. Détermination de Prd	61

3.2. Détermination de RL	62
4. Nombre des connecteurs	62
-Solive L=	
1. Phase de construction	63
1.1. Combinaisons des charges	63
1.2. Vérification de la flexion.	64
1.3. Vérification de l'effort tranchant	64
1.4. Vérification de la rigidité	65
1.5. Vérification du déversement	65
2. Phase finale	66
2.1. Combinaison des charges	67
2.2. Position de l'axe neutre plastique	
2.3. Vérification de la flexion	68
2.4. Vérification de l'effort tranchant	
2.5. Vérification de la rigidité	69
2.6. Vérification du déversement.	69
3. Calcul des connecteurs	69
3.1. Détermination de Prd	70
3.2. Détermination de RL	71
3.3. Nombre des connecteurs	71
4.3.2. Les poutres porteuses	72
1. Phase de construction.	72
1.1. Calcul des réactions des solives	72
1.2. Combinaisons des charges :(charge sur la semelle sup de la poutre)	73
1.3. Vérification de la flexion.	73
1.4. Vérification de l'effort tranchant	74
1.5. Vérification de la rigidité	74
1.5. Vérification du déversement	
2. Phase finale	75
2.1. Calcul des réactions des solives	75
2.2. Combinaisons des charges :(charge sur la semelle sup de la poutre)	75
2.3. Position de l'axe neutre plastique	
2.4. Vérification de la flexion	76
2.5. Vérification de l'effort tranchant	77
2.6. Vérification de la rigidité	77
2.7. Vérification du déversement	78
2.8. Calcul des connecteurs.	78
1. Détermination de Prd	78
2. Détermination de RL	79
3. Nombre des connecteurs.	79
4.3.3. Les poteaux	80
1. Principe de calcul	80
1.1. Etapes de pré dimensionnement	80
1.2. Les surfaces qui reviennent aux poteaux	80
1.3. La Descente des charges	80
1. Les charges reprises par le poteau	83
2. La decent des charges	84

Chapitre 5 : Etude dynamique et sismique	86
5.1. Introduction	87
5.2. Etude dynamique	87
5.2.1. Modélisation de la structure	87
1. Modélisation de masse	87
2. Modélisation de rigidité	87
A. Bâtiment R+8	87
5.2.2. Choix de la méthode de calcul	88
1. La méthode statique équivalente	88
2. La méthode d'analyse modale spectrale	89
B. Bâtiment R+3	96
5.2.3. Choix de la méthode de calcul	96
1. La méthode statique équivalente	96
2. La méthode d'analyse modale spectrale	97
Chapitre 6 : Vérification des ossatures	
6.1. Introduction	
A. Bâtiment R+3	
6.2. Vérification des poteaux vis-à-vis au flambement	105
6.2.1. Combinaisons des charges	
6.2.2. Les étapes de vérification du flambement	105
6.2.3. Les vérifications	
6.3. Vérification des poteaux vis-à-vis le déversement	
6.3.1. Les étapes de vérification du déversement	
6.3.2. Les vérifications	
6.4. Vérification des poutres	123
6.4.1. Vérification de la poutre principale L=11,6m	
6.4.2. Vérification de la poutre principale L=5,6m	
6.4.3. Vérification de la poutre secondaire	
6.4.4. Vérification des contreventements en k (2UPN)	
6.5. Conclusion pour le bâtiment R+3	127
B. Batiment R+8	
6.6. Vérification des poteaux HEA550	128
6.7. Poutre principale HEA550 (L=17,4 m)	
6.8. Poutre principale HEA400 (L=6 m)	
6.9. Poutre secondaire HEA450 (L=5,6m)	131
6.10. Poutre secondaire HEA300 (L=7,6m)	
6.11. Solive HEA450 (L = 5,6)	
6.12. Solive HEA260 (L=7,6m)	134
6.13. Ferraillage du noyau central	
6.13.1. Généralités	135
6.13.2. Introduction au ferraillage des voiles	135
6.13.3. Combinaison	
6.13.4. Prescriptions imposées par RPA99	
6.13.5 Ferraillage vertical	
6.13.6. Ferraillage horizontal à l'effort tranchant	138

Chapitre	e 7	•	calcul	des	asseml	٦l	ages
Chapiu	c /	•	caicui	ucs	assem	J.	azcs

7.1. Introduction	141
A. Bâtiment R+3	
7.2-Calcul des Assemblage	
7.2.1- Assemblage poutre solive	
7.2.2-Dimensionnement de l'assemblage	
7.2.3-Vérification Par logiciel robot	
7.2.4- Assemblage Poteau-poutre	148
Dimensionnement de l'assemblage	148
1-Manuellement	149
2- vérification par logiciel robot	
1-Manuellement	153
2-Vérification par logiciel robot	155
1-Manuellement	156
2-Avec logiciel robot	158
7.3- Assemblage Contreventement	164
2-Verification par logiciel robot	165
7.4- Calcul des platines et des ancrages en pieds de poteaux	167
Chapitre 8 : calcul des éléments de sous sol	
8.1. Introduction	179
8.2. Étude du voile périphérique	179
8.2.1. Introduction	179
8.2.2. Pré dimensionnement	179
8.2.3. Méthode de calcul	180
8.3. Poteaux mixtes	184
8.3.1. Introduction.	184
8.3.2. Méthode simplifiée de calcul	184
8.3.3. Conditions d'utilisation de la méthode simplifiée de calcu	ıl185
8.3.4. Vérification de poteau vis-à-vis de compression axial	185
8.3.5. Hypothèse de calcul	186
Chapitre 9 : calcul des fondations	
9.1.Introduction	191
9.2. Fonctions assurées par les fondations	191
9.3. Choix du type de fondation	191
9.4. calcul des fondations	192
9.5. Vérification de la mécanique des sols	194
9.6. Calcul des armatures transversales	206
9.6.1 Ferraillage des débords	207
9.6.2. Vérification des contraintes à l'ELS	207

Introduction générale

Dans le cadre de ce projet, nous avons procédé au calcul d'un bloc de bâtiment en charpente métallique à usage bureaux (R+8 et R+3) avec sous- sol contreventé par noyau central, implantée dans une zone de forte sismicité, ils sont déjà réalisés à Alger (Belcourt).

Le problème posé est celui d'assurer la stabilité et la résistance de notre construction aux différents effets tous en prenant en considération le côté architectural et économique.

Dans notre étude, on va consacrer le premier chapitre aux généralités qui comprennent la présentation complète de l'ouvrage, la définition des différents éléments et le choix des matériaux à utiliser.

L'objectif du deuxième chapitre et l'étude du bâtiment sous la neige et le vent.

Le calcule des éléments secondaires, l'acrotère, les escaliers et les murs rideaux sont présente dans le troisième chapitre

Le pré dimensionnement des éléments, tels que les planchers, poteaux et poutres de bâtiment sont présentés dans le quatrième chapitre.

En plus du calcul statique, nous allons essayer de chercher un bon comportement dynamique de notre structure ce qui fera l'objet de 5éme chapitre on modélise la structure R+3 et R+8, avec un noyau propose par qui offre à la structure un comportement dynamique qui satisfait les critères imposés par les règles parasismiques Algériennes (RPA99/version 2003).

Le 6éme chapitre traite les différents assemblages des éléments de la structure. Alors que Le 7^{eme} chapitre porte sur la vérification au flambement et déversement de l'ossature en charpente métallique et le calcul des ferraillages des éléments résistants, fondé sur les résultats du logiciel ROBOT

Le 8éme chapitre se basera sur l'étude des éléments de sous-sols, le dernier chapitre est consacré à l'étude de l'infrastructure.

Et enfin nous terminons notre étude par une conclusion générale qui résume l'essentiel de notre travail.

Liste des tableaux

Chapitre 2 : Etude climatique

Table 2. 1: valeurs de coeff de pression externe	15
Table 2. 2 : les valeurs de la pression dynamique de reference	16
Table 2.3: valeurs de pression dynamiques sens V1 Cpi = -0.5	
Table 2.4: valeurs de la pression dynamique sens V1 cpi = 0.8	
Table 2.5:valeurs de pression dynamique sens V2 Cpi=-0.5	
Table 2.6: valeurs de pression dynamique sens V2 Cpi=0.8	
Table 2.7: les valeurs de Cpe pour la terrasse	
Table 2.8: les valeurs de la pression dynamique sens V1 Cpi=0.8	
Table 2.9: valeurs de pression dynamique sens V1 Cpi=-0.5	
Table 2.10 :valeurs de pression dynamique sens V2 Cpi=0.8	
Table 11: valeurs de pression dynamique sens V2 Cpi=-0.5	
Table 2.12: valeurs de coeff de pression externe	
Table 2.13: valeurs de pression dynamique de reference	
Table 2.14: valeurs de pression dynamique sens V2 Cpi=-0.5	
Table 2.15: valeur de pression dynamique sens V2 Cpi=0.8	
Table 2.16: les valeurs de Cpe pour terrasse (R+3)	
Table 2.17: valeurs de pression dynamique sens V1 Cpi=0.8	
Table 2.17: valeurs de pression dynamique sens V1 Cpi=-0.5	
Table 2.18. Valeur de presssion dynamique sens VT Cp1=-0.5	20
Chapitre 3 : prédimensionnement des éléments secondaires	
enapities. preumensionnement des elements secondaires	
Tableau 3.1- Les efforts sur l'acrotère	32
Tableau 3.2 - Charges du palier	
Tableau 3.3- Charges de la paillasse	
Tableau 3.4- Charge à ELU et ELS	
Tableau 3.5 - Ferraillage des escaliers	
Tableau 3.6 - Vérification à ELS	
Tableau 3.7- Vérification de la fleche des escaliers	
Tuoicuu 517 Yerintuuron de 14 neene des escanors	
Chapitre 4 : prédimensionnement des éléments principaux	
Tableau 4.1- caractéristiques du profilé IPE360	55
Tableau 4.2: caracteristiques du profilé IPE400	72
Tableau 4.3: valeurs de reactions Rult Rser	73
Tableau 4.4: valeurs de reactions	75
Tableau 4.5-la descente de charge permanente pot d'angle	81
Tableau 4.6- la descente de charges permanentes pot central	81
Tableau 4.7- la descente de charge permanente pot de rive	81
Tableau 4. 8-charge d'exploitation	
Tableau 4.9- les efforts normaux, les section et le choix des profilés	83
·	
Chapitre 5 : prédimensionnement des éléments principaux	
Tableso 5.1, valoure des manelies D	00
Tableau 5.1: valeurs des penalités P	
Tableau 5.2 : valeurs des pénalités P pour R+3	98

Chapitre 6 : Vérification des ossatures

Tableau 6.1: les efforts internes pot HEA300 (cas1 comb1)	106
Tableau 6.2:verification de pot HEA300 au flambement	
Tableau 6.3: les efforts internes pot 2HEA400 (cas1 comb1)	
Tableau 6.4: verification du pot 2HEA400 au flambement	
Tableau 6.5: les efforts internes du pot HEA300 (cas2 comb1)	
Tableau 6.6: verification du pot HEA300 au flambement	
Tableau 6.7: les efforts internes du pot 2HEA400 (cas2 comb1)	
Tableau 6.8: verification du pot 2HEA400 au flambement	
Tableau 6.9:les efforts internes du pot HEA300 (cas3 comb1)	
Tableau 6.10: verification du pot HEA300 au flambement	
Tableau 6.11: les efforts internes du pot 2HEA400 (cas3 comb1)	
Tableau 6.12:verification du pot 2HEA400 au flambement	
Tableau 6.13: les efforts internes du pot HEA300 (cas1 comb2)	
Tableau 6.14: verification du pot HEA300 au flambement	
Tableau 6.15: les efforts internes du pot 2HEA400 (cas1 comb2)	
Tableau 6.16: verification du pot 2HEA400 au flambement	
Tableau 6.17:les efforts internes du pot HEA300 (cas2 comb2)	
Tableau 6.18: vérifications du pot HEA300 au flambement	111
Tableau 6.19: les efforts internes du pot 2HEA400 (cas2 comb2)	
Tableau 6.20: verification du pot 2HEA400 au flambement	
Tableau 6.21: les efforts internes du pot HEA300 (cas3 comb2)	112
Tableau 6.22: verification du pot HEA300 au flambement	
Tableau 6.23: les efforts internes du pot 2HEA400 (cas3 comb2)	112
Tableau 6.24: verification du pot 2HEA400 au flambement	112
Tableau 6.25: les efforts internes du pot HEA300 (cas1 comb3)	113
Tableau 6.26: verification du pot HEA300 au flambement	113
Tableau 6.27: les efforts internes du pot 2HEA400 (cas1 comb3)	113
Tableau 6.28: verification du pot 2HEA400 au flambement	113
Tableau 6.29: les efforts internes du pot HEA300 (cas2 comb3)	114
Tableau 6.30: verification du pot HEA300 au flambement	114
Tableau 6.31: les efforts internes du pot 2HEA400 (cas2 comb3)	114
Tableau 6.32: verification du pot 2HEA400 au flambement	114
Tableau 6.33: les efforts internes du pot HEA300 (cas3 comb3)	115
Tableau 6.34: verification du pot HEA300 au flambement	115
Tableau 6.35: les efforts internes du pot 2HEA400 (cas3 comb3)	
Tableau 6.36:verification du pot 2HEA400 au flambement	115
Tableau 6.37: verification du pot HEA300 au deversement (cas1 comb1)	
Tableau 6.38: verification du pot 2HEA400 au deversement (cas1 comb1)	117
Tableau 6.39: verification du pot HEA300 au deversement (cas2 comb1)	
Tableau 6.40: verification du pot 2HEA400 au deversement (cas2 comb1)	117
Tableau 6.41: verification du pot HEA300 au deversement (cas3 comb1)	118
Tableau 6.42: verification du pot 2HEA400 au deversement (cas3 comb1)	
Tableau 6.43: verification du pot HEA300 au deversement (cas1 comb2)	
Tableau 6.44: verification du pot 2HEA400 au deversement (cas1 comb2)	
Tableau 6.45: verification du pot HEA300 au deversement (cas2 comb2)	
Tableau 6.46: verification du pot 2HEA400 au deversement (cas2 comb2)	120
Tableau 6.47: verification du pot HEA300 au deversement (cas3 comb2)	120

Tableau 6.48: verification du pot 2HEA400 au deversement (cas3 comb2)	120
Tableau 6.49: verification du pot HEA300 au deversement (cas1 comb3)	121
Tableau 6.50: verification du pot 2HEA400 au deversement (cas1 comb3)	121
Tableau 6.51: verification du pot HEA300 au deversment (cas2 comb3)	122
Tableau 6.52: verification du pot 2HEA400 au deversement (cas2 comb3)	122
Tableau 6.53: verification du pot HEA300 au deversement (cas3 comb3)	122
Tableau 6.54: verification du pot 2HEA400 au deversement (cas3 comb3)	123
Tableau 6.55: choix final des profiles du poteau	
Tableau 6.56: choix final des profiles (PP , PS et contreventement)	
Tableau 6.57: ferraillage vertical du noyau 1	138
Tableau 6.58: ferraillage vertical du noyau 2	138
Tableau 6.59: ferraillage horizontal de noyau 1	138
Tableau 6.60: ferraillage horizontal de noyau 2	139
Chapitre 7 : Calcul des assemblages	
Tableau 7.1: caracteristiques des boulons	142
Tableau 7.2:surface de compression sous plaque d'essias	169
Chapitre 8 : Calcul des éléments de sous-sol	
Tableau 8.1: ferraillage du voile péripherique	181
Tableau 8.2 : nouveau choix des armatures d'appuis	182
Tableau 8.3: verification des contraintes à ELS	
Tableau 8.4: nouveau choix des armatures	
Tableau 8.5: nouvelle verification des contraintes a ELS	
Tableau 8.6: choix final de ferraillage de voile pérépherique	184
Chapitre 9 : Calcul des fondations	
Tableau 9.1 : les surfaces des semelles isoléé revenantes a chaque pot	
Tableau 9.2 : sections des semelles filantes	
Tableau 9.3: contraintes sous radier a l'ELU	
Tableau 9.4 : contraintes sous radier a l'ELS	
Tableau 9.5: ferraillage des panneaux de radier	
Tableau 9.6 : verificaton de CNF	
Tableau 9.7 : verification des contraintes a l'ELS	
Tableau 9.8: les nouvelles valeurs des sections	
Tableau 9.9 : ferraillage des nervures (sens porteur)	
Tableau 9.10 : ferraillage des nervures (sens non porteur)	
Tableau 9.11: verification de CNF	
Tableau 9.12 : verification des contraintes à l'ELS	
Tableau 9.13: verification des contraintes du béton et d'acier	208

Liste des figures

Chapitre 1 : présentation de l'ouvrage

Figure 1.1: situation de projet	3
Figure 1.2: Elements constructifs du plancher mixte	5
Figure 1.3: Diagramme contraintes / deformations à ELU	
Figure 1.4: Diagramme contraintes / Déformations de l'Acier	8
Figure 1.5: Bac d'acier type HiBond 55-770	10
Figure 1.6 : Caractéristiques mécaniques du Bac d'acier Hi-Bond 55-770	010
Chapitre 2 : Etude climatique	
Figure 2.1: directions du vent	13
Figure 2.2: legende pour terrasse	
Figure 2.3: direction du vent (R+3)	22
Figure 2.4: legende pour terrasse (R+3)	
Chapitre 3 : prédimensionnement des éléments secondaires	
Figure 3.1- Dimensions de l'acrotere	29
Figure 3.2 - Sollicitation de l'acrotère	
Figure 3.3- diagrammes des efforts a l'ELU	
Figure 3.6- Ferraillage de l'acrotère	
Figure 3.7 - Les éléments constituant l'escalier	
Figure 3.8- Mur Rideau	
Figure 3.9- Mise en place par systeme à résille	
Figure 3.11- Verre feuilleté de 25+25	
Chapitre 5 : Etude dynamique et sismique	
Figure 5.1: vue en 3D	92
Figure 5.2: Mode 1 (translation sens x-x)	92
Figure 5.3: Mode 2 (translation sens y-y)	93
Figure 5.4: Mode 3 (torsion)	93
Figure 5.5: Mode 1 (translation sens x-x) R+3	
Figure 5.6: Mode 2 (translation sens y-y)	
Figure 5.7: Mode 3 (torsion)	
Figure 5.8: vue 3D	
Chapitre 6 : Vérification des ossatures	
Figure 6.1: schema d'un voile plein et disposition du ferraillage	136
Figure 6.2: la disposition des voiles de notre structure	137
Figure 6.3 : ferraillage de voile V01y (60*540)	138
Figure 6.4 : ferraillage de voile V01x (60*360)	138
Figure 6.5 : resultat de ferraillage voile V01x par ROBOT	
Figure 6.6 : resultats de ferraillage voile V01y par ROBOT	

Chapitre 7 : Calcul des assemblages

Figure 7.1 : type des assembalges boulonné	142
Figure 7.2: les dispositions constructives des boulons	
Figure 7.3: pied de poteau articule	
Figure 7.4: pied de poteau avec tige d'ancrage	
Tigure 7.4. pied de poteda avec tige d'anerage	107
Chapitre 8 : Calcul des éléments de sous-sol	
Figure 8.1: illustrant les dimensions du panneau plus sollicite	179
Figure 8.2: section transversale d'un pot totalement enrobé	185
Figure 8.3: dimensios du poteau totalement enrobe	186
Chapitre 9 : Calcul des fondations	
Figure 9.1 : semelle isolée sous poteau	193
Figure 9.2 : semelle fimante	194
Figure 9.3: schéma statique	198
Figure 9.4 : contraintes sous radier	
Figure 0.5: schéma de nanneau le plus sollicité	

Présentation de l'ouvrage

Etude climatique

Prédimensionnement des éléments secondaires

Prédimensionnement des éléments principaux

Etude dynamique et Sismique

Vérification des ossatures

Calcul des assemblages

Etude de sous sol

Etude de fondation

Introduction Générale

Conclusion Générale

1.1. Introduction

Le présent travail a pour objet d'étudier des blocs de batiments (R+8; R+3 +SS) à usage multiple (bureau+parking+Archive+Salle de conférence) dont la structure est en charpente métallique et mixte, cet ouvrage est implante dans la wilaya d'Alger qui classe comme zone de forte sismicité Zone III selon le règlement en vigueur RPA99/2003 et classe comme étant un ouvrage de grande importance dans le groupe 1B.

L'étude de ce projet comprend la partie conception des éléments tels que, les poteaux, poutres, contreventements, planchers, fondations et le calcul des éléments secondaires ainsi que l'étude sismique de la structure, qui permet d'évaluer son comportement lors d'un séisme.

Le calcul sera fait conformément aux Règles Parasismiques Algériennes (**RPA99 /2003**) et aux règles de charpente métallique **CCM97**, **EUROCODE3 ET EUROCODE4**.

1.2. Situation



Figure 1.1: situation de projet

1.3. Description architecturelle

Notre structure est charpente mixte avec un noyau central en béton armé et elle a une forme irrégulière en plan, le plancher terrasse est inaccessible.

3.1. Occupation des niveaux

- sous sol pour Parking-auto.
- Les 8 niveaux + RDC pour les bureaux et salles de reunions.

3.2. Grandeurs de l'ouvrage

• En plan

o La longueur totale = 65.5 m

o La largeur totale = 54.4 m

• En elevation

o La hauteur totale du bâtiment : H = 30,8 mo La hauteur du sous-sol : h = 3,24 mo La hauteur des 8 étages : h = 3,4 mo La hauteur de RDC : h = 3,6 m

1.4. Description structurelle

4.1. Type de structure

La structure faisant l'objet de notre étude est composée principalement de poutres et de poteaux (portiques Mixtes) ainsi que d'un noyau central en béton armé.

La charge verticale dans sa majorité sera reprise par les portiques. En revanche les charges horizontales sont reprises par le noyau centrale.

Assemblage

L'assemblage des éléments de notre construction est assuré par des boulons de haute résistance HR, des boulons ordinaires. ainsi que des soudures.

• Contreventement

Le contreventement de la tour est assuré initialement par un noyau central en béton armé de forme rectangulaire .

• Fondation

Les fondations seront réalisées conformément à l'étude géotechnique. Elles seront de type isolée ou filantes ou radier général ; (Selon le rapport du Sol).

Les planchers

Vu leurs usage nous avons opté pour un de plancher collaborant HI-BOND55-750 reposant sur des solives qui a leur reposent sur des poutres pour les planchers terrasse et courant. Et plancher dalle pleine pour le noyau central.

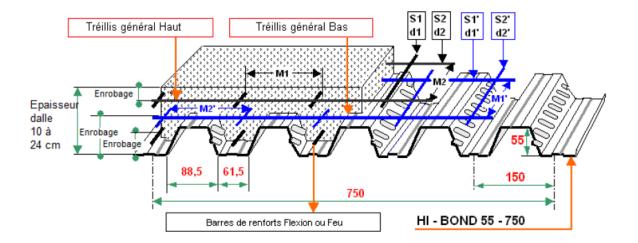


Figure 1.2: Elements constructifs du plancher mixte

• Escalier

Ils servent à relier les niveaux successifs et de faciliter les déplacements dans les étages, et serviront aussi comme escaliers de secours en cas d'incendie et accidents majeurs.

Le bâtiment étudié comporte :

- deux escaliers en béton armé, desservant le premier étage jusqu'au dernier étage.

• Enveloppe exterieur

L'enveloppe extérieure sera en Mur-rideau seront dimensionne dans le 3eme chapitre (calcul des éléments secondaire).

1.5. Caractéristiques des matériaux

5.1. Le Béton

On appelle béton ; le matériau constitué par le mélange dans les proportions convenables de : ciment, granulats et l'eau.

La composition du béton et pour un béton sera déterminé selon la granulométrie des agrégats utilisés.

• Résistance caractéristique à la compression

Le béton est défini par sa résistance à la compression à 28 jours. Cette dernière est notée par fc28.

La résistance de notre béton est prise égale à fc28 = 25 MPa. Cette résistance est mesurée sur des éprouvettes cylindriques normalisées de 16 cm de diamètre et de 32 cm de hauteur.

• Résistance caractéristique à la traction

Elle est désignée par ft28 et déterminée par plusieurs essais . On peut citer :

- Traction directe
- Traction par fondage
- Traction par flexion

La résistance caractéristique à la traction est conventionnellement définie par la relation :

$$f tj = 0.6 + 0.06fcj$$
 (MPa)

Pour tout l'ouvrage on utilise le même dosage en béton avec une résistance caractéristique à la compression fc28 et a la traction f tj telle que :

$$f_{c28} = 25 \text{ MPa}$$
 donc $f_{jt} = 2,1 \text{ MPa}$

• Coefficient de Poisson

Le coefficient de poisson est le rapport entre l'augmentation relative de la dimension transversale et le raccourcissement relatif longitudinal.

$$\upsilon = \frac{deformation \ transversale}{Deformation \ longitudinale}$$

U = 0 béton fissuré à l'ELU

U = 0.2 béton non fissuré à l'ELS

• Module de déformation longitudinale

Ce module est défini sous l'action des contraintes normales d'une longue durée ou courte durée.

Module de déformation instantanée :

Pour des charges d'une durée d'application inférieure à 24 heures

$$E_{ij} = 11000 \times \sqrt[3]{f_{cj}}$$
 D'où : $E_{i28} = 32164,195 \text{ MPa}$

Module de déformation différée

Pour des charges de longue durée d'application :

$$E_{vj} = 37000 \times \sqrt[3]{f_{cj}}$$
 D'où : $E_{i28} = 108188,656 MPa$

• Contraintes limites

Par définition ; « un état limite » est un état particulier au-delà duquel une structure, ou une partie de cette structure cesse de remplir les fonctions ou ne satisfait plus aux conditions pour lesquelles elle a été conçue.

Lorsqu'un état limite est atteint une condition requise de la structure ou d'un de ses éléments pour remplir son objet est strictement satisfaite mais cesserait de l'être en cas de modification défavorable d'une action, on distingue :

L'état limite ultime ELU

L'état limite ultime correspond à la valeur maximale de la capacité portante :

- Equilibre statique
- Résistance de la structure ou de l'un de ses éléments
- Stabilité de forme

La contrainte ultime du béton en compression est donnée par la formule suivante :

$$\sigma_{bu} = \frac{0.85 \, fc28}{\gamma_b} \quad [4]$$

$$\gamma^b \quad : \text{Coefficient de sécurité.}$$

$$\gamma^b = 1.5 \quad \text{cas des actions courantes transitoires}$$

$$\gamma^b = 1.15 \quad \text{cas des actions accidentelles.}$$

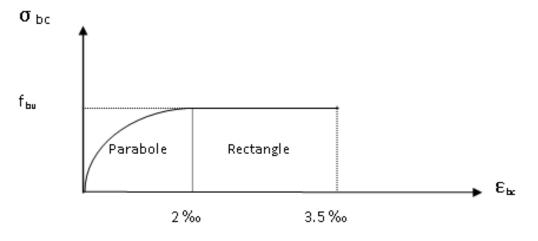


Figure 1.3: Diagramme contraintes / deformations à ELU

L'état limite de service ELS

Qui constitue les frontières au-delà desquelles les conditions normales d'exploitation et de durabilité de la construction ou de l'un de ses éléments ne sont plus satisfaites :

- Ouverture des fissures
- Déformations excessives des éléments porteurs
- Vibrations inconfortables pour les usagers, etc

La contrainte limite de service est donnée par :

 $\sigma_{bc} = 0.6 f_{c28} = 15 MPa [4]$

5.2. Aciers

L'acier est un matériau caractérisé par sa bonne résistance à la traction. Nous utilisons les types d'aciers suivants

Aciers de béton

- Ronds lisses (R.L): FeE235.
- Haute adhérence (H.A): FeE500.
- Treillis soudée (T.S): TLE52, $\emptyset = 6$ mm pour les Dalles.

⇒ Contraintes limites de l'acier

• Etat limite ultime ELU

On adoptera un diagramme contraintes déformations déduit des diagrammes précédents par affinité parallèle à la tangente à l'origine dans le rapport $1/\gamma s$.

- σs : contrainte de l'acier
- $\sigma_S = fe/\gamma_S$
- γs : coefficient de sécurité de l'acier, il a pour valeur :
- $\gamma s = 1.15$ cas d'actions courantes.
- γ s= 1.00 cas d'actions accidentelles.

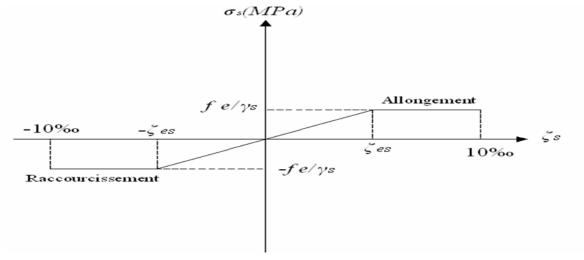


Figure 1.4: Diagramme contraintes / Déformations de l'Acier

Avec ε_s : allongement relatif de l'acier

• Etats limites de service ELS

Fissuration peu nuisible, pas de vérification.

Fissuration préjudiciable : $\sigma_s = \min [2/3 \text{ fe}; 150 \, \eta]$ [4]

Fissuration très préjudiciable : $\sigma_s = \min [1/2 \text{ fe}; 110 \, \eta]$

Avec:

 η : Coefficient de fissuration tel que :

 $\eta = 1$ pour des aciers ronds lisses

 $\eta = 1.6$ pour des aciers de H.A

Module d'élasticité longitudinale de l'acier

Le module d'élasticité de l'acier sera pris égale à : Es=2.1 x 105 MPa.

• Acier de Charpente métallique

Les différentes caractéristiques mécaniques des aciers de Charpente métallique Sont les suivantes :

-module d'élasticité longitudinale E = 2.1 E5 Mpa

-Coefficient de poisson $\mu = 0.3$

-Module d'élasticité transversale G = 8.1 E4 Mpa

-Coefficient de dilatation linéaire: $\lambda = 11 \text{ E-6}$

-Masse volumique de $\gamma = 7850 \text{ daN/m}3$

-Contrainte limite conventionnelle d'élasticité :

L'ossature métallique feE360/S275 : fy = 400 MpaBoulons ordinaires feE360/S275 : fy = 400 Mpa

Boulons à haute résistance

-Contrainte limite élastique de cisaillement pur (critère de Von Mise): $\tau_e = \sigma_e / \sqrt{3}$

Bac d'acier

Le bac d'acier utilisé c'est le **HiBond 55-750** cet élément forme un coffrage pour la dalle en béton, il permet :

- D'assurer un coffrage efficace et étanche en supprimant les opérations de décoffrage.
- De constituer une plateforme de travail avant la mise en œuvre du béton.
- Le Hi-Bond utilisé dans notre calcul a les caractéristiques géométriques montrées dans la figure suivante

HiBond - Nominal Dimensions

Figure 1.5: Bac d'acier type HiBond 55-770

Les caractéristiques mécaniques du bac d'acier HI-BOND 55 sont regroupées dans le tableau ci-dessous

	ominale de la ble	Section (cm ²)	Poids* (daN/m ²)	Position fibre neutre (cm)		Position fibre neutre (cm)		Moment d'inertie	Modules de (cm	_
galvanisée	nue			v _i	v _s	i (cm ⁴)	I/v _i	i/v _s		
0,75	0,71	11,183	9,56	2,75	2,75	57,544	20,925	20,925		
0,88	0,84	13,231	11,23	2,75	2,75	68,080	24,756	24,756		
1,00	0,96	15,121	12,83	2,75	2,75	77,805	28,292	28,292		
1,20	1,16	18,271	15,30	2,75	2,75	94,015	34,187	34,187		
1.20	1.16	18.271	15.30	2.75	2.75	94.015	34.187	34.13		

Figure 1.6 : Caractéristiques mécaniques du Bac d'acier Hi-Bond 55-770

• Les connecteurs

La liaison acier - béton est réalisée par des connecteurs, ils permettent de développer le comportement mixte entre la poutre en acier et le béton.

La connexion est essentiellement prévue pour résister au cisaillement horizontal.

Deux types de connecteurs principaux sont disponibles, les goujons soudés et les connecteurs cloués.

Dans notre cas, on utilise des goujons de hauteur **h=95mm** et de diamètre **d=19mm**, qui sont assemblés par soudage.

2.1.Introduction:

Scientifiquement, le vent est un phénomène naturel qui résulte le déplacement naturel de l'atmosphère et le déplacement d'air, de gaz.

L'objet de cette partie de l'étude est l'évaluation des sollicitations d'ensembles engendrés par l'action du vent, ainsi le calcul est conduit conformément au **RNV2013** [2].

Dans le calcul, le bâtiment sera assimilé à une console dans le sol et sera soumis a une pression le long de sa hauteur.

Le calcul doit être effectué séparément pour chacune des directions perpendiculaires aux différentes parois de l'ouvrage (V1, V2).

Vu l'élancement de notre bâtiment et la nature de l'enveloppe extérieure (mur rideau), une étude au vent est nécessaire et sera donc traitée dans ce chapitre.

2.2.Application du Règlement Neige et Vent 2013

Les étapes à suivre pour la vérification de la stabilité de la construction catégorie I

- Détermination de coefficient dynamique C_d
- Détermination de pression dynamique du point
- Détermination des coefficients de pression extérieure Cpe et intérieur Cpi.
- Calcul des forces de frottements.
- Calcul de la résultante des pressions agissant à la surface de la construction.

❖ On commence par le batiment R+8

2.3. Hypothèse de calcul:

Le vent souffle dans les deux directions.

2. 3.1 Calcul de la pression du vent sur les parois de la structure :

La pression du vent est donné pa la formule suivante :

$$q_j \hspace{-0.5em}=\hspace{-0.5em} C_d \hspace{0.4em} W(Z_j) \hspace{0.4em} tel \hspace{0.4em} que \hspace{0.4em} W(Z_j) \hspace{-0.5em}=\hspace{-0.5em} P_{dyn} \hspace{0.4em} (Z_j) \hspace{0.4em} [C_{pe} \hspace{-0.4em}-\hspace{-0.4em} C_{pi}].$$

Où:

C_d: Coefficient dynamique

C_{pe}: Coefficient de pression extérieur

C_{pi}: Coefficient de pression intérieur

P_{dyn}: pression dynamique

Vu la dissymétrie et les décrochement de notre structure on propos d'étudier le cube qui la circonscrit (Fig. 1); deux directions de vent sont considérées pour le calcul :

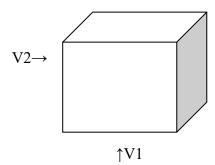


Figure 2.1: directions du vent

• Données relatives du bâtiment et site :

Terrain de catégorie IV d'où :

K_T=0.234(facteur de terrain)

Q_{ref}: la pression dynamique de référence

Z₀(m)= 1m (paramètre de rugosité)

 $Z_{min} = 10m$ (hauteur minimale)

 $\epsilon {=}~0.67$ (Coefficient utilisé pour le calcul de coefficient C_{d}

2.3.2 détermination du coefficient dynamique C_d:

• Calcul de coefficient dynamique Cd

Le coefficient dynamique C_d tient compte des effets de réduction dus à l'imparfaite corrélation des pressions exercées sur les parois.

Le coefficient dynamique C_d détermine soit par la formule générale (3.1 [2]) ou on prend Cd=1 si on a l'un des cas suivant :

- -Bâtiments, dont la hauteur est inférieure à 15m.
- -Eléments de façade et de toiture dont la fréquence propre est inférieure à 5 Hz.

-Bâtiment à ossature comportant des murs, dont la hauteur est à la fois inférieure à 100m et à 4 fois la dimension du bâtiment mesurée dans la direction perpendiculaire à la direction de vent.

-cheminée à section transversale circulaire, dont la hauteur est inférieure à 60m et à 6,5 fois le diamètre.

 \mathbf{b} (\mathbf{m}): qui désigne la dimension horizontale perpendiculaire à la direction du vent prise à la base de la construction.

h(m) : qui désigne la hauteur totale de la construction.

d(m) : qui désigne la dimension horizontale à la direction du vent.

On a

h=30.8m< 100.....ok
$$b = 20.2 \times 4 = 80.8 > h = 30.8 \dots ok \quad \text{(Pour V1)}$$

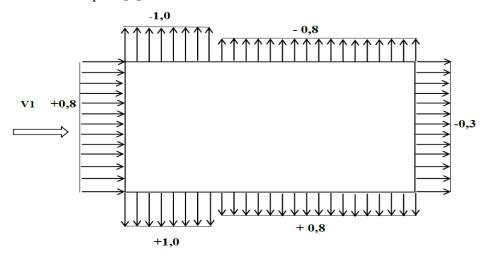
$$L = 48.00 \times 4 = 192 > h = 30.8 \dots ok \quad \text{(Pour V2)}$$

Donc on a:

Bâtiment à ossature comportant des murs, dont la hauteur est à la fois inférieure à 100m et à 4 fois la dimension du bâtiment mesurée dans la direction perpendiculaire à la direction de vent

Donc $C_d=1$ pour les 2 directions

• Dans notre cas:


Direction
$$V_1$$
: b=48.00m
 $H=30.8m$
Direction V_2 : b=20.2m
 $H=30.8m$

2.3.3 Détermination des coefficients de pression extérieure :

• Parois verticales :

On
$$a: S > 10m^2 => C_{pe} = C_{pe.10}$$

S: désigne la surface chargée de la paroi considérée.

Les valeurs de C_{pe} sont résumées dans le tableau suivant

Table 2. 1: valeurs de coeff de pression externe

Zone	C_{pe}
A	-1.0
B'	-0.8
D	+0.8
Е	-0.3

2.3.4 Détermination de coefficient de pression intérieur, $C_{pi}\ [2]$:

Dans le cas de bâtiments avec cloisons intérieures, les valeurs suivantes doivent être utilisées :

$$C_{pi} = 0.8$$

$$C_{pi} = -0.5$$

La structure est de hauteur totale h= 30.8 > 10m ; ce qui fait qu'il y a lieu de subdivision le maître couple ; la pression dynamique sera calculée :

- à la mi-hauteur de chaque étage pour ce qui concerne la paroi verticale .
- à la hauteur totale h= 30.8m pour la toiture.

• Calcul de $C_e(Z)$:

La structure est peu sensible aux excitations dynamiques, donc le coefficient d'exposition au vent sera calculée par la formule suivante :

$$C_e(Z) = C_t(Z)^2 * C_r(Z)^2 * (1 + 7*K_t/C_r(Z) * C_t(Z))$$

Tel que : Ce (Z) : coefficient d'exposition au vent

C_r (Z) : coefficient de rugosité ;

Il est donné par la formule suivante :

• $C_r(Z) = K_t * ln(Z/Z_0) pour Z_{min} < Z < 200m$

 $\bullet \quad C_r\left(Z\right) = K_t * ln(\left.Z_{min} / Z_0\right.) pour \left.Z < Z_{min}\right.$

Z: (m) est la hauteur considérée.

Table 2. 2 : les valeurs de la pression dynamique de reference

$\mathbf{Z}_{\mathbf{j}}$	C_{r}	Ce	q _{dyn} (N/m)
20.2	0,703	1.64	617.33
30.8	0,802	1,958	734

2.3.5 Valeurs de la pression du vent sur les parois $verticale(q_j)$:

Les valeurs de la pression dynamique et la pression au vent sur les parois verticales sont récapitulés dans les tableaux 2.3, 2.4, 2. 5 et 2.6 ,pour les directions V1 et V2 .

a. La direction V_1 :

Cas $n^{\circ}1$: $C_{pi}=-0.5$

Table 2.3: valeurs de pression dynamiques sens V1 Cpi = -0.5

Z _j (m)	Zone	C_d	C_{pe}	C_{pi}	q _{dyn} (N/m²)	$q_j(N/m^2)$
	A'	1	-1,0	-0,5	617.33	-308.665
20.2	B'	1	-0,8	-0,5	617.33	-185.199
	D	1	+0,8	-0,5	617.33	802.52
	Е	1	-0,3	-0,5	617.33	123.46
	A'	1	-1,0	-0,5	734	-371.5
30.8	B'	1	-0,8	-0,5	734	-222.9
20.0	D	1	+0,8	-0,5	734	965.9
	E	1	-0,3	-0,5	734	148.6

 $\underline{Cas\ n^{\circ}2:}$ $C_{pi}=0,8$

Table 2.4: valeurs de la pression dynamique sens V1 cpi = 0.8

Z _j (m)	Zone	C_{d}	Cpe	C_{pi}	q _{dyn} (N/m ²)	$q_j(N/m^2)$
	A'	1	-1,0	0.8	617.33	-1111.194
20.2	B'	1	-0,8	0.8	617.33	-987.728
20.2	D	1	+0,8	0.8	617.33	0
	Е	1	-0,3	0.8	617.33	-679.063
	A'	1	-1,0	0.8	734	-1321.2
30.8	B'	1	-0,8	0.8	734	-1174.4
	D	1	+0,8	0.8	734	0
	Е	1	-0,3	0.8	734	-807.4

b. La direction V_2 :

$\underline{\text{Cas } n^{\circ}1:} \text{ C}_{pi}$ =-0,5

Table 2.5:valeurs de pression dynamique sens V2 Cpi=-0.5

Z _j (m)	Zone	C_d	Cpe	C_{pi}	q _{dyn} (N/m ²)	$q_j(N/m^2)$
	A	1	-1,0	-0,5	617.33	-308.665
	В	1	-0,8	-0,5	617.33	-185.19
20.2	С	1	-0,5	-0,5	617.33	0
	D	1	+0,8	-0,5	617.33	802.529
	Е	1	-0,3	-0,5	617.33	123.46
	A	1	-1,0	-0,5	734	-367
	В	1	-0,8	-0,5	734	-220.2
30.8	С	1	-0,5	-0,5	734	0
	D	1	+0,8	-0,5	734	954.2
	Е	1	-0,3	-0,5	734	146.8

$\underline{\text{Cas } n^{\circ}2:} C_{pi}=0,8$

Table 2.6: valeurs de pression dynamique sens V2 Cpi=0.8

Z _j (m)	Zone	C_d	Cpe	C_{pi}	q _{dyn} (N/m ²)	$q_j(N/m^2)$
	A	1	-1,0	0,8	617.33	-1111.194
	В	1	-0,8	0,8	617.33	-987.728
20.2	С	1	-0,5	0,8	617.33	-802.529
	D	1	+0,8	0,8	617.33	0
	Е	1	-0,3	0,8	617.33	-679.063
	A	1	-1,0	0,8	734	-1321.2
	В	1	-0,8	0,8	734	-1174.4
30.8	С	1	-0,5	0,8	734	-954.2
	D	1	+0,8	0,8	734	0
	Е	1	-0,3	0,8	734	-807.4

2.3.6 Valeurs de la pression du vent sur la toiture (q_j) :

• toiture

La hauteur de l'acrotère hp = 0,6m.

$$e = Min[b; 2h] = [20.2; 61.6] = 20.2m$$

Nous avons une toiture plate $\alpha \le 5^{\circ}$ selon cet article les différentes zones de pression F, G, H et I sont représentées sur la (**Fig 2.2**).

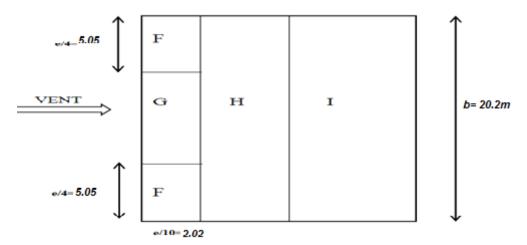


Figure 2.2: legende pour terrasse

Selon le (**Tableau 5.2**) on a : $\frac{h_p}{h} = \frac{0.6}{30.8} = 0.019$

Les valeurs de C_{pe} sont résumées dans le tableau suivant :

Table 2.7: les valeurs de Cpe pour la terrasse

Zone	$C_{pe_{10}}$
F	-1.6
G	-1.1
H	-0.7
I	-0.2

a. Direction V_1 :

Cas $n^{\circ}1$: $C_{pi}=0.8$

Table 2.8: les valeurs de la pression dynamique sens V1 Cpi=0.8

Zone	C_d	C_{pe}	C_{pi}	q _{dyn} (N/m ²)	q_j (N/m ²)
F	1	-1,6	0,8	734	-1761.6
G	1	-1,1	0,8	734	-1394.6
Н	1	-0,7	0,8	734	-1101
I	1	-0,2	0,8	734	-734

Cas n°2: Cpi=-0,5

Table 2.9: valeurs de pression dynamique sens V1 Cpi=-0.5

Zone	C_d	C_{pe}	C_{pi}	q_{dyn} (N/m ²)	$q_j (N/m^2)$
F	1	-1,6	-0,5	734	-807.4
G	1	-1,1	-0,5	734	-440.4
Н	1	-0,7	-0,5	734	-146.8
I	1	0,2	-0,5	734	513.8

b. Direction V₂:

 $Cas n^{\circ}1 : C_{pi}=0,8$

Table 2.10 :valeurs de pression dynamique sens V2 Cpi=0.8

Zone	C_d	C_{pe}	C_{pi}	q _{dyn} (N/m ²)	$q_j (N/m^2)$
F	1	-1,6	0,8	734	-1761.6
G	1	-1,1	0,8	734	-1394.6
Н	1	-0,7	0,8	734	-1101
I	1	-0,2	0,8	734	-734

 $Cas n^{\circ}2: C_{pi}=-0,5$

Table 11: valeurs de pression dynamique sens V2 Cpi=-0.5

Zone	C_d	C_{pe}	C_{pi}	q _{dyn} (N/m ²)	q_j (N/m ²)
F	1	-1,6	-0,5	734	-807.4
G	1	-1,1	-0,5	734	-440
Н	1	-0,7	-0,5	734	-146.8
I	1	0,2	-0,5	734	513.8

2.4. Effet de frottement F_{fr} :

Les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent est inférieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent.

a. Direction V1

Surface parallèle au vent
$$1478.4m^2$$

Surface perpendiculaires au vent $622.16 \times 4 = 2488.64m^2$
 $2488.64m^2 > 1478.4m^2$

La condition est vérifiée alors la force de frottement est négligeable dans la direction v1

b. Direction V2

Surface parallèle au vent
$$622.16\text{m}^2$$
Surface perpendiculaires au vent $1478.4 \times 4 = 5913.6\text{m}^2$
 $5913.6\text{m}^2 > 622.16\text{m}^2$

La condition est vérifiée alors la force de frottement est négligeable dans la direction v2

2.5.L'Effet de Neige

L'accumulation de la neige sur la toiture de la tour produit une surcharge qu'il faut prendre en compte pour les vérifications des éléments de cette structure. Le règlement « RNV2013 » s'applique à l'ensemble des constructions en Algérie situées à une altitude inférieure à 2000 mètres.

Notre projet se trouve à une altitude de 186 m.

$$S = \mu . S_k$$

Avec:

 S_k (Kn/m) Est la charge de la neige sur le sol

 μ Est le coefficient de forme

$$S_k = \frac{0.04H + 10}{100}$$
 (Zone B)

Avec:

H=186m (l'altitude para pour à niveau de mer)

Don $S_k=0.074 \text{ kn/m}^2$

S= 0.8*0.074

S=0.059kn/m²

❖ Etude du vent Pour R+3

2.6. Hypothèse de calcul:

Le vent souffle dans les une direction l'autre cote il est protéger par R+8

2.6.1. Calcul de la pression du vent sur les parois de la structure :

La pression du vent est donné pa la formule suivante :

$$q_j \!\!= C_d \quad W(Z_j) \text{ tel que } W(Z_j) \!\!= P_{dyn} \left(Z_j \right) \ [C_{pe} \text{ - } C_{pi}].$$

Où:

C_d: Coefficient dynamique

C_{pe}: Coefficient de pression extérieur

C_{pi}: Coefficient de pression intérieur

P_{dyn}: pression dynamique

Vu la dissymétrie et les décrochement de notre structure on propos d'étudier le cube qui la circonscrit (Fig. 1); une direction de vent sont considérées pour le calcul :

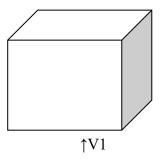


Figure 3: direction du vent (R+3)

• Données relatives du bâtiment et site :

bâtiment à usage de bureau :	Catégorie IV	de construction

Siteplat:
$$C_t$$
=

Ct: Coefficient de topographie.

Q_{ref}: la pression dynamique de référence

Terrain de catégorie IV d'où:

K_T=0.234(facteur de terrain)

 $Z_0(m)=1m$ (paramètre de rugosité)

 $Z_{min} = 10m$ (hauteur minimale)

 ϵ = 0.67 (Coefficient utilisé pour le calcul de coefficient C_d

2.6.2. détermination du coefficient dynamique C_d:

Le coefficient dynamique C_d tient compte des effets de réduction dus à l'imparfaite corrélation des pressions exercées sur les parois.

Le coefficient dynamique C_d détermine soit par la formule générale (3.1 [2]) ou on prend Cd=1 si on a l'un des cas suivant :

- -Bâtiments, dont la hauteur est inférieure à 15m.
- -Eléments de façade et de toiture dont la fréquence propre est inférieure à 5 Hz.
- -Bâtiment à ossature comportant des murs, dont la hauteur est à la fois inférieure à 100m et à 4 fois la dimension du bâtiment mesurée dans la direction perpendiculaire à la direction de vent.
- -cheminée à section transversale circulaire, dont la hauteur est inférieure à 60m et à 6,5 fois le diamètre.

 \mathbf{b} (\mathbf{m}): qui désigne la dimension horizontale perpendiculaire à la direction du vent prise à la base de la construction.

h(m): qui désigne la hauteur totale de la construction.

d(m): qui désigne la dimension horizontale à la direction du vent.

On a Notre Bâtiments, dont la hauteur est inférieure à 15m telle que h=10.40m

Donc $C_d=1$ pour notre direction

• Dans notre cas:

Direction
$$V_1$$
: b=14.00m $H=12.96m$

2.6.3. Détermination des coefficients de pression extérieure :

• Parois verticales :

On a :
$$S > 10m^2 => C_{pe} = C_{pe.10}$$

S: désigne la surface chargée de la paroi considérée.

$$e= Min [b; 2h] = Min [14.00; 25.92]$$
 $e=14.00m$

$$d = 48.00 \text{ m} => d \ge e \text{ d'aprés } [2]$$

Les valeurs de Cpe sont résumées dans le tableau suivant

Table 2.12: valeurs de coeff de pression externe

Zone	Cpe ₁₀
A	-1
В	-0.8
С	-0.5
D	+0.8
Е	-0.3

2.6.4. Détermination de coefficient de pression intérieur, Cpi [2]:

Dans le cas de bâtiments avec cloisons intérieures, les valeurs suivantes doivent être utilisées :

$$C_{pi} = 0.8$$

$$C_{pi} = -0.5$$

La structure est de hauteur totale h= 12.96 >10m ;ce qui fait qu'il y a lieu de subdivision le maître couple ; la pression dynamique sera calculée à la hauteur totale h= 12.96m pour la toiture.

• Calcul de C_e(Z):

La structure est peu sensible aux excitations dynamiques, donc le coefficient d'exposition au vent sera calculée par la formule suivante :

$$C_e(Z) = C_t(Z)^2 * C_r(Z)^2 * (1 + 7*K_t/C_r(Z) * C_t(Z))$$

Tel que : C_e (Z) : coefficient d'exposition au vent

 $C_{r}\left(Z\right)$: coefficient de rugosité ;

Il est donné par la formule suivante :

- $C_r(Z) = K_t * ln(Z/Z_0) pour Z_{min} < Z < 200m$
- $C_r(Z) = K_t * ln(Z_{min} / Z_0) pour Z < Z_{min}$

Z: (m) est la hauteur considérée.

Table 2.13: valeurs de pression dynamique de reference

\mathbf{Z}_{j}	$C_{\rm r}$	Ce	q _{dyn} (N/m)
12.96	0.602	1.34	502.5

2.6.5. Valeurs de la pression du vent sur les parois $verticale(q_i)$:

Les valeurs de la pression dynamique et la pression au vent sur les parois verticales sont récapitulés dans les tableaux **2.14**, et **2.15**, **2.16** et **2.17**, pour les directions V1 et V2.

<u>Cas n°1:</u> $C_{pi} = -0.5$

Table 2.14: valeurs de pression dynamique sens V2 Cpi=-0.5

Z _j (m)	Zone	C_d	Cpe	C_{pi}	q _{dyn} (N/m ²)	$q_j(N/m^2)$
	A	1	-1,0	-0,5	502.5	-251.25
	В	1	-0,8	-0,5	502.5	-150.75
10.4	С	1	-0,5	-0,5	502.5	0
	D	1	+0,8	-0,5	502.5	653.25
	Е	1	-0,3	-0,5	502.5	100.5

 $\underline{\text{Cas } \mathbf{n}^{\circ}\mathbf{2} : \mathbf{C}_{\text{pi}} = \mathbf{0.8}}$

Table 2.15: valeur de pression dynamique sens V2 Cpi=0.8

Z _j (m)	Zone	C_d	Cpe	C_{pi}	q _{dyn} (N/m ²)	$q_j(N/m^2)$
	A	1	-1,0	0,8	502.5	-904.5
	В	1	-0,8	0,8	502.5	-804
20.2	С	1	-0,5	0,8	502.5	-653.25
	D	1	+0,8	0,8	502.5	0
	Е	1	-0,3	0,8	502.5	-552.75

2.6.6. Valeurs de la pression du vent sur la toiture (q_j) :

• toiture

La hauteur de l'acrotère hp = 0,6m.

$$e = Min[b; 2h] = [14.00; 25.92] = 14.00m$$

Nous avons une toiture plate $\alpha \le 5^\circ$ (Art5.1.3 chap 5), selon cet article les différentes zones de pression F, G, H et I sont représentées sur l

Figure 2.4: legende pour terrasse (R+3)

Selon le (**Tableau 5.2**) on a : $\frac{h_p}{h} = \frac{0.6}{12.96} = 0.046$

Les valeurs de C_{pe} sont résumées dans le tableau suivant :

Table 2.16: les valeurs de Cpe pour terrasse (R+3)

Zone	$C_{pe_{10}}$
F	-1.6
G	-1.1
Н	-0.7
I	-0.2

b. Direction V₁:

 $Cas n^{\circ}1 : C_{pi}=0,8$

Table 2.17: valeurs de pression dynamique sens V1 Cpi=0.8

Zone	C_d	C_{pe}	C_{pi}	q _{dyn} (N/m ²)	$q_j (N/m^2)$
F	1	-1,6	0,8	502.5	-1206
G	1	-1,1	0,8	502.5	-954.75
Н	1	-0,7	0,8	502.5	-753.75
I	1	-0,2	0,8	502.5	-502.5

<u>Cas n°2 : C_{pi}=-0,5</u>

Table 2.18: valeur de presssion dynamique sens V1 Cpi=-0.5

Zone	C_d	C_{pe}	C_{pi}	q _{dyn} (N/m ²)	$q_j (N/m^2)$
F	1	-1,6	-0,5	502.5	-552.75
G	1	-1,1	-0,5	502.5	-301.5
Н	1	-0,7	-0,5	502.5	-100.5
I	1	0,2	-0,5	502.5	351.75

2.7. Effet de frottement $F_{\rm fr}$:

Les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent est inférieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent.

c. <u>Direction V1</u>

Surface parallèle au vent
$$\longrightarrow$$
 145.6 m^2

Surface perpendiculaires au vent \longrightarrow 499.2 × 4 = 1996.8 m^2

1996.8 $m^2 > 145.6m^2$

La condition est vérifiée alors la force de frottement est négligeable dans la direction v1

La condition est vérifiée alors la force de frottement est négligeable dans la direction v2

2.8. L'Effet de Neige

L'accumulation de la neige sur la toiture de la tour produit une surcharge qu'il faut prendre en compte pour les vérifications des éléments de cette structure. Le règlement « RNV2013 » s'applique à l'ensemble des constructions en Algérie situées à une altitude inférieure à 2000 mètres.

Notre projet se trouve à une altitude de 186 m.

$$S = \mu . S_k$$

Avec:

 S_k (Kn/m) Est la charge de la neige sur le sol

 μ Est le coefficient de forme

$$S_k = \frac{0.04H + 10}{100}$$
 (Zone B)

Avec:

H=186m (l'altitude para pour à niveau de mer)

Don $S_k = 0.074 \text{ kn/m}^2$

S= 0.8*0.074

S=0.059kn/m²

Conclusion

on aura les charges climatiques suivantes :

charge de Neige
$$\Rightarrow$$
 S = 0.059 kN/m² charge de vent \Rightarrow V₁ = V₂ = 1,7 kN/m²

3.1.Introduction

Dans une structure quelconque on distingue deux types d'éléments :

- Les éléments porteurs principaux qui contribuent directement au contreventement.
- Les éléments secondaires qui ne contribuent pas directement au contreventement.

Dans le présent chapitre nous considérons l'étude des éléments secondaire que comporte notre bâtiment, nous citons l'acrotère, les escaliers et les murs rideaux.

A. Acrotère

L'acrotère est un élément de sécurité au niveau de la terrasse, il forme une paroi contre toute chute. Il est considéré comme une console encastrée à sa base, soumise à son poids propre G et à une surcharge horizontale Q due à une main courante.

- Largeur b=100cm
- Hauteur H=60cm
- Epaisseur e=10cm

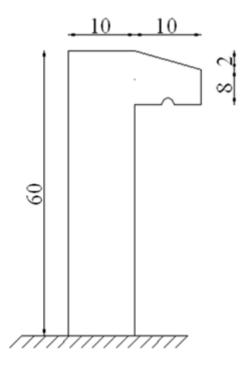


Figure 3.1- Dimensions de l'acrotere

3.2.Principe de calcul

L'acrotère est assimilé à une console verticale encastrée à sa base dans le plancher

terrasse, elle est soumise à :

$$F_p = 4 \times A \times C_p \times W_p$$

$$F = MaxQ = 1kN/ml$$

Son poids propre (Wp); Un moment dû à la force horizontale

Le calcul du ferraillage se fait en flexion composée pour une bande de 1m de largeur.

La fissuration est considérée comme préjudiciable, car l'élément est exposé aux intempéries.

3.3. Evaluation des charges

3.4. Surface de l'acrotère

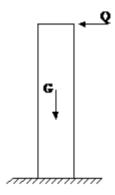


Figure 3.2 - Sollicitation de l'acrotère

$$S = \left[(0.6 \times 0.1) + (0.1 \times 0.8) + \frac{(0.1 \times 0.02)}{2} \right]$$
$$S = 0.069m^2$$

4.1. Poids propre de l'acrotère

$$G = \rho_p \times S$$

$$G = 25 \times 0.069$$

$$G = 1,725 \, KN/ml$$

4.2. Revêtement en ciment

$$e = 2cm$$

$$\rho = 14 \text{ kN/m}^3$$

$$G = \rho_{ciment} \times e \times P_{cme}$$

$$G = 14 \times 0.02 \times [60 + 10] \times 2 \times 10^{-2}$$

$$G = 0,392KN/ml$$

Donc:
$$G_t = 0.392 + 1.725 => G_t = 2.117 \text{ KN/ml}$$

4.3. Charge d'exploitation

Q=1 kN/ml

4.3.1. L'action des forces horizontales (Fp)

L'action des forces horizontales est données par : Fp = $4\times A\times C_p\times W_p$

Avec:

A : Coefficient d'accélération de zone obtenu dans le tableau (4-1) [3] :

Zone III
$$\Rightarrow A = 0.36$$

Groupe d'usage 1 B

Cp : Facteur de force horizontale donnée par le tableau (6-1) [3] :

Cp = 0.8

Wp: Poids de l'acrotère

G = 2,117 kN.

Donc:

$$F_p = 4 \times 0.3 \times 0.8 \times 2.117$$

$$F_n = 2,032 \text{ kN}$$

$$Q_u = Max(1,5Q; F_p) \implies F_p = 2,032 \ kN$$

$$1,5Q = 1,5 \ kN$$

Donc pour une bande de 1m de largeur :

G=2,117 kN/ml
$$Q_u = Q_h = 2,032 kN/ml$$

4.3.2. Calcul des efforts

E.L.U

Effort normal
$$\longrightarrow$$
 N_u= 1,35G = 2,857 kN

Moment de l'encastrement
$$\longrightarrow$$
 $M_u = 1.5 \times Q_h \times h = 1.5 \times 2.032 \times 0.6$

$$M_u = 1,828 \, kN.m$$

Effort tranchant
$$T_u = 1.5Q_h = 3.05 \, kN$$

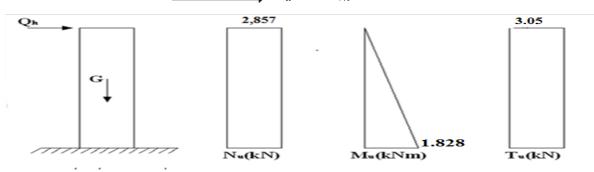


Figure 4.3: diagrammes des efforts a l'ELU

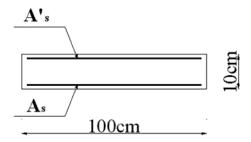
E.L.S

Effort normal
$$\longrightarrow$$
 N_{ser}=G = 2.117 kN

Moment de l'encastrement
$$\longrightarrow$$
 $M_{ser} = Q_h \times h = 2,032 \times 0,6$

$$M_{ser} = 1.219 \ kN.m$$

Effort tranchant
$$T_{ser} = Q_h = 2.032 \ kN$$


Tableau 3.1- Les efforts sur l'acrotère

	E.L.U	E.L.S
Moments (kN.m)	1,828	1.219
Efforts normaux (kN)	2,857	2,117
Efforts Tranchants (kN)	3.05	2.032

3.5.ferraillage de la section a l'E.L.U

Le ferraillage de l'acrotère sera déterminé en flexion composée et sera donnée par mètre linéaire. Pour le calcul on considère une section rectangulaire avec :

$$H = 10cm$$
; $b = 100cm$; $f_{c28} = 25MPa$; $\sigma_{bc} = 14,2MPa$; $c = c' = 2cm$; $d = 8cm$; $fe = 500MPa$

Calcul de l'excentricité

$$e_0 = \frac{M_u}{N_u} = \frac{1,828}{2,857} = 63,98 \ cm$$

$$e_0 \succ \frac{h}{2} - c' \Rightarrow \text{ Section partiellement comprimée}$$

$$\frac{h}{2} - c' = \frac{10}{2} - 2 = 3cm$$

Le centre de pression se trouve à l'extérieur de la section.

Les armatures seront calculées à la flexion simple en équilibrant le moment fictif M_f .

Calcul du moment fictif « M_f »

$$M_f = M_u + N_u \left(\frac{h}{2} - c'\right) = 1.828 + 2.857 \left(\frac{0.1}{2} - 0.02\right) = 1,913kNm$$

$$\mu = \frac{M_f}{bd^2 \sigma_{ho}} = 0,0210$$

$$\mu < \mu_R = 0.392 \Rightarrow A_s = 0$$
 Les armatures comprimées ne sont nécessaires.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 0,026$$

$$Z = d(1-0.4\alpha) = 7.915cm$$

$$\mu = 0.0210 < 0.186 \Rightarrow \zeta_s = 10\%$$
 et $\sigma_s = \frac{fe}{\gamma_s}$ = 435 MPa

$$A_{sf} = f(M_f)$$

$$A_{sf} = \frac{M_f}{Z\sigma_s} = 69,45mm^2$$

$$\bullet A_{s1} = A'_{s} = 55.56 \,\mathrm{mm^2}$$

$$\bullet A_{s2} = A_{sf} - \frac{N_u}{\sigma_s} = 48.99 \text{ mm}^2$$

$$Donc: \begin{cases} A_{s1} = 0cm^{2} \\ A_{s2} = 0.48 \text{ cm}^{2} \end{cases}$$

5.1. Vérification de la section d'acier selon «BAEL 91 modifie 99» [4]

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité :

$$A_s^{\min} \ge Max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{t28}}{fe} \right\}$$

Avec:

$$f_{t28}=2,1MPa; fe=500MPa; b=100cm; d=8cm$$

$$As(min) \ge Max (1cm^2; 0.77 cm^2) = 1cm^2$$

Donc : on opte finalement pour $6T6 = 1,70cm^2$

Avec un espacement : $S_t = 100/5 = 20 \text{ cm}$

5.2. Armatures de répartitions

$$A_r \ge \frac{A_s}{4} \Rightarrow A_r \ge 0.425 cm^2$$

On choisit $4T6 = 1.13cm^2$ avec un espacement $S_{t=} \frac{60-50}{3} = 18 cm$

3.6. vérification à l'ELS

La fissuration est considérée comme préjudiciable.

$$e_0 = \frac{M_{ser}}{N_{ser}}$$
 = 57.58 cm Centre de pression

Axe neutre

On a : $e_0 > \frac{h}{c} - c'$ La section est partiellement comprimée (SPC).

C : La distance entre le centre de pression et la fibre la plus comprimée.

 $C = d - e_A$ Avec:

$$e_A = \frac{M_{ser}}{N_{ser}} + \left(d - \frac{h}{2}\right) = 35.58 \text{ cm} \Rightarrow C = -27.58 \text{ cm} \quad (C < 0)$$

D'après le « BAEL 91 modifié 99 » [1], on doit résoudre l'équation suivant :

$$y_c^3 + py_c + q = 0$$

 y_c : Distance entre le centre de pression et l'axe neutre.

Avec:

$$n = 15; \begin{cases} p = -3c^{2} + 6n(c - c')\frac{A_{s}}{b} + 6n(d - c)\frac{A_{s}}{b} = -2318.05 \\ et \\ q = -2c^{3} - 6n(c - c')^{2}\frac{A_{s}}{b} - 6n(d - c)^{2}\frac{A_{s}}{b} = 40564.01 \end{cases}$$

La solution de l'équation du troisième degré est obtenue par :

$$\Delta = q^{2} + \left(\frac{4p^{3}}{27}\right) = -1.99 * 10^{8}$$

$$\cos \varphi = \frac{3q}{2p} \sqrt{\frac{-3}{p}} = -0.94 \Rightarrow \varphi = 160.78^{\circ}$$

$$q = 2\sqrt{\frac{-p}{3}} = 55.59$$

$$y_{1} = a\cos\left(\frac{\varphi}{3} + 120\right) = -55.24 \text{ cm}$$

$$y_{2} = a\cos\left(\frac{\varphi}{3}\right) = 32.99 \text{ cm}$$

$$y_{3} = a\cos\left(\frac{\varphi}{3} + 240\right) = 22.25 \text{ cm}$$

La solution qui convient est : $y_c=32.99$ cm

Car:
$$0 < y_{ser} = y_c + c < d$$

 $0 < y_{ser} = 32.99 - 27.58 = 5.41 \text{ cm} < 9\text{cm}$
Donc: $y_c = 32.99 \text{ cm}$
 $y_{ser} = 5.41 \text{ cm}$

Calcul du moment d'inertie

$$I = \frac{b}{3} y_{ser}^{3} + n \left[A_{s} \left(d - y_{ser} \right)^{2} + A_{s}' \left(y_{ser} - c' \right)^{2} \right] = 5449.07 \text{ cm}^{4}$$

6.1. Vérification des contraintes

Contrainte de béton

$$\sigma_{bc} = \left(\frac{N_{ser}}{I}y_{c}\right)y_{ser} \leq \overline{\sigma_{bc}} = 0,6f_{c28} = 2,1MPa$$

$$\sigma_{bc} = \left(\frac{2.117 \times 10^{3} \times 32.99 \times 10}{5449.07 \times 10^{4}}\right) \times 54.1 = 0.69 \ MPa < \sigma_{bc} = 0.6f_{c28} = 2.1 \ MPa$$

$$\sigma_{s} = n\left(\frac{N_{ser}}{I}y_{c}\right)(d - y_{ser}) \leq \overline{\sigma_{s}} \qquad \text{Acier tendu}$$

$$\sigma_{s} = n\left(\frac{N_{ser}}{I}y_{c}\right)(y_{ser} - c) \leq \overline{\sigma_{s}} \qquad \text{Acier comprimé}$$

$$\overline{\sigma_{s}} = Min\left(\frac{2}{3}f_{e}; Max\left(0,5f_{e};110\sqrt{\eta f_{u}}\right)\right) = 250 \ \text{MPa}$$

$$(\eta = 1,6pour \ les \ acier \ HA)$$

Et
$$f_u = f_{t28} = 2.1 \text{ MPa}$$

6.2. Vérification de l'effort tranchant

La contrainte de cisaillement est donnée par la formule suivant :

$$\tau_{u} = \frac{T_{U}}{b d} \le \overline{\tau_{u}} = Min (0.15f_{c28}; 4MPa) = 3.75MPa$$

$$\tau_{u} = \frac{3.05 \times 10^{3}}{1000 \times 80} = 0.038 MPa < 3.75 MPa$$
Vérifier
$$\frac{10}{5} = \frac{10}{5} =$$

30

Figure 3.5- Ferraillage de l'acrotère

B. Escalier

Les escaliers sont des éléments constitués d'une succession de gradins, ils permettent le passage à pied entre différents niveaux du bâtiment.

3.7.Les éléments constitutifs

Il est caractérisé par :

- La marche : la partie horizontale des gradins constituant l'escalier (M)
- ➤ La contre marche : la partie verticale des gradins (CM)
- La montée ou la hauteur d'escalier (H).
- La hauteur d'une marche (h).
- Le giron : la largeur de la marche (g).
- L'emmarchement : la largeur de la volée (b).
- La volée : suite ininterrompue des marches.
- La paillasse : le support des marches.
- Le palier : la partie horizontale entre deux volées.

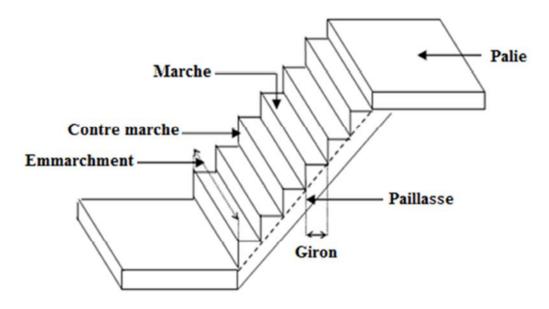


Figure 3.6 - Les éléments constituant l'escalier

3.8.Dimensionnement

Pour une réalisation idéale et confortable on doit avoir 2h+g = 64, on obtient, le nombre des marches et leur dimension par les relations suivantes :

Avec:

n: Le nombre des contre marches

(n-1): Le nombre des marches

En remplaçant (2) et (3) dans (1), on obtient :

$$64n^2 - n(64 + 2H + L) + 2H = 0$$

Avec:

n : la racine de l'équation

Notre bâtiment comporte un type d'escaliers à 2 volets et palier de repos.

$$H = \frac{hauteur\ de\ l'etage}{2Volées} = \frac{3.4}{2} = 170\ cm$$

L = 2.56 m = 256 cm

Donc on aura l'équation suivante :

$$64n^2 - 660n + 340 = 0$$

Solution:

$$n_1 = 9.77$$

$$n_2 = 0.54$$

Donc on prend:

n = 10:Le nombre de contre marche

(n-1) = 9: Le nombre des marches

Alors:

$$h = \frac{H}{n} = 0.17m = 17cm$$

$$g = \frac{L}{n-1} = 0.28m \cong 30cm$$

Vérification de l'équation de «BLONDEL»:

$$\begin{cases} 2h + g = 64 \\ 59 \le (g + 2h) \le 66 \end{cases}$$

$$2 \times 17 + 30 = 64$$

$$59 \le 64 \le 66$$

La formule empirique de BLONDEL est vérifiée.

Détermination de l'épaisseur de la paillasse:

On calcul l'épaisseur de l'escalier par tâtonnement selon la formule suivante :

$$\frac{l}{30} \le e \le \frac{l}{20}$$

Avec:

$$l = \sqrt{L^2 + H^2} + 1.65 + 1.5 = \sqrt{2.56^2 + 1.7^2} + 1.65 + 1.5 = 6.22 m$$

On prend: $l = 6.22 \, m$

$$\frac{6.22}{30} \le e \le \frac{6.22}{20} \implies 0.207 \le e \le 0.311$$

On prend donc l'épaisseur e=30 cm.

N.B: Le palier aura la même épaisseur que la paillasse.

Cette épaisseur sera prise en considération une fois que toutes les vérifications soient Satisfaites.

Angle d'inclinaison de la paillasse:

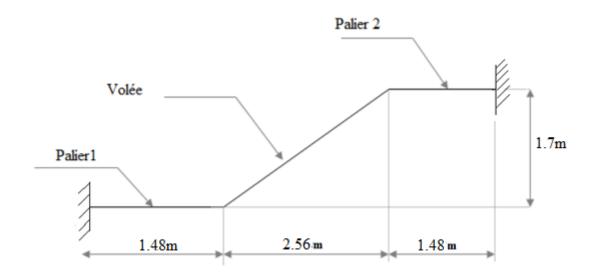
$$\tan \alpha = \frac{H}{L}$$
 $\tan \alpha = \frac{170}{256} = 0,664 \rightarrow \alpha = 33,59^{\circ}$

1.1.1. Evaluation des charges et surcharges

Palier

Tableau 3.2 - Charges du palier

Matière	Épaisseur (cm)	$\rho (kN/m^3)$	$\rho (kN/m^2)$	
1- carrelage	2	22	0.44	
2- Mortier de pose	2	20	0,40	
3- Lit de sable	3	18	0,54	
4- Dalle pleine	30	25	7,5	
5- Enduit en ciment	2	18	0, 36	
∑=G	$9,24 \text{ kN/m}^2$			
Charge d'exploitation	2,50kN/m ²			


• Paillasse:

Poids propre de la Paillasse
$$\left(\frac{25 \times 0.3}{\cos 33.59}\right) = 9 \text{ kN/m}^2$$

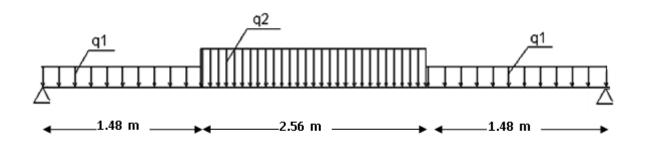

Poids propre de la marche
$$\frac{25 \times 0,17}{2} = 2,13 \text{ kN/m}$$

Tableau 3.3- Charges de la paillasse

Matière	Épaisseur (cm)	$\rho (kN/m^3)$	$\rho (kN/m^2)$	
1- Carrelage	2	22	0,44	
2- Mortier de pose	2	20	0,40	
3-Enduit en ciment	2	18	0,36	
4- Garde-corps	-	-	1,62	
∑=G	13.76 kN/m^2			
Charge d'exploitation	2,50kN/m²			

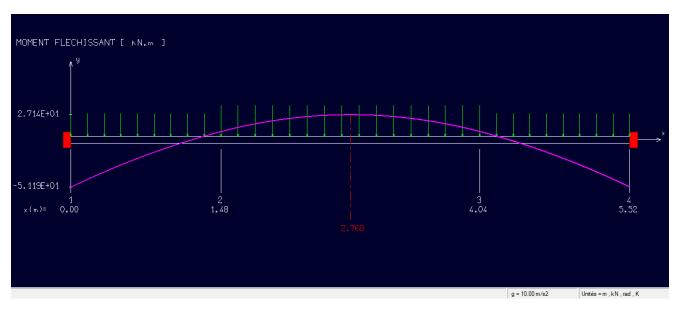
Schéma statique :

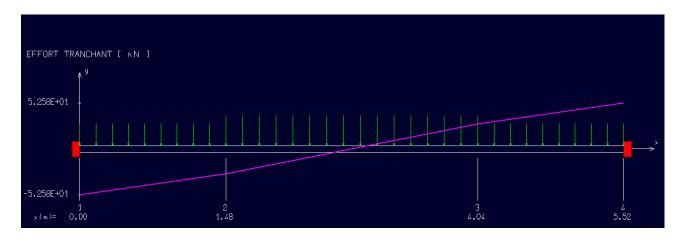
1.1.2. Combinaisons de charge:

E.L.U
$$q_{u1} = 1,35G_1 + 1,5Q_1$$
 $q_{u2} = 1,35G_2 + 1,5Q_2$

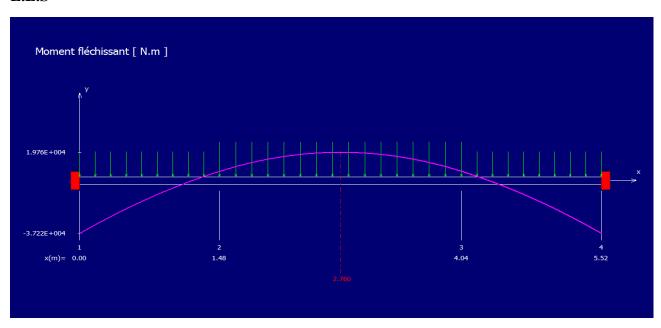
E.L.S
$$q_{S1} = G_1 + Q_1$$

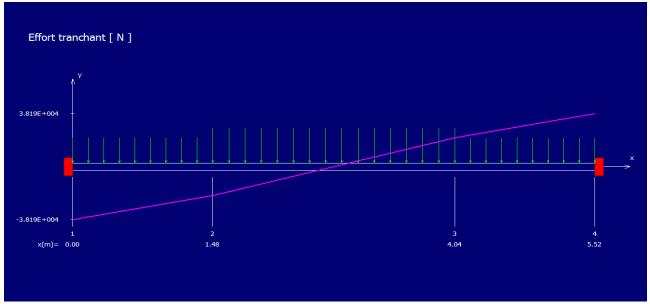
$$q_{S2} = G_2 + Q_2$$


Le chargement de la rampe pour une bande de 1m est donné par le tableau suivant :


Tableau 3.4- Charge à ELU et ELS

	$q_1 = (KN/ml)$	q ₂ = (KN/ml)
E.L.U	16,22	22,32
E.L.S	11,74	16,26


1.1.3. Diagramme des moments fléchissant et d'efforts tranchants :


E.L.U

E.L.S

3.9.Calcul de ferraillage

Le calcul se fait pour une section rectangulaire de dimension (b x h)

Tel que : b=100cm ; h=30cm ; d=0,9h=27cm ;
$$f_{c28}=25MPa$$
 ; $f_{bc}=14,17MPa$;
$$\gamma_s=1,15; f_e=500MPa$$
 ; $\gamma_b=1,5$

Le ferraillage se fait en flexion simple pour une bande de 1m de largeur (Organigramme B; voir annexe)

Tableau 3.5 - Ferraillage des escaliers

section	b(cm)	d(cm)	M _u (kN.m)	μ	α	Z(cm)	A ^{cal/ml} (cm ²)	choix	$A_{adopte/ml}$ (cm ²)
Travée	100	27	27.14	0.026	0.033	26.64	2.34	2T14	3.08
Appuis	100	27	51.19	0,050	0.064	26.31	4.47	4T14	6.16

Espacement maximal:

$$S_t \le \min \{3h; 33cm\}$$

 $S_t \le min \{3 \times 30; 33\} cm = 33cm$

En travée
$$St = \frac{100}{5} = 20 \text{ cm} \le 33 \text{ cm}$$
 On prend esp = 20 cm

Sur appui
$$S_t = \frac{100}{10} = 10 \text{cm} \le 33 \text{cm}$$
 On prend esp = 10cm

Armature de répartition:

En travée:

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \to 0.77 \text{ cm}^2 \le A_r \le 1.54 \text{ cm}^2$$

Le choix est de $3T8=1.51 \text{ cm}^2$ avec $S_t=20 \text{cm}$

Sur appui:

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \to 1.54 \text{ cm}^2 \le A_r \le 3.08 \text{ cm}^2$$

Le choix est de $6T8 = 3,02 \text{ cm}^2$ avec $S_t = 10 \text{cm}$

Vérifications:

1.1.4. Condition de non fragilité:

$$A_{min} = \frac{0.23. \text{ b. d. } f_{t28}}{f_e}$$

$$A_{min} = \frac{0.23 \times 1000 \times 270 \times 2.1}{500} = 2,61 \text{ cm}^2$$

$$A_s \ge A_{min} = \frac{0.23. \text{ b. d. } f_{t28}}{f_e}$$

1.1.5. Effort tranchant

On doit vérifier que ; $\tau_u \leq \overline{\tau}$

Avec;

$$\bar{\tau} = Min\left(0, 2\frac{f_{c28}}{\gamma_b}; 5MPa\right) = 0, 2\frac{f_{c28}}{\gamma_b} = 3,33MPa \qquad \text{ (fissuration peu nuisible)}$$

$$\tau = \frac{T_u^{max}}{b.d} = \frac{52.58 \times 10^3}{1000 \times 270} = 0,195$$

$$\tau_u = 0.195 \, MPa \le \bar{\tau} = 3.33 MPa$$
 Condition vérifié

• L'influence de l'effort tranchant au voisin des appuis

Il faut satisfaire les conditions suivantes :

$$T_u - \frac{M_u}{0.9d} \le 0 \Rightarrow$$
 Les armatures ne sont soumises à aucun effort de traction

Si:

$$T_u - \frac{M_u}{0.9d} \ge 0 \Rightarrow$$
 il faut satisfaire la condition suivante :

$$A_{s} \ge \left[\frac{T_{u} - \frac{M_{u}}{0.9d}}{\sigma_{s}} \right]$$

$$T_u - \frac{M_u}{0.9d} = 52.58 - \frac{51.19 \times 10^6}{0.9 \times 270} \times 10^{-3} = -158,078 \, KN < 0$$

Les armatures ne sont soumises à aucun effort de traction

> Vérification les armatures transversales

Il faut vérifier la condition suivante : $\tau = \frac{T_u^{\text{max}}}{b d} \le 0.05 f_{c28}$

 $\tau = \frac{T_u^{max}}{h.d} = \frac{52.58 \times 10^3}{1000 \times 270} = 0,195 MPa \le (0,05 \times 25) = 1,25 MPa$ Condition vérifié

3.10. Vérification à ELS

La fissuration est considérer comme peut nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

-Position de l'axe neutre :

$$\frac{b}{2}y^2 + nA_S'(y - c') - nA_S(d - y) = 0$$

- Moment d'inertie :

$$I = \frac{b}{3}y^3 + nA'_{S}(y-c')^2 + nA_{S}(d-y)^2$$

Avec:

n=12; c'=2cm; d=27cm; b=100cm; $A_s'=0$

On doit vérifier que :

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

Tableau 3.6 - Vérification à ELS

	M _{ser} (KNm)	A _s (cm ²)	Y(cm)	I(cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$
Travée	19.7	1.69	3.113	1,26 .10 ⁴	4.87	Vérifiée
Appui	37.22	3.23	4.204	$2.26.10^4$	6.92	Vérifiée

Vérification de la flèche:

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

$$\begin{cases} \frac{h}{L} \geq \frac{1}{16} \\ \frac{A_S}{bd} \leq \frac{4,2}{fe} \\ \frac{h}{L} \geq \frac{M_t}{10M_0} \end{cases} \Rightarrow \begin{cases} \frac{\frac{30}{552} = 0.0543 < \frac{1}{16} = 0.0625 \dots \text{Non v\'erifier} \\ \frac{1.69}{100*27} = 0.0006 < \frac{4.2}{500} = 0.008 \dots \text{v\'erifier} \\ \frac{\frac{30}{552} = 0.0543 < \frac{19.7}{10*32.22} = 0.0611 \dots \text{Non v\'erifier} \end{cases}$$

Deux conditions ne sont pas vérifiées, donc il est nécessaire de calculer la flèche

Flèche totale:

$$\Delta f_{T} = f_{V} - f_{\dot{1}} \le \bar{f}$$

$$\begin{cases} f_i = \frac{M_{ser}L^2}{10E_iI_{fi}} \\ f_V = \frac{M_{ser}L^2}{10E_vI_{fv}} \\ \bar{f} = 5 + \frac{L(cm)}{100} \end{cases}$$
 L= 5.52m > 5m

- Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A_s' \left(\frac{h}{2} - d'\right)^2$$

Moment d'inertie fictive:

$$\begin{cases} I_{fi} = \frac{1{,}1I_0}{1 + \lambda_i \mu} & \text{Avec} \\ I_{fv} = \frac{I_0}{1 + \lambda_v \mu} \end{cases} \begin{cases} \lambda_i = \frac{0{,}05f_{t28}}{\delta \left(2 + \frac{3b_0}{b}\right)} \\ \lambda_v = \frac{0{,}02f_{t28}}{\delta \left(2 + \frac{3b_0}{b}\right)} \end{cases} \begin{cases} \delta = \frac{A_s}{b_0 d} \\ \mu = 1 - \frac{1{,}75f_{t28}}{4\delta \delta_s + f_{t28}} \end{cases} \end{cases} \begin{cases} E_i = 32164{,}20\text{MPa} \\ E_v = 10818{,}87\text{MPa} \end{cases} \end{cases}$$

Les résultats sont récapitulés dans ce tableau :

Tableau 3.7- Vérification de la fleche des escaliers

$\mathbf{M}_{\mathrm{ser}}$	$\mathbf{A}_{\mathbf{s}}$	δ	$\sigma_{\rm s}$	λ_{i}	λ_{v}	μ	\mathbf{I}_0	\mathbf{I}_{fi}	\mathbf{I}_{fv}
KN.m	(cm ²)		(MPa <u>)</u>				(cm ⁴)	(cm ⁴)	(cm ⁴)
19.7	1.69	0,0006	431.73	35	14	0,17	228650.4	36189.27	67648.05

Donc:

$$f_i = \frac{Ms.L^2}{10.E_i.I_{fi}} = \frac{19.7 \times 5.52^2}{10 \times 32164,2 \times 36189.27} = 5.2mm = 0.52cm$$

$$f_v = \frac{Ms.L^2}{10.E_v.I_{fv}} = \frac{19.7 \times 5.52^2}{10 \times 10818,87 \times 67648.05} = 8.2mm = 0.82cm$$

$$\Delta f = f_v - fi = 0.82 - 0.52 = 0.3 \text{ cm}$$

$$\overline{f} = 0.5 + \frac{552}{1000} = 1.05 \text{ cm}$$

$$\Delta f < \overline{f}$$
 donc la flèche est Vérifiée

C. Murs Rideaux

3.11. Introduction

Le mur-rideau est un type de façade légère. C'est un mur de façade qui assure la fermeture de l'enveloppe du bâtiment sans participer à sa stabilité. Les panneaux sont donc appuyés, étage par étage, sur un squelette fixe.

Remarque : Présentement, il n'y a pas de norme spécifique pour les murs-rideaux en Algérie donc on va se basé sur le norme française NF 39 P4.

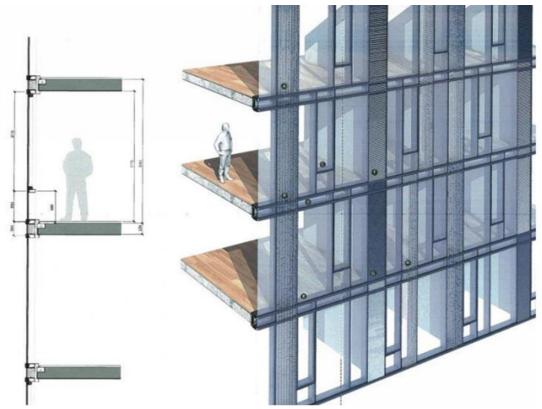


Figure 3.7- Mur Rideau

3.12. Type de Mur Rideau

Les principaux types de murs-rideaux sont le système dit « conventionnel » ou mur-rideau à résille et les mur-rideau en panneau préfabriqué en usine. Ces typologies font référence au mode d'assemblage en chantier, qui est déterminant lors de la conception du système de mur-rideau.

> Murs-rideaux en série

Finis standards ou de série, mais également offerts sur mesure; En général, largeur d'ossature de 50 mm (2 po) ou de 63,5 mm (2 ½ po) et profondeur d'ossature de 75 à 150 mm (3 à 6 po) ; Détails d'exécution et composants conçus et normalisés par le fabricant.

➤ Murs-rideaux sur mesure

Détails d'exécution et composants conçus spécialement pour un seul projet ou un groupe de projets; Matériaux non offerts généralement sur le marché libre, mais limités à un manufacturier; Taille minimale du projet requise pour justifier les profilés faits sur mesure; Utilisation optimale des matériaux et flexibilité pour répondre aux besoins architecturaux; Dimensions et coupes des composants bien souvent différentes sur le plan architectural.

3.13. Type de mise en place

> Système à résille (conventionnel ou stick)

Plus répandu pour les bâtiments de faible hauteur - Mis en place pièce par pièce au chantier - Court délai de production - Longue période de mise en chantier.

Figure 3.8- Mise en place par systeme à résille

> Système préfabriqué

Surtout pour les bâtiments de grande hauteur - Grands panneaux usinés, avec tympans et vitrages intégrés - Mise en place séquentielle - Délai de production plus long - Délai d'installation minimal au chantier.

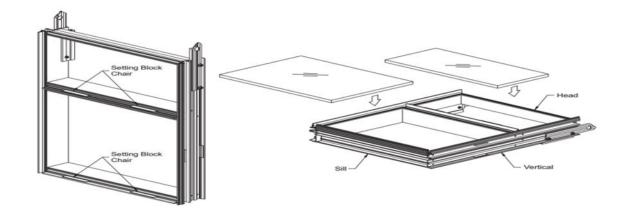


Figure 3.9- Les murs rideaux systeme préfabriqué

Critere de periormance

- Étanchéité à l'air
- Étanchéité à l'eau
- Résistance structurale
- Résistance à la condensation

3.14. Pré dimensionnement des murs rideaux

3.4.1. Actions du vent

L'action de vent calcule fans le chapitre 2

On prend le cas le plus défavorable pour les deux sens V1 et V2 et on applique sur toute la structure

W=1761.34 Pa

3.4.2. Choix de matériaux

• Profilés et tôlerie en acier inoxydable

Les principales nuances d'acier inoxydable, selon NF EN 10088-2 et NF EN 10088-3, à utiliser conformément aux spécifications de la norme NF P 24-351 sont les suivantes :

- Acier austénitique au chrome nickel X5CrNi18-10 (désignation numérique :1.4301) (correspondant à l'ancienne nuance Z 7 CN 18-09);
- Acier austénitique au chrome nickel molybdène X2CrNiMo17-12-2 (désignation numérique 1.4404) (correspondant à l'ancienne nuance Z 3 CND 17-12-02);
- Acier ferritique X6Cr17 (désignation numérique : 1.4016) (correspondant à l'ancienne nuance Z 8 C 17) ou X3CrTi17 (désignation numérique : 1.4510) (correspondant à l'ancienne nuance Z 4 C T 17).

3.4.3. Calcul de l'épaisseur e₁

L'épaisseur e₁ est déterminée par application des formules précisées :

3.4.4. Vitrages collés entre eux : (Art-7.2.5-[13])

> Vitrages isolants :

> Facteur de réduction c :

- Pour les vitrages monolithiques fixes : c = 0.9.
- \triangleright $e_1 \times c = 23.13 mm$
- > Facteurs d'équivalence B5 : (Art-7.4 [13])
 - > Vitrages isolants

Tableau 5 - Facteur d'équivalence des vitrages isolants B5₁

▶ B5₁=1,5 (Comporte deux produits verriers)

$$e_1 \times c \times B5_1 = 34.69 \text{ mm}$$

3.4.5. Calcul de l'épaisseur nominale et

La somme et des épaisseurs nominales et/ou équivalentes des composants du vitrage doit être au moins égale au produit $e_1 \times c \times B5_1$ (Art7.1 [13])

- > Cas d'un vitrage isolant:
- > Avec deux verres monolithiques (i, j)

On doit avoir:

$$ightharpoonup e_t = e_j + e_i \ge 34.69 \ mm$$

Donc on prend:

$$ightharpoonup e_j = 25mm$$

$$\triangleright$$
 $e_i = 25mm$

il faut donc un verre feuilleté 25+25

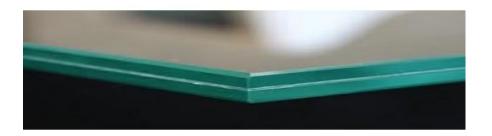


Figure 3.10- Verre feuilleté de 25+25

3.4.6. Vérification de la flèche

• Détermination de e2

La valeur e_2 déterminée par la formule suivante doit être arrondie à une décimale.

> Vitrages isolants:

Vitrages isolants deux faces monolithiques :

$$e_2 = \frac{e_i + e_j}{\varepsilon_1}$$
 => $e_2 = \frac{25 + 25}{1,5} = 33,33mm$

• Calcul de la flèche :

$$f = \alpha \times \frac{P}{1.2} \times \frac{b^4}{e^3}$$

$$\alpha$$
= 2,1143 (**Tab B.3[13]**)

$$P = 1761.34 Pa$$

$$e_2 = 33,33 \text{ mm}$$

b = 25 mm (Art9.2.2 [13])

$$f = 2,1143 \times \frac{1761.34}{1,2} \times \frac{3^4}{33,33^3} = 6.79 \text{ mm}$$

La flèche étant limitée à 3000/150 = 20mm

4.1. Introduction:

Ce chapitre nous permet de faire une estimation approximative pour les dimensions des sections des éléments porteurs de notre structure (poteaux, poutres ... etc.). En se basant sur le principe de la descente de charges verticales transmises par les planchers aux éléments porteurs et qui les transmettent à leur tour aux fondations, le pré-dimensionnement des élément se fait selon les règles de calcul de BAEL91; CBA93; RPA99; CCM99.

Pour les deux bâtiments R+3 et R+8

4.2. Les planchers

4.2.1. Méthode de calcul:

Le calcul de plancher collaborant des deux bâtiments R+3 et R+8 se fait en deux phases :

- phase de construction
- phase finale

a)-Phase de construction :

Le profilé d'acier travail seul et les charges de la phase de construction sont :

- poids propre du profilé
- poids propre du béton frais
- surcharge de construction (ouvrier)

b)- Phase finale:

Le béton ayant durci, donc la section mixte (le profilé et la dalle) travaillant ensemble.

On doit tenir compte des charges suivantes:

- poids propre du profilé
- poids propre du béton (sec)
- surcharge d'exploitation
- finition

c)-Largueur de la dalle collaborant (Largueur Effective) :

Dans les calculs des poutres mixtes, on prendra en compte de chaque coté de l'axe de la poutre, une largeur de la dalle égale à la plus faible des valeurs suivantes :

$$b_{\mathit{eff}} = \inf \begin{cases} \frac{2.l_0}{8} & avec \ l_0 : Langueur \ libre \ d'une \ poutre \\ & simplement \ appuie \\ b & b : Entraxe \ entre \ les \ poutres \end{cases}$$

4.2.2. Estimation des charges des planchers :

a)-Plancher terrasse:

1. Actions permanentes

Protection en gravillon
Etanchéité multicouches
Forme de pente (e=10cm)
Isolation thermique
Dalle en béton armé (e=15cm)
Bac d'acier (HB 55) 0,15 KN/m²
Faux plafond

Total: $G = 7.43 \text{ KN/m}^2$

2. Charges d'exploitation :

Terrasse inaccessible ⇒

 $Q = 1 \text{ KN/m}^2$

b)- Plancher courant :

1. Actions permanentes:

Carllage	
Mortier de pose	0,40 KN/m²
Lit de sable	0,54KN/m²
Dalle en béton armé (15cm)	3,75 KN/m²
Distribution Cloisons	0,10 KN/m²
Bac d'acier (HB 55)	0,15 KN/m²
Faux plafond	0,20 KN/m²

Total: G = 6.44 KN/m

• surcharges d'exploitation :

Le bâtiment étudié comporte des locaux destinés à différents usages, leurs charge d'exploitation respectives est comme suit :

Bureaux, restaurant, atelier...... 2,5 KN/m²

Salle de reunion 3,5 KN/m²

Bureaux paysager 3,5 KN/m²

4.3. Pré dimensionnement des éléments principaux

4.3.1. Les Solives :

les solives sont généralement des profilés en **IPE**, **IPN**, dont leur espacement est compris entre 1 et 4m selon le type de plancher utilisé.

Pour dimensionner la solive on utilise une formule approcher et simplifie qui est en fonction de de la hauteur du profile et la portée de solive.

Dans notre cas dans le **bloc R+8** on a choisit le sens porteur selon le nombre de trame car on a dans un sens des trames plus que l'autre , et d'apres ce dernier on aura une poutre principale de 6 m et des solives de 5.6m et 7.6m a vérifier .

Solive de 7.6m

On commence de verifier la solive qu'a une portée de 7.6 m et un espacement de 1.5 m

Il est d'usage que le pré dimensionnement se fait selon le critère de résistance ou le critère de flèche, mais dans notre cas, on utilise une formule approchée et simplifiée qui est en fonction de la hauteur du profilé et la portée de la solive.

$$\frac{L}{25} \le h \le \frac{L}{15}$$

Avec:

- **h** la hauteur du profilé
- L la longueur de la solive

7.6

Donc on aura : 304 < h < 560 et on prend le profilé

On choisit un **IPE 360** avec **un nuance d'acier de S275** qui a les caractéristiques suivantes

Tableau 4.1- caractéristiques du profilé IPE360

DESIGNATION	Poids	oids Section Dimensions Caractéristiques									
	G Kg/m	A cm ²	h mm	b mm	t _f mm	l _y cm ⁴	I _z cm ⁴	W _{pl-y} cm ³	W _{pl-z} cm ³	i _y cm	I _z cm
IPE 360	57,1	72,73	360	170	12,7	16270	1043	1019	191,1	14,95	3,79

1. Phase de construction :

Le profilé d'acier travail seul, donc les charges de la phase de construction sont :

- Poids propre du profilé...... $g_p = 0,571 \text{ KN/ml.}$
- Poids propre du béton frais..... $G_b = 3,75 \text{ KN/m}^2$
- Poids du bac d'acier.....g =0,15 KN/m^2
- Surcharge de construction (ouvrier)...... $Q_c = 1,00 \text{ KN/m}^2$

1.1 Combinaisons des charges :

L'entraxe entre les solives est de 1.5 m.

• E.L U:

$$\begin{aligned} q_u &= 1,35 \times g_p + (1,35 \times G_b + 1,5 \times Q) \times 1.5 \\ q_u &= 1,35 \times [(3,75 + 0,15) \times 1;5 + 0.571] + 1,5 \times 1 \times 1;5 \end{aligned}$$

 $q_u = 10.92 \text{ KN/ml}.$

• E.L S:

$$q_{ser} = g_p + (G_b + g + Q) \times 1,5$$

$$q_{ser} = 0.571 + (3.75 + 0.15 + 1) \times 1.5$$

 $q_{ser} = 7.92 \text{ KN/ml.}$

1.2. Vérification de la flexion: [1]:

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire a la condition suivante :

$$M_{sd} \le M_{brd} = \frac{W_{pl}.f_y}{\gamma_{M_0}}$$

$$M_{\text{max}} = M_{\text{sd}} = \frac{q_{u \times L^2}}{8} = \frac{10.92 \times 7.6^2}{8} = 78.91 \text{ KN. } m$$

$$M_{plrd} = \frac{W_{pl} \times f_y}{1} = \frac{1019 \times 10^{-6} \times 275 \times 10^3}{1} = 280,23 \ KN. m$$

$$M_{plrd} = 280,23 \text{ KN.m} > M_{sd} = 78.91 \text{ KN.m}$$
 c'est vérifiée

1.3. Vérification de l'effort tranchant : [3]

$$V_{Sd} \le V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \gamma_{M}}$$

On doit vérifier que :

Où:

 $V_{pl\cdot Rd}$: effort tranchant de plastification de la section.

A_v : aire de cisaillement.

$$A_v = A - 2.b.t_f + (t_w + 2.r).t_f$$

$$A_v = 3512.8 \text{ mm}^2$$
.

$$V_{plrd} = \frac{275 \times 10^3 \times 3512,8 \times 10^{-3}}{\sqrt{3}} = 557,73 \text{ KN}$$

$$V_{sd} = \frac{q_{u \times L}}{4} = \frac{10.92 \times 7.6}{4} = 20.75 \text{ KN}$$

$$V_{plrd} = 557,73 \text{ KN} > V_{sd} = 20.75 \text{ KN}$$
 c'est vérifée

 V_{sd} = 20.75 KN < 0,5 V_{plrd} = 278,87 KN => pas d'interaction entre l'effort tranchant et le moment fléchissant donc on a pas besoin de réduire la résistance à la flexion .

1.4. Vérification de la rigidité :

Il faut vérifiée que:

$$f^{\text{max}} = \frac{5}{384} \frac{q_s . L^4}{E I_v} \le \bar{f}$$

Avec:

 $q_{ser} = 7.92 \text{ KN/ml}.$

L = 7.6 m.

 $I_y = 16270 \text{ cm}^4$.

La valeur de la flèche maximale est :

$$\mathbf{f}^{\text{max}} = \frac{5}{384} \frac{7.92 \times 7600^4}{2.1 \times 10^5 \times 16270 \times 10^4} = \mathbf{10.1} \ mm$$

La valeur de la flèche admissible est :

$$\mathbf{f}^{\text{adm}} = \frac{L}{250} = \frac{7600}{250} = 30.4mm$$

donc

$$f^{max} = 10.1 \text{mm} < f^{adm} = 30.4 \text{mm}$$

c'est vérifée

1.5. Vérification du déversement : [3]

Pour un IPE 360 On doit vérifiée que :

$$Msd \leq M_{bRd} = \chi_{LT} \frac{W_{plx} f_{y}}{\gamma_{M_{1}}} \beta_{W}$$

$$\chi_{LT} = \frac{1}{\left(\Phi_{LT} + \sqrt{\left((\Phi_{LT})^{2} - (\overline{\lambda}_{LT})^{2}\right)}\right)}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT-0.2} \right) + \overline{\lambda}_{LT}^{2} \right]$$

Avec : M_{sd} est le moment appliqué $\Rightarrow M_{sd} = 78.91$ KN.m

M_{b.Rd} : la résistance de calcul

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta w.Wply.fy}{Mcr}} \qquad \text{Et} \qquad Mcr = C1 \frac{\pi^2.E.Iz}{(Ld)^2} \cdot \left[\left(\frac{K}{Kw} \right)^2 \cdot \frac{Iw}{Iz} + \frac{(Ld)^2}{\pi^2} \cdot \frac{G.It}{E.Iz} \right]^{0.5}$$

Avec:

 C_1 = 1,132 C_2 =0,459 (chargement et conditions d'appuis) ; Wply= 1019cm³ , βw =1 $\,$ Kw=1 $\,$ k=1

Ld : longueur de déversement =kL= 7.6m.

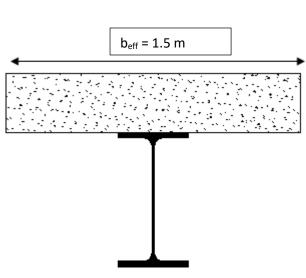
Application numérique :

$$M_{cr} = 1,34 \times 10^8 \, N. \, mm$$

$$ar{\lambda}_{lt} =$$
 1,45 $\,>$ 0,4 $\,\to$ il y a un risque de déversement

$$\Phi_{lt} = 1,674$$

$$\chi_{1t} = 0.396$$

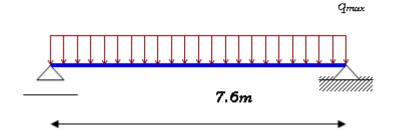

$$M_{brd} = 101.04$$
 KN.m

Donc
$$M_{sd} = 78.91 \text{ KN.m} < M_{brd} = 101.04 \text{ KN.m}$$
 c'est vérifiée

2. Phase finale:

Dans les calculs des poutres mixtes, on prendra en compte de chaque coté de l'axe de la e largeur de la dalle égale à la plus faible des valeurs suivantes :

$$b_{\text{eff}} = \inf \begin{cases} \frac{2.l_0}{8} & avec \ l_0 : Langueur \ libre \ d'une \ poutre \\ & simplement \ appuie \\ b & b : Entraxe \ entre \ les \ poutres \end{cases}$$



Le béton ayant durci, la section mixte (le profilé et la dalle) travaillant ensemble

Les charges de la phase finale sont :

. poids propre du profilé $g_p = 0.571 \text{KN/m}$.

. Charge permanente $G=5,2KN/m^2$

2.1. Combinaison des charges :

E.L U:

La combinaison la plus défavorable est :

$$q_u = 1{,}35[(G \times 1.5) + gp] + 1{,}5 \times Q \times 1.5$$

$$q_u = 1,35[(5.2 \times 1.5) + 0,571] + 1,5 \times 2,5 \times 1.5$$

 $q_u = 16.93 \text{ KN/ml.}$

• E.L S:

$$q_{ser} = g_p + (G - g_{beton} - g_{bac} + Q) \times 1.5$$

$$q_{ser} = 0,571 + (5.2 - 3,75 - 0,15 + 2,5) \times 1.5$$

 $q_{ser} = 6.27$ KN/ml.

2.2. Position de l'axe neutre plastique :

$$\mathbf{R}_{\mathbf{B\acute{e}ton}} = 0.57 \times f_{ck} \times b_{eff} \times h_c$$
 avec $f_{ck} = 25 \text{MPa}$ (Béton de classe 25/30)

$$R_{B\acute{e}ton} = (0.57 \times 25 \times 1500 \times 85) \times 10^{-3}$$

$$\Rightarrow$$
R_{Béton} = 1816.88 KN.

$$\mathbf{R}_{Acier} = 0.95 \times f_v.A_a$$

$$R_{Acier} = (0.95 \times 275 \times 7273) \times 10^{-3}$$

$$\Rightarrow$$
R _{Acier} = 1900,2 KN.

R Beton < R Acier

Axe neutre se trouve dans la semelle ou l'ame, donc on doit déterminer la resistance de la traction de l'âme $R_{\rm w}$

$$R_w = (0.95 f_y A_w) = 0.95 \times 275 \times 2676.8 = 699.3 KN$$

 $R_w < R_{B\acute{e}ton}$ donc l'axe neutre dans la semelle sup .

$$M_{PLrd} = \left(R_a \left(\frac{h}{2}\right) + R_b \left(\frac{h_c}{2} + h_p\right)\right) = (1900.2 \times 180) + \left(1211.25 \times \left(\frac{85}{2} + 55\right)\right)$$
$$= 460.132 \ KN. m$$

Vérifications:

2.3. Vérification de la flexion : [3]

Il faut que : $M_{sd} \le M_{pl.Rd}$

Le moment appliqué :

$$M_{sd} = \frac{q_{u \times L^2}}{8} = \frac{16.93 \times 7.6^2}{8} = 122.23 \text{ KN. } m => M_{sd} = 122.23 \text{ kN.m} < M_{pl.Rd} = 460.13 \text{ kN.m}$$

Condition vérifiée

2.4. Vérification de l'effort tranchant : [3]

$$V_{Sd} \le V_{plRd} = \frac{f_y A_v}{\sqrt{3} \gamma_{Mo}}$$

On doit vérifiées que :

Où: V_{pl·Rd} est l'effort tranchant de plastification de la section.

et V_{sd} l'effort tranchant

$$V_{plrd} = \frac{275 \times 10^3 \times 3512,8 \times 10^{-3}}{\sqrt{3}} = 557,73 \text{ KN}$$

$$V_{sd} = \frac{q_{u \times L}}{4} = \frac{16.93 \times 7.6}{4} = 32.17 \text{ KN}$$

 $V_{sd} = 32.17 \text{ kN} < V_{plrd} = 557.73 \text{ kN}$ condition vérifiée

 $V_{sd} = 32.17 \text{ kN} < 0.5 \text{ V}_{plrd} = 278.87 \text{ kN}$ Pas d'interaction entre l'effort tranchant et le moment fléchissant.

Donc il n'est pas nécessaire de réduire la résistance à la flexion. [3]

Vérification de la rigidité : 2.5.

Il faut vérifiée que :
$$f^{\max} = \frac{5}{384} \frac{q_s . L^4}{E I_{el}} \le \bar{f}$$

Avec:

 $q_{ser} = 6.27 \text{ KN/ml}.$

L = 7.6 m.

 $E = 2.1.10^5 \text{ N/mm}^2$.

$$I_c = (A_a(h_c + 2h_p + h_a)^2 / 4(1+ny)) + (b_{eff} * h_c^3 / 12*n) + I_a$$

$$n=E_a/E_b=15$$

$$y = A_a/A_b = 0.085$$

$$I_c = 25.88 \ 10^8 \ mm^4$$

La valeur de la flèche maximale est :

$$f^{\text{max}} = \frac{5}{384} \frac{6.27 \times 7600^4}{2,1 \times 10^5 \times 25.88 \times 10^8} = 0.50 \ mm$$

La valeur de la flèche admissible est :

$$f^{\text{adm}} = \frac{L}{250} = \frac{7600}{250} = 30.4 \ mm$$

$$f^{max} = 0.50 \text{ mm} < f^{adm} = 30.4 \text{ mm}$$

La flèche totale = la flèche de la phase de construction +la flèche de la phase finale

$$f_{tot} = 10.1 + 0.50 = 10.6 \ mm < f^{adm} = 30.4 \ mm$$
 condition vérifiée

Vérification du déversement : [6]

Dans cette phase on ne vérifie pas le déversement, car la solive est maintenue par le béton dur.

3. Calcul des connecteurs : [18]

Type goujon hauteur: h = 95 mm;

Diamètre : d = 19 mm.

3.1. Détermination de P_{rd} :

$$P_{rd} = k_{t}.Inf \begin{cases} 0,29.\alpha.d^{2} \frac{\sqrt{F_{CK}E_{C}}}{\gamma_{v}} & ..Résistence \ dans \ le \ béton \\ & qui \ entour \ le \ goujon. \\ 0,8.f_{u}.\frac{\pi.d^{2}}{4.\gamma_{v}} & ..La \ force \ dans \ le \ goujon \end{cases}$$

f_{ck}: résistance caractéristique de béton......25 N/mm²

E_c: module de Young de béton......30,5KN/mm²

f_u: résistance caractéristique des connecteurs..... 450 N/mm²

 $\gamma_{\rm v} = 1,25$.

$$\alpha = 1 \operatorname{si} \left(\frac{h}{d} \right) \succ 4 \qquad \qquad \alpha = 0, 2 \cdot \left(\frac{h}{d} + 1 \right) \quad 3 \le \frac{h}{d} \le 4 \qquad \qquad \alpha = 1 \quad \operatorname{car} \left(\frac{95}{19} \right) = 5 \succ 4$$

$$\alpha = 1 \quad car \quad \left(\frac{95}{19}\right) = 5 > 4$$

Nous avons

(kt) Coefficient de réduction fonction du sens des nervures du bac pour un bac acier dont les nervures sont parallèles à la poutre. Le coefficient de réduction pour la résistance au cisaillement est calculé par :

$$k_{t} = \frac{0.6}{\sqrt{Nr}} \cdot \frac{b_{0}}{h_{p}} \cdot \left[\frac{h_{c}}{h_{p}} - 1 \right]$$

 $H_p = 55 \text{ mm } h_c = 95 \text{ mm}$

bo = 128 mm

Nr Nombre de goujon par Nervure =1 ou max 2

Dans notre cas Nr=1.

 $K_t = 0.86$

$$P_{rd} = 0,86.Inf \begin{cases} 0,29.1.19^{2}.\frac{\sqrt{20.30,5.10^{3}}}{1,25} = 73,13 \text{ KN} \\ 0,8.450.\frac{\pi.19^{2}}{4.1,25} = 81,66 \text{KN} \end{cases}$$

$$P_{rd} = 62.89 \text{ kN}$$

3.2. Détermination de R_L:

$$R_L = Inf(R_{B\acute{e}ton}; R_{Acier}) = Inf(1816.88 \text{ KN}; 1900,2 \text{ KN})$$

$$R_L = 1816.88 \text{ kN}$$

4. Nombre des connecteurs :

$$N^{br} = \frac{R_L}{P_{rd}} = \frac{1815.88}{62.89} = 28.89$$

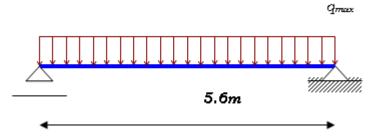
On prend 29 connecteurs pour la demi portée.

L'espacement minimal des connecteurs doit être supérieure à 5 fois le diamètre :

$$e_{min} \ge 5.d = 5 \times 19 = 95 \text{ mm}$$

$$Esp = \frac{L}{N_{br} - 1} = \frac{7600}{29 - 1} = 271.43 \ mm$$

Esp = 271.43mm > 95 mm condition vérifiée


Donc on prend **29 connecteurs** pour toute la portée de la solive.

❖ Solive de 5.6m

$$\frac{L}{25} \le h \le \frac{L}{15}$$

Avec:

- **h** la hauteur du profilé
- L la longueur de la solive

Donc on aura : 224 < h < 373 et on prend le profilé

On choisit un IPE 360 avec un nuance d'acier de S275 qui a les caractéristiques suivantes

Désignation	Poids	Poids Section Dimensions Caractéristiques									
	G	A	h	b	$t_{\rm f}$	I_y	I_z	W_{pl-y}	W_{pl-z}	\mathbf{i}_{y}	I_z
	Kg/m	cm ²	mm	mm	mm	cm ⁴	cm ⁴	cm ³	cm ³	cm	cm
IPE 360	57,1	72,73	360	170	12,7	16270	1043	1019	191,1	14,95	3,79

1. Phase de construction :

Le profilé d'acier travail seul, donc les charges de la phase de construction sont :

- Poids propre du profilé...... $g_p = 0.571 \text{ KN/ml.}$
- Poids propre du béton frais...... $G_b = 3,75 \text{ KN/m}^2$
- Poids du bac d'acier...... g =0,15 KN/m²
- Surcharge de construction (ouvrier)...... $Q_c = 1,00 \text{ KN/m}^2$

1.1. Combinaisons des charges :

L'entraxe entre les solives est de 1.5 m.

• E.L U:

$$q_u = 1,35 \times g_p + (1,35 \times G_b + 1,5 \times Q) \times 1.5$$

$$q_u = 1,\!35 \times [(3,\!75 \!+\! 0,\!15) \times 1;\!5 + 0.571] \!+\! 1,\!5 \times 1 \times 1;\!5$$

 $q_u = 10.92 \ KN/ml.$

• E.L S:

$$\begin{split} q_{ser} &= g_p + (G_b + g + Q) \times 1,5 \\ q_{ser} &= 0,571 + (3,75 + 0,15 + 1) \times 1.5 \\ q_{ser} &= 7.92 \text{ KN/ml.} \end{split}$$

Vérifications:

1.2. Vérification de la flexion: [3]:

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire

a la condition suivante

$$M_{sd} \le M_{brd} = \frac{W_{pl}.f_y}{\gamma_{M_0}}$$

$$\begin{split} M_{\text{max}} &= M_{\text{sd}} = \frac{q_{u \times L^2}}{8} = \frac{10.92 \times 5.6^2}{8} = 42.81 \ \textit{KN.m} \\ M_{\text{plrd}} &= \frac{W_{pl} \times f_y}{1} = \frac{1019 \times 10^{-6} \times 275 \times 10^3}{1} = 280,23 \ \textit{KN.m} \\ M_{\text{plrd}} &= 280,23 \ \text{KN.m} > M_{\text{sd}} = 42.81 \ \text{KN.m} \end{split}$$
 c'est vérifiée

1.3. Vérification de l'effort tranchant : [3]

$$V_{Sd} \le V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \gamma_{Mo}}$$

On doit vérifier que :

Où:

 $V_{\text{pl-Rd}}$: effort tranchant de plastification de la section.

A_v: aire de cisaillement.

$$A_v = A - 2.b.t_f + (t_w + 2.r).t_f$$

$$A_v = 3512,8 \text{ mm}^2$$
.

$$V_{plrd} = \frac{275 \times 10^3 \times 3512,8 \times 10^{-3}}{\sqrt{3}} = 557,73 \text{ KN}$$

$$V_{sd} = \frac{q_{u \times L}}{4} = \frac{10.92 \times 5.6}{4} = 15.29 \text{ KN}$$

$$V_{plrd} = 557,73 \text{ KN} > V_{sd} = 15.29 \text{ KN}$$
 c'est vérifée

 V_{sd} = 15.29 KN < 0,5 V_{plrd} = 278,87 KN => pas d'interaction entre l'effort tranchant et le moment fléchissant donc on a pas besoin de réduire la résistance à la flexion .

1.4. Vérification de la rigidité :

Il faut vérifiée que :

$$f^{\text{max}} = \frac{5}{384} \frac{q_s \cdot L^4}{E I_v} \le \bar{f}$$

Avec:

 $q_{ser} = 7.92 \text{ KN/ml}.$

L = 5.6 m.

 $I_y = 16270 \text{ cm}^4$.

La valeur de la flèche maximale est :

$$\mathbf{f}^{\text{max}} = \frac{5}{384} \frac{7.92 \times 5600^4}{2,1 \times 10^5 \times 16270 \times 10^4} = 2.99 \ mm$$

La valeur de la flèche admissible est :

$$f^{\text{adm}} = \frac{L}{250} = \frac{5600}{250} = 22.4 \ mm$$

donc

$$f^{max} = 2.99 \text{ mm} < f^{adm} = 22.4 \text{ mm}$$

c'est vérifée

1.5. Vérification du déversement : [3]

Pour un IPE 360 On doit vérifiée que :

$$Msd \le M_{bRd} = \chi_{LT} \frac{W_{plx} f_y}{\gamma_{M_1}} \beta_W$$

$$\chi_{LT} = \frac{1}{\left(\Phi_{LT} + \sqrt{\left(\left(\Phi_{LT}\right)^2 - \left(\overline{\lambda}_{LT}\right)^2}\right)}$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT-0.2} \right) + \overline{\lambda}_{LT}^{2} \right]$$

Avec : M_{sd} est le moment appliqué $\Rightarrow M_{sd} = 42.81$ KN.m

M_{b.Rd} : la résistance de calcul

$$\overline{\lambda}_{LT} = \sqrt{\frac{\beta w.Wply.fy}{Mcr}} \qquad \text{Et} \qquad Mcr = C1 \frac{\pi^2.E.Iz}{(Ld)^2} \cdot \left[\left(\frac{K}{Kw} \right)^2 \cdot \frac{Iw}{Iz} + \frac{(Ld)^2}{\pi^2} \cdot \frac{G.It}{E.Iz} \right]^{0.5}$$

Avec:

 C_1 = 1,132 C_2 =0,459 (chargement et conditions d'appuis) ; Wply= 1019cm³ , βw =1 Kw=1 k=1

Ld : longueur de déversement =kL=5.6m.

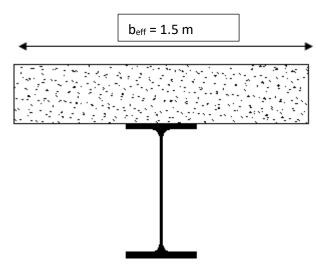
Application numérique :

$$M_{cr} = 2.08 \times 10^8 \, N.mm$$

$$\bar{\lambda}_{lt} = 1.16 > 0.4 \rightarrow \text{il y a un risque de déversement}$$

$$\Phi_{lt} = 1,273$$

$$\chi_{1t}=0.556$$

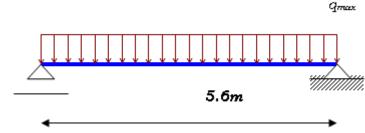

$$M_{brd} = 141.68 \text{ KN.m}$$

Donc $M_{sd} = 42.81 \text{ KN.m} < M_{brd} = 141.68 \text{ KN.m}$ c'est vérifiée

2. Phase finale:

Dans les calculs des poutres mixtes, on prendra en compte de chaque coté de l'axe de la e largeur de la dalle égale à la plus faible des valeurs suivantes :

$$b_{\text{eff}} = \inf \begin{cases} \frac{2.l_0}{8} & avec \ l_0 : Langueur \ libre \ d'une \ poutre \\ & simplement \ appuie \\ b & b : Entraxe \ entre \ les \ poutres \end{cases}$$


Le béton ayant durci, la section mixte (le profilé et la dalle) travaillant ensemble

Les charges de la phase finale sont :

. poids propre du profilé $g_p = 0.571 \text{KN/m}$.

. Charge permanente $G=5,2KN/m^2$

. surcharge d'exploitationQ = 2.5 KN/m^2 .

2.1. Combinaison des charges :

E.L U:

La combinaison la plus défavorable est :

$$q_u = 1,35[(G \times 1.5) + gp] + 1,5 \times Q \times 1.5$$

$$q_u = 1,35[(5.2 \times 1.5) + 0,571] + 1,5 \times 2,5 \times 1.5$$

 $q_u = 16.93 \text{ KN/ml}.$

• E.L S:

$$q_{ser} = g_p + (G - g_{beton} - g_{bac} + Q) \times 1.5$$

$$q_{ser} = 0.571 + (5.2 - 3.75 - 0.15 + 2.5) \times 1.5$$

 $q_{ser} = 6.27$ KN/ml.

2.2. Position de l'axe neutre plastique :

 $\mathbf{R}_{B\acute{e}ton} = 0.57 \times f_{ck} \times b_{eff} \times h_c$ avec $f_{ck} = 25 \text{MPa}$ (Béton de classe 25/30)

 $R_{B\acute{e}ton} = (0.57 \times 25 \times 1500 \times 85) \times 10^{-3}$

 \Rightarrow R_{Béton} = 1816.88 KN.

 $\mathbf{R}_{Acier} = 0.95 \times f_y.A_a$

 $R_{Acier} = (0.95 \times 275 \times 7273) \times 10^{-3}$

 \Rightarrow R _{Acier} = 1900,2 KN.

 $R_{Beton} < R_{Acier}$

Axe neutre se trouve dans la semelle ou l'ame, donc on doit déterminer la resistance de la traction de l'âme R_w

$$R_w = (0.95 f_y A_w) = 0.95 \times 275 \times 2676.8 = 699.3 KN$$

 $R_w < R_{B\acute{e}ton}$ donc l'axe neutre dans la semelle sup.

$$M_{PLrd} = \left(R_a \left(\frac{h}{2} \right) + R_b \left(\frac{h_c}{2} + h_p \right) \right)$$

$$= (1900.2 \times 180) + \left(1211.25 \times \left(\frac{85}{2} + 55 \right) \right)$$

$$= 460.132 \, KN. \, m$$

Vérifications:

Vérification de la flexion : [3] 2.3.

Il faut que : $M_{sd} \le M_{pl.Rd}$

Le moment appliqué:

$$M_{sd} = \frac{q_{u \times L^2}}{8} = \frac{16.93 \times 5.6^2}{8} = 66.37 \text{ KN. } m => M_{sd} = 66.37 \text{ kN.m} < M_{pl,Rd} = 460.13 \text{ kN.m}$$

Condition vérifiée

Vérification de l'effort tranchant : [3]

$$V_{Sd} \leq V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \ \gamma_{M_{0}}}$$
 On doit vérifiées que :

Où: V_{pl·Rd} est l'effort tranchant de plastification de la section. et V_{sd} l'effort tranchant

$$V_{plrd} = \frac{275 \times 10^3 \times 3512,8 \times 10^{-3}}{\sqrt{3}} = 557,73 \text{ KN}$$

$$V_{sd} = \frac{q_{u \times L}}{4} = \frac{16.93 \times 5.6}{4} = 23.7 \text{ KN}$$

 $V_{sd} = 23.7 \text{ kN} < V_{plrd} = 557.73 \text{ kN}$ condition vérifiée

 $V_{sd} = 23.7 \text{ kN} < 0.5 \text{ V}_{plrd} = 278.87 \text{ kN}$ Pas d'interaction entre l'effort tranchant et le moment fléchissant.

Donc il n'est pas nécessaire de réduire la résistance à la flexion. [3]

2.5. Vérification de la rigidité :

$$f^{\max} = \frac{5}{384} \frac{q_s . L^4}{E I_{el}} \le \bar{f}$$
 Il faut vérifiée que :

Avec:

 $q_{ser} = 6.27 \text{ KN/ml}.$

L = 5.6 m.

 $E = 2.1.10^5 \text{ N/mm}^2$.

$$I_c = (A_a(h_c + 2h_p + h_a)^2 / 4(1 + ny)) + (b_{eff} * h_c^3 / 12 * n) + I_a$$

$$n=E_a/E_b=15$$

$$y=A_a/A_b=0,032$$

$$I_c = 24.82 \ 10^8 \, \text{mm}^4$$

La valeur de la flèche maximale est :

$$f^{\text{max}} = \frac{5}{384} \frac{6.27 \times 5600^4}{2.1 \times 10^5 \times 24.82 \times 10^8} = 0.2 \ mm$$

La valeur de la flèche admissible est :

$$f^{\text{adm}} = \frac{L}{250} = \frac{5600}{250} = 22.4 \ mm$$

$$f^{max} = 0.2 \text{ mm} < f^{adm} = 22.4 \text{ mm}$$

La flèche totale = la flèche de la phase de construction +la flèche de la phase finale

$$f_{tot} = 2.99 + 0.2 = 3.19 \ mm < f^{adm} = 22.4 \ mm$$
 condition vérifiée

2.6. Vérification du déversement : [6]

Dans cette phase on ne vérifie pas le déversement, car la solive est maintenue par le béton dur.

3. Calcul des connecteurs : [18]

Type goujon hauteur : h = 95 mm;

Diamètre : d = 19 mm.

3.1. **Détermination de Prd:**

$$P_{rd} = k_{t}.Inf \begin{cases} 0,29.\alpha.d^{2} \frac{\sqrt{F_{CK}E_{C}}}{\gamma_{v}} & ..Résistence \ dans \ le \ béton \\ & qui \ entour \ le \ goujon. \\ 0,8.f_{u}.\frac{\pi.d^{2}}{4.\gamma_{v}} & ..La \ force \ dans \ le \ goujon \end{cases}$$

f_{ck}: résistance caractéristique de béton......25 N/mm²

E_c: module de Young de béton......30,5KN/mm²

f_u: résistance caractéristique des connecteurs..... 450 N/mm²

 $\gamma_{\rm v} = 1,25.$

$$\alpha = 1 \operatorname{si} \left(\frac{h}{d} \right) > 4$$

$$\alpha = 1 \operatorname{si} \left(\frac{h}{d} \right) > 4 \qquad \qquad \alpha = 0, 2 \cdot \left(\frac{h}{d} + 1 \right) \quad 3 \le \frac{h}{d} \le 4 \qquad \qquad \alpha = 1 \quad \operatorname{car} \left(\frac{95}{19} \right) = 5 > 4$$

$$\alpha = 1$$
 car $\left(\frac{95}{19}\right) = 5 > 4$

Nous avons

(kt) Coefficient de réduction fonction du sens des nervures du bac pour un bac acier dont les nervures sont parallèles à la poutre. Le coefficient de réduction pour la résistance au cisaillement est calculé par :

$$k_{t} = \frac{0.6}{\sqrt{Nr}} \cdot \frac{b_{0}}{h_{p}} \cdot \left[\frac{h_{c}}{h_{p}} - 1 \right]$$

 $H_p = 55 \text{ mm } h_c = 95 \text{ mm}$

bo = 128 mm

Nr Nombre de goujon par Nervure =1 ou max 2

Dans notre cas Nr=1.

 $K_{t}=0.86$

$$P_{rd} = 0,86.Inf \begin{cases} 0,29.1.19^{2}.\frac{\sqrt{20.30,5.10^{3}}}{1,25} = 73,13 \text{ KN} \\ 0,8.450.\frac{\pi.19^{2}}{4.1,25} = 81,66 \text{KN} \end{cases}$$

$$P_{rd} = 62.89 \text{ kN}$$

3.2. Détermination de R_L :

$$R_L = Inf(R_{B\acute{e}ton}; R_{Acier}) = Inf(1816.88 \text{ KN}; 1900,2 \text{ KN})$$

$$R_L = 1816.88 \text{ kN}$$

3.3. Nombre des connecteurs :

$$N^{b r} = \frac{R_L}{P_{rd}} = \frac{1815.88}{62.89} = 28.89$$

On prend 29 connecteurs pour la demi portée.

L'espacement minimal des connecteurs doit être supérieure à 5 fois le diamètre :

$$e_{min} \ge 5.d = 5 \times 19 = 95 \text{ mm}$$

$$Esp = \frac{L}{N_{br} - 1} = \frac{5600}{29 - 1} = 200 \ mm$$

Esp = 200 mm > 95 mm condition vérifiée

Donc on prend 29 connecteurs pour toute la portée de la solive.

4.3.2. Les poutres porteuses

Les poutres sont des éléments horizontaux qui doivent reprendre essentiellement des efforts de flexion.vu la d'exploitation :

$$\frac{6000}{25} \le h \le \frac{6000}{15} = > 240 \text{mm} \le h \le 400 \text{mm}$$

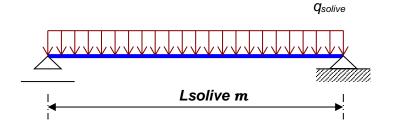
on choisit un IPE 400 qui a les caractéristiques suivantes :

Tableau 4.2: caracteristiques du profilé IPE400

DESIGNATION	Poids	Section	Dimensions		Caractéristiques						
	G Kg/m	A cm ²	h mm	b mm	t _f	I_y cm^4	$\begin{array}{c} I_z \\ cm^4 \end{array}$	$W_{\text{pl-y}}$ cm^3	$W_{\text{pl-z}}$ cm^3	i _y cm	i _z cm
IPE 400	66.3	84.5	400	180	13.5	23130	1318	1307	229.0	16.55	3.95

Remarque:

Après le calcul de la charge ultime qult qui sollicite le plancher terrasse et le plancher d'étage courant, nous avons constaté que la charge d'étage courant est la plus défavorable donc il suffit de vérifier la poutre la plus sollicitée de l'étage courant.


1. Phase de construction :

Le profilé d'acier travail seul, donc les charges de la phase de construction, en plus des réactions des solives sont :

- Poids propre du profilé...... $g_p = 0.663KN/ml$.
- Poids propre du béton frais......G_b =3,5 KN/m²
- Poids du bac d'acier.....g =0,15 KN/m²
- Surcharge de construction (ouvrier)......Qc = 1 KN/m²

1.1. Calcul des réactions des solives :

$$R_{solive} = \frac{q_{solive} \times L_{solive}}{2}$$

On regroupe les résultats dans le tableau ci-dessous:

Tableau 4.3: valeurs de reactions Rult Rser

reaction	Longer (m)	R _{ult} (KN)	R _{SER} (KN)
R ₁	7.6	41.49	30.096
R ₂	4	21.84	15.84

$$\mathbf{R}_{\text{solive}} = \mathbf{R}_1 + \mathbf{R}_2$$

$$R_{ult} = 63.33 KN$$

$$\mathbf{R}_{ser} = 45.936 \text{KN}$$

1.2. Combinaisons des charges_:(charge sur la semelle sup de la poutre)

E.L U:

$$\begin{split} q_u &= 1,35 \times g_p + (1,35 \times G_b + 1,5 \times Q_{const}) \times b_s \\ q_u &= 1,35 \times [(3,5+0,15) \times 0,18 + 0.663] + 1,5 \times 1 \times 0,18 \\ q_u &= 2.052 \text{ KN/ml.} \end{split}$$

\cdot E.L S:

$$\begin{split} q_{ser} &= g_p + (G_b + g + Q_{const}) \times 0,18 \\ q_{ser} &= 0.663 + (3 + 0.15 + 1) \times 0,18 \\ q_{ser} &= 1.41 \text{ KN/ml.} \end{split}$$

Vérifications:

1.3. Vérification de la flexion:

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire la condition suivante :

$$M_{sd} \le M_{brd} = \frac{W_{pl}.f_y}{\gamma_{M_0}}$$

La valeur maximale du moment est :

$$M_{sd} = \frac{2.19 \times 6^2}{8} + \frac{63.33 \times 6}{2} = 199.845 \text{ KN. ml}$$

$$M_{plrd} = \frac{Wpl \times Fy}{vm0} = \frac{1307 \times 10^6 \times 275 \times 10^3}{1} = 359.425 kn.m$$

 $M_{plrd} = 359.425 \text{ kn.m} > M_{sd} = 199.845 \text{kn.m} \implies \text{c'est v\'erifie}$

1.4. Vérification de l'effort tranchant :

$$V_{Sd} \le V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \gamma_{M_{0}}}$$

On doit vérifiées que :

Où:

Vpl.Rd: effort tranchant de plastification de la section.

Av : aire de cisaillement.

Av = 4269 mm2...

$$vplrd = \frac{275 \times 10^{-3} \times 4269}{\sqrt{3 \times 1}} = vplrd = 568.64 kn$$

La valeur maximale de l'effort tranchant Vsd

vsd max = 94.995 kN

Vsd
$$^{\text{max}}$$
 =94.995 KN \leq Vplrd = 568.64 KN \Rightarrow c'est vérifie

 $V_{sd} \le 0.5 V_{plrd} = 284.32 \text{ KN} \Rightarrow \text{Pas}$ d'interaction entre l'effort tranchant et le moment fléchissant.

Donc il n'est pas nécessaire de réduire la résistance à la flexion.

1.5. Vérification de la rigidité :

Il faut vérifiée que:

$$f_{\text{max}} \le f_{adm} = \frac{l}{250}$$

La valeur de la flèche maximale est :

$$f(s) = \frac{19 \times qser \times L^3}{384EI} = \frac{19 \times 45.93 \times 6000^3}{384 \times 2.1 \times 10^5 \times 23130 \times 10^4} = 10.10 \text{mm}$$

$$f(ser) = \frac{5}{384} \frac{1.41 \times 6000^4}{2,1 \times 10^5 \times 23130 \times 10^4} = 0.48 \text{ mm}$$

f tot =
$$0.48+10.10 = 10.58 \text{ mm} \le \text{f adm} = \frac{6000}{250} = 24 \text{mm}$$

1.5. Vérification du déversement :

On considère que les poutres sont maintenir latéralement par des solives donc pas de risque de déversement.

2. Phase finale:

Le béton ayant durci, la section mixte (le profilé et la dalle) travaillant ensemble Les charges de la phase finale sont :

- . Poids propre du profilé $g_p = 0.663 \text{ KN/m}$.

2.1. Calcul des réactions des solives :

$$R_{solive} = \frac{q_{solive} \times L_{solive}}{2}$$

Tableau 4.4: valeurs de reactions

reaction	longeur(m)	R _{ult} (KN)	$R_{SER}(KN)$
\mathbf{R}_1	7.6	86.16	60.65
R_2	4	45.34	31.92

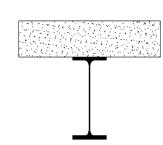
$$\mathbf{R}_{\text{solive}} = \mathbf{R}_1 + \mathbf{R}_2$$

 $\mathbf{R}_{\text{ult}} = 131.5 \text{ KN}$
 $\mathbf{R}_{\text{ser}} = 92.57 \text{ KN}$

2.2. Combinaisons des charges :(charge sur la semelle sup de la poutre)

E.L U:

$$\begin{split} q_u &= 1,35 \times g_p + (1,35 \times G + 1,5 \times Q) \times b_s \\ q_u &= 1,35.0.663 + 1,35 \times [5,2.0,18] + 1,5 \times 5 \times 0,18 \\ q_u &= 3.50 \text{ KN/ml.} \end{split}$$


• E.L S:

$$\begin{aligned} q_{ser} &= (gp + G + Q) \times 0,18 \\ q_{ser} &= 0.663 + (5,2 + 5) \times 0,18 \\ q_{ser} &= 2,50 \text{KN/ml.} \end{aligned}$$

Largeur effective:

$b_{eff}=1.5m$

$$b_{eff} = inf. \begin{cases} \frac{2L_0}{8} = 1.5m & avec \ l_0: langueur \ libre \ d'une \ poutre \\ & simplement \ appuie \\ b = 6m & b: Entraxe \ entre \ les \ poutres \end{cases}$$

2.3. Position de l'axe neutre plastique :

$$R_{B\acute{e}ton} = 0.57 \times f_{ck} \times b_{eff} \times h_c \qquad \text{avec} \qquad f_{ck} = 25 \text{ MPa (B\acute{e}ton de classe 25/30)}$$

$$R_{B\acute{e}ton} = (0.57 \times 25 \times 1500 \times 85) \times 10^{-3}$$

$$\Rightarrow$$
R Béton = 1816KN.

R Acier =
$$0.95 \times f_v.A_a$$

$$R_{Acier} = (0.95 \times 275 \times 8450) \times 10^{-3}$$

$$\Rightarrow$$
 R Acier = 2207.562 KN.

R Béton < R Acier

$$R_{W}=0.95.d.t_{w}.f_{v}=0.95.331.8.6.27510^{-3}=743.67KN$$

R_W < R _{Béton} ⇒ axe neutre plastique dans la semelle sup du profilé

$$z_p = \frac{A_a}{2.b_s.R_{acier}} (R_{ACIER} - R_{beton}) + (h_b + h_P)$$
 (profondeur de l'ANP)

h_b:hauteur du béton seul

h_p:hauteur du bac d'acier

$$M_{PLrd} = \left(R_a \left(\frac{h}{2}\right) + R_b \left(\frac{h_c}{2} + h_p\right)\right) = (2207.562 \times 200) + \left(1816 \times \left(\frac{85}{2} + 55\right)\right) = 618.572 \, KN. \, m$$

Vérifications:

2.4. Vérification de la flexion :

Il faut que : $M_{sd} \le M_{pl.Rd}$

Le moment appliqué:

$$M_{sd} = \frac{3.50 \times 6^2}{8} + \frac{131.5 \times 6}{2} = 410.25 \text{ KN. ml}$$

Moment résistant plastique développé par la section mixte :

$$M_{pl.Rd} = 618.572 \text{ kN.m}$$

$$M_{plrd} = 618.572 \text{ kn.m} > M_{sd} = 410.25 \text{kn.m} \implies \text{c'est v\'erifie}$$

2.5. Vérification de l'effort tranchant :

On doit vérifiées que :
$$V_{Sd} \le V_{plRd} = \frac{f_y A_v}{\sqrt{3} \gamma_{M_0}}$$

Où: V_{pl.Rd} est l'effort tranchant de plastification de la section.

A_v est l'aire de cisaillement.

 $A_v = 4269 \text{ mm}^2$.

$$v_{\text{plrd}} = \frac{275 \times 10^{-3} \times 4269}{\sqrt{3 \times 1}} = vplrd = 568.64kn$$

La valeur maximale de l'effort tranchant V_{sd}

$$V_{sd}^{max} = 197.25 \text{ kN}$$

Vsd
$$^{\text{max}}$$
 =197.25 KN \leq Vplrd = 568.64 KN \Rightarrow c'est vérifie

 $V_{sd} \le 0.5 V_{plrd} = 284.32 \text{ KN} => Pas d'interaction entre l'effort tranchant et le moment fléchissant.}$

Donc il n'est pas nécessaire de réduire la résistance à la flexion.

2.6. Vérification de la rigidité :

$$f^{\max} = \frac{5}{384} \frac{q_s . L^4}{E I_{el}} \le \bar{f}$$

Il faut vérifiée que :

Avec:

 $q_{ser} = 2.50 \text{ KN/ml}.$

L = 6 m.

 $E = 2.1.10^8 \text{ N/mm}^2$.

$$I_c = (A_a(h_c + 2h_p + h_a)^2 / 4(1 + n v)) + (b_{eff} * h_c^3 / 12 * n) + I_a$$

$$n=E_a/E_b=15$$

$$y=A_a/A_b=0.034$$

$$I_c = 5.045 \ 10^8 \, \text{mm}^4$$

$$f^{\text{max}} = \frac{5}{384} \frac{2.50 \times 6000^4}{2.1 \times 10^5 \times 5.045 \times 10^8} = 0.39 mm$$

$$f(s) = \frac{63 \times qser \times L^3}{1000ELC} = \frac{19 \times 92.57 \times 6000^3}{384 \times 2.1 \times 10^5 \times 5.045 \times 10^8} = 9.33 \text{mm}$$

La valeur de la flèche admissible est :

$$f^{\text{adm}} = \frac{L}{250} = \frac{6000}{250} = 24 \ mm$$

$$f^{max} = 9.72 \text{ mm} < f^{adm} = 24 \text{ mm}$$

La flèche totale = la flèche de la phase de construction +la flèche de la phase finale

$$f_{tot} = 10.58 + 9.72 = 20.308 \ mm < f^{adm} = 24 \ mm$$
 condition vérifiée

2.7. Vérification du déversement :

Dans cette phase il n'est pas nécessaire de vérifier le déversement, car la solive est maintenue par le béton dur.

2.8. Calcul des connecteurs :

Type goujon hauteur : h = 95 mm;

Diamètre : d = 19 mm

1.Détermination de P_{rd}:

$$P_{rd} = k_{t}.Inf \begin{cases} 0,29.\alpha.d^{2} \frac{\sqrt{F_{CK}E_{C}}}{\gamma_{v}} & ...Résistence \ dans \ le \ béton \\ & qui \ entour \ le \ goujon. \\ 0,8.f_{u}.\frac{\pi.d^{2}}{4.\gamma_{v}} & ...La \ force \ dans \ le \ goujon \end{cases}$$

f_{ck}: résistance caractéristique de béton......25 N/mm²

E_c: module de Young de béton.....30,5KN/mm²

f_u : résistance caractéristique des connecteurs.....450 N/mm²

 $y_v = 1,25.$

$$\alpha = 1 \, si \, \left(\frac{h}{d} \right) \succ 4 \qquad \qquad \alpha = 0, 2 \cdot \left(\frac{h}{d} + 1 \right) \, si \, 3 \leq \frac{h}{d} \leq 4$$

Nous avons
$$\alpha = 1$$
 car $\left(\frac{95}{19}\right) = 5 > 4$

(kt) Coefficient de réduction fonction du sens des nervures du bac pour un bac acier dont les nervures sont parallèles à la poutre. Le coefficient de réduction pour la résistance au cisaillement est calculé par :

$$k_{t} = \frac{0.6}{\sqrt{Nr}} \cdot \frac{b_0}{h_p} \cdot \left[\frac{h_c}{h_p} - 1 \right]$$

 $H_p = 55 \text{ mm } h_c = 95 \text{ mm}$

bo = 128 mm Nr Nombre de goujon par Nervure =1 ou max 2

Dans notre cas Nr=1.

 $K_{t}=0.86$

$$P_{rd} = 0,86.Inf \begin{cases} 0,29.1.19^{2}.\frac{\sqrt{20.30,5.10^{3}}}{1,25} = 73,13 \text{ KN} \\ 0,8.450.\frac{\pi.19^{2}}{4.1,25} = 81,66 \text{KN} \end{cases}$$

$$P_{rd} = 62.89 \text{ kN}$$

2.Détermination de R_L:

$$R_L = Inf(R_{B\acute{e}ton}; R_{Acier}) = Inf(1816 \text{ KN}; 2207.562 \text{ KN})$$

$$R_L = 1816.88 \text{ kN}$$

3. Nombre des connecteurs :

$$N^{b r} = \frac{R_L}{P_{rd}} = \frac{1815.88}{62.89} = 28.89$$

On prend 29 connecteurs pour la demi portée.

L'espacement minimal des connecteurs doit être supérieure à 5 fois le diamètre :

$$e_{min} \ge 5.d = 5 \times 19 = 95 \text{ mm}$$

$$Esp = \frac{L}{N_{br} - 1} = \frac{6000}{29 - 1} = 214.28mm$$

Esp = 214.28mm > 95 mm condition vérifiée

Donc on prend 29 connecteurs pour toute la portée de la poutre

4.3.3. les poteaux

Les poteaux sont des éléments verticaux qui supportent les charges et les surcharges, et qui transmettent ces derniers aux fondations, ils sont généralement des profilés en HEA ou HEB

1. Principe de calcul

Les poteaux sont pré-dimensionnés en compression simple en calculons les trois types de poteau (d'angle, central, rive).

1.1. Etapes de pré dimensionnement

- •Calcul de la surface reprise par chaque poteau.
- •Evaluation de l'effort normal ultime de la compression à chaque niveau d'après la descente des charges.
- •La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau.

Nu = 1,5Q+1,35G

- G: Poids propre des éléments qui sollicite le poteau étudié non compris son poids propre.
- Q : Surcharge d'exploitation dans le cas où la charge d'exploitation est la même pour tous les étages,

la loi de dégression est équivalente à la règle usuelle dans laquelle les charges d'exploitation de chaque étage sont réduites.

❖ Pour les batiments R+8 :

1.2. Les surfaces qui reviennent aux poteaux:

- •Poteau d'angle..... $3 \times 3.8 = 11.4 \text{ m}^2$
- •Poteau de rive...... $3 \times 5.8 = 17.4 \text{ m}^2$

1.3. La Descente des charges :

> Charges permanentes :

a)Poteau d'angle :

$$S = 11.4 \text{ m}^2$$
; $G_{terr} = 7,43 \text{KN/m}^2$; $G_{corr} = 6,44 \text{KN/m}^2$.

Tableau 4.5-la descente de charge permanente pot d'angle

Niveau	Charge permanente(KN)
8 ^{eme} étage	84.70
7 ^{eme} étage	158.12
6 ^{eme} étage	231.54
5 ^{eme} étage	304.95
4 ^{eme} étage	378.37
3 ^{eme} étage	451.78
2 ^{eme} étage	525.2
1 ^{eme} étage	598.62
RDC	672.03

b)Poteau central:

 $S= 31.92 \text{ m}^2$; Gterr=7,43KN/m²; Gco=6,44KN/m².

Tableau 4.6- la descente de charges permanentes pot central

Niveau	Charge permanente(KN)
8 ^{eme} étage	237.17
7 ^{eme} étage	442.73
6 ^{eme} étage	648.29
5 ^{eme} étage	853.86
4 ^{eme} étage	1059.42
3 ^{eme} étage	1264.99
2 ^{eme} étage	1470.55
1 ^{eme} étage	1676.12
RDC	1881.68

c)Poteau de rive :

S=17.4m²; Gterr=7,43KN/m²; Gco=6,44KN/m².

Tableau 4.7- la descente de charge permanente pot de rive

Niveau	Charge Permanente(KN)
8 ^{eme} étage	129.28
7 ^{eme} étage	241.34
6 ^{eme} étage	353.39
5 ^{eme} étage	465.45
4 ^{eme} étage	577.51
3 ^{eme} étage	689.56
2 ^{eme} étage	801.62
1 ^{eme} étage	913.67
RDC	1025.73

> Charge d'exploitation :

après avoir calculer les surfaces de chaque type d'usage dans le plancher on trouve que la surface la plus dominante est celle des bureaux donc on va la prendre pour tous les étages.

 $\mathbf{Q_0}$: surcharge d'exploitation terrasse inaccessible = 1KN/m^2 $\mathbf{Q_1}$: surcharge d'exploitation plancher courant = 2.5 KN/m^2

Tableau 4. 8-charge d'exploitation

		Sur	charges(KN	J) Σ
Niveau	Surcharges (KN/m²)	Poteau d'angle	Poteau central	Poteau de rive
Terrasse	$\sum_{0}=Q_{0}=1$	11.4	31.92	17.4
8 ^{eme} étag	$\sum_{1}=Q_{0}+Q_{1}=3.5$	39.9	111.72	60.9
7 ^{eme} étag	$\sum_{2}=Q_{0}+0.95(Q_{1}+Q_{2})=5.75$	65.55	183.54	100.05
6 ^{eme} étag	$\sum_{3}=Q_0+0.9(Q_1+Q_2+Q_3)=7.75$	88.35	247.38	134.85
5 ^{eme} étage	$\sum_{4}=Q_0+0.85(Q_1+Q_2+Q_3+Q_4)=9.5$	108.3	303.24	165.3
4 ^{eme} étage	$\sum_{5}=Q_{0}+0,8(Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5})=11$	125.4	351.12	191.4
3 ^{eme} étage	$\sum_{6} = Q_0 + 0.75(Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6) = 12.25$	139.65	391.02	213.15
2 ^{eme} étage	$\sum_{7}=Q_0+0,714(Q_1+\dots+Q_7)=13.49$	153.77	430.6	234.73
1 ^{eme} étage	$\sum_{8}=Q_0+0,687(Q_1++Q_8)=14.74$	168.04	470.5	256.48
RDC	$\sum_{9}=Q_0+0,667(Q_1++Q_9)=16$	182.4	510.72	278.4

Pré dimensionnement des poteaux

$$N_{sd} \le N_{crd} = \frac{A \times f_y}{\gamma_{m0}}$$
 Section de classe 1

$$N_{sd} = 1,35G + 1,5Q$$

$$A \ge \frac{N \times \gamma_{m0}}{fy}$$

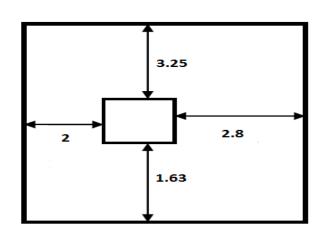
Les résultats sont regroupés dans les tableaux suivants :

a) Poteau central:

Tableau 4.9- les efforts normaux, les section et le choix des profilés

Niveau	Effort normal (KN)	Section (cm ²)	Profilé
8 ^{eme} étage	487.53	17.72	HEA100
7 ^{eme} étage	872.99	31.74	HEB120
6 ^{eme} étage	1246.26	45.31	HEB160
5 ^{eme} étage	1607.57	58.45	HEB180
4 ^{eme} étage	1956.89	71.15	HEB200
3 ^{eme} étage	2294.27	83.42	HEA260
2 ^{eme} étage	2631.14	95.67	HEA280
1 ^{eme} étage	2968.5	107.94	HEA300
RDC	3306.35	120.23	HEA320

Donc on prend le profilé HEA320 pour les pot de R+8


❖ Batiment R+3

Pour notre structure on va choisir un HEA 300

1.Les charges reprises par le poteau

Surface reprise par le poteau :

$$S = (3.25+1.63) \times (2+2.8) = 23.42 \text{ m}^2$$

$G_{p (kN/m^2)}$	G_{pc}	G _{solive}	Gpoutre	Gpot	Qterrasse	Qcourant
7.5	6.44	0.57	0.66	0.88	1	2.5

2.La decent des charges

Surface	Niveau	Charge permanente G (KN)	Charge d'exploitation Q (KN)		
G 00 10 0	3ème étage 2	307.27	$23.42 \times 1 = 23.42$		
$S = 23.42m^2$	2 ^{ème} étage	587.84	$23.42 + 23.42 \times 2.5 = 81.97$		
	1 ^{er} étage	868.41	$81.97 + 23.42 \times 2.5 = 140.52$		
	RDC	1154.6	$140.52 + 23.42 \times 2.5 = 199.07$		

G = 1154.6 KN

Q = 199.07 KN

3. Condition de résistance

$$N_{sdy} \leq N_{crdy} = \frac{X_{min} A f_y}{Y_{mo}}$$

Nsd = 1.35G + 1.5Q

Nsd = 1857.32 kN

Longueur de flambement :

$$L_{\rm f} {= 0.7~L_0} \; {=>} \; \; L_{\rm f} {= 252~cm}$$

	$\lambda = L_f / i$	$\lambda_1 = 93.9\varepsilon$	$\overline{\lambda} = \lambda / \lambda_1$	α	$\Phi = 0.5(1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^2)$	$X=1/\Phi+(\Phi^2-\bar{\lambda}^2)^{0.5}$
у-у	19.78	86.8	0.22	0.34	0.52	1.01
Z-Z	33.65	86.8	0.38	0.49	0.61	0.92

Alors

$$\begin{cases} \chi min = 0.92 \\ A = 112.5 \ cm^2 \end{cases}$$

$$N_{crd}=2587.5\;kN$$

Donc $N_{sd} = 1857.32 \text{ kN} < N_{rd} = 2587.5 \text{ kN}$ condition vérifiée

Conclusion

A la fin de ce chapitre on opte pour les choix suuivants des elements pour chaque batiment :

- **♦** R+8
- Solives et Poutres secondaire IPE360
- Poutres principale IPE400
- Poteaux HEA320
- **❖** R+3
- Solives et Poutres secondaire IPE360
- Poutres principale IPE400
- Poteaux HEA300

5.1. Introduction

Vu que l'activité sismique en Algérie, provoquant d'importants dégâts humaine et matériels. Et donc notre but est de remédier à ce phénomène par la conception adéquate de l'ouvrage de façon à ce qu'il résiste et présente un degré de protection acceptable aux vies humains et aux biens matériels.

5.2. Etude dynamique

Pour chaque étude dynamique il faut toujours créer un modèle de calcul représentant la structure. Ce modèle introduit en suite dans un programme de calcul dynamique permet la détermination de ses modes propre de vibration et des efforts engendrent par l'action sismique.

5.2.1. Modélisation de la structure

L'une des étapes les plus importantes lors d'une analyse dynamique de la structure est la modélisation adéquate de cette dernière.

Vue la complexité et le volume de calcul que requiert l'analyse de notre structure, la nécessite de l'utilisation de l'outil informatique s'impose.

Dans le cadre de notre projet nous avons opté pour un logiciel de calcul existant depuis quelques années et qui est à notre porté : il s'agit du **ROBOT2019**

1. Modélisation de masse :

- La masse des planchers est supposée uniformément répartie sur toute la surface du plancher.
- La masse est calculée par l'équation $(G+\beta Q)$ imposée par le **RPA99 version 2003** avec $(\beta=0,2)$ **Tab4.5** [1]
- La masse de l'acrotère et des murs rideaux a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

2. Modélisation de rigidité

Modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure à été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degré de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Les voiles sont modélisés par un élément surfacique type shell à quatre nœud

- Maillage: une dimension de maille de 0,5m. Cette dimension permet de réaliser un maillage pour les éléments les plus petits, tout en gardant un temps de calcul optimal.
- A tout les planchers nous avons attribués une contrainte de type diaphragme ce qui correspond à des planchers infiniment rigide dans leur plan pour satisfaire l'hypothèse.
- Les poteaux sont articule à la base (3DDL)

➤ Batiment R+8

5.2.2. Choix de la méthode de calcul

La conception parasismique des structures en Algérie est régie par un règlement en vigueur à savoir le « RPA99 version 2003 ». Ce dernier propose trois méthodes de calcul dont les conditions d'application différent et cela selon le type de structure à étudier, ces méthodes sont les suivantes :

- 1- La méthode statique équivalente.
- 2- La méthode d'analyse modale spectrale.
- 3- La méthode d'analyse dynamique par accélérogrammes.

1. La méthode statique équivalente : [3]

a) Principe:

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

Le mouvement du sol peut se faire dans une direction quelconque dans le plan horizontal.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projecteur. Dans le cas général, ces deux directions sont les axes principaux du plan horizontal de la structure.

b) Conditions d'applications :

Les conditions d'applications de la méthode statique équivalente sont :

- Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I et II et à 30m en zones III
- Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outres les conditions de hauteur énoncées en haut, et les conditions complémentaires suivantes :

Notre projet est dans la Zone III ce qui implique les conditions suivants

- groupe d'usage 3 et 2, si la hauteur est inférieur ou égale à 5 niveaux ou 17 m.
- groupe d'usage **1A**, si si la hauteur est inférieur ou égale à 2 niveaux ou **8 m**.

⇒ la méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III de groupe d'usage 1B et sa hauteur dépasse les 10 m (30.8m)

2. La méthode d'analyse modale spectrale

a. Principe

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure la détermination de ces efforts est conduite par le logiciel **Robot 2019** moyennant la méthode d'analyse modale spectrale.

b. Spectre de réponse

Le règlement recommande le spectre de réponse de calcul donné par la fonction suivante :

$$\frac{S_a}{g} = \begin{cases} 1.25 \left[1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1 \right) \right] & 0 \le T \le T_1 \\ 2.5 \eta (1.25A) \frac{Q}{R} & T_1 \le T \le T_2 \\ 2.5 \eta (1.25A) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} & T_2 \le T \le 3s \\ 2.5 \eta (1.25A) \frac{Q}{R} \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} & T \ge 3.0s \end{cases}$$

Avec:

g : Accélération de la pesanteur

A : Coefficient d'accélération de zone.

La zone sismique III : groupe d'usage 1B : A= 0,30

D : Facteur d'amplification dynamique moyen.

Le site S3 (T1=0 ,15s ; T2=0,5s) ; facteur d'amortissement : ζ =5%

R : Coefficient de comportement global de la structure.

✓ Noyau centrale : Rx = 3.5

Q: Facteur de qualité. Q = 1,20

Wt : Poids total de la structure.

Poids total: Wt=WG+ β WQ avec: $\beta = 0.2$

Tableau 5.1: valeurs des penalités P

	P _q suivant x		
critère q	Observé	Non observé	
1- condition minimale sur les files de contreventement	-	0,05	
2-Redondances en plan	-	0.05	
3- Régularité en plan	-	0,05	
4- Régularité en élévation	-	0,05	
5-Contrôle de la qualité des matériaux	0	-	
6-Contrôle de la qualité de l'exécution	0	-	
Totale	0,2		

$$Q = 1 + \sum P = Q = 1,20$$

Wt: Poids total de la structure.

Poids total: $Wt=WG+\beta WQ$ avec: $\beta = 0,2$

c. Vérifications de la résultante des forces sismiques :

$$V_s = \frac{A \times D \times Q}{R} \times W_t$$

A: Coefficient d'accélération de zone. A=0,30

D: Facteur d'amplification dynamique moyen.

Le site **S3** (T1=0,15s; T2=0,5s);
$$T = C_T \times h_N^{3/4} = 0,085 \times 30.80^{3/4} = 1.11s$$

$$D = 2.5^{\eta}$$
, Avec :

Dx = 2.50

$$\eta = \sqrt{\frac{7}{2+\varepsilon}} = 1$$

Facteur d'amortissement : $\mathcal{E} = 5\%$

Wt : Poids total de la structure. (Fichier base réaction G et Q)

$$W_t = W_G + 0.2 \times W_Q = 69258.14 KN$$

Vtx = 15842.96KN et Vty = 17971.151KN.

Vx=14674.8KN et Vy=20231.3KN.

0.8Vx = 11739.85KN et 0.8Vy = 16185.03KN

rx = 0.74; et ry = 0.90.

=> Vérification

Ce qui donne que la comparaison de l'effort tranchant déterminer par le logiciel avec 80% de l'effort statique équivalant est vérifié .

Vtx = 15842.96 kN > 0.8Vx = 11739.85 kN

Vty = 17971.151 kN > 0.8Vy = 16185.03 kN

d. resultats dynamique:

- Cas: 7 (Modale)

Cas/Mode	Période	Masse Ux	Masse Uy	Masse	Masse
	(sec)	%	%	cumulée	cumulée
				Ux %	Uy %
7/1	0.56	63.77	0.75	63.77	0.75
7/2	0.50	1.89	52.14	65.66	52.89
7/3	0.44	0.64	13.49	66.31	66.39
7/4	0.13	1.77	1.45	68.08	67.84
7/5	0.13	0.01	0.00	68.09	67.84
7/6	0.13	0.01	0.00	68.10	67.84
7/7	0.13	0.00	0.00	68.10	67.84
7/8	0.13	0.00	0.00	68.11	67.84
7/9	0.13	0.00	0.00	68.11	67.84
7/10	0.13	0.00	0.00	68.11	67.84
7/11	0.12	0.00	0.00	68.11	67.84
7/12	0.12	0.00	0.00	68.11	67.84
7/13	0.12	0.01	0.00	68.12	67.84
7/14	0.12	0.00	0.00	68.12	67.84
7/15	0.12	0.02	0.00	68.14	67.84
7/16	0.12	0.03	0.00	68.16	67.84
7/17	0.11	19.37	0.62	87.53	68.46
7/18	0.10	0.00	0.00	87.54	68.46
7/19	0.10	0.01	0.00	87.54	68.46
7/20	0.10	0.00	0.00	87.54	68.46
7/21	0.10	0.00	0.00	87.54	68.46
7/22	0.10	0.00	0.00	87.54	68.46
7/23	0.10	0.00	0.00	87.54	68.46
7/24	0.10	0.00	0.00	87.55	68.46
7/25	0.10	0.00	0.00	87.55	68.46

7/26	0.10	0.18	19.51	87.73	87.97
7/27	0.10	0.00	0.00	87.73	87.97
7/28	0.10	0.01	0.00	87.74	87.97
7/29	0.09	0.01	0.00	87.75	87.97
7/30	0.09	0.00	0.00	87.75	87.97
7/31	0.06	0.28	0.29	88.04	88.26
7/32	0.05	5.86	0.16	93.89	88.42
7/33	0.04	0.10	5.85	93.99	94.27

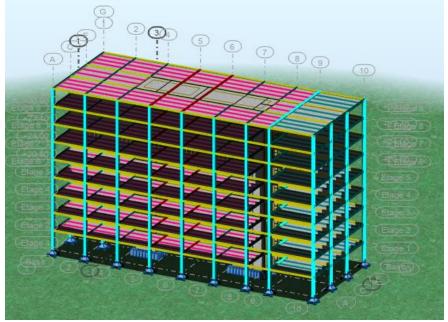


Figure 5.1: vue en 3D

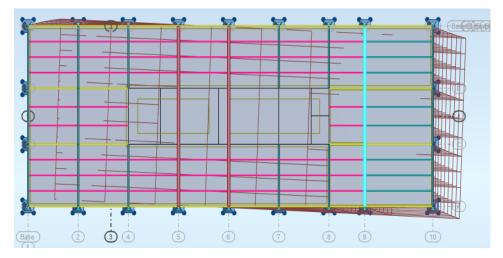


Figure 5.2: Mode 1 (translation sens x-x)

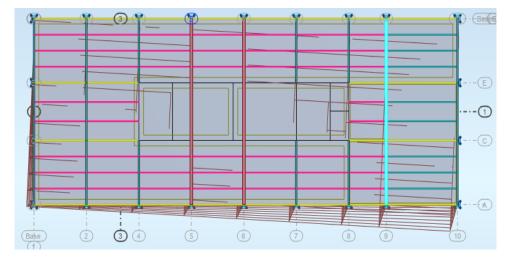


Figure 5.3: Mode 2 (translation sens y-y)

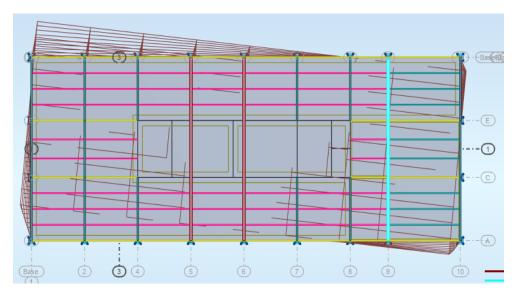


Figure 5.4: Mode 3 (torsion)

e. vérifications des déplacements inter - étage :

verification des déplacements inter-étages

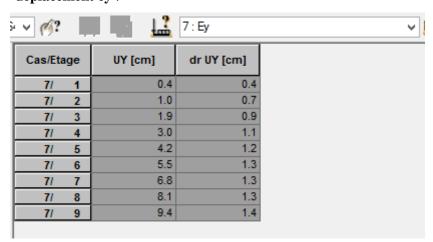
$$\delta_{\text{int}} = r$$
. $\Delta \leq \delta_{\text{adm}}$

- r : coefficient de comportement de la structure (r=4.00).

- Δx : déplacement inter étage suivant x.

- Δy : déplacement inter étage suivant y.

 $\delta_{\text{adm}\,:}$ le déplacement inter étage admissible.


 $\delta_{adm}=1\%~h_e$

h_n: la hauteur de l'étage n

-déplacement ex :

Cas/E	tage	UX [cm]	dr UX [cm]
6/	1	0.4	0.4
6/	2	1.1	0.8
6/	3	2.2	1.1
6/	4	3.5	1.3
6/	5	5.0	1.5
6/	6	6.6	1.6
6/	7	8.2	1.7
6/	8	9.9	1.7
6/	9	11.6	1.7

-déplacement ey :

On aura le tableau suivant

Z(m)	δ_{x} (cm)	δ _y (cm)	1%h étage (cm)	Observation
30.8	0.4	0.4	3,4	Vérifiée
27.4	0.8	0.7	3,4	Vérifiée
24	1.1	0.9	3,4	Vérifiée
20.6	1.3	1.1	3,4	Vérifiée
17.2	1.5	1.2	3,4	Vérifiée
13.8	1.6	1.3	3,4	Vérifiée
10.4	1.7	1.3	3,4	Vérifiée
7	1.7	1.3	3,4	Vérifiée
3.6	1.7	1.4	3,6	Vérifiée

g. justification vis à vis de l'effet $(P-\Delta)$

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = P_k \Delta_k / V_k h_k \leq 0.10$$

P_k: Poids total de la structure et des charges d'exploitation associées au-dessus du niveau « k ».

 \mathbf{V}_{k} : Effort tranchant d'étage au niveau "k" :

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 »

h_k: hauteur de l'étage « k »

Si $0.10 < \theta_k \le 0.20$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur $1/(1-\theta_k)$.

Si $\theta_k > 0.20$, la structure est potentiellement instable et doit être redimensionnée.

Niveaux	Hk	Pk	Δ k (x)	Vx	θ	Δ k (y)	Vy	θ	θ admissi ble	
8eme	340,00	6240,78	11,6	3718,70	0,06	9,40	3806,24	0,05	0,10	vérifiée
7eme	340,00	6007,92	9,90	6626,84	0,03	8,10	6592,04	0,02	0,10	vérifiée
6eme	340,00	6007,92	8,20	8780,70	0,02	6,80	8701,71	0,01	0,10	vérifiée
5eme	340,00	6007,92	6,60	10519,96	0,01	5,50	10380,93	0,01	0,10	vérifiée
4eme	340,00	6007,92	5,00	11936,18	0,01	4,20	11753,26	0,01	0,10	vérifiée
3eme	340,00	6007,92	3,50	13068,75	0,00	3,00	12869,76	0,00	0,10	vérifiée
2eme	340,00	6007,92	2,20	13951,97	0,00	1,90	13691,99	0,00	0,10	vérifiée
1er	340,00	6007,92	1,10	14565,67	0,00	1,00	14231,91	0,00	0,10	vérifiée
RDC	360,00	6158,12	0,40	14874,84	0,00	0,40	14617,91	0,00	0,10	vérifiée

Donc l'effet P-∆ peut être négligé dans notre projet

▶ Batiment R+3

Concernant ce batiment on a le mm principe que le bâtiment précèdent

- ⇒ la méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III de groupe d'usage 1B et sa hauteur dépasse les 10 m (13m)
- **⇒** donc on opte pour la methode modale spectrale

Avec:

g : Accélération de la pesanteur

A : Coefficient d'accélération de zone.

La zone sismique III : groupe d'usage 1B : A= 0,30

D: Facteur d'amplification dynamique moyen.

Le site S3 (T1=0,15s; T2=0,5s); facteur d'amortissement : ζ =5%

R : Coefficient de comportement global de la structure.

✓ Ossature contreventée par palées triangulées en V : Rx =3

Q: Facteur de qualité. Q = 1,20

Tableau 5.2 - valeurs des pénalités P pour R+3

	$\mathbf{P}_{\mathbf{q}}$			
	sui	vant x		
critère q	Observé	Non observé		
1- condition minimale sur les files de contreventement	-	0,05		
2-Redondances en plan	-	0.05		
3- Régularité en plan	-	0,05		
4- Régularité en élévation	-	0,05		
5-Contrôle de la qualité des matériaux	0	-		
6-Contrôle de la qualité de l'exécution	0	-		
Totale		0,2		

$$Q = 1 + \sum P$$
 => $Q = 1,20$

Wt: Poids total de la structure.

Poids total: Wt=WG+ β WQ avec: $\beta = 0,2$

c. Vérifications de la résultante des forces sismiques :

$$V_{s} = \frac{A \times D \times Q}{R} \times W_{t}$$

A: Coefficient d'accélération de zone. A=0,30

D : Facteur d'amplification dynamique moyen.

Le site **S3** (T1=0,15s; T2=0,5s);
$$T = C_T \times h_N^{3/4} = 0,085 \times 12,96^{3/4} = 0,58s$$

D = 2,5
$$\eta$$
, Avec:

$$\eta = \sqrt{\frac{7}{2+\varepsilon}} = 1$$
Dx = 2.50

Facteur d'amortissement : $\mathcal{E} = 5\%$

Wt : Poids total de la structure. (Fichier base réaction G et Q)

$$W_t = W_G + 0.2 \times W_Q = 7306.94 KN$$

$$Vtx = 2333.74KN$$
 et $Vty = 2362.62KN$.

$$Vx=2192.10KN$$
 et $Vy=2192.10KN$ avec $0.8Vx=1753.67KN$ et $0.8Vy=1753.67KN$

$$rx = 0.75$$
; et $ry = 0.74$.

Ce qui donne que la comparaison de l'effort tranchant déterminer par le logiciel avec 80% de l'effort statique équivalant est vérifié.

$$Vtx = 2333.7 \text{ kN} > 0.8Vx = 1753.67 \text{ kN}$$

$$Vty = 2362.62 \text{ kN} > 0.8Vy = 1753.673 \text{ kN}$$

d. Les résultats dynamique et sismique

Cas/Mode	Période	Masse Ux	Masse Uy	Masse	Masse
	(sec)	%	%	cumulée	cumulée
				Ux %	<i>Uy %</i>
5/1	0.48	84.14	0.01	84.14	0.01
5/2	0.36	0.02	85.11	84.16	85.12
5/3	0.25	0.08	1.61	84.24	86.73
5/4	0.17	11.61	0.00	95.85	86.73
5/5	0.13	0.00	9.76	95.85	96.49
5/6	0.10	3.22	0.00	99.08	96.49
5/7	0.09	0.02	0.23	99.10	96.72
5/8	0.08	0.00	2.53	99.10	99.26
5/9	0.07	0.85	0.00	99.95	99.26
5/10	0.06	0.00	0.03	99.95	99.29

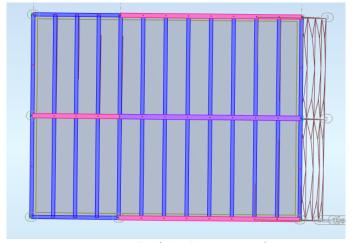


Figure 5.5: Mode 1 (translation sens x-x) R+3

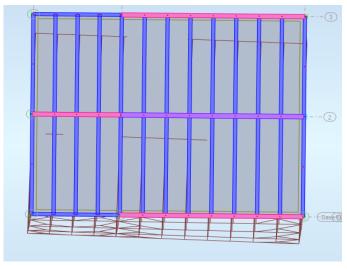


Figure 5.6: Mode 2 (translation sens y-y)

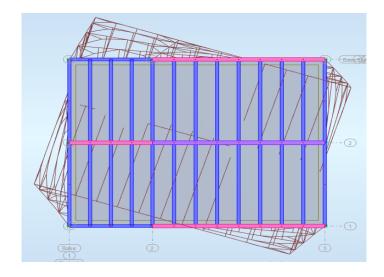


Figure 5.7: Mode 3 (torsion)

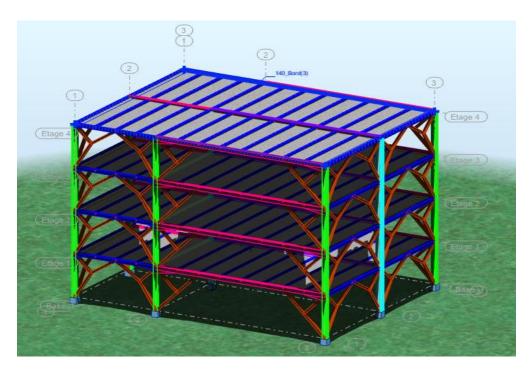


Figure 5.8: vue 3D

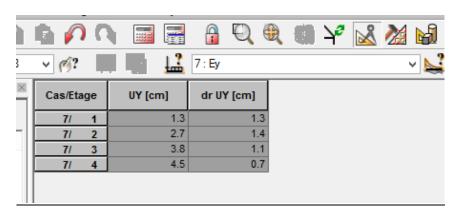
e. Vérifications des déplacements inter - étage

verification des déplacements inter-étages

$$\delta_{\text{int}} = R.$$
 . $\Delta \leq \delta_{\text{adm}}$

- R: Coefficient de comportement de la structure (R=4.00).
- Δx : Déplacement inter étage suivant x.
- Δy : Déplacement inter étage suivant y.

 $\delta_{\text{adm}\,:}$ Le déplacement inter étage admissible.


 $\delta_{adm}=1\%~h_e$

h_N: La hauteur de l'étage N

-Déplacement Ex

-Déplacement Ey :

Les unités en cm

Z(m)	$\delta_{x}(cm)$	$\delta_{y}(cm)$	1%h étage (cm)	Observation
13.8	2.1	1.3	3.4	Vérifiée
10.4	2.5	1.4	3.4	Vérifiée
7	2.1	1.1	3.4	Vérifiée
3.6	1.5	0.7	3.6	Vérifiée

f. Vérification du coefficient de comportement R

Effort tranchant reprit par les voiles :

Sens d'excitation	Effort tranchant a la base des voiles" Vi"	Effort tranchant a la base de la structure" Ei"	$\% = \frac{V_i}{E_i}$
X-X	2191.77	2325.39	94.25
Y-Y	2299.38	2355.76	97.61

Efforts Normal reprit par les voiles:

Effort Normal a la base les voiles" Ni"	Effort Normal à la base de la structure N_T	$\% = \frac{N_i}{N_T}$
6288.04	15123.30	41.57
3595.90	12423.47	28.94

Nous constatons que les conditions fixées par l'article **3.4/4.b RPA** concernant les systèmes de contreventement constitués par portiques contreventés par des voiles sont vérifiées.

g. justification vis à vis de l'effet $(P-\Delta)$

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = P_k \Delta_k / V_k h_k \leq 0.10$$

P_k: Poids total de la structure et des charges d'exploitation associées au-dessus du niveau « k ».

 V_k : Effort tranchant d'étage au niveau "k":

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 »

h_k: hauteur de l'étage « k »

Si $0.10 < \theta_k \le 0.20$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur $1/(1-\theta_k)$.

Si $\theta_k > 0.20$, la structure est potentiellement instable et doit être redimensionnée.

Niveaux	P _K (kN)	Δ _x 10 ⁻³ (m)	Δ _y 10 ⁻³ (m)	V _{Kx} (kN)	V _{Ky} (kN)	h _K (m)	θ_{x}	$ heta_{ m y}$	θ(x; y) 40,1
3eme	1206.27	1.50	0.7	915.78	884.55	3.24	0,00811	0,00800	OK
2eme	1207.55	2.10	1.10	1606.46	1584.01	3.24	0,00639	0,00673	OK
1er	1207.55	2.50	1.40	2084.79	2083.74	3.24	0,00427	0,00457	OK
RDC	1207.55	2.10	1.30	2324.47	2346.61	3.24	0,00389	0,00377	OK

Donc l'effet P-∆ peut être négligé dans notre projet

6.1. Introduction

La résistance de l'élément est vérifier si sa stabilité et la résistance de toutes ses section sont s'assurées sous les charges de calcule ; à l'issue de l'analyse locale au seconde ordre.il exige que sous toutes les combinaisons d'action possibles, définies règlementairement, la stabilité statique soit assurée, globalement au niveau de la structure et individuellement au niveau de chaque élément .

On va vérifier deux types de phénomènes d'instabilité qui sont :

- Le flambement : qui affecte les barres simplement comprimées (flambement simple) ou comprimées et fléchies (flambement par flexion).
- Le déversement : qui affecte les semelles comprimées des pièces fléchies.

⇒ Bâtiment R+3

6.2. Vérification des poteaux vis-à-vis au flambement

Les poteaux sont soumis à la flexion composée où chaque poteau est soumis à un effort normal « N » et deux moments fléchissant. La vérification se fait pour toutes les combinaisons inscrites aux règlements sous les sollicitations les plus défavorables suivant les deux sens.les différentes sollicitations doivent être combinées dans les cas les plus défavorables, qui sont :

- Une compression maximale et un moment correspondant ;
- Un moment maximal et une compression correspondante ;

6.2.1. Combinaisons des charges

Les vérifications doivent être faites sous les combinaisons suivantes :

$$1,35G+1,5Q$$

$$G+Q+E$$

$$0.8G \pm E$$

6.2.2. Les étapes de vérification du flambement

Les éléments sollicités en compression axiale doivent satisfaire à la condition suivante:

$$\frac{N_{sd}}{\chi_{\min} \times A \times \frac{f_{y}}{\gamma_{m1}}} + \frac{K_{y} \times M_{ysd}}{W_{ply} \times \frac{f_{y}}{\gamma_{m1}}} + \frac{K_{z} \times M_{zsd}}{W_{plz} \times \frac{f_{y}}{\gamma_{m1}}} \le 1$$

Ou:

$$K_{y} = 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} \le 1,5$$

$$\mu_{y} = \overline{\lambda} \left(2.\beta_{My} - 4 \right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}} \right) \le 0.90$$

$$K_z = 1 - \frac{\mu_z \times N_{sd}}{\chi_z \times A \times f_y} \le 1,5$$

$$\mu_{Z} = \overline{\lambda} \left(2.\beta_{Mz} - 4 \right) + \left(\frac{W_{plz} - W_{elz}}{W_{elz}} \right) \le 0.90$$

 χ_{\min} : est la plus petite valeur de $\chi_y et \chi_z$

Ou $\chi_y et \chi_z$ sont les coefficients de réduction pour les axes y-y et z-z respectivement.

 $eta_{_{My}}$ et $eta_{_{Mz}}$: Sont les facteurs de moment uniforme équivalent pour le flambement par flexion

6.2.3. Les verifications :

A) Combinaison 1.35G+1.5Q

• Cas $N^{\circ}1:N^{max};M_2^{cor};M_3^{cor}$

Les efforts internes du logiciel ROBOT sont regroupés dans le tableau suivant :

Sachant qu'on a un pot HEA300 et pot croisé 2HEA400 et une poutre HEA280 ET HEA220 , notre structure est a nœud fixe .

Tableau 6.1: les efforts internes pot HEA300 (cas1 comb1)

Niveau	profilé	combinaison	N ^{max}	M ₂ ^{cor}	M ₃ ^{cor}
3eme	HEA300	ELU	395.42	0	4.99
2eme	HEA300	ELU	745.58	0	5.97
1er	HEA300	ELU	1096.3	0	3.37
RDC	HEA300	ELU	1100.09	0	0.15

Résultat de calcul:

Le tableau ci-dessous regroupe les résultats calculés manuellement et les vérifications faites selon EC3 partie 1-1

Tableau 6.2:verification de pot HEA300 au flambement

Niveau	profilé	$\mathbf{L}f_{y}/\mathbf{L}_{0}$	$\mathbf{L}\mathbf{f}_{z}/\mathbf{L}_{0}$	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,82	1,03	1,11	0,18	OK
2eme	HEA300	0.7	0.71	0,83	1,07	1,21	0,33	OK
1er	HEA300	0;48	0.47	0 ,82	1,07	1,31	0,48	OK
RDC	HEA300	0.62	0.62	0 ,83	1,00	1,00	0,36	OK

Tableau 6.3: les efforts internes pot 2HEA400 (cas1 comb1)

Niveau	profilé	combinaison	N ^{max}	M ₂ ^{cor}	M ₃ ^{cor}
3eme	2HEA400	ELU	1492.66	0	435.55
2eme	2HEA400	ELU	2285	0	342.16
1er	2HEA400	ELU	3084.02	0	428.26
RDC	2HEA400	ELU	3094.68	0	163.47

Tableau 6.4: verification du pot 2HEA400 au flambement

Niveau	profilé	$\mathbf{L} f_y / L_0$	$\mathbf{L}f_z/L_0$	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,05	1,1	0,74	OK
2eme	2HEA400	0,71	0,72	0,91	1,08	1,15	0,75	OK
1er	2HEA400	0,71	0,72	0,90	1,2	1,2	0,98	OK
RDC	2HEA400	0.63	0.64	0,92	1,1	1,19	0,63	OK

• Cas $N^{\circ}2: M_2^{max}; N^{cor}; M_3^{cor}$

Tableau 6.5: les efforts internes du pot HEA300 (cas2 comb1)

Niveau	profilé	combinaison	${ m M_2}^{ m MAX}$	N ^{cor}	M ₃ ^{cor}
3eme	HEA300	ELU	95,98	325,86	0
2eme	HEA300	ELU	82,69	329,65	0
1er	HEA300	ELU	94,26	521,99	0
RDC	HEA300	ELU	36,96	726,62	0

Résultat de calcul :

Le tableau ci-dessous regroupe les résultats calculés manuellement et les vérifications faites selon EC3 partie 1-1

Tableau 6.6: verification du pot HEA300 au flambement

Niveau	profilé	$\mathbf{L} f_y / L_0$	$\mathbf{L}\mathbf{f}_{z}/\mathbf{L}_{0}$	Xmin	Ky	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,90	1,03	1,06	0,41	OK
2eme	HEA300	0.7	0.71	0,91	1,03	1,06	0,37	OK
1er	HEA300	0;48	0.47	0,97	1,03	1,05	0,47	OK
RDC	HEA300	0.62	0.62	0 ,92	1,06	1,12	0,39	OK

Tableau 6.7: les efforts internes du pot 2HEA400 (cas2 comb1)

Niveau	profilé	combinaison	${ m M_2}^{ m max}$	N ^{cor}	M ₃ ^{cor}
3eme	2HEA400	ELU	435,55	1492,66	0
2eme	2HEA400	ELU	407,91	2285,00	0
1er	2HEA400	ELU	428,26	3084,02	0
RDC	2HEA400	ELU	163,47	3094,68	0

Tableau 6.8: verification du pot 2HEA400 au flambement

Niveau	profilé	Lf _y /L ₀	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,05	1,1	0,74	OK
2eme	2HEA400	0,71	0,72	0,91	1,08	1,15	0,75	OK
1er	2HEA400	0,71	0,72	0,90	1,2	1,2	0,98	OK
RDC	2HEA400	0.63	0.64	0 ,92	1,1	1,19	0,63	OK

• CAS $N^{\circ}3: M_3^{max}$; N^{cor} ; M_2^{cor}

Tableau 6.9:les efforts internes du pot HEA300 (cas3 comb1)

Niveau	profilé	combinaison	M_3^{MAX}	N ^{cor}	${ m M_2}^{ m cor}$
3eme	HEA300	ELU	0,63	241,7	3,8
2eme	HEA300	ELU	0,66	503,05	1,41
1er	HEA300	ELU	0,73	760,76	1,82
RDC	HEA300	ELU	0,27	764,55	2,74

Tableau 6.10: verification du pot HEA300 au flambement

Niveau	profilé	$\mathbf{L}\mathbf{f}_{y}/\mathbf{L}_{0}$	$\mathbf{L}\mathbf{f}_{z}/\mathbf{L}_{0}$	X_{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,91	1,02	1,04	0,1	OK
2eme	HEA300	0.7	0.71	0,91	1,04	1,09	0,20	OK
1er	HEA300	0;48	0.47	0,97	1,04	1,08	0,28	OK
RDC	HEA300	0.62	0.62	0 ,92	1,07	1,13	0,30	OK

Tableau 6.11: les efforts internes du pot 2HEA400 (cas3 comb1)

Niveau	profilé	combinaison	M ₃ ^{cor}	N ^{cor}	${ m M_2}^{ m cor}$
3eme	2HEA400	ELU	609,43	908,65	0
2eme	2HEA400	ELU	543,79	1441,06	0
1er	2HEA400	ELU	589,81	1971,42	0
RDC	2HEA400	ELU	198,02	1982,09	0

Tableau 6.12:verification du pot 2HEA400 au flambement

Niveau	profilé	Lfy/L0	Lfz/L0	X _{min}	Ky	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,03	1,06	0,87	OK
2eme	2HEA400	0,71	0,72	0,91	1,05	1,09	0,89	OK
1er	2HEA400	0,71	0,72	0,90	1,05	1,1	1	OK
RDC	2HEA400	0.63	0.64	0 ,92	1,06	1,12	0,53	OK

B) Combinaison G+Q+E

• Cas $N^{\circ}1:N^{max};M_2^{cor};M_3^{cor}$

Tableau 6.13: les efforts internes du pot HEA300 (cas1 comb2)

Niveau	profilé	combinaison	N ^{max}	M ₂ ^{cor}	M ₃ ^{cor}
3eme	HEA300	G+Q+E	363,7	0,75	0,07
2eme	HEA300	G+Q+E	891,05	3,17	0,02
1er	HEA300	G+Q+E	1574,48	1,97	0,03
RDC	HEA300	G+Q+E	1577,29	96,29	0,53

Tableau 6.14: verification du pot HEA300 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,91	1,03	1,06	0,14	OK
2eme	HEA300	0.7	0.71	0,91	1,08	1,02	0,35	OK
1er	HEA300	0,48	0.47	0,97	1,02	1,04	0,13	OK
RDC	HEA300	0.62	0.62	0 ,92	1,14	1,27	0,92	OK

Tableau 6.15: les efforts internes du pot 2HEA400 (cas1 comb2)

Niveau	profilé	combinaison	N ^{max}	M ₂ ^{cor}	M ₃ ^{cor}	
3eme	2HEA400	G+Q+E	1085,03	349,04	0,62	
2eme	2HEA400	G+Q+E	1658,69	421,91	0,22	
1er	2HEA400	G+Q+E	2237,67	367,75	0,27	
RDC	2HEA400	G+Q+E	2245,58	197,4	4,50	

Tableau 6.16: verification du pot 2HEA400 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,90	1,03	1,07	0,57	OK
2eme	2HEA400	0,71	0,72	0,90	1,05	1,11	0,75	OK
1er	2HEA400	0,71	0,72	0,90	1,07	1,15	0,77	OK
RDC	2HEA400	0.63	0.64	0,90	1,07	1,15	0,56	OK

• Cas $N^{\circ}2:M_2^{max}$; N^{cor} ; M_3^{cor}

Tableau 6.17:les efforts internes du pot HEA300 (cas2 comb2)

Niveau	profilé	combinaison	M ₂ ^{MAX}	N ^{cor}	M ₃ ^{cor}
3eme	HEA300	G+Q+E	101,3	293,59	0,26
2eme	HEA300	G+Q+E	110,29	519,81	0,17
1er	HEA300	G+Q+E	98,85	756,67	0,7
RDC	HEA300	G+Q+E	36,96	759,48	1,64

Tableau 6.18: vérifications du pot HEA300 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,91	1,02	1,05	0,41	OK
2eme	HEA300	0.7	0.71	0,91	1,05	1,09	0,53	OK
1er	HEA300	0;48	0.47	0 ,97	1,04	1,08	0,57	OK
RDC	HEA300	0.62	0.62	0 ,92	1,07	1,13	0,40	OK

Tableau 6.19: les efforts internes du pot 2HEA400 (cas2 comb2)

Niveau	profilé	combinaison	M ₂ ^{max}	N ^{cor}	M ₃ ^{cor}
3eme	2HEA400	G+Q+E	349,04	1085,03	0,62
2eme	2HEA400	G+Q+E	421,91	1658,69	0,22
1er	2HEA400	G+Q+E	367,75	2237,67	0,27
RDC	2HEA400	G+Q+E	197,4	2245,58	4,5

Tableau 6.20: verification du pot 2HEA400 au flambement

Niveau	profilé	Lfy/L0	Lf_z/L_0	X _{min}	Ky	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,05	1,1	0,74	OK
2eme	2HEA400	0,71	0,72	0,91	1,08	1,15	0,75	OK
1er	2HEA400	0,71	0,72	0,90	1,2	1,2	0,98	OK
RDC	2HEA400	0.63	0.64	0,92	1,1	1,19	0,63	OK

• CAS $N^{\circ}3:M_3^{max};N^{cor};M_2^{cor}$

Les efforts internes du logiciel ROBOT sont regroupés dans le tableau suivant :

Tableau 6.21: les efforts internes du pot HEA300 (cas3 comb2)

Niveau	profilé	combinaison	M_3^{MAX}	N ^{cor}	M ₂ ^{cor}
3eme	HEA300	G+Q+E	0,14	159,08	31,3
2eme	HEA300	G+Q+E	0,78	521,68	29,74
1er	HEA300	G+Q+E	1,19	1085,27	29,42
RDC	HEA300	G+Q+E	2,12	1088,08	88,94

Résultat de calcul :

Tableau 6.22: verification du pot HEA300 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,91	1,01	1,00	0,15	OK
2eme	HEA300	0.7	0.71	0,91	1,05	1,01	0,29	OK
1er	HEA300	0,48	0.47	0,97	1,07	1,03	0,48	OK
RDC	HEA300	0.62	0.62	0 ,92	1,10	1,19	0,70	OK

Tableau 6.23: les efforts internes du pot 2HEA400 (cas3 comb2)

Niveau	profilé	combinaison	M ₃ ^{max}	N ^{cor}	${ m M_2}^{ m cor}$
3eme	2HEA400	G+Q+E	468,63	688,76	2,23
2eme	2HEA400	G+Q+E	403,98	1098,75	0,98
1er	2HEA400	G+Q+E	489,61	1513,29	1
RDC	2HEA400	G+Q+E	414,41	1521,2	14,93

Tableau 6.24: verification du pot 2HEA400 au flambement

Niveau	profilé	Lf _y /L ₀	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,90	1,02	1,04	0,66	OK
2eme	2HEA400	0,71	0,72	0,90	1,03	1,07	0,65	OK
1er	2HEA400	0,71	0,72	0,90	1,05	1,1	0,83	OK
RDC	2HEA400	0.63	0.64	0,92	1,04	1,09	0,83	OK

C) Combinaison 0.8G+E

• Cas $N^{\circ}1:N^{max};M_2^{cor};M_3^{cor}$

Tableau 6.25: les efforts internes du pot HEA300 (cas1 comb3)

Niveau	profilé	combinaison	N ^{max}	M ₂ ^{cor}	M ₃ ^{cor}
3eme	HEA300	0,8G+E	273,72	2,14	0,07
2eme	HEA300	0,8G+E	700,39	18,13	0,02
1er	HEA300	0,8G+E	1282,97	18,8	0,03
RDC	HEA300	0,8G+E	1285,21	96,32	0,53

Tableau 6.26: verification du pot HEA300 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,82	1,03	1,11	0,18	OK
2eme	HEA300	0.7	0.71	0,83	1,07	1,21	0,33	OK
1er	HEA300	0;48	0.47	0,97	1,08	1,14	0,52	OK
RDC	HEA300	0.62	0.62	0 ,92	1,11	1,22	0,80	OK

Tableau 6.27: les efforts internes du pot 2HEA400 (cas1 comb3)

Niveau	profilé	combinaison	N ^{max}	M_2^{cor}	M ₃ ^{cor}
3eme	2HEA400	0,8G+E	706,38	245,49	0,62
2eme	2HEA400	0,8G+E	1050,83	305,65	0,22
1er	2HEA400	0,8G+E	1398,43	275,23	0,27
RDC	2HEA400	0,8G+E	1404,75	250,1	4,5

Tableau 6.28: verification du pot 2HEA400 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,02	1,04	0,39	OK
2eme	2HEA400	0,71	0,72	0,91	1,03	1,07	0,51	OK
1er	2HEA400	0,71	0,72	0,90	1,04	1,09	0,53	OK
RDC	2HEA400	0.63	0.64	0 ,92	1,04	1,08	0,5	OK

• Cas $N^{\circ}2:M_2^{max}$; N^{cor} ; M_3^{cor}

Tableau 6.29: les efforts internes du pot HEA300 (cas2 comb3)

Niveau	profilé	combinaison	${ m M_2}^{ m MAX}$	N ^{cor}	M ₃ ^{cor}
3eme	HEA300	0,8G+E	75,78	213,61	0,26
2eme	HEA300	0,8G+E	83,44	384,7	0,17
1er	HEA300	0,8G+E	83,2	563,61	0,7
RDC	HEA300	0,8G+E	83,13	565,86	1,64

Tableau 6.30: verification du pot HEA300 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X_{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,91	1,02	1,03	0,30	OK
2eme	HEA300	0.7	0.71	0,91	1,03	1,07	0,40	OK
1er	HEA300	0;48	0.47	0,97	1,03	1,06	0,45	OK
RDC	HEA300	0.62	0.62	0 ,92	1,05	1,09	0,47	OK

Tableau 6.31: les efforts internes du pot 2HEA400 (cas2 comb3)

Niveau	profilé	combinaison	${f M_2}^{ m max}$	N ^{cor}	M ₃ ^{cor}
3eme	2HEA400	0,8G+E	245,49	706,38	0,62
2eme	2HEA400	0,8G+E	305,65	1050,83	0,22
1er	2HEA400	0,8G+E	275,23	1398,43	0,27
RDC	2HEA400	0,8G+E	250,1	1404,75	4,5

Tableau 6.32: verification du pot 2HEA400 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	Ky	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,02	1,04	0,39	OK
2eme	2HEA400	0,71	0,72	0,91	1,03	1,07	0,51	OK
1er	2HEA400	0,71	0,72	0,90	1,04	1,09	0,53	OK
RDC	2HEA400	0.63	0.64	0,92	1,04	1,08	0,5	OK

• CAS $N^{\circ}3:M_3^{max};N^{cor};M_2^{cor}$

Tableau 6.33: les efforts internes du pot HEA300 (cas3 comb3)

Niveau	profilé	combinaison	M_3^{MAX}	N ^{cor}	M ₂ ^{cor}
3eme	HEA300	0,8G+E	0,15	123,61	27,6
2eme	HEA300	0,8G+E	0,66	441,8	17,07
1er	HEA300	0,8G+E	1,04	961,97	29,42
RDC	HEA300	0,8G+E	2,06	964,21	90,83

Tableau 6.34: verification du pot HEA300 au flambement

Niveau	profilé	Lf _y /L ₀	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	HEA300	0.7	0.71	0,91	1,01	1,02	0,12	OK
2eme	HEA300	0.7	0.71	0,91	1,04	1,08	0,22	OK
1er	HEA300	0,48	0.47	0,97	1,06	1,11	0,44	OK
RDC	HEA300	0.62	0.62	0 ,92	1,08	1,16	0,66	OK

Tableau 6.35: les efforts internes du pot 2HEA400 (cas3 comb3)

Niveau	profilé	combinaison	M ₃ ^{max}	N ^{cor}	M ₂ ^{cor}
3eme	2HEA400	0,8G+E	270	462,38	2,23
2eme	2HEA400	0,8G+E	261,08	720,86	0,98
1er	2HEA400	0,8G+E	318,98	984,12	0,74
RDC	2HEA400	0,8G+E	356,18	990,44	14,93

Tableau 6.36:verification du pot 2HEA400 au flambement

Niveau	profilé	Lf_y/L_0	Lf_z/L_0	X _{min}	K _y	Kz	Valeur	Condition
							finale	≤ 1
3eme	2HEA400	0,71	0,72	0,91	1,01	1,03	0,39	OK
2eme	2HEA400	0,71	0,72	0,91	1,02	1,04	0,42	OK
1er	2HEA400	0,71	0,72	0,90	1,03	1,06	0,53	OK
RDC	2HEA400	0.63	0.64	0 ,91	1,03	1,06	0,59	OK

6.3. Vérification des poteaux vis-à-vis le déversement

Les vérifications doivent être faites sous les combinaisons suivantes :

$$1,35G+1,5Q$$

$$G + Q + E$$

$$0.8G \pm E$$

6.3.1. Les étapes de vérification du déversement :

Les éléments à sections transversale pour les quels le déversement représente un mode potentiel de ruine doivent satisfaire à la condition suivante :

$$\begin{split} \frac{N_{sd}}{\mathcal{X}_{z}.A.\,f_{y}/\gamma_{M1}} + \frac{K_{LT}.\,M_{y.sd}}{\mathcal{X}_{LT}.\,W_{pl.y}.\,f_{y}/\gamma_{M1}} + \frac{K_{z}.\,M_{z.sd}}{W_{pl.z}.\,f_{y}/\gamma_{M1}} \leq 1\,\dots\,\dots\,(5.\,52) \\ \text{Ou}: & K_{LT} = 1 - \left(\mathcal{U}_{LT}.\frac{N_{sd}}{\mathcal{X}_{z}}.\,A.\,f_{y}\right) \qquad \text{mais} \quad K_{LT} \leq 1 \\ & \mu_{LT} = 0.15 \times \overline{\lambda}_{LT} \times \beta_{MLT} - 0.15 \leq 0.9 \end{split}$$

 $\beta_{M,LT}$: est un facteur de moment uniforme équivalent pour le déversement

6.3.2. Les vérifications

A) Combinaison 1.35G+1.5Q

• Cas $N^{\circ}1:N^{max}$; M_2^{cor} ; M_3^{cor}

Tableau 6.37: verification du pot HEA300 au deversement (cas1 comb1)

		LES	COEFFIC	IENTS	Valeur		
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	HEA300	0,9	0,94	1,07	1,01	0,16	Vérifier
2 ^{éme}	HEA300	0,9	0,94	1,14	1,02	0,31	Vérifier
1 ^{ér}	HEA300	0,9	0,94	1,2	1,02	0,43	Vérifier
RDC	HEA300	0,9	0,94	1,19	1,03	0,42	Vérifier

Tableau 6.38: verification du pot 2HEA400 au deversement (cas1 comb1)

		LES	COEFFICI		Valeur		
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,05	1,01	0,72	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,08	1,02	0,72	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,10	1,03	0,94	Vérifier
RDC	2HEA400	0,99	0,99	1,10	1,03	0,60	Vérifier

• Cas $N^{\circ} 2 : M_2^{max}; N^{cor}; M_3^{cor}$

Tableau 6.39: verification du pot HEA300 au deversement (cas2 comb1)

		LES	COEFFIC	Valeur	condition		
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤ 1	
3 ^{éme}	HEA300	0,91	0,94	1,06	1,00	0,41	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,06	1,00	0,37	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,05	1,01	0,47	Vérifier
RDC	HEA300	0,92	0,94	1,12	1,02	0,39	Vérifier

Tableau 6.40: verification du pot 2HEA400 au deversement (cas2 comb1)

		LES	Valeur finale	condition			
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	<u>≤</u> 1	
3 ^{éme}	2HEA400	0,99	0,99	1,05	1,01	0,72	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,08	1,02	0,72	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,10	1,03	0,94	Vérifier
RDC	2HEA400	0,99	0,99	1,10	1,03	0,60	Vérifier

• Cas N° 3 : M_3^{max} ; N^{cor} ; M_2^{cor}

Le tableau ci-dessous regroupe les résultats calculés manuellement :

Tableau 6.41: verification du pot HEA300 au deversement (cas3 comb1)

		Valeur finale	condition				
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	<u>≤1</u>	Condition
3 ^{éme}	HEA300	0,91	0,94	1,04	1,00	0,1	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,09	1,01	0,2	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,08	1,02	0,28	Vérifier
RDC	HEA300	0,92	0,94	1,12	1,02	0,39	Vérifier

Tableau 6.42: verification du pot 2HEA400 au deversement (cas3 comb1)

		LES	COEFFIC	ENTS	Valeur		
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,03	1,01	0,84	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,05	1,01	0,84	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,06	1,02	0,98	Vérifier
RDC	2HEA400	0,99	0,99	1,06	1,02	0,49	Vérifier

B) Combinaison G+Q+E

• Cas $N^{\circ}1:N^{max}$; M_2^{cor} ; M_3^{cor}

Tableau 6.43: verification du pot HEA300 au deversement (cas1 comb2)

		LES	COEFFIC		Valeur		
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	HEA300	0,91	0,94	1,06	1,00	0,14	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,16	1,02	0,35	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,04	1,01	0,14	Vérifier
RDC	HEA300	0,92	0,94	1,27	1,04	0,92	Vérifier

Tableau 6.44: verification du pot 2HEA400 au deversement (cas1 comb2)

		LES	COEFFICI	ENTS		Valeur	
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,03	1,01	0,56	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,05	1,02	0,73	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,07	1,03	0,74	Vérifier
RDC	2HEA400	0,99	0,99	1,07	1,02	0,53	Vérifier

[•] Cas N° 2 : M_2^{max} ; N^{cor} ; M_3^{cor}

Tableau 6.45: verification du pot HEA300 au deversement (cas2 comb2)

	LES COEFFICIENTS						condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	finale ≤1	Condition
3 ^{éme}	HEA300	0,91	0,94	1,05	1,00	0,41	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,09	1,01	0,53	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,08	1,02	0,57	Vérifier
RDC	HEA300	0,92	0,94	1,12	1,02	0,39	Vérifier

Tableau 6.46: verification du pot 2HEA400 au deversement (cas2 comb2)

		LES	COEFFICI	Valeur			
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,03	1,01	0,92	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,05	1,02	0,97	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,07	1,03	0,74	Vérifier
RDC	2HEA400	0,99	0,99	1,07	1,02	0,53	Vérifier

• Cas N° 3: M_3^{max} ; N^{cor}; M_2^{cor}

Tableau 6.47: verification du pot HEA300 au deversement (cas3 comb2)

		Valeur finale	condition				
NIVEAU	PROFILE	Xz	XLT	KZ	KLT		Condition
3 ^{éme}	HEA300	0,91	0,94	1,06	1,00	0,41	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,06	1,00	0,37	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,05	1,01	0,47	Vérifier
RDC	HEA300	0,92	0,94	1,12	1,02	0,39	Vérifier

Tableau 6.48: verification du pot 2HEA400 au deversement (cas3 comb2)

		LES	COEFFIC	IENTS	Valeur finale	condition	
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,02	1,00	0,64	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,03	1,01	0,63	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,05	1,02	0,79	Vérifier
RDC	2HEA400	0,99	0,99	1,05	1,01	0,71	Vérifier

C) Combinaison 0.8G+E

• Cas $N^{\circ}1:N^{max}$; M_2^{cor} ; M_3^{cor}

Tableau 6.49: verification du pot HEA300 au deversement (cas1 comb3)

		LES	COEFFICI	Valeur finale	condition		
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	HEA300	0,54	0,766	1,31	0,93	0,92	Vérifier
2 ^{éme}	HEA300	0,53	0,776	1,32	0,91	0,97	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,14	1,04	0,52	Vérifier
RDC	HEA300	0,92	0,94	1,22	1,03	0,80	Vérifier

Tableau 6.50: verification du pot 2HEA400 au deversement (cas1 comb3)

		LES	COEFFIC	IENTS	Valeur finale	condition	
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	<u></u> ≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,02	1,00	0,38	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,03	1,01	0,50	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,04	1,02	0,51	Vérifier
RDC	2HEA400	0,99	0,99	1,04	1,01	0,48	Vérifier

• Cas N° 2 : M_2^{max} ; N^{cor} ; M_3^{cor}

Tableau 6.51: verification du pot HEA300 au deversment (cas2 comb3)

		LES	COEFFIC	CIENTS	Valeur finale	condition	
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	Condition
3 ^{éme}	HEA300	0,91	0,94	1,03	1,00	0,30	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,07	1,01	0,400	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,06	1,01	0,45	Vérifier
RDC	HEA300	0,92	0,94	1,12	1,02	0,39	Vérifier

Tableau 6.52: verification du pot 2HEA400 au deversement (cas2 comb3)

		LES	COEFFIC	ENTS	Valeur		
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,02	1,00	0,38	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,03	1,01	0,50	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,04	1,02	0,51	Vérifier
RDC	2HEA400	0,99	0,99	1,04	1,01	0,48	Vérifier

 $\bullet \quad \textbf{Cas N}^{\circ} \ \textbf{3} : M_3^{\text{max}} \ ; \ N^{\text{cor}} \ ; \ M_2^{\text{cor}} \\$

Tableau 6.53: verification du pot HEA300 au deversement (cas3 comb3)

	LES	COEFFIC	CIENTS	Valeur finale	condition		
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	Condition
3 ^{éme}	HEA300	0,91	0,94	1,02	1,00	0,12	Vérifier
2 ^{éme}	HEA300	0,91	0,94	1,08	1,01	0,22	Vérifier
1 ^{ér}	HEA300	0,97	0,94	1,11	1,03	0,44	Vérifier
RDC	HEA300	0,92	0,94	1,12	1,02	0,39	Vérifier

Tableau 6.54: verification du pot 2HEA400 au deversement (cas3 comb3)

		LES	COEFFICI	ENTS	Valeur		
						finale	condition
NIVEAU	PROFILE	Xz	XLT	KZ	KLT	≤1	
3 ^{éme}	2HEA400	0,99	0,99	1,01	1,00	0,38	Vérifier
2 ^{éme}	2HEA400	0,99	0,99	1,02	1,00	0,40	Vérifier
1 ^{ér}	2HEA400	0,99	0,99	1,03	1,01	0,51	Vérifier
RDC	2HEA400	0,99	0,99	1,03	1,01	0,57	Vérifier

6.4. Vérification des poutres :

La vérification des poutres se fait par les formules suivantes :

$$M_{sd} \le M_{cRd} = \frac{W_{pl} \cdot f_y}{\gamma_{M_0}}$$

et

$$V_{Sd} \le V_{plRd} = \frac{f_y A_v}{\sqrt{3} \gamma_{M_0}}$$
 Avec: $A_v = A - 2.b.t_f + (t_w + 2.r).t_f$

6.4.1. Vérification de la poutre principale L=11,6m:

=>poutre HEA400

a) Vérification de la résistance à la flexion :

$$M_{sd} = 454 \ KN.m$$

$$M_{crd} = 675,24 \text{ KN.m}$$

$$M_{sd} = 454$$
 KN. $m < M_{cRd} = 675,24$ KN. m condition vérifier

b) Vérification de l'effort tranchant :

$$V_{sd} = 451,16 \text{ KN}$$

$$V_{Sd} \leq V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \gamma_{M_{0}}}$$

$$A_v = A - 2.b.t_f + (t_w + 2.r).t_f$$

$$V_{plRd} = 614,75 \text{ KN}$$

$$V_{sd} = 451,16 \text{ KN} \leq V_{plRd} = 614,76 \text{ KN} \dots$$
 Condition vérifié

 $V_{sd} \le 0.5 V_{plRd} = 307.38 \text{ KN} \dots$ pas d'interaction entre le moment fléchissant et l'effort tranchant

6.4.2. Vérification de la poutre principale L=5,6m:

=> poutre HEA280

a) Vérification de la résistance à la flexion :

$$M_{sd} = 192,73 \text{ KN.m}$$

$$M_{crd} = 278,53 \text{ KN.m}$$

$$M_{sd} = 192,73 \text{ KN. m} < M_{cRd} = 278,53 \text{ KN. m} \dots \text{condition vérifier}$$

b) Vérification de l'effort tranchant :

$$V_{sd} = 209,73 \text{ KN}$$

$$V_{Sd} \le V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \gamma_{M_{0}}}$$

$$A_v = A - 2.b.t_f + (t_w + 2.r).t_f$$

$$V_{plRd} = 309,92 \text{ KN}$$

$$V_{sd} = 209,73 \text{ KN} \leq V_{plRd} = 309,92 \text{ KN} \dots$$
 Condition vérifié

6.4.3. vérification de la poutre secondaire :

⇒ Poutre HEA240

a) Vérification de la résistance à la flexion :

 $M_{sd} = 101,02 \text{ KN.m}$

$$M_{crd} = 204,77 \text{ KN.m}$$

$$M_{sd} = 101,02. \, \text{m} < M_{cRd} = 204,77 \, \text{KN. m} \dots \text{condition v\'erifier}$$

b) Vérification de l'effort tranchant :

$$V_{sd} = 22,30 \text{ KN}$$

$$V_{Sd} \le V_{plRd} = \frac{f_{y}A_{v}}{\sqrt{3} \gamma_{Mo}}$$

$$A_v = A - 2.b.t_f + (t_w + 2.r).t_f$$

$$V_{plRd} = 362,86 \text{ KN}$$

$$V_{sd} = 22,30 \text{ KN} \leq V_{plRd} = 362,86 \text{ KN} \dots$$
Condition vérifié

 $V_{sd} \le 0.5 V_{plRd} = 181,43 \text{ KN} \dots$ pas d'interaction entre le moment fléchissant et l'effort tranchant

6.4.4. Vérification des contreventements en k (2UPN):

a) Compression simple:

On doit vérifier que :

$$N_{sd} \leq \frac{\mathcal{X}.\beta_{\alpha}.A.f_{y}}{\gamma_{m1}}$$

$$I = 4.34 \text{ m}$$

$$L= 4,34 \text{ m}$$
 et $L_f = L = 4,34 \text{ m}$

$$\lambda_y = \frac{L_f}{i_y} = 70$$

$$\lambda_y = \frac{L_f}{l_y} = 70 \qquad \qquad \lambda_z = \frac{L_f}{l_z} = 92,34$$

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0,92 \implies \lambda_1 = 93.9 \times \varepsilon = 86,8$$

$$\lambda_1 = 93.9 \times \epsilon = 86.8$$

$$\overline{\lambda_y} = \left(\frac{\lambda_y}{\lambda_1}\right) \times \sqrt{\beta_A} = 0.81$$

$$\beta_A = 1$$

$$\overline{\lambda_z} = \left(\frac{\lambda_z}{\lambda_1}\right) \times \sqrt{\beta_A} = 1,06$$

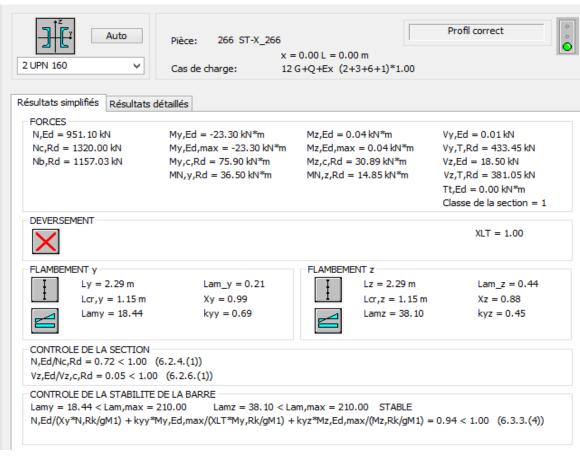
$$\varphi_y = 0.5 \left[1 + \alpha \times \left(\overline{\lambda_y} - 0.2 \right) + \overline{\lambda_y}^2 \right] = 0.93$$

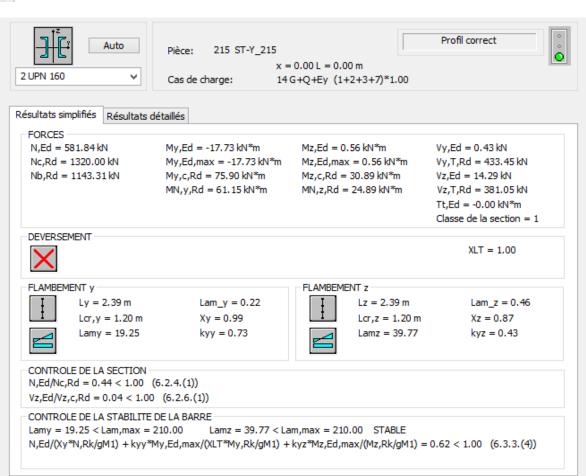
$$\varphi_z = 0.5 \left[1 + \alpha \times \left(\overline{\lambda_z} - 0.2 \right) + \overline{\lambda_z}^2 \right] = 1.27$$

$$X_y = \frac{1}{\varphi_y + \left[\varphi_y^2 - \overline{\lambda_y}^2\right]^{0.25}} = 0,49$$

$$X_z = \frac{1}{\varphi_z + \left[\varphi_z^2 - \overline{\lambda_z}^2\right]^{0.25}} = 0,39$$

$$X_{min} = min(X_y; X_z) = 0,39$$


$$N_{sd} = 318,81 \text{kN} \le \frac{0,37 \times 1 \times 4800 \times 275.10^{-3}}{1.1} = 444 \text{ KN condition vérifier}$$


b) Traction simple:

$$N_{sd} \le \frac{A.f_y}{\gamma_{m0}}$$

$$N_{sd=}316,81~\text{KN} \leq \frac{4800 \times 275 \times 10^{-3}}{1} = 1320 \text{KN} \dots \text{condition v\'erifier}$$

CHAPITRE 6 Vérification et ferraillage des éléments résistants

6.5. Conclusion pour le bâtiment R+3

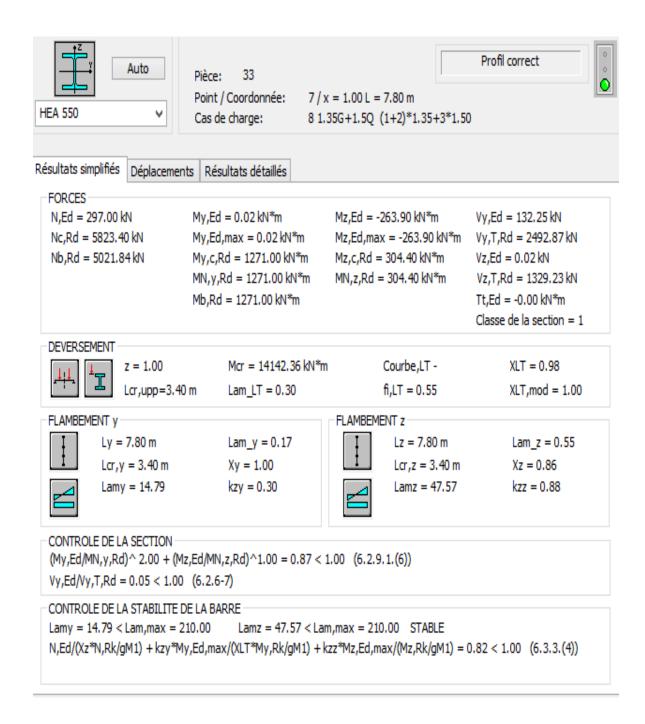
Les dimensions retenues pour les poteaux et les poutres aisi que le contreventement sont résumés dans les tableaux suintants :

a) les poteaux :

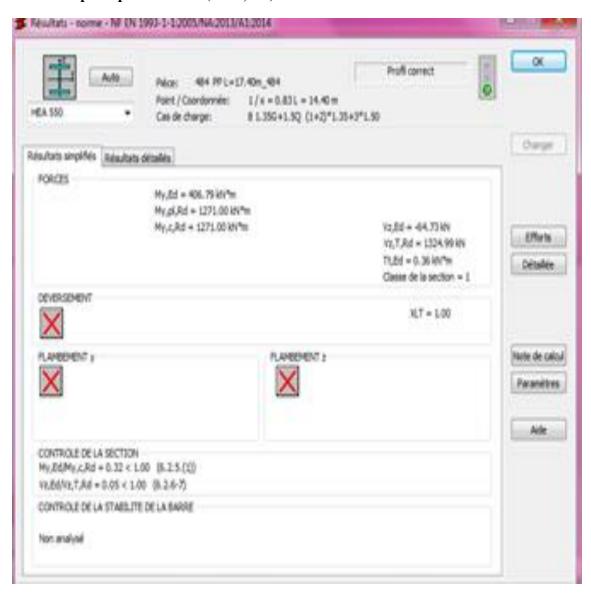
Tableau 6.55: choix final des profiles du poteau

2.4	Pro	filé
Niveau	De rive et	central
	angle	
3 ^{eme}	HEA300	2HEA400
2 ^{eme}	HEA300	2HEA400
1 ^{er}	HEA300	2HEA400
RDC	HEA300	2HEA400

b) Les poutres et les contreventements :

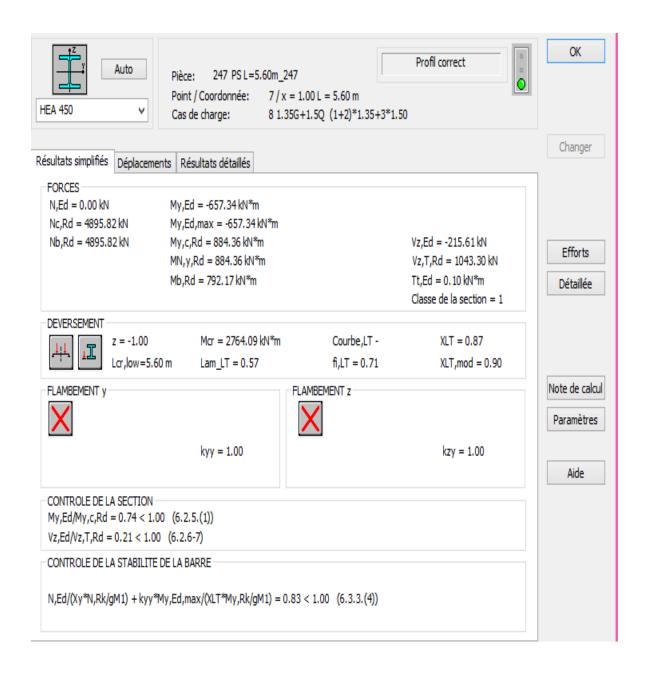

Tableau 6.56: choix final des profiles (PP, PS et contreventement)

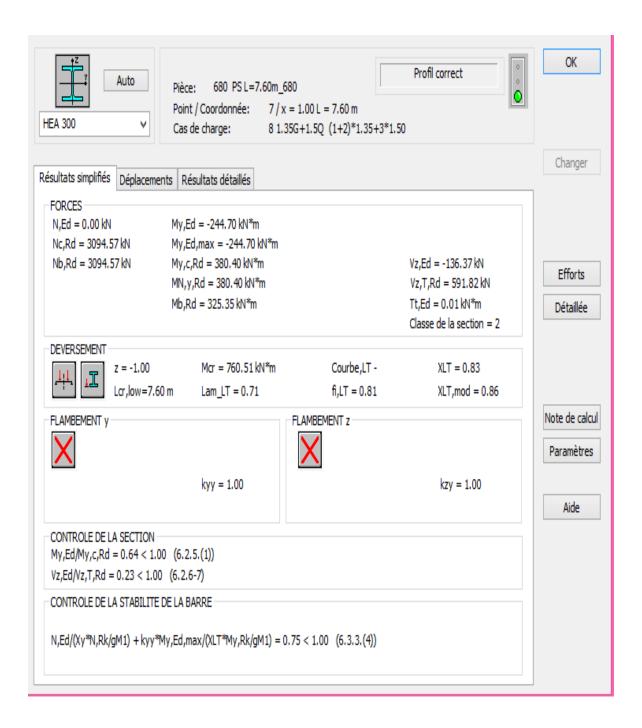
Poutre pri	ncipale	Poutre secondaire	contreventement
L=11,6m	L=5,6m	HEA240	2UPN
HEA400	HEA280	11211210	2011

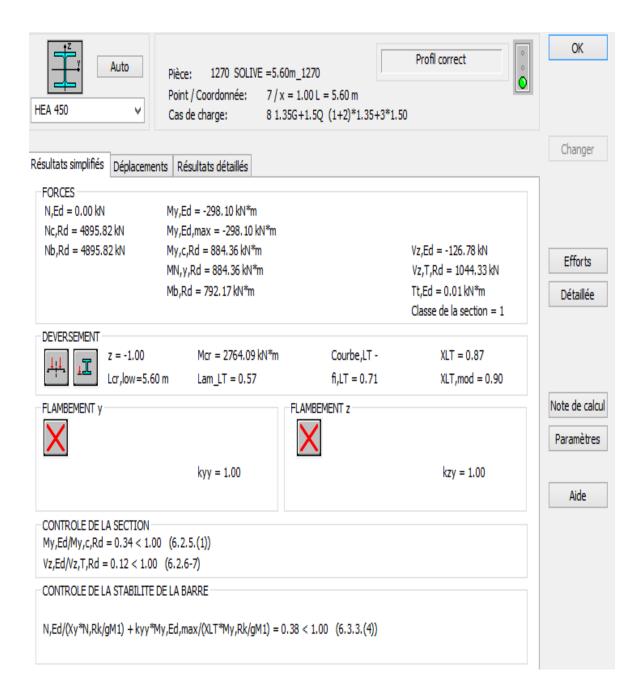

⇒ Batiment R+8

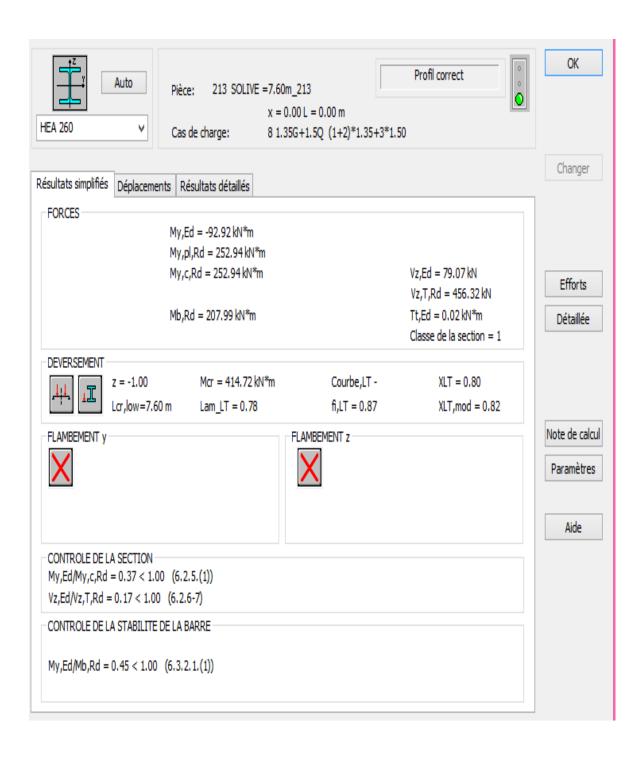
Les vérifications manuelle sont faites pour le bâtiment précèdent (R+3), alors il suffit de mettre les résultats de la vérification des éléments par le logiciel ROBOT pour le R+8.

6.6. Vérification des poteaux HEA550


6.7.Poutre principale HEA550 (L=17,4 m)


6.8.Poutre principale HEA400 (L=6 m)


6.9. Poutre secondaire HEA450 (L=5,6m)

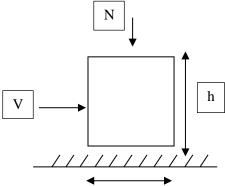

6.10.Poutre secondaire HEA300 (L=7,6m)

6.11.Solive HEA450 (L = 5,6)

6.12.Solive HEA260 (L=7,6m)

6.13. Ferraillage du noyau central :

6.13.1.Généralités:


Les voiles et murs sont des éléments ayant dimension grandes par rapport à la troisième appelée épaisseur, généralement verticaux et chargés dans leur plan.

Ces éléments peuvent être :

En maçonnerie non armée ou armée, auxquels on réservera le nom de murs ; En béton armé ou non armé, et appelés voiles. On utilise aussi l'expression murs en béton banché pour désigner les voiles en béton non armé. Une banche est un outil de coffrage de grande surface.

6.13.2. Introduction au ferraillage des voiles :

Le modèle le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La **figure** ci-après montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale N et une charge horizontale V en tête.

Le voile est donc sollicité par un effort normal N et un effort tranchant V constant sur toute la hauteur, et un moment fléchissant qui est maximal dans la section d'encastrement.

Le ferraillage classique du voile en béton armé est composé :

D'armatures verticales concentrées aux deux extremités du voile (de pourcentage ρ_{V0}) et d'armatures verticales uniformément reparties (de pourcentage ρ_{V})

D'armatures horizontales, parallèles aux faces du murs, elles aussi uniformément réparties et de pourcentage ρ_H

Les armatures transversales (epingles) (perpendiculaires au parement du voile).

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction et de compression, créant ainsi un couple capable d'équilibrer le moment appliqué. À la base du voile, sur une hauteur critique des cadres sont disposés autour de ces armatures afin d'organiser la ductilité de ces zones.

En fin, les armatures de l'âme horizontale et verticale ont le rôle d'assurer la résistante à l'effort tranchant.

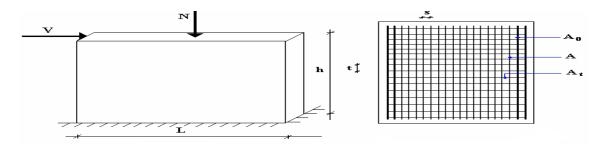


Figure 6.1: schema d'un voile plein et disposition du ferraillage

6.13.3.Combinaison:

Selon le règlement parasismique Algérienne (RPA 99) les combinaisons à considéré dans notre cas (voiles) est les suivants

 $G+Q\pm E$

 $0.8G \pm E$

6.13.4. Prescriptions imposées par RPA99:

A) Aciers verticaux:

Le ferraillage vertical sera disposé de telle sorte qu'il puisse reprendre les contraintes induites par la flexion composée, en tenant compte des prescriptions composées par le RPA 99 et décrites cidessous :

- -L'effort de traction engendré dans une partie du voile doit être repris en totalité par les armatures dont le pourcentage minimal est de 0.20%, de section horizontale du béton tendu.
- -Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur des voiles.
- -A chaque extrémité de voile, l'espacement des barres doit être réduit du dixième de la longueur de voile (L/10), cet espacement doit être inférieur ou égal à 15 cm (st 15cm).
- -Si des efforts importants de compression agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux. Les barres du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

B) Aciers horizontaux :

Comme dans le cas des aciers verticaux, les aciers horizontaux doivent respecter certaines prescriptions présentées ci-après :

-Les armatures horizontales parallèles aux faces du mur doivent être disposées sur chacune des faces entre les armatures verticales et la paroi du coffrage et doivent être munie de crochets à (135°) ayant une longueur de 10Φ .

C) Règles générales:

Les armateurs transversaux doivent respectes les dispositions suivantes :

L'espacement des barres verticales et horizontales doit être inférieur à la plus petite Valeur de deux valeurs suivantes.

$$s \le 1,5.e$$
 [Article 7.7.4.3 RPA99/2003] $s \le 30cm$

Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles au mettre carrée. Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieure.

Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser $\frac{1}{10}$ de l'épaisseur du voile.

Les longueurs de recouvrement doivent être égales à :

- 40Φpour les barres situées dans les zones ou le renversement du signe des efforts sont possibles.
- 20Φ pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons des charges possibles.

6.13.5 Ferraillage vertical:

Le calcul se fera pour des bandes verticales dont la largeur d est déterminée à partir de:

 $d \le min [he/2;(2/3).L']$ [Article 7.7.4 RPA 99(version 2003)

L : est la longueur de la zone comprimée.

Pour déterminer les armatures verticales, on utilisera la méthode des contraintes.

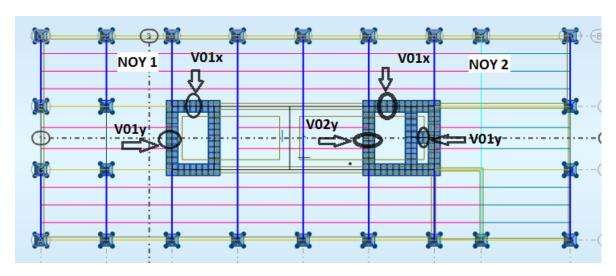


Figure 6.2: la disposition des voiles de notre structure

Tableau 6.57: ferraillage vertical du noyau 1

Voile	e(m)	L (m)	M(KN.m)	N (KN)	A_{SRPA}	A _s (adopté)	Barres	Barres
Noy1					(cm^2)	(cm ²)	z.d'about	z.courante
					` /			
V01x	0,6	3,6	11405,63	-1535,42	4	89,06	8HA14	18HA25
V01y	0,6	5,4	8662,13	17054,81	4	43,37	8HA14	9HA25

Tableau 6.58: ferraillage vertical du noyau 2

Voile	e(m)	L (m)	M(KN.m)	N (KN)	A_{SRPA}	A _s (adopté)	Barres	Barres
Noy2					(cm ²)	(cm ²)	z.d'about	z.courante
V01x	0,6	5,6	36749,17	-2044,64	4	56	6HA10	12HA25
V01y	0,6	1,98	2052,62	5140,38	4	89,06	8HA14	18HA25
V02y	0,6	5,4	6898,16	21061,61	4	43,37	8HA14	9HA25

Ferraillage horizontal à l'effort tranchant

Tableau 6.59: ferraillage horizontal de noyau 1

Voile Noy1	L(m)	V _{max} (KN)	τ_u (MPa)	$\overline{\tau}_u$ (MPa)	Condition	A_t (cm^2)	$A_{t,min}$ (Cm ²)	A_t (cm^2)	CHOIX
V01x	3,6	1527,87	4,62	5	Vérifiée	2,88	84	84	18HA25
V01y	5,4	2284,79	3,22	5	Vérifiée	2,01	21	21	7HA20

Tableau 6.60: ferraillage horizontal de noyau 2

Voile	L(m)	$V_{ m max}$	τ_u	$\overline{\tau}_u$	Condition	A_{t}	$A_{t,min}$	A_{t}	CHOIX
Noy2		(KN)	(MPa)	(MPa)		(cm^2)	(Cm ²)	(cm^2)	
V01x	5,6	2738 ,48	4,62	5	Vérifiée	2,88	84	84	18HA25
V01y	1,98	2687,06	4,07	5	Vérifiée	2,54	51	51	11HA25
V02y	5,4	463,61	3,22	5	Vérifiée	2,01	21	21	7HA20

Des captures sur le ferraillage des voiles par ROBOT

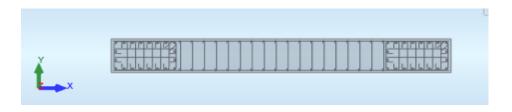


Figure 6.3 : ferraillage de voile V01y (60*540)

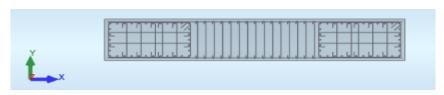


Figure 6.4 : ferraillage de voile V01x (60*360)

2.6 F	erraillage	:										
A	rmatures ve	erticale	s:									
Zone												
XO	X1	Nomb	re:	Acier		Dian	nèt	re	Longue	ur	Espacer	nent
(m)	(m)					(mm	1)		(m)		(m)	
1,08	4,32	36		HA 500		16,0			3,54		0,19	
	ebut de la zone n de la zone											
Δ	rmatures h	orizonta	les:									
Туре	Nombre:	Acier	Diar (mn	nètre	A (m)	B (m)	C (m)	Espac (m)	emen	nt Forn	ne
droit	30	HA 500	6,0		5,34	0,0		0,00	0,25		00	
E	pingles:											
Nombre	Acier	Diamètr (mm)	re	A (m)	B (m)		C (m	2)	Forme			
522	HA 500	6,0		0,55	0,0		0,0		00			
A	rmature de	bord (A	lf):									
		Nomb	re:	Acier	Dia (mi	mètr m)	е	A (m)	B (m)	C (m)	Forme	•
	longitudinales -			20	HA	500		40,0	3,54	0,00	0,00	00
	longitudinales -			20		500		40,0	3,54	0,00		00
	ansversale - g			36		500		14,0		1,00		31
	ansversale - di			36		500		14,0		1,00		31
Épingles - g		216		HA 500				0,52		0,00		
Épingles - g		72		HA 500				1,00		0,00		
Épingles - d		216		HA 500				0,52	0,00	0,00	00	
Épingles - d	roite	72		HA 500	14.0	0		1.00	0.00	0.00	00	

Figure 6.5 : resultat de ferraillage voile V01x par ROBOT

	Ferraillage										
	Armatures ve	erticale	s:								
Zone											
XO	X1	Nomb	re:	Acier	1	Diamè	tre	Longue	ur	Espacer	nent
(m)	(m)					(mm)		(m)		(m)	
1,08	4,32	36		HA 500		16,0		3,54		0,19	
X0 -	Début de la zone										
X1 -	Fin de la zone										
	Armatures he	orizonta	ales:								
Type	Nombre:	Acier	Dian (mn		A (m)	B (m)	C (m)	Espac (m)	emen	t Forn	ne
droit	30	HA 500	6,0		5,34	0,00	0,00			00	
	Epingles:										
Nomb	re: Acier	Diamètr (mm)	re	A (m)	B (m)	C	m)	Forme			
522	HA 500	6,0		0,55	0,00		,00	00			
	Armature de	bord (A	Af):								
		Nomb	re:	Acier		nètre		B	C	Forme	
Armatura	s longitudinales -	nauche		20	HA S		(m) 40.0	(m) 3,54	(m) 0,00	0,00	00
	s longitudinales -			20	HA S		40.0		0.00	0.00	00
	transversale - qu			36	HA S		14.0		1.00	0,52	31
	transversale - di			36	HA S		14.0		1,00	0,52	31
Épingles		216		HA 500			0,52		0.00	00	
Épingles		72		HA 500	14,0		1,00		0,00	00	
Épingles	- droite	216		HA 500	14,0		0,52	0,00	0,00	00	
Épingles	- droite	72		HA 500	14,0		1,00	0,00	0,00	00	

Figure 6.6 : resultats de ferraillage voile V01y par ROBOT

7.1 Introduction:

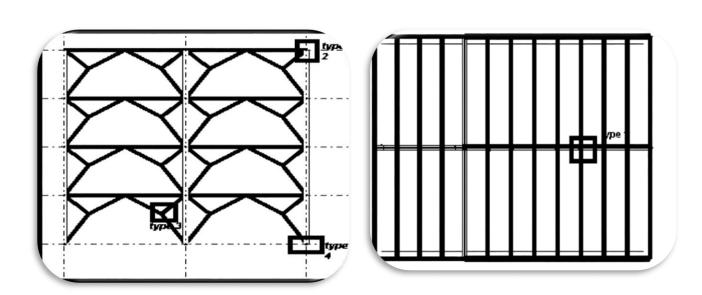
Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations entre les pièces sans générer de sollicitations parasites notamment de torsion. On distingue deux types de fonctionnement

➤ Bâtiment R+3

• Fonctionnement par obstacle:

C'est le cas des boulons ordinaires non précontraints dont les tiges reprennent les efforts et fonctionnent en cisaillement.

• Fonctionnement par adhérence :


Dans ce cas la transmission des efforts s'opère par adhérence des surfaces des pièces en contact. Cela concerne le soudage et le boulonnage par les boulons à haute résistance.

Dans notre projet nous aurons recours à trois types d'assemblages :

- Assemblages soudés.
- Assemblage par boulons ordinaires.
- Assemblage par boulons H-R.

Dans ce chapitre, (05) types d'assemblage seront traités qui sont :

- Assemblage poutre solive; type 1
- Assemblage poteau poutre; type 2
- Assemblage contreventement; type 3
- Assemblage Pied de poteau ; type 4

• Le boulonnage :

Le boulonnage consiste le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur sites. Pour notre cas le choix à été porté sur le boulon de haute résistance (HR). Il comprend une vis à tige filetée, une tête hexagonale et un écrou en acier à très haute résistance :

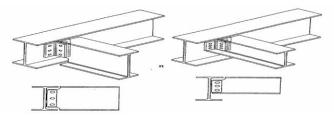


Figure 7.1 : type des assembalges boulonné

Tableau 7.1: caracteristiques des boulons

Classe	4.6	4.8	5.6	5.8	6.6	6.8	8.8	10.8
f_{yb} (N/mm ²)	240	320	300	400	360	480	640	900
f_{ub} (N/mm ²)	400	400	500	500	600	600	800	1000

• Le soudage :

En charpente soudée les assemblages sont plus rigides, cela à pour effet un encastrement partiel des éléments constructifs. Les soudages à la flamme oxyacéthylénique et le soudage à l'arc électrique sont des moyens de chauffages qui permettent d'élever à la température de fusion brilles des pièces de métal à assembler.

• Coefficients partiels de sécurité :

- Résistance des boulons au cisaillement : $\gamma_{MB} = 1,25$

- Résistance des boulons à traction : γ_{MB} = 1,50

• Coefficient de frottement :

Un bon assemblage par boulons HR exige que des précautions élémentaires soient prises, notamment :

- Le coefficient de frottement μ doit correspondre à sa valeur de calcul. Cela nécessite une préparation des surfaces, par brossage ou grenaillage, pour éliminer toute trace de rouille ou de calamine ; de graissage, etc.

 $\mu = 0.50$ pour les surfaces de la classe A

 $\mu = 0.40$ pour les surfaces de la classe B

 $\mu = 0.30$ pour les surfaces de la classe C

 $\mu = 0.20$ pour les surfaces de la classe D.

7.2 -Calcul des Assemblage :

7.2.1- Assemblage poutre solive :

L'assemblage est réalisé avec deux cornières à l'extrémité de la solive et l'âme de la poutre.

• Poutre **HEA220**

h = 210mm b= 220mm tf = 14mm tw = 7mm

 $A = 64.3 \text{cm}^2$

• Poutre **HEA280**

h=270mm b=280mm tf=13mm tw=8mm

 $A=97.3 \text{ cm}^2$

Solive HEA220

h = 210mm b= 220mm tf = 14mm tw = 7mm

 $A = 64.3 \text{cm}^2$

Les efforts maximaux à prendre $V_{sd} = 62.79KN$

7.2.2-Dimensionnement de l'assemblage :

- A) Manuellement:
- Epaisseur de cornière

$$t^{cor} = \max(t_f^{solive}; t_f^{poutre}) = t_f^{poutre} = 14mm$$

• Choix de diamètre du boulon :

Pour des raisons pratiques on évite toujours la mise en œuvre dans un même assemblage des boulons de diamètre différents ; le choix du diamètre se fera en déterminant leur résistance tout en étant proportionnel à l'épaisseur des pièces assemblées comme suite :

$$\begin{array}{lll} t \leq 10 \text{ mm} & & d = (12 \text{ ; } 14) \text{ mm} \\ 10 \leq t \leq 25 \text{ mm} & & d = (16 \text{ ; } 20 \text{ ; } 24) \text{ mm} \\ t \geq 25 \text{ mm} & & d = (24 \text{ ; } 27 \text{ ; } 30) \text{ mm} \end{array}$$

On choisit 2 boulons de diamètre de 20mm (M20) de classe 4.6

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

• Disposition constructive des boulons :

$$1.2d_0 \le e_1 \le \max(12t, 150mm)$$
 26.4mm $\le e1 \le 162mm$

$$2.2d_0 \le p_1 \le \min(14t,200mm)$$
 \Rightarrow 48mm $\le p1 \le 189mm$ [05]

$$1.5d_0 \le e_2 \le \max(12t, 150mm)$$
 33mm $\le e2 \le 162mm$

$$3d_0 \le p_2 \le \min(14t,200mm)$$
 66mm $\le p2 \le 189mm$

• Vérification de la résistance des boulons au cisaillement par plan de cisaillement :

Il faut vérifier que : $F_{vrd} \succ V_{sd}$

$$F_{\rm vrd} = 0.6 \ f_{\rm ub} \ . \ A_{\rm s} / \gamma_{\rm Mb}$$
 [3]

 $f_{ub} = 400 \ N/mm^2$

Section résistante en traction : $A_s = 245 \text{mm}^2$

Résistance des boulons à la traction : $\gamma_{Mb} = 1,25$

$$F_{V,rd} = 0.6 \times 400 \times \frac{245}{1.25} = 47,04KN$$

Il y a 2 boulons donc:

$$F_{V,rd} = n \times F_{V,rd} = 2 \times 47,04 = 94.08KN > V_{sd} = 62.79kn$$

Donc la condition est vérifiée.

• Vérification de la pression diamétrale :

Avec une cornière (80*80*8)

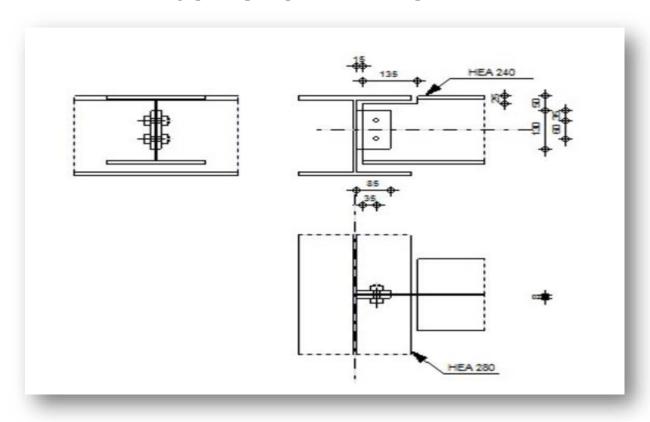
• Il faut vérifier que : $F_1 > F_b$

$$F_B = 2.5. \alpha. f_u. d. \frac{t}{\gamma_{Mb}}$$

$$\alpha = \min(\frac{e_1}{3d_0}; \frac{P_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1)$$

$$d = 20mm$$
 $d_0 = 22mm$ $t = 8mm$ $\gamma_{Mb} = 1,25$ $f_u = 360N/mm^2$

$$e_1 = 35mm$$
 $P_1 = 65mm$ $\alpha = \min(0,53; 0,73; 1,11; 1)$ $\alpha = 0,53$ $F_B = 2,5 \times 0,53 \times 360 \times 20 \times \frac{8}{1,25}$ $F_B = 61,05KN$


Pour un boulon on à:

$$F_{v,sd} = \frac{V_{sd}}{2} = \frac{62.79}{2} = 31.39KN < 61.05 kn$$

Donc la condition est vérifiée.

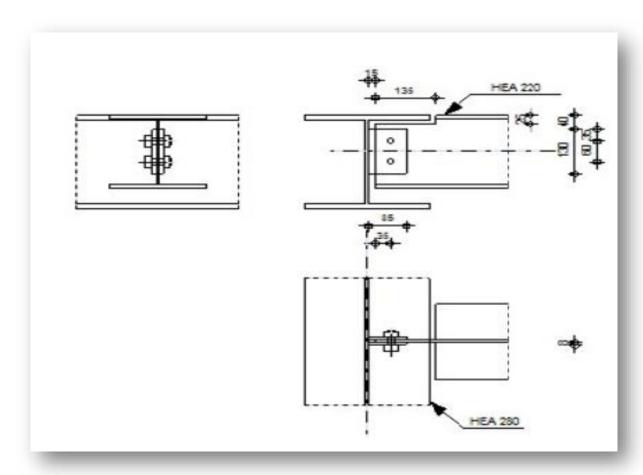
1- Vérification Par logiciel robot :

> Assemblage poutre principale HEA280 avec poutre secondaire HEA 240

ORCES AGISS	ANT SUR L	ES BOUL	ONS DANS L'ASSEMBLAGE PLATINE - POUTRE		
F _{x,Ed} =	55,95	[kN]	Effort de calcul total dans le boulon sur la directio	on x	
F _{z,Ed} =	31,08	[kN]	Effort de calcul total dans le boulon sur la direction	on z	
F _{Ed} =	64,01	[kN]	Effort tranchant résultant dans le boulon		
F _{Rdx} =	63,00	[kN]	Résistance résultante de calcul du boulon		[Tableau 3.4
F _{Rdz} =	83,70	[kN]	Résistance résultante de calcul du boulon		[Tableau 3.4
F _{x,Ed} ≤ F _{Rdx}			55,95 < 63,00	vérifié	(0,89
F _{z,Ed} ≤ F _{Rdz}			31,08 < 83,70	vérifié	(0,37
F _{Ed} ≤ F _{vRd}			31,08 < 231,62	vérifié	(0,28
	AL DE LA		U DOUBLE GLOAN LEMENT DE DI GO /EE		
LATINE			N POUR LE CISAILLEMENT DE BLOC (EF		n 10 0 0
L ATINE V _{effRd} =	120,07	SECTION	Résistance de calcul de la section affaiblie par le	es trous	[3.10.2 (3
LATINE	120,07				
LATINE V _{effRd} = 0.5*V _{b,Ed} ≤ \	120,07 V _{effRd}	[kN]	Résistance de calcul de la section affaiblie par le	es trous vérifié	(0,26
LATINE V _{effRd} = 0.5*V _{b,Ed} ≤ \	120,07 V _{effRd}	[kN]	Résistance de calcul de la section affaiblie par le	es trous vérifié	(0,26
LATINE V _{effRd} = 0.5*V _{b,Ed} ≤ \ ERIFICATIO	120,07 V _{effRd} N DE LA 7,69	[kN] RESISTA	Résistance de calcul de la section affaiblie par le	es trous vérifié	(0,26

A _t =	7,69	[cm ²]	Aire de la zone tendue de la sectionu brutle		
A _{t,net} =	6,34	[cm ²]	Aire nette de la zone de la section en traction		
0.9*(A _{t,net} /A) ≥ (f *γ _{M2})/(f_*γ _{M0})	0,74 < 0,85		
W _{net} =	49,02	[cm ³]	Facteur élastique de la section		
M _{c,Rdnet} =	13,48	[kN*m]	Résistance de calcul de la section à la flexion		$M_{c,Rdnet} = W_{net}^* f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rd}$	net		3,36 < 13,48	vérifié	(0,25)
A _v =	15,37	[cm ²]	Aire de la section efficace en cisaillement		
•			Aire de la section efficace nette en cisaillement		A _{vnet} =A _v -n _v *d _n
A _{v,net} =	12,67	[cm ²]	Alle de la Section enicace nelle en disamement		VII.21 V V V
V _{pl,Rd} =	244,11	[kN]	Résistance plastique de calcul pour le cisaillement		$V_{pl,Rd} = (A_{v,net}^* f_y) / (\sqrt{3}^* \gamma_{M0})$
V _{b,Ed} ≤ V _{pl,F}	₹d		62,17 < 244,11	vérifié	(0, 25)

RÉSISTANCE DES SOUDURES


SOUDURES D'ANGLE ENTRE LA PLATINE ET LA POUTRE PRINCIPALE

σ=	110,36	[MPa]	Contrainte normale dans la soudure		
σ_{\perp} =	78,03	[MPa]	Contrainte normale perpendiculaire dans la soudure		
$ \sigma_{\perp} \le 0.9 * f_u$	/ ₁ _{M2}		78,03 < 291,60	vérifié	(0,27)

Assemblage satisfaisant vis à vis de la Norme

Ratio 0,89

> Assemblage poutre principale HEA280 avec solive HEA220

BOULONS ASSEN	IBLANT LA POUTRI	À LA PLA	TINE	
ORCES AGISSANT S	UR LES BOULONS DAI	NS L'ASSEMB	LAGE PLATINE - POUTRE	
F _{x,Ed} =	50,98	[kN]	Effort de calcul total dans le boulon sur la direction x	
F _{z,Ed} =	28,32	[kN]	Effort de calcul total dans le boulon sur la direction z	
F _{Ed} =	58,32	[kN]	Effort tranchant résultant dans le boulon	
F _{Rdx} =	58,80	[kN]	Résistance résultante de calcul du boulon	
F _{Rdz} =	78,12	[kN]	Résistance résultante de calcul du boulon	
$F_{x,Ed} \le F_{Rdx}$			50,98 < 58,80	vérifi
F _{z,Ed} ≤ F _{Rdz}			28,32 < 78,12	vérifi
F _{Ed} ≤ F _{vRd}			28,32 < 77,21	vérific

ÉRIFICAT	TON DE LA	RÉSISTA	NCE DE LA SECTION DE LA POUTRE AFFAIB	LIE PAR LES TROU	<u>s</u>
A _t =	6,47	[cm ²]	Aire de la zone tendue de la sectionu brutte		
A _{t,net} =	5,21	[cm ²]	Aire nette de la zone de la section en traction		
	$(A_t) \ge (f_y * \gamma_{M2})/(1$		0,72 < 0,85		
		[cm ³]	Facteur élastique de la section		
M _{c,Rdnet} =	10,29	[kN*m]	Résistance de calcul de la section à la flexion		M _{c,Rdnet} = W *f /γ _I
$ M_0 \le M_{c,R}$	dnet		3,06 < 10,29	vérifié	(0,30
A _v =	12,95	[cm ²]	Aire de la section efficace en cisaillement		
*,	10,43	[cm ²]	Aire de la section efficace nette en cisaillement		A _{net} =A ₋ -n _v *
V _{pl,Rd} =	205,61	[kN]	Résistance plastique de calcul pour le cisaillement		$V_{pl,Rd} = (A_{v,net} * f_y) / (\sqrt{3} * \gamma_{lv})$
V _{b,Ed} ≤ V _{pl}	I,Rd		56,64 < 205,61	vérifié	(0,28
RÉSISTAN	CE DES SO	UDURES			
OUDURES	D'ANGLE ENTI	RE LA PLA	TINE ET LA POUTRE PRINCIPALE		
σ=	100,55	[MPa]	Contrainte normale dans la soudure		
σ _⊥ =	71,10	[MPa]	Contrainte normale perpendiculaire dans la soudure		
$ \sigma_{\perp} \le 0.9*f$	υ ^{/γ} Μ2		71,10 < 262,80	vérifié	(0,2
		MID-1	Contrainte tengentielle perpendiculaire		
τ_ =	71,10	[MPa]	Contrainte tengentiene perpendiculare		
τ_ =	71,10 43,57	[MPa]	Contrainte tengentielle parallèle		
τ __ = τ =	•		• • •		[Tableau 4
$\tau_{\perp} = $ $\tau_{ } = $ $\beta_{ } = $	43,57	[MPa]	Contrainte tengentielle parallèle	vérifié	[Tableau 4.

Assemblage satisfaisant vis à vis de la Norme

Ratio 0,87

RECAPITULATION

- on a change la classe des Bouloun de ordinaire a haute résistance pour augmenter la résistances d'assemblage.
 - on a remplace la cornière par une platine.

7.2.2- Assemblage Poteau-poutre:

On a trois (03) types de poutre à assembler avec (02) type de potaux citée ci-dessus, qui sont :

Les potaux :

HEA300, 2HEA400

Les poutre :

HEA 220, HEA240, HEA 280

7.2.2.1- Dimensionnement de l'assemblage :

• Disposition constructive des boulons

Remarque : La procédure de calcul est la suivante :

- Donner pour chaque type de poteau les dispositions constructives et les conditions pour choisir les valeurs de e_1, p_1, e_2 et p_2 ;
- Choisir une valeur pour e_1 , p_1 , e_2 et p_2 , de telle manière que ces quatre valeurs vérifient les dispositions constructives de tous les poteaux ;
- La valeur de l'effort qui sera prise en compte dans les vérifications c'est la valeur maximale ; Les conditions de la disposition constructive sont : [Réf 05 .6.5.1]

1er cas: assemblage poteaux HEA300 avec poutre (HEA240 et HEA 280) et solive HEA220

• **Poteau HEA300 t = 14mm**

Poteau HEA300

h=290mm,b=300mm,tw=8.5mm,tf=14mm

$$A = 112.5 \text{cm}^2$$

> Avec solive HEA220

$$h = 210mm$$
, $b = 220mm$, $tf = 14mm$ $tw = 7mm$

$$A = 64.3 cm^2$$

1- Manuellement:

On choisit 4boulons de diamètre de 20mm(M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

$$1.2d_0 \le e_1 \le \max(12t,150mm) \ 2.2d_0 \le p_1 \le \min(14t,200mm)$$

$$1.5d_0 \le e_2 \le \max(12t,150mm) \ 3d_0 \le p_2 \le \min(14t,200mm)$$

$$26.5 \text{mm} \le \text{e}1 \le 168 \text{mm}$$
 $48.5 \text{mm} \le \text{p}1 \le 196 \text{mm}$

$$33$$
mm ≤ e2 ≤ 168mm 66mm ≤ p2 ≤ 196mm

$$e_1 = 60mm$$
 $p_1 = 100mm$ $e_2 = 60mm$ $p_2 = 110mm$

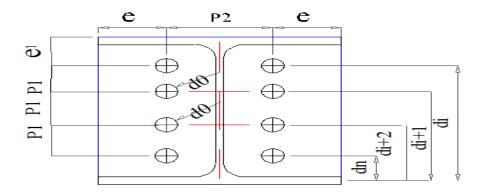


Figure 7.2: les dispositions constructives des boulons

On choisi une platine de (220*230*14) mm

 $d_1=67$ mm, $d_2=167$ mm.

• Vérification de la résistance :

L'effort qui sollicite le boulon est un effort incliné (traction+cisaillement) Il faut vérifie que :

$$F_{vsd} \leq F_{sRd} = \frac{k_s \cdot \mu.m.(F_p - 0.8F_{tsd})}{\gamma_{MSult}};$$

ks=1 les trous ont, dans toutes les plaques des tolérances nominales normales.

μ=0,3 Pour les surfaces de la classe C (surface nettoyées par brossage métallique)

γ_{Mslt}=1,25 Pour l'état limite ultime.

$$F_{tsd} = F_{M1}$$
 Avec F_{tsd} : effort de traction

$$F_{vsd} = \frac{V_{sd}}{n_p.nb}$$
 Avec F_{vsd} : effort de cisaillement

 n_b : Nombre des boulons, nb = 4

 n_f : Nombre des files, $n_f = 2$

 n_p : Nombre des plans de cisaillement, $n_p = 1$

• Données du calcul:

Les données du calcul sont tirées à partir du logiciel Robot « ELU »

CHAPITRE 7

Les assemblages ci-dessous sont sollicités par :

- Un moment fléchissant : Msd = 101.02KN.m

- Un effort tranchant : Vsd = 62.17KN

Remarque:

On peut considérer que le moment appliqué M se traduit par un effort de traction dans la semelle supérieure et un effort de compression dans la semelle inférieure.

• Détermination de l'effort max F_{M1} dans les boulons

Nous considérons uniquement les boulons tendus c'est-à-dire les quatre rangées (horizontales) supérieures, soient :

$$F_{M1} = \frac{M_{sd}.d \max}{n_f.\sum_i d_i^2}$$

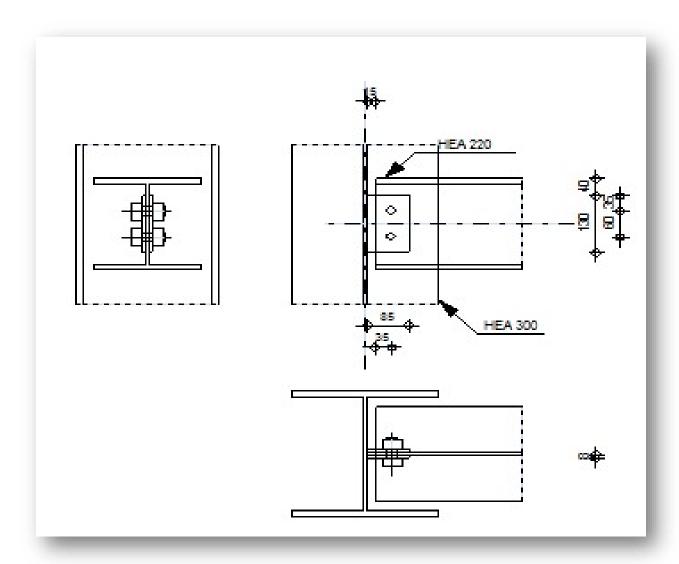
d1=67mm, d2=167mm.

$$\sum di^2 = 32378 \text{ mm}^2 = 0.032 \text{m}^2$$

$$F_{tsd} = F_{m1} = 263.59 \text{ KN}$$

$$F_p = 0.7 \times A_s \times f_{ub}$$

Boulons M20 As = 245 mm^2


$$Fp = 171.5KN$$

$$F \text{ vsd} = \frac{\text{Vsd}}{\text{np.nb}} = 35\text{KN}$$

Fsrd = 41.16K

F vsd = 35 KN ≤ F srd = 41.16 KN condition vérifie

2- vérification par logiciel robot :

RÉSUL	TATS				
BOULON	IS ASSEM	IBLAN	T LA POUTRE À LA PLATINE		
FORCES	AGISSANT	SUR L	ES BOULONS DANS L'ASSEMBLAGE F	PLATINE - POUTRE	
F _{x,Ed} =	10,01	[kN]	Effort de calcul total dans le boulon sur la direct	ion x	
F _{z,Ed} =	5,53	[kN]	Effort de calcul total dans le boulon sur la direct	ion z	
F _{Ed} =	11,44	[kN]	Effort tranchant résultant dans le boulon		
F _{Rdx} =	50,95	[kN]	Résistance résultante de calcul du boulon		[Tableau 3.4]
F _{Rdz} =	74,74	[kN]	Résistance résultante de calcul du boulon		[Tableau 3.4]
F _{x,Ed} ≤ F _{Rdx}			10,01 < 50,95	vérifié	(0,20)
F _{z,Ed} ≤ F _{Rdz}			5,53 < 74,74	vérifié	(0,07)
F _{Ed} ≤ F _{vRd}			5,53 < 361,91	vérifié	(0,03)
VÉRIFICA	ATION DE	LA SE	CTION POUR LE CISAILLEMENT D	E BLOC (EFFORT A	XIAL)
PLATINE					
V _{effRd} =	159,46	[kN]	Résistance de calcul de la section affaiblie par	les trous	[3.10.2 (2)]
eπκα 0.5*N _{b.Ed} ≤			0,00 < 159,46	vérifié	(0,00)
POUTRE	enra		1.7.2 2 2		(
V _{effRd} =	139,53	[kN]	Résistance de calcul de la section affaiblie par	les trous	[3.10.2 (2)]
N _{b,Ed} ≤ V _{ef}	fRd		0,00 < 139,53	vérifié	(0,00)

<u>VÉRIFIC</u>	ATION DE	E LA RÉ	SISTANCE DE LA SECTION DE LA POU	TRE AFFA	IBLIE PAR LES TROUS
A _t =	7,35	[cm ²]	Aire de la zone tendue de la sectionu brutte		
A _{t,net} =	5,81	[cm ²]	Aire nette de la zone de la section en traction		
0.9*(A _{t,net} /A	$\binom{t}{t} \ge (f_y * \gamma_{M2})/(f_y + \gamma_{M2})$	*γ _{M0})	0,71 < 0,85		
W _{net} =	47,03	[cm ³]	Facteur élastique de la section		
M _{c,Rdnet} =	12,93	[kN*m]	Résistance de calcul de la section à la flexion		$M_{c,Rdnet} = W_{net}^* f_{pp} / \gamma_{N}$
$ M_0 \le M_{c,Rd}$	inet		0,60 < 12,93	vérifié	(0,05
A _v =	14,70	[cm ²]	Aire de la section efficace en cisaillement		
A _{v,net} =	11,62	[cm ²]	Aire de la section efficace nette en cisaillement		A _{vnet} =A _v -n _v *c
V _{pl,Rd} =	233,39	[kN]	Résistance plastique de calcul pour le cisaillement		$V_{pl,Rd} = (A_{v,net} * f_y) / (\sqrt{3} * \gamma_M)$
V _{b,Ed} ≤ V _{pl,F}	Rd		11,07 < 233,39	vérifié	(0,05
RÉSISTA	ANCE DE	s soud	DURES		
SOUDUR	ES D'ANG	LE ENT	RE LA PLATINE ET LE POTEAU		
σ =	19,65	[MPa]	Contrainte normale dans la soudure		
σ _⊥ =	13,90	[MPa]	Contrainte normale perpendiculaire dans la soudure		
$ \sigma_{\perp} \le 0.9 * f_u$	<i>l</i> ү м2		13,90 < 291,60	vérifié	(0,05
τ_ =	13,90	[MPa]	Contrainte tengentielle perpendiculaire		
τ _{II} =	8,52	[MPa]	Contrainte tengentielle parallèle		
β _w =	0,85		Coefficient de corrélation		[Tableau 4.
√[σ _⊥ ² +3*(τ ²	$^{2}+\tau_{\perp}^{2})] \leq f_{u}/(\beta$	*γ _{M2})	31,46 < 381,18	vérifié	(0,08

Assemblage satisfaisant vis à vis de la Norme

Ratio 0,20

Récapitulation : diminutions le nombre de boulon et augmentation de la platine.

> Avec Poutre HEA280

h = 270mm, b= 280mm, tf = 13mm tw = 8mm

 $A = 97.3 cm^2$

1- Manuellement:

On choisit 6boulons de diamètre de 20mm(M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

$$1.2d_0 \le e_1 \le \max(12t,150mm) \ \ 2.2d_0 \le p_1 \le \min(14t,200mm)$$

$$1.5d_0 \le e_2 \le \max(12t,150mm) \ \ 3d_0 \le p_2 \le \min(14t,200mm)$$

 $26.5 \text{mm} \le \text{e1} \le 168 \text{mm}$ $48.5 \text{mm} \le \text{p1} \le 196 \text{mm}$

 $33\text{mm} \le e2 \le 168\text{mm}$ $66\text{mm} \le p2 \le 196\text{mm}$

$$e_1 = 130mm$$
 $p_1 = 80mm$

$$e_2 = 80mm$$
 $p_2 = 130mm$

On choisi une platine de (570*280*20) mm

 $d_1=67$ mm, $d_2=167$ mm, $d_3=267$ mm.

• Vérification de la résistance :

L'effort qui sollicite le boulon est un effort incliné (traction+cisaillement) Il faut vérifie que :

$$F_{vsd} \leq F_{sRd} = \frac{k_s \cdot \mu \cdot m \cdot (F_p - 0.8 F_{tsd})}{\gamma_{MSult}};$$

ks=1 les trous ont, dans toutes les plaques des tolérances nominales normales.

μ=0,3 Pour les surfaces de la classe C (surface nettoyées par brossage métallique)

 γ_{Mslt} =1,25 Pour l'état limite ultime.

$$F_{tsd} = F_{M1}$$
 Avec F_{tsd} : effort de traction

$$F_{vsd} = \frac{V_{sd}}{n_{p}.nb}$$
 Avec F_{vsd} : effort de cisaillement

 n_b : Nombre des boulons, nb = 6

 n_f : Nombre des files, $n_f = 2$

 n_p : Nombre des plans de cisaillement, $n_p = 1$

• <u>Données du calcul</u>:

Les données du calcul sont tirées à partir du logiciel Robot « ELU »

Les assemblages ci-dessous sont sollicités par :

- Un moment fléchissant : Msd = 107.75KN.m

- Un effort tranchant : Vsd = 210.33KN

• Détermination de l'effort max F_{M1} dans les boulons

Nous considérons uniquement les boulons tendus c'est-à-dire les quatre rangées (horizontales) supérieures, soient :

$$F_{M1} = \frac{M_{sd}.d \max}{n_f.\sum_i d_i^2}$$

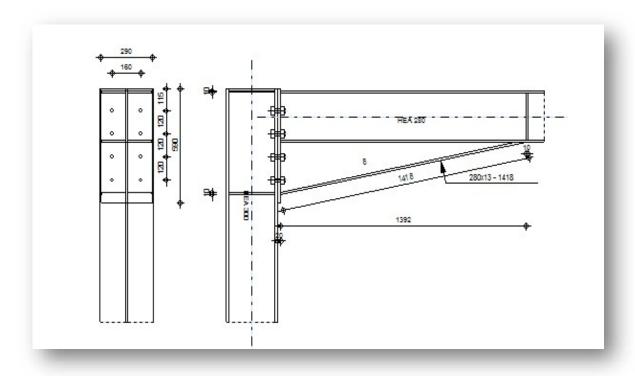
 $d_1=67$ mm, $d_2=167$ mm, $d_3=267$ mm.

$$\sum di^2 = 103667 \text{ mm}^2 = 0.1036\text{m}^2$$

$$F_{tsd} = F_{m1} = 138.84 \text{ KN}$$

$$F_p = 0.7 \times A_s \times f_{ub}$$

Boulons **M20** As = 245 mm^2


$$Fp = 171.5KN$$

$$F \text{ vsd} = \frac{\text{Vsd}}{\text{np.nb}} = 35 \text{KN}$$

$$Fsrd = 41.16K$$

F vsd = 35 KN ≤ F srd = 41.16 KN condition vérifie

2- Vérification par logiciel robot :

wp,Ed	_d = 83	,89 [kN]	Panneau d'âme	e en cisaillement				[5.3.(
wp,Rd	= 554	,51 [kN]	Résistance du	panneau d'âme au	cisaillement			[6.2.6
wp,Ed	d / V _{wp,Rd} ≤ 1,	0		0,15 < 1,00		vérifié		(0,1
c,wc,R	Rd = 12	10,44 [ki	l] Résistance de	e l'âme du poteau				[6.2.6.2.(
c,wc,R	Rd,upp = 12	10,33 [kl	l] Résistance de	e l'âme du poteau				[6.2.6.2.(
RÉSI	ISTANCE	DE L'AS	SEMBLAGE À I	LA COMPRES	SION			
ı =	= 2480	,67 [kN]	Résistance de	l'assemblage à la d	compression			[6
j,Rd ¯	2400	,			•			
b1,Ed	_d / N _{j,Rd} ≤ 1,0		SEMBLAGE À I	0,00 < 1,00		vérifié		(0,0
_{b1,Ed} RÉSI ABLE	d / N _{j,Rd} ≤ 1,0 I ISTANCE EAU RECAPIT	DE L'AS	SEMBLAGE À I	0,00 < 1,00 LA FLEXION			F	
RÉSI ABLE	d / N _{j,Rd} ≤ 1,0 SISTANCE EAU RECAPIT	DE L'AS	SEMBLAGE À I FFORTS F _{t,fc,Rd}	0,00 < 1,00 LA FLEXION F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	B _{p,Rd}
RÉSI ABLE	d / N _{j,Rd} ≤ 1,0 SISTANCE EAU RECAPIT h _j	DE L'AS	SEMBLAGE À I	0,00 < 1,00 LA FLEXION			F _{t,Rd} 423,36 423,36	
ABLE Nr 1 42	$\frac{1}{4}$ / $N_{j,Rd} \le 1,0$ SISTANCE EAU RECAPIT $\frac{h_j}{128}$ 108	DE L'AS ULATIF DES E F _{tj,Ro} 302, 93	SEMBLAGE À I FFORTS F _{t,fc,Rd} 302, 93	0,00 < 1,00 LA FLEXION F _{t,wc,Rd} 573,14	F _{t,ep,Rd} 338,39	F _{t,wb,Rd}	423,36	B _{p,Rd} 513,01
ABLE Nr 1 42 2 30 3 10	$\frac{1}{d} / N_{j,Rd} \le 1,0$ IS TANCE EAU RECAPIT h_j 128 108 88	DE L'AS ULATIF DES E F _{tj,Re} 302, 93 41, 64 119, 45	SEMBLAGE À I FFORTS F _{t,fo,Rd} 302,93 299,74 299,74	0,00 < 1,00 LA FLEXION F _{t,wc,Rd} 573,14 557,63 557,63	F _{t,ep,Rd} 338,39 331,65 331,65	F _{t,wb,Rd} 819,82 777,86 777,86	423,36 423,36 423,36	B _{p,Rd} 513,01 513,01 513,01
ABLE Nr 1 42 2 30 3 10 4 66	d / N _{j,Rd} ≤ 1,0 ISTANCE EAU RECAPIT h j 128 108 188 188	DE L'AS ULATIF DES E F _{tj,Re} 302,93 41,64 119,45 90,50	SEMBLAGE À I FFORTS F _{t,fc,Rd} 302,93 299,74	0,00 < 1,00 LA FLEXION F _{t,wc,Rd} 573,14 557,63 557,63 595,71	F _{t,ep,Rd} 338,39 331,65	F _{t,wb,Rd} 819,82 777,86	423,36 423,36	B _{p,Rd} 513,01 513,01
ABLE Nr 1 42 2 30 3 10 4 60 ESIST	d / N _{j,Rd} ≤ 1,0 ISTANCE EAU RECAPIT h j 128 108 188 188	DE L'AS ULATIF DES E F _{tj,Re} 302,93 41,64 119,45 90,50	SEMBLAGE À I FFORTS F _{t,fo,Rd} 302,93 299,74 299,74 308,35	0,00 < 1,00 LA FLEXION F _{t,wc,Rd} 573,14 557,63 557,63 595,71	F _{t,ep,Rd} 338,39 331,65 331,65	F _{t,wb,Rd} 819,82 777,86 777,86	423,36 423,36 423,36	B _{p,Rd} 513,01 513,01 513,01

> Avec poutre HEA 240

h = 230mm, b = 240mm, tf = 12mm tw = 7.5mm

 $A = 76.8 \text{cm}^2$

1- Manuellement:

On choisit 4boulons de diamètre de 20mm(M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

$$1.2d_0 \le e_1 \le \max(12t,150mm)$$
 $2.2d_0 \le p_1 \le \min(14t,200mm)$

$$1.5d_0 \le e_2 \le \max(12t,150mm)$$
 $3d_0 \le p_2 \le \min(14t,200mm)$

 $26.5 \text{mm} \le \text{e1} \le 168 \text{mm}$ $48.5 \text{mm} \le \text{p1} \le 196 \text{mm}$

 $33\text{mm} \le e2 \le 168\text{mm}$ $66\text{mm} \le p2 \le 196\text{mm}$

 $e_1 = 60mm$ $p_1 = 100mm$ $p_2 = 60mm$ $p_2 = 110mm$

On choisi une platine de (220*230*14) mm avec d1=67mm, d2=167mm.

• Vérification de la résistance :

L'effort qui sollicite le boulon est un effort incliné (traction+cisaillement) Il faut vérifie que :

$$F_{vsd} \leq F_{sRd} = \frac{k_s \cdot \mu.m.(F_p - 0.8F_{tsd})}{\gamma_{MSult}};$$

ks=1 les trous ont, dans toutes les plaques des tolérances nominales normales.

μ=0,3 Pour les surfaces de la classe C (surface nettoyées par brossage métallique)

γ_{Mslt}=1,25 Pour l'état limite ultime.

$$F_{tsd} = F_{M1}$$
 Avec F_{tsd} : effort de traction

$$F_{vsd} = \frac{V_{sd}}{n_p.nb}$$
 Avec F_{vsd} : effort de cisaillement

 n_b : Nombre des boulons, nb = 4

 n_f : Nombre des files, $n_f = 2$

 n_p : Nombre des plans de cisaillement, $n_p=1$

• Données du calcul:

Les données du calcul sont tirées à partir du logiciel Robot « ELU »

Les assemblages ci-dessous sont sollicités par :

- Un moment fléchissant : Msd = 36.24KN.m

- Un effort tranchant : Vsd = 22.30KN

Remarque:

On peut considérer que le moment appliqué M se traduit par un effort de traction dans la semelle supérieure et un effort de compression dans la semelle inférieure.

• Détermination de l'effort max F_{M1} dans les boulons

Nous considérons uniquement les boulons tendus c'est-à-dire les quatre rangées (horizontales) supérieures, soient :

$$F_{M1} = \frac{M_{sd}.d \max}{n_f.\sum_i d_i^2}$$

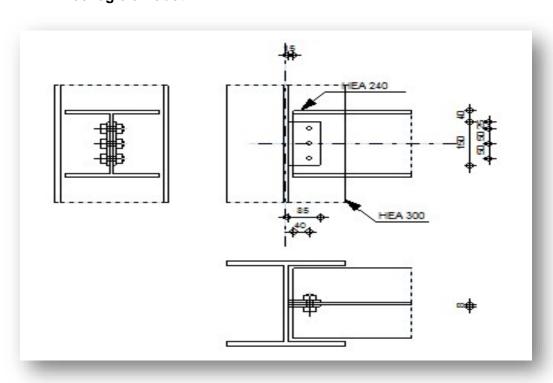
d1=67mm, d2=167mm.

$$\sum di^2$$
 = 32378 mm² = 0.032m²

$$F_{tsd} = F_{m1} = 94.563 \text{ KN}$$

$$F_p = 0.7 \times A_s \times f_{ub}$$

Boulons M20 As = 245 mm^2


$$Fp = 171.5KN$$

$$F \text{ vsd} = \frac{\text{Vsd}}{\text{np.nb}} = 5.575 \text{KN}$$

$$Fsrd = 41.16K$$

F vsd = 5.575 KN ≤ F srd = 41.16 KN condition vérifie

2- Avec logiciel robot:

• Poteau 2HEA400 t=19mm

> Avec Poutre HEA280

On choisit 06boulons de diamètre de 20mm (M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

$$26.5 \text{mm} \le \text{e1} \le 228 \text{mm}$$
 $48.5 \text{mm} \le \text{p1} \le 200 \text{mm}$

$$33\text{mm} \le e2 \le 228\text{mm}$$
 $66\text{mm} \le p2 \le 200\text{mm}$

On choisi une platine de (400*300*20)mm

$$e_1 = 50mm$$
 $p_1 = 100mm$ $e_2 = 70mm$ $p_2 = 160mm$

• <u>Données du calcul</u>:

Les données du calcul sont tirées à partir du logiciel robots « ELU »

Les assemblages ci-dessous sont sollicités par :

- Un moment fléchissant : Msd = 107.75KN.m

- Un effort tranchant : Vsd = -210.33KN

• Vérification de la résistance :

L'effort qui sollicite le boulon est un effort incliné (traction+cisaillement) Il faut vérifie que :

$$F_{vsd} \le F_{sRd} = \frac{k_s \cdot \mu \cdot m \cdot (F_p - 0.8 F_{tsd})}{\gamma_{MSult}};$$

ks=1 les trous ont, dans toutes les plaques des tolérances nominales normales.

μ=0,3 Pour les surfaces de la classe C (surface nettoyées par brossage métallique)

 γ_{Mslt} =1,25 Pour l'état limite ultime.

$$F_{tsd} = F_{M1}$$
 Avec F_{tsd} : effort de traction

$$F_{vsd} = \frac{V_{sd}}{n_p.nb}$$
 Avec F_{vsd} : effort de cisaillement

 n_b : Nombre des boulons, **nb=06**

 n_f : Nombre des files, $n_f = 2$

• Détermination de l'effort max F_{M1} dans les boulons

Nous considérons uniquement les boulons tendus c'est-à-dire les quatre rangées (horizontales) supérieures, soient :

$$F_{M1} = \frac{M_{sd}.d \max}{n_f.\sum_i d_i^2}$$

d₁=59.5mm, d₂=159.5mm, d₃=259.5mm.

$$\sum di^2 = 96320.75 \text{ mm}^2 = 0.096 \text{m}^2$$

$$Ftsd = Fm1 = 145.35 KN$$

$$F_p = 0.7 \times A_s \times f_{ub}$$

Boulons M20 As = 245mm²

Fp = 171.500 kN

$$F_{vsd} = \frac{vsd}{np.nb} = 35.055 \text{ KN}$$

Fsrd = 41.16 KN

F vsd = 35.055 KN ≤ F srd = 41.16 KN condition vérifie

> Avec solive HEA220

On choisit 04boulons de diamètre de 20mm (M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

 $26.5 \text{mm} \le \text{e1} \le 228 \text{mm}$ $48.5 \text{mm} \le \text{p1} \le 200 \text{mm}$

33mm ≤ e2 ≤ 228mm 66mm ≤ p2 ≤ 200mm

On choisi une platine de (400*300*20)mm

$$e_1 = 50mm$$
 $p_1 = 100mm$ $e_2 = 70mm$ $p_2 = 160mm$

On choisit 04boulons de diamètre de 20mm (M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

• Données du calcul:

Les données du calcul sont tirées à partir du logiciel robots « ELU »

Les assemblages ci-dessous sont sollicités par :

- Un moment fléchissant : Msd = -16.82KN.m
- Un effort tranchant : Vsd = -21.42KN

• Vérification de la résistance :

L'effort qui sollicite le boulon est un effort incliné (traction+cisaillement) Il faut vérifie que :

$$F_{vsd} \leq F_{sRd} = \frac{k_s \cdot \mu \cdot m \cdot (F_p - 0.8 F_{tsd})}{\gamma_{MSult}};$$

ks=1 les trous ont, dans toutes les plaques des tolérances nominales normales.

μ=0,3 Pour les surfaces de la classe C (surface nettoyées par brossage métallique)

 γ_{Mslt} =1,25 Pour l'état limite ultime.

$$F_{tsd} = F_{M1}$$
 Avec F_{tsd} : effort de traction

$$F_{vsd} = \frac{V_{sd}}{n_{p}.nb}$$
 Avec F_{vsd} : effort de cisaillement

 n_b : Nombre des boulons, **nb=04**

 n_f : Nombre des files, $n_f = 2$

• Détermination de l'effort max F_{M1} dans les boulons

Nous considérons uniquement les boulons tendus c'est-à-dire les quatre rangées (horizontales) supérieures, soient :

$$F_{M1} = \frac{M_{sd}.d \max}{n_f.\sum_{i} d_i^2}$$

d₁=59.5mm, d₂=159.5mm.

$$\sum di^2 = 28980.5 \text{ mm}^2 = 0.028 \text{m}^2$$

$$Ftsd = Fm1 = 47.75 KN$$

$$F_p = 0.7 \times A_s \times f_{ub}$$

Boulons M20 As = 245mm²

$$Fp = 171.500 \text{ kN}$$

$$F_{\text{vsd}} = \frac{Vsd}{np.nb} = 21.42 \text{ KN}$$

Fsrd = 41.16 KN

F vsd = 21.42 KN ≤ F srd = 41.16 KN condition vérifie

> Avec Poutre secondaire HEA240

On choisit 04boulons de diamètre de 20mm (M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

 $26.5 \text{mm} \le \text{e1} \le 228 \text{mm}$ $48.5 \text{mm} \le \text{p1} \le 200 \text{mm}$

33mm ≤ e2 ≤ 228mm 66mm ≤ p2 ≤ 200mm

On choisi une platine de (400*300*20)mm

$$e_1 = 50mm$$
 $p_1 = 100mm$ $e_2 = 70mm$ $p_2 = 160mm$

On choisit 04boulons de diamètre de 20mm (M20) de classe HR.10.9

$$M20 \Rightarrow d = 20mm$$
 $d_0 = 22mm$

• Données du calcul:

Les données du calcul sont tirées à partir du logiciel robots « ELU »

Les assemblages ci-dessous sont sollicités par :

- Un moment fléchissant : Msd = 62.17KN.m

- Un effort tranchant : Vsd = 101.02KN

• Vérification de la résistance :

L'effort qui sollicite le boulon est un effort incliné (traction+cisaillement) Il faut vérifie que :

$$F_{vsd} \leq F_{sRd} = \frac{k_s \cdot \mu.m.(F_p - 0.8F_{tsd})}{\gamma_{MSult}};$$

ks=1 les trous ont, dans toutes les plaques des tolérances nominales normales.

μ=0,3 Pour les surfaces de la classe C (surface nettoyées par brossage métallique)

 γ_{Mslt} =1,25 Pour l'état limite ultime.

$$F_{tsd} = F_{M1}$$
 Avec F_{tsd} : effort de traction

$$F_{vsd} = \frac{V_{sd}}{n_p.nb}$$
 Avec F_{vsd} : effort de cisaillement

 n_b : Nombre des boulons, **nb=04**

 n_f : Nombre des files, $n_f = 2$

• Détermination de l'effort max F_{M1} dans les boulons

Nous considérons uniquement les boulons tendus c'est-à-dire les quatre rangées (horizontales) supérieures, soient :

$$F_{M1} = \frac{M_{sd}.d \max}{n_f.\sum_i d_i^2}$$

d₁=59.5mm, d₂=159.5mm.

$$\sum di^2 = 28980.5 \text{ mm}^2 = 0.028 \text{m}^2$$

$$Ftsd = Fm1 = 286.82 \text{ KN}$$

$$F_p = 0.7 \times A_s \times f_{ub}$$

Boulons **M20** As = 245mm^2

$$Fp = 171.500 \text{ kN}$$

P

$$F_{vsd} = \frac{vsd}{np.nb} = 15.54 \text{ KN}$$

Fsrd = 41.16 KN

F vsd = 15.54 KN ≤ F srd = 41.16 KN condition vérifie

7.3 - Assemblage Contreventement :

• Contreventement en k :

Pour notre cas les diagonales est forme par 2 UPN 160

L'effort normal maximum dans les palées est : $N_{sd} = 744.63KN$

• Plat de gousset

500*600*20

• Hauteur $h_p = 600 \text{ mm}$

Largeur $b_p = 500 \text{ mm}$

Epaisseur $t_p = 20 \text{ mm}$

Limite d'élasticité f = 275 N/mm2

Résistance ultime en traction $f_{u,p} = 430 \text{ N/mm}^2$

$$1.2d_0 \le e_1 \le \max(12t,150mm)$$

$$2.2d_0 \le p_1 \le \min(14t,200mm)$$

$$1.5d_0 \le e_2 \le \max(12t,150mm)$$

$$48.4 \le p1 \le 210$$

$$33 \le e2 \le 180$$

$$e_1 = 70mm$$

$$p_1 = 80mm$$

$$e_2=40mm$$

• Résistance d'un boulon au cisaillement par plan de cisaillement :

$$F_{v,Rd} = \frac{0.6 \times A_s \times f_{ub}}{\gamma_{mb}}$$

 n_p : Nombre de plan de cisaillement

 γ_{mb} =1.25 Résistance des boulons à la traction.

$$F_{v,Rd} = \frac{0.6 \times 245 \times 1000}{1.25} = 117.60$$
KN

Nombre des boulons nécessaires :

$$F_{v,sd} = \frac{N_{sd}}{n} \rightarrow n = \frac{N_{sd}}{F_{v,sd}} = \frac{744.63}{117.60} = 6.31$$

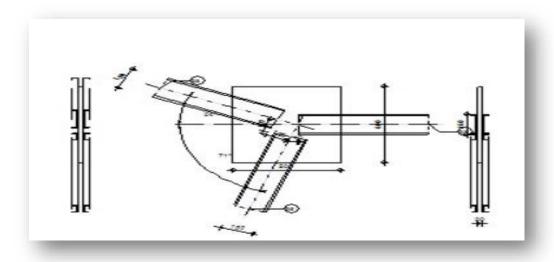
Le choix des boulons : On **choisit 8 boulons**, **20mm** de diamètre(**M20**) et de class **HR10.8** $M20 \rightarrow d$ $20mm \rightarrow d_0 = 22mm$

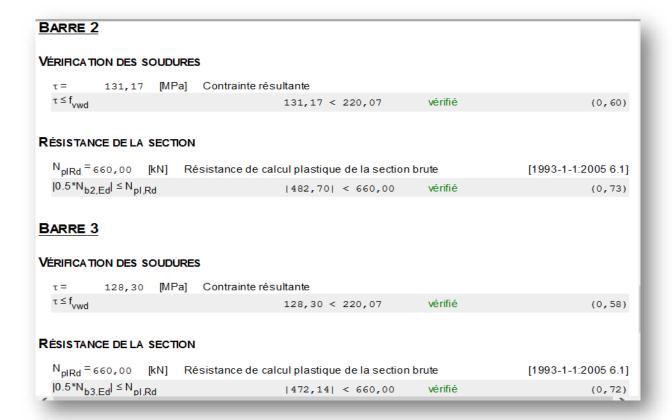
$$F_{v,sd} = \frac{N_{sd}}{n} = \frac{744.63}{8} = 93.07$$
KN

 $F_{v,sd} = 93.07KN \le F_{v,Rd} = 117.60KN$ Condition vérifié

• Vérification de la pression diamétrale :

$$F_{b.Rd} = \frac{2.5 \cdot \alpha \cdot f_{u} dt}{\gamma_{Mb}}$$


$$\alpha = \min \left[\frac{e1}{3d0} \cdot \frac{p1}{3d0} - \frac{1}{4} \cdot \frac{fub}{fu} \cdot 1 \right] = \min \left[\frac{70}{3 \times 22} ; \frac{80}{3 \times 22} - \frac{1}{4} ; \frac{1000}{360} ; 1 \right] = 0.96$$


$$F_{b.rd} = \frac{2.5 \times 0.96 \times 1000 \times 20 \times 15}{1.25} = 576 \text{kn}$$

Pour un boulon on a:

$$F_{v,sd} = \frac{N_{sd}}{n} = \frac{744.631}{8} = 93.07 \text{KN} \le F_{b,rd} = 576 \text{KN}$$
 Condition vérifié.

2-Verification par logiciel robot :

		Barre 2	Barre 3	Barre 5	
Barre N°:		266	268	267	
Profilé:		2 UPN 160	2 UPN 160	2 UPN 160	
Matériau:		ACIER E28	ACIER E28	ACIER E28	
	fy	275,00	275,00	275,00	MPa
	f _u	405,00	405,00	405,00	MPa
ingle	α	0,0	24,3	251,3	Deg
Longueur	1	2,09	1,67	2,29	m

Récapitulation : j'ai utilisé la soudeur car j'ai trouve des difficulté avec assemblage boulonne

7.4 - Calcul des platines et des ancrages en pieds de poteaux a)-Introduction

Dans les pieds de poteaux articule, la plaque de base est charges de transmettre les efforts de poteau métallique au béton, Étant donné la présence d'un fort armateur supérieure dans la dalle située à l'endroit du pied de poteau.

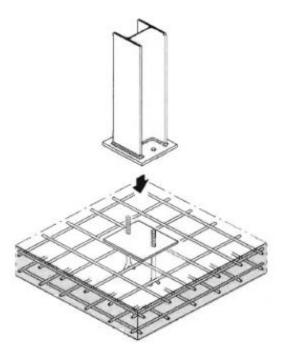


Figure 7.3: pied de poteau articule

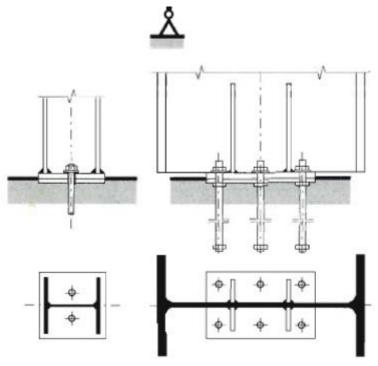


Figure 7.4: pied de poteau avec tige d'ancrage

✓ Hypothèse de calcul

- Les poteaux sont articule
- Les efforts du poteau

Le poteau le plus sollicite reprend les efforts suivant :

Données

Béton dosé a 350kg/m³

 $\emptyset = 56 \text{mm}$

Nombre des tiges préscellées : n=2;

Boulons de classe 4.6

Contrainte de boulon f_{yp}=240Mpa

Contarinte de béton σ_b=14,17 Mpa

✓ Surface de la platine

$$\sigma = \frac{N}{A} = \frac{N}{a \times b}$$

$$A \ge \frac{N}{\sigma_b} = \frac{3094.68 \times 10^3}{14,17} = 2183.96 cm^2$$

On Choisira une platine de

a=40cm b=40cm

√ Vérification de l'Articulation

Pour que le poteau puisse être considère comme articulé : il faut que $N_{sd} \times h_c \times \theta_L \leq 1500N.m$

Donc pour avoir une articulation; on doit s'assure que:

Soit
$$\int h_p \leq 30cm$$

Je choisie hp = 30cm

✓ Epaisseur de la platine

Pour la détermination de l'épaisseur de la platine, cette dernière est considérée comme une poutre en porte é faux et si « t » est l'épaisseur de la platine :

$$t \ge u \left(\frac{3\sigma}{f_v}\right)^{0.5}$$
 $t \ge 120(\frac{3\times14.7}{275})^{0.5} = 48.05mm$ On prend **t=50mm**

Calcul de la section portant

Tableau 7.2:surface de compression sous plaque d'essias

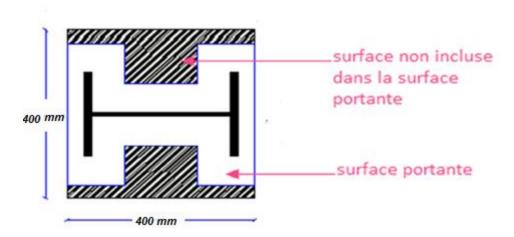


Fig.7.4. Surface de compression sous plaque d'essias

• Largeur supplémentaire d'appui « c »

$$c = t \sqrt{\frac{f_y}{3f_j \gamma_{M_0}}}$$

$$f_j = \beta_j k_j f_{cd}$$

$$k_j = 1$$

$$f_j = 11,11$$

$$c = 50 \sqrt{\frac{275}{3 \times 11,11 \times 1,1}} = 136,93mm$$

• Pression sur la surface portante

$$\sigma = \frac{N_c}{A_p} \le f_j$$

$$A_P = 2(b+2c)(10+c+tf) + (h-2t_f-2c)(2c+t_w)$$

$$A_P = 2(300+273.863)(10+136.93+14) + (1000-28-273.86)(273.86+8.5)$$

$$A_P = 381.83 \times 10^3 mm^2$$

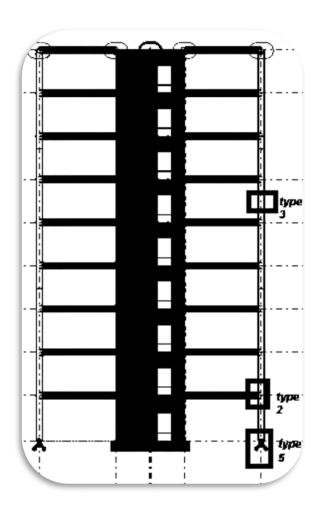
$$\sigma = \frac{3094 \times 10^3}{381.83 \times 10^3} \le f_j = 11.11$$
8.10 $Mpa \le f_j = 11.11$ Condition vérifié

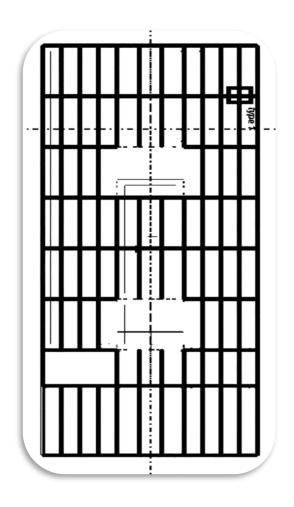
• Vérification de la platine

$$N_{rd} = \frac{t^2 f_y}{6\gamma_{M_0}} > N_{sd} = \frac{\sigma \times C^2}{2}$$

$$N_{rd} = \frac{50^2 \times 275}{6 \times 1.1} = 104,16KN > N_{sd} = \frac{8.10 \times 136,93^2}{2} = 75.93KN \ OK$$

• Vérification tige d'ancrage


$$\begin{split} N_{t,rd} &= 37632Kg \\ N_{t,sd} &= \frac{11.99 \times 100}{2} = 5995.00Kg \\ N_{t,rd} &= 37632Kg > N_{t,sd} = 5995.00Kg \ \textit{Condition v\'erifi\'e} \ . \end{split}$$


➤ Vérification d'assemblage pour bâtiment R+8

Dans notre bâtiment nous aurons calcules tous les types d'assemblage avec logiciel robot on a

(06) types d'assemblage seront traités qui sont :

- Assemblage poutre solive; type 1
- Assemblage poteau poutre; type 2
- Assemblage poteau poteau ; type 3
- Assemblage entre élément métalliques et mur en béton ; type 4
- Assemblage Pied de poteau ; type 5

Assemblage pour e – sonve type 1. (HEA 350 – HEA 450)

• Assemblage poutre – solive type 1 : (HEA 550 –HEA 450)

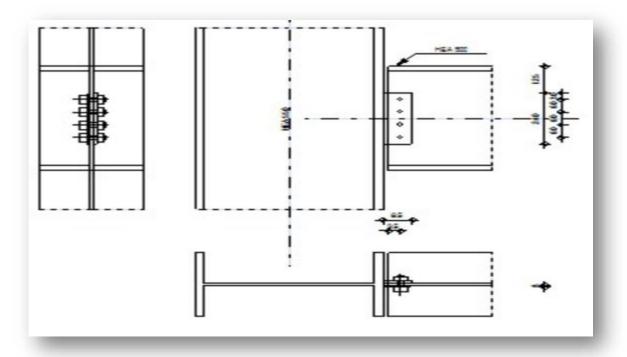
RÉSULTATS

BOULONS ASSEMBLANT LA POUTRE À LA PLATINE

FORCES AGISSANT SUR LES BOULONS DANS L'ASSEMBLAGE PLATINE - POUTRE

$F_{x,Ed} = 38,02$	[kN]	Effort de calcul total dans le boulon sur la d	irection x	
$F_{z,Ed} = 20,56$	[kN]	Effort de calcul total dans le boulon sur la d	irection z	
$F_{Ed} = 43,22$	[kN]	Effort tranchant résultant dans le boulon		
$F_{Rdx} = 83,71$	[kN]	Résistance résultante de calcul du boulon		[Tableau 3.4]
$F_{Rdz} = 122,79$	[kN]	Résistance résultante de calcul du boulon		[Tableau 3.4]
$F_{x,Ed} \leq F_{Rdx}$		38,02 < 83,71	vérifié	(0,45)
$F_{z,Ed} \leq F_{Rdz}$		20,56 < 122,79	vérifié	(0,17)
F _{Ed} ≤ F _{vRd}		20,56 < 361,91	vérifié	(0,12)

VÉRIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT AXIAL)


PLATINE

$V_{effRd} = 159,46 \text{ [kN]}$	Résistance de calcul de la section affaiblie par le	es trous	[3.10.2 (2)]
$ 0.5*N_{b,Ed} \le V_{effRd}$	0,00 < 159,46	vérifié	(0,00)

VÉRIFICATION DE L	A SECTION POUR LE CISAILLEMENT D	E BLOC (EFFOR	T AXIAL)
PLATINE			
$V_{\text{effRd}} = 159,46 \text{ [kN]}$	Résistance de calcul de la section affaiblie par l	es trous	[3.10.2 (2)]
$ 0.5*N_{b,Ed} \le V_{effRd}$	0,00 < 159,46	vérifié	(0,00)
POUTRE			
$V_{effRd} = 229,23 [kN]$	Résistance de calcul de la section affaiblie par l	es trous	[3.10.2 (2)]
$ N_{b,Ed} \leq V_{effRd}$	0,00 < 229,23	vérifié	(0,00)
i b,Edi = feffRd	12/221 - 222/22		
	A SECTION POUR LE CISAILLEMENT D	E BLOC (EFFOR	T TRANSVERSAL)
		E BLOC (EFFOR	T TRANSVERSAL)
VÉRIFICATION DE L			T TRANSVERSAL) [3.10.2 (3)]
VÉRIFICATION DE L	A SECTION POUR LE CISAILLEMENT D		
VÉRIFICATION DE L PLATINE V _{effRd} = 122,56 [kN]	A SECTION POUR LE CISAILLEMENT D Résistance de calcul de la section affaiblie par l	es trous	[3.10.2 (3)]
VÉRIFICATION DE L. PLATINE VeffRd = 122,56 [kN] 0.5*Vb,Ed \le VeffRd POUTRE	A SECTION POUR LE CISAILLEMENT D Résistance de calcul de la section affaiblie par l	es trous vérifié	[3.10.2 (3)]

• Assemblage poteaux –poutre type 2 : (HEA550-HEA550)

on choisit la poutre la plus solliciter entre (HEA550 ET HEA 500) et on

(0, 10)

RÉSULTATS

BOULONS ASSEMBLANT LA POUTRE À LA PLATINE

FORCES AGISSANT SUR LES BOULONS DANS L'ASSEMBLAGE PLATINE - POUTRE

$$\begin{split} F_{x,Ed} &= 27,50 \quad [kN] \quad \text{Effort de calcul total dans le boulon sur la direction x} \\ F_{z,Ed} &= 22,18 \quad [kN] \quad \text{Effort de calcul total dans le boulon sur la direction z} \\ F_{Ed} &= 35,33 \quad [kN] \quad \text{Effort tranchant résultant dans le boulon} \\ F_{Rdx} &= 87,35 \quad [kN] \quad \text{Résistance résultante de calcul du boulon} \\ F_{Rdz} &= 117,82 \quad [kN] \quad \text{Résistance résultante de calcul du boulon} \\ F_{x,Ed} &= F$$

22,18 < 361,91

vérifié

VÉRIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT AXIAL)

PLATINE

 $F_{Ed} \leq F_{vRd}$

V _{effRd} =356,46 [kN] Rés	istance de calcul de la section affaiblie par le	s trous	[3.10.2 (2)]
$ 0.5*N_{b,Ed} \le V_{effRd}$	0,00 < 356,46	vérifié	(0,00)

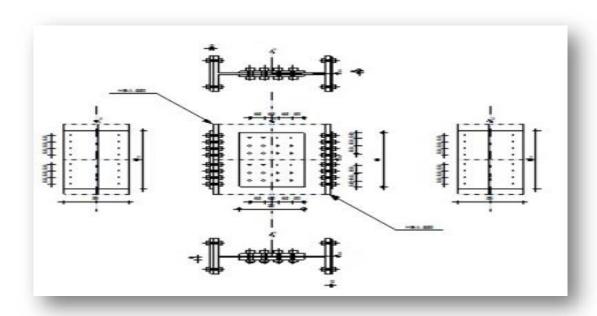
POUTRE

$V_{effRd} = 534,68 \text{ [kN]}$	Résistance de calcul de la section affaiblie par les trous	[3.10.2 (2)]
$ N_{b,Ed} \le V_{effRd}$	0,00 < 534,68 vérifié	(0,00)

VÉRIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT TRANSVERSAL)

PLATINE

$V_{effRd} = 200,04 \text{ [kN] Rési}$	stance de calcul de la section affaiblie par les trous	[3.10.2 (3)]
$ 0.5*V_{b.Ed} \le V_{effRd}$	44,36 < 200,04 vérifié	(0,22)


POUTRE

V _{effRd} = 538,21 [kN] Résistance de ca	alcul de la section affaiblie par	les trous	[3.10.2 (3)]
$ V_{b,Ed} \le V_{effRd}$	88,71 < 538,21	vérifié	(0,16)

VÉRIFICATION DE LA PLATINE AFFAIBLIE PAR LES TROUS

$0.9*(A_t/A_{t,net}) \le (f_v^*\gamma_{M2})/(f_u^*\gamma_{M0})$	0,01 > 0,01	vérifié	
---	-------------	---------	--

• Assemblage poteaux – poteaux type 3 : (HEA 550 –HEA 550) :Par logiciel on a choisi le poteau plus défavorable qu'on a assemblé

RÉSISTANCE DE L'ASSEMBLAGE À LA FLEXION

TABLEAU RECAPITULATIF DES EFFORTS

Nr	h _j	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	$F_{t,wb,Rd}$	F _{t,Rd}	$B_{p,Rd}$
1	458	226,08	-	-	226,08	1156,98	226,08	586,30
2	338	166,85	_	_	226,08	1080,31	226,08	586,30
3	218	107,61	-	-	226,08	1080,31	226,08	586,30
4	98	48,38	-	-	226,08	1080,31	226,08	586,30

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION $M_{i,Rd}$

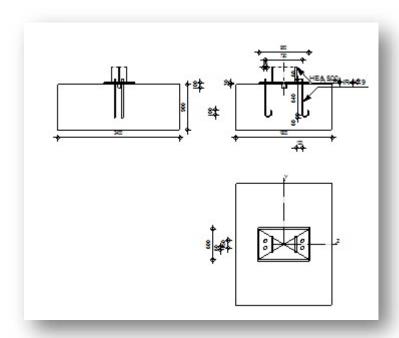
$$M_{j,Rd} = \sum h_j F_{tj,Rd}$$

. .

[6.2]

$$M_{b1,Ed} / M_{j,Rd} \le 1,0$$

(0,00)


VÉRIFICATION DE L'INTERACTION M+N

$$M_{b1,Ed}/M_{j,Rd}+N_{b1,Ed}/N_{j,Rd}$$
 0,12 < 1,00 vérifié (0,12)

-,	Résistance de calcul de la section à l	a flexion	$M_{c,Rdnet} = VV_{net}^{t}_{yp}/\gamma_{M0}$
M ₀ ≤ M _{c,Rdnet}	5,50 < 117,19	vérifié	(0,05)
$A_{v} = 58,80 \text{ [cm}^2\text{] Ai}$	re de la section efficace en cisaillement		
$A_{v,net} = 48,24 \text{ [cm}^2\text{]} Ai$	re de la section efficace nette en cisaille	ment	$A_{\text{vnet}} = A_{\text{v}} - n_{\text{v}} * d_0$
$V_{pl,Rd} = 933,58$ [kN] Re	ésistance plastique de calcul pour le cis	aillement	$V_{pl,Rd} = (A_{v,net}^* f_y)/(\sqrt{3} \gamma_{M0})$
$V_{b,Ed} \leq V_{pl,Rd}$	88,71 < 933,58	vérifié	(0,10)
ÉSISTANCE DES SOUI	NIBES		
ESIS IANCE DES SOUL	DORES		
OLIDLIDES D'ANGLE ENTRE	LA PLATINE ET LE POTEAU		
σ= 28,88 [MPa] Co	ntrainte normale dans la soudure		
	ntrainte normale perpendiculaire dans la	a soudure	
$ \sigma_{\perp} \le 0.9 * f_u / \gamma_{M2}$	20,42 < 291,60	vérifié	(0,07)
τ _⊥ = 20,42 [MPa]	Contrainte tengentielle perpendiculai	re	
τ _{II} = 23,10 [MPa]	Contrainte tengentielle parallèle		
β _W = 0,85	Coefficient de corrélation		[Tableau 4.1]
$\sqrt{(\sigma_{\parallel}^2 + 3*(\tau_{\parallel}^2 + \tau_{\parallel}^2))} \le f_{\parallel}/(\beta_{\parallel}^*)$	γ _{M2}) 57,17 < 381,18	vérifié	(0,15)
u · w	IVIZ		(-,,

RESISTANCE DE L'ASSEMBLAG	GEA LA FLEXION M _{j,Rd}		
$M_{j,Rd} = \sum h_j F_{tj,Rd}$			
M _{j,Rd} = 188,14 [kN*m]	Résistance de l'assemblage à la fle	exion	[6.2]
$M_{b1,Ed} / M_{j,Rd} \le 1.0$	0,00 < 1,00	vérifié	(0,00)
VÉRIFICATION DE L'INTE	RACTION M+N		
$M_{b1,Ed} / M_{j,Rd} + N_{b1,Ed} / N_{j,R}$	d 0,12 < 1,00	vérifié	(0,12)
RÉSISTANCE DE L'ASSE	MBLAGE AU CISAILLEMENT		
	MBLAGE AU CISAILLEMENT Résistance de l'assemblage au cis	aillement	[Tableau 3.4]
		aillement vérifié	[Tableau 3.4]
V _{j,Rd} = 743,12 [kN]	Résistance de l'assemblage au cis		
$V_{j,Rd} = 743,12$ [kN] $V_{b1,Ed} / V_{j,Rd} \le 1,0$	Résistance de l'assemblage au cis 0,00 < 1,00		
$V_{j,Rd} = 743,12$ [kN] $V_{b1,Ed} / V_{j,Rd} \le 1,0$ RÉSISTANCE DES SOUDI	Résistance de l'assemblage au cis $0,00 < 1,00$ URES $8_{\rm W}^{*\gamma}{\rm M2}) \qquad 62,20 < 381,18$	vérifié	(0,00)
$V_{j,Rd} = 743,12$ [kN] $V_{b1,Ed} / V_{j,Rd} \le 1,0$ RÉSISTANCE DES SOUDI $\sqrt[4]{\sigma_{\perp max}}^2 + 3*(\tau_{\perp max}^2)] \le f_u / (\beta_{\perp max}^2)$	Résistance de l'assemblage au cis $0,00 < 1,00$ URES $8_{\rm W}^{*\gamma}{\rm M2}) \qquad 62,20 < 381,18$	vérifié vérifié	(0,00)

• Assemblage noyau type 4:

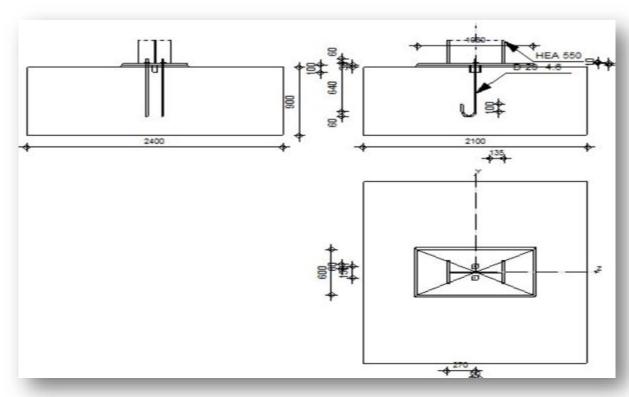
BOULONS RACCORDANT UNE ÉCLISSE D'ÂME À L'ÂME DU POTEAU

RÉSISTANCE DES BOULONS

 $F_{v,Rd}$ = 150, 80 [kN] Résistance du boulon au cisaillement dans la partie non filetée d'un boulon $F_{v,Rd}$ = 0.6* f_{ub} * A_v *

Pression du boulon sur l'âme du poteau

Direction x


k _{1x} =	2,44		Coefficient pour le calcul de F _{b,Rd}	$k_{1x} = min[2.8*($	(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$			2,44 > 0,00	vérifié		
$\alpha_{bx} =$	0,73		Coefficient pour le calcul de F _{b,Rd}	α_{bx} =min[e ₂	/(3*d ₀), p ₂ /(3*d ₀)-0.25	5, f _{ub} /f _u , 1]
$\alpha_{bx} > 0.0$			0,73 > 0,00	vérifié		
F _{b Rd1x} =	145,02	[kN]	Résistance d'un boulon en pression d	iamétrale	$F_{b Rd1x} = k_{1x} * \alpha_{bx} * f_{u}$	d*Σt _i /γ _{M2}

Direction z

		5,115				
$k_{1z} > 0.0$		2,44 > 0,00	vérifié			
$\alpha_{bz} = 0,73$		Coefficient pour le calcul de F _{b,Rd}	$\alpha_{bz}^{=min[e_1]}$	/(3*d ₀), p ₁ /	(3*d ₀)-0.25, f _{ub} /f	_u , 1]
$\alpha_{bz} > 0.0$		0,73 > 0,00	vérifié			
$F_{b,Dd17} = 145.02$	[kN1	Résistance d'un boulon en pression dia	métrale	F _{b Dd17} =	k ₁ -*α _{b-} *f*d*∑t _i	/7112

 $k_{1z} = 2,44$ Coefficient pour le calcul de $F_{b,Rd}$ $k_{1z} = min[2.8*(e_2/d_0)-1.7, 1.4*(p_2/d_0)-1.7, 2.5]$

• Assemblage pied poteaux (HEA550) type 5:

Col	NTRÔL	E DE LA	A RÉSIS	STANCE DE L'ASSEMBLAGE		
-	111101		· IVEOIC	TARGE DE L'AGGEMBERGE		
Nj	,Ed ^{/ N} j,	$_{,Rd} \le 1,0 (6)$	6.24)	0,19 < 1,00	vérifié	(0,19)
801	IDIIDE	E ENTO	C C D	OTEAU ET LA PLAQUE D'ASSISE		
300	JUUKE	ES EN IN	E LE F	CIEAU ET LA PLAQUE D'ASSISE		
$\sigma_{\!\!\perp}$	=	119,22	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_	=	119,22	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τ _{yl}	=	0,00	[MPa]	Contrainte tengentielle parallèle à $V_{j, \text{Ed}, y}$		[4.5.3.(7)]
τ _{zl}	=	0,00	[MPa]	Contrainte tengentielle parallèle à $V_{j, Ed, z}$		[4.5.3.(7)]
β _V	_V =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
$\sigma_{\!\perp}$	/ (0.9*f	u/γ _{M2}))≤ 1	.0 (4.1)	0,45 < 1,00	vérifié	(0,45)
1	σ ₁ ² + 3.	.0 (τ _{yll} ² + τ	(_L ²)) / (f _u	$((\beta_W^*\gamma_{M2}))) \le 1.0 (4.1) 0,69 < 1,00$	vérifié	(0,69)
√(0	σ ₁ ² + 3.	.0 (τ _{zII} ² + τ	(f _u /	$((\beta_W^* \gamma_{M2}))) \le 1.0 (4.1) 0,69 < 1,00$	vérifié	(0,69)

8.1. introduction

L'instabilité des constructions lors d'un séisme majeur est souvent causée par le sous dimensionnement des fondations. Celles-ci doivent transmettre au sol, les charges verticales, les charges sismiques horizontales. Cela exige d'une part une liaison efficace des fondations avec la superstructure, et d'autre part, un bon ancrage au niveau du sol.

8.2. étude du voile périphérique:

8.2.1. Introduction

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du plancher de sous sol.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec le plancher du sous-sol et les fondations

8.2.2. Pré dimensionnement:

D'après le RPA99/version 2003 le voile périphérique doit avoir les caractéristiques minimales suivantes:

- Epaisseur ≥ 15 cm.
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0.10 % dans les deux sens (horizontal et vertical).
- Un recouvrement de 40ϕ pour les renforcements des angles.

L'épaisseur est de : e = 20 cm. Et La hauteur de voile périphérique = 3,24 m.

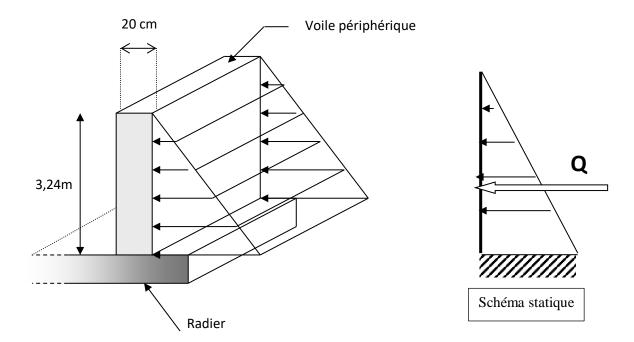


Figure 8.1: illustrant les dimensions du panneau plus sollicite

8.2.3.Méthode de calcul

Le mur sera calculé comme un plancher de dalle pleine reposant sur 4 appuis et support les charges horizontales dues aux poussées des terres ; on considère le tronçon le plus défavorable, pour une bande de largeur de 1 m.

$$L_x = 3,24 \text{ m}$$
; $L_y = 6 \text{ m}$

. D'après BAEL91 modifier 99 ; les charges réparties sont données par :

$$Q = A.\gamma.H$$

Avec : Q : la contrainte sur une bonde de 1m;

A : coefficient numérique en fonction de l'angle de frottement interne ;

 γ : poids spécifique de terre ($\gamma = 18 \text{ kN/m}^3$);

H: hauteur de voile (H= 3,6 m);

On a: $\varphi = 30$ dépend de type de terrain \longrightarrow A= $f(\varphi) = \text{tg}^2(\frac{\pi}{4} - \frac{\varphi}{2}) = 0.333$

A) Effort dans le voile :

$$\frac{L_x}{L_v} = \frac{3,24}{6} = 0,54 > 0,4$$
 — la dalle travaille dans les 2 sens.

a. Calcul des sollicitations :

$$M_{0x} = \mu_x . q. L_x^2$$

$$M_{0y} = \mu_v \cdot M_{0x}$$

En travée : $M_{tx} = 0.85 M_{0x}$

$$M_{tv} = 0.85 M_{0v}$$

En appui : $M_{ax} = -0.4 M_{0x}$

$$M_{ay} = -0.4 M_{0y}$$

b. Combinaison fondamentale:

E.LU.R:
$$q_u = (1,35.\gamma.h_e.A).1m \rightarrow q_u = 1,35.\times18\times3,24\times0,333 = 26,21 \text{ kN/ml}$$

E.L.S:
$$q_{ser} = (\gamma.h_e. A).1m = 18 \times 3,24 \times 0,333 = 19,4 \text{ kN/ml}$$

$$\begin{cases} U_{x} = 0,099 \\ U_{y} = 0,15 \end{cases} M_{x} = U_{x}. Q_{u}. L_{x}^{2} = 27,24 \text{ KN.m}$$

$$M_{y} = U_{y}. M_{x} = 4,09 \text{ KN.m}$$

$$\bullet \quad \text{Moment en trav\'e}: \qquad \begin{cases} M_{tx} = 0, \, 85. \,\, M_x = 23,15 \,\, KN.m \\ \\ M_{ty} = 0, \, 75 \,\, M_y = 3,07 \,\, KN.m \end{cases}$$

• Moment en appuis:
$$\begin{cases} M_{ax} = -0.3. \ M_x = -8.17 \ KN.m \\ \\ M_{ay} = -0.5 \ M_x = -2.05 \ KN.m \end{cases}$$

B) Calcul de ferraillage:

b= 100 cm; h=e=20cm; d = 18cm; δ_{bc} = 14, 17 MPa , σ_s = 434,78 MPa

Tableau 8.1: ferraillage du voile péripherique

	Sens	M _u (KN.m)	u	A's (cm ²)	α	Z (cm)	A _s ^{cal} (cm ²)	Choix	A _s ^{adp} (cm ²)	Esp (cm)
	х-х	23,15	0,05	0	0,064	17,53	3,03	4HA10	3,14	20
Travée	у-у	3,07	0,006	0	0,007	17,94	0,39	2HA10	1,57	20
A	х-х	-8,17	0,017	0	0,021	17,85	1,05	2HA10	1,57	20
Appuis	у-у	-2,05	0,004	0	0,005	17,96	0,26	2HA8	1,01	20

C) Condition exige par le RPA 99/version 2003 :

Le pourcentage minimum est de 0,1% de la section dans les deux sens et disposé en deux nappe

$$A_1 = 0.1\% .100.20 = 2 \text{ cm}^2$$

$$A_t = 0.1\% .100.20 = 2 \text{ cm}^2$$

D) Condition de non fragilité :

Pour les dalles travaillant dans les deux sens ; avec épaisseur compté entre 12 et 30 cm ;

$$\begin{cases} &A_x \ge \! A_x^{\,min}\;; \qquad &A_x^{\,min} = \! \rho_0 \! \left[3 - \! \frac{L_X}{L_y} \! \right] \! \times \! \frac{b \times h}{2} \! = \! 1,77 \; cm^2 \\ \\ &A_y \! \ge A_y^{\,min}\;; \qquad &A_y^{\,min} = \rho_0.b. \; h = \! 1,44 \; cm^2 \end{cases}$$

Travée
$$\begin{cases} A_x = 3,14 \text{ cm}^2 \ \ge A_x^{min} \ = 1,77 \text{ cm}^2 \ \dots \dots OK \\ \\ A_y = 1,57 \text{ cm}^2 \ \ge A_y^{min} \ = 1,44 \text{cm}^2 \dots OK \end{cases}$$

$$\begin{cases} A_x=1,57\ cm^2\geq A_x^{min}=1,77\ cm^2.....Non\ verifie \end{cases}$$
 Appuis
$$\begin{cases} A_y=1,01\ cm^2\geq A_y^{min}=1,44\ cm^2....non\ verifier \end{cases}$$

Faut changer les armatures des appuis ,, on opte pour

Tableau 8.2: nouveau choix des armatures d'appuis

	sens	$\mathbf{A_s}^{\mathrm{cal}}$		$\mathbf{A_s}^{\mathrm{adp}}$	Esp
		(cm ²)	Choix	(cm ²)	(cm)
	X-X	1,05	2HA12	2,26	20
Appuis	у-у	0,29	2HA12	2,26	20

E) Vérification de l'effort tranchant :

On doit vérifier que : $\tau_u = \frac{T_u^{max}}{h.d} \le \bar{\tau}_u = 0.05$. $f_{c28} = 1.25MPa$

$$\begin{cases} T_{ux} = \frac{q_{u \times L_x}}{2 \times L_x + L_y} = \frac{26,21 \times 3,24 \times 6}{2 \times 3,24 + 6} = 40,83 \text{ KN} \\ T_{uy} = \frac{q_u \times L_x}{3} = \frac{26,21 \times 3,24}{3} = 28,31 \text{ KN} \end{cases}$$

$$T_u^{max} = max (T_x; T_y) = 40,83 \text{ KN}$$

$$\tau_u = \frac{40,83.10^3}{1000 \times 180} = 0,226 < 1,25 \dots OK$$

F) Vérification à ELS:

$$\begin{split} \frac{L_x}{L_y} &= \frac{3,24}{6} = 0,54 > 0,4 & \longrightarrow & \mathcal{U}_x = 0,102 \quad \text{et} \quad \mathcal{U}_y = 0,349 \\ & = M_x = \mathcal{U}_x \cdot Q_{ser} \cdot L_x{}^2 = 20,77 \; \text{KN.m} & \text{avec} \quad Q_{ser} = 19,4 \; \text{KN/ml} \\ & M_y = \mathcal{U}_y \cdot M_x = 7,25 \; \text{KN.m} \\ & M_{tx} = 0, \; 85. \; M_x = 17,65 \; \text{KN.m} \\ & M_{ty} = 0, \; 75 \; M_y = 5,44 \; \text{KN.m} \end{split}$$

• Moment en travée :
$$\begin{cases} M_{tx} = 0, 85. \ M_x = 17,65 \ KN.m \\ M_{ty} = 0, 75 \ M_y = 5,44 \ KN.m \end{cases}$$

$$\label{eq:max} \bullet \qquad \text{Moment en appuis:} \qquad \begin{cases} M_{ax} = -0.3. \ M_x = -6.23 \ \text{KN.m} \\ \\ M_{ay} = -0.5 \ M_x = -10.38 \ \text{KN.m} \end{cases}$$

G) Vérification des contraintes :

$$\delta_{bc}$$
=14,7 MPa $\leq \overline{\delta}_{bc}$ = 0,6 × f_{c28} = 15 MPa

Tableau 8.3: verification des contraintes à ELS

	sens	M _{ser} (kN.m)	A _s (cm ²)	δ _{bc} (MPa)	$\overline{\delta}_{bc}$ (MPa)	δ _s (MPa)	$\overline{\delta}_s$ (MPa)	Condition
travée	X-X	17,65	3,14	6,22	15	313,82	201,63	Non
	у-у	5,44	1,57	1,08	15	192,38	201,63	OK
appuis	X-X	-6,23	2,26	4,16	15	153,22	201,63	OK
appuis	у-у	-10,38	2,26	6,92	15	254,88	201,63	Non

Les contraintes ne sont pas vérifiées donc on doit augmenter la section d'armateur

Tableau 8.4: nouveau choix des armatures

	sens	As ^{cal} (cm ²)	Choix	$A_s^{adp}(cm^2)$
Travée	X-X	3,14	6HA12	6,79
Appui	у-у	2,26	6HA12	6,79

H) Vérification des contraintes :

Tableau 8.5: nouvelle verification des contraintes a ELS

	sens	M _{ser} (kN.m)	A _s (cm ²)	δ _{bc} (MPa)	- DC	δ _s (MPa)	$\overline{\delta}_s$ (MPa)	Condition
Travée	X-X	17,65	9,24	1,88	15	144,28	201,63	OK
Appui	у-у	-10,38	6,79	3,25	15	84,96	201,63	OK

I) Vérification de la flèche :

$$\bullet \quad \frac{A_s}{\text{b.d.}} \leq \frac{2}{f_e} \rightarrow \frac{6,79}{100 \times 18} = 3,77 \times 10^{-3} < \frac{2}{500} = 4 \times 10^{-3} \dots \dots \dots \dots \text{OK}$$

Toutes les conditions sont vérifier donc la vérification de la flèche ne pas nécessaire.

J) Le choix final de ferraillage:

Tableau 8.6: choix final de ferraillage de voile pérépherique

	Sens	$M_{\rm u}$	A_s^{cal}		A_s^{adp}	Esp
		(KN.m)	(cm ²)	Choix	(cm ²)	(cm)
	X-X	23,15	3,03	6HA12	6,79	20
Travée	у-у	3,07	0,39	2HA10	1,57	20
Appuis	X-X	-8,17	1,05	2HA10	1,57	20
	у-у	-2,05	0,26	6HA12	6,79	20

8.3. Poteaux mixtes

8.3.1. Introduction:

Il existe une grande variété de sections possibles, en distinguant toutefois deux grandes

Familles : les poteaux partiellement ou totalement enrobés de béton et les

Profilés creux remplis de béton. Comme les poteaux en acier, les poteaux mixtes présentent les avantages suivants :

- une capacité portante élevée pour des dimensions de section relativement réduites ;
- une facilité d'assemblage aux autres éléments, les poutres en particulier, en raison de la présence du composant acier.
- une aptitude à se déformer dans le domaine plastique et à avoir un comportement ductile

8.3.2. Méthode simplifiée de calcul:

L'Eurocode 4 présentes deux méthodes de dimensionnement des poteaux mixtes.

La première est une **Méthode Générale** qui impose de prendre explicitement en compte les effets du second ordre et les imperfections. Cette méthode peut notamment s'appliquer à des sections de poteaux qui ne sont pas symétriques ainsi qu'à des poteaux de section variable sur leur hauteur. Elle nécessite l'emploi d'outils de calcul numérique et ne peut être envisagée que si l'on dispose des logiciels appropriés.

La seconde est une **Méthode Simplifiée** utilisant les courbes de flambement européennes des poteaux en acier qui tiennent implicitement compte des imperfections affectant ces poteaux.

Cette méthode est en pratique limitée au calcul des poteaux mixtes présentant une section doublement symétrique et uniforme sur leur hauteur.

Les deux méthodes sont fondées sur les hypothèses classiques suivantes :

•Il y a une interaction complète entre la section en acier et la section de béton et ce, jusqu'à la ruine;

•Les imperfections géométriques et structurales sont prises en compte dans le calcul;

La Méthode Simplifiée est développée ci-après, celle-ci étant en effet applicable à la majorité des cas

Dans notre cas en va utiliser la méthode simplifié qui sera appliqué sur un poteau totalement enrobé soumis à compression axiale.

8.3.3. Conditions d'utilisation de la méthode simplifiée de calcul :

L'application de la méthode simplifiée comporte les limitations suivantes :

- •La section transversale du poteau est constante et présente une double symétrie sur toute la hauteur du poteau telle que le rapport de sa hauteur à sa largeur soit compris entre 0,2 et 5,0.
- •La contribution relative de la section en acier à la résistance de calcul de la section complète, savoir est compris entre 0,2 et 0,9 .
- •Les sections droites restent planes lors de la déformation du poteau.
- •L'élancement réduit λ du poteau mixte, ne dépasse pas la valeur de 2,0 ;
- •Pour les sections totalement enrobées, l'aire des armatures doit au moins être égale à 0,3% de l'aire de béton et les armatures présentent des épaisseurs d'enrobage de béton satisfaisant les conditions suivantes :
 - Dans le sens y : 40 mm < cy < 0.4 bc;
 - Dans le sens z : 40 mm < cz < 0.3 hc;

8.3.4. Vérification de poteau vis-à-vis de compression axiale

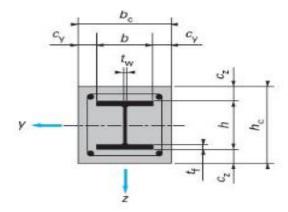


Figure 8.2: section transversale d'un pot totalement enrobé

8.3.5. Hypothèse de calcule :

A) Pré-dimensionnement de la section mixte :

• Section en acier :

HEA300

• Béton (C25/30):

$$\left.\begin{array}{c} A_{S\geq }\,0,\,3\%\ A_{C\,net}\\ \\ A_{S\leq }\,0,\,6\%\ A_{C\,net} \end{array}\right\} \quad \longrightarrow \quad A_{S}=0,\,5\%\ A_{C\,net}$$

• Enrobage:

$$40 \text{ mm} \le c_y \le 0, 4.b_C$$
 pour un Poteau de $(50*50)$ on aura

$$40 \text{ mm} \le c_z \le 0, 3.h_C$$

$$\left.\begin{array}{ll} 40 \text{ mm} \leq c_y \leq 200 \text{ mm} \\ \\ 40 \text{ mm} \leq c_z \leq 150 \text{mm} \end{array}\right\} \quad \text{on prend}: \ C_y = C_z = 80 \text{ mm} \\$$

$$h_c = 2.\ C_y + h_p \ = \ 2.80 + 290 = 450\ mm$$

On prend une section carrée (50.50)

$$0.2 \le h/b = 1 \le 5 \dots 0K$$

• Section d'armateur :

$$A_S = 0.5 \% [(500 \times 500) - 11250] = 11.93 cm^2$$

Le choix
$$8T16 \longrightarrow A_{S \text{ choisie}} = 16,08 \text{ cm}^2$$

$$A_C = A_{global} - A_a - A_s = 237142 \text{ mm}^2$$

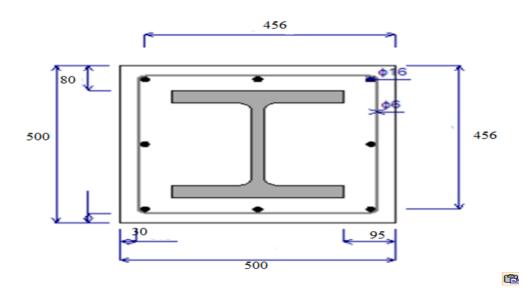


Figure 8.3: dimensios du poteau totalement enrobe

• Profilé laminé :

HEA 300, S275;
$$f_y = 275 \text{ MPa}$$

$$A_a = 112,5 \text{ cm}^2$$

$$E_a = 2.1 \times 10^8 \text{ MPa}$$

$$\gamma_a = 1,1$$

• Amateur:

$$cy = cz = 80 \text{ mm}$$

$$fsk = 400 MPa$$

$$As = 1608 \text{ mm}^2$$

$$Es = 2,10.10^5 MPa$$

• Béton C25/30:

$$f_{ck} = 25 \text{ MPa}$$

$$A_c = bxh = 500x500 = 2, 5.10^5 \text{ mm}^2$$

$$E_{cm} = 3, 22.10^3 \text{ Mpa}$$

$$E_{cd} = \frac{E_{cm}}{\gamma c} = \frac{3,22 \times 10^3}{1,5} = 2,14 \times 10^3 \text{ MPa}$$

 $H=3, 24 \text{ m} \rightarrow \text{longueur de poteau}$

B) Décente de charge :

La décente de charge des planches supérieurs et de niveau de la terrasse des 3blocs (2 R+8 et R+3) donne les valeurs effectives suivantes au sous-sol, donné par logiciel ROBOT:

Nsd
$$(R+8) = 3501,84 \text{ KN}$$
 et Nsd $(R+3) = 3094,68 \text{ KN}$

C) Vérification de la résistance du poteau :

a. Résistance plastique à la compression :

$$N_{plRd} = \frac{A_a \times f_y}{\gamma_a} + \frac{0.85 \times A_C \times f_{CK}}{\gamma_c} + \frac{A_s \times f_{sk}}{\gamma_s}$$

$$N_{plRd} = \frac{11250 \times 275}{1.1} + \frac{0.85 \times 237142 \times 25}{1.5} + \frac{1608 \times 400}{1.15} = 6731.32 \text{ KN}$$

b.Charge critique élastique de flambement :

$$N_{cr} = \frac{\pi^2 (E_a I_a \times E_s I_s \times E_{cd} I_c)}{L_2}$$

Les moments d'inertie :

$$I_a = 18260 \times 10^4 \text{mm}^4$$

$$I_s = 30,02 \times 10^6 \, \text{mm}^4$$

$$I_C = \frac{h_c \cdot b_c^3}{12} - I_a - I_s = I_C = 4,9957 \times 10^9 \text{ mm}^4$$

$$\rightarrow N_{cr} = 360,68 \times 10^5 \, KN$$

c. Vérification de l'applicabilité de la méthode simplifiée :

- La section est symétrique et constante sur toute la hauteur du poteau OK
- Contribution du profilé à la résistance totale :

$$\delta = \frac{A_a \frac{f_y}{\gamma_a}}{N_{\text{plRd}}} = \frac{11250 \frac{275}{1,1}}{6731,32} = 0,417 \in [0,2:0,9] \dots \dots \mathbf{OK}$$

• Elancement réduite :

$$\overline{\lambda} = \sqrt{\frac{N_{plRd}}{N_{cr}}} = \sqrt{\frac{6731320}{360,68 \times 10^8}} = 0.013 < 2 \dots \dots \mathbf{OK}$$

Rapport des aires de sections :

$$\frac{A_s}{A_c} = \frac{1608}{237142} = 0.67 \% \in [0.4 \cdots 4\%] \dots \dots \dots MK$$

Les quatre conditions sont vérifiées donc la méthode simplifier est applicable.

d. Vérification du voilement local:

Pour le cas d'un profilé totalement enrobé, ce risque ne se présente pas.

e. Vérification de la résistance en compression centrée :

$$N_{sd} \leq \mathcal{X}.N_{PLRd}$$

O na :
$$\overline{\lambda} = 0.326$$

$$\alpha = 0.34$$

$$\mathcal{X} = \frac{1}{\varphi + \sqrt{\varphi + \overline{\lambda}^2}}$$

$$\phi = 0.5 \big[1 + \alpha \big(\overline{\lambda} - \overline{\lambda}_0 \big) + \overline{\lambda}_0^{\ 2} \big] \qquad \text{avec } \overline{\lambda}_0 \ = 0.2$$

$$\phi = 0.54$$

$$X = 0.960$$

$$N_{sd}(R+8) = 3501,85 \; KN \le 0,960 \times 6731,32 = 6462,07 \; KN \dots La section est stable$$

$$N_{sd}(R+3) = 3094,68 \; KN \le 0,960 \times 6731,32 = 6462,07 \; KN \dots La section est stable$$

9.1. introduction

Les fondations d'une structure sont constituées par les parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure ; elles constituent donc la partie essentielle de l'ouvrage puisque de leurs bonne conception et réalisation découle la bonne tenue de l'ensemble.

9.2. Fonctions assurées par les fondations

La fondation est un élément de structure qui a pour objet de transmettre au sol les efforts apportés par la structure.

Dans le cas le plus général, un élément déterminé de la structure peut transmettre à sa fondation :

- Un effort normal : charge verticale centrée dont il convient de connaître les valeurs extrêmes.
- Une force horizontale résultante, par exemple, de l'action du vent ou du séisme, qui peut être variable en grandeur et en direction.
- Un moment qui peut être de grandeur variable et s'exercer dans des plans différents.

Compte tenu de ces sollicitations, la conception générale des fondations doit assurer la cohérence du projet vis-à-vis du site, du sol, de l'ouvrage et l'interaction sol-structure.

9.3. Choix du type de fondation

Le choix du type de fondation dépend en général de plusieurs paramètres dont on cite :

- Type d'ouvrage à construire.
- Les caractéristiques du sol support.
- La nature et l'homogénéité du bon sol.
- La capacité portance du terrain de fondation.
- La charge totale transmise au sol.
- La raison économique.
- La facilité de réalisation.
- Le type de la structure.

Et on peut classer les fondations dans deux types :

- a. Lorsque les couches de terrain capables de supporter l'ouvrage à une faible profondeur, on réalise des fondations superficielles (semelles isolées, filantes et radier général).
- b. Lorsque les couches de terrain capable de supporter l'ouvrage sont à une grande profondeur, on réalise des fondations profondes et semi profondes (puits et pieux).

CHAPITRE 9

9.4. calcul des fondations

Afin de satisfaire la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage nous devons prendre en considération la charge que comporte l'ouvrage — la portance du sol — l'ancrage et les différentes donnée du rapport du sol. On commence le choix de fondation par les semelles isolées, filantes et radier, chaque étape fera l'objet de vérification.

On suppose que l'effort normal provenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

$$\frac{N}{S} \le \sigma_{sol} \Rightarrow S \ge \frac{N}{\sigma_{sol}}$$

On doit vérifier la condition suivante :

Avec:

 σ_{sol} : Contrainte du sol.

N : Effort normal appliqué sur la fondation.

 $N=N_1$ (de la superstructure) + N_2 (sous sol).

S: Surface de la fondation.

Les résultats des efforts normaux appliqués aux fondations sont récapitulés dans le tableau suivant :

Tableau 9.1 : les surfaces des semelles isoléé revenantes a chaque pot

Semelles	Nser(kN)	S=Nser/σ	Semelles	Nser(kN)	S=Nser/σ
		(\mathbf{m}^2)			(m ²)
1	779.42	3.11	13	1692.14	6.76
2	1540.08	6.16	14	1552.31	6.20
3	2529.72	10.11	15	2023.94	8.09
4	1371.67	5.48	16	1878.97	7.51
5	1939.65	7.75	17	1372.55	5.49
6	2093.20	8.37	18	2531.70	10.12
7	839.75	3.35	19	1540.55	6.16
8	1141.05	4.56	20	779.38	3.11
9	1072.29	4.28	21	1586.97	6.34
10	2200.54	8.80	22	1587.87	6.35
11	2142.18	8.56	23	1853.62	7.41
12	973.42	3.89	24	1845.52	7.38

Effort normal maximum : N ser = 3501.85 KN la surface qui convient S= 14.007(m²)

> Semelles isolées :

On adoptera une semelle homothétique, c'est-à-dire le rapport de A sur B est égal au rapport a

$$\frac{a}{\text{sur b}} = \frac{A}{B}$$

♦ dimensions de la semelle

$$B \ge \sqrt{\frac{N}{\sigma_{sol}}}$$

$$A = B\underline{et}a = b$$

Les hauteurs utiles doivent respecter :

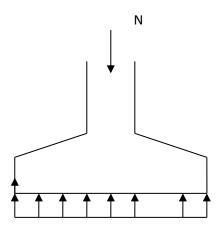


Figure 9.1 : semelle isolée sous poteau

D'après ces résultats, on remarque qu'il y a chevauchement des semelles, on passe alors à l'étude des semelles filantes.

> Semelles filantes :

L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux qui se trouve dans la même ligne.

On doit vérifier que:
$$\sigma_{sol} \ge \frac{N}{S}$$

Tel que:

 $N=\sum N_{\rm i}$ de chaque file de poteaux.

$$S = B \times L$$

B: Largeur de la semelle.

L: Longueur de la file considérée.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$

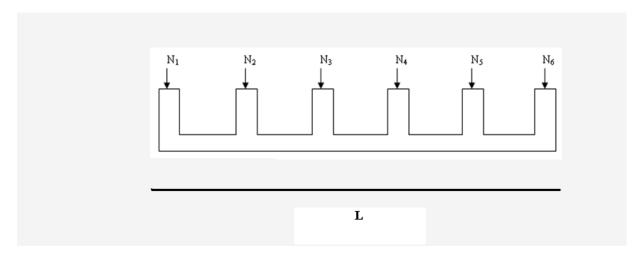


Figure 9.2 : semelle fimante

Les résultats sont résumés dans le tableau suivant :

Tableau 9.2 : sections des semelles filantes

Files	N(kN)	L(m)	B(m)	B ^{choisie} (m)
1	4733.64	17.40	1.088	1.5
2	6779.77	17.40	1.55	2.0
4	5061.42	17.40	1.163	1.5
5	2911.35	17.40	0.66	1.0
6	4117.14	17.40	0.94	1.0
7	11012,68	17.40	2.53	3.0
8	2446.06	17.40	0.56	1.0
9	2833.19	17.40	0.65	1.0
10	6388.43	17.40	1.468	1.5

Il faut vérifier que :
$$\frac{S_s}{S_b} \le 50$$

Le rapport entre la surface du bâtiment et la surface totale des semelles vaut :

$$\frac{\text{Ss}}{\text{Sb}} = \frac{234.05}{1392.16} = 0.168 = 16.81\% \le 50\%$$
 c'est vérifier

9.5. Vérification de la mécanique des sols

Vérification de l'interférence entre deux semelles :

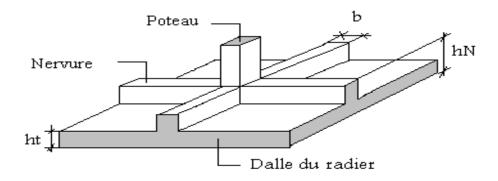
Il faut vérifie que : $L_{\min} \ge 2.5 \times B$.

Tel que L_{min} est l'entre axe minimum entre deux poteaux.

On a Lmin = 5.6 m > 2.5*3 = 7.5...non vérifiée

Donc il est recommandé d'opter pour un radier général

Radier général


1. Introduction

Un radier est une dalle pleine réalisée sous toute la surface de la construction.

Cette dalle peut être massive (de forte épaisseur) ou nervurée; dans ce cas la dalle est mince mais elle est raidie par des nervures croisées de grande hauteur.

Dans notre cas, on optera pour un radier nervuré (plus économique que pratique).

L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.

2. Surface Nécessaire :

Pour déterminer la surface du radier il faut que: $\sigma_{\max} \leq \sigma_{sol}$

$$\sigma_{\max} = \frac{N}{S_{nec}} \le \sigma_{sol} \Rightarrow S_{nec} \ge \frac{N}{\sigma_{sol}}$$

Pour: N = 22124.82 kN et $\sigma \text{sol} = 200 \text{ bar}$

On trouve: $S \ge 110.62$ m²

Avec la surface du bâtiment S_b=1392.16m²

Donc la surface totale du radier est 1492.16m²

3. Pré dimensionnement du Radier <u>Dalle :</u>

L'épaisseur de la dalle du radier doit satisfaire aux conditions suivantes:

• Condition forfaitaire: [7]

$$\frac{L_{\text{max}}}{25} \le h_1 \le \frac{L_{\text{max}}}{20}$$

Avec:

L_{max}: longueur maximale entre les axes des poteaux.

L max =
$$7.6$$
m => $30.4 \le h1 \le 38$ m => $h1 = 40$ m

• Condition de cisaillement: [1]

On doit vérifier que:

$$\tau_{u} = \frac{T_{u}}{bd} \le \overline{\tau}_{u} = Min(0.1f_{c28}; 4MPa) = 2.5MPa$$

$$T_u = \frac{qL}{2}$$
 ; $q = \frac{N_u 1ml}{S_{rad}}$

 $N_u = 63085.25 \text{ kN}$

L=7.6m ; b=1m

$$h_2 \ge \frac{N_u \times L_{\text{max}} \times \gamma_b}{0.9 \times 2S_{rad} \times b \times 0.07 f_{ci}} \implies \text{h2} = 10.2 \text{cm}$$

 $h \ge Max(h_1; h_2) = 40cm$

On prend: h= 40cm.

4. Nervures

Condition de coffrage : (largeur de la nervure)

$$B \ge \frac{Lmax}{10} = \frac{760}{10} = 76cm$$

On opte pour b=80cm

5. Hauteur des nervures:

Condition de raideur

Pour étudier la raideur de la nervure, on utilise la notion de la longueur élastique définie par l'expression suivante :

$$L_{\max} \le \frac{\pi}{2} L_e$$

L max: la plus grande distance entre les poteaux:

L_e: longueur élastique.

$$L_e = \sqrt[4]{\frac{4E*I}{K*b}}$$

E: module d'élasticité.

I: inertie d'une bande d'1 m de radier. I =
$$\frac{bh^3}{12}$$

K : Coefficient de raideur du sol (0,5kg/cm3≤K≤12kg/cm3).

On pourra par exemple adopter pour K les valeurs suivantes:

- -K =5MPa \rightarrow pour un très mauvais sol.
- $-K = 40MPa \rightarrow pour un sol de densité moyenne.$
- -K = 120MPa \rightarrow pour un très bon sol.

Pour notre cas K=40MPa (sol de densité moyenne)

b : largeur du radier (bande de 1m). D'où:

$$h_1 \ge \sqrt[3]{\frac{3K\left(\frac{2L_{max}}{\pi}\right)}{E}}$$

 L_{max} =7.6 m, $E=21000\ \text{MPa}$, $K\!\!=40\ \text{MPa}$

On trouve un épaisseur:

$$h_r \geq 1,50 \text{ m}$$

6. Condition de la flèche :

La hauteur des nervures se calcule par la formule qui suit:

$$\frac{L_{\text{max}}}{15} \prec h_2 \prec \frac{L_{\text{max}}}{10}$$

On a: $L_{max}=7.6 \text{ m}$

 $50.66 \text{ cm} \le \text{h2} \le 76 \text{ cm}$

On prend: h₂=70cm

 $h \ge Max (h_1; h2)=150cm$

Résumé:

Epaisseur de la dalle du radier h_t=40cm

Les dimensions de la nervure: Hn = 140 cm et b = 80 cm

7. Caractéristiques géométriques du radier

• Position du centre de gravité:

$$x_G=32m$$

$$y_G=27m$$

• Moments d'inertie:

$$I_v = 39490262.6 \text{ m}^4$$

8. Vérifications Nécessaire :

8.1 Vérification de la Stabilité du radier :

Il est très important d'assurer la stabilité au renversement de cet ouvrage qui est due aux efforts horizontaux.

Le rapport $\frac{M_s}{M_R}$ doit être supérieur au coefficient de sécurité 1,5 $\left(\frac{M_s}{M_R} > 1,5\right)$

Avec:

M_s: Moment stabilisateur sous l'effet du poids propre.

M_R: Moment de renversement dû aux forces sismique.

Avec: $M_R = \sum M_0 + V_0 h$

M₀: Moment à la base de la structure.

 V_0 : L'effort tranchant à la base de la structure.

h : Profondeur de l'ouvrage de la structure.

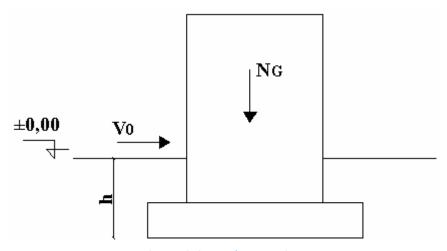


Figure 9.3: schéma statique

Sens x-x:

M₀=28960KN..m; V₀=14858.2KN; h=4.56m

Donc: M_R=95821.90KN.m

 $N{=}N_G{+}N_Q$

Avec: $N_G = N_{G1} + N_{G2} + N_{G3}$

 $N_Q = N_{Q1} + N_{Q2}$

N_{G1}: Poids propre de la superstructure.

N_{G2}: Poids propre de l'infrastructure.

N_{G3}: Poids propre du radier.

N_{Q1}: Poids de la surcharge d'exploitation de la superstructure.

N₀₂: Poids de la surcharge d'exploitation de l'infrastructure.

On a:

N_{G1}=836528 KN

N_{G2}=45996,09 KN

 $N_{G3} = \rho_b.S.h + N_{nervure} = 25x (1492.16m^2x0, 4) + (0.8 x1.4 x 599, 5) = 15593.04KN$

N_{Q1}=28706, 46 KN

N₀₂=17855,26 kN

Donc: N=944678.85 KN

 $M_s = N x_G = 3022972.32KN$

$$\frac{Ms}{Mr} = 31.54 > 1.5 \dots \text{verifie}$$

Sens y-y:

 $M_0=17470.03$ kNm; $V_0=15747.0$ KN; h=4.56m

Donc: M_R=89276.35 KNm

 $M_s = N y_G = 2550632.895 KNm$

$$\frac{Ms}{Mr} = 28.57 > 1.5 \dots \text{verifie}$$

• Conclusion:

Le rapport du moment de stabilité et du moment de renversement est supérieur à 1,5; donc notre structure est stable dans les deux sens.

8.2 Calcul des contraintes sous le radier :

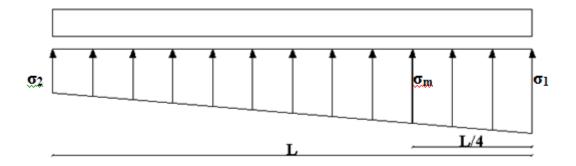
$$\sigma_{sol}$$
=200 bars

Les contraintes du sol sont données par:

• Sollicitation du premier genre:

À l'ELS:
$$\sigma = \frac{Nser}{Srad} = \frac{221240 \text{ kN}}{1492.16} = 148 \text{ KN} / \text{m}^2$$

$$\sigma ser = 148 \text{ KN /m}^2 \le \sigma sol = 200 \text{KN/m}^2 \dots \text{vérifie}$$


Sollicitation du second genre:

On doit vérifier les contraintes sous le radier (σ_1 ; σ_2)

Avec

$$\sigma_1 = \frac{N}{S_{rad}} + \frac{M}{I}V$$

$$\sigma_2 = \frac{N}{S_{rad}} - \frac{M}{I}V$$

On vérifier que:

 σ_1 : Ne doit pas dépasser 1,5 σ_{sol}

 σ_2 : Reste toujours positif pour évite des tractions sous le radier.

$$\sigma\left(\frac{L}{4}\right) = \frac{3\sigma_1 + \sigma_2}{4}$$
 Reste toujours inférieur à 1,33 σ_{sol}

ELU:

 $N_u=1,35G+1,5Q=429970,76kN$

M est le moment de renversement.

 $\sigma_{sol}=200kN/m^2$

Tableau 9.3: contraintes sous radier a l'ELU

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$
Sens x-x	296.82	279.181	292.41
Sens y-y	294.96	281.044	291.48
Vérification	$\sigma_1^{\text{max}} < 1,5\sigma_{\text{sol}=300}$	$\sigma_2^{min} > 0$	$\sigma(\frac{L}{4}) = 228$

ELS:

 $N_{ser} = 221240.20 \text{ KN}$

M est le moment de renversement.

 σ_{sol} =200KN/m²

Tableau 9.4 : contraintes sous radier a l'ELS

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$
Sens x-x	156.84	140.84	152.84
Sens y-y	154.84	142.84	151.84
Vérification	$\sigma_1^{\text{max}} < 1,5\sigma_{\text{sol}=300}$	$\sigma_2^{min} > 0$	$\sigma(\frac{L}{4}) = 228$

Conclusion

Les contraintes sont vérifiées dans les deux sens, donc pas de risque de soulèvement.

8.3 Détermination des sollicitations les plus défavorables

Le radier se calcul sous l'effet des sollicitations suivantes :

ELU:

$$\sigma ser = \sigma(\frac{L}{4}) = 292.41 \, KN/m^2$$

ELS:

$$\sigma ser = \sigma(\tfrac{L}{4}\,) = 152.84 KN/m^2$$

9.4 Ferraillage du radier

Le radier fonctionne comme un plancher renversé, donc le ferraillage de la dalle du radier se fait comme celui d'une dalle de plancher.

La fissuration est considérée comme préjudiciable.

9.5 Ferraillage de la dalle du radier:

- Détermination des efforts :
 - Si $0.4 < \frac{L_x}{L_y} < 1.0 \Rightarrow$ La dalle travaille dans les deux sens, et les moments au centre de

la dalle, pour une largeur unitaire, sont définis comme suit:

$$\begin{cases} M_x = \mu_x q L_x^2 \dots \text{sens de la petite portée.} \\ M_y = \mu_y M_x \dots \text{sens de la grande portée.} \end{cases}$$

Pour le calcul, on suppose que les panneaux soient encastrés aux niveaux des appuis, d'ou on déduit les moments en travée et les moments sur appuis.

• Panneau de rive :

- Moment en travée: M_{tx} =0,85 M_x M_{ty} =0,85 M_y
- Moment sur appuis: $M_{ax}=M_{ay}=0.3M_x$ (appui de rive) $M_{ax}=M_{av}=0.5M_x$ (autre appui)

• Panneau intermédiaire :

- Moment en travée : M_{tx} =0,75 M_x

$$M_{ty} = 0.75 M_{y}$$

- Moment sur appuis : Max=May=0,5Mx
 - Si $\frac{L_x}{L_y} < 0.4 \Rightarrow$ La dalle travaille dans un seul sens.

Moment en travée : M_t=0,85M₀
 Moment sur appuis : M_a=0,5M₀

Avec:
$$M_0 = \frac{ql^2}{8}$$

• Valeur de la pression sous radier :

ELU:

 $qu = \sigma m . 1m = 292.41 KN/m2$

ELS:

 $qu = \sigma m .1m = 152.84KN/m$

8.4.1 Calcul des efforts :

Le calcul des efforts de la dalle se fait selon la méthode de calcul des dalles reposant sur 04 cotés.

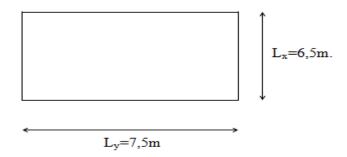


Figure 9.4: schéma de panneau le plus sollicité

• Calcul de ρ:

$$p = \frac{Lx}{Ly} = \frac{6.5}{7} = 0.92 > 0.4 \implies$$
 La dalle travaille dans les deux sens

$$\begin{cases} M_x = \mu_x \cdot q_u \cdot L_x^2 \\ M_y = \mu_y \cdot M_x \end{cases}$$

Calcul à L'ELU : $\nu = 0$

$$\begin{cases} \mu_x = 0.0496 \\ \mu_y = 0.7052 \end{cases}$$

D'ou:

$$\begin{cases} M_x = 815.82 \text{ kN.m} \\ M_y = 575.31 \text{ kN.m} \end{cases}$$

Selon les conditions d'appuis, on obtient les moments suivants (panneau intermédiaire) :

$$\label{eq:mass} En \; trav\'ee: \; \begin{cases} M_{TX} = 0.75.M_x = \!611.86 \; kN.m \\ M_{Ty} = 0.75 \; M_y = 431.84 kN.m \end{cases}$$

Sur appui : $M_{aX} = M_{aY} = 0.50 Max (M_X, M_Y) = 407.91 kN.m$

9.4.2 Ferraillage de la dalle :

Le ferraillage de la dalle se fait comme suit :

Pour une bande de 1ml, on aura une section de b=100cm et h=40cm qui travaille en flexion simple. En utilisant l'organigramme de la flexion simple pour une section rectangulaire.

Avec:

B = 100cm; h = 40cm; d = 0.9h = 26cm

Les résultats trouvés en travées et en appui dans les deux sens sont regroupés dans les tableaux Suivants :

Tableau 9.5: ferraillage des panneaux de radier

	Sens	M _u (kNm)	μ	α	Z(cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	х-х	611.86	0,432	0,789	17.79	10.22	7HA14	10.78
Travec	у-у	431.84	0,375	0,625	19.50	9.02	6HA14	9.24
Appui	X-X	407.91	0,354	0,5	20.80	8.4	8HA12	9.05
PPul	у-у	137.02	2,20	3,0		· · ·		2.00

9.4.3 Vérifications nécessaires :

• Condition de non fragilité :

$$A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e} = 0.23 \times 100 \times 0.9 \times 40 \times \frac{2.1}{400} = 4.347cm^2 < A_s^{adop}$$

Tableau 9.6 : verificaton de CNF

	Sens	$A_s^{adp}(cm^2)$	A _s ^{min} (cm ²)	Condition
	X-X	10.78	4,347	vérifier
Travée	у-у	9.24	4,347	vérifier
Appuis	X-X	9.05	4,347	vérifier
	у-у	7.02		

8.4.4 Vérification des contraintes à l'ELS :

• Calcul à L'ELS : v = 0.2

$$\mu_x = 0.0566$$
 $\mu_y = 0.7933$

D'ou:

$$\begin{cases} M_x = 486.60 \text{kN.m} \\ M_y = 386.02 \text{kN.m} \end{cases}$$

Selon les conditions d'appuis, on obtient les moments suivants (panneau intermédiaire) :

En travée :
$$\begin{cases} M_{TX} = 0.75.M_x = 364.95kN.m \end{cases}$$

$$M_{Ty} = 0.75 M_y = 289.51 kN.m$$

Sur appui : $M_{aX} = M_{aY} = 0.50 Max (M_X, M_Y) = 243.30 kN.m$

Tableau 9.7: verification des contraintes a l'ELS

	Sens	M _{ser} (KNm)	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
Travée	X-X	364.95	10.49	7,056	15	197,67	201,63	Oui
	у-у	289.51	8.32	6,51	15	200,53	201,63	Oui
Appuis	X-X	243.30		5,8	15	185,33	201,63	oui
r r szas	у-у		6.99	3,0		,	,	

: Tableau 9.8 : les nouvelles valeurs des sections

	Sens	A _s (cm ²)	Choix	A_s^{adp} (cm ²)
Travée	x-x	10.49	10T12	11.31
	у-у	8.32	11T10	8.64
Appuis	X-X		0771.0	7.07
	у-у	6.99	9T10	7.07

9.4.5 Ferraillage des nervures :

Armatures longitudinales :

8.4.5.1 Calcul des efforts :

Pour le calcul des efforts, on utilise la méthode forfaitaire «BAEL91 modifier 99»

On a :
$$M_0 = \frac{PL^2}{8}$$

En travée : M_t =0,85 M_0 Sur appuis : M_a =0,50 M_0

8.4.5.2 Calcul des armatures longitudinales :

B = 80cm; h=150cm; d=136cm

• Sens porteur (x-x):

L=7,6 m; P=189,43KN/ml

Tableau 9.9 : ferraillage des nervures (sens porteur)

	M _u (kNm)	μ	α	Z(cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	1162,14	0,055	0,070	123.22	17.23	9T16	18.10
Appuis	683,84	0,032	0,041	124.38	14.72	10T14	15.39

• Sens non porteur (y-y):

L=6,5 m; P=189,43KN/ml

Tableau 9.10 : ferraillage des nervures (sens non porteur)

	M _u (kNm)	μ	α	Z(cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	850,36	0,041	0,052	132,16	18,49	7T20	21,99
Appuis	500,028	0,024	0,031	133,34	10,77	9T14	18,10

8.4.5.3. Vérifications nécessaires :

• Condition de non fragilité :

$$A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e} = 0.23 \times 80 \times 0.9 \times 150 \times \frac{2.1}{400} = 13.041cm^2 < A_s^{adop}$$

Tableau 9.11: verification de CNF

	Sens	$A_s^{adp}(cm^2)$	$A_s^{min}(cm^2)$	Condition
	х-х	18.10	13,041	vérifier
Travée	у-у	21.99	13,041	vérifier
Appuis	X-X	15.39	13,041	vérifier
	у-у	18,10	13,041	vérifier

• Vérification des contraintes à l'ELS:

Tableau 9.12: verification des contraintes a l'ELS

	Sens	M _{ser} (kNm)	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
Travée	X-X	339.74	18.10	4,97	15	199,46	201,63	OK
Truvee	у-у	269.51	21.99	5,94	15	198,42	201,63	OK
Appuis	х-х	226.49	15.39	3,845	15	181,41	201,63	OK
	у-у	179.67	18,10	3,3	15	187,75	201,63	ok

Les contraintes d'acier ne sont pas vérifiées dans le deux sens donc on augmente la section

De l'acier

• Vérification de la contrainte tangentielle du béton :

On doit vérifier que :

$$\tau_u \prec \bar{\tau}_u = Min(0.1f_{c28}; 4MPa) = 2.5MPa$$

Avec:

$$\begin{split} &\tau_u = \frac{T_u}{bd} \\ &T_u = \frac{P_u L}{2} = \frac{189,43*7,5}{2} = 710,36kN \\ &\tau_u = \frac{710,36x10^3}{800\times1350} = 0,657MPa \prec \bar{\tau}_u = 2,5MPa.....V\'{e}rifier \end{split}$$

9.6 Calcul des armatures transversales :

• Selon BAEL 91 modifié 99 :

$$\frac{A_{t}}{b_{0}S_{t}} \ge \frac{\tau_{u} - 0.3f_{tj}K}{0.8f_{e}} \qquad (K = 1pas de reprise de bétonnage)$$

$$S_{t} \le Min(0.9d;40cm) = 40cm$$

$$\frac{A_{t}f_{e}}{b_{0}S_{t}} \ge Max\left(\frac{\tau_{u}}{2};0.4MPa\right) = 0.4MPa$$

• Selon <u>RPA99 version 2003</u>:

$$\frac{A_{t}}{S_{t}} \ge 0,003b_{0}$$

$$S_{t} \le Min\left(\frac{h}{4};12\phi_{t}\right) = 19,2cm....Zone \ nodale$$

$$S_{t} \le \frac{h}{2} = 75cm...Zone \ courante$$
Avec:

$$\phi_t \leq Min\left(\frac{h}{35};\phi_t;\frac{b}{10}\right) = 1,6cm$$

$$f_e$$
=400MPa; τ_u =0,657 Mpa; f_{t28} =2,1Mpa; b=80cm; d=135cm

On trouve:

$$S_t$$
= 15 cm.....Zone nodale.

$$S_t = 40 \text{ cm}....$$
Zone courante.

$$A_t \ge 2.7 \text{cm}^2$$

On prend:
$$5T10=3.9cm^2$$

• Calcul des armatures de peau

CHAPITRE 9

Les armatures de peau sont réparties et disposées partiellement à la fibre moyenne des poutres de grande hauteur, leur section est de 3cm² par mètre de longueur de paroi mesurée perpendiculairement à leur direction :

Dans notre cas: h = 150 cm

$$Ap = 3cm^2/m \times 150 = 4,5cm^2$$

On adopte : $4 \text{ T} 12 = 4,53 \text{ cm}^2$

9.6.1 Ferraillage des débords :

Le débord du radier est assimilé à une console de longueur L=0,5m, le calcul du ferraillage sera fait pour une bande de 1m à l'ELU.

• Calcul de ferraillage :

 $q_u\!\!=\!189,\!43KN\!/\!ml$, $b\!\!=\!\!100cm$, $h\!\!=\!\!40cm$, $f_{c28}\!\!=\!\!25MPa$, $\sigma_{bc}\!\!=\!\!14,\!17MPa$.

$$M_u = \frac{q_u I^2}{2} = 23,67 \, kNm$$
 ; $\sigma_s = 348 \, MPa$
 $u = \frac{M_u}{2} = 0.0129$

$$\mu = \frac{M_u}{bd^2 \sigma_{bc}} = 0,0129$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu}\right) = 0.016$$

$$Z = d(1-0.4\alpha) = 35.76cm$$

$$A_s = \frac{M_u}{Z \sigma_s} = 1,90 \, cm^2$$

On adopte: 4T10=3,14cm²

Avec un espacement de S_t=25cm

• Armature de répartition:

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 0.785cm^2 \le A_r \le 1.57cm^2$$

On adopt 4T8=2,01cm, S_t=25cm

• Condition de non fragilité :

$$A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e} = 4.34cm^2 > 3.14cm^2....non$$
 Vérifié

On adopta 6T12=6,79cm, S_t=17cm

9.6.2 Vérification des contraintes à l'ELS :

$$q_{ser}\!\!=\!\!109,\!08kN\!/ml$$

$$M_{ser} = \frac{q_{ser}l^2}{2} = 20,32kNm$$

$$\overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$$

$$\overline{\sigma}_{s} = Min \left(\frac{2}{3} f_{e}; Max \left(0.5 f_{e}; 110 \sqrt{\eta. f_{t28}} \right) \right) = 201,63 MPa \qquad (Fissuration préjudiciable)$$

Les résultats sont regroupés dans le tableau suivant:

Tableau 9.13 : verification des contraintes du béton et d'acier

M _{ser} (kNm)	$A_s(cm^2)$	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Virifiation
20,32	6,79	1,64	15	88,21	201,63	OK

Conclusion Générale

Conclusion

Notre mémoire traite de l'étude des Blocs de bâtiment en charpente métallique de (R+8 et R+3 +Sous Sol) à usage multiple à ALGER.

L'étude menée s'est organisée en quatre principales parties : calcul et conception des différents éléments de la structure, modélisation et analyse de la structure, exploitation des résultats numérique pour les vérifications, et enfin calcul de l'infrastructure.

La première partie de mon étude a consisté à découvrir l'ensemble des règlements sur les constructions en charpente métallique et de faire aussi le dimensionnement des différents éléments constituant la structure.

La deuxième partie c'est basé sur l'étude de la réponse de la structure vis-à-vis les sollicitations extérieures tel que le vent et le séisme. Ces deux forces qui consistent un problème majeur pour les constructions dans nos jours.

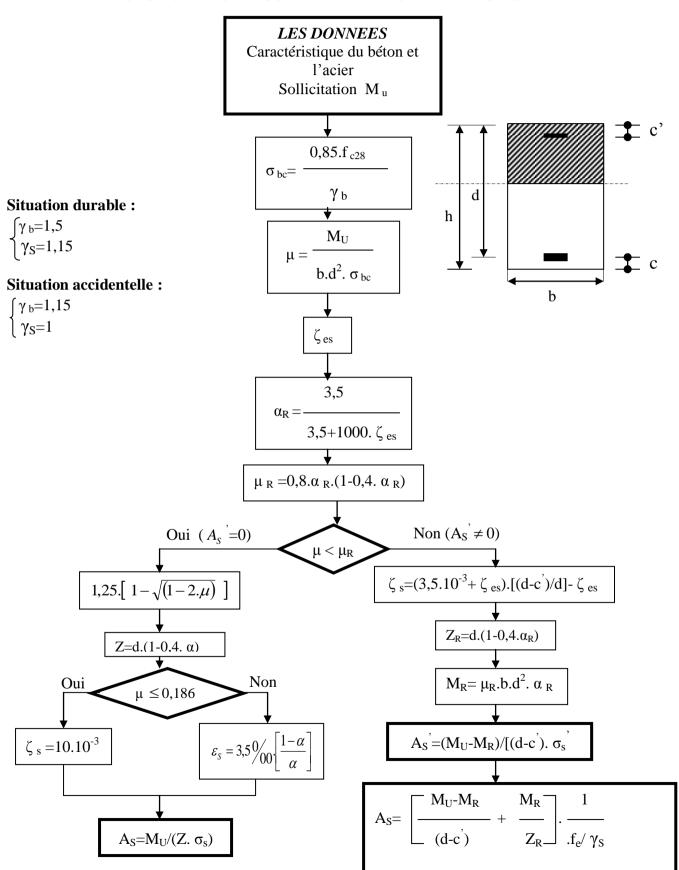
L'étude du bâtiment a été réalisée à l'aide d'une modélisation aux éléments finis sur le logiciel de calcul ROBOT. Cet outil informatique a permis de paramétrer les différents éléments de la structure, et de lancer le calcul.

La troisième partie concerne l'exploitation des résultats trouvés dans l'analyse numérique pour le calcul et la vérification des éléments résistants de la structure d'une part et pour la conception et le calcul des assemblages d'un autre part.

On ne dit un bon projet que s'il transmit bien ces efforts au sol, c'était l'objet de la quatrième et la dernière partie de notre étude. le calcul des fondations ont été fait sur la base du rapport du sol. Des fondations isolées ont été trouvées sous les poteaux et un petit radier sous le noyau en béton.

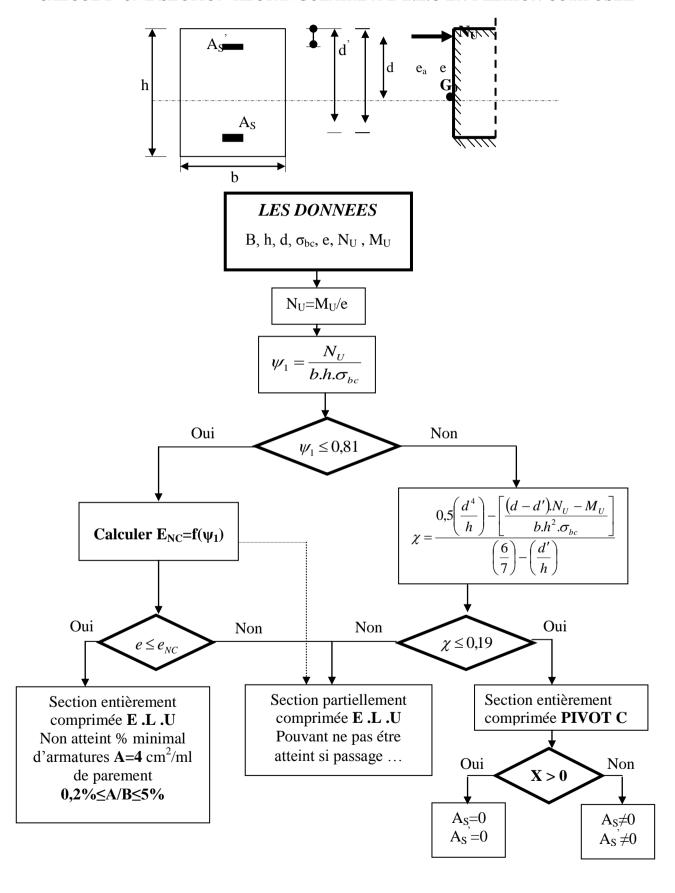
Enfin on a constaté que l'élaboration d'un projet ne se base pas uniquement sur le calcul théorique mais surtout sur sa concordance avec le coté pratique d'où apparaît l'importance et les avantages des sorties sur chantiers.

Ainsi, on 'arrive à la fin des travaux de fin d'étude, qui est la résultante des longues années d'étude. On espère que ce travail nous servira comme expérience pour le début de notre carrière professionnelle et qu'il servira aussi comme référence aux futurs étudiants qui seront intéressés par cette voie.

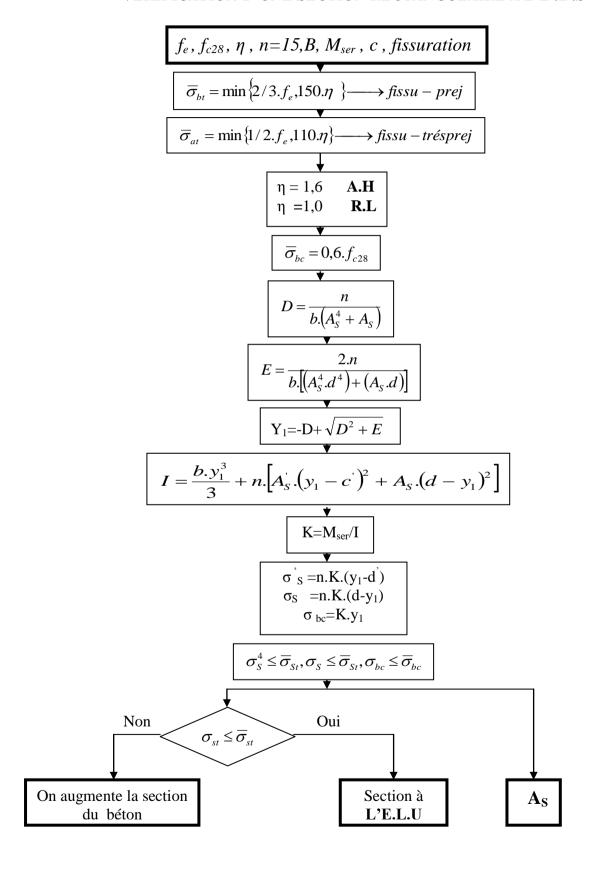

REFERENCE

- [1]: Le RPA 99V2003, D.T.R. B.C. 2.48, Règles parasismiques Algériennes, version 2003.
- [2]: DTR.C 2-4.7, Règlement Neige et Vent, R.N.V.2013.
- [3]: Les CCM97, Règlement de conception et de calcul des structures en acier.
- [4]: Le BAEL91, D.T.U, Béton armé aux états limites 91, modifié 99.
- [5]: EC3, Calcul des structures en acier, partie 1-1, règles générales et règles pour les bâtiments.
- [6]: EC4, Conception et dimensionnement des structures mixtes acier- béton, partie 1-1, règles
- [7]: D.T.R 2.2, 88, Charges permanentes et charges d'exploitation, CGS 1988.
- [8]: Calcul des structures métalliques selon l'Euro code 3, Jean Morel.
- [9]: Cours charpente métallique I, (Master1), Pr. MENADI.
- [10]: Norme Française NF DTU 33.1 P1-1-P1-2 Travaux de bâtiment Façade rideaux.
- [11] : Norme Française NF DTU 39-P4- Travaux de bâtiment Travaux de vitrerie-miroiterie
- [12]: Cours Structure mixte, (Master1), Mr ZAHAF Ahmed
- [13]: Structure mixte, (Polycopie), Dr.SETHI Abdelaziz

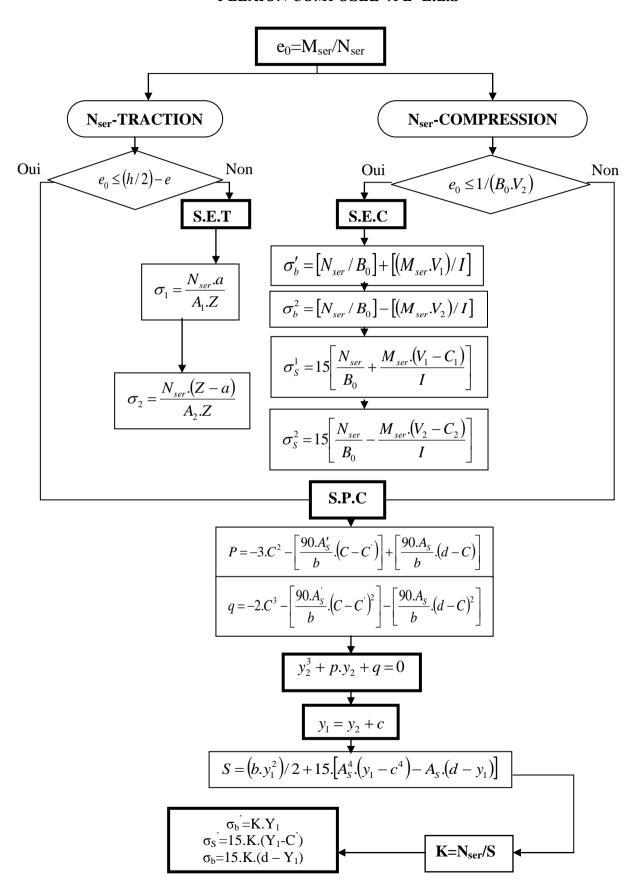
ANNEXE - B -


ORGANIGRAMME -I-

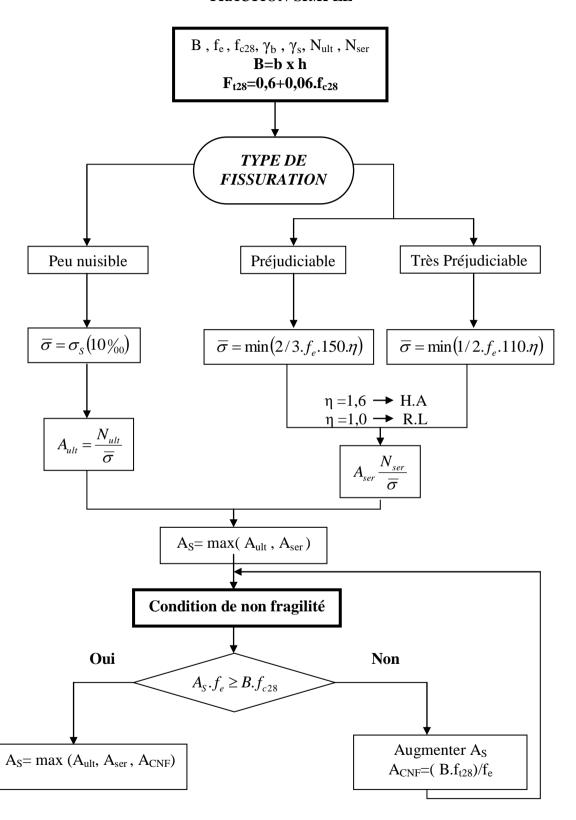
SECTION RECTANGULAIRE A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME -II-

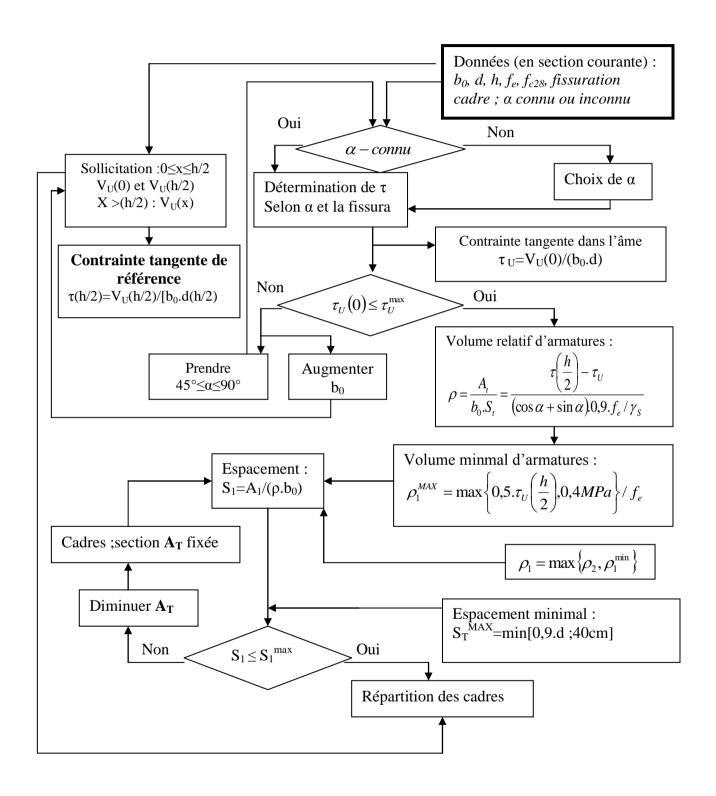
CALCUL D'UNE SECTION RECTANGULAIRE A L'E.L.U EN FLEXION COMPOSEE


ORGANIGRAMME -III-

VERIFICATION D'UNE SECTION RECTANGULAIRE A L'E.L.S


ORGANIGRAMME-IV-

FLEXION COMPOSEE A L'E.L.S


ORGANIGRAMME -V-

TRACTION SIMPLE

ORGANIGRAMME -VI-

CALCUL DES ARMATURES D'UNE POUTRE SOUMISE A L'EFFORT TRANCHANT

