REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE الجمهورية الجزائرية الديمقراطية الشعبية

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE وزارة التعليم العالى والبحث العلمي

UNIVERSITE -SAAD DAHLEB- BLIDA 1 جامعة سعد دحلب -البليدة

> Faculté de Technologie كلية التكنولوجيا

Département de Génie Civil دائرة الهندسة المدنية

MEMOIRE DE PROJET DE FIN D'ETUDES

مذكرة نماية التدرج

Pour l'Obtention du diplôme DE MASTER EN GENIE CIVIL Option : MATERIAUX

THÈME

Etude d'un bloc administratif (R+5+sous sol) en zone III ;Réflexion à l'utilisation des BAP

Encadré par :

Promotrice: M^{me} HALFAYA F/Zohra Co-promotreur: M^r BOURAS Rachid Présenté par :

BENAHMED Mohamed Lamine. LARBI Kamel.

Remerciements

Au premier lieu, nous tenons à remercier Dieu qui nous a donné le courage et la volonté pour terminer ce travail.

Nous tenons à remercier vivement notre promotrice Mme Halfaya F.zohra pour sa disponibilité permanente, pour son aide et ces orientations précieuses, tout le long de ce projet.

Nos témoignons nos profonds remercîments à notre Co-promoteur Dr Bouras Rachid pour nous avoir guidé, aider et soutenu durant l'élaboration de ce travail.

Nous tenons également à remercier les honorables membres du jury, pour l'honneur qu'ils nous ont accordés en acceptant d'évaluer notre travail.

Nos vives remercîments à Mr Fortas Abdelkader pour son aide si précieuse et qui nous a permis de faire nos essais au niveau du l'laboratoire GEOMATERIAUX du département Génie Civil

Nous remercions aussi l'ensemble des enseignants du département de génie civil qui ont contribués à notre formation en Génie Civil.

Enfin, nous adressons aussi nos sincères remerciements à tous ceux qui ont contribué, de près ou de loin, à notre formation depuis les Premières lettres de l'alphabet.

Dédicaces

Je dédie ce modeste travail :

A ma très chère Mère Aicha et à mon cher Père Rabah, en témoignage et en gratitude de leurs dévouement, de leurs soutien permanent durant Toutes mes années d'études, leurs sacrifices illimités, leurs réconfort moral, Eux qui ont consenti tant d'effort pour mon éducation, mon instruction et Pour me voir atteindre ce but, Que dieu les protège. A mes frères et mes sœurs A toute la famille Larbi

A mon binôme ben Ahmed amine et sa famille pour lequel je souhaite une vie pleine de joie et de réussite.

A mes Amis : Ramzi, Ishak, Sid Ahmed, Yazid, Lotfi, sidali, smauil. A mes Amis de l'université : Miloud, nadir, Kader, Mohamed, Djalal A tous ceux que je porte dans mon cœur.

Kamel.

Dédicaces

Je dédie ce modeste travail :

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, ma mère qui a été à mes côtés et ma soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci mes parents. A toutes personnes qui ma aider à poursuivre mes études

Je le dédie aussi à :

Mes sœurs, qui mon soutenus et crus en moi lors de mon parcours et à celle qui a partagé ce travail avec moi mon chère amie et Binôme Kamel Larbi et à tous mes amis.

A tous ceux que j'ai oubliés qui m'ont apporté d'aide et soutien durant ces années de Formation.

Merci à tous.

B.AMINE

ملخص

يتمحور مشروع نحاية الدراسة حول جزأين رئيسيين:

ويتعلق الجزء الأول بإجراء بحث عن الخرسانة الذاتية الصنع لأنما تنطوي على فهم خواص الخرسانة الجديدة التي تتسم بالامتلاء الذاتي، ويدرس الروهولوجيا للعجينة على أساس قياسات الملدنات الفائقة ووكيل اللزوجة وتأثير كل مكون، مع مسحوق الرخام كإضافة معدنية.

أما الجزء الثاني يهدف إلى دراسة بناية ذات طابع إداري تتألف من طابق ارضي +5 طوابق+ طابق سفلي، يتم انجازها بولاية الجزائر المصنفة ضمن المنطقة الزلزالية رقم III، دراسة وتحليل البناية تمت باستعمال برنامج. (ETABS 9.2.0) .

تحديد الأبعاد وتسليح كل العناصر المقاومة للبناية صمم طبق المعايير و القوانين المعمول بحا في الجزائر (,BAEL91 modifie 99)

تسليح العناصر المقاومة (الأعمدة والعارضات) تم بواسطة SOCOTEC، أما الجدران الخراسانية المسلحة تم يدويا.

كلمات مفتاحية: الخرسانة الذاتية الصنع. الروهولوجيا للعجينة. الملدنات الفائقة. ETABS 9.2.0

RPA 99 version 2003, BAEL91 modifie 99

Résume

Notre projet de fin d'étude s'articule autour de deux grandes parties :

La première partie concerne en une recherche sur les bétons autoplaçants (BAP) ca consiste à comprendre les propriétés d'un béton autoplaçants à l'état frais. La rhéologie de la pâte est étudiée en fonction des dosages du superplastifiant(SP) et de l'agent de viscosité (AV) ainsi que l'influence de chacun des constituants, avec comme ajout minérale la poudre de marbre.

La deuxième partie est consacrée à l'étude et l'analyse d'un bloc administratif (R+5 +sous-sol). La structure est implantée dans la Wilaya d'ALGER, zone de forte sismicité III. Le calcul du bloc administratif a été effectué par le logiciel (ETABS V.9.2).

Le calcul des dimensions et du ferraillage de tous les éléments résistants sont conformes aux règles applicables en vigueurs à savoir BAEL91 modifié 99, RPA99 version 2003.

Le ferraillage des éléments porteurs (poteaux, poutres) a été mené par le logiciel de ferraillage SOCOTEC, alors que celui des voiles a été fait manuellement.

Mots clés : béton autoplacants, pate, la rheologie, superplastifiant,ETABS V9.2., BAEL91 modifié 99, RPA99 version 2003.

Abstract

Our end-of-study project is structured around two main parts :

The first part concerns research on self-placing concretes (SPCs), which consists in understanding the properties of a self-placing concrete in its fresh state. The rheology of the paste is studied according to the dosages of the superplasticizer (SP) and the viscosity agent (AV) as well as the influence of each of the components, with marble powder as a mineral addition.

The second part is devoted to the study and analysis of an administrative block (R+5 + basement). The structure is located in the Wilaya of ALGER, an area of high seismicity III. The calculation of the administrative block was performed by the software (ETABS V.9.2).

The calculation of the dimensions and reinforcement of all the resistant elements comply with the rules applicable in force, namely BAEL91 modified 99, RPA99 version 2003.

The reinforcement of the supporting elements (columns, beams) was carried out by the SOCOTEC reinforcement software, while the reinforcement of the sails was done manually.

Key words : self-placing concrete, the paste, the rheology, superplasticizer,ETABS V9.2., BAEL91 modified 99, RPA99 modified 2003

Sommaire

Remerciements	
Dédicaces	
Résumé	
Liste des tableaux	
Liste des figures	
Introduction générales	

PARTIE A : REVUE BIBLIOGRAPHIQUE

Chapitre I : Généralités sur le béton autoplaçant

I.INTRODUCTION	1
II.DEFINITION DE BETON AUTO PLAÇANT	1
III.DOMAINE D'UTILISATION DES BAP	1
IV.CONSTITUANT DU BETON AUTOPLAÇANT	2
IV.1.Le ciment	2
IV.2.Les granulats	3
IV.3.1'eau de gâchage	3
IV.4.Les ajouts minéraux	4
IV.5. Les superplastifiants	6
IV.6.Les agents de viscosité	7
V.CLASSIFICATION DES BETONS AUTOPLAÇANT	8
VI.METHODE DE FORMULATION	8
VI.1.Approche japonaise	9
VI.2.1'approche suédoise	9
VI.3. L'approche française (lcpc)	9
VI.4. Autres méthodes	10
VII. FABRICATION, TRANSPORT ET MISE EN PLACE DES BAP	10
VIII.CONCLUSION	11
Chapitre II : Caractérisation rhéologiques des bétons auto	oplaçant
I. INTRODUCTION	12
II. LA RHEOLOGIE	12

IV. COMPORTEMENT RHEOLOGIQUE	14
V.CARACTERISATION DES BAP A L'AIDE DU RHEOMETRE	16
VI.CARACTERISATION DES BAP A L'ETAT FRAIS	17
VI.1.Mesures rhéologiques au cône d'abrams	17
VI.2.Mesures rhéologique a la boite LCPC	
VI.3.Mesure rhéologique a la boite en L	18
VI.4.Essai j-ring	19
VI.5.Essai de l'écoulement a l'entonnoir (v-funnel)	20
VI.6.Essai de l'écoulement au tube en u	21
VI.6.Essai de la stabilité au tamis (gtm)	
VII.CONCLUSION	23

PARTIE B : ETUDE EXPRIMENTALE

Chapitre III : Essais et interprétation

I. INTRODUCTION	.24
II. MATERIAUX UTILISE	.24
III.METHODES DE PREPARATION DES PATES DE CIMENT	.27
IV. CONSISTANCE DE LA PATE DE CIMENT : ASPECT VISUEL	.29
V. FORMULATIONS ETUDIEES	29
VI. RESULTATS ET DISCUTIONS	30
VI.1Résultats au mini cône	30
VI.2Résultats au v funnel	34
VI.2Résultats au cône de Marsh	37
VII.CONCLUSION	.41

PARTIE C : Calcul de l'ouvrage

Chapitre IV : présentation de l'ouvrage

I.INTRODUCTION	42
II. PRESENTATION DE L'OUVRAGE	42
III. CARACTERISTIQUES MECANIQUES DES MATERIAUX	43
IV. HYPOTHESES DE CALCUL	48
V. CONCLUSION	48

Chapitre V : Pré dimensionnement

I. INTRODUCTION	49
II. PRE DIMENSIONNEMENT DES DALLES	49

III. EVALUATION DES CHARGES ET DES SURCHARGES	
IV. PRE DIMENSIONNEMENT DES PORTIQUES ET VOILES	
IV.1 Les portiques	
IV.1.1 Les poutres	
IV.1.2 Les poteaux	54
IV.2 Les voile	63
V. CONCLUSION	64
Chapitre VI : calcul des éléments secondai	res
I.INTRODUCTION	65
II.ACROTERE	65
III. ETUDE DES PLANCHERS	72
III.1. Plancher en corps creux	72
III.2.Plancher en dalle pleine	
IV.ESCALIER	
V. CONCLUSION	117

Chapitre VII : étude dynamique et sismique

I. INTRODUCTION	118
II. ETUDE SISMIQUE	118
III. CHOIX DE LA METHODE DE CALCUL	119
III.1. La méthode statique équivalente	120
III.2. La méthode modale spectrale	120
IV. RESULTATS DE L'ANALYSE DYNAMIQUE	126
V. CONCLUSION	

Chapitre VIII : ferraillages des éléments résistants

I. INTRODUCTION	137
II. FERRAILLAGE DES POTEAUX	137
III. FERRAILLAGE DES POUTRES	154
IV.FERRAILLAGE DES VOILES	164
V. CONCLUSION	

Chapitre IX : Etude des fondations

I. INTRODUCTION	182
II. FONCTIONS ASSUREE PAR LES FONDATIONS	182
III. CLASSIFICATION DES FONDATIONS	182

IV. CHOIX DU TYPE DE FONDATION	182
V. CALCUL DES FONDATIONS	183
V.1.Semelles isolées	183
V.2.Semelles filantes	185
V.3.Radier général	187
V.4. Etude du voile périphérique	204
VI. CONCLUSION	208

Conclusion générale

Références bibliographiques

Liste des tableaux

Chapitre II : Caractérisation rhéologiques des bétons

<u>autoplaçant</u>

Tableau II.1 Modèles de comportement rhéologique des fluides	15
Tableau II.2 : Critères de stabilité (GTM)	22
Chapitre III : Essais et interprétation	
Tableau III.1 Composition chimique du ciment CEM II 42,5	24
Tableau III.2. Caractéristiques physiques du ciment CEM II 42,5	
Tableau III.3 : Composition minéralogique du ciment CEM II 42,5	25
Tableau III.4 : Évolution de la résistance à la compression du ciment CEM II 42,5	25
Tableau III.5 : Caractéristiques physiques de la poudre de marbre	25
Tableau III.6 : Composition minéralogique de la poudre de marbre	25
Tableau III.7 : Composition chimique de la poudre de marbre	26
Tableau III.8 : Caractéristiques du MEDAFLOW 145	26
Tableau III.9 : Procédure de malaxage des pâtes de ciment [38]	
Tableau III.10 : Formulation de la pâte BAP	30
Tableau III.11 : Résultats d'étalement des différents types des pates	31
Tableau III.12 : Résultats de l'écoulement a l'entonnoir (v-funnel)	34
Tableau III.13 : Résultats de l'écoulement au cône de Marsh	

Chapitre V : prés dimensionnement

Tableau V.1 : Evaluation des charges du plancher terrasse	
Tableau V.2 : Evaluation des charges du plancher étage courant	51
Tableau V.3 : Evaluation des charges de la dalle plein	51
Tableau V.4 : Evaluation des charges dans les murs extérieurs	51
Tableau V.5 : Dimensions finals des poutres.	54
Tableau V.6 : Dégression des surcharges	55
Tableau V.7 : Calcul des différents poids	
Tableau V.8 : Calcul des charges du poteau central	
Tableau V.9 : Choix final des poteaux centraux	59
Tableau V.10 : calcul des différents poids	
Tableau V.11 : Calcul des charges du poteau de rive	59
Tableau V.12 : Choix final des poteaux de rive.	60
Tableau V.13 : calcul des différents poids	60

Tableau V.14 : Calcul des charges du poteau de rive	60
Tableau V.15 : Choix final des poteaux circulaire	61
Tableau V.16 : Tableau de vérification des poteaux au flambement	61
Tableau V.17 : calcul des différents poids	62
Tableau V.18 : Calcul des charges du poteau d'angle	62
Tableau V.19: Choix final des poteaux d'angle	62
Tableau V.20: Choix des sections des poteaux	63

Chapitre VI : calcul des éléments secondaires

Tableau VI.1 : Evaluation des charges et surcharges	
Tableau VI.2 : Combinaison des charges	
Tableau VI.3 : Calcul des moments (6 travées)	
Tableau VI.4 : Calcul des moments (3 travées)	
Tableau VI.5 : Calcul des moments (2 travées)	
Tableau VI.6 : Calcul des moments (2 travées)	
Tableau VI.7 : Calcul des moments (6 travées)	
Tableau VI.8 : Calcul des moments (3 travées)	
Tableau VI.9 : Calcul des moments (2 travées)	
Tableau VI.10: Calcul des moments (2 travées)	
Tableau VI.11 : Récapitulatif du calcul M ^{max} et l'effort tra	anchant
Tableau VI.12 : Récapitulation du calcul des sections d'a	rmatures en travée87
Tableau VI.13 : Récapitulation du calcul des sections d'a	rmatures sur appuis87
Tableau VI.14 : Vérification à l'ELS	
Tableau VI.15 : Calcul de la flèche	
Tableau VI.16 : Ferraillage de la dalle pleine	
Tableau VI.17 : Vérification des contraintes à l'ELS	
Tableau VI.18 : Vérification de la flèche de la dalle plein	e98
Tableau VI.19 : Evaluation des charges sur les escaliers.	
Tableau VI.20 : Calcul des sollicitations	104
Tableau VI.21 : Ferraillage de l'escalier	
Tableau VI.22 : Vérification de compression du béton	
Tableau VI.23 : Vérification de la flèche de l'escalier	
Tableau VI.24 : Ferraillage de l'escalier	
Tableau VI.25 : Calcul des sollicitations	

Tableau VI.26 : Ferraillage de l'escalier	114
Tableau VI.27 : Vérification de compression du béton	116
Tableau VI.28 : Vérification de la flèche de l'escalier	117

Chapitre VII : etude dynamique et sismique

Tableau VII .1: facteur de qualité	125
Tableau VII .2: participation massique du modèle initial	127
Tableau VII .3: Vérification des déplacements inter étages du modèle initiale	128
Tableau VII .4: participation massique du 2 ^{ème} modèle	129
Tableau VII .5: Vérification des déplacements inter étages du 2 ^{éme} modèle	130
Tableau VII .6: Vérification de l'effort normal réduit (poteaux carrées)	131
Tableau VII .7: Vérification de l'effort normal réduit (poteaux circulaire)	131
Tableau VII .8: Nouveaux dimensions des poteaux	131
Tableau VII .9: Participation massique du modèle final	133
Tableau VII .10: Vérification des déplacements inter étages du modèle final	133
Tableau VII .11: Vérification de l'effort normal réduit (poteaux carrées)	135
Tableau VII .12: Vérification de l'effort normal réduit (poteaux circulaire)	135
Tableau VII .13: Vérification de l'effet du second ordre (l'effet P-Δ)	136

Chapitre VIII : ferraillages des éléments résistants

Tableau VIII.1 : Caractéristiques du béton et de l'acier	137
Tableau VIII.2 : Ferraillages des poteaux situation durable (N ^{max} ,M ^{corr})	138
Tableau VIII.3 : Ferraillages des poteaux situation durable (N ^{min} ,M ^{corr})	139
Tableau VIII.4 : Ferraillages des poteaux situation durable (M ²² ,N ^{corr})	139
Tableau VIII.5 : Ferraillages des poteaux situation durable (M ³³ ,N ^{corr})	
Tableau VIII.6 : Ferraillages des poteaux situation accidentelle (N^{max}, M^{corr})	140
Tableau VIII.7 : Ferraillages des poteaux situation accidentelle (N ^{min} ,M ^{corr})	140
Tableau VIII.8 : Ferraillages des poteaux situation accidentelle (M^{22}, N^{corr})	140
Tableau VIII.9 : Ferraillages des poteaux situation accidentelle (M ³³ ,N ^{corr})	141
Tableau VIII.10 : Ferraillages des poteaux situation accidentelle (N ^{max} ,M ^{corr})	141
Tableau VIII.11 : Ferraillages des poteaux situation accidentelle (N ^{min} ,M ^{corr})	141
Tableau VIII.12 : Ferraillages des poteaux situation accidentelle (M ²² ,N ^{corr})	142
Tableau VIII.13 : Ferraillages des poteaux situation accidentelle (M ³³ ,N ^{corr})	142
Tableau VIII.14 : Ferraillages des poteaux situation durable (N ^{max} ,M ^{corr})	142
Tableau VIII.15 : Ferraillages des poteaux situation durable (N ^{min} ,M ^{corr})	142

Tableau VIII.16 : Ferraillages des poteaux situation durable (M ²² ,N ^{corr})143
Tableau VIII.17 : Ferraillages des poteaux situation durable (M ³³ ,N ^{corr})143
Tableau VIII.18 : Ferraillages des poteaux situation durable (N ^{max} , M ^{corr})
Tableau VIII.19 : Ferraillages des poteaux situation durable (N ^{min} , M ^{corr})
Tableau VIII.20 : Ferraillages des poteaux situation durable (M ²² ,N ^{corr})143
Tableau VIII.21 : Ferraillages des poteaux situation durable (M ³³ ,N ^{corr})
Tableau VIII.22 : Ferraillages des poteaux situation durable (N ^{max} ,M ^{corr})144
Tableau VIII.23 : Ferraillages des poteaux situation durable (N ^{min} ,M ^{corr})144
Tableau VIII.24 : Ferraillages des poteaux situation durable (M ²² ,N ^{corr})144
Tableau VIII.25 : Ferraillages des poteaux situation durable (M ³³ ,N ^{corr})144
Tableau VIII.26 : Choix des armatures des poteaux (poteaux carrées)
Tableau VIII.27 : Choix des armatures des poteaux (poteaux circulaire)145
Tableau VIII.28: Vérification des contraintes pour les poteaux (Nser ,M ^{corr})145
Tableau VIII.29 : Vérification des contraintes pour les poteaux (M _{ser} ,N ^{corr})146
Tableau VIII.30 : Vérification des contraintes pour les poteaux (Nser, Mcorr)146
Tableau VIII.31 : Vérification des contraintes pour les poteaux (M _{ser} ,N ^{corr})146
Tableau VIII.32 : Vérification de la contrainte de cisaillement pour les poteaux carrés147
Tableau VIII.33 : Vérification de la contrainte de cisaillement pour les poteaux circulaires147
Tableau VIII.34 : Espacement maximales selon RPA99 des poteaux carrés
Tableau VIII.35 : Espacement maximales selon RPA99 des poteaux circulaires
Tableau VIII.36 : Choix des armatures transversales pour les poteaux carrées
Tableau VIII.37 : Choix des armatures transversales pour les poteaux circulaires
Tableau VIII.38 : Vérification des contraintes des poteaux de l'infrastructure
Tableau VIII.39 : Ferraillage des poutres porteuses (situation durable)
Tableau VIII.40 : Ferraillage des poutres porteuses (situation accidentelle)
Tableau VIII.41 : Ferraillage des poutres porteuses (situation accidentelle)
Tableau VIII.42 : Ferraillage des poutres non porteuses (situation durable)
Tableau VIII.43 : Ferraillage des poutres non porteuses (situation accidentelle)
Tableau VIII.44 : Ferraillage des poutres non porteuses (situation accidentelle)157
Tableau VIII.45 : Choix des armatures pour les poutres porteuses
Tableau VIII.46 : Choix des armatures pour les poutres non Porteuses 157
Tableau VIII.47 : Vérification de la Condition de Non Fragilité 158
Tableau VIII.48 : Vérification des Poutres Porteuses à l'ELS
Tableau VIII.49: Vérification des Poutres non Porteuses à l'ELS

Tableau VIII.50: Vérification de la Contrainte de Cisaillement	159
Tableau VIII.51: Calcul des Armatures Transversales	160
Tableau VIII.52: Tableau récapitulatif du calcul de la flèche	162
Tableau VIII.53:Vérification de la flèche	162
Tableau VIII.54:Valeurs de (l _f /l)	167
Tableau VIII.55: Calcul de $\sigma_{u \ lim}$	
Tableau VIII.56: Aciers verticaux et horizontaux	169
Tableau VIII.57 : Aciers transversaux	169
Tableau VIII.58 : Calcul de σ_{ba} et σ_{bna} pour l'exemple	174
Tableau VIII.59 : Calcul des armatures verticales de l'exemple	174
Tableau VIII.60 : Calcul des aciers verticaux du voile (V1, V6)	177
Tableau VIII.61 : Calcul des aciers horizontaux du voile (V1, V6)	177
Tableau VIII.62 : Calcul des aciers de couture du voile (V1, V6)	177
Tableau VIII.63 : Calcul des aciers verticaux du voile (V2, V4, V5, V7, V9, V10)	178
Tableau VIII.64 : Calcul des aciers horizontaux du voile (V2, V4, V5, V7, V9, V10)	178
Tableau VIII.65 : Calcul des aciers de couture du voile (V2, V4, V5, V7, V9, V10)	178
Tableau VIII.66 : Calcul des aciers verticaux du voile (V3, V8)	179
Tableau VIII.67 : Calcul des aciers horizontaux du voile (V3, V8)	179
Tableau VIII.68 : Calcul des aciers de couture du voile (V3, V8)	179

Chapitre IX : Etude des fondations

Tableau IX.1 : Sections des semelles isolées	
Tableau IX.2 : Sections des semelles filantes	186
Tableau IX.3 : Contraintes sous le radier à l'ELU	193
Tableau IX.4 : Contraintes sous le radier à l'ELS.	193
Tableau IX.5: Ferraillage des Panneaux du Radier	
Tableau IX.6: Calcul des moments à l'ELS	197
Tableau IX.7: Vérification des contraintes	197
Tableau IX.8: Vérification des contraintes (correction)	197
Tableau IX.9: Ferraillage des nervures sens x-x	198
Tableau IX.10: Ferraillage des nervures sens y-y	
Tableau IX.11: Vérification des contraintes	
Tableau IX.12: redimensionnement des armatures des nervures	199
Tableau IX.13 : Vérification des contraintes après augmentation des armatures	

Tableau IX.14 : Choix des armatures transversales	
Tableau IX.15 : Ferraillage du débord	203
Tableau IX.16 : Vérification des contraintes à l'ELS	204
Tableau IX.17 : Vérification des contraintes à l'ELS (correction)	204
Tableau IX.18 : Ferraillage du Voile Périphérique	
Tableau IX.19 : Vérification des Contraintes à l'ELS	

Liste des figures

Chapitre I : Généralités sur le béton autoplaçant

Figure I.1 : Différence entre les BAP et les BO. [3]	2
Figure I.2 : Illustration de l'effet fillers	.5
Figure I.3 : L'effet du superplastifiant sur les grains de ciment	.7
Figure I.4 : Propriétés du béton optimisé pour différentes teneurs en agent de viscosité	8

Chapitre II : Caractérisation rhéologiques des bétons

<u>Autoplaçant</u>

14
16
17
18
19
20
21
21
22

Chapitre III : Essais et interprétation

Figure III.1 : La poudre de marbre	26
Figure III.2 : Malaxeur pour les pates cimentaires	28
Figure III.3 : Appréciation visuelle de la consistance d'une pâte	29
Figure III.4 : Essai d'Etalement au mini-cône	30
Figure III.5 : Évolution de l'étalement en fonction du dosage en SP et AV=0	31
Figure III.6 : Évolution de l'étalement en fonction du dosage en SP et AV=0.25%	31
Figure III.7 : Évolution de l'étalement en fonction du dosage en SP et AV=0.5%	32
Figure III.8 : Évolution de l'étalement en fonction du dosage en SP	32
Figure III.9 : Évolution de l'étalement en fonction du dosage en AV et SP=0,25%	32
Figure III.10 : Évolution de l'étalement en fonction du dosage en AV et SP=0,5%	33
Figure III.11 : Évolution de l'étalement en fonction du dosage en AV et SP=1%	33
Figure III.12 : Évolution de l'étalement en fonction du dosage en AV	33
Figure III.13 : Essai de l'écoulement a l'entonnoir (v-funnel)	34
Figure III.14 : Évolution du temps d'écoulement en fonction du dosage en SP et AV=0	35
Figure III.15 : Évolution du temps d'écoulement fonction du dosage en SP et AV=0,25%.	35

Figure III.16 : Évolution du temps d'écoulement en fonction du dosage en SP et AV=0,5%35
Figure III.17 : Évolution du temps d'écoulement en fonction du dosage en SP36
Figure III.18 : Évolution du temps d'écoulement en fonction du dosage en AV et SP=0,25%36
Figure III.19 : Évolution du temps d'écoulement en fonction du dosage en AV et SP=0,5%36
Figure III.20 : Évolution du temps d'écoulement en fonction du dosage en AV et SP=1%37
Figure III.21 : Évolution du temps d'écoulement en fonction du dosage en AV37
Figure III.22 : Essai d'écoulement au cône de Marsh
Figure III.23 : Évolution du temps d'écoulement en fonction du dosage en SP et AV=038
Figure III.24 : Évolution du temps d'écoulement en fonction du dosage en SP et AV=0,25%39
Figure III.25 : Évolution du temps d'écoulement en fonction du dosage en SP et AV=0,5%39
Figure III.26 : Évolution du temps d'écoulement en fonction du dosage en SP et AV39
Figure III.27 : Évolution du temps d'écoulement en fonction du dosage en AV et SP=0,25%40
Figure III.28 : Évolution du temps d'écoulement en fonction du dosage en AV et SP=0,5%40
Figure III.29 : Évolution du temps d'écoulement en fonction du dosage en AV et SP=0,5%40
Figure III.30 : Évolution du temps d'écoulement en fonction du dosage en AV41

Chapitre IV : présentation de l'ouvrage

Figure IV.1 : plancher à corps creux	42
Figure IV.2 : Brique creuse	43
Figure IV.3 : Diagramme contrainte-déformation du Béton à l'ELU	45
Figure IV.4 : Diagramme contrainte-déformation du Béton à l'ELS	46
Figure IV.5 : Diagramme contrainte-déformation de l'acier à l'ELU	47

Chapitre V : prés dimensionnement

Figure V.1 : Section réduite du poteau	
Figure V.2 : Section réduite du poteau circulaire	56
Figure V.3 : Coupe de voile en élévation	63
Figure V.4 : Coupes de voiles en plan	63

Chapitre VI : calcul des éléments secondaires

Figure VI.1 : Dimensions de l'acrotère	65
Figure VI.2 : Sollicitation de l'acrotère	66
Figure VI.3 : ferraillage de l'acrotère	67
Figure VI.4 : Distance de l'axe neutre	69
Figure VI.5 : Ferraillage de l'acrotère	71
Figure VI.6 : Coupe transversale de la poutrelle	75

Figure VI.7 : Dimensions des poutrelles	75
Figure VI.7: poutrelle à 6 travées	78
Figure VI.8: poutrelle à 3 travées	79
Figure VI.9 : poutrelle à 2 travées	
Figure VI.10 : poutrelle à 2 travées	81
Figure VI.11 : poutrelle à 6 travées	82
Figure VI.12 : poutrelle à 3 travées	83
Figure VI.13 : poutrelle à 2 travées	84
Figure VI.14 : poutrelle à 2 travées	85
Figure VI.15 : Ferraillage des poutrelles	92
Figure VI.16 : Disposition constructive des armatures de la table de compression	93
Figure VI.17 : Schéma de ferraillage da la dalle pleine	
Figure VI.18 : Dimensions de l'escalier.	
Figure VI.19 : Vue en plan de l'escalier à 3 volées	100
Figure VI.20 : Schéma statique de la 1ére volée	104
Figure VI.21 : Diagramme du moment fléchissant à l'ELU	105
Figure VI.22 : Diagramme du moment fléchissant à l'ELS	
Figure VI.23 : Diagramme de l'effort tranchant à l'ELU	105
Figure VI.24 : Diagramme de l'effort tranchant à l'ELS	
Figure VI.25 : Ferraillage de l'Escalier (Volée I)	110
Figure VI.26 : Schéma statique de volée II	110
Figure VI.27 : Ferraillage de l'Escalier (Volée II)	112
Figure VI.28 : Schéma statique de la troisième volée	112
Figure VI 29 · Ferraillage de l'Escalier (Volée III)	117

Chapitre VII : étude dynamique et sismique

Figure VII .1: Vue en 3D de la structure modélisé	119
Figure VII .2: Spectre de réponse	122
Figure VII .3: Organigramme de classification des systèmes de contreventement avec voile [43	3]125
Figure VII .4 : Vue en plan du 1 ^{er} modèle	126
Figure VII .5 : Vue en plan du 2 ^{éme} modèle	129
Figure VII .6 : Vue en plan du modèle final	133
Figure VII .7 : Evaluation des effets du second ordre	135

Chapitre VIII : ferraillages des éléments résistants

Figure VIII.1 : Ferraillage des poteaux carrés	154
Figure VIII.2 : Ferraillage des poteaux circulaires	154
Figure VIII.3 : Arrêt des barres	161
Figure VIII.4 : Ferraillage des poutres porteuses	163
Figure VIII.5 : Ferraillage des poutres non porteuses	163
Figure VIII.5 : Section rectangulaire soumise à la flexion composée	165
Figure VIII.6 : Schéma d'un voile plein et disposition du ferraillage	166
Figure VIII.7 : Définition de l'élément mur	166
Figure VIII.8 : Mur encastré	167
Figure VIII.9 : Niveaux des vérifications des contraintes l'âme du voile	
Figure VIII.10 : Discrétisation d'un voile en élément (maille) coque	171
Figure VIII.11 : Disposition des Armatures verticales dans les voiles	172
Figure VIII.12 : Disposition des voiles	176
Figure VIII.13 : Ferraillage Voile 1et 6	180

Chapitre IX : Etude des fondations

Figure IX.1 : Semelle isolée sous poteau	
Figure IX.2 : Semelle filante	
Figure IX.3 : Disposition des nervures par rapport au radier et aux poteaux	188
Figure IX.4 : Schéma statique du bâtiment	191
Figure IX.5 : Contraintes sous le radier	192
Figure IX.6 : Panneau de la dalle du radier	195
Figure IX.7 : Schéma de ferraillage Dalle du radier	198
Figure IX.8 : Ferraillage Des Nervures	
Figure IX.9 : Schéma statique du débord	201
Figure IX.10: Diagramme des Moments	201
Figure IX.11: Illustration du voile périphérique	204
Figure. IX.12 : Vue illustrant les dimensions du panneau	205
Figure IX.13: Ferraillage du voile périphérique	

LISTE DES SYMBOLES

La signification des principaux symboles est la suivante :

<u>En majuscules :</u>

А Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement. Aire d'une section d'acier As Section d'armatures transversales At В Aire D'une section de béton D Diamètre Module d'élasticité longitudinale Ε Eь Module de déformation longitudinale du béton Module d'élasticité de l'acier Ei $\mathbf{E}_{\mathbf{s}}$ Module de déformation instantanée (E_{ij} à l'âge de j jours) Module de déformation différé (E_{vi} à l'âge de j jours) E_v F Force ou action en général G Action permanente, module d'élasticité transversale Q Charges d'exploitations Ι Moment d'inertie Κ Coefficient L Longueur ou portée $L_{\rm f}$ Longueur de flambement Μ Moment fléchissant développé par les charges permanentes MG Moment en général, moment de flexion le plus souvent Mo Moment fléchissant développé par les charges d'exploitations Moment de calcul ultime M_u Mser Moment de calcul de service Mt Moment en travée Ma Moment sur appuis Ν Effort normal \mathbf{S}_{t} Espacement des armatures transversales Т Effort Tranchant, période V_0 Effort tranchant a la base Kt Facteur de terrain Z_0 Paramètre de rugosité Z_{min} Hauteur Minimale C_r Coefficient de rugosité Ct Cohésion Cd Coefficient dynamique Coefficient d'exposition Ce C_{pe} Coefficient de pression extérieure Cpi Coefficient de pression intérieure Coefficient de pression nette Cp

R	Force	résu	ltante

- $F_{\rm fr}$ Force de frottement
- С Cohésion
- Coefficient de compression C_{c}
- Coefficient de sur consolidation C_s
- Fiche d'ancrage D
- Teneur en eau, Poids total de la structure W
- Teneur en eau saturé W_{sat}
- Limite de liquidité W_L
- Limite de plasticité W_p
- N_q, N_{γ}, N_c Facteurs de portance
- $\mathbf{S}_{\mathbf{r}}$ Degré de saturation
- Indice de plasticité Ip
- I_c Indice de consistance
- $\frac{S_c}{{S_c}^T}$ Tassement oedométrique
- Tassement total
- S_c^{adm} Tassement admissible
- E.L.U Etat limite ultime
- E.L.S Etat limite service

En minuscules :

a	une dimension
b	une dimension transversale (largeur ou épaisseur d'une section)
d	distance du barycentre des armatures tendues à la fibre extrême la plus com
d'	distance du barycentre des armatures comprimée à la fibre extrême la plus co
e	épaisseur, Indice des vides
cg	grosseur des granulats
f	résistance d'un matériau (avec indice), flèche
f_e	limite d'élasticité de l'acier
f_{cj}	résistance caractéristique à la compression du béton âge de j jours
f _{tj}	résistance caractéristique à la traction du béton âge de j jours
f_{c28}, f_{t28}	grandeurs précédentes avec j =28 jours
h	hauteur totale d'une section de béton armé
i	rayon de giration d'une section
j	nombre de jours
k	coefficient en général
1	longueur ou portée (on utilise aussi L)
n	coefficient d'équivalence acier-béton
S	espacement des armatures en générales
St	espacement des armatures transversales
Х	coordonnée en général, abscisse en particulier
У	coordonnée, parallèlement au plan moyen, à partir de l'axe central d'inertie
	Profondeur de l'axe neutre
Z	coordonnée d'altitude
q_{dyn}	pression dynamique
$q_{\it r\acute{e}f}$	pression dynamique de référence
q_j	pression dû au vent

En minuscules :

- Ø diamètre des armatures, mode propre coefficient de sécurité dans l'acier γ_s coefficient de sécurité dans le béton γb déformation relative 3 raccourcissement relatif du béton comprimé Ebc allongement relatif de l'acier tendu ϵ_{s} raccourcissement relatif de l'acier comprimé E's coefficient de fissuration relatif à une armature η coefficient de poisson, coefficient sans dimension ν rapport de deux dimensions en particulière l'aire d'acier à l'aire de béton ρ contrainte normale en général σ λ Élancement contrainte tangente (de cisaillement) τ contrainte de compression, σ_{bc} σ_{ts} et σ_{sc} contrainte de traction, de compression dans l'acier, également notées σ_s , σ_s Angle de frottement φ σ_{c} Contrainte de consolidation $\overline{\sigma}_{s}$ Contrainte de traction admissible de l'acier $\overline{\sigma}_{\scriptscriptstyle bc}$ Contrainte de compression admissible du béton Coefficient de pondération β Contrainte du sol $\sigma_{\scriptscriptstyle sol}$
- σ_{m} Contrainte moyenne

Introduction générale

Les bétons d'aujourd'hui sont souvent composés d'additions minérales. C'est dans cette optique, que s'inscrit notre sujet de recherche qui s'articule autour de la conception et la caractérisation des bétons autoportants (BAP). En effet, nous nous intéresserons au comportement d'un BAP, nous étudierons l'influence des superplastifiants (SP) et des agents de viscosité (AV) sur le comportement rhéologique d'une pâte d'un BAP à l'état frais.

Le béton auto plaçant caractérisé par une forte fluidité, est un béton qui se met en place sans aucune vibration même dans des endroits très encombrés par le ferraillage et cela tout en préservant une bonne homogénéité. La grande maniabilité des BAP assure la fabrication d'ouvrages duquel la finition est toujours d'une bonne qualité.

Les résultats obtenus de cette étude serons appliquées au calcul d'un bloc administratif composé d'un R+5+ un sous-sol. L'étude sera réalisée avec le logiciel ETABS V 9.6 tout en respectant les réglementations et les recommandations en vigueur à savoir RPA99/2003, BAEL99 et CBA93) et les différents DTR.

Le présent mémoire sera composé de trois grandes parties :

La première partie est une étude bibliographique sur les bétons autoplaçant (BAP) qui est composée de deux chapitres

Le premier chapitre regroupe toutes les connaissances actuelles des propriétés des BAP. Les méthodes de caractérisation des différentes propriétés de ces bétons sont présentées ainsi que le rôle des paramètres de composition permettant d'obtenir des matériaux extrêmement fluides et stables.

Le second chapitre est consacré aux conceptions de base, des définitions des paramètres rhéologiques et des types de comportements rhéologiques. L'influence des constituants du mélange sur la rhéologie du béton frais.

La deuxième partie de ce mémoire est l'étude expérimentale elle est composée du chapitre trois ou nous présentons les matériaux, les outils et méthodes utilisés pour la réalisation de cette étude. La troisième partie de ce mémoire est l'étude génie civil d'un bloc administratif. Le quatrième chapitre de notre mémoire donnera la présentation de la structure du point de vu caractéristiques géométriques ainsi que celles des matériaux utilisé (béton et acier).

Le chapitre cinq sera consacré essentiellement au pré dimensionnement des éléments structuraux tels que : poteaux, poutres, planchers et voiles.

Ensuite nous passerons au chapitre six qui portera sur le calcul et le ferraillage des éléments secondaires, tels que : les poutrelles, les escaliers, les planchers et l'acrotère.

Dans le chapitre sept nous modéliserons notre bloc et nous ferons une étude dynamique de notre structure.

Les résultats de cette dernière seront utilisés dans le chapitre huit qui sera consacré au calcul des ferraillages des éléments structuraux (poteaux, poutres et voiles)

Enfin le chapitre neuf sera dédié au calcul des fondations en prenant compte des caractéristiques du site ainsi que du poids de la structure.

I.INTRODUCTION

Les chercheurs K. OZAWA ET K. MAEKAWA de Université de Kochi (Tokyo) ont développé le premier prototype de BAP pendant l'été de 1988. Ces résultats ont été présentés par K. OZAWA pour la première fois au 2^{ème} Congrès de l'Asie de l'Est et Pacifique sur le Génie Civil et la Construction, tenu en Janvier 1989 à Chiangmai (Thaïlande). Trois années plus tard, en Mai 1992, au 4^{ème} Congrès International CANMET & ACI à Istanbul, l'intervention du K. Ozawa a accéléré la diffusion mondiale du concept de cette nouvelle génération de béton.

II.DEFINITION DE BETON AUTO PLAÇANT

Les bétons autoplaçants sont des bétons très fluides qui se mettent en place par gravitation sans apport extérieur ou intérieur de vibration. Le béton n'est qualifié d'auto plaçant que si le matériau final présente des propriétés homogènes c'est à dire n'ayant pas subi de ségrégation. La dénomination des bétons autoplaçants et pour certains chercheurs se distingue :

- Le premier terme est employé lorsqu'il s'agit d'un coulage vertical alors que le second correspond à une mise en œuvre horizontale (dallage).

- D'autres expressions sont aussi utilisées, (béton autoplaçable, béton très fluide ou béton auto nivelant)

Ces bétons présentent les propriétés suivantes :

- Absence de vibration ce qui réduit les nuisances sonores.
- Bétonnage de zones fortement ferraillées
- Réduction du coût de la main d'œuvre
- Qualité des parements, etc. [1]

III.DOMAINE D'UTILISATION DES BAP

Les BAP sont utilisables aussi bien pour la réalisation d'ouvrages horizontaux que verticaux, sur tous les types de chantier, de bâtiments ou de génie civil et pour la réalisation de nombreux produits préfabriqués en béton **[2].** La plupart des ouvrages peuvent être réalisées en BAP (voiles, poteaux, piles, poutres, planchers, dalles, dallages, fondations, éléments de façade, mobiliers urbains, etc.).

Les caractéristiques des B.A.P. laissent entrevoir de nombreuses possibilités techniques du fait de leur grande fluidité :

- Possibilité de coulage de zones fortement ferraillées
- Possibilité de coulage de zones d'architecture complexe et difficilement accessibles
- obtention de très bonnes qualités de parement.

IV.CONSTITUANT DU BETON AUTOPLAÇANT

Les constituants d'un BAP sont le ciment, les fines (les ajouts minéraux), les granulats (sable, gravier), eau et les adjuvants chimiques (superplastifiant)

Figure I.1 : Différence entre les BAP et les BO. [3]

IV.1. Le ciment

Le ciment conforme à la norme NF EN 197-1, appelé ciment CEM, mélangé avec des granulats et gâché avec de l'eau de façon appropriée, doit être capable de produire un mortier ou un béton qui conserve son ouvrabilité pendant un temps suffisant **[4]**. Constitué principalement de clinker portland (K) qui est un matériau hydraulique, le ciment est obtenu à partir de la cuisson à haute température, supérieure à 1450°C, d'un mélange approprié de calcaire et d'argile en proportion moyenne de 80% et 20% **[5]**. Les silicates et aluminates hydrauliques formés lors de celle cuisson (clinkérisation) sont **[6]**. :

- Le silicate tricalcique, 3CaO. SiO2, que l'on écrit C3S.
- Le silicate bi calcique, 2CaO. SiO2, que l'on écrit C2S.
- L'aluminate tricalcique, 3CaO. Al2O3, que l'on écrit C3A.
- L'aluminoferrite tetracalcique, 4CaO. Al2O3 .Fe2O3, que l'on écrit C4AF.
 - Les différents types de ciment :

Les ciments constitués de clinker et des constituants secondaires sont classés en fonction de leur composition, en cinq types, ils sont notés CEM et numérotés de 1 à 5 en chiffres romains dans leur notation européenne [7].

CEM I: Ciment Portland.

CEM II : Ciment Portland composé.

CEM III : Ciment de haut-fourneau.

CEM IV : Ciment pouzzolanique.

CEM V : Ciment composé.

IV.2. Les granulats

Les granulats sont définis comme l'ensemble de grains inertes compris entre 0mm et 40mm (sable, graviers et cailloux) dont l'origine peut être naturelle ou artificielle **[7]**. Nous distinguons les granulats roulés extraits de ballastières naturelles ou de rivière, et les granulats concassés, obtenus à partir des roches concassées exploitées en carrières

Les granulats sont classés selon les dimensions des grains qui les constituent et la courbe granulométrique représente la distribution, en pourcentage, des poids des matériaux passants dans des tamis de dimensions normalisées. Pour faciliter l'écoulement du mélange, la confection d'un bon béton autoplaçant utilise généralement des granulats roulés de rivière et un apport de fines (par exemple des fillers calcaires) plus importants

Du fait que les frottements entre les granulats limitent l'étalement et l'aptitude au remplissage des bétons, la quantité de granulats est donc limitée, en général le rapport granulats/sable exprimé en masse est de 1 dans un BAP. Le risque de blocage dans un milieu fortement ferraillé augmente lorsque le D max augmente. Ainsi, le D max des granulats doit être compris entre 10 et 20 mm **[8].**La plupart des bétons autoplaçant ont un Dmax=16.

IV.3. L'eau de gâchage

L'eau de gâchage doit être propre et ne doit pas contenir de matière en suspension au-delà des tolérances réglementaires suivantes [7] :

➤ 2 g/l pour les bétons à haute résistance.

➤ 5 g/l pour les bétons à faibles résistances.

L'eau de gâchage ne doit pas contenir des sels dissous au-delà de

- 15 g/l pour les bétons à haute résistance ;
- ➢ 30 g/l pour les bétons à faibles résistances

La pâte doit assurer une mobilité suffisante mais doit aussi freiner tout risque de ségrégation et de ressuage. Un BAP sera dès lors composé d'une quantité de fines élevée et d'une quantité d'eau relativement faible (eau/ciment rarement supérieur à 0,55 voire 0,50). La fluidité souhaitée sera obtenue par l'utilisation de super plastifiants **[7]**.

CHAPITRE I

IV.4. Les ajouts minéraux

Une addition minérale est définie par la norme européenne EN 197-1 comme étant, un matériau minéral finement divisé utilisé dans le béton afin d'améliorer certaines propriétés ou pour lui conférer des propriétés particulières **[9]**

Il existe deux catégories des ajouts minéraux :

Les fines actives : additions à caractère pouzzolanique ou hydraulique latent (cendres volantes, fumée de silice, laitier...etc.).

Les fines inertes : comme les fillers calcaires, l'objectif de leur utilisation est d'améliorer la compacité du béton et donc sa résistance.

• Avantages économiques et environnementaux : [10]

L'utilisation généralisée des additions minérales dans le monde contribue aussi à réduire la production du ciment qui nécessite une chaleur importante, donc à réduire la quantité de combustible utilisée pour l'industrie du ciment, ainsi que l'émission du CO2 de l'industrie cimentière dans la nature.

• Avantages techniques : [10]

 améliorer les propriétés mécaniques et la durabilité des bétons, en raison de leurs petites dimensions.

- limiter le ressuage du béton et à augmenter la cohésion de l'ensemble.

 Les additions minérales réduisent la chaleur dégagée du béton lors de l'hydratation, ce qui diminue la fissuration d'origine thermique.

IV.4.1. Les fillers calcaires

Les additions calcaires sont des produits secs finement divisés, obtenus par broyage et/ou sélection, de manière à répondre aux critères de conformité de la norme sur les additions minérales calcaires (NFP18-508), provenant du gisement de roches calcaire pouvant être dolomitiques, massives ou meubles. L'appellation de filler calcaire vient du fait que cette addition, si elle est broyée assez finement, s'insère dans le squelette granulaire du ciment et permet donc de combler les vides entre les autres particules de dimensions plus importantes du béton (ciment, granulats). L'effet, appelé effet filler, se traduit par une compacité plus importante du squelette granulaire et va donc avoir des effets sur les propriétés aussi bien à l'état frais qu'à l'état durci **[11]**

Influence des fillers calcaires sur le béton frais

L'utilisation d'un filler permet par définition de combler les vides entre les grains de dimensions plus importantes du ciment. Cela conduit à la réduction de la demande en eau de la pâte de ciment ainsi obtenue. Cet effet bénéfique est expliqué par SCHMIDT [12] :« Les particules fines déplacent une partie d'eau des vides entre les particules les plus grosses, la rendant disponible comme lubrifiant interne additionnel. Ainsi le béton est moins ferme et la conservation d'eau est améliorée », les fines calcaires contribuent également au maintien de l'homogénéité des bétons en augmentant la cohésion et en s'opposant à la ségrégation [13]. Selon M.Nehdi [14] Neto et Campitelli observent la réduction du seuil de cisaillement avec l'augmentation de la teneur en filler calcaire, et aussi l'augmentation de la viscosité plastique au-delà d'une certaine valeur de la finesse du calcaire. Brookbans [14], a étudié l'effet de l'addition de 5 à 28% de poudre calcaire au ciment sur les propriétés du béton frais ,il a observé que le temps de prise est réduit quand on augmente le taux de fillers et que ces derniers réduisent beaucoup la quantité d'eau et probablement n'ont pas un effet d'entraîneur d'air. Puisque les fillers calcaires sont composes de particules de dimensions inferieures à 125µm, leur surface spécifique va jouer un rôle prépondérant sur l'écoulement en suspension ; Pour des finesses proches, le besoin en eau est plus important pour les mortiers avec additions de pouzzolanes que pour les mortiers avec additions calcaires quel que soit la nature du ciment utilisé dans le mélange [15].

IV.4.2. Laitiers de hauts fourneaux

Le laitier de hauts fourneaux généralement broyé et ajouté en quantité variables au clinker, le laitier améliore les propriétés rhéologiques des matériaux cimentaires aussi augmenté les performances mécaniques et la durabilité du béton. Le remplacement d'une partie du ciment par des laitiers de hauts fourneaux permet de diminue le seuil et la viscosité des pâtes de ciment. Les résultats des chercheurs montrent que les laitiers de hauts fourneaux adsorbent le superplastifiant.

IV.4.3. Fumées de silice

Les fumées de silice sont des poudres de silice extrêmement fines (inférieurs au 1µm). Ce sont des sous-produits de fabrication du silicium et de ses alliages. Les propriétés des fumées de silice sont assez variées. La fumée de silice conforme à la norme (EN 13263), elles fournissent de très bonnes propriétés aussi bien au niveau de la rhéologie qu'au niveau des propriétés mécaniques et chimiques, tout en améliorant la durabilité du béton. Les résultats de **[9]** montrent que l'activité pouzzolanique de la fumée de silice devient

optimale à partir d'un certain dosage, la quantité au-delà de laquelle toute la chaux libérée par le ciment est consommée.

D'après les résultats **[23]** pour un rapport eau/liant constant, l'augmentation de pourcentage de fumée de silice mène à augmenter l'ouvrabilité d'un béton. Pour certains auteurs **[18-21]** le fumée de silice augmente les valeurs de seuil et de viscosité en augmentant la compacité des mélanges, alors que **[7]** rapportent que les fumées de silices ne modifient pas la viscosité. Certains auteurs **[11-24]** montrent que l'utilisation de fumées de silice augmente la demande en eau et en superplastifiant soit pour des pâtes de ciment ou pour des bétons.

IV.5. Les superplastifiants (SP)

Les fluidifiants interagissent avec les particules du ciment et celles des fines en s'adsorbant à leur surface pour diminuer le phénomène de floculation. La grande fluidité des bétons autoplaçants est assurée par des dosages relativement importants en fluidifiants.

La capacité de remplissage d'un BAP croit avec le dosage en fluidifiant jusqu'à un maximum au-delà duquel le phénomène de ségrégation apparaît. Selon [16] rapporté par [17], l'utilisation d'un superplastifiant à faible perte d'étalement est essentielle pour la confection de bétons autoplaçants. Certains fluidifiants comme le FPC (fluidifiant constitué d'un mélange de deux polymères de structure très complexe [18] permettent d'atteindre des étalements de 250 mm sans ségrégation, ce qui n'est pas le cas avec PC (polymère de type poly carboxylate) et NC

(Naphtalène sulfonâtes) par exemple [19]

Figure I.3 : L'effet du superplastifiant sur les grains de ciment

IV.6. Les agents de viscosité (AV)

Généralement les fluidifiants diminuent la viscosité du béton, ce qui rend le matériau plus sensible vis-à-vis du phénomène de ségrégation. Les agents de viscosité ont, eux, la propriété essentielle de modifier le comportement rhéologique des milieux aqueux dans lesquels ils sont utilisés (ce rôle modificateur peut aller du simple épaississement jusqu'à la gélification) et peuvent être utilisés avec intérêt dans la composition des BAP. D'après **[20]** le mode d'action des agents de viscosité se fait par adsorption des molécules d'eau sur les longues chaînes du polymère (liaison hydrogène) induisant un gonflement du polymère qui augmente la viscosité de l'eau et par conséquent celle de la pâte de ciment

[21] montre bien l'intérêt de l'utilisation d'un agent de viscosité. En effet, pour un même squelette granulaire, en combinant agent de viscosité et superplastifiant on améliore les propriétés du béton frais et on augmente de façon importante la résistance à la ségrégation et au ressuage, comme indiqué sur le graphe de la figure I-3.Les expériences menées à l'INSA de Lyon [22] montrent que :

-lorsque aucun agent de viscosité n'est employé, il faut environ 600kg/m3 de fines (ciment + cendre ou calcaires) pour assurer une bonne rétention d'eau

-lorsqu'on introduit un agent de viscosité, on peut descendre ce dosage à 400kg/m3 voir 350kg/m3 si l'on utilise le produit (PR960SL) de Rhône-Poulenc d'autres types d'adjuvants sont, parfois, utilisés tels que :

* les agents entraîneurs d'air : ils contribuent à la stabilisation de l'air incorporé dans le béton au cours du malaxage. D'après **[23]**, l'utilisation d'un agent de viscosité nécessite une grande quantité d'agent entraîneur d'air. Il avance deux raisons : la première est la diminution de la quantité d'eau libre laquelle est nécessaire à l'agent entraîneur d'air pour agir, la seconde est l'augmentation de la tension superficielle de l'eau qui contribue à augmenter la pression des bulles d'air et à les rendre moins stables. Les agents expansifs : ils permettent au béton de

CHAPITRE I

contrer la réduction de volume lors de la prise en causant une faible augmentation de volume. En effet, les bétons autoplaçants sont susceptibles d'avoir un retrait de séchage important puisqu'ils contiennent un volume de pâte important.

Figure I.4 : Propriétés du béton optimisé pour différentes teneurs en agent de viscosité [21]

V. CLASSIFICATION DES BETONS AUTOPLAÇANT

La classification des bétons autoplaçant s'effectuée selon leur intervalle d'écoulement (tenant compte de la géométrie du coffrage et de la disposition des armatures), Les bétons autoplaçants seront désormais classés selon trois catégories :

- a- Catégorie 1 : il s'agit des ouvrages horizontaux de faible épaisseur (planchers, dallages) pour lesquels le ferraillage est léger et le béton peut étire facilement réparti sur toute la surface.
- b- Catégorie 2 : elle couvre les ouvrages horizontaux épais pour lesquels les risques de ségrégation statique sont importants, et les ouvrages verticaux courants (on exclut le cas des ouvrages à très forte densité de ferraillage).
- c- Catégorie 3 : ce sont les ouvrages exigus ou très fortement ferraillés (pour lesquels l'écoulement du béton dans le coffrage est le plus difficile).

A chaque catégorie correspondent des spécifications particulières pour le BAP à l'état frais,

VI. METHODE DE FORMULATION

Les différentes propriétés des bétons autoplaçants (fluidité, viscosité, résistance à la ségrégation, aptitude au remplissage etc.) rendent leur formulation relativement compliquée.

Même si de nombreuses études ont été effectuées pour comprendre les principes qui régissent le comportement de ces bétons en milieux confiné, aucune méthodologie pratique deformulation ne semble avoir été établie, permettant à un chercheur ou à un ingénieur fabriquer un béton autoplaçant à partir de données de base sur les matériaux locaux et un cahier des charges précis [21].

Nous allons passer en revue les différentes formulations rapportées dans la littérature.

VI.1. L'approche japonaise

La formulation des BAP par l'approche japonaise développée à l'université se fait en privilégiant le volume de la pâte au détriment des granulats **[24] et [25]**.

- Les chercheurs japonais ont montré que le risque de blocage est minimisé si le volume des gravillons(dans 1m3) est limité à la moitié de sa compacité. Par définition la compacité d'un mélange de grains est le rapport du volume de grains et du volume total du système grains + vides. La compacité des gravillons est en générale égale à 0,57.

 le volume du sable est posé à 40% du volume du mortier, lorsque les frictions granulaires sont réduites la fluidité du béton est assurée.

- les dosages en liant et en superplastifiant ne sont pas précisés par cette méthodes ils sont choisis sur des critères de résistance.

- les dosages d'eau et du superplastifiant sont déterminés en effectuant des essais sur un mortier dosé à 40% en sable **[26]**, **[27]**.

VI.2. L'approche suédoise

Cette méthode est basée sur la méthode japonaise citée ci-dessus, le principe est d'intégrer l'approche de l'évaluation du risque de blocage dans le processus de formulation. Pour chaque rapport G/S on estime le volume de pâte critique pour le blocage, on retiendra ensuite le rapport G/S qui vérifie les propriétés rhéologiques recherchées. Les dosages des fines, de l'eau et du superplastifiant sont ajustés pour avoir une viscosité suffisante, un faible seuil de cisaillement, et une résistance souhaitée. Cette approche permet une meilleure optimisation du squelette granulaire. Cependant, on ne peut pas appliquer le critère de blocage à n'importe quel type de granulats **[28].**

VI.3. L'approche française (LCPC)

Au LCPC, un modèle mathématique a été développé à partir d'un modèle de suspension

solide (RENE LCPC). Ce modèle est basé sur les interactions granulaires entre les différents constituants du mélange. Il permet de prévoir la compacité d'un mélange granulaire avec une précision inférieure à 1% à partir des constituants ci-après **[29]** :

-les distributions granulaires

- les proportions du mélange
- la compacité propre
- la densité apparente

La procédure à adopter pour déterminer les proportions des divers constituants est la suivante

- la proportion de liant est fixée a priori (70% de ciment, 30% d'addition par exemple)
- le dosage, à saturation, du superplastifiant est déterminé. Selon l'expérience du LCPC, ce dosage pourrait conférer au béton une viscosité élevée, la moitié de ce dosage serait plus pertinente
- le besoin en eau de ce mélange (en présence du superplastifiant) est déterminé
- les calculs sont effectués avec le logiciel en tenant compte du confinement (effet de paroi)

VI.4. Autres méthodes

D'autres méthodes de formulation, que nous ne développerons pas dans cette étude bibliographique, ont été publiées tels que la méthode reposant sur la théorie de «l'excès de pâte » : proposée par **[30]**; la méthode d'évaluation simple utilisée par **[31]** (étudie l'interaction entre les granulats et les particules fines du mortier frais) etc.

VII. FABRICATION, TRANSPORT ET MISE EN PLACE DES BAP

Les formulations des BAP sont plus rigoureuses que celles des bétons ordinaires. En effet, les précautions particulières mises en place nous obligent à maîtriser les constituants, contrôler la teneur en eau du béton, l'ordre d'introduction des composants ainsi que le contrôle sur béton frais.

Le malaxage d'un béton autoplaçant est fait avec un matériel simple, il s'agit d'un malaxeur étanche dont le temps de malaxage est en général plus long que celui d'un béton ordinaire, car on doit garantir un squelette granulaire homogène d'une part et la bonne dispersion du liant et adjuvants dont les quantités sont faibles d'autre part. Le temps de malaxage et la chronologie d'introduction des ajouts chimiques sont importants, car un agent de viscosité à base de polymère anionique doit être ajouté après le superplastifiant pour éviter son adsorption sur les particules de ciment et dont l'interaction avec l'eau serait moindre.

Le transport des BAP est assuré par les moyens conventionnels pour qu'on puisse garantir leur étanchéité. A partir du malaxeur, les BAP peuvent être transportés jusqu'aux moules par pompage. La mise en place des BAP dans les moules est faite par différentes méthodes :

• 1ère Méthode

Traditionnelle et similaire aux bétons ordinaires, la mise en place du béton est faite par une goulotte. Cette méthode dont le seul inconvénient est le fait qu'elle favorise les phénomènes de ségrégation.

• 2ème Méthode

Dans ce cas la chute du béton est évitée, elle exige l'emploi d'un tube plongeur dans la partie basse du coffrage est immergé dans le béton frais.

• 3ème Méthode

Les BAP sont mis en place dans les moules par pompage. Elle minimise les risques de bullages et favorise l'obtention de parements lisses. Les précautions qui nous permettent d'assurer une bonne étanchéité des BAP sont les mêmes que celles des bétons fluides ordinaires, à noter que la pâte des BAP est cohésive ce qui limite les pertes de laitance.

VIII. CONCLUSION

Les BAP se développent maintenant en Europe et semblent être amenés à remplacer, à terme, les bétons vibrés classiques dans de nombreuses applications. Ils présentent en effet des intérêts à la fois techniques et économiques : absence de nuisances sonores en milieu urbain, possibilité de bétonner des zones fortement ferraillées ou à géométrie complexe et l'obtention d'une meilleure qualité du béton (pratiquement indépendante du savoir-faire des ouvriers) d'une part, diminution du temps de personnel lors de la mise en place et réduction des coûts des processus industriels, d'autre part malgré les aspects intéressants que les BAP proposent, en particulier à l'état frais et leur utilisation en constante augmentation, les BAP ne disposent pas encore une bonne connaissance sur leurs propriétés à l'état durci, son développement est freiné par une formulation complexe et un comportement sous sollicitations extrêmes (comportement différé, comportement au feu, durabilité) mal connu.
I. INTRODUCTION

Ce chapitre se veut être une partie introductive sur la rhéologie. Dans un premier temps, nous présentons les notions et les caractéristiques rhéologiques de base utilisées dans le domaine des matériaux cimentaires et granulaires. Ces caractéristiques seront exprimées sous forme de relations, appelées lois de comportement.

Par la suite, nous comparons les différents rhéomètres utilisés pour la caractérisation expérimentale des bétons. Nous mettrons en évidence les principales relations entre ces outils. Enfin, les lois de passage usuelles pour transformer la relation Vitesses de rotation / couples appliqués, vers la relation Taux de cisaillement / Contraintes de cisaillement, sont passées en revue.

II. LA RHEOLOGIE

La rhéologie, mot inventé en 1929 par Bingham, est généralement définie comme « l'étude de la déformation de la matière »

En se rapportant aux racines grecques du mot, le verbe « rhéin » signifie s'écouler et le mot « lógos » peut être traduit par étude ; c'est donc la science qui étudie l'écoulement et les déformations de la matière et plus généralement la viscosité, l'élasticité et la plasticité des matériaux sous l'action de contraintes. D'une façon générale, le but principal de la rhéologie est d'étudier la réponse différente que chaque fluide oppose aux sollicitations mécaniques qu'il subit.

Avec l'avènement des bétons autoplaçants (très fluides), la rhéologie a connu un intérêt croissant dans le domaine des matériaux de construction. Pour le béton, la rhéologie désigne généralement l'étude de l'ouvrabilité de ce matériau c'est-à-dire à l'état frais où il est considéré comme un fluide.

III. DEFINITION DES GRANDEURS RHEOLOGIQUES

III.1. La contrainte de cisaillement

La contrainte de cisaillement τ est la variation de la force de cisaillement par rapport à la surface cisaillée, comme définie par l'équation :

$$\tau = \frac{dF}{ds}$$

III.2. Le taux de cisaillement

Lorsque le fluide s'écoule en régime laminaire comme le cas d'un écoulement couette, la répartition des vitesses dans l'entrefer suit une loi linéaire entre deux plans parallèles, dont

l'un se déplace à une vitesse constante et l'autre est stationnaire. Il se crée un gradient de vitesse entre les deux plans.

Le déplacement (γ) entre les deux plans est défini comme la déformation :

$$\bigvee = \frac{dx}{dy}$$

Le taux de cisaillement ou la vitesse de déformation (γ) [1/s] est définie comme la vitesse de De déformation entre deux couches successives voisines du fluide cisaillé. Elle est définie comme étant la dérivée par rapport au temps de la déformation de cisaillement :

$$\dot{\mathbf{y}} = \frac{dy}{dt} = \frac{d}{dt} \left(\frac{dx}{dy} \right) = \frac{d}{dy} \left(\frac{dx}{dt} \right) = \frac{dv}{dy}$$

III.3. Viscosité dynamique

La viscosité dynamique μ , appelée aussi viscosité apparente se caractérise par le déplacement d'une molécule dans un milieu encombré par les autres. C'est la caractéristique du fluide qui produit des forces de frottement quand il est mis en écoulement. Cet effet provoqué par la friction interne des molécules de la couche sous-jacente sur celle de la couche supérieure, est appelé la viscosité

La viscosité est la résistance à l'écoulement d'un système soumis à une contrainte tangentielle, le coefficient de viscosité est défini par la relation suivant :

Le coefficient de viscosité est une grandeur physique qui joue un rôle essentiel dans la rhéologie des fluides. Sa connaissance satisfait parfois à caractériser le comportement rhéologique du matériau. **[32]**

III.4.Seuil de cisaillement

Le seuil de cisaillement est la contrainte de cisaillement minimale pour initier l'écoulement d'un matériau. En dessous du seuil de cisaillement le matériau ne s'écoule pas. [12] a dit qu'il ya deux seuils de cisaillement conduisant à des notions physiques différentes :

Le seuil de cisaillement statique correspond à la contrainte nécessaire à fournir pour déclencher l'écoulement du matériau. Il correspond à la contrainte minimale fournie pour obtenir le premier signe d'écoulement

Le seuil de cisaillement dynamique $\tau 0$, est la contrainte minimale pour stopper l'écoulement (passage de l'état viscoplastique à l'état solide). Il est obtenu par interpolation de la courbe d'écoulement à une vitesse de cisaillement nulle **[33].**

III.5. La thixotropie

La thixotropie peut être définir comme une diminution de la viscosité d'un matériau dans le temps sous l'effet d'une contrainte de cisaillement. La caractéristique de ce phénomène est réversible, qui permet au matériau de retrouver sa viscosité initiale lorsque la contrainte a disparu. Aussi pendant la période de désorganisation, la contrainte de cisaillement assez élevée est convenable de détruire la cohésion interne du matériau et générant une réduction de la viscosité.

IV. COMPORTEMENT RHEOLOGIQUE

Une étude rhéologique permet d'analyser l'écoulement de matériaux subies à des contraintes et des déformations l'exploitions de ces paramètres conduit à l'élaboration des rhéogrammes qui relient généralement la contrainte de cisaillement τ à la vitesse de cisaillement γ .

b) Comportement viscoplastique

Figure II.1: Lois de comportement rhéologique

Le fluide newtonien caractérisé par une relation linéaire entre la contrainte et la vitesse de cisaillement :

$$\tau = \mu \quad \dot{\gamma} \text{ (figure a)}$$

Le fluide est dit rhéofluidiant dans le cas où la courbe d'écoulement présente une concavité tournée vers l'axe des vitesses de cisaillement, dans le cas contraire, il est rhéoépaississant Il ya autres fluides qui ne s'écoulent qu'une fois le seuil de cisaillement dépassé. Ce sont des fluides viscoplastiques (Figure b)

Modèles rhéologiques de base

Auteur	Loi de comportement
Newton (1687)	$T = \mu \gamma$
Bingham (1922)	Τ = Τ + μΫ́
Herschel Berkley (1926)	$T = T + K \dot{\gamma}^n$
Ostwald (1925)	$T = A \dot{\gamma}^n$
Von-berg	$T = T_0 + b \sin h^{-1} (Y/C)$
Sisko	$T = a \gamma + b \gamma^c$
Robertson-Sttif	$T = A (Y + B)^{c}$
Eyring	T = a sin h (b γ́)

Tableau II.1 . Modèles de comportement rhéologique des	fluides
--	---------

Avec :

 τ : contrainte de cisaillement [Pa]

μ: viscosité [Pa.s]

 $\dot{\gamma}$: le taux de cisaillement [1/s]

Concernant le comportement rhéologique des matériaux cimentaires de nombreux auteurs [34] et [35] ont montré que les matériaux cimentaires sont des fluides viscoplastiques soumis au modèle de Bingham.

Les résultats de Mouret et al **[34]** rapportent que les bétons autoplaçants et les pâtes contenant du superplastifiant, avaient généralement un comportement non linéaire de type Herschel-Bulkley.

V.CARACTERISATION DES BAP A L'AIDE DU RHEOMETRE

L'utilisation du rhéomètre permet de caractérisation rhéologique des matériaux cimentaires (pâte, mortier, béton) à l'état frais, il ya différentes type de rhéomètres qui peuvent être décrire le comportement rhéologique des matériaux cimentaire :

- ► Le viscosimètre à plaque parallèle BML
- Le rhéomètre coaxial BTRHÉOM
- Le rhéomètre coaxial CEMAGREF-IMG
- ➢ Le rhéomètre coaxial RHÉOCAD

Généralement les rhéomètres mesurent le couple résistant du béton en fonction de la vitesse d'écoulement imposée. Ces deux données permettent ensuite d'obtenir, par différents calibrages, les grandeurs caractéristiques de l'écoulement du béton, à savoir le seuil de cisaillement et la viscosité plastique

Mais la présence de granulats de tailles variées dans le béton ne permet pas de définir un matériau type pour tous ces rhéomètres qui servirait de référence à toutes les mesures.

L'auteur [11] dit que les mesures rhéologiques sont difficiles à mesurer dans le cas des bétons, du fait des particules qui les composent (de 1 μ m à 20 mm). La figure 2.5 présente certains de ces Rhéomètres.

a) Le viscosimètre à plaque parallèle BML b) Le rhéomètre coaxial BTRHÉOM Figure II.2 : Type des rhéomètres

VI.CARACTERISATION DES BAP A L'ETAT FRAIS

VI.1.Mesures rhéologiques au cône d'abrams

C'est l'essai le plus courant pour évaluer la fluidité du béton, car il est d'une part facile à transporter, à réaliser sur chantier et à nettoyer et d'autre part, il permet de donner des informations sur la fluidité, la viscosité et le risque de ségrégation du béton L'essai consiste à placer en une seule fois un échantillon de béton dans le cône d'Abrams maintenu sur une plaque métallique plane de 90 cm de côté qui doit être humidifiée au préalable. Ensuite, on soulève verticalement le cône pour laisser le béton s'écouler librement. Toutefois, il est indispensable de procéder toujours de la même manière avec la même vitesse de soulèvement.

La valeur de l'étalement correspond au diamètre moyen de la galette de béton ainsi obtenue. Le temps de passage à un diamètre de 50 cm informe sur la visocsité du mélange et une inspection visuelle permet de vérifier l'homogéniété du béton. La présence d'une auréole de laitance en périphérie de la galette ou l'amoncellement de gros granulats au centre d'une galette de mortier sont des signes d'instabilité.

Figure II.3 : Schématisation de l'essai d'étalement au cône d'Abrams

VI.2. Mesures rhéologique a la boite LCPC

La boite LCPC conçue par Roussel consiste à verser 6 litres de béton à partir d'un seau dans une boite en forme d'un canal. Le volume de béton est le même que celui du cône d'Abrams qu'il soit assez représentatif du béton testé par rapport au diamètre maximal des gros granulats (ici 14mm) ont vérifié que vider 6 litres à partir d'un seau génère un écoulement assez lent pour négliger les effets d'inerties. L'analyse de cet écoulement et la prédiction des profilés à l'arrêt ont été étudié par **[36]**.

Ce test permet d'établir une meilleure corrélation entre le seuil et l'étalement puisque le béton s'écoule dans un canal de dimensions 150 x 200 x 1000mm. L'épaisseur minimale du matériau, qui peut être atteinte à l'arrêt de l'écoulement, est comprise entre 5 et 10 cm, soit supérieure à celle obtenue avec le cône. Cela permet de considérer l'écoulement du béton et son arrêt comme ceux d'un fluide homogène et ainsi d'établir une corrélation analytique entre le seuil d'écoulement et l'étalement des bétons fluides.

Figure II.4 : Dispositif de la boite LCPC

VI.3. Mesure rhéologique a la boite en L

Ce banc d'essai permet de tester l'écoulement du béton en milieu confiné et d'évaluer sa capacité de passage en vérifiant que sa mise en place ne sera pas contrariée par des phénomènes de blocage. Le dispositif d'essai est constitué d'une boîte en forme de L d'une hauteur totale de 60 cm, de 70 cm de longueur et de 20 cm de largeur. La partie verticale est séparée de la partie horizontale par une trappe et une série d'armatures constituée de trois barres de 14 mm de diamètre, espacées de 39 mm

Figure II.5 : Essai de la boite en L

Dans un premier temps, la partie verticale du dispositif est remplie de béton qui sera laissé au repos pendant 1 min. La trappe est ensuite soulevée afin de laisser s'écouler le béton à travers le ferraillage. A la fin de l'essai, les hauteurs de béton, aux deux extrêmes de la boite sont mesurées (respectivement H1 et H2). Le rapport H2/H1 permet de caractériser la dénivellation et doit être supérieur à 0,8.

Un mauvais écoulement du béton à travers le ferraillage et un amoncellement de granulats au niveau de la grille sont signes d'un problème de blocage ou de ségrégation

VI.4. Essai j-ring

Cet essai s'effectue au travers d'un anneau équipé de barres (J-ring) simulant des armatures et permet de mesurer la mobilité en milieu confiné (figure 2.7), Cet essai est simple à exécuter et fournit de nombreuses informations. Le principe de l'essai est l'écoulement d'un échantillon de béton à travers des armatures sous son propre poids.

L'objectif visé par son utilisation est double ; par un seul essai il permet à la fois d'apprécier la déformabilité libre et la déformabilité restreinte et cela sur un seul échantillon de béton. Cet essai consiste à réaliser l'essai d'étalement au cône d'Abrams modifié par ajout d'un anneau de 300 mm de diamètre de hauteur de 140 mm sur lequel sont fixées 16 tiges à diamètres de 12 mm (Figure II.6).

Le mode opératoire de l'essai est identique à celui de l'étalement d'un BAP. Trois mesures sont accessibles avec cet essai :

• Mesure de l'étalement final (mm),

- Mesure du temps d'écoulement T500 en secondes,
- Mesure du blocage qui est donné par la différence de niveau entre le béton du centre de la galette formée et le béton au périmètre externe de l'anneau (mm).

Figure II.6 : Essai de J-Ring

VI.5.Essai de l'écoulement a l'entonnoir (V-funnel)

Le temps mesuré fournit une indication sur la viscosité du béton. Plus le temps de passage est long, plus le béton est visqueux, inversement plus le temps est court moins le béton est visqueux. Cette méthode permet d'évaluer la vitesse d'écoulement d'un échantillon de béton passant à travers l'ouverture d'un entonnoir (figure).

Le guide européen sur les BAP fournit une classification des BAP selon le type

d'application et le temps de passage au V-funnel .

Deux classes sont alors définies :

*Classe VF1 : temps d'écoulement ≤ 8 s;

* Classe VF2 : temps d'écoulement \ge 9 s et \le 25 s

Lorsque le temps d'écoulement trop long ou une discontinuité d'écoulement sont des indicateurs de blocage et de ségrégation des bétons, Ces phénomènes apparaissent dans deux cas différents, lorsque le béton est très visqueux ou lorsque le béton est ségrégant. Pour ce dernier cas, une voûte de cailloux se forme à l'ouverture basse de l'entonnoir et le flux du béton devient alors bloqué

Figure II.7 : Schématisation de l'essai à l'entonnoir V-funnel

VI.6.Essai de l'écoulement au tube en U

Le dispositif de cette essai (figure) est composé de deux cases R1 et R2, séparés par une grille d'armatures et une trappe coulissante. Différentes dimensions et espacements existent pour les armatures entre les deux compartiments (variation selon les types de chantier et spécifications des différents pays), après l'écoulement on mesure la hauteur de remplissage dans la partie R2, celle si doit être supérieure à 30cm pour un BAP.

Figure II.8 : Schématisation de l'essai du tube en U

VI.7.Essai de la stabilité au tamis (gtm)

La résistance à la ségrégation statique d'un BAP doit impérativement être caractérisée. Le test consiste à remplir le sceau de 10 litres et à laisser le béton couvert et au repos pendant 15 minutes. Un échantillon de ce béton ($4,8 \text{ kg} \pm 0,2 \text{ kg}$) est versé à travers le tamis de 5 mm posé sur le fond, et laissé deux minutes, avant de peser la masse de la laitance traversant le tamis .

Figure II.9 : Schéma de l'essai de stabilité (GTM)

Le pourcentage P de laitance traversant le tamis par rapport à la masse de l'échantillon est donné par la relation suivante :

$$P = \frac{\text{Masse de laitance}}{\text{Masse de 'l échantillon}}.100$$

Les critères d'acceptabilité d'une formulation de BAP sont divisés en trois classes :

Tableau II.2 : Critères de stabilité (GTM).

Conditions	Critères de stabilité	Remarques
$0 \le P \le 15 \%$	Stabilité satisfaisante	Béton homogène et stable
$15 \le P \le 30 \%$	Stabilité critique	Vérifier les autres critères d'ouvrabilité
P ≥ 30 %	Stabilité très mauvaise	Ségrégation systématique, béton inutilisable

VII. CONCLUSION

Dans ce chapitre nous avons défini les paramètres rhéologiques essentiels qui concernent le comportement rhéologique et les types de comportement associé des matériaux cimentaires, aussi nous avons cité les principaux tests empiriques qui sont caractérisé l'ouvrabilité d'un béton autoplaçant. Les propriétés rhéologiques obtenues à l'aide des rhéomètres. Les différentes études bibliographiques qui traitent de l'existence de corrélation entre les essais empiriques et les essais à l'aide de rhéomètre affirment une bonne corrélation entre la viscosité et le temps d'écoulement d'un part et le seuil d'écoulement et leur étalement d'autre part des BAP.

I. INTRODUCTION

Le travail présenté dans ce chapitre a pour objectif de caractériser des pâtes autoplaçantes à l'état frais avec différents constituants des pâtes, notamment le dosage d'ajouts minéraux (poudre de marbre). Cette caractérisation est effectuée par (essais d'étalement au cône d'Abrams, et la boite LCPC et essai de l'écoulement à l'entonnoir « V-funnel »)

Nous commencerons, dans ce chapitre, par présenter les matériaux qui ont été utilisés dans l'étude de l'écoulement des pâtes. Nous présentons par la suite le mode expérimental ainsi que le matériel utilisé pour la caractérisation des pâtes autoplaçantes à l'état frais. Nous terminons par la présentation et l'interprétation des résultats des essais.

II. MATERIAUX UTILISE

II.1. Ciment

Le ciment utilisé pour l'ensemble des compositions est un ciment portland composé (CEM II/B-L 42,5 N) obtenu par le mélange finement broyé de clinker et d'ajouts (gypse et calcaire) conforme à la norme algérienne NA 442, provenant de la cimenterie de groupe LAFARGE.

Tusteur IIII composition ennique au ennent eller in t		
Élément	%	
SiO_2	16,80	
Al ₂ O ₃	4,46	
Fe ₂ O ₃	2,94	
CaO	58,83	
MgO	1,68	
SO 3	2,35	
K ₂ O	0,60	
Na ₂ O	0,03	
P ₂ O ₅	0,15	
TiO ₂	0,22	
P.A.F	11,74	

Tableau III.1 Composition chimique du ciment CEM II 42,5

Tableau	III.2 :	Caractéristiques	physiques	du ciment	CEM II 42.5
Iupicau		Curacteristiques	physiques	uu ennem	CLIMIII 12,3

Consistance normale	28,2 %
Début de prise (Dp)	155 mn
Fin de prise (Fp)	280 mn
Masse spécifique	$3,02 \text{ g/cm}^3$
Surface spécifique (SSB)	$3995 \text{ cm}^2/\text{g}$

Minéraux	%
C_2S	12-18
C_3S	58-64
C ₃ A	6-8
C_4AF	10-12

Tableau III.3 : Composition minéralogique du ciment CEM II 42,5

Age	Résistance à la compression MPa
2 jours	$23,42 \pm 0,06$
7 jours	$38,51 \pm 0,06$
28 jours	$46,23 \pm 0,06$

II.2. Additions minérales

La poudre de marbre est l'ajout que nous avons utilisé dans cette étude, c'est un élément dont le diamètre des grains est inférieur à 80µm

II.2.1.Poudre de marbre

Pour la formulation de nos pâtes on a utilisé le déchet de marbre comme addition minérale. Ce déchet est récupéré d'une marbrerie à (Blida). Le marbre est fourni sous forme d'une pâte mouillé, composée donc de poudre et d'eau.

La pâte est dans un premier temps séchée à une température 105 °C. Les mottes de marbre obtenues sont par la suite broyées pour disperser la poudre. La poudre grossière est concassée pour réduire son diamètre et optimiser la quantité à récupérer.

Nous avons alors récupéré par tamisage les fines à diamètre inférieur à 80 µm [37].

Les caractéristiques de la poudre de marbre sont présentées dans les tableaux suivants :

asiena inte i canaciensiques physiques ac na poudre de int		
Couleur	Blanche Carrare	
densité absolue	$2,65 \text{ g/cm}^3$	
densité apparente	$0,90 \text{ g/cm}^3$	
S.S.B	$7312 \text{ cm}^2/\text{g}$	

Tableau III.5 : Caractéristiques physiques de la poudre de marbre

Tableau III.6 : Composition minéralogique de la poudre de marbre

Minéraux	%
SiO ₂	1,5
CaCO ₃	95,5
$CaMg(CO_3)^2$	3

Élément	%
SiO ₂	0,48
Al ₂ O ₃	0,10
Fe ₂ O ₃	0,12
CaO	55,17
MgO	0,72
SO 3	0,46
K ₂ O	0,01
Na ₂ O	0,01
P_2O_5	0,02
TiO ₂	0,01
P.A.F	43,53

Tableau III.7 : Composition chimique de la poudre de marbre

Figure III.1 La poudre de marbre

II.3. Superplastifiant

Le superplastifiant **MEDAFLOW 145**, c'est un superplastifiant haut réducteur d'eau de la nouvelle génération d'adjuvants. Commercialisé par l'entreprise **GRANITEX**.

Forme	Liquide
Couleur	Brai clair
Densité	$1,065 \pm 0,015$
Extrait sec	30±1,5%
Teneur en chlore	< 1g/L
pH	5 - 6

 Tableau III.8 :
 Caractéristiques du MEDAFLOW 145

> Propriétés et effets

Grâce à ses propriétés le MEDAFLOW 145 permet

- ✓ Sur le béton frais :
- L'obtention d'un E/C très bas.
- Béton plastiques à fluides.
- Une très bonne maniabilité.
- Un long maintien de l'ouvrabilité
- De facilité la mise en œuvre du béton
- ✓ Sur le béton durci :
- Bonne résistances initiale et finales.
- De diminue la porosité.
- De diminue le retrait.
- Domaines d'applications
- Bétons à haute performance.
- Bétons auto plaçant.
- Bétons pompés.
- Bétons précontraints.

II.4. Agent de viscosité

L'agent de viscosité utilisé c'est un polymère sous forme de poudre, la densité de 1,20 g/cm3, commercialisée par l'entreprise **GRANITEX.**

III. METHODES DE PREPARATION DES PATES DE CIMENT

Le protocole de mélange des pâtes cimentaires doit être fait avec le même processus et les exigences sur le malaxage tableau(III.9). Un remixe constitué de ciment et de poudre de marbre est d'abord préparé. Une homogénéisation des différent constituants est réalisé avec un malaxage planétaire pendant 5 minutes afin d'obtenir une meilleur répartition des particules fines dans le ciment [**37**].

Le malaxage est effectué avec un petit malaxeur à ailette par gâchées d'un litre environs, ensuite on ajoute au mélange le fluide (eau+SP+AV) (le temps de rajout ne doit pas excéder 0.5mn), puis le malaxage du coulis dure 4mn à vitesse lente et 2mn à grande vitesse. La durée totale de malaxage est de 11.5 mn, cette durée élevée permet la désaglomération des fines et de donner un temps d'action suffisant pour le superplastifiant.

Operations	Ciment +MP Introduction	Eau +SP+AV	Malaxage Vitesse lente	Malaxage Vitesse rapide
Temps (mn)	5	0,5	4	2

Abréviations : SP : dosage en superplastifiant ; AV : dosage en agent de viscosité ;

E : eau ; C : ciment ; PM : poudre de marbre.

Figure III.2 : Malaxeur pour les pates cimentaires

IV. CONSISTANCE DE LA PATE DE CIMENT : ASPECT VISUEL

Nous avons défini trois types de consistance de la pâte de ciment : fluide, plastique et ferme. Un aspect fluide : est noté lorsque le mélange présente les caractéristiques d'un corps fluide, homogène et qui se remet en place très vite après le passage de mini-cône.

Un aspect plastique : est noté lorsque le mélange présente les caractéristiques d'un corps moins fluide, homogène et qui se remet en place lentement après le passage de mini-cône. Un aspect ferme : est noté lorsque le mélange ne s'écoule pas d'une façon continue (mais d'un seul bloc). Le passage de mini-cône est difficile à cause de la forte consistance de ce type de mélange.

a) La pâte fluide b) La pâte plastique c) La pâte ferme

V. FORMULATIONS ETUDIEES

Les différentes compositions testées sont formulées à masses constantes. Le superplastifiant et l'agent de viscosité sont exprimés en pourcentage de la masse du ciment [37]. Nous avons utilisé 1 kg de ciment.

Les formules sont récapitulées sous forme de groupes :

Groupe 1 : [E/(C+PM) = 0,45], SP fixée à 0,25% et le AV variable (0%, 0,25%, 0,5%)

Groupe 2 : [E/(C+PM) = 0,45], SP fixée à 0,5% et le AV variable (0%, 0,25%, 0,5%)

Groupe 3 : [E/(C+PM) = 0,45], SP fixée à 1 % et le AV variable (0%, 0,25%, 0,5%)

Pates	E/(C+MP)	C/MP	SP(%)	AV(%)
1	0,45	2	0,25%	0%
2	0,45	2	0,25%	0,25%
3	0,45	2	0,25%	0,5%
4	0,45	2	0,5%	0%
5	0,45	2	0,5%	0,25%
6	0,45	2	0,5%	0,5%
7	0,45	2	1%	0%
8	0,45	2	1%	0,25%
9	0,45	2	1%	0,5%

Tableau III.10 : Formulation de la pâte BAP [38]

VI. RESULTATS ET DISCUSSIONS

VI.1. Résultats au mini cône

L'essai d'étalement consiste à remplir le mini cône placé sur une surface horizontale lisse, une fois le cône est soulevé, le diamètre d'étalement du mortier est mesuré suivant deux directions perpendiculaire pour retenir la moyenne. Le diamètre de la galette de la pâte doit être compris entre 270 et 330 mm pour avoir un mortier autoplaçant. La figure III.4 .montre le dispositif de l'essai d'étalement pour mortier.

Figure III.4 : Essai d'Etalement au mini-cône

Nous présentons les résultats des essais au mini-cône effectués sur les différentes compositions. L'analyse des résultats conduit à comprendre l'effet combiné des deux paramètres : dosage de superplastifiant et l'agent de viscosité sur l'écoulement des pâtes autoplaçantes.

Pates	Etalement (mm)
1	285
2	230
3	200
4	305
5	250
6	230
7	370
8	305
9	245

Tableau III.11 : Résultats d'étalement des différents types des pates

Figure III.6 : Évolution de l'étalement en fonction du dosage en SP et AV=0.25%

Figure III.7 : Évolution de l'étalement en fonction du dosage en SP et AV=0.5%

Figure III.8 : Évolution de l'étalement en fonction du dosage en SP

32

Figure III.10 : Évolution de l'étalement en fonction du dosage en AV et SP=0,5%

Figure III.11 : Évolution de l'étalement en fonction du dosage en AV et SP=1%

Figure III.12 : Évolution de l'étalement en fonction du dosage en AV

La figure III.5 représenté les résultats des essais d'étalement au mini cône en fonction de la variation de SP et d'A.V,

Pâte 1,2 et 3 par exemple SP fixe à0.25% et AV varie de 0 à 0.5%, en regardant les résultats expérimentaux, on remarque que l'étalement diminue de 285 à 200, qui corroborent avec **[37]**. Car l'AV fait augmenter la viscosité de la suspension.

Quant au superplastifiant, son action n'est pas influencée par la présence de l'agent de viscosité car l'étalement évolue de la même manière, avec les mêmes écarts, entre les pâtes avec des AV différents. Cela démontre qu'il n'y a pas eu d'interaction chimique entre les deux adjuvants.

VI.2. Résultats au V funnel

L'objectif de cet essai est de mesuré le temps d'écoulement entre l'instant de l'ouverture de l'orifice de l'entonnoir et l'instant de l'apparition de la première lumière en regardant verticalement vers le bas de l'entonnoir.

Figue III.13 :Essai de l'écoulement a l'entonnoir (v-funnel)

Les résultats obtenus sont représentés au tableau suivant :

Pates	Ecoulement (s)
1	2,46
2	3,9
3	15,48
4	1,93
5	3,30
6	10,54
7	1,22
8	2,5
9	7,10

 Tableau III.12 : Résultats de l'écoulement a l'entonnoir (v-funnel)

Essais et interprétation

Figure III.15 : Évolution du temps d'écoulement au V-Funnelen fonction du dosage en SP et AV=0,25%

Figure III.16 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en SP et AV=0,5%

Figure III.17 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en SP

Figure III.18 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en AV et SP=0,25%

Figure III.19 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en AV et SP=0,5%

CHAPITRE III

Essais et interprétation

Figure III.20 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en AV et SP=1%

Figure III.21 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en AV

Ici on peut dire que l'ajout des Agents de viscosité fait augmenter la durée d'écoulement. On remarque aussi que l'ajout d'une quantité de 05% de AV fait diminuer le temps d'écoulement un peu plus rapidement que les autres %, cela peut être attribuer au fait que cet agent de viscosité a un double effet : d'une part il augmente la viscosité des suspension, d'autre part il fait lubrifier le contact entre les grains, par conséquent il diminue le frottement entre ces derniers.

VI.3. Résultats au cône de Marsh

Nous avons réalisé un essai au cône de Marsh, qui relie une consistance à un temps

d'écoulement pour différents dosages en adjuvant exprimé en pourcentage par rapport à la masse du ciment.

Figure III22 : Essai d'écoulement au cône de Marsh

L'essai consiste à mesurer le temps qu'il faut pour vider un cône contenant 1 litre de pâte à travers un orifice d'évacuation de 4 mm de diamètre. On commence par fermer l'orifice d'évacuation inférieur et on verse 1 litre de pâte dans le cône. On démarre le chronomètre au moment où on libère l'orifice. On arrête le chronomètre dès que le litre de pâte s'est déversé dans un cylindre gradué que l'on place sous l'orifice du cône. Le temps d'écoulement que l'on mesure permet d'évaluer la fluidité de la pâte.

Pates	Ecoulement (s)
1	8,86
2	52,30
3	75,05
4	7,10
5	39,12
6	59,32
7	5,42
8	27,41
9	40,51

Tableau III.13 : Résultats de l'écoulement au cône de Marsh

Figure III.23 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en SP et AV=0

Figure III.24 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en SP et AV=0,25%

Figure III.25 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en SP et AV=0,5%

Figure III.26 : Évolution du temps d'écoulement au V-Funnel en fonction du dosage en SP et AV

Figure III.27 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en AV et SP=0,25%

Figure III.28 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en AV et SP=0,5%

Figure III.29 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en AV et SP=0,5%

Figure III.30 : Évolution du temps d'écoulement au cône de Marsh en fonction du dosage en AV

Ici on peut dire que l'ajout des Agents de viscosité font augmenter la durée d'écoulement, par contre les SP font diminuer la durée, ce résultat corrobore avec la littérature. On remarque aussi que l'ajout d'une quantité de 0.25 et 05% de AV fait diminuer le temps d'écoulement un peu plus rapidement que sans ajout de AV cela peut être attribuer d'une part, au fait que cet agent de viscosité a un double effet : d'une part il augmente la viscosité des suspension, d'autre part il fait lubrifier le contact entre les grains ; d'autre part la géométrie du cône de Marsh favorise l'écoulement par conséquent il diminue le frottement entre ces derniers.

VII. CONCLUSION

Nous avons effectué une étude rhéologique à l'aide des méthodes empiriques basées sur des essais d'ouvrabilité tels que le mini-cône et le cône de Marsh, dans le but de comprendre le rôle joué par différents paramètres (superplastifiant et agent de viscosité).

L'étude préliminaire réalisée sur plusieurs pâtes a permis de tirer les renseignements suivants :

- L'augmentation du dosage en superplastifiant fait augmenter l'étalement des pâtes et fait baisser le temps d'écoulement au cône de Marsh
- Les agents de viscosité à un double effet : d'une part il augmente la viscosité des suspensions, d'autre part il fait lubrifier le contact entre les grains.
- la géométrie du cône de Marsh favorise l'écoulement par conséquent il diminue le frottement entre ces grains.
- Les tests empiriques, bien que très utiles parce que le matériel utilisé est simple, restent donc limités aux comparaisons des effets des produits sur l'écoulement des matériaux cimentaires et ne peuvent pas constituer des essais explicatifs.

I.INTRODUCTION

L'objectif de ce chapitre est de présenter la liste des données du bâtiment analysé, concernant le type de structure, les éléments, la géométrie et les propriétés des matériaux.

II. PRESENTATION DE L'OUVRAGE

Le projet qui fait objet de notre mémoire consiste à faire l'étude génie civil d'un bloc administratif (R+5 +sous-sol pour Parking-auto), Ce projet est un ouvrage courant implanté à **MOHAMMADIA** daïra de **EL HARRACH** wilaya de **ALGER**, qui est classée d'après les règles parasismiques algériennes [**39**] comme une zone de forte sismicité (**zone III**) .Il est classé comme étant ouvrage de grande importance (**Groupe 1B**). Sa hauteur totale est inférieure à 48mètres.

II.1 Dimension en plan

- ➤ Longueur totale : 26,95 m
- Largeur total : 21,40 m

II.2 Dimensions en élévation

- ➢ Hauteur totale est de : 24,48 m
- ➢ Hauteur du R.D.C est de : 4.08 m
- Hauteur de l'étage courant est de : 4,08 m
- ➢ Hauteur de sous-sol est de : 3,74 m

II.3 Ossature

Le bloc administratif qui fait l'objet de notre étude est constitué par un système de contreventement mixte, à savoir, portiques et voiles en béton armé suivant les deux directions principales.

II.4 Planchers

Le plancher est un élément qui sépare surcharges qui lui sont directement appliquées aux éléments porteurs tout en assurant des fonctions de confort comme l'isolation phonique, thermique et l'étanchéité des niveaux extrêmes.

Dans notre projet, on utilise deux types de planchers :

- Plancher en corps creux.
- Plancher en dalle pleine.

Figure IV.1 : plancher à corps creux.

II.5 Escalier et ascenseur

Sont des éléments non structuraux, permettant le passage d'un niveau à un autre avec Deux volées et paliers inter étage, La structure comporte une seule cage d'escalier et une seule cage d'ascenseur du sous-sol au terrasse accessible. L'escalier est de type standard.

II.6Maçonnerie

Les murs extérieurs sont réalisé en doubles parois en briques creuses de (15 cm ; 10 cm) séparées par un vide de 5 cm.

Les murs intérieurs sont réalisés en simple cloison en brique creuse de 10 cm d'épaisseur.

Figure IV.2 : Brique creuse

II.7 Revêtement

- > En carrelage pour les planchers courants.
- > En mortier de ciment pour les murs extérieurs et cage d'escalier.
- > En plâtre pour les plafonds et les murs intérieurs.

II.8 L'acrotère

C'est un élément de béton armé qui entoure la terrasse inaccessible d'une hauteur de 60 cm et d'épaisseur de 10 cm.

III. CARACTERISTIQUES MECANIQUES DES MATERIAUX

III.1. Le béton

Le béton est un matériau constitué par le mélange du ciment granulats (sable, gravillons) et d'eau de gâchage, Le béton armé est obtenu en introduisant dans le béton des aciers (armatures) disposés de manière à équilibrer les efforts de traction.

III.1.1.Ciment

Le CEM II/B L 42,5 N est le liant le plus couramment utilisé, il sert à assurer une bonne liaison de granulats entre eux.

III.1.2.Granulats

Deux types de granulats participent dans la constitution du béton :

- Sable de dimension (D≤5) mm
- Graviers de dimension ($5 \le D_g \le 25$) mm

III.1.3.Eau de gâchage

Elle met en réaction le ciment en provoquant son hydratation, elle doit être propre et dépourvue de tout produit pouvant nuire aux caractéristiques mécanique du béton.

III.2.Résistance caractéristique à la compression

La résistance caractéristique à la compression du béton f_{cj} à *j* jours d'âge est déterminée à partir d'essais sur des éprouvettes normalisées de 16 cm de diamètre et de 32cm de hauteur. Pour les ouvrages courant, on admet une résistance caractéristique en compression à 28 jours est estimée à 25 MPa (f_{c28} = 25 MPa) [40].

III.3. Résistance caractéristique à la traction

La résistance caractéristique à la traction du béton à j, jours notée f_{tj} , est conventionnellement définie par les relations [40] :

 $f_{tj} = 0.6 + 0.06 f_{cj} \text{ si } \text{fc}28 \le 60 \text{Mpa}$

 f_{t28} =0.6+0.06 f_{c28}

ft28=2,1 Mpa

III.4. Module de déformation longitudinale

Ce module est connu sous le nom de module de Young ou de module d'élasticité longitudinal ; il est défini sous l'action des contraintes normale à courte et à longue durée.

III.4.1.Module de déformation instantané

Pour un chargement d'une durée d'application inférieure à 24 heures, le module de déformation instantané Eij du béton âgé de «j » jours est égale [40] :

$$Eij = 11\ 000\ x\ (fcj\)^{1/3}$$
 (MPa)

Pour : fc28= 25 MPa on trouve : Ei28 = 32164,2 MPa.

III.4.2. Module de déformation différé

Il est réservé spécialement pour des charges de durée d'application supérieure à 24 heures ; ce module est défini par **[40]** :

 $Evj = 3700 x (fcj)^{1/3}$ (MPa)

Pour : fc28 = 25 MPa on trouve : Ev28 = 10818,87 MPa.

III.5. Coefficient de poisson

Il représente la variation relative de dimension transversale d'une pièce soumise à une variation relative de dimension longitudinale.

 $v = \frac{\text{allongement relatif du côté de la section}}{\text{raccourcissement relatif longitudinal}}$

v = 0,2 pour le calcul des déformations et pour les justifications aux états-limites de service (béton non fissuré).

 $\mathbf{v} = \mathbf{0}$ pour le calcul des sollicitations et dans le cas des états – limites ultimes (béton fissuré).

III.6. Les contraintes limites

En se référant au règlement [40], on distingue deux états limites :

III.6.1.Etat limite ultime « E.L.U »

C'est un état au-delà duquel le bâtiment n'est plus exploitable et dont le déplacement entraine la ruine de l'ouvrage, la contrainte limite, notée σ_{bc} est donnée par :

$$\sigma_{bc} = \frac{0.85 f_{c28}}{\gamma_b}$$

Avec :

 $\gamma_b\;$: Coefficient de sécurité du béton,

 $\gamma_{b} = \begin{cases} 1, 5 \\ 1, 15 \\ 1,$

fc28 = résistance caractéristique à la compression à 28 jours.

Figure IV.3 : Diagramme contrainte-déformation du Béton à l'ELU

CHAPITRE IV

III.6.2.Etat limite de service « E. L. S »

La contrainte limite de service en compression du béton est limitée par [40] :

 $\sigma bc \leq \sigma_{bc}$

Avec:

 $\sigma_{bc} = 0.6 fc 28 = 15 MPa$

Figure IV.4 : Diagramme contrainte-déformation du Béton à l'ELS

III.7. Aciers

Afin de remédier au problème de non résistance du béton à la traction, on intègre dans les pièces de béton des armatures d'acier pour reprendre les efforts de traction.

Les aciers utilisés pour constituer les pièces en béton armé sont :

- Ronds lisses (Ø) : FeE24
- Barres à haute adhérences (HA) : FeE500.
- Treillis soudés (TS) : TLE52 \varnothing =6 mm pour les dalles.

Les limites élastiques

- Les ronds lisses (R.L): FeE24 (fe=235 MPa)
- Barres à haute adhérence (HA) : f_e =500 MPa.
- Treillis soudés (TS) : f_e= 520MPa.

Module d'élasticité des acies

Les aciers sont aussi caractérisés par le module d'élasticité longitudinale. Les expériences ont montré que sa valeur est fixée quel que soit la nuance de l'acier.

$$Es = 2, 1.10^5 MPa$$

Les contraintes limites de calcul

✓ Contraintes limites à l'état limite ultime (E.L.U)

On adopte le diagramme contrainte- déformation suivant [40] :

Figure IV.5 : Diagramme contrainte-déformation de l'acier à l'ELU

 f_e : Contrainte limite élastique.

 ζ s : Déformation (allongement) relative de l'acier $\rightarrow \zeta_s = \frac{\Delta L}{L}$

$$\xi_{es} = \frac{fe}{E_s \gamma_s}$$

 σ_s : Contrainte de l'acier. : $\sigma_s = \frac{f_e}{\gamma_s}$

 γ_s : Coefficient de sécurité de l'acier.

 $\gamma_{s} = \begin{cases} 1,15 & Cas \, des \, situations durable soutransitoires \\ 1,00 & Cas \, des \, situations accidente lles \end{cases}$

Pour les aciers *FeE500* on a : $\zeta_{es} = \frac{500}{1,15x2,1.10^5} = 2,07\%_{00}$

✓ Contraintes limites à l'état limite de service (E.L.S)

C'est l'état où on fait les vérifications des contraintes par rapport aux cas appropriée [40] :

• Fissuration peu nuisible : pas de vérification.

• Fissuration préjudiciable
$$\sigma_s = \min\left(\frac{2}{3}f_e; \max(0.5f_e; 110\sqrt{\eta.f_{ij}})\right) = \xi(MPa)$$

• Fissuration très préjudiciable : $\sigma_s = 0.8\xi$ (*MPa*)
- η : Coefficient de fissuration
- $\eta = 1,00$ pour les aciers ronds lisse.
- $\eta = 1,60$ pour les aciers à haute adhérence.

Le coefficient d'équivalence

Le coefficient d'équivalence noté « *n* » est le rapport de : $\frac{E_s}{E_s} = 15$

n : Coefficient d'équivalence.

*E*_s : Module de déformation de l'acier.

 E_b : Module de déformation du béton.

III.8. Hypothèses de calcul

Le calcul en béton armé est basé sur les hypothèses suivantes :

- Les sections droites restent planes après déformation.
- Il n'y a pas de glissement entre les armatures d'acier et le béton.
- Le béton tendu est négligé dans le calcul de la résistance à cause de sa faible résistance à la traction.
- Le raccourcissement unitaire du béton est limité à 3,5‰ en flexion simple ou composée et à 2‰ dans la compression simple
- L'allongement unitaire dans les aciers est limité à 10‰.
- La contrainte de calcul, notée « σ_s » et qui est définie par la relation : $\sigma_s = \frac{f_e}{\gamma_s}$ est égale a :

• Rond lisse $\begin{cases} \sigma_s = 204,34MPa & Situation, durable \\ \sigma_s = 235MPa & Situation, accidentelle \end{cases}$

IV. CONCLUSION

Dans ce chapitre, nous avons présenté notre structure du point de vu géométrie, les caractéristiques des matériaux ainsi que les règlements à utiliser.

I. INTRODUCTION

L'évaluation des différentes sections des éléments de notre structure : poutres, poteaux, voiles, passe impérativement par un dimensionnement préliminaire, appelé pré dimensionnement.

Pour cela nous évaluons une descente des charges et surcharges afin de déterminer ce qui revient à chaque élément porteur, de tous les niveaux et ce jusqu'à la fondation.

Le pré dimensionnement de tous les éléments de l'ossature est conforme aux règles [39], [40] [41].

II. PRE DIMENSIONNEMENT DES DALLES

Le pré dimensionnement des éléments porteurs se fait selon les règles en vigueries, les normes techniques et les conditions de résistance et de flèche.

II.1 Plancher en corps creux

Ce types de plancher se trouve au niveau de tous les étages, il est constitué de

Poutrelles semi-préfabriquées ou coulées sur place et une dalle de compression.

la hauteur du plancher doit vérifier la condition suivante [40] :

$$e \ge \frac{Lmax}{22,5}$$

Avec :

e : Epaisseur de la dalle de compression + corps creux.

Lmax : Travée maximale entre nu d'appuis dans le sens de disposition des poutrelles.

Lmax = 4,5 - 0,3 = 4,2 m.

$$ht \ge \frac{420}{22,5} = 18,66 \ cm$$

On opte pour la hauteur du plancher ht = 21 cm (16+5) tel que 5cm est l'épaisseur de la dalle de compression.

II.2 Planchers en dalle pleine

Ce sont des planchers totalement en béton armé coulé sur place. Elles reposent sur 1, 2, 3, ou 4 appuis constitués par des poutres en béton armé.

Le pré-dimensionnement des planchers à dalles pleines se fait en se basant sur les critères suivants :

Résistance au feu

- > Pour une heure de coupe-feu : e = 7 cm.
- > Pour deux heures de coupe-feu : e = 11cm.
- > Pour quatre heures de coupe-feu : e = 17.5 cm.

Nous limitons donc notre épaisseur à e =15 cm.

• Isolation phonique

L'épaisseur du plancher doit être supérieure ou égale à 13cm, pour obtenir une bonne isolation acoustique [41].

Nous limitons donc notre épaisseur à : 15 cm

• Résistance à la flexion

Les conditions qui doivent être vérifiées selon le nombre des appuis sont les suivantes

-Dalle reposant sur deux appuis :	$\frac{l_x}{35} \le e \le \frac{l_x}{30}$
-Dalle reposant sur trois ou quatre appuis :	$\frac{l_x}{50} \le \mathbf{e} \le \frac{l_x}{40}$

Avec

e : Epaisseur de la dalle pleine.

L_x : la petite portée du panneau le plus sollicité.

Dans notre cas les dalles qui reposent sur quatre appuis ont une portée égale à Lx = 155 cm

$$\frac{155}{50} = 3,1 \le e \le \frac{155}{40} = 3,875 \text{ (cm)}$$

Nous limitons donc notre épaisseur à : 10 cm.

Le choix de l'épaisseur des dalles pleines est comme suit :

$$e = max (15, 15, 10) cm$$

On prend: $e = 15 cm$

III. EVALUATION DES CHARGES ET DES SURCHARGES[4]

III.1 Plancher terrasse inaccessible

Tableau	V.1	:	Evaluation	des	charges	du	plancher	terrasse
I unituu		•	D , araanon	400	entai Seo		pranemer	

Désignation des éléments	Epaisseur e (m)	Poids G (KN/m2)	
Gravillon de protection	0,05	1,00	
Multicouche d'étanchéité	0,02	0,12	
Isolation thermique	0,04	0,16	
Plancher à corps creux (16+5)	0,21	2,90	
Enduit de plâtre	0,02	0,20	
Forme de pente	0,10	2,20	
Total charges permanentes	$G = 6.58 \text{ kn/m}^2$		
Total charges Exploitations	$Q = 1 \text{ kn/m}^2$		

III.2 Plancher étage courant

Désignation des éléments	Epaisseur e (m)	Poids G (KN/m2)	
Cloisons de séparation	0,05	1,00	
Carrelage	0,02	0,40	
Mortier de pose	0,02	0,40	
Plancher à corps creux (16+5)	0,21	2,90	
Enduit de plâtre	0,02	0,20	
Lit de Sable	0,03	0,54	
Total charges permanentes	$G = 5,44 \text{ kn/m}^2$		
Total charges Exploitations	$Q = 2,50 \text{ kn/m}^2$		

Tableau V.2 : Evaluation des charges du plancher étage courant

III.3 Plancher dalle pleine

Tableau V.3 : Evaluation des charges de la dalle plein

Désignation des éléments	Epaisseur e (m)	Poids G (KN/m2)		
Cloisons de séparation	0,05	1,00		
Carrelage	0,02	0,40		
Mortier de pose	0,02	0,40		
Dalle pleine	0,15	3,75		
Enduit de plâtre	0,02	0,20		
Lit de Sable	0,03	0,54		
Total charges permanentes	$G = 6,29 \text{ kn/m}^2$			
Total charges Exploitations	$Q = 2,50 \text{ kn/m}^2$			

III.4 Maçonnerie

-Murs extérieurs à double cloison

Tableau V.4 : Evaluation des charges dans les murs extérieurs.

Désignation des éléments	Epaisseur e (m)	Poids G (KN/m2)		
Enduit en ciment	0,02	0,36		
Enduit en plâtre	0,02	0,20		
Brique creuse	0,10	0,90		
Brique creuse	0,15	1,35		
Lame d'aire	0,05	0,00		
Total charges permanentes	$G = 2,81 \text{ kn/m}^2$			

III.5 L'acrotère

L'acrotère est un élément secondaire exposé aux chocs thermiques, son calcul se fait à la flexion composée

III.5.1 Charges permanentes

• Surface de l'acrotère :

$$S = \left[\left(0,1x0,60 \right) + \left(0,08x0,10 \right) + \frac{\left(0,10x0,02 \right)}{2} \right] = 0,069cm^2$$

• Poids propre de l'acrotère :

 $G1 = \rho_h xS = 25x0,069 = 1,725kN / ml$

• Revêtement en ciment (e=2cm ; ρ =14kN/m³) :

 $G = \rho_{ci} xexP_{cme} = 14x0,02x(0,6+0,1)x2 = 0,392kN / ml$

Le poids total de l'acrotère :

G=G1+G2=2,117

III.5.2 Surcharge d'exploitation

IV. PRE DIMENSIONNEMENT DES PORTIQUES ET VOILES

IV.1 Les portiques

Le système des portiques est constitué des éléments horizontaux (les poutres) et les éléments verticaux (les poteaux).

IV.1.1 Les poutres

D'une manière générale on peut définir les poutres comme étant des éléments porteurs horizontaux. Il y a deux types de poutres :

- Poutres principales (porteuses)
- Poutres secondaires (non porteuses)

Le pré dimensionnement de la structure est calculé conformément aux règles [40] et [39]

IV.1.1.1 Poutres principales

Selon le règlement [40]

$$*\frac{L}{15} \le h \le \frac{L}{10}$$
$$*0.3h \le b \le 0.7h$$

Avec :

L : La portée maximale de la poutre.

- h: La hauteur de la section.
- **b**: La largeur de la section.

CHAPITRE V

- Détermination de la hauteur « h » :
- ✓ On a : L=5,90m

$$\frac{L}{15} \le h \le \frac{L}{10} \Longrightarrow 39{,}33cm \le h \le 59cm$$

On prend : h=55cm

Détermination de la largeur « b » :

 $h = 55cm: 0.3h \le b \le 0.7h \Longrightarrow 16.5cm \le b \le 38.5cm$

On prend : b=30cm

selon le règlement [39] pour la zone III

Les dimensions des poutres doivent respecter les dimensions ci-après :

 $\begin{vmatrix} b \ge 20 \text{ cm} \Rightarrow b = 30 \text{ cm} \succ 20 \text{ cm} \dots \text{ vérifier} \\ h \ge 30 \text{ cm} \Rightarrow h = 55 \text{ cm} \succ 30 \text{ cm} \dots \text{ vérifier} \\ \frac{h}{b} \le 4 \Rightarrow \frac{h}{b} = 1,83 \prec 4 \dots \text{ vérifier} \end{vmatrix}$

Condition de rigidité :

On doit vérifier que :

$$\left(\frac{h}{L}\right) \succ \left(\frac{1}{16}\right)$$
$$\frac{55}{590} = 0,093 \succ 0,0625....vérifier$$

IV.1.1.2 Poutres secondaires

Selon le règlement [40]

$$\frac{L}{15} \le h \le \frac{L}{10}$$
$$0.3h \le b \le 0.7h$$

- Détermination de la hauteur « h » :
- ✓ *On a* : L=4,20 m

$$\frac{L}{15} \le h \le \frac{L}{10} \Longrightarrow 28,00 cm \le h \le 42,00 cm$$

On prend : h=40cm

Détermination de la largeur « b » :

 $h = 35cm : 0, 3h \le b \le 0, 7h \Longrightarrow 12cm \le b \le 28cm$

On prend : b=30cm

selon le règlement [39] pour la zone III

Les dimensions des poutres doivent respecter les dimensions ci-après

 $\begin{cases} b \ge 20 \text{ cm} \Rightarrow 30 \text{ cm} \ge 20 \text{ cm} \dots \text{ vérifier} \\ h \ge 30 \text{ cm} \Rightarrow h = 40 \text{ cm} \succ 30 \text{ cm} \dots \text{ vérifier} \\ \frac{h}{b} \le 4 \Rightarrow \frac{h}{b} = 1,33 \prec 4 \dots \text{ vérifier} \end{cases}$

Condition de rigidité :

On doit vérifier que :

$$\left(\frac{h}{L}\right) \succ \left(\frac{1}{16}\right)$$

 $\frac{40}{420} = 0,095 \succ 0,0625...$ vérifier

Conclusion

Tableau	V.5 :	Dimensions	finals	des	poutres
---------	-------	------------	--------	-----	---------

	Plancher terrasse (cm ²)	Plancher courant (cm ²)
Poutres principales	30×55	30×55
Poutres secondaires	30×40	30×40

IV.1.2 Les poteaux

Les poteaux sont près dimensionnés en compression simple en choisissant 3 types de poteaux les plus sollicités de la structure. C'est-à-dire, un poteau central, un poteau de rive et un poteau d'angle.

Chaque type de poteau est affecté de la surface du plancher chargé lui revenant, et on utilisera un calcul basé sur la descente de charge. On appliquera la loi de dégression des charges d'exploitation.

Etapes de pré dimensionnement

- Calcul de la surface reprise par chaque poteau.
- Evaluation de l'effort normal ultime de la compression à chaque niveau.
- La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau.
- La section du poteau obtenue doit vérifier les conditions minimales [39].

CHAPITRE V

Loi de dégression

Comme il est rare que toutes les charges d'exploitation agissent simultanément, on applique pour leur détermination la loi de dégression qui consiste à réduire les charges identiques à chaque étage de 10% jusqu'à 0,5Q [42].

Q : Charge d'exploitation.

Ce qui donne :
$$Q_0 + \frac{3+n}{2n}(Q_1 + Q_2 + \dots + Q_n)$$
 Donnée par

Avec :

n: Nombre d'étage.

Q₀: La structure d'exploitation sur la terrasse.

 Q_1 , Q_2 ,...., Q_n : Les surcharges d'exploitation des planchers respectifs.

Niveau des planchers	Surcharge	\sum surcharge	\sum surcharge (kN/m ²)
Т	Q_0	$\sum_{0}=Q_{0}$	1
P5	\mathbf{Q}_1	$\sum_{1}=Q_{0}+Q_{1}$	3,5
P4	Q_2	$\sum_{2}=Q_{0}+0,95(Q_{1}+Q_{2})$	5,75
P3	Q3	$\sum_{3}=Q_{0}+0,9(Q_{1}+Q_{2}+Q_{3})$	7,75
P2	Q4	$\sum_{4}=Q_{0}+0,85(Q_{1}+Q_{2}+Q_{3}+Q_{4})$	9,5
P1	Q5	$\sum_{5}=Q_{0}+0,8(Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5})$	11
P.RDC	Q_6	$\sum_{6} = Q_0 + 0,75(Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6)$	12,25
P.SS	Q7	$\sum_{7} = Q_0 + 0,71(Q_1 + \dots + Q_7)$	13,43

Tableau V.6 : Dégression des surcharges

Dimensionnement des poteaux

Le pré dimensionnement est déterminé en supposant que les poteaux sont soumis à la compression selon la formule suivante :

$$N_{u} = \alpha \left[\frac{Br.f_{c28}}{0.9\gamma_{b}} + \frac{A_{s}fe}{\gamma_{s}} \right]$$

Avec :

 N_u : Effort normal ultime (compression) =1,35G+1,5Q.

 α : Coefficient réducteur tenant compte de la stabilité ($\alpha = f(\lambda)$).

λ: Elancement d'EULER
$$\left(\lambda = \frac{l_f}{i}\right)$$
.

l_f: Longueur de flambement.

i: Rayon de giration
$$\left(i = \sqrt{\frac{I}{B}}\right)$$
.

I : Moment d'inertie de la section par rapport à l'axe passant par son centre de gravité et perpendiculaire au plan de flambement.

- Poteau carré $\left(I = \frac{bh^3}{12}\right)$
- Poteau circulaire $\left(I = \frac{\lambda D^4}{64}\right)$
- ✓ B : Surface de la section du béton
- Poteau carré (B=a x b)
- Poteau circulaire $\left(B = \frac{\lambda D^2}{4}\right)$
- ✓ γ_b : Coefficient de sécurité pour le béton (γ_b =1,50).....situation durable.
- ✓ γ_s : Coefficient de sécurité pour l'acier (γ_s =1,15).....situation durable.
- ✓ fe : Limite élastique de l'acier (fe=500MPa).
- ✓ f_{c28} : Contrainte caractéristique du béton à 28 jours (f_{c28} =25MPa).
- ✓ A_s : Section d'acier comprimée.
- Br : Section réduite d'un poteau, obtenue en réduisant de sa section réelle 1cm d'épaisseur sur toute sa périphérie.
- Poteau carré $B_r = (a-0,02) (b-0,02) [m^2].$
- Poteau circulaire $B_r = \frac{\pi . (D 0.02)^2}{4}$ [m²].

Figure V.1 : Section réduite du poteau

Figure V.2 : Section réduite du poteau circulaire

Selon le règlement [40]

$$0,2\% \le \frac{A_s}{B} \le 5\%$$

On cherche à dimensionner le poteau de telle sorte que : $\frac{A_s}{B} = 1\%$

•
$$\alpha = \frac{0.85}{1 + 0.2\left(\frac{\lambda}{35}\right)^2}$$
 si $\lambda = 50$
• $\alpha = 0.6\left(\frac{50}{\lambda}\right)^2$ si $50 \prec \lambda \prec 100$

Pour les poteaux carrés, il est préférable de prendre $\lambda = 35 \rightarrow \alpha = 0,708$ On tire de l'équation (1) la valeur de Br :

$$Br \ge \frac{N_u}{\alpha \left(\frac{f_{c28}}{0.9\gamma_b} + \frac{A_s}{B}\frac{fe}{\gamma_s}\right)} = 0.062N_u$$

Le minimum requis [39]:

Pour une zone sismique III, on doit avoir au minimum :

$$\begin{cases} * Min(a;b) \ge 30cm \\ * Min(a;b) \succ \frac{h_e}{20} \\ * \frac{1}{4} \prec \frac{a}{b} \prec 4 \end{cases}$$

Avec :

(a ;b) : Dimensions de la section.

he: Hauteur d'étage.

On opte pour des poteaux de section carrée (a=b).

Vérification à l'ELS

Vérifier la section à l'ELS, selon la formule :

$$\sigma_{\text{ser}} = \frac{N_{\text{ser}}}{B + \eta A_{\text{s}}} \le 0.6 f_{c28}$$

Avec :

 N_{ser} : Effort normal à l'ELS ($N_{ser}=N_G+N_Q$).

B : Section de béton du poteau.

CHAPITRE V

 A_s : Section des armatures ($A_s=1\%B$).

N : Coefficient d'équivalence
$$\left(n = \frac{E_s}{E_b} = 15\right)$$
.

 σ_{ser} : Contrainte de compression à l'ELS.

$$\sigma_{\rm ser} = \frac{N_{\rm ser}}{1,15 \text{ B}} \le 0.6 f_{c28} = 15 \text{MPa}$$

Les poteaux les plus sollicités sont :

- Poteau central: $S = 20.25 m^2$
- Poteau de rive : $S = 14.63 \text{ m}^2$
- poteau circulaire: $S = 6,75m^2$
- Poteau d'angle : $S = 4.41 \text{ m}^2$

Les résultats sont récapitulés dans les tableaux suivants :

✓ Les poteaux centraux S= 20,25 m²

Tableau V.7 : Calcul des différents poids

Poids du plancher terrasse : G×S=6,58×20,25	133,25 KN
Poids du plancher étage courant : G×S=5,44×20,25	110,16 KN
Poids de la poutre long : $L_{pp} \times h \times b \times \rho_b = 4,5 \times 0,55 \times 0,3 \times 25$	18,56 KN
Poids de la poutre transe : $L_{ps} \times h \times b \times \rho_b = (4,5-0.3) \times 0,40 \times 0,3 \times 25$	12,6 KN
Poids du poteau étage courant : $h_p \times a \times b \times \rho_b = (4,08-0,55) \times (0,3)^2 \times 25$	7,94 KN
Poids du poteau étage sous-sol : $h_p \times a \times b \times \rho_b = (3,74-0,55) \times (0,3)^2 \times 25$	7,18 KN

Etage	Niveau	Désignation des éléments	G(KN)	Q(KN)
5 ème	N1	Poids du plancher terrasse	133,25	20,25
		Poids des poutres	31,16	
		Poids du poteau	7,94	
4 ^{ème}	N2	Venant de N1	167,63	70,88
		Poids du plancher	110,16	
		Poids des poutres \succ A	31,16	
		Poids de poteau	7,94	
3 ème	N3	Venant de N2	312,17	116,44
		А	144,54	
2 ^{ème}	N4	Venant de N3	456,71	156,94
		А	144,54	
1 ^{ème}	N5	Venant de N4	601,25	192,38
		А	144,54	
RDC	N6	Venant de N5	745,79	222,75
		А	144,54	
S/SOL	N7	Venant de N6	890,33	248,06
		Poids du plancher courant	110,22	
		Poids des poutres	31,16	
		Poids du poteau sous-sol	7,18	

 Tableau V.8 : Calcul des charges du poteau central

Etage	NG	Nq	Nu	Br	a=b	Le choix	Nser	σ_{ser}	OBS
	(KN)	(KN)	(KN)	(cm ²)	(cm)		(KN)	(MPa)	
5 ^{ème}	167,63	20,25	256,69	159,15	14,62	30*30	187,89	1,82	OK
4 ème	312,17	70,88	527,78	327,22	20,09	30*30	383,67	3,71	OK
3 ème	456,71	116,44	791,26	490,58	24,15	35*35	573,18	4,07	OK
2 ^{ème}	601,25	156,94	1047,15	649,23	27,48	35*35	758,23	5,38	OK
1 ^{ème}	745,79	192,38	1295,45	803,18	30,34	40*40	938,22	5,10	OK
RDC	890,33	222,75	1536,15	952,41	32,86	40*40	1113,14	6,05	OK
S/SOL	1034,17	248,06	1768,3	1096,35	35,11	45*45	1282,29	5,51	OK

Tableau V.9 : Choix final des poteaux centraux

\checkmark Les poteaux du rives S= 14,63 m²

Tableau V.10 : calcul des différents poids

Poids du plancher terrasse : G×S=6,58×14,63	96,27 KN
Poids du plancher étage courant : G×S=5,44×14,63	79,59KN
Poids de la poutre long : $L_{pp} \times h \times b \times \rho_b = 3,25 \times 0,55 \times 0,30 \times 25$	13,41 KN
Poids de la poutre transe : $L_{ps} \times h \times b \times \rho_b = (4, 5-0, 3) \times 0, 40 \times 0, 3 \times 25$	12,6 KN
Poids de l'acrotère :LC.H×G acrotère=4,5×2,117	9,53 KN
Poids du mur :L×h mur×G mur=4,5×(4,08-0,40)×2,81	46,53 KN
Poids du poteau étage courant :hp×a×b×pb=(4,08-0,55)×(0,3) ² ×25	7,94KN
Poids du poteau étage sous-sol :hp×a×b×pb =(3,74-0,55)×(0,3) ² ×25	7,18 KN

 Tableau
 V.11 : Calcul des charges du poteau de rive

Etage	Niveau	Désignation des éléments	G(KN)	Q(KN)
5 ^{ème}	N1	Poids du plancher terrasse	96,27	14,63
		Poids des poutres	26,01	
		Poids du poteau	7,94	
		Poids de l'acrotère	9,53	
4 ème	N2	Venant de N1	139,75	51,21
		Poids du plancher	79,59	
		Poids des poutres A	26,01	
		Poids de poteau	7,94	
		Poids du mur	46,53	
3 ème	N3	Venant de N2	299,82	84,12
		А	160,07	
2 ^{ème}	N4	Venant de N3	459,89	113,38
		А	160,07	
1 ème	N5	Venant de N4	619,96	138,99
		А	160,07	
RDC	N6	Venant de N5	780,03	160,93
		А	160,07	
S/SOL	N7	Venant de N6	940,1	179,22
		Poids du plancher courant	79 ,59	
		Poids des poutres	26,01	
		Poids du poteau sous-sol	7,18	
		Poids du mur	46,53	

T (N .T	N T		D		÷	N T		ODC
Etage	NG	NQ	$\mathbf{N}_{\mathbf{u}}$	Br	a=b	Le choix	Nser	σ_{ser}	OBS
	(KN)	(KN)	(KN)	(cm ²)	(cm)		(KN)	(MPa)	
5 ème	139,75	14,63	210,6	130,57	13,42	30*30	154,38	1,49	OK
4 ^{ème}	299,82	51,21	481,57	298,57	19,27	30*30	351,03	3,39	OK
3 ème	459,89	84,12	747,03	463,59	23,53	35*35	544,01	3,86	OK
2 ^{ème}	619,96	113,38	1007,02	624,35	26,99	35*35	733,34	5,21	OK
1 ^{ème}	780,03	138,99	1261,53	782,15	29,97	35*35	919,02	6,52	OK
RDC	940,1	160,93	1510,53	936,52	32,60	40*40	1101,03	5,98	OK
S/SOL	1099,41	179,22	1753,03	1086,88	34,96	40*40	1278,63	6,93	OK

Tableau V.12 : Choix final des poteaux de rive	
--	--

✓ Les poteaux du rives (circulaire) S= 6,75 m²

Tableau V.13 : calcul des différents poids

1	
Poids du plancher terrasse : G×S=6,58×6,75	44,42 KN
Poids du plancher étage courant : G×S=5,44×6,75	36,72KN
Poids de la poutre long : $L_{pp} \times h \times b \times \rho_b = 4,5 \times 0,55 \times 0,30 \times 25$	18,56 KN
Poids de la poutre transe : $L_{ps} \times h \times b \times \rho_b = (1,5-0,3) \times 0,40 \times 0,3 \times 25$	3,6 KN
Poids de l'acrotère :LC.H×G acrotère=4,5×2,117	9,53 KN
Poids du mur :L×h mur×G mur=4,5×(4,08-0,55)×2,81	44,64 KN
Poids du poteau étage courant :hp×a×b×pb=(4,08-0,55)×(0,3) ² ×25	7,94 KN
Poids du poteau circulaire étage courant : $(4,08-0,55) \times \frac{\pi \times 0.35^2}{4} \times 2$	8,49KN
Poids du poteau étage sous-sol : $h_p \times a \times b \times \rho_b = (3,74-0,55) \times (0,3)^2 \times 25$	7,18 KN

Tableau	V.14 :	Calcul	des	charges	du	poteau c	le rive
---------	--------	--------	-----	---------	----	----------	---------

Etage	Niveau	Désignation des éléments	G(KN)	Q(KN)
5 ème	N1	Poids du plancher terrasse	44,42	6,75
		Poids des poutres	22,16	
		Poids du poteau	7,94	
		Poids de l'acrotère	9,53	
4 ^{eme}	N2	Venant de N1	79,33	23,63
		Poids du plancher	36,72	
		Poids des poutres A	22,16	
		Poids de poteau	7,94	
		Poids du mur	44,64	
3 ème	N3	Venant de N2	187,93	38,81
		А	108,6	
2 ème	N4	Venant de N3	296,53	52,31
		А	108,6	
1 ème	N5	Venant de N4	405,13	64,13
		Poids de poteau	8,49	
RDC	N6	Venant de N5	413,98	74,25
		Poids de poteau	8,49	

Etage	NG (KN)	NQ (KN)	Nu (KN)	Br (cm ²)	D (cm)	Le choix	N _{ser} (KN)	σ _{ser} (MPa)	OBS
1 ^{ème}	413,83	64,13	654,87	408,31	24,81	70	477,96	1,25	OK
RDC	422,83	74,25	682,96	425,02	25,27	70	497,08	1,30	OK

Tableau V.15 : Choix final des poteaux circulaire

vérification des poteaux au flambement

$$\lambda = \frac{\mathrm{Lf}}{i} \leq 35$$

Lf =0,7×L0

$$i = \sqrt{\frac{I}{B}} = \frac{4 \times Lf}{D}$$

Tableau V.16 : Tableau de vérification des poteaux au flambement

$l_0(m)$	D(m)	$l_{f} = 0,7l_{0}(m)$	λ	$\lambda \leq 35$
8,16	0,70	5,715	32,66	C.V

✓ Les poteaux d'angle S=6,00 m²

Tableau V.17 : calcul des différents poids

Poids du plancher terrasse : G×S=6,58×6,00	39,48 KN
Poids du plancher étage courant : G×S=5,44×6,00	32,64 KN
Poids de la poutre long : $L_{pp} \times h \times b \times \rho_b = 2,45 \times 0,55 \times 0,30 \times 25$	10,11 KN
Poids de la poutre transe : $L_{ps} \times h \times b \times \rho_b = (2,45-0,3) \times 0,40 \times 0,3 \times 25$	6,45 KN
Poids de l'acrotère :LC.H×G acrotère=(2,45+2,45)×2,117	10,37 KN
Poids du mur :L×h mur×G mur=4,9×(4,08-0,55)×2,81	48,60 KN
Poids du poteau étage courant :hp×a×b×pb=(4,08-0,55)×(0,3) ² ×25	7,94 KN
Poids du poteau étage sous-sol : $h_p \times a \times b \times \rho_b = (3,74-0,55) \times (0,3)^2 \times 25$	7,18 KN

Etage	Niveau	Désignation des éléments	G(KN)	Q(KN)
5 ^{ème}	N1	Poids du plancher terrasse	39,48	6,00
		Poids des poutres	16,56	
		Poids du poteau	7,94	
		Poids de l'acrotère	10,37	
4 ^{ème}	N2	Venant de N1	71,93	21,00
		Poids du plancher	32,64	
		Poids des poutres A	16,56	
		Poids de poteau	7,94	
		Poids du mur	48,60	
3 ème	N3	Venant de N2	178,7	34,50
		А	106,77	
2 ^{ème}	N4	Venant de N3	285,47	46,50
		А	106,77	
1 ^{ème}	N5	Venant de N4	392,24	57,00
		А	106,77	
RDC	N6	Venant de N5	499,01	66,00
		А	106,77	
S/SOL	N7	Venant de N6	605,78	73,50
		Poids du plancher courant	32,64	
		Poids des poutres	16,56	
		Poids du poteau sous-sol	7,18	
		Poids du mur	48,60	

Tableau V.19 : Choix final des poteaux d'angle.

Etage	NG	Nq	Nu	Br	a=b	Le choix	Nser	σ_{ser}	OBS
	(KN)	(KN)	(KN)	(cm ²)	(cm)		(KN)	(MPa)	
5 ^{ème}	71,93	6,00	106,10	65,78	10,11	30*30	77,93	0,75	OK
4 ^{ème}	178,7	21,00	270,99	168,01	14,96	30*30	199,7	1,92	OK
3 ème	285,47	34,50	434,45	269,36	18,41	30*30	319,97	3,09	OK
2 ^{ème}	392,24	46,50	595,66	369,30	21,22	35*35	438,74	3,11	OK
1 ^{ème}	499,01	57,00	758,66	470,37	23,69	35*35	556,01	3,95	OK
RDC	605,78	66,00	911,32	565,02	25,77	35*35	671,78	4,77	OK
S/SOL	711,79	73,50	1064,74	660,14	27,69	40*40	785,29	4,27	OK

✓ Choix des sections des poteaux

Les poteaux concernant notre choix final des sections des poteaux sont regroupés dans le tableau suivant :

Etages	Sections carrées (axb) cm2	Section circulaire (D) cm2
P5	30x30	/
P4	30x30	/
P3	35x35	/
P2	35x35	/
P1	40x40	70
RDC	40x40	70
Sous/S	45x45	/

Tableau V.20 :	Choix des sections d	es poteaux
----------------	----------------------	------------

IV.2 Les voile

Les voiles sont considérés comme des éléments satisfaisants la condition $L \ge 4a$ [39]

L : La longueur du voile.

a : L'épaisseur du voile.

He: hauteur libre d'étage.

Figure V.3 : Coupe de voile en élévation.

Figure V.4 : Coupes de voiles en plan.

Dans le cas contraire, ces éléments sont considérés comme des éléments linéaires.

L'épaisseur minimale est de 15cm. De plus, l'épaisseur doit être déterminée en fonction de la hauteur d'étage h_e et des conditions de rigidité aux extrémités comme suit :

 $a_{\min} \ge \max \left\{ 15 \text{ cm ; } h_e / 20 \right\}$ Avec :

h_e : Hauteur d'étage.

a min: Epaisseur de voile

✓ pour le **SS :** h_e = 3,74-0,45=3,29m

	$a_{min} \ge max$	(15cm; 16,45cm)	=>	$a_{min} \geq$	16,45cm
✓	pour le RDC e	et les étages courantes : h _{e=} 4,	08-0	,45=3,63	3m
	$a_{min} \ge max$	(15cm; 18,15cm)	=>	a $_{min} \geq$	18,15cm
	On adopte alo	rs pour les voiles une épaisse	ur de	e: a =	20cm

V. CONCLUSION

Après avoir fait le pré -dimensionnement des éléments structuraux, et la vérification de toutes les conditions nécessaires, nous allons présenter les résultats comme suit :

- ✓ Nous adopterons pour les planchers corps creux une épaisseur e=21cm (16+5) cm
- Pour les dalles pleines nous adopterons une épaisseur de 15 cm
 Le choix des sections des poutres est le suivant :
- ✓ Poutres principales $(30 \times 55) \text{ cm}^2$
- ✓ Poutres secondaires (30×40) cm²

Le choix des sections des poteaux est le suivant :

- Pour les poteaux carrés
- ✓ Sous-sol (45×45)
- $\checkmark \text{ RDC et } 1^{\text{er}} \qquad (40 \times 40)$
- $\checkmark 2^{\text{éme}} \text{et } 3^{\text{éme}} \tag{35 \times 35}$
- $\checkmark 4^{\acute{e}me} et5^{\acute{e}me} \qquad (30 \times 30)$
- Pour les poteaux circulaires
- ✓ RDC et 1^{er} D=70cm

L'épaisseur des voiles est fixé à a=20cm

I. INTRODUCTION

Les éléments secondaires sont des éléments porteurs qui ne font pas partie du système de contreventement, c'est-à-dire des éléments non structuraux n'apportant pas de contribution significative à la résistance aux actions sismiques. Dans ce chapitre, le calcul va concerner les éléments suivants :

- ✓ L'acrotère.
- \checkmark Les planchers.
- \checkmark Les escaliers.

II. ACROTERE

L'acrotère est sollicité à la flexion composée, il est calculé comme étant une console encastrée au niveau du plancher terrasse, soumis à

- ✓ Son poids propres sous forme d'un effort normal vertical.
- ✓ Une force horizontale due à une main courante, ou bien due à l'effet du séisme ou du vent.
 Le calcul se fait pour une bande de 1m de largeur dont les dimensions sont les suivantes :
- ✓ Largeur b=100cm
- ✓ Hauteur H=60cm
- ✓ Epaisseur e=10cm

Figure VI.1 : Dimensions de l'acrotère.

II.1.Evaluation des charges

- > Charges permanentes
- Surface de l'acrotère :

$$S = \left[(0,1x0,60) + (0,08x0,10) + \frac{(0,10x0,02)}{2} \right] = 0,069cm^2$$

• Poids propre de l'acrotère :

 $G1 = \rho_h xS = 25x0,069 = 1,725kN / ml$

• Revêtement en ciment (e=2cm ; ρ =14kN/m³) :

$$G = \rho_{ci} xexP_{cme} = 14x0,02x(0,6+0,1)x2 = 0,392kN / ml$$

Le poids total de l'acrotère :

G=G1+G2=2,117

> Charge d'exploitation

Q=1,00kN/ml (main courante)

Figure VI.2 : Sollicitation de l'acrotère.

Forces horizontales (**F**_p)

L'action des forces horizontales (F_p). [39]

Fp=4A.Cp.Wp

Avec:

A : Coefficient d'accélération de zone obtenu dans le tableau (4-1) pour la zone III et le groupe d'usage appropriés : groupe 1B [A= 0.3]

C_p: Facteur de force horizontale donnée par le tableau (6-1)... [C_p=0,8].

W_P: Poids de l'acrotère : WP= 2,117 KN/ml

Fpp=4x0, 3x0, 8x2,117=2,032 KN/ml

 $Q_u=Max(1,5Qu;F_p)$

$$\left.\begin{array}{l}
F_p = 2,032kN\\
1,5Q = 1,5kN
\end{array}\right\} \Rightarrow Q_u = Fp = 2,032kN$$

Donc pour une bande de 1m de largeur: G=2,117kN/ml et Q=2,032KN/ml

II.2. Calcul des efforts

Pour une bande de 1m de largeur :

≻ E.L.U :

 $N_{u} = 1,35G \Rightarrow N_{u} = 1,35 \times 2,117 = 2,86KN$ $M_{u} = 1,5Q_{u}h \Rightarrow N_{ser} = 1,5 \times 2,032 \times 0,6 = 1,83KN$ $T_{u} = 1,5Q_{u} \Rightarrow T_{u} = 1,5 \times 2,032 = 3,048KN$

≻ E.L.S :

$$N_{ser} = G \Longrightarrow N_{ser} = 2,117KN$$
$$M_{ser} = Q_u h \Longrightarrow N_{ser} = 2,032 \times 0,6 = 1,219KN$$
$$T_{ser} = Q_u \Longrightarrow T_{ser} = 2,032KN$$

II.3. Ferraillage de l'acrotère

h=10cm ; b=100cm ; f_{c28}=25MPa ; σ_{bc}=14,17MPa ; c=c'=2,5cm ; fe=500Mpa

0,9 h = 9 cm

Figure VI.3 : ferraillage de l'acrotère

CHAPITRE VI

• Calcul de l'excentricité

$$e_{0} = \frac{M_{u}}{N_{u}} = \frac{1,83}{2,86} = 63,98cm$$

$$e_{0} \succ \frac{h}{2} - c' \Rightarrow \text{Section particlement comprimée.}$$

$$\frac{h}{2} - c' = \frac{10}{2} - 2,5 = 2,5cm$$

Le centre de pression se trouve à l'extérieur de la section.

Les armatures seront calculées à la flexion simple en équilibrant le moment fictif M_{f} .

• Calcul du moment fictif « M_f »

$$M_{f} = M_{u} + N_{u} \left(\frac{h}{2} - c'\right) = 1,9kNm$$
$$\mu = \frac{M_{f}}{bd^{2}\sigma_{bc}} = 0,016$$

Les armatures comprimées ne sont pas nécessaires.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 0,02$$

$$Z = d(1 - 0,4\alpha) = 8,92cm$$

$$\mu = 0,016 \prec 0,186 \Longrightarrow \zeta_s = 10\% \quad et \quad \sigma_s = \frac{fe}{\gamma_s} = 435MPa$$

$$A_{sf} = f(M_f)$$

$$A_{sf} = \frac{M_f}{Z\sigma_s} = 48,97mm^2$$

$$\bullet A_{s1} = A'_s = 0$$

$$\bullet A_{s2} = A_{sf} - \frac{N_u}{\sigma_s} = 36,8mm^2$$

$$Donc: \begin{cases} A_{s1} = 0cm^2 \\ A_{s2} = 0,36cm^2 \end{cases}$$

II.4. Vérification de la section d'acier

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité **[40]** :

$$A_s^{\min} \ge Max \left\{ \frac{bh}{1000}; 0, 23bd \frac{f_{t28}}{fe} \right\}$$

Avec :

 $f_{t28}=2,1MPa ; fe=500MPa ; b=100cm ; c=c'=2,5cm$ $A_s^{\min} \ge Max \{1cm^2; 0,87cm^2\} = 1cm^2$

Donc : on opte finalement pour $6T6=1,70cm^2$

Avec un espacement
$$S_t = \frac{100}{5} = 20cm$$
.

II.5. Armatures de répartitions

$$A_{r} = \frac{A_{s}}{4} \Longrightarrow A_{r} \ge 0.425 cm^{2}$$

On choisit 4T6=1,13cm² avec un espacement St=15 cm

II.6. Vérification à l'ELS

La fissuration est considérée comme préjudiciable.

$$e_0 = \frac{M_{ser}}{N_{ser}} = 57,58cm$$

On a : $e_0 \succ \frac{h}{2} - c' \Rightarrow$ La section est partiellement comprimée (SPC).

C : La distance entre le centre de pression et la fibre la plus comprimée.

$$C=d-e_A$$

Avec:
$$e_A = \frac{M_{ser}}{N_{ser}} + \left(d - \frac{h}{2}\right) = 61,58cm \Longrightarrow C = -52,58cm \qquad (C \prec 0)$$

Figure VI.4 : Distance de l'axe neutre

On doit résoudre l'équation suivant [40] :

$$y_c^3 + py_c + q = 0$$

 y_c : Distance entre le centre de pression et l'axe neutre.

Avec :

n = 15;
$$\begin{cases} p = -3c^{2} + 6n(c - c')\frac{A_{s}}{b} + 6n(d - c)\frac{A_{s}}{b} = -8231,31 \\ et \\ q = -2c^{3} - 6n(c - c')^{2}\frac{A_{s}}{b} - 6n(d - c)^{2}\frac{A_{s}}{b} = 286874,7 \end{cases}$$

La solution de l'équation du troisième degré est obtenue par :

$$\Delta = q^{2} + \left(\frac{4p^{3}}{27}\right) = -3,26.10^{8}$$

$$\cos\varphi = \frac{3q}{2p}\sqrt{\frac{-3}{p}} = -0,998 \Longrightarrow \varphi = 176,38^{\circ}$$

$$a = 2\sqrt{\frac{-p}{3}} = 104,76$$

$$y_{1} = a\cos\left(\frac{\varphi}{3} + 120\right) = -104,73cm$$

$$y_{2} = a\cos\left(\frac{\varphi}{3}\right) = 54,28cm$$

$$y_{3} = a\cos\left(\frac{\varphi}{3} + 240\right) = 50,45cm$$

La solution qui convient est : $y_c=54,28cm$

Car:
$$0 < y_{ser} = y_c + c < d$$

 $0 < y_{ser} = 54,28-52,58 = 1,7cm < 9cm$
Donc: $\begin{cases} y_{ser} = 1,7cm \\ y_c = 54,28cm \end{cases}$

• Calcul du moment d'inertie

$$I = \frac{b}{3} y_{ser}^3 + n \Big[A_s \big(d - y_{ser} \big)^2 + A'_s \big(y_{ser} - c' \big)^2 \Big] = 638,83 cm^4 \qquad ; \quad n = 15$$

- > Verification des contraintes
- Contrainte du béton

$$\sigma_{bc} = \left(\frac{N_{ser}}{I} y_{c}\right) y_{ser} \le \overline{\sigma}_{bc} = 0,6 f_{c28} = 15MPa$$

$$\sigma_{bc} = \left(\frac{2,117.10^{3} x54,28.10}{638,83.10^{4}}\right) x 17 = 3,06MPa \prec \overline{\sigma}_{bc} \dots v \acute{erifi}\acute{e}e$$

CHAPITRE VI

• Contraintes de l'acier

$$\sigma_{s} = n \left(\frac{N_{ser}}{I} y_{c}\right) (d - y_{ser}) \leq \overline{\sigma}_{s} \dots Aciertendu$$

$$\sigma_{s}' = n \left(\frac{N_{ser}}{I} y_{c}\right) (y_{ser} - c') \leq \overline{\sigma}_{s} \dots Acier comprimé$$

$$\overline{\sigma}_{s} = Min \left(\frac{2}{3} fe; Max(0,5 fe; 110\sqrt{\eta f_{ij}})\right) = 250 MPa \dots (\eta = 1,6 pour les aciers HA)$$

 $\sigma_{s} = 126,96MPa \prec \overline{\sigma}_{s}....v\acute{e}rifi\acute{e}e$ $\sigma_{s}' = 66,32MPa \prec \overline{\sigma}_{s}....v\acute{e}rifi\acute{e}e$

II.7. Vérification de l'effort tranchant

La contrainte de cisaillement est donnée par la formule suivante :

$$\tau_{u} = \frac{T_{u}}{bd} \le \bar{\tau}_{u} = Min\{0, 1f_{c28}; 4MPa\} = 2,5MPa$$

$$\tau_{u} = \frac{3,048.10^{3}}{90.10^{3}} = 0,033MPa \prec \bar{\tau}_{u}.....vérifiée$$

Figure VI.5 : Ferraillage de l'acrotère.

III.ETUDE DES PLANCHERS

Les planchers sont des éléments horizontaux de la structure capables de reprendre les charges verticales.

On peut considérer les corps creux comme des poids morts n'interviennent pas dans la résistance de l'ouvrage.

Plancher = Poutrelles + Corps creux + Dalle de compression.

III.1. Plancher en corps creux

Ce type de plancher est constitué de corps creux (hourdis creux) qui ne sont que des éléments de remplissage, des poutrelles qui sont des éléments principaux de résistance, et d'une dalle de compression.

Le calcul sera fait pour deux éléments :

- Poutrelle.
- Dalle de compression.

III.1.1.Etude des poutrelles

Les poutrelles sont des éléments préfabriqués, leur calcul est associé à une poutre continue semi encastré aux poutres de rives.

III.1.1.1. Dimensions de la poutrelle

$$\frac{1}{25} \le \frac{h}{l} \le \frac{1}{20}$$
$$\frac{450}{25} \le h \le \frac{450}{20}$$

18≤ h ≤22,5

On prend: ht = 21cm (16 + 5)

h = 16cm; b = 65cm; $h_0 = 5cm$; $b_0 = 12cm$.

 $c = \frac{b - b_0}{2} = 26,5cm.$

III.1.1.2. Méthodes Calcul des moments

Étant donné que les poutrelles étudiées se présentent comme des poutres continues sur plusieurs appuis, leurs études se feront selon l'une des méthodes suivantes :

Méthode forfaitaire

Domaine d'application :

 $\mathbf{H}_{1}: Q \le \max\{2G ; 5kN/m^2\}$

H₂: Les moments d'inertie des sections transversales sont les même dans les différentes travées en continuité.

H₃: Les portées successives sont dans un rapport compris entre 0,8 et 1,25.

H₄: Fissuration non préjudiciable.

Exposé de la méthode :

$$\alpha = \frac{G}{G+Q}$$

$$\begin{split} M_t \geq & \left\{ \begin{matrix} 1,05 \ M_0 \\ (1+0,3\alpha) M_0 \end{matrix} \right\} - \frac{M_w - M_e}{2} \\ \\ M_t \geq & \left\{ \begin{matrix} (1+0,3\alpha) \frac{M_0}{2} \dots \dots \dots \text{travée intermédiaire} \\ (1,02+0,3\alpha) \frac{M_0}{2} \dots \dots \dots \dots \dots \dots \dots \text{trvée de rive} \end{matrix} \right. \end{split}$$

Avec :

 M_0 : La valeur minimale du moment fléchissant dans chaque travée (moment isostatique).

 M_w et M_e : Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

 M_t : Le moment maximal en travée dans la travée considérée.

Moment sur appuis :

 $M=0,6M_0$: pour une poutre à deux travées

 $M=0.5M_0$: pour les appuis voisins des appuis de rives d'une poutre à plus de deux travées $M=0.4M_0$; pour les autres appuis intermédiaires d'une poutre à plus de deux travées

CHAPITRE VI

Méthode de CAQUOT

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

Exposé de la méthode :

• Moment sur appuis: (charges réparties).

$$M_{a} = -\frac{q_{w}l_{w}^{\prime 3} + q_{e}l_{e}^{\prime 3}}{8.5(l_{w}^{\prime} + l_{e}^{\prime})}$$

• Moment en travée:

$$M_{max} = M_0 + \frac{M_w + M_e}{2} + \frac{(M_w - M_e)^2}{16 * M_0}$$

Avec:

 M_0 : La valeur maximale du moment fléchissant dans chaque travée (moment isostatique).

$$M_0 = q \frac{l^2}{8}$$

- M_w et M_e :Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.
- q_w : Charge répartie à gauche de l'appui considéré.
- q_e : Charge répartie à droite de l'appui considéré.

On calcul, de chaque côté de l'appui, les longueurs de travées fictives ${}^{"}l'_{w}$ à gauche et ${}^{"}l'_{e}$ à droite, avec :

- l' = l: Pour une travée de rive.
- l' = 0.8l: Pour une travée intermédiaire.

Où «l» représente la portée de la travée libre

III.1.1.3.Effort tranchant

$$\begin{cases} T_w = \frac{ql}{2} + \frac{\left(M_e - M_w\right)}{l} \\ T_e = -\frac{ql}{2} + \frac{\left(M_e - M_w\right)}{l} \end{cases}$$

Avec :

- → T_w : Effort tranchant à gauche de l'appui considéré.
- T_e : Effort tranchant à droite de l'appui considéré.

III.1.1.4.Calcul des poutrelles

Le calcul des poutrelles se fait en deux étapes :

_

1^{ère} Etapes : avant le coulage de la table de compression.

La poutrelle est considérée simplement appuyée sur deux appuis sur ses deux extrémités, elle doit supporter son poids propre, le poids du corps creux et la surcharge d'exploitation.

Figure VI.6 : Coupe transversale de la poutrelle

h = 16cm; b = 65cm; $h_0 = 5cm$; $b_0 = 12cm$.

$$c = \frac{b-b_0}{2} = 26,5cm$$

Figure VI.7 : Dimensions des poutrelles

- Poutrelle de travée L=4,5m

On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :
 Son poids propre.

-Poids du corps creux.

D'où

-Surcharge due à l'ouvrier Q=1kN/m²

Evaluation des charges et surcharges

-Charge permanente:

Poids propre de poutrelle

$$G_p = 0.12 \times 0.05 \times 25 = 0.15 \text{kN/ml}$$

-Poids de corps creux:

$$G_{cc} = 0.65 \times 0.2 \times 14 = 1.82$$
kN/ml
 $G = G_{cc} + G_{p} = 1.97$ kn/ml

-surcharge d'exploitation

- $\mathbf{Q} = 1 \ge 0.65 = 0.65 \text{ KN/ml}$
- Combinaison des charges
- L'ELU :

$$q_u = 1,35G + 1,5Q = 1,35 \times 1,97 + 1,5 \times 0,65 = 3,63kN/ml$$

- L'ELS:

 $q_s = G + Q = 1,97 + 0,65 = 2,62 \text{kN/ml}$

> Calcul des efforts tranchants et moments max en travée

- L'ELU:

$$M_{u} = M_{max} = \frac{q_{u}l^{2}}{8} = \frac{3,63 \times 4,5^{2}}{8} = 9,19 \text{kNm}$$
$$T_{u} = T_{max} = \frac{q_{u}l}{2} = \frac{3,63 \times 4,5}{2} = 8,17 \text{kN}$$

- L'ELS:

$$M_{ser} = M_{max} = \frac{q_s l^2}{8} = \frac{2,62 \times 4,5^2}{8} = 6,63 \text{kNm}$$
$$T_{ser} = T_{max} = \frac{q_s l}{2} = \frac{2,62 \times 4,5}{2} = 5,89 \text{kN}$$

> Ferraillage

La poutre est sollicitée à la flexion simple à l'ELU.

$$h = 5 \text{ cm} \quad b = 12 \text{ cm}$$

d = 0.9h = 0.9*5 = 4.5 cm

 $\sigma_{bc} = 14,17 \text{ MPa}$; $\sigma_s = 435 \text{ MPa}$ (FeE500) STD

D'après l'organigramme de la flexion simple; on a:

$$\boldsymbol{\mu} = \frac{M_U}{bd^2 \sigma_{bc}} = \frac{9,19 \times 10^6}{120 \times 45^2 \times 14,17} = 2,67 > 0,392 \text{Sachant qu'impossible d'avoir > 1} \Rightarrow$$

As' $\neq 0$.

Donc, les armatures de compression sont nécessaires, mais il est impossible de les placer du point de vue pratique car la section du béton est trop faible.

On prévoit donc des étaiements pour aider la poutrelle à supporter les charges qui lui reviennent avant et lors du coulage sans qu'elle fléchisse.

- 2^{ème} étape : Après le coulage de la table de compression

Après le coulage et durcissement du béton de la dalle de compression, la poutrelle travaillera comme une poutrelle en « Té ».

Evaluation des charges

Tableau VI.1 : Evaluation c	des charges et surcharges
-----------------------------	---------------------------

	Plancher terrasse (kN/ml)	Plancher courant (kN/ml)			
Charge permanente	G=6,58×0,65=4,45	G=5,44×0,65=3,53			
Surcharge d'exploitation	Q=1×0,65=0,65	Q=2,5×0,65=1,63			

Combinaison des charges

Tableau VI.2 : Combinaison des charges

Plancher terrasse	E.L.U q _u =1,35G+1,5Q=7,14 kN/ml
	E.L.S q _{ser} =G+Q=5,22 kN/ml
Plancher courant	E.L.U q _u =1,35G+1,5Q=6,84 kN/ml
	E.L.S q _{ser} =G+Q=4,96 kN/ml

Le plancher courant_est le plus sollicité. donc on ne peut pas appliquer dans notre cas la méthode forfaitaire pour la détermination des sollicitations, la méthode qu'on doit appliquer est la méthode de Caquot.

 $\frac{L_n}{L_{n+1}} = \frac{3}{4,5} = 0,66 \prec 0,85...$ Non vérifier

CHAPITRE VI

- > Calcul des moments à ELU
- Type 1

riguite viine pour

	C :	chargé	D : déchargé
--	-----	--------	--------------

	AB	BC	CD	DE	EF	FG
Portée l (m)	3	3	4,5	4,5	3	3
Portée fictive $l_0(m)$	3	2,4	3,6	3,6	2,4	3
Charge permanente g (kN/m)	3,53	3,53	3,53	3,53	3,53	3,53
Charge exploitation q (kN/m)	1,63	1,63	1,63	1,63	1,63	1,63
Chargée C 1,35g+1,5q (kN/m)	7,21	7,21	7,21	7,21	7,21	7,21
Déchargée D 1,35 g (kN/m)	4,76	4,76	4,76	4,76	4,76	4,76
Ma cas 1 : CCCCCC (kNm) - 1	1,22 -6	,41 -8	-1	- 10,99	8,55 -6	,41 -1,22
Ma cas 2 : DCDCDC (kNm -	0,8 -4	,97 -6		9,13 -	7,89 -5	,67 -1,22
Ma cas 3 : CDCDCD (kNm) - 2	1,22 -5	,67 -7	',89 -	9,13 -	6,31 -4	,97 -0,8
Mo ; Chargée (kNm)	8,11	8,11	18,25	18,25	8,11	8,11
Mo ; Déchargée (kNm)	5,36	5,36	12,05	12,05	5,36	5,36
Mt cas1 : CCC (kNm)	4,5	0,67	8,5	8,5	0,67	4,5
Mt cas 2 : DCD (kNm)	2,68	2,48	4,37	9,75	-1,36	4,82
Mt cas 3 : CDC (kNm)	4,82	-1,36	9,75	4,37	2,48	2,68
Ma, max (kNm) - 1	1,22 -6	,41 -8	-1	- 10,99	8,55 -6	,41 -1,22
Mt, max (kNm)	4,82	2,48	9,75	9,75	2,48	4,82

 Tableau VI.3 : Calcul des moments (6 travées)

Figure VI.8: poutrelle à 3 travées

	A	B	B	С	C	D	
Portée l (m)	4	-,5	4,	5	3	3	
Portée fictive $l_0(m)$	4	-,5	3,	6	3	3	
Charge permanente g (kN/m)	3.	,53	3,5	53	3,5	53	
Charge exploitation q (kN/m)	1	,63	1,6	53	1,6	53	
Chargée C 1,35g+1,5q (kN/m)	7	,21	7,2	21	7,2	21	
Déchargée D 1,35 g (kN/m)	4	,76	4,7	76	4,7	76	
Ma cas 1 : CCC (kNm)	-2,74	-	-14,43		-9,47		-1,22
Ma cas 2 : DCD (kNm)	-1,81	-	-11,19		-8,29		-0,8
Ma cas 3 : CDC (kNm)	-2,74	-	-12,77		-7,43		-1,22
Mo ; Chargée (kNm)	18	3,25	18,	25	8,1	11	
Mo ; Déchargée (kNm)	12	2,05	12,	05	5,3	36	
Mt cas1 : CCC (kNm)	10),13	6,3	38	3,2	29	
Mt cas 2 : DCD (kNm)	6	,01	8,5	54	1,4	47	
Mt cas 3 : CDC (kNm)	10),84	2,	1	4,0	08	
Ma, max (kNm)	-2,74	-	-14,43		-9,47		-1,22
Mt, max (kNm)	10),84	8,5	54	4,0	08	

Tableau VI.4 : Calcul des moments (3 travées)

Tableau	VI.5 :	Calcul	des	moments	(2	travées)
							_

		AB		BC		
Portée l (m)		4,5		4,5		
Portée fictive $l_0(m)$		4,5	5	4,5		
Charge permanente g (kN/m)		3,5	3	3,5	53	
Charge exploitation q (kN/m)		1,6	3	1,6	63	
Chargée C 1,35g+1,5q (kN/m)		7,2	1	7,2	21	
Déchargée D 1,35 g (kN/m)		4,7	6	4,7	76	
Ma cas 1 : CC (kNm)		-2,74	-	-17,18		-2,74
Ma cas 2 : DC (kNm)		-1,81	-	-14,26		-2,74
Ma cas 3 : CD (kNm)		-2,74	-	14,26		-1,81
Mo ; Chargée (kNm)		18,2	25	18,25		
Mo ; Déchargée (kNm)		12,05		12,05		
Mt cas1 : CC (kNm)		9		9		
Mt cas 2 : DC (kNm)		4,82		10,2		
Mt cas 3 : CD (kNm)		10,2 4,82				
Ma, max (kNm)		-2,74	-	-17,18	17,18	
Mt, max (kNm)		10,	2	10	,2	

Figure VI.10 : poutrelle à 2 travées

		AE	AB		BC	
Portée l (m)		3		3		
Portée fictive $l_0(m)$		3		3	;	
Charge permanente g (kN/m)		3,5	3	3,5	53	
Charge exploitation q (kN/m)		1,6	3	1,63		
Chargée C 1,35g+1,5q (kN/m)		7,21		7,21		
Déchargée D 1,35 g (kN/m)		4,7	4,76		76	
Ma cas 1 : CC (kNm)		-1,22		-7,63		-1,22
Ma cas 2 : DC (kNm)		-0,8		-6,34		-1,22
Ma cas 3 : CD (kNm)		-1,22		-6,34		-0,8
Mo ; Chargée (kNm)		8,1	1	8,1	11	
Mo ; Déchargée (kNm)		5,36		5,36		
Mt cas1 : CC (kNm)		4,00		4,00		
Mt cas 2 : DC (kNm)		2,15		4,53		
Mt cas 3 : CD (kNm)		4,53		2,15		
Ma, max (kNm)		-1,22		-7,63		-1,22
Mt, max (kNm)		4,5	3	4,5	53	

Tableau VI.6 : Calcul des moments (2 travées)

CHAPITRE VI

> Calcul des moments à ELS

• Type 1

Figure VI.11 : poutrelle à 6 travées

Tableau VI.7 : Calcul des moments ((6	travées
--	----	---------

		AB		BC	CD		DE		EF			FG
Portée l (m)		3		3		4,5	4	4,5		3		3
Portée fictive $l_0(m)$		3		2,4		3,6		3,6		2,4		3
Charge permanente g (kN/m)		3,53		3,53		3,53	3	,53	3	3,53		3,53
Charge exploitation q (kN/m)		1,63		1,63		1,63	1	,63	1	,63		1,63
Chargée C g+q (kN/m)		5,16		5,16		5,16	5	,16	5	5,16	4	5,16
Déchargée D g (kN/m)		3,53		3,53		3,53	3	,53	3	3,53		3,53
Ma cas 1 : CCCCCC (kNm)	-0,87	-4	,59	-6	,12	-7	7,87	-6	5,12	-4	,59	-0,87
Ma cas 2 : DCDCDC (kNm	-0,6	-3	,63	-4	,63	-(6,62	-4	5,68	-4	,10	-0,87
Ma cas 3 : CDCDCD (kNm	-0,87	-4	,10	-5	,68	-6	6,62	_2	4,63	-3	,63	-0,6
Mo ; Chargée (kNm)		5,81		5,81	1	3,06	1.	3,06	5	5,81		5,81
Mo ; Déchargée (kNm)		3,97		3,97	:	8,94	8	,94	3	s,97	-	3,97
Mt cas1 : CCC (kNm)		3,23	(0,48	(6,08	6	,08	0),48		3,23
Mt cas 2 : DCD (kNm)		2,00		1,69		3,34	6	,91	-(0,88		3,44
Mt cas 3 : CDC (kNm)		3,44	-	0,88	(6,91	3	,34	1	,69		2,00
Ma, max (kNm)	-0,87	-4	,59	-6	,12	-7	7,87	-6	5,12	-4	,59	-0,87
Mt, max (kNm)		3,44		1,69	(6,91	6	,91	1	,69		3,44

poutrelle à 3 travées

Tableau VI.8 : Calcul des moments (3 travées)								
	A	AB		BC		CD		
Portée l (m)	4,:	4,5		4,5		3		
Portée fictive $l_0(m)$	4,:	5	3,6		3			
Charge permanente g (kN/m)	3,5	3	3,53		3,53			
Charge exploitation q (kN/m)	1,6	3	1,63		1,63			
Chargée C g+q (kN/m)	5,1	5,16		5,16		5,16		
Déchargée D g (kN/m)	3,5	3,53		53	3,53			
Ma cas 1 : CCC (kNm)	-1,96	-1,96 -			-6,77		-0,87	
Ma cas 2 : DCD (kNm)	-1,34	-1,34		-8,17			-0,6	
Ma cas 3 : CDC (kNm)	-1,96	-1,96		-9,22			-0,87	
Mo ; Chargée (kNm)	13,0	06	13,06		5,80			
Mo ; Déchargée (kNm)	8,9	8,94		8,94		97		
Mt cas1 : CCC (kNm)	7,2	5	4,57		2,36			
Mt cas 2 : DCD (kNm)	4,5	4,51		6,00		1,13		
Mt cas 3 : CDC (kNm)	7,7	7,72		1,72		2,88		
Ma, max (kNm)	-1,96	-	10,33		-6,77		-0,87	
Mt, max (kNm)	7,7	2	6,0	0	2,8	88		

Figure VI.12 :
• Type 3

Figure VI.13 : poutrelle à 2 travées

		AB	\$	B	С	
Portée l (m)		4,5	i	4,	5	
Portée fictive $l_0(m)$	4,5	i	4,5			
Charge permanente g (kN/m)		3,5	3	3,5	53	
Charge exploitation q (kN/m)		1,6	3	1,6	53	
Chargée C g+q (kN/m)		5,1	6	5,1	16	
Déchargée D g (kN/m)		3,5	3	3,5	53	
Ma cas 1 : CC (kNm)		-1,96	-	12,29		-1,96
Ma cas 2 : DC (kNm)		-1,96	-	-10,35		-1,34
Ma cas 3 : CD (kNm)		-1,34	-	-10,35		-1,96
Mo ; Chargée (kNm)		13,0)6	13,	06	
Mo ; Déchargée (kNm)		8,9	4	8,9	94	
Mt cas1 : CC (kNm)		6,4	5	6,4	45	
Mt cas 2 : DC (kNm)		3,2	8	7,6	50	
Mt cas 3 : CD (kNm)		7,6	0	3,2	28	
Ma, max (kNm)		-1,96	-	12,29		-1,96
Mt, max (kNm)		7,6	0	7,6	50	

Tableau VI.9 : Calcul des moments (2 travées)

• Type 4

Figure VI.14 : poutrelle à 2 travées

		AE	3	B	С	
Portée l (m)		3		3	3	
Portée fictive $l_0(m)$		3		3	;	
Charge permanente g (kN/m)		3,5	3	3,5	53	
Charge exploitation q (kN/m)		1,6	3	1,0	53	
Chargée C g+q (kN/m)		5,1	6	5,1	16	
Déchargée D g (kN/m)		3,5	3	3,5	53	
Ma cas 1 : CC (kNm)	-	-0,87		-5,46		-0,87
Ma cas 2 : DC (kNm)		-0,6		-4,6		-0,87
Ma cas 3 : CD (kNm)		0,87		-4,6		-0,6
Mo ; Chargée (kNm)		5,8	1	5,8	31	
Mo ; Déchargée (kNm)		3,9	7	3,9	97	
Mt cas1 : CC (kNm)		2,8	7	2,8	37	
Mt cas 2 : DC (kNm)		1,6	2	3,2	22	
Mt cas 3 : CD (kNm)		3,2	2	1,6	52	
Ma, max (kNm)		-0,87		-5,46		-0,87
Mt, max (kNm)		3,22	2	3,2	22	

Tableau VI.10 : Calcul des moments (2 travées)

> Effort tranchant

$$\begin{cases} T_w = \frac{ql}{2} + \frac{\left(M_e - M_w\right)}{l} \\ T_e = -\frac{ql}{2} + \frac{\left(M_e - M_w\right)}{l} \end{cases}$$

• ELU

$$\begin{cases} T_w = \frac{7,21 \times 4,5}{2} + \frac{\left(-17,18 - (-2,74)\right)}{4,5} = 13,01 \text{KN} \\ T_e = -\frac{7,21 \times 4,5}{2} + \frac{\left(-17,18 - (-2,74)\right)}{4,5} = -19,43 \text{KN} \end{cases}$$

• ELS

$$\begin{cases} T_w = \frac{5,16 \times 4,5}{2} + \frac{(-12,29 - (-1,96))}{4,5} = 9,31KN \\ T_e = -\frac{5,16 \times 4,5}{2} + \frac{(-12,29 - (-1,96))}{4,5} = -13,91KN \end{cases}$$

Tableau VI	I.11 :	Récapitulatif	du calcul	M ^{max} et 1	'effort tranchan
------------	--------	---------------	-----------	-----------------------	------------------

Moment (K	sur appuis Nm)	Moment (K)	en travée Nm)	E	ffort tran	chant (K	(Nm)
ELU	ELS	ELU	ELS	LS ELU]	ELS
				Tw	Te	Tw	Te
-17,18	-12,29	10,84	7,72	13,01	-19,43	9,31	-13,91

Calcul du ferraillage

On considère pour le ferraillage le type de poutrelle le plus défavorable c'est-à-dire qui a le moment le plus grand en travée et sur appuis, et le calcul se fait à l'ELU en flexion simple.

Les efforts maximaux sur appuis et en travée sont :

E.L.U: $M_{tu}^{max} = 10,84 \text{kNm}$ $M_{au}^{max} = 17,18 \text{kNm}$ **E.L.S:** $M_{tser}^{max} = 7,72 \text{kNm}$

M_{aser}^{max}=10,84kNm

• Ferraillage en travée

h=21 cm ; h₀=5cm ; b=65cm ; b₀=12cm ; d=0,9h=18,9 cm ; σ_{bc} =14,17MPa ; fe=500MPa ; f_{c28}=25MPa ; f_{t28}=2,1MPa

Le calcul des sections en forme de "Té" s'effectue différemment selon que l'axe neutre est dans la table ou dans la nervure.

- ✓ Si M_u < M_{tab} : l'axe neutre est dans la table de compression.
- ✓ Si M_u > M_{tab} : l'axe neutre est dans la table ou dans la nervure.

$$M_{tab} = bh_0 \sigma_{bc} \left(d - \frac{h_0}{2} \right) = 75,53 kNm$$

On a : $M_{tu} < M_{tab}$

Alors : l'axe neutre est dans la table de compression.

Comme le béton tendu n'intervient pas dans les calculs de résistance, on conduit le calcul comme si la section était rectangulaire de largeur constante égale à la largeur de la table [«]b[»]. Donc, la section étudiée est assimilée à une section rectangulaire (bxh) en flexion simple.

D'après l'organigramme donnant le ferraillage d'une section soumise à la flexion, on aura :

Tableau	VI.12	: Réca	pitulation	du calcul	l des se	ctions d	l'armatures	en travée
---------	--------------	--------	------------	-----------	----------	----------	-------------	-----------

M _{tu} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	α	Z(cm)	μ<0,186	ζs	σs(MPa)	A _s (cm ²)
10,84	0,033	Oui	0	0,042	18,58	Oui	10‰	435	1,34

• Condition de non fragilité

$$A_s^{\min} \ge 0.23bd \, \frac{f_{t28}}{fe} = 1.19cm^2$$

A_s=Max {1,19 cm²; 1,34 cm²}=1,34 cm²

Choix : 3T10 (A_s=2,36 cm²)

• Ferraillage sur appuis

On a: M_{au}^{max}=17, 18 kNm<M_{tab}=75, 53 kNm

⇒L'axe neutre est dans la table de compression, et la section étudiée est assimilée à une

section rectangulaire (b₀xh) en flexion simple.

Tableau VI.13 :	Récapitulation	du calcul	des sections	d'armatures si	ir annuis
I ubicuu / III b	recupitulution	au cuicui		a armatares st	ո արթատ

M _{Ua} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	α	Z(cm)	µ<0,186	ζs	σ _s (MPa)	$A_s(cm^2)$
17,18	0,052	Oui	0	0,067	18,3	oui	10‰	435	2,16

• Condition de non fragilité

$$A_s^{\min} \ge 0.23bd \frac{f_{t28}}{fe} = 1.19cm^2$$

 $A_s=Max \{1,19 \text{ cm}^2; 2,16 \text{ cm}^2\}=2,16 \text{ cm}^2$

Choix : $2T12 (A_s=2,26 \text{ cm}^2)$

> Vérifications

• Effort tranchant

Pour l'effort tranchant, la vérification du cisaillement se fera dans le cas le plus défavorable c'est-à-dire : T_u^{max} =19,43kN.

On doit vérifier que : $\tau_u \leq \overline{\tau}_u$

Tel que :

$$\bar{\tau}_{u} = Min\left\{0, 2\frac{f_{cj}}{\gamma_{b}}; 5MPa\right\} = 3,33MPa....Fissuration peu nuisible$$
$$\tau_{u} = \frac{T_{u}^{max}}{b_{0}d} = 0,86MPa \prec \bar{\tau}_{u}....Vérifiée$$

Calcul des éléments secondaires

CHAPITRE VI

- Au voisinage des appuis
- ✓ Appuis de rives
- Vérification de la compression du béton [40] :

$$\sigma_b = \frac{T_u}{0.9b_0 d} \le 0.4 \frac{f_{c28}}{\gamma_b}$$

Avec : T_u=13,01 kN (appuis de rive)

$$\sigma_{\rm b} = \frac{13,01 \times 10^3}{0.9 \times 120 \times 189} = 0,64 \text{MPa} \prec 0,4 \frac{f_{c28}}{\gamma_{\rm b}} = 6,67 \text{MPa}....\text{Vérifiée}$$

Vérification des armatures longitudinales [39] :

$$A_s = 2,26 \text{ cm}^2 \ge \frac{T_u}{\frac{\text{fe}}{\gamma_s}} = 0,30.\text{ cm}^2....\text{Vérifiée}$$

- ✓ Appuis intermédiaires :
- Vérification de la contrainte de compression [40] :

$$\sigma_{\rm b} = \frac{T_{\rm u}^{\rm max}}{0.9b_0 \rm d} = \frac{19.43 \times 10^3}{0.9 \rm x 120 \rm x 189} = 0.95. \rm MPa \prec 0.4 \frac{f_{c28}}{\gamma_{\rm b}} = 6.67 \rm MPa.... \rm Vérifiée$$

Vérification des armatures longitudinales [40] :

$$A_{s} = 2,36 \text{cm}^{2} \ge \frac{T_{u}^{\text{max}} - \frac{M_{ua}}{0,9d}}{\sigma_{s}} \le 0.....\text{Vérifiée}$$

Vérification à l'E.L.S

La fissuration étant peu nuisible, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

• Vérification des contraintes du béton[40]

Soit [«] y [»] la distance du centre de gravité de la section homogène (par lequel passe l'axe neutre) à la fibre la plus comprimé.

La section étant soumise à un moment M_{ser} , la contrainte à une distance « y » de l'axe neutre :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

D'après l'organigramme de la vérification d'une section rectangulaire à l'ELS, on doit vérifier que : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$

✓ Détermination de l'axe neutre

On suppose que l'axe neutre se trouve dans la table de compression :

$$\frac{b}{2}y^{2} + n(A_{s} + A_{s})y - n(A_{s}.d + A_{s}.c') = 0$$

Avec : n = $\frac{E_{s}}{E_{b}} = 15$; b=65cm(travée); b_0=12cm (appuis);

y : la solution de l'équation du deuxième degré suivante, puis on calcule le moment d'inertie :

• Si $y \prec h_0 \Rightarrow$ l'hypothèse est vérifiée

Si y ≻ h₀ ⇒ la distance «y » et le moment d'inertie «I » se Calculent par les formules qui suivent :

$$\begin{cases} \frac{b}{2}y^{2} - (b - b_{0}) \cdot \frac{(y - h_{0})^{2}}{2} + \eta A_{s} \cdot (y - c') - \eta \cdot A_{s} \cdot (d - y) = 0\\ I = \frac{b}{3}y^{3} - (b - b_{0}) \frac{(y - h_{0})^{3}}{3} + \eta \cdot A_{s} \cdot (y - c')^{2} + \eta \cdot A_{s} (d - Y)^{2}. \end{cases}$$

	M _{ser} (kNm)	A _s (cm ²)	Y(cm)	I(cm ⁴)	σ _{bc} (MPa)	Vérification
Travée	7,72	2,36	4,025	9245,63	3,36	Vérifiée
Appuis	10,84	2,26	3,95	8912,05	4,57	Vérifiée

Tableau VI.14 :Vérification à l'ELS

• Vérification de la flèche

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées : Les conditions à vérifier **[40]** :

•
$$\frac{h}{L} \ge \frac{1}{16}$$

• $\frac{A_s}{b_0 d} \le \frac{4.2}{fe}$
• $\frac{h}{L} \ge \frac{M_t}{10M_0}$
• $\frac{h}{L} \ge 0.046 \prec 0.0625....non vérifiée$
• $\frac{A_s}{b_0 d} = 0.0104 > 0.0084....non vérifiée$

Avec :

h=21cm ; b₀=12cm ; d=18,9cm ; L=4,50 m ; M_{tser} =7,72kNm ; M_0 =13,06kNm ; A_s =2,36cm² ; fe=500MPa.

Alors:

Puisque les (03) conditions ne sont pas vérifiées, il est nécessaire de calculer la flèche. Flèche totale : $\Delta f_T = f_v - f_i \le \overline{f}$

Tel que :
$$\bar{f} = \frac{L}{500} = 0.9cm$$
 (L < 5m)

- f_i: La flèche due aux charges instantanées.
- f_v: La flèche due aux charges de longues durée.

- Position de l'axe neutre « y1 »

$$y_{1} = \frac{bh_{0} \frac{h_{0}}{2} + (h - h_{0})b_{0} \left(\frac{h - h_{0}}{2} + h_{0}\right) + 15A_{s}d}{bh_{0} + (h - h_{0})b_{0} + 15A_{s}}$$

- Moment d'inertie de la section totale homogène « I₀ » [40]

$$I_0 = \frac{b}{3}y_1^3 + \frac{b_0}{3}(h - y_1)^3 - \frac{(b - b_0)}{3}(y_1 - h_0)^3 + 15A_s(d - y_1)^2$$

- Calcul des moments d'inerties fictifs [2]

$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu} ; \quad I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$$

Avec :

$$\lambda_i = \frac{0.05 f_{t_{28}}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
..... Pour la déformation instantanée.

$$\lambda_{v} = \frac{0.02 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
..... Pour la déformation différée.

$$\delta = \frac{A_s}{b_0 d}$$
: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75f_{t28}}{4\delta\sigma_s + f_{t28}}$$

 σ_s : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_{s} = \frac{M_{ser}}{A_{s}d}$$

Les résultats sont récapitulés dans ce tableau :

Tableau VI.15 : Calcul de la flèche

M _{ser} (kNm)	As (cm ²)	Y1 (cm)	δ	σs (MPa)	λi	λ_v	μ	I0 (cm ⁴)	I _{fi} (cm ⁴)	Ifv (cm ⁴)
7,72	2,36	7,2	0,0083	173,08	4,95	1,98	0,53	23257,12	7060,25	12483,08

~

- Calcul des modules de déformation

$$E_i = 11000 \cdot \sqrt[3]{f_{c28}} = 11000 \cdot \sqrt[3]{25} = 32164,19 MPa$$
$$E_v = 3700 \cdot \sqrt[3]{f_{c28}} = 3700 \cdot \sqrt[3]{25} = 10818,86 MPa$$

- Calcul de la flèche due aux déformations instantanées

$$f_i = \frac{M_{ser}l^2}{10E_i I_{fi}} = 0,69.cm \qquad (L = 4,5.m)$$

- Calcul de la flèche due aux déformations différées

$$f_v = \frac{M_{ser}l^2}{10E_v I_{fv}} = 1,16.cm$$

 $\Delta f_T = f_v - f_i = 0,47.cm \prec \bar{f} = 0,9.cm....vérifiée$

d. Calcul des armatures transversales et l'espacement

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE24 (fe=235MPa)

Selon le règlement [40]

$$\begin{cases} \bullet \frac{A_{t}}{b_{0}S_{t}} \geq \frac{\tau_{u} - 0.3f_{tj}K}{0.8fe} & (K = 1 \text{ pas de reprisede bétonnage}) \\ \bullet S_{t} \leq \text{Min}(0.9d;40\text{ cm}) \\ \bullet \frac{A_{t}fe}{b_{0}S_{t}} \geq \text{Max}\left(\frac{\tau_{u}}{2};0.4\text{MPa}\right) \end{cases}$$

Selon le règlement [40]

Avec :

~

$$\phi_t \leq Min\left(\frac{h}{35};\phi_l;\frac{b}{10}\right)$$

 $Ø_1$: Diamètre minimum des armatures longitudinales.

Øt ≤ Min(0,6cm; 1cm; 0,65cm)=0,6cm

On adopte : $Ø_t$ =6mm

Donc :

- Selon le règlement [40]

$$\begin{vmatrix} \bullet \frac{A_t}{S_t} \ge 1,27.10^{-2} cm \\ \bullet S_t \le 17,01 cm \\ \bullet \frac{A_t}{S_t} \ge 0,021 cm \end{vmatrix}$$

- Selon le règlement [39]

 $\begin{cases} \bullet \frac{A_t}{S_t} \ge 0.036 \\ \bullet S_t \le 5.25 \text{ cm}...Zone nodale \\ \bullet S_t \le 10.5 \text{ cm}...Zone courante \end{cases}$

Choix des armatures

On adopte : $A_t=2\emptyset 6=0,57$ cm^{2'}

Choix des espacements

 $\frac{A_{t}}{S_{t}} \ge 0,036 \Longrightarrow S_{t} \le 15,83 \text{cm}$ $\text{Donc}: \begin{cases} S_{t} = 5 \text{cm}....\text{Zone nodale} \\ S_{t} = 10 \text{cm}...\text{Zone courante} \end{cases}$

Figure VI.15 : Ferraillage des poutrelles

III.1.2. Ferraillage de la table de compression

Le ferraillage de la dalle de compression doit se faire par un quadrillage dont les dimensions des mailles ne doivent pas dépasser :

- 20cm : pour les armatures perpendiculaires aux nervures.

- 33cm : pour les armatures parallèles aux nervures

Si:
$$\begin{cases} 50 \le L \le 80cm \Longrightarrow A_1 = \frac{4L}{fe} \\ L \le 50cm \Longrightarrow A_2 = \frac{200}{fe} \end{cases}$$

Avec :

L : distance entre axes des poutrelles

A1: armatures perpendiculaires aux poutrelles

A2: armatures parallèles aux poutrelles

Tel que :

L=65cm ; Fe=520 MPa (
$$\Phi \le 6$$
 mm)

$$\Rightarrow A_1 = 4 \cdot \frac{65}{520} = 0.5 \ cm^2 \ / \ ml$$
576 $\Rightarrow A_1 = 1.41 \ cm^2$

$$S_t = \frac{100}{5} = 20 \ cm$$

On prend : **5T6=1,41cm²**

Armatures de répartitions

$$A_2 = \frac{A_1}{2} = 0.71 cm^2$$

Soit : **5T6=1,41cm²** St=20cm.

Pour le ferraillage de la dalle de compression, on adopte un treillis soudés dont la dimension des mailles est égale à 20cm suivant les deux sens.

Figure VI.16 : Disposition constructive des armatures de la table de compression

III.2.Plancher en dalle pleine

Les dalles sont des pièces minces d'épaisseur faible par rapport aux autres dimensions chargées perpendiculairement à leur plan moyen; la dalle peut reposer sur deux, trois ou quatre appuis ; dans notre ouvrage, on a des dalles pleines sous formes rectangulaires reposent sur 03 appuis. Pour le calcul on choisit la dalle la plus sollicitée.

III.2.1 Evaluation des charges

Charge permanente : $G=6,29kN/m^2$

Charge d'exploitation : $Q=2,50kN/m^2$

E.L.U: $q_u=1,35G+1,5Q=12,24$ kN/m²

E.L.S: $q_{ser}=G+Q=8,79kN/m^2$

$$\rho = \frac{L_x}{L_y} = \frac{1.55}{4.20} = 0.37 \ge 0.4 \Rightarrow$$
 La dalle porte dans un seul sens (flexion principale suivant lx)

III.2.2 Calcul des moments

On utilise la théorie des lignes de ruptures, et on détermine les moments isostatiques Sollicitant la pièce comme suite : deux cas peuvent se présenter

$$\begin{cases} L_{x} \geq \frac{L_{y}}{2} & \to \begin{cases} & M_{0}^{x} = \frac{qL_{y}^{3}}{24} \\ & M_{0}^{y} = \frac{qL_{x}^{2}}{8} \times \left(L_{y} - \frac{L_{x}}{2}\right) + \frac{qL_{x}^{3}}{48} \\ \\ & L_{x} < \frac{L_{y}}{2} & \to \end{cases} \begin{pmatrix} & M_{0}^{x} = \frac{qL_{x}^{2}}{2} L_{y} - \frac{2}{3}qL_{x}^{3} \\ & M_{0}^{y} = \frac{qL_{x}^{3}}{6} \end{pmatrix}$$

Lx= 1.55m, et Ly= 4,20m.

Dans notre cas $L_x=1,55 < \frac{Ly}{2}=2,10m$

Dans le sens de la petite portée : $M_x = \frac{qL_x^2}{2} L_y - \frac{2}{3} qL_x^3$ Dans le sens de la petite portée : $M_y = \frac{qL_x^3}{6}$ $M_x=31, 37$ KN.m M_y=7, 60 KN.m

• Moment en travée

 $M_{Tx} = 0.85M_x = 26.66KN.m$ $M_{Ty} = 0.85M_y = 6.46KN.m$

- Moment sur appuis
- Rive

 $M_{ax} = -0.3M_x = -9.41$ KN.m

- Intermédiaire

 $M_{ax} = -0.5M_{x} = -15.69KN.m$

III.2.3. Ferraillage de la dalle

b=100cm, h=15cm, σ_{bc} =14,17MPa, f_e =500MPa, f_{c28} =25MPa, f_{t28} =2,1MPa,

d=0.9h =13,5cm.

Les résultats sont récapitulés dans le tableau suivant :

Tableau VI.16 : Ferraillage de la dalle pleine

	Sens	Mu (kNm)	μ	A'_s (cm ²)	α	Z	As	choix	A_s^{adp}	Esp (cm)
				(())		(cm)	(cm ²)		(cm-)	(em)
travée	х-х	26,66	0,103	0	0,1365	12,76	4,8	6T12	6,78	15
	у-у	6,46	0,025	0	0,0317	13,33	1,11	4T12	4,52	25
appuis	rive	9,41	0,036	0	0,0464	13,25	1,63	4T12	4,52	25
	inter	15,69	0,061	0	0,0784	13,08	2,76	4T12	4,52	25

> Espacement

• Travée

- Sens x-x :
$$Esp = \frac{100}{6} = 15cm \prec Min(3h, 33cm) = 33cm$$
 vérifier

- Sens y-y:
$$Esp = \frac{100}{4} = 25cm \prec Min(4h, 45cm) = 45cm$$
...... Vérifier

• Appuis

- Sens x-x :
$$Esp = \frac{100}{4} = 25cm \prec Min(3h, 33cm) = 33cm$$
 vérifier

- Sens y-y : $Esp = \frac{100}{4} = 25cm \prec Min(4h, 45cm) = 45cm$ Vérifier

Calcul des armatures transversales

Les armatures transversales ne sont pas nécessaires si la condition ci-dessous est vérifiée :

$$\tau_{u} = \frac{T_{u}}{bd} \le \overline{\tau}_{u}$$

$$\overline{\tau}_{u} = \{0,07. f_{c28} / \gamma_{b}, \} = 1,25 M p a.$$

$$T_{u} = \frac{q_{u \times l_{x}}}{2} \times \frac{l_{y}^{4}}{l_{x}^{4} + l_{y}^{4}} = 9,31 \text{ MPa}$$

$$\tau_{u} = \frac{9,31 \times 10^{3}}{1000 \times 135} = 0,069 M P a \prec \overline{\tau}_{u} = 1,25 M P a \dots \text{ vérifier}$$

III.2.4. Vérification a L'ELS

Evaluation des sollicitations à l'ELS

$$q_{ser} = 8,79 \text{ KN}$$

 $M_x = 22,53 \text{ KN.m}$
 $M_y = 5,46 \text{ KN.m}$
 $M_{Tx} = 0.85M_x = 19.15KN.m$
 $M_{Ty} = 0.85M_y = 4.64KN.m$
 $M_a(rive) = 0.3M_x = 6.76KN.m$
 $M_a(int er) = 0.5M_x = 11.26KN.m$

- Vérification des contraintes
- Position de l'axe neutre "y"

$$\frac{b}{2}y^{2} + nA'_{s}(y-c') - nA_{s}(d-y) = 0$$

Moment d'inertie "I"

$$I = \frac{b}{3}y^{3} + nA'_{s}(y - c')^{2} + nA_{s}(d - y)^{2}$$

Avec: n=15 ; c'=2,5cm ; d=13,5cm ; b=100cm ; A's=0 On doit vérifier que:

Séton

$$\sigma_{b} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$$

* Acier

$$\mathbf{I}\,\boldsymbol{\sigma}_{s}=n\frac{M_{ser}}{I}(d-y)\leq\overline{\boldsymbol{\sigma}}_{s}$$

La fissuration est considérée comme préjudiciable.

$$\overline{\sigma}_{s} = Min\left(\frac{2}{3}fe; Max(0, 5fe; 110\sqrt{\eta f_{tj}})\right) = 250MPa$$

Les résultats sont récapitulés dans le tableau ci-dessous:

		Mser	As	Y	Ι	σbc	$\sigma_{bc} \leq \overline{\sigma}_{bc}$	σs	$\sigma_s \leq \overline{\sigma}_s$
		(kNm)	(cm ²)	(cm)	(cm ⁴)	(MPa)		(MPa)	
Travée	X-X	19,15	6,78	4,32	11257,62	7,35	vérifiée	234,24	vérifiée
	у-у	5,46	4,52	3,65	8198,87	2,43	vérifiée	98,39	vérifiée
Appuis	Rive	6,76	4,52	3,65	8198,87	3,01	vérifiée	121,82	vérifiée
	inter	11,26	4,52	3,65	8198,87	5,01	vérifiée	202,91	vérifiée

Fableau VI.17 : Vérification des contraintes à !	'EL	S
---	-----	---

> Vérification de la flèche

Il n'est pas nécessaire de faire la vérification de la flèche, si les trois conditions citées cidessous sont vérifiées simultanément

$$\frac{A_{s}}{bd} \leq \frac{2}{f_{ze}}$$

$$5,02 \times 10^{-3} \succ 4 \times 10^{-3}....n \text{ on vérifier}$$

$$\frac{h}{L} \geq \frac{1}{27} \grave{a} \frac{1}{35} \implies 0,096 \succ 0,028 \grave{a} 0,037....vérifier$$

$$\frac{h}{L_{x}} \geq \frac{M_{t}}{20M_{x}} \qquad 0,096 \succ 0,085...vérifier$$

Puisque une condition n'est pas vérifiée, il est nécessaire de calculer la flèche.

Flèche totale : $\Delta f_T = f_v - f_i \leq \bar{f}$

Avec :
$$\begin{cases} f_i = \frac{M_{ser}L^2}{10E_i I_{fi}} \\ f_v = \frac{M_{ser}L^2}{10E_v I_{fv}} \\ \bar{f} = \frac{L}{500} \end{cases}$$
 L=4,2m<5m.

 $E_i=32164,20$ MPa; $E_v=10818,87$ MPa

• Moment d'inertie de la section homogène Io :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A'_s \left(\frac{h}{2} - d'\right)^2$$
$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu} \quad ; \quad I_{fv} = \frac{I_0}{1 + \lambda_v \mu} \qquad \text{Moment d'inertie fictive.}$$

Avec :

$$\begin{cases} \lambda_{i} = \frac{0,05f_{t28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \\ \lambda_{v} = \frac{0,02f_{t28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \end{cases}; \quad \begin{cases} \delta = \frac{A_{s}}{b_{0}d} \\ \mu = 1 - \frac{1,75f_{t28}}{4\delta\sigma_{s} + f_{t28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

Les résultats sont récapitulés dans ce tableau :

Tableau VI.18 : Vérification de la flèche de la dalle pleine

Mser	As	δ	σs	λi	λ_v	μ	Io	Ifi	Ifv
(KNm)	(cm ²)		(MPa)				(cm ⁴)	(cm ⁴)	(cm ⁴)
19,15	6,78	0,005	209,22	4,2	1,68	0,415	31786,2	12746,93	18728,61

Donc:

$$\begin{split} & f_i = 0.84 \text{cm} \\ & f_v = 1.66 \text{cm} \end{split} \implies \Delta f_T = f_v - f_i = 0.82 \text{cm} \\ & \bar{f} = \frac{L}{500} = \frac{420}{500} = 0.84 \text{cm} \\ & \Rightarrow \Delta f_T = 0.82 \text{ cm} \quad \prec \bar{f} = 0.84 \text{cm}.... \text{ vérifiée.} \end{split}$$

Figure VI.17 : Schéma de ferraillage da la dalle pleine

IV.ESCALIER

Dans une construction, la circulation entre les étages se fait par l'intermédiaire des escaliers ou par l'ascenseur. L'escalier se compose d'une volée ou plus comportant des marches, des paliers d'arrivée et de départ et même des paliers intermédiaires. Celui-ci comporte un seul type d'escalier.

IV.1. Définition des éléments d'un escalier

On appelle « marche » la partie horizontale (M) des gradins constituant l'escalier, et « contre marche » la partie verticale (C.M) de ces gradins.

- *h* : Hauteur de la marche.
- g : Largeur de la marche.
- L : Longueur horizontale de la paillasse.
- *H* : Hauteur verticale de la paillasse.

Figure VI.18 : Dimensions de l'escalier

Pour une réalisation idéale et confortable on doit avoir 2h+g=64

Soit :

- h : hauteur de contre marche,
- H : hauteur de la volée,
- g : largeur de la marche,
- n : nombre de contre marches,
- n-1 : nombre de marches,
- L : projection horizontale de la longueur total de la volée.

On obtient, le nombre des marches et leur dimension par les relations suivantes :

 $\begin{cases} 2h+g=64 \dots (1) \\ n\times h=H \dots (2) \\ (n-1) g=L \dots (3) \end{cases}$

IV.2. Calcul des escaliers

* Escalier à trois volées

Figure VI.19 : Vue en plan de l'escalier à 3 volées

En remplaçant (2) et (3) dans (1), on obtient :

64n²- (64+2H+L) n +2H=0

Avec

- *n* : La racine de l'équation

Les valeurs de H et L

o volée I

H=170cm ; L=270cm

Solution

- n₂=10

Donc on prend

- le nombre de contre marche n=10
- le nombre des marchesn-1=9

Alors

$$h = \frac{H}{n} = 0,17m \rightarrow en \text{ prend } h = 17cm$$
$$g = \frac{L}{n-1} = 0,30m = 30cm$$

Vérification de l'équation de « BLONDEL »

$\left(\left(59 \le (g+2h) \le 66 \right) cm \right)$		(2h+g=64cm)	
$\left\{ \left(16 \le h \le 18\right) cm \right\}$	\Rightarrow	$\begin{cases} h = 17cm \end{cases}$	Vérifiée
$(22 \le g \le 33)$ cm		g = 30cm	

> Détermination de l'épaisseur de la paillasse

$$\frac{1}{30} \le e \le \frac{1}{20}$$

Avec :

$$l = \sqrt{L^2 + H^2} + 1.45 = \sqrt{(2,70)^2 + (1,70)^2} + 1.45 = 4,64m$$

Donc :

$$15,47 \le e \le 23,20cm$$

On prend donc l'épaisseur e=18 cm

> Angle d'inclinaison de la paillasse

$$tg\alpha = \frac{H}{L} = \frac{170}{270} = 0,629 \Longrightarrow \alpha = 32,20^{\circ}$$

o volée II

H=85cm ; L=120cm

64n²-354n+170=0

Solution

- n₂=5

Donc on prend

- le nombre de contre marche n=5
- le nombre des marchesn-1=4

Alors

$$h = \frac{H}{n} = 0,17m \rightarrow en \text{ prend } h = 17cm$$
$$g = \frac{L}{n-1} = 0,30m = 30cm$$

Vérification de l'équation de « BLONDEL »

$$\begin{cases} (59 \le (g + 2h) \le 66) \text{ cm} \\ (16 \le h \le 18) \text{ cm} \\ (22 \le g \le 33) \text{ cm} \end{cases} \implies \begin{cases} 2h + g = 64cm \\ h = 17cm \\ g = 30cm \end{cases}$$
 Vérifiée

> Détermination de l'épaisseur de la paillasse

$$\frac{l}{30} \le e \le \frac{l}{20}$$

Avec :

$$l = 1,45 + \sqrt{L^2 + H^2 + 1.45} = 1,45 + \sqrt{(1,20)^2 + (0,85)^2 + 1.45} = 4,37m$$

Donc :

$$14,57 \le e \le 21,85cm$$

On prend donc l'épaisseur e=18 cm

> Angle d'inclinaison de la paillasse

$$tg\alpha = \frac{H}{L} = \frac{85}{120} = 0,708 \Longrightarrow \alpha = 35,31^{\circ}$$

volée III

H=153cm ; L=240cm

64n²-610n+306=0

Solution

- n₂=9

Donc on prend

- le nombre de contre marche n=9
- le nombre des marchesn-1=8

Alors

$$h = \frac{H}{n} = 0,17m \rightarrow en \text{ prend } h = 17cm$$
$$g = \frac{L}{n-1} = 0,30m = 30cm$$

Vérification de l'équation de « BLONDEL »

 $\begin{cases} (59 \le (g+2h) \le 66) \text{ cm} \\ (16 \le h \le 18) \text{ cm} \\ (22 \le g \le 33) \text{ cm} \end{cases} \qquad \Rightarrow \qquad \begin{cases} 2h+g=64cm \\ h=17cm \\ g=30cm \end{cases} \qquad \forall \text{érifiée} \end{cases}$

Détermination de l'épaisseur de la paillasse

$$\frac{l}{30} \le e \le \frac{l}{20}$$

Avec :

$$l = 1,45 + \sqrt{L^2 + H^2} = 1,45 + \sqrt{(2,40)^2 + (1,53)^2} = 4,30m$$

Donc :

$$14,33 \le e \le 21,50cm$$

On prend donc l'épaisseur e=18 cm

> Angle d'inclinaison de la paillasse

$$tg\alpha = \frac{H}{L} = \frac{153}{240} = 0,637 \Longrightarrow \alpha = 32,52^{\circ}$$

✓ Evaluation des charges et surcharges

Désignation des éléments	palier (KN/m ²)	paillasses (KN/m ²)		
Poids de la dalle (e=16cm)	4.50	1 ^{ére} volée	25×0	0.18/cos(32,20)=5,32
		2 ^{éme} volée	25×0	0.18/cos(35,31)=5,51
		3 ^{éme} volée	25×0	0.18/cos(32,52)=5,34
Poids des marches	0.00		(25×0.17	7)/2 =2.125
Mortier de pose vertical	0.00	20	0×0.02×0	0.17/0.3=0.23
(e=2cm)				
Mortier de pose horizontal	0.40	0.40		
(e=2cm)				
Carrelage de pose	0.44	0.44		
horizontal e=2cm				
Carrelage vertical (e=2cm)	0.00	22×0.02×0.17/0.3=0.25		
Garde-corps	0.00	0,60		
Lit de sable (e=2cm)	0.00	0.40		
Enduit de plâtre	0.15	0.15		
Total G KN/m ²	5,49	Gv ₁ 9,95		9,95
		Gv	2	10,06
		Gv	3	9,98
Total O KN/m ²	2,5			2,5

Tableau VI.19 : Evaluation des charges sur les escaliers

• La première volée

✓ Calcul des sollicitations

Tableau VI.20 : Calcul des sollicitations

Combinaison	La paillasse q1 (KN /m ²)	Le palier q2 (KN $/m^2$)
ELU	17,18	11,16
ELS	12,45	7.99

✓ Moment fléchissant

ELU

Figure VI.21 : Diagramme du moment fléchissant à l'ELU

Figure VI.22 : Diagramme du moment fléchissant à l'ELS

✓ Effort tranchant

ELU

Figure VI.23 : Diagramme de l'effort tranchant à l'ELU

ELS

Figure VI.24 : Diagramme de l'effort tranchant à l'ELS

✓ Ferraillage

• Le calcul se fait pour une section rectangulaire de dimension (b x h)

Tel que: b=100cm; h=18cm

• Le ferraillage se fait en flexion simple pour une bande de 1m de largeur

 $f_{c_{28}} = 25MPa$; $f_{bc} = 14,17MPa$; $f_{t_{28}} = 2,10MPa$; $\gamma_b = 1,5$; d=0,9h=16,2cm $\sigma_s = 435MPa$; $\gamma_s = 1,15$; fe=500MPa

Remarque

On tiendra compte de l'encastrement partiel au niveau des appuis, le règlement [40] préconise une réduction partielle du moment M0 = Mmax

Le moment en travée : Mt = 0.85 MOLe moment en appui: MA = 0.50 MO

≻ <u>ELU:</u>

En appuis :

Ma =0,5×Mu=0,5×33,88= 16,94 KN.m

En travée:

Mt =0,85 × Mu=0,85 × 33,88=28,80 KN.m

		=							
	Mu	μ	$\mu < \mu_R$	$A_{s}^{'}$	α	Z	A_s^{cal} / ml	Choix	A_s^{adp} / ml
	(KNm)			(cm ²)		(cm)	(cm ²)		(cm ²)
Appui	16,94	0,046	Oui	0	0,0583	15,82	2,46	4T10	3,14
Travée	28,80	0,077	Oui	0	0,1009	15,55	4,26	4T12	4,52

Tableau VI.21 : Ferraillage de l'escalier.

- ✓ Calcul des espacements
- Armatures principales
- ★ En travée : $esp \le \frac{100}{4} = 25 \text{ cm}$ On prend : esp=25 cm
- Sur appui : $esp \le \frac{100}{4} = 25 \text{ cm}$

On prend : esp=25cm

- Armature de répartition
- ***** $En travée: \quad \frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 1.13 cm^2 / ml \le A_r \le 2.26 cm^2 / ml$

Le choix est de 4T8=2.01 cm² avec S_t=25 cm

• Sur appui : $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 0.79 \text{ cm}^2/\text{ ml} \le A_r \le 1.57 \text{ cm}^2/\text{ ml}$

Le choix est de 4T8=2.01cm² avec St=25cm

- ✓ Vérification
- Condition de non fragilité

$$A_s \ge A_s^{\min} = 0.23bd \frac{f_{t28}}{fe} = 1.56cm^2$$

- En travée : $A_s = 4,52cm^2 \rangle A_s^{\min} = 1,56cm^2.....vérifiée$
- Sur appui : $A_s = 3,14cm^2 \rangle A_s^{\min} = 1,56cm^2.....vérifiée$
- Effort tranchant

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

 $\bar{\tau} = Min\left(0, 2\frac{f_{c28}}{\gamma_b}; 5MPa\right) = 3,33MPa \dots (Fissuration peu nuisible)$

$$\tau = \frac{T_u^{\text{max}}}{bd} = \frac{34,12 \times 10^3}{1000 \times 162} = 0,21 MPa \langle \overline{\tau_u} = 3,33 MPa....vérifiée$$

- Influence de l'effort tranchant au voisinage des appuis (vérification de l'ancrage)
 Les armatures longitudinales tendues inférieures doivent être ancrées au-delà de l'appui, pour équilibrer l'effort de traction.
- Si : $T_u \frac{M_u}{0.9d} \langle 0 \Rightarrow$ les armatures ne sont soumises à aucun effort de traction.

- Si:
$$T_u - \frac{M_u}{0.9d} > 0 \Rightarrow$$
 il faut satisfaire la condition suivante : $A_s \ge \left[\frac{T_u - \frac{M_u}{0.9d}}{\sigma_s}\right]$

$$T_u - \frac{M_u}{0.9d} = 34,12 \times 10^3 - \frac{16,94 \times 10^6}{0,9 \times 162} = -82,07KN \quad \langle 0 \rangle$$

Les armatures ne sont soumises à aucun effort de traction

• Vérification des armatures transversales

$$\tau = \frac{T_u^{\text{max}}}{bd} = 0.21 MPa \quad \langle 0.05 f_{c28} = 1.25 MPa.....vérifiée$$

Donc les armatures transversales ne sont pas nécessaires

Vérification à l'ELS :

La fissuration est considérée comme peu nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues .

- Vérification des contraintes du béton
- Position de l'axe neutre

$$\frac{b}{2}y^2 + nA_s'(y-c') - nA_s(d-y) = 0$$

• Moment d'inertie

$$I = \frac{b}{3}y^{3} + nA_{s}(y - c')^{2} + nA_{s}(d - y)^{2}$$

Avec :

$$n=15$$
; $d=16,2$ cm; $b=100$ cm; $A'_{s}=0$

On doit vérifier que:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$$

***** En appuis :

$$Ma = 0.5 \times M_{ser} = 0.5 \times 24,5 = 12,25 \text{ kN.m}$$

En travée :

Mt =
$$0.85 \times M_{ser}=0.85 \times 24,5=20.83$$
 KN.m

La vérification à faire est : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

	Mser(kNm)	A_s (cm ²)	Y (cm)	I (cm ⁴)	σbc(MPa)	Vérification
Appui	12,25	3,14	3,46	9025,41	4,70	Vérifiée
Travée	20,83	4,52	4,06	12223,12	6,92	Vérifiée

Tableau VI.22 : Vérification de compression du béton.

Vérification de la flèche

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \\ \frac{A_s}{bd} \le \frac{4,2}{fe} \\ \frac{h}{L} \ge \frac{M_t}{10M_0} \end{cases} \implies \begin{cases} \frac{18}{415} = 0,043 \le 0,0625 \text{ non vérifiée} \\ \frac{4,52}{100 \times 16,2} = 0,0028 \le 0,0084 \text{ vérifiée} \\ 0,043 \ge 0,085 \text{ non vérifiée} \end{cases}$$

Deux conditions ne sont pas vérifiées, donc il est nécessaire de calculer la flèche

Flèche totale : $\Delta f_T = f_v - f_i \leq \bar{f}$

Avec :
$$\begin{cases} f_i = \frac{M_{ser}L^2}{10E_i I_{fi}} \\ f_v = \frac{M_{ser}L^2}{10E_v I_{fv}} \\ \bar{f} = \frac{L}{500} \end{cases}$$
 L=4,15m<5m.

E_i=32164,20MPa; E_v=10818,87MPa

• Moment d'inertie de la section homogène Io :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A'_s \left(\frac{h}{2} - d'\right)^2$$
$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu} \quad ; \quad I_{fv} = \frac{I_0}{1 + \lambda_v \mu} \qquad \text{Moment d'inertie fictive.}$$

Avec :

$$\begin{cases} \lambda_{i} = \frac{0.05f_{i28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \\ \lambda_{v} = \frac{0.02f_{i28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \end{cases} ; \quad \begin{cases} \delta = \frac{A_{s}}{b_{0}d} \\ \mu = 1 - \frac{1.75f_{i28}}{4\delta\sigma_{s} + f_{i28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

Les résultats sont récapitulés dans ce tableau :

Mser (KNm)	As (cm ²)	δ	σs (MPa)	λi	λ_v	μ	I0 (cm ⁴)	I _{fi} (cm ⁴)	Ifv (cm ⁴)
20,83	4,52	0,0028	284,47	7,50	3,00	0,30	52114,75	17638,84	27428,82

Tableau VI.23 : Vérification de la flèche de l'escalier.

Donc :

$$\begin{array}{l} f_{i} = 0,63 \text{ cm} \\ f_{v} = 1,21 \text{ cm} \end{array} \Longrightarrow \Delta f_{T} = f_{v} - f_{i} = 0,58 \text{ cm} \\ \overline{f} = \frac{L}{500} = \frac{415}{500} = 0.83 \text{ cm} \\ \Longrightarrow \Delta f_{T} = 0,58 \text{ cm} \quad \prec \overline{f} = 0,83 \text{ cm}.... \text{ vérifiée} \end{array}$$

Figure VI.25 : Ferraillage de l'Escalier (Volée I)

• La deuxième volée

Le calcul de cette partie de l'escalier se fait à la flexion simple par assimilation à une console

sollicitée par des charges uniformément réparties

Figure VI.26 : Schéma statique de volée II

- ✓ Les charges et surcharges
- $G = 10,06 \text{KN} / \text{m}^2$
- Q= 2,5 KN/m²
- ✓ Calcul des sollicitations

Pour une bande de 1m de largeur :

ELU:

- $q_u = (1,35.G+1,5.Q).1m = 17,33 \text{ KN/ml}$
- $M_U = (-qu.L^2)/2 = (-17,33*1,45^2)/2 = -18,22$ KN.m
- $T_U=q_u.L=25,13$ KN

ELS:

- $q_{ser} = (G+Q).1m = 12,56 \text{ KN/ml}$
- $M_{ser} = (-q_{ser}.L^2)/2 = -13,20 \text{ KN.m}$
- ✓ Ferraillage

✓ **Tableau VI.24 :** Ferraillage de l'escalier

Mu	μ	$\mu < \mu_R$	$A_{s}^{'}$	α	Z	A_s^{cal} / ml	Choix	A_s^{adp} / ml
(KNm)			(cm ²)		(cm)	(cm²)		(cm ²)
-18,22	0,049	Oui	0	0,0628	15,79	2,65	4T10	3,14

Calcul des espacements

$$S_t \le \min(3e; 33cm) \Longrightarrow S_t \le 33cm$$
 On adopte $S_t = 25cm$

Armature de répartition

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 0.78 cm^2 / ml \le A_r \le 1.57 cm^2 / ml$$

Le choix est de 4T8=2,01cm² avec St=25cm

- > Vérification :
- Condition de non fragilité

$$A_s \ge A_s^{\min} = 0,23bd \frac{f_{t28}}{fe} = 1,56cm^2$$

$$A_s = 3,14cm^2 \rangle A_s^{\min} = 1,56cm^2....vérifiée$$

Effort tranchant

On doit vérifier que : $\tau_{u} \leq \overline{\tau_{u}}$

$$\tau_u = \frac{V_{\max}}{b \times d} \le \overline{\tau}_u = 0.05 \times f_{c28} = 1.25 MPa$$

$$\tau = \frac{T_u^{\text{max}}}{bd} = \frac{25,13 \times 10^3}{1000 \times 162} = 0,155 MPa \langle \overline{\tau_u} = 1.25 MPa \dots v \acute{erifi}\acute{e}$$

Vérification à l'ELS

Vérification des contraintes

 $A_s=3,14cm^2$, Y=3,46cm, I=9025,41cm4

 $\sigma_{bc} = (M_{ser}/I).y=5,06MPa.$

 $\overline{\sigma_{bc}} = 0.6.f_{c28} = 0.6 \times 25 = 15MPa$ $\sigma_{bc} = 5.06MPa < \overline{\sigma_{bc}} = 15Mpa....vérifiée$

Vérification de la flèche

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

$\left\{\frac{h}{L} \ge \frac{1}{16}\right\}$		$\left(\frac{18}{145} = 0,12 \ge 0,0625\right)$	vérifiée
$\left\{\frac{A_s}{bd} \le \frac{4,2}{fe}\right\}$	\Rightarrow	$\begin{cases} 3,14\\ 100 \times 16.2 \end{cases} = 0,0019 \le 0,0084 \end{cases}$	vérifiée
$\frac{h}{L} \ge \frac{M_t}{10M_0}$		$0,11 \ge \frac{1}{10} = 0,1$	vérifiée

Toutes les conditions sont vérifiées, donc la vérification à la flèche n'est pas nécessaire

Figure VI.27 : Ferraillage de l'Escalier (Volée II)

La troisième volée

Figure VI.28 : Schéma statique de la troisième volée

✓ Calcul des sollicitations

Tableau VI.25 : Calcul des sollicitations

Combinaison	La paillasse q1 (KN /m ²)	Le palier q2 (KN $/m^2$)
ELU	17,22	11,16
ELS	12,48	7.99

✓ Ferraillage

• Le calcul se fait pour une section rectangulaire de dimension (b x h)

Tel que: b=100cm; h=18cm

• Le ferraillage se fait en flexion simple pour une bande de 1m de largeur

$$f_{c28} = 25MPa$$
; $f_{bc} = 14,17MPa$; $f_{t28} = 2,10MPa$; $\gamma_b = 1,5$; d=0,9h=16,2cm

 $\sigma_s = 435 MPa$; $\gamma_s = 1.15$; fe=500MPa

Remarque

On tiendra compte de l'encastrement partiel au niveau des appuis, le règlement [40] préconise une réduction partielle du moment M0 = Mmax

Le moment en travée : Mt = 0.85 MO

Le moment en appui: MA = 0,50 MO

> ELU

 $T^{max} = 31,49 \text{ KN}$

M^{max}=28,79 KN.m

En appuis :

Ma = $0.5 \times M_0 = 0.5 \times 28,79 = 14,39$ KN.m

En travée:

```
Mt =0,85 \times M_0 = 0,85 \times 28,79 = 24,47 KN.m
```

> ELS

 $T^{max} = 22,80 \text{ KN}$

M^{max}=20,83 KN.m

En appuis :

$$Ma = 0.5 \times M_0 \times = 0.5 \times 20.83 = 10.42 \text{ KN.m}$$

En travée:

$$Mt = 0.85 \times M_0 = 0.85 \times 20.83 = 17.71 \text{ KN}$$

	Mu	μ	$\mu < \mu_R$	$A_{s}^{'}$	α	Z	A_s^{cal} / ml	Choix	A_s^{adp} / ml
	(KNm)			(cm ²)		(cm)	(cm ²)		(cm ²)
Appui	14,39	0,039	Oui	0	0,0494	15,88	2,08	4T10	3,14
Travée	24,47	0,066	Oui	0	0,0852	15,64	3,60	4T12	4,52

Tableau VI.26 : Ferraillage de l'escalier.

- ✓ Calcul des espacements
- Armatures principales
- En travée : $esp \le \frac{100}{4} = 25 \text{ cm}$

On prend : *esp=25cm*

Sur appui : $esp \le \frac{100}{4} = 25 \text{ cm}$

On prend : esp=25cm

- Armature de répartition
- **En travée :** $\qquad \frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 1.13 cm^2 / ml \le A_r \le 2.26 cm^2 / ml$

Le choix est de 4T8=2.01cm² avec St=25cm

• Sur appui : $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 0.79 cm^2 / ml \le A_r \le 1.57 cm^2 / ml$

Le choix est de 4T8=2.01cm² avec St=25cm

- ✓ Vérification
- Condition de non fragilité

$$A_s \ge A_s^{\min} = 0.23bd \frac{f_{t28}}{fe} = 1.56cm^2$$

- En travée : $A_s = 4,52cm^2 \rangle A_s^{\min} = 1,56cm^2.....vérifiée$
- Sur appui : $A_s = 3,14cm^2 \rangle A_s^{\min} = 1,56cm^2.....vérifiée$
- Effort tranchant

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

$$\bar{\tau} = Min\left(0, 2\frac{f_{c28}}{\gamma_b}; 5MPa\right) = 3,33MPa$$
(Fissuration peu nuisible)

$$\tau = \frac{T_u^{\text{max}}}{\text{bd}} = \frac{31,49 \times 10^3}{1000 \times 162} = 0,19 \text{MPa} \langle \overline{\tau_u} = 3,33 \text{MPa} \dots \text{vérifiée}$$

Influence de l'effort tranchant au voisinage des appuis (vérification de l'ancrage)
 Les armatures longitudinales tendues inférieures doivent être ancrées au-delà de l'appui, pour équilibrer l'effort de traction.

- Si :
$$T_u - \frac{M_u}{0.9d}$$
 $\langle 0 \Rightarrow$ les armatures ne sont soumises à aucun effort de traction.

- Si: $T_u - \frac{M_u}{0.9d} > 0 \Rightarrow$ il faut satisfaire la condition suivante : $A_s \ge \left| \frac{T_u - \frac{M_u}{0.9d}}{\sigma_s} \right|$

$$T_u - \frac{M_u}{0.9d} = 31,49 \times 10^3 - \frac{14,39 \times 10^6}{0.9 \times 162} = -67,21 KN \langle 0 \rangle$$

Les armatures ne sont soumises à aucun effort de traction

• Vérification des armatures transversales

$$\tau = \frac{T_u^{max}}{bd} = 0,19 \text{MPa} \langle 0,05 f_{c28} = 1,25 \text{MPa}....vérifiée$$

Donc les armatures transversales ne sont pas nécessaires

Vérification à l'ELS

La fissuration est considérée comme peu nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

Vérification des contraintes du béton

• Position de l'axe neutre

$$\frac{b}{2}y^2 + nA_s'(y-c') - nA_s(d-y) = 0$$

• Moment d'inertie

$$I = \frac{b}{3}y^{3} + nA_{s}(y - c')^{2} + nA_{s}(d - y)^{2}$$

Avec :

$$n=15$$
; $d=16,2$ cm; $b=100$ cm; $A'_{s}=0$

On doit vérifier que:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15MPa$$

La vérification à faire est : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

	Mser(kNm)	$A_s(cm^2)$	Y(cm)	I(cm ⁴)	σbc(MPa)	Vérification			
Appui	10,42	3,14	3,46	9025,41	3,99	Vérifiée			
Travée	17,71	4,52	4,06	12223,12	5,88	Vérifiée			

Tableau VI.27 : Vérification de compression du béton

Vérification de la flèche

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \\ \frac{A_s}{bd} \le \frac{4,2}{fe} \\ \frac{h}{L} \ge \frac{M_t}{10M_0} \end{cases} \implies \begin{cases} \frac{18}{385} = 0,047 \le 0,0625 \quad non \ vérifiée \\ \frac{4,52}{100 \times 16,2} = 0,0028 \le 0,0084 \quad vérifiée \\ 0,041 \ge 0,085 \quad non \ vérifiée \end{cases}$$

Deux conditions ne sont pas vérifiées, donc il est nécessaire de calculer la flèche

Flèche totale : $\Delta f_T = f_v - f_i \leq \overline{f}$

Avec :
$$\begin{cases} f_i = \frac{M_{ser}L^2}{10E_i I_{fi}} \\ f_v = \frac{M_{ser}L^2}{10E_v I_{fv}} \\ \bar{f} = \frac{L}{500} \end{cases}$$
 L=3,85m<5m.

 $E_i=32164,20MPa$; $E_v=10818,87MPa$

• Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A'_s \left(\frac{h}{2} - d'\right)^2$$
$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu} \quad ; \quad I_{fv} = \frac{I_0}{1 + \lambda_v \mu} \qquad \text{Moment d'inertie fictive.}$$

Avec :

$$\begin{cases} \lambda_{i} = \frac{0,05f_{i28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \\ \lambda_{v} = \frac{0,02f_{i28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \end{cases}; \begin{cases} \delta = \frac{A_{s}}{b_{0}d} \\ \mu = 1 - \frac{1,75f_{i28}}{4\delta\sigma_{s} + f_{i28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

Les résultats sont récapitulés dans ce tableau :

Tableau VI.28 : Vérification de la flèche de l'escalier.

ſ	Mser (KNm)	As (cm ²)	δ	σs (MPa)	λi	λ_v	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	Ifv (cm ⁴)
	17,71	4,52	0,0028	241,86	7,50	3,00	0,24	52114,75	20473,65	30299,27

Donc:

$$\begin{array}{c} f_i = 0,4cm \\ f_v = 0;8cm \end{array} \Longrightarrow \Delta f_T = f_v - f_i = 0,4cm \\ \hline f = \frac{L}{500} = \frac{385}{500} = 0.77cm \\ \Rightarrow \Delta f_T = 0,4 \ cm \ \prec \bar{f} = 0,77cm \\ \hline \texttt{TB e=25} \end{array}$$

Figure VI.29 : Ferraillage de l'Escalier (Volée III)

V. CONCLUSION

Dans ce chapitre, il a été question de calculer les éléments secondaires ne participant pas directement au contreventement de la structure.

Ainsi, les différents types de poutrelles ont étés étudiées et ferraillées.

Le même travail a été fait pour les dalles pleines et les escaliers.

Nous nous sommes aussi intéressé a l'acrotère. Ce dernier a été étudié à la flexion composée, un ferraillage adéquat a été adopté.

I. INTRODUCTION

Vu que l'activité sismique peut se produire à tout moment, provoquant d'importants dégâts humains et matériels, les structures doivent être conçues et construites de manière adéquate afin de résister à ses secousses sismiques, toute en respectant les recommandations des règlements parasismiques.

Le but de ce chapitre est de définir un modèle de structure qui vérifie les conditions et critères de sécurités imposées par les règles parasismiques Algériennes **[39].**

La modélisation de notre structure a été effectuée à l'aide du logiciel **ETABS V.9.2** qui est un logiciel de calcul automatique des structures.

II. ETUDE SISMIQUE

L'analyse dynamique nécessite toujours initialement de créer un modèle de calcul représentant la structure. Ce modèle introduit en suite dans un programme de calcul dynamique permet la détermination de ses modes propre de vibrations et des efforts engendrés par l'action sismique.

II.1. Modélisation de rigidité

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type frame (Beam pour poutre et Column pour poteau) à deux nœuds, chaque nœud possède 6 degré de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par un élément surfacique type Shell à quatre nœud après on l'a divisé en mailles.
- A tous les planchers nous avons attribués une contrainte de type diaphragme ce qui correspond à des planchers infiniment rigide dans leur plan.
- Chaque escalier (palier et paillas) est modélisé par un élément surfacique type Shell à quatre nœuds.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

Figure VII .1: Vue en 3D de la structure modélisé

II.2. Modélisation de la masse

• La charge des planchers est supposée uniformément répartie sur toute la surface du plancher. La masse est calculée par l'équation (G+ β Q) imposée par [**39**] avec (β =0,2) pour un bâtiment à usage d'habitation. (mass source).

• La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir 2,5t/m³.

• La charge de l'acrotère et des murs extérieurs (maçonnerie) a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

III. CHOIX DE LA METHODE DE CALCUL

Le choix des méthodes de calcul et la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage.

Les règles parasismiques Algériennes [39] propose trois méthodes de calcul des sollicitations.

1- La méthode statique équivalente.
- 2- La méthode d'analyse modale spectrale.
- 3- La méthode d'analyse dynamique par accélérogramme.

III.1. La méthode statique équivalente

Principe

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

Le mouvement du sol peut se faire dans une direction quelconque dans le plan horizontal.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projecteur. Dans le cas général, ces deux directions sont les axes principaux du plan horizontal de la structure.

* Conditions d'applications

Les conditions d'applications de la méthode statique équivalente sont :

- Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I et II et à 30m en zones III
- Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outres les conditions de hauteur énoncées en haut, et les conditions complémentaires suivantes :

Zone III :

- groupe d'usages 3 et 2, si la hauteur est inférieur ou égale à 5 niveaux ou 17m
- groupe d'usage 1B, si la hauteur est inférieur ou égale à 3 niveaux ou 10m.
- groupe d'usage 1A, si la hauteur est inférieur ou égale à 2 niveaux ou 8m
- la méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III de groupe d'usage 1B et sa hauteur dépasse les 10m.

III.2. La méthode modale spectrale

La méthode d'analyse modale spectrale peut être utilisée dans tous les cas et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

Dans notre projet, une étude dynamique de la structure s'impose du fait que les conditions de régularité en plan et en élévation ne sont pas satisfaites.

Principe

Il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques, représentées par un spectre de calcul, ces effets sont par suite combinés pour obtenir la réponse de la structure.

Cette méthode est basée sur les hypothèses suivantes :

- Concentration des masses au niveau des planchers.
- Seuls les déplacements horizontaux des nœuds sont pris en compte.
- Le nombre de modes à prendre en compte est tel que la somme des coefficients massiques de ces modes soit aux moins égales 90%.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la repense totale de la structure.

Le minimum de modes à retenir est de trois (3) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3\sqrt{N}$$
 Et $T_K \le 0.20$ sec

Où : N est le nombre de niveaux au-dessus de sol et T_K la période du mode K.

* Analyse spectrale

Utilisation des spectres de réponse

La pratique actuelle la plus répondue consiste à définir le chargement sismique par un spectre de réponse

- toute structure est assimilable à un oscillateur multiple, la réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ζ) et de la pulsation naturelle (ω).

Donc pour des accélérogrammes données si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est nommé spectre de réponse et qui aide à faire une lecture directe des déplacements maximaux d'une structure.

L'action sismique est représentée par un spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_1 \\ 2,5\eta \left(1,25A \right) \frac{Q}{R} & T_1 \le T \le T_2 \\ 2,5\eta \left(1,25A \right) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} & T_2 \le T \le 3,0s \\ 2,5\eta \left(1,25A \right) \frac{Q}{R} \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} & T \ge 3,0s \end{cases}$$

Avec :

- g : accélération de la pesanteur, (g = 9,81N)
- A : coefficient d'accélération de zone,
- η : facteur de correction d'amortissement,

R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.

- T1, T2: Périodes caractéristiques associées à la catégorie de site,
- Q : Facteur de qualité.

Représentation graphique du spectre de réponse

Sa/g

Figure VII .2: Spectre de réponse

Résultante des forces sismiques de calcul

L'une des premières vérifications préconisée par le [39] est relative à la résultante des forces sismiques.

En effet la résultante des forces sismiques à la base « V_t » obtenue par combinaison des valeurs modales ne doit pas être inférieur à 80% de la résultante des forces sismiques déterminer par la méthode statique équivalente «V» pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si $V_t < 0.8V$, il faut augmenter tous les paramètres de la réponse (forces, déplacements, moments,.....) dans le rapport : $\frac{0.8V}{V_t}$.

Calcul de la force sismique par la méthode statique équivalente

La force sismique totale V appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec

A : coefficient d'accélération de zone.

* groupe d'usage : **1B**

*zone sismique : III

D : facteur d'amplification dynamique moyen

Ce facteur est fonction de la catégorie du site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

A=0.3

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0s \\ 2.5\eta \left(\frac{T_2}{3.0}\right)^{2/3} \left(\frac{3.0}{T}\right)^{5/3} & T \ge 3.0s \\ \end{cases}$$

T1, T2 : périodes caractéristiques associée à la catégorie du site [39]

Catégorie S₃ site meuble $\begin{cases} T1 = 0.15 \text{ sec.} \\ T2 = 0.50 \text{ sec.} \end{cases}$

> Estimation de la période fondamentale de la structure (T)

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

Les formules empiriques à utiliser sont [1] :

T= min (
$$T = C_T \times h_N^{3/4}$$
, **T** = 0,09 $\frac{h_N}{\sqrt{D}}$)

$$C_T = 0.05$$

•

 h_N : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

$$h_N = 24.48 \text{m}$$

D : est la dimension du bâtiment mesurée à sa base dans la direction de calcul considéré Dimensions en plan :

$$\begin{cases} Dx = 26,95 \text{ m} \\ Dy = 21,40 \text{ m} \end{cases}$$

 $T = C_T * h_n^{3/4} = 0.05 * (24,48)^{3/4} = 0.550$ sec, dans les deux directions.

$$\begin{cases} T_{x} = 0.09 \frac{h_{n}}{\sqrt{D_{x}}} = 0.424 \text{sec} \\ T_{Y} = 0.09 \frac{h_{n}}{\sqrt{D_{y}}} = 0.476 \text{ sec} \end{cases}$$

- sens (x-x) : $T_x = min (0.550; 0.424) = 0.424 sec$

- sens (y-y) :
$$T_x = min (0.550; 0.476) = 0.476$$
 sec

On calcule le facteur D suivant les deux directions par les formules suivantes :

T1=0.15 (site3)

T2=0.50 (site3)

$$Or \rightarrow Dx = Dy = 2.5\eta \dots 0 \le T \le T_2$$
.

η : Facteur de correction d'amortissement :

$$\eta = \sqrt{\frac{7}{\left(2+\xi\right)}} \ge 0.7$$

 ξ (%) : est Pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages [39]

Pour notre cas on prend $\xi = 7\%$

Donc:
$$\eta = \sqrt{\frac{7}{(2+7)}} \ge 0.7 \longrightarrow \eta = 0.88$$

Dx = Dy = 2.5(0,88) = 2,2

Coefficient de comportement R

L'objet de la classification des systèmes structuraux se traduit, dans les règles et les méthodes de calcul, par l'attribution pour chacune des catégories de cette classification, d'un coefficient de comportement R qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement.

Comme notre bâtiment (R+5 étage, h=24.48 m).et le contreventement et assuré par des portiques et des voiles on a choisi un coefficient de comportement (R=4).

Figure VII .3: Organigramme de classification des systèmes de contreventement avec voile [43]

Facteur qualité Q

Le facteur de qualité de la structure est fonction de :

- la redondance et de la géométrie des éléments qui la constituent
- la régularité en plan et en élévation
- la qualité de contrôle de la construction

La valeur de Q déterminée par la formule :

$$Q = 1 + \sum_{1}^{6} P_q$$

 P_q : est la pénalité à retenir selon que le critère de qualité **q** "est satisfait ou non ".

Tableau VII .1: facteur de qualité.

Critère q	observée (o/n)	Pq // xx	observée (o/n)	Pq // yy
Conditions minimales sur les files de contreventement	non	0.05	non	0.05
Redondance en plan	non	0.05	non	0.05
Régularité en plan	non	0.05	non	0.05
Régularité en élévation	oui	0	oui	0
Contrôle de la qualité des matériaux	oui	0	oui	0
Contrôle de la qualité de l'exécution	oui	0	oui	0

$$Q//xx = 1 + (0.05 + 0.05 + 0.05 + 0 + 0 + 0) = 1.15$$

Q//yy = 1 + (0.05 + 0.05 + 0.05 + 0 + 0 + 0) = 1.15

• Le poids total de la structure W

Selon [39] il faut prendre la totalité des charges permanentes et une fraction β des charges d'exploitations.

$$W = \sum_{i=1}^{n} W_i$$

 W_i Étant donné par :

$$W_i = W_{Gi} + \beta W_{Qi}$$

Avec :

 W_{Gi} : Le poids dû aux charges permanentes et celui des équipements fixes éventuels, secondaires de la structure au niveau "i";

W_{**Q***i*}: Surcharges d'exploitation au niveau [«] *i* [»];

B : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation.

 $\beta = 0.2$ (bâtiment d'habitation, bureaux ou assimilés).

IV. RESULTATS DE L'ANALYSE DYNAMIQUE

• Modèle initial : il s'agit de considérer uniquement les voiles des deux ascenseurs

Figure VII .4 : Vue en plan du 1^{er} modèle.

CHAPITRE VII

> Caractéristiques dynamique propres du modèle initial

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0,80797sec.
- La participation massique dépasse le seuil des 90% à partir du 8^{ème} mode.

Tableau VII .2: participation massique du modèle initial.

Mode	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,80797	9,2144	36,7825	0	9,2144	36,7825	0
2	0,729672	59,0996	11,3175	0	68,314	48,1001	0
3	0,594009	2,7556	20,4057	0	71,0696	68,5058	0
4	0,207571	4,399	6,2029	0	75,4685	74,7087	0
5	0,184555	14,6637	2,9537	0	90,1322	77,6624	0
6	0,135638	0,1486	10,4033	0	90,2808	88,0657	0
7	0,09835	1,614	1,8782	0	91,8947	89,9439	0
8	0,086501	4,2906	0,9236	0	96,1854	90,8675	0
9	0,064237	0,5327	0,1455	0	96,7181	91,013	0
10	0,058111	0,363	4,1003	0	97,0811	95,1133	0
11	0,055598	1,4811	1,1604	0	98,5622	96,2736	0
12	0,049425	0,2277	0,1575	0	98,7899	96,4312	0

• Le 1^{er} mode est un mode de de rotation.

• Le 2^{ime} mode est un mode de translation selon le sens xx

• Le 3^{ème} mode est un mode de rotation.

Résultantes des forces sismiques

D'après le calcule numérique effectué par ETAPS on a :

W=28117,76KN
$$V^{x} = \frac{0,3(2,2)(1,15)}{4} 28117,76 = 5335,34kN \Longrightarrow 0,8V^{x} = 4268,27kN$$

$$V^{y} = \frac{0,3(2,2)(1,15)}{4} 28117,76 = 5335,34kN \Longrightarrow 0,8V^{x} = 4268,27kN$$

$$\begin{cases} V_t^x = 3764,11KN \le 0,8V^x = 4268,27KN \\ V_t^y = 4339,32KN \ge 0.8V^y = 4268,27KN \end{cases}$$

$$\begin{cases} r_{x} = \frac{0.8V^{x}}{V_{t}^{x}} = 1.134\\ r_{y} = \frac{0.8V^{y}}{V_{t}^{y}} = 1 \end{cases}$$

Vérification des déplacements inter étage :

L'une des vérifications concerne les déplacements latéraux inter étages [39].En effet, l'inégalité ci-dessous doit nécessairement être vérifiée : $\Delta_K^x \leq \overline{\Delta}$ et $\Delta_K^y \leq \overline{\Delta}$

Avec :
$$\overline{\Delta} = 0,01he$$

Où : he représente la hauteur de l'étage.

Avec:

$$\delta_{K}^{x} = R \frac{0.8V^{x}}{V_{t}^{x}} \delta_{eK}^{x} \quad et \quad \delta_{K}^{y} = R \frac{0.8V^{y}}{V_{t}^{y}} \delta_{eK}^{y}$$

$$\Delta_{K}^{x} = \delta_{K}^{x} - \delta_{K-1}^{x} \quad et \quad \Delta_{K}^{y} = \delta_{K}^{y} - \delta_{K-1}^{y}$$
Si $V_{t} < 0.8V$

 Δ_K^x : Correspond au déplacement relatif au niveau K par rapport au niveau K-1 dans le sens x-x (idem dans le sens y-y, Δ_K^y).

 δ_{eK}^{x} : Est le déplacement horizontal dû aux forces sismiques au niveau K dans le sens x-x (idem dans le sens y-y, δ_{eK}^{y}).

Le rapport
$$\begin{cases} \frac{0.8V^X}{V_t^X} = 1.134 \end{cases}$$
 Le rapport $\begin{cases} \frac{0.8V^y}{V_t^y} = 0.98 \end{cases}$

Tableau VII .3: Vérification des déplacements inter étages du modèle initiale

NIV	$\delta_K^X(mm)$	$\delta_K^y(mm)$	$\Delta_K^x(mm)$	$\Delta_K^{y}(mm)$	$\overline{\Delta}(mm)$	Observation
base	0	0	0	0	0	Vérifiée
RDC	3,6	3,8	14,4	15,2	40,8	Vérifiée
1	8,7	11	20,4	28,8	40,8	Vérifiée
2	16,1	20,4	29,6	37,6	40,8	Vérifiée
3	24,2	30,8	32,4	41,6	40,8	Non Vérifiée
4	32,6	41,5	33,6	42,8	40,8	Non Vérifiée
5	40,6	51,8	32	41,2	40,8	Non Vérifiée

Les déplacements latéraux inter étage dépassent les valeurs admissibles, il faut donc augmenter la rigidité latérale de la structure on rajoutant des voiles.

Le problème qui se pose ici c'est bien la bonne disposition de ces voiles dans la structure qui assure un bon comportement sismique.

2^{ème} Modèle

Figure VII .5 : Vue en plan du 2^{éme} modèle.

> Caractéristiques dynamique propres du modèle 2

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0,630722 sec
- La participation massique dépasse le seuil des 90% à partir du 8^{ème} mode.

Tableau VII .4: participat	tion massique du 2 ^{ème} modèle
----------------------------	--

Mode	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,630722	63,0798	1,4554	0	63,0798	1,4554	0
2	0,578226	1,7366	66,2221	0	64,8164	67,6775	0
3	0,460746	5,6432	0,1916	0	70,4596	67,8691	0
4	0,153913	18,3939	0,0420	0	88,8535	67,9111	0
5	0,121539	0,0801	20,0515	0	88,9336	87,9627	0
6	0,101362	0,8951	0,3018	0	89,8287	88,2645	0
7	0,070399	5,9784	0,0065	0	95,8071	88,2709	0
8	0,050911	0,0424	6,6838	0	95,8494	94,9547	0
9	0,044534	2,6568	0,0913	0	98,5063	95,0460	0
10	0,043909	0,0584	0,1276	0	98,5647	95,1737	0
11	0,043567	0,0030	0,0493	0	98,5677	95,2230	0
12	0,043168	0,0002	0,1980	0	98,5679	95,4211	0

- Le 1^{er} mode est un mode de translation selon le sens x-x.
- Le 2^{emmed} est un mode de translation selon le sens y-y.
- Le 3^{ème} mode est un mode est rotation.

Résultantes des forces sismiques

D'après le calcule numérique effectué par ETAPS on a :

$$W=29953,75KN$$

$$V^{x} = \frac{0,3(2,2)(1,15)}{4} 29953,75 = 5683,72kN \Rightarrow 0,8V^{x} = 4546,98kN$$

$$V^{y} = \frac{0,3(2,2)(1,15)}{4} 29953,75 = 5683,72kN \Rightarrow 0,8V^{x} = 4546,98kN$$

$$\begin{cases} V_{t}^{x} = 4217,44KN \le 0,8V^{x} = 4546,98KN \\ V_{t}^{y} = 4649,12KN \ge 0.8V^{y} = 4546,98KN \end{cases}$$

$$\begin{cases} r_{x} = \frac{0,8V^{x}}{V_{t}^{x}} = 1,07 \\ r_{y} = \frac{0,8V^{y}}{V_{t}^{y}} = 1 \end{cases}$$

> Vérification des déplacements inter étage

Tableau VII .5: Vérification des déplacements inter étages du 2^{éme} modèle

	$\delta_{K}^{X}(mm)$	$\delta_K^y(mm)$	$\Delta_K^x(mm)$	$\Delta_K^y(mm)$	$\overline{\Delta}(mm)$	
NIV						Observation
base	0	0	0	0	0	Vérifiée
RDC	3	1,6	12	6,4	40,8	Vérifiée
1	7,5	4,8	18	12,8	40,8	Vérifiée
2	14,3	9,6	27,2	19,2	40,8	Vérifiée
3	21,9	15,1	30,4	22	40,8	Vérifiée
4	29,7	21,1	31,2	24	40,8	Vérifiée
5	37,3	27	30,4	23,6	40,8	Vérifiée

Les déplacements relatifs inter étages sont inférieurs à la limite imposée [39]

CHAPITRE VII

> Vérification du critère de l'effort normal réduit

•
$$\mathbf{v} = \frac{N_d}{B_c \times f_{c28}} \le 0,30$$

Avec :

B_c: section de poteau

 $N_d = l'$ éffort normal maximal entre (G+Q ±Ex ; G+Q ±Ey)

Les résultats sont regroupés dans le tableau suivant :

Niv	N _d (KN)	h×b (cm²)	$B_c(cm^2)$	ν	Observation
5 ^{ème}	295,03	30*30	900	0,13	Vérifiée
4 ^{ème}	609,62	30*30	900	0,27	Vérifiée
3 ^{ème}	925	35*35	1225	0,31	Non Vérifiée
2 ^{ème}	1239,71	35*35	1225	0,40	Non vérifiée
1 ^{er}	1560,63	40*40	1225	0,39	Non vérifiée
RDC	1905,7	40*40	1600	0,48	Non vérifiée

Tableau VII .6: Vérification de l'effort normal réduit (poteaux carrées)

Tableau VII .7: Vérification de l'effort normal réduit (poteaux circulaire)

Niv	N _d (KN)	D (cm ²)	$B_c(cm^2)$	ν	Observation
1 ^{er}	846,21	70	3846,5	0,087	vérifiée
RDC	793,21	70	3846,5	0,082	vérifiée

Remarque

D'après les résultats des tableaux ci-dessus on doit augmenter les sections des poteaux donc on a obtenu les résultats suivants.

Tableau VII .8: Nouveaux dimensions des poteaux

Etages	Section (cm ²)
5 ^{ème}	30*30
4 ^{ème}	35*35
3 ^{ème}	40*40
2 ^{ème}	45*45
1 ^{er}	50*50
RDC	55*55

Vérification des conditions du facteur de comportement R

Dans nos précédant calcul en a pris R=4, donc selon le RPA il faut justifier que :

Les voiles reprennent au plus 20% des sollicitations dues aux charges verticales et la totalité des sollicitations dues aux charges horizontales. On considère que les portiques ne reprennent que les charges verticales.

Justification des voiles sous charges verticales

On tire l'effort normal que reprend toute la structure à la base avec le logiciel ETABS

La portance des voiles = $\frac{\text{Les charges reprises par les voile}}{\text{le poids totale de la structure}}$ = $\frac{10652,2378}{29953,7577}$ x100 = 29,63% > 20%

Il faut changer le facteur de comportement : \rightarrow **R=3,5**

Remarque : les résultats représentés dans le tableau montre que les voiles reprennent plus de 20% des charges verticales ce qui ne vérifier pas les critères du système de contreventement mixte. Donc on opte pour un système de contreventement de type2 (système de contreventement constitué par des voiles porteurs en béton armé)

On considère que la sollicitation horizontale est reprise uniquement par les voiles, et pour cela le coefficient de comportement sera R=3,5 (voiles porteurs)

On remplace le coefficient de comportement R=3,5 dans le spectre de réponse et on refera l'analyse à nouveau.

Modèle final

Figure VII.6 : Vue en plan du modèle final

> Caractéristiques dynamique propres du modèle final

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0,568156 sec
- La participation massique dépasse le seuil des 90% à partir du 8^{ème} mode.

Tableau VII .9: Participation massique du modèle final

Mode	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,568156	63,6039	0,7520	0	63,6039	0,7520	0
2	0,513209	1,0493	65,5790	0	64,6532	66,3309	0
3	0,413086	5,0273	0,3432	0	69,6806	66,6741	0
4	0,147694	19,0900	0,0431	0	88,7706	66,7172	0
5	0,114596	0,1060	20,7188	0	88,8766	87,4360	0
6	0,096361	0,8770	0,5446	0	89,7536	87,9807	0
7	0,069044	6,1829	0,0063	0	95,9365	88,1070	0
8	0,049699	0,0553	6,9447	0	95,9918	94,9317	0
9	0,044066	2,6559	0,0563	0	98,6478	94,9880	0
10	0,042747	0,0058	0,5740	0	98,6536	95,5620	0
11	0,041544	0,0000	0,0100	0	98,6536	95,5720	0
12	0,041406	0,0006	0,0259	0	98,6542	95,5979	0

- Le 1^{er} mode est un mode de translation selon le sens x-x.
- Le 2^{ème} mode est un mode de translation selon le sens y-y.
- Le 3^{ème} mode est un mode est rotation.

.

Résultantes des forces sismiques

D'après le calcule numérique effectué par ETAPS on a :

W=31381,5KN

$$V^{x} = \frac{0,3(2,2)(1,15)}{3,5} 313815 = 6805,3kN \Longrightarrow 0,8V^{x} = 5444,24kN$$

$$V^{y} = \frac{0,3(2,2)(1,15)}{3,5} 31381,5 = 6805,3kN \Longrightarrow 0,8V^{x} = 5444,24kN$$

$$\begin{cases} V_t^x = 5296,44KN \le 0,8V^x = 5444,24KN \\ V_t^y = 5893,55KN \ge 0.8V^y = 5444,24KN \end{cases}$$

$$r_x = \frac{0.8V^x}{V_t^x} = 1.02$$
$$r_y = \frac{0.8V^y}{V_t^y} = 1$$

> Vérification des déplacements inter étage

Tableau VII .10: Vérification des déplacements inter étages du modèle final

	$\delta_{K}^{X}(mm)$	$\delta_K^y(mm)$	$\Delta_K^x(mm)$	$\Delta_K^{y}(mm)$	$\overline{\Delta}(mm)$	
NIV						Observation
base	0	0	0	0	0	Vérifiée
RDC	2,7	1,6	9,45	5,6	40,8	Vérifiée
1	7,1	4,8	15,4	11,2	40,8	Vérifiée
2	13,4	9,5	22,05	16,45	40,8	Vérifiée
3	20,7	15,1	25,55	19,6	40,8	Vérifiée
4	28,3	21,2	26,6	21,35	40,8	Vérifiée
5	35,7	27,3	25,9	21,35	40,8	Vérifiée

Les déplacements relatifs inter étages sont inférieurs à la limite imposée [39]

CHAPITRE VII

Vérification du critère de l'effort normal réduit

$$\mathbf{v} = \frac{N_d}{B_c \times f_{c28}} \le 0,30$$

Avec :

B_c: section de poteau

 $N_d = l'$ éffort normal maximal entre (G+Q ±Ex ; G+Q ±Ey)

Les résultats sont regroupés dans le tableau suivant :

Tableau VII .11: Vérification de l'effort normal réduit (poteaux carrées)

Niv	Nd(KN)	h×b (cm ²)	$B_c(cm^2)$	v	Observation
5 ^{ème}	296,53	30*30	900	0,13	Vérifiée
4 ^{ème}	616,07	35*35	1225	0,20	Vérifiée
3 ^{ème}	937,57	40*40	1600	0,23	Vérifiée
2 ^{ème}	1289,07	45*45	2025	0,25	vérifiée
1 ^{er}	1656,22	50*50	2500	0,26	vérifiée
RDC	2038,61	55*55	3025	0,27	vérifiée

Tableau VII .12: Vérification de l'effort normal réduit (poteaux circulaire)

Niv	N _d (KN)	D (cm ²)	$B_c(cm^2)$	v	Observation
1 ^{er}	844,94	70	3846,5	0,087	vérifiée
RDC	791,95	70	3846,5	0,082	vérifiée

Justification vis-à-vis de l'effet P-Δ (les effets du second ordre)

C'est le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

Figure VII.7: Evaluation des effets du second ordre.

Les effets de second ordre (l'effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_{K} \times \Delta_{K}}{V_{K} \times h_{K}} \le 0,1$$

Avec :

 p_k : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau 'K'

$$P_{K} = \sum_{i=k}^{n} (W_{Gi} + \beta W_{Qi})$$

 V_{κ} :Effort tranchant d'étage au niveau 'K'

 Δ_k : Déplacement relatif du niveau 'K' par rapport au niveau 'K-1'.

 h_k : Hauteur d'étage 'k' comme indique-la figure.

Tableau VII .13: Vérification de l'effet du second ordre (l'effet P- Δ)

Niv	P(kN)	V _x (kN)	Vy(kN)	$\Delta_{\mathbf{x}}(\mathbf{mm})$	$\Delta \mathbf{y}(\mathbf{mm})$	h(mm)	θx	Өу	Obs
5 ^{éme}	5159,85	1815,61	1996,91	25,9	21,35	4080	0,018	0,014	Vérifié
4 ^{éme}	10169,33	3055,23	3328,27	26,6	21,35	4080	0,022	0,017	Vérifié
3 ^{éme}	15211,91	3960,67	4286,57	25,55	19,6	4080	0,024	0,017	Vérifié
2 ^{éme}	20419,23	4644,33	4997,95	22,05	16,45	4080	0,024	0,016	Vérifié
1 ^{ére}	25851,91	5126,1	5497,51	15,4	11,2	4080	0,019	0,013	Vérifié
RDC	31381,5	5444,75	5893,55	9,49	5,6	4080	0,013	0,007	vérifié

V. CONCLUSION

La vérification de toutes les exigences de l'étude dynamique n'a pas été une chose aisée pour notre structure. Les contraintes architecturales étaient vraiment un obstacle à la disposition des voiles.

Nous avons opté pour la disposition des voiles qui nous a donné les meilleurs résultats vis-àvis des exigences du RPA.

- ✓ L'effort normal réduit calculé répond à la condition édicté par le RPA (≤ 0.3).
- ✓ L'effet P-∆ est négligeable à tous les niveaux étant donné que la constante $\Theta \le 0.1$
- ✓ Les déplacements inter étages sont vérifiés à tous les niveaux

I. INTRODUCTION

On désigne sous le nom des éléments principaux les éléments qui interviennent dans la résistance aux actions sismiques d'ensemble ou dans la distribution de ces actions au sein de l'ouvrage. Ils contiennent : Les portiques (poteaux – poutres) et les voiles.

II. FERRAILLAGE DES POTEAUX

Les poteaux constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations.

Les sections des poteaux sont soumises à la flexion composée (M, N), compression "N", et à un moment fléchissant ["]M["].

Une section soumise à la flexion composée peut être l'un des trois cas suivants :

- Section entièrement tendue SET.
- Section entièrement comprimée SEC.
- Section partiellement comprimée SPC.

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations les plus défavorables et dans les situations suivantes :

Situation		Béton		Acier			
	γ _b	f _{c28} (MPa)	σ_{bc} (MPa)	γ_{s}	fe (MPa)	σ_{s} (MPa)	
Durable	1,5	25	14,17	1,15	500	435	
Accidentelle	1,15	25	18,48	1	500	400	

Tableau VIII.1 : Caractéristiques du béton et de l'acier.

II.1. Combinaison d'action

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes

[1] [2] :

ELU: - Situation durable 1,35G+1,5Q

ELS : - Situation durable G+Q

Situation accidentelle

- G+Q+E
- 0,8G±E

Avec:

G: Charges permanentes.

Q: Surcharge d'exploitation.

E: Action du séisme.

A partir de ces combinaisons, on distingue les cas suivants :

- 1- N^{max}, M^{corr}
- 2- N^{min}, M^{corr}
- 2- M^{max}, N^{corr}

II.2. Recommandation

Pour une zone sismique III, les armatures longitudinales doivent être à haute adhérence, droites et sans crochet [39]

Leur pourcentage est limité par :

•
$$0.9 \prec \frac{A_s}{B} \prec 4\%$$
 Zone courante (Z.C)
• $0.9 \prec \frac{A_s}{B} \prec 6\%$ Zone de recouvrement (Z.R)

Avec :

As: La section d'acier.

B : Section du béton $[cm^2]$.

-Le diamètre minimal est de 12mm.

-La longueur minimale de $50\emptyset$ en zone de recouvrement.

-La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 20cm.

-Les jonctions par recouvrement doivent être faites si possible, à l'intérieur des zones nodales.

* Poteaux carrées

Situation durable

Combinaison : 1,35G+1,5Q

Tableau VIII.2 : Ferraillages des poteaux situation durable (N^{max},M^{corr})

Niveaux	Sections	N ^{max}	Mcorr	Soll	A's	As	$A_{s(RPA)}^{\min}(cm^2)$
	(cm ²)	(kN)	(kNm)		(cm ²)	(cm ²)	S(KFA)
RDC	55x55	2038,61	6,6704	SEC	0	0	27,23
1 ^{er}	50x50	1656,22	20,93	SEC	0	0	22,5
2 ^{éme}	45x45	1289,07	18,783	SEC	0	0	18,23
3 ^{éme}	40x40	937,57	17,041	SEC	0	0	14,40
4 ^{éme}	35x35	616,07	4,026	SEC	0	0	11,03
5 ^{éme}	30x30	296,53	3,538	SEC	0	0	8,10

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Soll	A's (cm ²)	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	338,35	4,617	SEC	0	0	27,23
1 ^{er}	50x50	270,99	7,83	SEC	0	0	22,5
2 ^{éme}	45x45	202,24	8,977	SEC	0	0	18,23
3 ^{éme}	40x40	137,61	8,864	SEC	0	0	14,40
4 ^{éme}	35x35	79,1	7,678	SEC	0	0	11,03
5 ^{éme}	30x30	27,75	5,441	SPC	0	0,12	8,10

Tableau VIII.3 :	Ferraillages of	des poteaux	situation	durable	(N ^{min} ,	M ^{corr})

Tableau VIII.4 : Ferraillages des poteaux situation durable (M²²,N^{corr})

Niveaux	Sections (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	A's (cm ²)	A _s (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	39,104	1615,77	SEC	0	0	27,23
1 ^{er}	50x50	30,543	1225,03	SEC	0	0	22,5
2 ^{éme}	45x45	19,023	1044,96	SEC	0	0	18,23
3 ^{éme}	40x40	19,869	322,73	SEC	0	0	14,40
4 ^{éme}	35x35	18,755	206,64	SEC	0	0	11,03
5 ^{éme}	30x30	17,004	97,74	SPC	0	0,33	8,10

Tableau VIII.5 : Ferraillages des poteaux situation durable (M³³,N^{corr})

Niveaux	Sections	M ^{max}	N ^{corr}	Soll	A's	As	$A_{\alpha(PPA)}^{\min}(cm^2)$
	(cm ²)	(kN.m)	(kN)		(cm ²)	(cm ²)	S(MA)
RDC	55x55	65,025	1338,45	SEC	0	0	27,23
1 ^{er}	50x50	102,288	1125,83	SEC	0	0	22,5
2 ^{éme}	45x45	81,23	883,37	SEC	0	0	18,23
3 ^{éme}	40x40	77,99	648,47	SEC	0	0	14,40
4 ^{éme}	35x35	66,847	420,72	SPC	0	1,17	11,03
5 ^{éme}	30x30	54,133	200,32	SPC	0	3,26	8,10

Situation accidentelle

Combinaison : G+Q+E

Niveaux	Sections (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Soll	A's (cm ²)	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	1984,51	107,094	SEC	0	0	27,23
1 ^{er}	50x50	1644,69	196,887	SEC	0	0	22,5
2 ^{éme}	45x45	1266,07	183,843	SEC	0	0	18,23
3 ^{éme}	40x40	894,66	159,406	SPC	0	2,16	14,40
4 ^{éme}	35x35	557,95	116,217	SPC	0	3,4	11,03
5 ^{éme}	30x30	265,08	73,044	SPC	0	3,63	8,10

Tableau VIII.6 : Ferraillages des poteaux situation accidentelle (N^{max},M^{corr})

Tableau VIII.7 : Ferraillages des poteaux situation accidentelle (N^{min},M^{corr})

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Soll	A's (cm ²)	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	-329,6	41,108	SPC	1,62	4,97	27,23
1 ^{er}	50x50	-278,11	58,305	SPC	0,13	5,43	22,5
2 ^{éme}	45x45	-179,24	64,301	SPC	0	4,99	18,23
3 ^{éme}	40x40	-100,05	46,517	SPC	0	3,62	14,40
4 ^{éme}	35x35	-62,75	41,469	SPC	0	3,32	11,03
5 ^{éme}	30x30	-28,18	35,8	SPC	0	3,06	8,10

Tableau VIII.8 : Ferraillages des poteaux situation accidentelle (M^{22}, N^{corr})

Niveaux	Sections	M ^{max}	N ^{corr}	Soll	A's	As	$A_{s(RPA)}^{\min}(cm^2)$
	(cm ²)	(kN.m)	(kN)		(cm ²)	(cm ²)	5(M M) (
RDC	55x55	99,858	702,82	SEC	0	0	27,23
1 ^{er}	50x50	86,654	648,41	SEC	0	0	22,5
2 ^{éme}	45x45	89,201	493,2	SEC	0	0	18,23
3 ^{éme}	40x40	89,642	359,07	SEC	0	1,58	14,40
4 ^{éme}	35x35	75,88	238,93	SPC	0	2,72	11,03
5 ^{éme}	30x30	56,398	124,37	SPC	0	3,28	8,10

Niveaux	Sections (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	A's (cm ²)	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	172,849	546,97	SPC	0	1,5	27,23
1 ^{er}	50x50	148,309	642,84	SPC	0	0,35	22,5
2 ^{éme}	45x45	147,563	498,36	SPC	0	2,69	18,23
3 ^{éme}	40x40	130,002	372,57	SPC	0	4,06	14,40
4 ^{éme}	35x35	96,725	272,37	SPC	0	4,09	11,03
5 ^{éme}	30x30	73,044	265,08	SPC	0	2,31	8,10

Tableau VIII.9 : Ferraillages des poteaux situation accidentelle (M³³,N^{corr})

Combinaison : 0,8G±E

Tableau VIII.10 : Ferraillages des poteaux situation accidentelle (N^{max}, M^{corr})

Niveaux	Sections (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Soll	A's (cm ²)	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	1625,28	106,301	SEC	0	0	27,23
1 ^{er}	50x50	1359,36	178,993	SEC	0	0	22,5
2 ^{éme}	45x45	1046,43	168,644	SEC	0	0	18,23
3 ^{éme}	40x40	736,73	145,387	SPC	0	2,18	14,40
4 ^{éme}	35x35	459,25	104,699	SPC	0	3,12	11,03
5 ^{éme}	30x30	226,39	65,231	SPC	0	3,19	8,10

Tableau VIII.11 : Ferraillages des poteaux situation accidentelle (N^{min}, M^{corr})

Niveaux	Sections	N ^{min}	Mcorr	Soll	A's	As	$A_{\alpha(RPA)}^{\min}(cm^2)$
	(cm ²)	(kN)	(kNm)		(cm ²)	(cm ²)	S(KFA)
RDC	55x55	-399,35	40,5237	SPC	2,34	5,65	27,23
1 ^{er}	50x50	-334,88	56,282	SPC	0,79	5,91	22,5
2 ^{éme}	45x45	-222	62,018	SPC	0	5,34	18,23
3 ^{éme}	40x40	-129,32	46,049	SPC	0	3,9	14,40
4 ^{éme}	35x35	-79,61	41,087	SPC	0	3,48	11,03
5 ^{éme}	30x30	-34,26	35,547	SPC	0	3,1	8,10

Niveaux	Sections (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	A's (cm ²)	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	97,498	563,32	SEC	0	0	27,23
1 ^{er}	50x50	84,264	363,08	SEC	0	0	22,5
2 ^{éme}	45x45	85,702	273,56	SEC	0	1,45	18,23
3 ^{éme}	40x40	85,383	201,14	SEC	0	2,81	14,40
4 ^{éme}	35x35	71,613	140,23	SPC	0	3,34	11,03
5 ^{éme}	30x30	52,751	85,68	SPC	0	3,33	8,10

Tableau VIII.12 : Ferraillages des poteaux situation accidentelle (M²²,N^{corr})

Tableau VIII.13 : Ferraillages des poteaux situation accidentelle (M³³,N^{corr})

Niveaux	Sections (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	A's (cm ²)	A _s (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC	55x55	171,993	353,38	SPC	0	3,32	27,23
1 ^{er}	50x50	144,664	362,18	SPC	0	2,81	22,5
2 ^{éme}	45x45	138,888	275,98	SPC	0	4,25	18,23
3 ^{éme}	40x40	124,009	206,08	SPC	0	5,16	14,40
4 ^{éme}	35x35	92,416	148,56	SPC	0	4,79	11,03
5 ^{éme}	30x30	65,161	56,23	SPC	0	4,7	8,10

✤ Poteaux circulaires

Situation durable

Combinaison : 1,35G+1,5Q

Tableau VIII.14 : Ferraillages des poteaux situation durable (N^{max},M^{corr})

Niveaux	D (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	844,94	6,233	SEC	0	34,62

Tableau VIII.15 :	Ferraillages des	poteaux situation	durable	$(N^{\min},]$	M ^{corr})
-------------------	------------------	-------------------	---------	---------------	---------------------

Niveaux	D (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	539,81	15,419	SEC	0	34,62

Niveaux	D (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	9,45	638,65	SEC	0	34,62

Ferraillages des poteaux situation durable (M²²,N^{corr}) Tableau VIII.16 :

Tableau VIII.17 : Ferraillages des poteaux situation durable (M³³,N^{corr})

Niveaux	D (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	16,557	545,63	SEC	0	34,62

Situation accidentelle

Combinaison : G+Q+E

Tableau VIII.18 : Ferraillages des poteaux situation durable (N^{max}, M^{corr})

Niveaux	D (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	787	93,05	SEC	0	34,62

Tableau VIII.19 :Ferraillages des poteaux situation durable (N^{min}, M^{corr})

Niveaux	D (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	191,24	37,314	SEC	0	34,62

Tableau VIII.20 :	Ferraillages des	poteaux situation	durable (M ²² ,N ^c	orr)
-------------------	------------------	-------------------	--	------

Niveaux	D (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	99,858	702,82	SEC	0	34,62

Tableau VIII.21 : Ferraillages des poteaux situation durable (M³³,N^{corr})

Niveaux	D (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	172,849	546,97	SPC	0,78	34,62

Combinaison : 0,8G±E

Tableau VIII.22 :	Ferraillages des poteau	ux situation durable (N ^{max} ,M ^{corr})
-------------------	-------------------------	---

Niveaux	D (cm ²)	N ^{max} (kN)	M ^{corr} (kNm)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	593,4	91,494	SEC	0	34,62

Tableau VIII.23 : Ferraillages des poteaux situation durable (N^{min}, M^{corr})

Niveaux	D (cm ²)	N ^{min} (kN)	M ^{corr} (kNm)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	32,42	21,098	SPC	0,65	34,62

Tableau VIII.24 : Ferraillages des poteaux situation durable (M²²,N^{corr})

Niveaux	D (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	A _s (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	97,498	563,32	SEC	0	34,62

Tableau VIII.25 :

Ferraillages des poteaux situation durable (M³³,N^{corr})

Niveaux	D (cm ²)	M ^{max} (kN.m)	N ^{corr} (kN)	Soll	As (cm ²)	$A_{s(RPA)}^{\min}(cm^2)$
RDC-1 ^{er}	70	171,993	353,38	SEC	4,52	34,62

II.3. Choix des armatures

* Poteaux carrées

On remarque que le ferraillage maximum a été obtenu par la combinaison (**0,8G±E**).

 Tableau VIII.26 :
 Choix des armatures des poteaux (poteaux carrées)

Niveaux	Sections	A_s^{cal}	A_s^{\min}	A_s^{\max}	A_s^{\max}	Choix des	A_s^{adp}
	(cm ²)	(cm^2)	(cm^2)	(Z.C)(cm ²)	(Z.R)(cm ²)	armatures	(cm^2)
RDC	55x55	5,65	27,23	121	181,5	4T20+8T16	28,65
1er	50x50	5,91	22,5	100	150	12T16	24,13
2éme	45x45	5,34	18,23	81	121,5	12T14	18,47
3éme	40x40	5,16	14,40	64	96	12T14	18,47
4éme	35x35	4,79	11,03	49	73,5	8T12+4T14	15,21
5éme	30x30	4,7	8,10	36	54	8T12+4T14	15,21

* Poteaux circulaires

Niveaux	D (cm)	A_s^{cal} (cm^2)	A_s^{\min} (cm^2)	A_s^{\max} (Z.C)(cm ²)	A_s^{\max} (Z.R)(cm ²)	Choix des armatures	A_s^{adp} (cm^2)
RDC-1 ^{er}	70	4,52	34,62	153,86	230,79	12T20	37,70

 Tableau VIII.27 :
 Choix des armatures des poteaux (poteaux circulaire)

II.4. Vérification vis-à-vis de l'état limite de service

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) (annexe, organigramme). Puis elles sont comparées aux contraintes admissible données par :

• Béton

$$\sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

• Acier

Fissuration peu nuisible......Pas de vérification.

Fissuration préjudiciable..... $\overline{\sigma}_s = \zeta_s = Min\left(\frac{2}{3}f_e, \max\left(0, 5f_e; 110\sqrt{\eta f_{ij}}\right)\right)$

Fissuration très préjudiciable..... $\overline{\sigma}_s = 0.8\zeta_s$

Avec :

 $\eta = 1,6$ pour les aciers *H*.*A*

Dans notre cas la fissuration est considérée préjudiciable, donc σ_s =250MPa.

Les résultats sont récapitulés dans les tableaux suivants :

Poteaux carrées

Tableau VIII.28 : Vérification des contraintes pour les poteaux (N_{ser},M^{corr})

Niveaux	Sections (cm ²)	N _{ser} (kN)	M _{ser} (kN)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Vérification
RDC	55x55	1478,22	4,752	68,3	250	4,57	15	OK
1 ^{er}	50x50	1201,74	3,146	67,4	250	4,51	15	OK
2 ^{ème}	45x45	935,31	5,459	67,4	250	4,53	15	OK
3 ^{ème}	40x40	680,07	6,542	63,4	250	4,3	15	OK
4 ^{ème}	35x35	446,34	3,063	52,5	250	3,56	15	OK
5 ^{ème}	30x30	219,48	2,682	36,4	250	2,51	15	OK

Niveaux	Sections	Mser	Nser	σs	$\overline{\sigma}_{s}$	σ _{bc}	$\overline{\sigma}_{\scriptscriptstyle bc}$	Vérification
	(cm ²)	(kN)	(kN)	(MPa)	(MPa)	(MPa)	(MPa)	
RDC	55x55	28,222	1160,39	63,1	250	4,3	15	OK
1 ^{er}	50x50	22,332	876,89	59,5	250	4,07	15	OK
2 ^{ème}	45x45	13,655	749,22	60,6	250	4,14	15	OK
3 ^{ème}	40x40	13,823	242,12	33,6	250	2,39	15	OK
4 ^{ème}	35x35	12,973	155,84	35	250	2,59	15	OK
5 ^{ème}	30x30	11,735	74,66	37,7	250	3,11	15	OK

Tableau VIII.29 : Vérification des contraintes pour les poteaux (Mser, Ncorr)

* Poteaux circulaires

Tableau VIII.30 : Vérification des contraintes pour les poteaux (Nser, Mcorr)

Niveaux	D (cm ²)	Nser (kN)	Mser (kN)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Vérification
RDC-1 ^{er}	70	597	4,35	23,97	250	1,61	15	OK

Tableau VIII.31 : Vérification des contraintes pour les poteaux (Mser, Ncorr)

Niveaux	D (cm ²)	M _{ser} (kN)	N _{ser} (kN)	σ _s (MPa)	$\overline{\sigma}_{s}$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Vérification
RDC-1 ^{er}	55x55	10,722	402,17	19,1	250	1,3	15	OK

II.5. Vérification de l'effort tranchant

II.5.1 Vérification de la contrainte de cisaillement

Il faut vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$
....Poteaux carré

$$\tau_u = \frac{T_u}{R^2 \sqrt{2}} \le \overline{\tau}_u$$
 Poteaux circulaire

Avec :

 T_u : L'effort tranchant pour l'état limite ultime.

b: Largeur de la section du poteau.

d: Hauteur utile de la section du poteau.

R : Rayon de la section du poteau.

 τ_u : Contrainte de cisaillement.

 $\bar{\tau}_{u}$: Contrainte limite de cisaillement du béton.

La valeur de la contrainte $\overline{\tau}_{u}$ doit être limitée aux valeurs suivantes [39] et [40] :

$$\begin{aligned} \overline{\tau}_{u} &= Min \ (0,13f_{c28},5MPa) \ \dots \\ \overline{\tau}_{u} &= Min \ (0,10f_{c28},4MPa) \ \dots \\ Fissuration \ préjudiciable et très préjudiciable. \end{aligned}$$

 $\bar{\tau}_u = \rho_d f_{c28}$

 $\rho_d=0,075...$ si l'élancement $\lambda \ge 5$

 $\rho_d=0,040...$ si l'élancement $\lambda < 5$

Avec :

- λ : L'élancement du poteau
- i : Rayon de giration.
- I : Moment d'inertie de la section du poteau dans la direction considérée.
- B : Section du poteau.
- L_f: Longueur de flambement.

Les résultats sont regroupés dans le tableau suivant :

Poteaux carrées

Tableau VIII.32 : Vérification de la contrainte de cisaillement pour les poteaux carrés

Niveaux	Sections	Tu	τu	λ	ρd	$\overline{ au}_{u}$ rpa	$\bar{\tau}_{u}$ bael	vérification
	(cm ²)	(KN)	(MPA)			(MPA)	(MPA)	
RDC	55x55	19,82	0,073	70,99	0,075	1,875	2,5	vérifiée
1 ^{er}	50x50	96,55	0,429	19,79	0,075	1,875	2,5	vérifiée
2 ^{ème}	45x45	93,88	0,515	21,99	0,075	1,875	2,5	vérifiée
3 ^{ème}	40x40	80,98	0,562	24,73	0,075	1,875	2,5	vérifiée
4 ^{ème}	35x35	58,59	0,531	28,27	0,075	1,875	2,5	vérifiée
5 ^{ème}	30x30	38,34	0,473	32,98	0,075	1,875	2,5	vérifiée

✤ Poteaux circulaires

 Tableau VIII.33 : Vérification de la contrainte de cisaillement pour les poteaux circulaires.

Niveaux	D	Tu	τu	λ	ρd	$\overline{ au}_{u}$ rpa	$\overline{ au}_{u}$ bael	vérification
	(cm²)	(KN)	(MPA)			(MPA)	(MPA)	
RDC-1er	70	35,8	0,207	32,64	0,075	1,875	2,5	vérifiée

CHAPITRE VIII

II.5.2. Vérification des armatures transversales

Les armatures transversales sont déterminées à partir des formules [39] et [40], elles sont données comme suit :

• Selon le règlement [40]

$$\begin{cases} S_t \leq Min(0,9d;40cm) \\ \varphi_t \leq Min\left(\frac{h}{35};\frac{b}{10};\varphi_t\right) \\ \frac{A_t f_e}{bS_t} \geq Max\left(\frac{\tau_u}{2};0,4MPa\right) \end{cases}$$

At: Section d'armatures transversales.

- b: Largeur de la section droite.
- h: Hauteur de la section droite.

St: Espacement des armatures transversales.

 $Ø_t$: Diamètre des armatures transversales.

 $Ø_1$: Diamètre des armatures longitudinales.

• Selon le règlement [39]

$$\frac{A_t}{S_t} = \frac{\rho_a T_u}{h f_e}$$

Avec :

- A_t : Section d'armatures transversales.
- St: Espacement des armatures transversales.
- T_u : Effort tranchant à l'ELU.
- fe : Contrainte limite élastique de l'acier d'armatures transversales.
- h: Hauteur totale de la section brute.

ρ_a: Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

 $\rho_a=2,5....si \lambda_g \ge 5$

 $\rho_a=3,75....si \lambda_g < 5$

 λ_g : Espacement géométrique.

CHAPITRE VIII

- L'espacement des armatures transversales est déterminé comme suit :
- $S_t \leq 10 cm.....Zone \ nodale \ (zone \ III).$

$$S_t \leq Min\left(\frac{b}{2}; \frac{h}{2}; 10\phi_t\right)$$
.....Zone courante (zone III).

 $Ø_1$: Diamètre minimal des armatures longitudinales du poteau.

• La quantité d'armatures transversales minimale $\frac{A_t}{S_t b}$ en (%) est donnée comme suite :

 $\left\{0, 3\% si \lambda_g \ge 5\right.$

 $\left\{0,8\%\ldots\ldots$ si $\lambda_{g} \leq 3\right\}$

Interpolation entre les valeurs limites précédentes si 3 $\leq \lambda_{\rm g} \leq 5$

$$\lambda_g$$
: L'élancement géométrique du poteau $\left(\lambda_g = \frac{L_f}{a}\right)$

a : Dimension de la section droite du poteau.

L_f: Longueur du flambement du poteau.

Pour les armatures transversales f_e =500MPa (FeE500).

Le tableau suivant rassemble les résultats des espacements maximums des poteaux :

Poteaux carrées

Tableau VIII.34 : Espacement maximales selon RPA99 des poteaux ca	rrés.
---	-------

	Section	Barres	Øı	St (cm)		
Niveaux	(cm ²)		(mm)	Zone nodale	Zone courante	
RDC	55x55	4T20+8T16	20et16	10	15	
1 ^{er}	50x50	12T16	16	10	15	
2 ^{ème}	45x45	12T14	14	10	15	
3 ^{ème}	40x40	12T14	14	10	15	
4 ^{ème}	35x35	8T12+4T14	12et14	10	15	
5 ^{ème}	30x30	8T12+4T14	12et14	10	15	

* Poteaux circulaires

Tableau VIII.35 : Espacement maximales selon RPA99 des poteaux circulaires.

	D	Barres	Øı	St (cm)	
Niveaux	(cm)		(mm)	Zone nodale	Zone courante
RDC-1 ^{er}	70	12T20	20	10	20

Le choix des armatures transversales est regroupé dans le tableau suivant :

Poteaux carrées

Niveaux	Section	$\mathbf{L}_{\mathbf{f}}$	$\lambda_{ m g}$	ρa	Tu ^{max}	Zone	St	Atcal	Choix	As ^{adp}
	(cm ²)	(m)	(%)		(kN)		(cm)	(cm ²)		(cm ²)
RDC	55x55	2,856	5,193	2,5	19,82	Ν	10	0,1802	4T8	2,01
						С	15	0,2703	4T8	2,01
1 ^{er}	50x50	2,856	5,712	2,5	96,55	Ν	10	0,9655	4T8	2,01
						С	15	1,4483	4T8	2,01
2 ^{ème}	45x45	2,856	6,347	2,5	93,88	Ν	10	1,0431	4T8	2,01
						С	15	1,5647	4T8	2,01
3 ^{ème}	40x40	2,856	7,14	2,5	80,98	Ν	10	1,0123	4T8	2,01
						С	15	1,5184	4T8	2,01
4 ^{ème}	35x35	2,856	8,16	2,5	58,59	Ν	10	0,8370	4T8	2,01
						С	15	1,2555	4T8	2,01
5 ^{ème}	30x30	2,856	9,52	2,5	38,34	Ν	10	0,6390	4T8	2,01
						С	15	0,9585	4T8	2,01

Tableau VIII.36 : Choix des armatures transversales pour les poteaux carrées

* Poteaux circulaires

 Tableau VIII.37 : Choix des armatures transversales pour les poteaux circulaires

Niveaux	D [cm]	L _f (m)	λ _g (%)	ρa	Tu ^{max} (kN)	Zone	St (cm)	At ^{cal} (cm ²)	Choix	As ^{adp} (cm ²)
RDC-1er	70	5,712	8,16	2,5	35,8	Ν	10	0,2557	4T10	2,01
						C	20	0,7671	4T10	2,01

II.6. Longueur de recouvrement

La longueur minimale de recouvrement est de : L_r =50Ø₁ en zone III.

Pour :

- Ø=25mm.....L_r=125cm
- Ø=20mm.....L_r=100cm
- Ø=16mm.....Lr=80cm
- Ø=14mm.....Lr=70cm
- Ø=12mm.....Lr=60cm

II.6. Ferraillage des poteaux de sous-sol

Les poteaux su sous-sol sont calcules à la compression simple, le ferraillage est donnée par :

$$A_{s} \geq \left(\frac{N_{u}}{\alpha} - \frac{B_{r}}{0.9} \frac{f_{c28}}{\gamma_{b}}\right) \frac{\gamma_{s}}{f_{e}}$$

CHAPITRE VIII

B_r : Section réduite du poteau considéré ($B_r=(a-2)(b-2)$) cm^2

a : Coefficient dépendant de l'élancement.

$$\alpha = \begin{cases} \frac{0,85}{1+2\left(\frac{\lambda}{35}\right)^2} & si\lambda \le 50\\ \frac{0,6(50)^2}{\lambda} & si50 \prec \lambda \prec 70 \end{cases}$$
$$\lambda = \frac{L_f}{i}$$

L_f: Longueur de flambement.

i: Rayon de giration
$$\left(i = \sqrt{\frac{I}{B}}\right)$$
.

I : Moment d'inertie de la section du poteau dans la direction considéré.

B : Section du poteau (B=a x b).

Nu: L'effort normal maximal au niveau des poteaux du sous-sol.

La longueur de flambement L_f=0,7l₀.

La section réduite $B_r = (a-0,02)^2 [m^2]$.

Calcul de l'effort normal pondéré

Prenons le poteau le plus sollicité dont l'effort normal.

$N_u(RDC) = 2038,61kN$

- Poids du poteau.....(0,60)²x (3,74-0,55) x25=28,71kN
- Poids de la poutre principale......4,5×0,55×0,3×25=18,56kN

G=192,22kN

Surcharge d'exploitation : Q=2,5x20, 25=50,63kN

N_{u1}=1,35G+1,5Q=335,442kN

Donc l'effort normal total revenant aux poteaux de sous-sol :

 $N_{u(ss)}=N_{u(RDC)}+N_{u1}=2374,052kN$

> Calcul du ferraillage :

Le sous-sol est de section $B=60\times60$ cm²

$$- i = \frac{a}{\sqrt{12}} = 17,32cm$$

$$- \lambda = \frac{0.7x3,74.10^2}{17,32} = 15,11 \prec 50$$

$$- \alpha = \frac{0.85}{1+0.2\left(\frac{\lambda}{35}\right)^2} = 0.819$$

$$-Br = (60-2)^2 = 3364cm^2$$

D'où :

$$A_s \ge \left(\frac{2374,052x10^3}{0,819} - \frac{3364.10^2}{0,9}x\frac{25}{1,5}\right)\frac{1,15}{500} \implies \text{SEC}$$

$$A_s^{\min} = 0.9\% B$$
 [1]

$$A_s = A_s^{\min} = 32,40 cm^2$$

On prend : 12T20=37,68cm².

> Vérification à l'ELS :

N_{ser1}=G+Q=192,22+50,63 =242,85kN.

D'où :

 $N_{ser(ss)} = N_{ser(RDC)} + N_{ser1}$

 $N_{ser(ss)}$ = 1478,22+242,85=1721,07kN

Tableau VIII.38 : Vérification des contraintes des poteaux de l'infrastructure

Section	Nser	σs	$\overline{\sigma}_{\scriptscriptstyle s}$	σb	$\overline{\sigma}_{\scriptscriptstyle b}$	Vérification
(cm ²)	(kN)	(MPa)	(MPa)	(MPa)	(MPa)	
60x60	1721,07	65,6	250	4,38	15	OK

Détermination des armatures transversales

Pour les poteaux d'infrastructure ; At=4T8=2,01cm².

Espacement en zone nodale : St=10cm

Espacement en zone courante : St=15cm

CHAPITRE VIII

* Poteaux carrées

5^{éme} étage

4^{éme} étage

Figure VIII.1 : Ferraillage des poteaux carrés

* Poteaux circulaires

RDC +1^{ér} étage

Figure VIII.2 : Ferraillage des poteaux circulaires

III. FERRAILLAGE DES POUTRES

III.1. Introduction

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort

Tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (M, N, T) on procède au ferraillage en respectant les prescriptions données par **[39] et [40].**

Les poutres sont étudiées en tenant compte des efforts donnés par le logiciel ETABS, combinés par les combinaisons les plus défavorables:

Selon le règlement [40]

ELU: - Situation durable 1,35G+1,5Q

ELS: - Situation durable G+Q

Selon le règlement [39]

Situation accidentelle

- G+Q+E
- 0,8G±E

III.2. Recommandations

1-Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% en toute section.

2-Le pourcentage total maximum des aciers longitudinaux est de :

• 4% en zone courante.

6% en zone de recouvrement.

3-La longueur minimale de recouvrement est de 50Ø en zone III.

III.3. Calcul du ferraillage

Pour le calcul des armatures nécessaires dans les poutres, nous avons considéré les portiques suivants les deux sens :

- Poutres porteuses 30×55 (cm²).
- Poutres non porteuses 30×40 (cm²).

Les résultats sont regroupés dans les tableaux suivants

Poutres Porteuses

Situation durable

Combinaison : 1,35G+1,5Q

Tableau VIII	[.39 :	Ferraillage des	poutres	porteuses (situation	durable)
--------------	--------	-----------------	---------	-------------	-----------	----------

Poutre du Plancher	Section (cm ²)	Position	M ^{max} (kNm)	As (cm ²)	As' (cm ²)	$\begin{array}{c} A_{sRPA}^{\min} \\ \textbf{(cm^2)} \end{array}$
Etages courant	30x55	Travée	34,567	1,55	0	8,25
		Appui	-66,087	0	3,02	8,25
Terrasse	30x55	Travée	28,208	1,26	0	8,25
		Appui	-73,601	0	3,37	8,25
Situation accidentelle

Combinaison : G+Q+E

Poutre du plancher	Section (cm ²)	Position	M ^{max} (kNm)	As (cm ²)	As' (cm ²)	A_{sRPA}^{\min} (cm ²)
Etages courant	30x55	Travée	257,802	10,8	0	8,25
		Appui	-332,017	0	14,33	8,25
Terrasse	30x55	Travée	190,716	7,8	0	8,25
		Appui	-286,957	0	12,16	8,25

Tableau VIII.40 : Ferraillage des poutres porteuses (situation accidentelle)

Combinaison : 0,8G±E

-

Poutre du plancher	Section (cm ²)	Position	M ^{max} (kNm)	As (cm ²)	As' (cm ²)	A_{sRPA}^{\min} (cm ²)
Etages courant	30x55	Travée	272,062	11,46	0	8,25
		Appui	-317,757	0	13,63	8,25
Terrasse	30x55	Travée	198,469	8,14	0	8,25
		Appui	-268,551	0	11,3	8,25

* Poutres non Porteuses

Situation durable

Combinaison : 1,35G+1,5Q

Tableau VIII.42	: Ferraillage des	poutres non	porteuses	(situation	durable)
-----------------	-------------------	-------------	-----------	------------	----------

Poutre du plancher	Section (cm ²)	Position	M ^{max} (kNm)	As (cm ²)	A _s ' (cm ²)	$\begin{array}{c} A_{sRPA}^{\min} \\ \textbf{(cm^2)} \end{array}$
Etages courant	30x40	Travée	28,071	1,79	0	6,00
		Appui	-37,827	0	2,44	6,00
Terrasse	30x40	Travée	27,055	1,72	0	6,00
		Appui	-38,054	0	2,45	6,00

Situation accidentelle

Combinaison : G+Q+E

 Tableau VIII.43 : Ferraillage des poutres non porteuses (situation accidentelle)

Poutre du plancher	Section (cm ²)	Position	M ^{max} (kNm)	As (cm ²)	A _s ' (cm ²)	$\begin{array}{c} A_{sRPA}^{\min} \\ \textbf{(cm^2)} \end{array}$
Etages courant	30x40	Travée	150,815	9,02	0	6,00
		Appui	-174,22	0	10,62	6,00
Terrasse	30x40	Travée	140,774	8,35	0	6,00
		Appui	-160,458	0	9,67	6,00

Combinaison : 0,8G±E

Poutre du plancher	Section (cm ²)	Position	M ^{max} (kNm)	As (cm ²)	As' (cm ²)	$\frac{A_{sRPA}^{\min}}{(\mathbf{cm}^2)}$
Etages courant	30x40	Travée	154,696	9,28	0	6,00
		Appui	-170,339	0	10,35	6,00
Terrasse	30x40	Travée	144,109	8,57	0	6,00
		Appui	-157,123	0	9,44	6,00

Tableau VIII.44 : Ferraillage des poutres non porteuses (situation accidentelle)

III.4. CHOIX DES ARMATURES

Le ferraillage final adopté est donné par le tableau suivant :

Poutres Porteuses

 Tableau VIII.45 :
 Choix des armatures pour les poutres porteuses

Poutre du plancher	Section (cm ²)	Position	As ^{max} (Z.C)(cm ²)	As ^{max} (Z.R)(cm ²)	As ^{min} (cm ²)	As ^{cal} (cm ²)	Choix des armatures	As ^{adopté} (cm ²)
Etages	30x55	Travée	66	99	8,25	11,46	6T16	12,06
courant		Appui				14,33	3T20+3T16	15,45
Terrasse	30x55	Travée	66	99	8,25	8,14	6T16	12,06
		Appui				12,16	3T20+3T16	15,45

Poutres non Porteuses

Tableau VIII.46 : Choix des armatures pour les poutres non Porteuses

Poutre du plancher	Section (cm ²)	Position	As ^{max} (Z.C)(cm ²)	As ^{max} (Z.R)(cm ²)	As ^{min} (cm ²)	As ^{cal} (cm ²)	Choix des armatures	As ^{adopté} (cm ²)
Etages	30x40	Travée	48	72	6,00	9,28	3T16+3T14	10,64
courant		Appui				10,62	6T16	12,06
Terrasse	30x40	Travée	48	72	6,00	8,57	3T16+3T14	10,64
		Appui				9,67	6T16	12,06

III.5. Condition de Non Fragilité

Dans toute poutre comportant une zone tendue, qu'elle soit soumise à la flexion simple ou composée, les armatures longitudinales de traction doivent présenter une section au moins égale à 0,001 de la section droite de la poutre.

On peut se dispenser de la vérification de la condition de non-fragilité dans les sections doit satisfis la condition suivant :

$$A_s \ge A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e}$$

Avec: ft28=2,1MPa ; fe=500MPa

Tableau VIII.47 : Vérification de la Condition de Non Fragilité.

Section (cm ²)	Section (cm ²) As ^{choisi} (cm ²)		Vérification
30 x 55	12,06	1,43	Vérifiée
30 x 40	10.64	1,04	Vérifiée

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) , puis elles sont comparées aux contraintes admissibles données par[40] :

> Béton

$$\sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

> Acier

Fissuration peu nuisible : Pas de vérification.

Fissuration préjudiciable : $\sigma_s = \min(\frac{2}{3} fe; 110 \times \sqrt{\eta \cdot f_{ij}})$

Fissuration très préjudiciable : $\sigma_s = \min(\frac{1}{2} fe; 90 \times \sqrt{\eta \cdot f_{ij}})$

Où : $\eta = 1,60$ pour les aciers à HA.

Dans notre cas la fissuration est considérée préjudiciable.

On doit vérifier que :
$$\begin{cases} \sigma_b = \frac{M_{ser}}{I} y + \frac{N}{A} \prec \overline{\sigma}_b = 15MPa \\ \sigma_s = 15 \times \frac{M_{ser}}{I} (d - y) + \frac{N}{A} \le \overline{\sigma}_s = 201,63MPa \end{cases}$$

Les résultats sont récapitulés dans le tableau suivant :

Poutres Porteuses

Tableau VIII.48 : Vérification des Poutres Porteuses à l'ELS

Poutre du	Position	Mser	σbc	$\overline{\sigma}_{\scriptscriptstyle hc}$	σs	$\overline{\sigma}_{s}$	Vérification
plancher		(kNm)	(MPa)	(MPa)	(MPa)	(MPa)	
Etages	Travée	24,919	1,83	15	43,7	201.6	oui
courant	Appui	-47,84	3,28		68,4		
Terrasse	Travée	20,478	1,5	15	35,9	201.6	oui
	Appui	-53,44	3,66		76,4		

* Poutres non Porteuses

Poutre du plancher	Position	Mser (kNm)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
Etages	Travée	20,315	2,78	15	59,6	201.6	oui
courant	Appui	-27,55	3,77		80,8		
Terrasse	Travée	19,873	2,72	15	58,3	201.6	oui
	Appui	-27,73	3,8		81,3		

Tableau VIII.49 : Vérification des Poutres non Porteuses à l'ELS

III.7. Vérification vis-à-vis de l'effort tranchant

III.7.1.Vérification de la contrainte de cisaillement

Il faut vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$

Avec :

 T_u : l'effort tranchant maximum.

b: Largeur de la section de la poutre.

d: Hauteur utile.

 $\bar{\tau}_{u} = Min(0,10f_{c28};4MPa) = 2,5MPa$ (Fissuration préjudiciable).

Tableau VIII.50 : Vérification de la Contrainte de Cisaillement

type	Section (cm ²)	T _{u max} (kN)	τ _u (MPa)	τ _{u BAEL} (MPa)	Vérification
Poutres porteuses	30x55	271,66	1,83	2,5	Ok
Poutres non porteuses	30x40	121,01	0,99	2,5	Ok

III.8.Calcul des armatures transversales

L'acier choisi pour les armatures transversales est de type haut adhérence et nuance FeE500 (f_e =500 MPa).

• Selon le règlement [40]

ſ

$$\begin{cases} S_{t} = Min(0,9d;40cm) \\ \frac{A_{t}}{bS_{t}} \ge \frac{\tau_{u} - 0,3f_{t28}K}{0,8f_{e}} & (K = 1: Pas \, de \, reprisede \, b\acute{e}tonnage) \\ \frac{A_{t}f_{e}}{bS_{t}} \ge Max \left(\frac{\tau_{u}}{2};0,4MPa\right) \end{cases}$$

CHAPITRE VIII

• Selon le règlement [39]

$$\begin{cases} A_{t} = 0,003S_{t}b \\ S_{t} \leq Min\left(\frac{h}{4};12\phi_{t}\right).....Zone nodale \\ S_{t} \leq \frac{h}{2}.....Zone courante \end{cases}$$

Avec :

$$\phi_{t} \leq \operatorname{Min}\left(\frac{h}{35}; \phi_{1}; \frac{b}{10}\right)$$

Les résultats de calcul sont résumés dans le tableau suivant :

Sens	Section	Tu	τυ	BAEL91	RPA99		St adp		At	Choix
	(cm ²)	(kN)	(MPa)	S _t (cm)	St (cm) ZN	St (cm) ZC	ZN (cm)	ZC (cm)	(cm ²)	
Porteur	30x55	271,66	1,83	40	13,75	27,5	15	20	1,8	4T8
Non porteur	30x40	121,01	0,99	32,4	10	20	15	20	1,8	4T8

Tableau VIII.51 : Calcul des Armatures Transversales.

III.9. Recouvrement des Armatures Longitudinales

 $L_r = 50\emptyset$ (zone III) : Longueur de recouvrement

On a :

- Ø=20mm L_r=100cm
- Ø=16mm L_r=80cm
- Ø=14mm.....L_r=70cm
- Ø=12mm.....L_r=60cm

III.10.Arrêt des barres

Armatures inférieures : $h \le \frac{L}{10}$

Armatures supérieures :
$$h' \ge \begin{cases} \frac{L^{\max}}{4} & Appuisentravéederive\\ \frac{L^{\max}}{5} & Appuisentravéeint ermédiaire \end{cases}$$

Avec : L=Max (L_{gauche} ; L_{droite}).

Figure VIII.3 : Arrêt des barres

III.11.Vérification de la flèche

Flèche totale : $\Delta f_T = f_v - f_i \leq \overline{f}$.

Tel que : Poutre porteuse :
$$\bar{f}_1 = 0.5 + \frac{L}{1000} = 1.09cm$$
 $(L = 5.90m\rangle 5m)$
Poutre secondaire : $\bar{f}_2 = \frac{L}{500} = 0.84cm$ $(L = 4.20m \prec 5m)$

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

- Position de l'axe neutre « y1 »:

$$y_1 = \frac{\frac{bh^2}{2} + 15A_sd}{bh + 15A_s}$$

- Moment d'inertie de la section totale homogène « I0 » :

$$I_0 = \frac{bh^3}{12} + bh\left(y - \frac{h}{2}\right)^2 - 15A_s(d - y_1)^2$$

- Calcul des moments d'inerties fictifs :

$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu} \quad ; \quad I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$$

Avec :

$$\lambda_i = \frac{0.05 f_{i28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
..... Pour la déformation instantanée.

$$\lambda_{v} = \frac{0.02 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
..... Pour la déformation différée.

$$\delta = \frac{A_s}{b_0 d}$$
: Pourcentage des armatures.

$$\left\{ \mu = 1 - \frac{1,75f_{t28}}{4\delta\sigma_s + f_{t28}} \right\}$$

 σ_s : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_s = \frac{M_{ser}}{A_s d} , \qquad I_0 = \frac{bh^3}{12} + bh\left(y - \frac{h}{2}\right)^2 - 15A_s \left(d - y_1\right)^2$$

Les résultats sont récapitulés dans ce tableau :

Tableau VIII.52 : Tableau récapitulatif du calcul de la flèche

type	Mser	As	Y 1	δ	σs	λi	λ_v	μ	Io	Ifi	Ifv
	(Knm)	(cm ²)	(cm)		(MPa)				(cm ⁴)	(cm ⁴)	(cm ⁴)
Poutre	24,919	12,06	29,76	0,0085	40,05	2,47	0,99	0,06	350893,21	336163,15	331218,81
porteuse											
Poutre non	20,315	10,64	21,88	0,0099	52,84	2,12	0,85	0,12	132301,5	116016,94	120055,8
porteuse											

- Calcul des modules de déformation :

$$E_i = 11000(f_{c28})^{\frac{1}{3}} = 32164,20MP$$

$$E_v = 3700(f_{c28})^{\frac{1}{3}} = 1081887MPa$$

- Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_i I_{fi}}$$

- Calcul de la flèche due aux déformations différées :

$$f_v = \frac{M_{ser}l^2}{10E_v I_{fv}}$$

Tableau VIII.53 : V	/érification	de la flèche
---------------------	--------------	--------------

Туре	fi (mm)	Fv (mm)	Δf(mm)	Fadm(mm)	vérification
Poutres porteuses	0,8	2,42	1,62	10,9	ok
Poutres non porteuses	0,96	2,76	1,8	8,4	ok

✓ Armatures de peau :

Pour les poutres de grande hauteur, il y a lieu de prévoir des armatures de peau dont la section dépend du préjudice de la fissuration .En effet on risquerait en l'absence de ces armatures d'avoir des fissures relativement ouvertes en dehors des zones armées par les armatures longitudinales inférieures et supérieures. Leur section est au moins 3cm² /ml par mettre de longueur de paroi mesuré perpendiculairement à leur direction (h=55 cm).

Ap=3cm²/m x 0,55 =1,65cm²

On opte : $2T12 = 2,26cm^2$

Figure VIII.4 : Ferraillage des poutres porteuses

Figure VIII.5 : Ferraillage des poutres non porteuses

IV.FERRAILLAGE DES VOILES

Les voiles et murs sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur, généralement verticaux et chargés dans leur plan.

Ces éléments peuvent être :

- En maçonnerie non armée ou armée, auxquels on réservera le nom de murs ;
- En béton armé ou non armé, et appelés voiles.

Remarque :

Le rôle des voiles et murs est :

- > De reprendre les charges permanentes et d'exploitation apportée par les planchers.
- De participer au contreventement de la construction (vent et séisme).

D'assurer une isolation acoustique entre deux locaux, en particulier entre logements, chambre d'hôtel,..., et une protection incendie (coupe-feu).

De servir de cloisons de séparation entre locaux.

Les calculs des voiles en béton armé et non armé sont effectués suivant les dispositions du **[44]**

Les voiles sont utilisés en façade, en pignons ou à l'intérieur (murs de refends) des constructions.

Les voiles en béton comportent un minimum d'armatures :

Au droit des ouvertures (concentration de contraintes).

A leur jonction avec les planchers (chaînages) et à leurs extrémités.

Dans leur grande majorité, les constructions en béton armé sont contreventées par des refends. Les murs de contreventement, ou refends, peuvent être définis comme des structures planes dont la raideur hors plan est négligeable. La rigidité d'un élément résistant aux efforts latéraux va en diminuant depuis le mur de contreventement plein jusqu'au portique, en passant par le mur de contreventement percé d'ouvertures.

Ce sont des éléments en béton armé ou non armé assurant, d'une part le transfert des charges verticales (fonction porteuse) et d'autre part la stabilité sous l'action des charges horizontales (fonction de contreventement). Les murs voiles peuvent donc être assimilés à des consoles verticales soumises à une sollicitation de flexion composée avec compression, ayant un certain degré d'encastrement à la base, sur des fondations superficielles ou sur pieux.

De plus, les murs de contreventement se distinguent par le nombre limite d'ouvertures ou de passages qu'ils comportent, de telle sorte que les déformations élastiques de leurs éléments

constitutifs sont faibles par rapport à la déformation de l'ensemble. En général, la déformation prépondérante des refends est une déformation de flexion due aux moments de renversement. La fonction de contreventement peut être assurée si l'effort normal de compression, provenant des charges verticales est suffisant pour que, sous l'action du moment de renversement, le centre des pressions reste à l'intérieur de la section du mur.

IV.1. Introduction au ferraillage des voiles

Le modèle le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La figure suivante montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale N et une charge horizontale V en tête.

Figure VIII.5 : Section rectangulaire soumise à la flexion composée

Le voile est donc sollicité par un effort normal N et un effort tranchant V constant sur toute la hauteur, et un moment fléchissant qui est maximal dans la section d'encastrement.

Le ferraillage classique du voile en béton armé est composé :

1- D'armatures verticales concentrées aux deux extremités du voile (de pourcentage ρ_{V0}) et d'armatures verticales uniformément reparies (de pourcentage ρ_V)

2- D'armatures horizontales, parallèles aux faces du murs, elles aussi uniformément réparties et de pourcentage ρ_H

3- Les armatures transversales (epingles) (perpendiculaires aux parement du voile).

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction et de compression, créant ainsi un couple capable d'équilibrer le moment appliqué. À la base du voile, sur une hauteur critique des cadres sont disposés autour de ces armatures afin d'organiser la ductilité de ces zones.

En fin, les armatures de l'âme horizontale et verticale ont le rôle d'assurer la résistante à l'effort tranchant.

Figure VIII.6 : Schéma d'un voile plein et disposition du ferraillage

IV.2. Justification s sous sollicitations normales

IV.2.1.Conditions d'application

- La longueur d du mur : $d \ge 5a$
- L'épaisseur a du mur :
- $a \ge 10$ cm pour les murs intérieurs.
- $a \ge 12$ cm pour les murs exterieurs comportant une protection.

• $a \ge 15$ cm pour les murs exterieurs dont la résistance à la pénétration de l'eau peut

être affectée par la fissuration du béton.

- L'élancement mécanique λ : $\lambda \leq 80$
- Le raidisseur d'extêmité r : $r \ge 3a$ **h>3.a**

d>5.a

a

IV.2.2.Longueur de flambement: (murs non raidi latéralement)

Soit :

l: la hauteur libre du mur;

l_f: la longueur libre de flambement d'un mur non raidi.

Figure VIII.8 : Mur encastré

Lorsqu'un mur n'est pas raidi latéralement par des murs en retour, la longueur libre de flambement l_f déduit de la hauteur libre du mur l, en fonction de ses liaisons avec le plancher.

Les valeurs du rapport $\left(\frac{l_f}{l}\right)$ sont données par le tableau suivant :

Tableau	VIII.54 :	Valeurs	de (l_f/l)
---------	-----------	---------	--------------

Liaisor	ns du mur	Iur armé verticalem	Mur non armé verticalement	
Iur encastré en tête et pied	Iur encastré en tête et existe un plancher de pied et d'autre		0,85	
	ll existe un plancher d' seul côté	0,85	0,90	
Mur articulé	en tête et en pied	1,00	1,00	

L'élancement mécanique λ se déduit de la longueur libre de flambement par la relation :

$$\lambda = \frac{l_f \sqrt{12}}{a}$$

Effort de compression en ELU

Soient :

lf: longueur de flambement calculée en (b)

a: épaisseur du voile

d: longueur du voile

fc28: résistance caractéristique du béton à 28 jours

fe: limite élastique de l'acier

 $\gamma_b = 1,5$ (sauf combinaison accidentelles pour lesquelles $\gamma_b = 1,15$)

 $\gamma_s = 1,15$ (sauf pour combinaison accidentelles pour lesquelles $\gamma_s=1$)

Note:

Les valeurs de α données par le tableau ci dessous sont valables dans le cas ou plus de la moitié des charges est appliquée après 90 jours, sinon voir ·

	Notation	Unités	Voiles armé verticalement	Voile non armé verticalement
Elancement	λ			$\frac{l_f \sqrt{12}}{a}$
Section réduite	B_r	m^2	C	l(a-0,02)
Pour λ ≤ 50 Pour 50 ≤ λ ≤80	α	/	$\frac{0,85}{1+0,2\left(\frac{\lambda}{35}\right)^2}$ $0,6\left(\frac{50}{\lambda}\right)^2$	$\frac{0,65}{1+0,2\left(\frac{\lambda}{30}\right)^2}$
Effort limite ELU	$\mathbf{N}_{u \; lim}$	kN	$\alpha \left[\frac{B_r f_{c28}}{0.9 \gamma_b} + \frac{A_{s.}}{\gamma_b} \right]$	$\frac{f_e}{s} \right] \qquad \alpha \left[\frac{B_r f_{c28}}{0.9 \gamma_b} \right]$
Contraintes limite	σ	kPa	$\sigma_{ba} = \frac{N_{u \lim}}{ad}$	$\sigma_{bna} = \frac{N_{u \lim}}{ad}$

Tableau VIII.55 : Calcul de $\sigma_{u \text{ lim}}$

Remarque :

La contrainte limite vaut $\sigma_{u \lim} = \frac{N_{u \lim}}{a d}$ que nous appelions σ_{bna} ou σ_{ba} suivant que le béton

est non armé ou armé.

Niveaux de vérification

Figure VIII.9 : Niveaux des vérifications des contraintes l'âme du voile

On vérifie le voile à deux niveaux différents :

– Niveau I-I à mi-hauteur d'étage : $\sigma_u \leq \sigma_{u \lim}$

- Niveau **II-II** sous le plancher haut :
$$\sigma_u \leq \frac{\sigma_{u \text{ lim}}}{\alpha}$$

En cas de traction, on négligera le béton tendu.

Aciers minimaux

Si $\sigma_u^c < \sigma_{bna}$ on a pas besoin d'armatures comprimées, on prendra alors les valeurs minimales

données par le tableau suivant : (σ_u^c est la contrainte de compression ultime calculée).

L'épaisseur du voile est désignée par la lettre a

Aciers verticaux, aciers horizontaux

Tableau VIII.56 : Aciers verticaux et horizontaux

	Aciers verticaux	Aciers horizontaux
Espacement	$S_{t} \le \min(0,33m;2a)$	$S_t \le 0.33m$
maximal		
entre axes		
Acier minimal	$A_{sv} \ge \rho_v \ d \ a$	$A_{H} = M_{av} \left[2\rho_{vMax} \cdot 0.001 \right]$
Pourcentage minimal	$\rho_{v} = Max \left[0,001; 0,0015 \frac{400\theta}{f_{e}} \left(\frac{3\sigma_{u}}{\sigma_{u \text{lim}}} - 1 \right) \right]$ par moitié sur chaque face Avec : $\theta = 1,4$ pour un voile de rive $\theta = 1$ pour un voile intermédiaire	$\rho_{H} = \frac{1}{100a} \ge Max \left[\frac{1}{3}; 0,001 \right]$ $\rho_{vMax} = le \text{ pourcentage vertical}$ de la bande la plus armée

• La section d'armatures correspondant au pourcentage ρ_v doit être répartie par moitié sur chacune des faces de la bande de mur considérée.

• La section des armatures horizontales parallèles aux faces du mur doit être répartie par moitié sur chacune des faces d'une façon uniforme sur la totalité de la longueur du mur ou de l'élément de mur limité par des ouvertures.

• Aciers transversaux : (perpendiculaire aux parements)

Seuls les aciers verticaux (de diamètre $Ø_1$) pris en compte dans le calcul de N_{u lim} sont à maintenir par des armatures transversales (de diamètre $Ø_t$)

	Nombres d'armatures transversales	Diamètre ϕ_t
$\phi_l \le 12$ mm	4 épingles par m ² de voile	6mm
$12 \text{ mm} < \phi_l \le 20 \text{mm}$	Reprendre toutes les barres verticales	6mm
$20 \text{mm} < \phi_l$	Espacement $\leq 15 \phi_l$	8mm

Tableau VIII.57 : Aciers transversaux

IV.3.Cisaillement

Aucune vérification à l'effort tranchant ultime n'est exigée en compression si le cisaillement est inférieur à $0,05f_{c28}$ (il faudra donc vérifier que $S_{12} \leq 0,05f_{c28}$)

IV.4.2.Méthode Simplifiée Basée Sur Les Contraintes :(Calcul Des Aciers Verticaux)

Les voiles du Bâtiment sont sollicités en flexion composée. Les contraintes normales engendrées (σ) peuvent être soit des contraintes de compression ou de traction.

1 - ZONE COMPRIMEE :

Si $\sigma < 0 \rightarrow$ compression

Dans ce cas le Voile n'est pas armé à la compression, on prend :

As= Max (Min **BAEL** ; Min **RPA**).

2 - ZONE TENDUE :

Si $\sigma > 0 \rightarrow$ traction

Lorsqu' une partie (zone) du voile est tendue, la contrainte de traction (moyenne) σ_m vaut :

$$\sigma_m = \frac{F_T}{(e \times l_m)}$$

Avec :

F_T: force de traction.

e : épaisseur du voile.

l_m: longueur de la section considérée (ici maille).

Cette contrainte entraîne une section d'acier As tel que :

$$\frac{As}{S} = \frac{\sigma_m.\gamma_S}{fe}.\Delta s = Av \quad \dots \dots (4)$$

 $O\dot{u} \qquad \Delta s = e \ x \ l_m$

 $\frac{As}{S}$ Est répartie sur S ; cette quantité d'acier sera répartie en deux nappes (une sur chaque

face du voile).

Rappelons que les voiles ont été modélisés par des éléments coques (Shell) à 4 nœuds.

Un maillage horizontal et vertical (voir figure ci-après) de chaque voile est nécessaire pour approcher les valeurs réelles des contraintes.

Le rapport (a/b) des dimensions de la maille est choisi proche de l'unité.

Figure VIII.10 : Discrétisation d'un voile en élément (maille) coque.

La lecture des contraintes moyennes (de traction ou de compression) se fait directement au milieu de chaque maille dont le ferraillage est calculé par l'équation (4) dans le cas de la traction.

IV.5. Aciers Horizontaux

$$A_{h1} = \frac{2}{3} A_{v} \qquad (A_{v} = A_{s} \text{ précédemment définit})$$
$$A_{h2} = \frac{\bar{\tau}_{u} b_{0} S_{t}}{0.8(0.8f_{e})} = \frac{1.4 \tau_{u} a S_{t}}{0.8f_{e}} 1,25$$

 $\tau_u = S_{12}$ est donnée par l'interface graphique du **ETABS V 9.2.**

 S_t : Espacement maximal trouvé pour A_v

 $b_0 = a$ (épaisseur du trumeau)

$$A_h \ge Max \ (A_{h1}, A_{h2})$$

IV.6. Préconisation Du Règlement [39]

- Aciers verticaux
- Lorsqu'une partie du voile est tendue sous l'action des forces verticales et horizontales, l'effort de traction doit être pris en totalité par les armatures, le pourcentage minimum des armatures verticales sur toute la zone tendue est de 0,15%.
- Il est possible de concentrer des armatures de traction à l'extrémité du voile ou du trumeau, la section totale d'armatures verticales de la zone tendue devant rester au moins égale à 0,15 % de la section horizontale du béton tendu.

- Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- Si les efforts importants de compressions agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.
- Les barres verticales du dernier niveau doivent être munies de crochets (jonction par recouvrement).
- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile. Cet espacement d'extrémité doit être au plus égal à 15cm.

Figure VIII.11: Disposition des Armatures verticales dans les voiles

Aciers horizontaux

Les barres horizontales doivent être munies de crochets à 135° ayant une longueur de 10ϕ . Dans le cas où il existerait des talons de rigidité, les barres horizontales devront être ancrées sans crochets si les dimensions des talons permettent la réalisation d'un ancrage droit.

Règles communes

• Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :

-Globalement dans la section du voile 0,15%

-En zone courante 0,10%

• L'espacement des barres horizontales et verticales doit être inférieur à la plus petite

des deux valeurs suivantes :
$$S \leq \begin{cases} 1,5a\\ 30cm \end{cases}$$

- Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.
- Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

- Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.
- Les longueurs de recouvrement doivent être égales à :
- ✓ 40¢ pour les barres situées dans les zones où le renversement du signe des efforts est possible.
- ✓ 20 pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.
- Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A = 1,1 \frac{\overline{V}}{f_e}$$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

Exemple de calcul (voile V1)

Soit le voile de longueur L =4,5 m a = 0,20 m (épaisseur) $h_e = 4,08$ m (hauteur d'étage)

Le voile est découpé en 4 mailles horizontales de même longueur $L^i = 1,125$ m et de section S_i = $L^{i*}(a)$.

• Contraintes limites :

Pour une hauteur d'étage de 3,4 d'où la hauteur libre est égale à :

 $h_e=4,08-0,4=3,68 \text{ m}$ (0,4m : hauteur de la poutre)

	Unité	Béton non armé	Béton armé
Longueur de	m	0.85x3,68=3,128	0,8x3,68=2,944
flambement lf			
Elancement λ		$l_f \sqrt{12}$	$l_{f}\sqrt{12}$
		$\frac{1}{0,2} = 54,18$	$\frac{3}{0,2} = 51$
Coefficient α		0,39	0,58
Section réduite	m ²	(a-0,02) = (0,2-0,02) = 0.18	(a-0,02)1 = (0,2-0,02)1 = 0.18
Br (par ml)			
Avec $d = 1m$			
Contraintes	MPa	0.18x25	0,58(0,18x25,500)
limites		$\sigma_{bna} = 0.39 \left[\frac{1}{0.9 \times 1.15 \times 0.2} \right]$	$\sigma_{ba} = \frac{1}{1 \times 0.2} \left(\frac{1}{0.9 \times 1.15} + A_s - \frac{1}{1} \right)$
$\sigma = \frac{N_{u \text{lim}}}{a d}$		$\sigma_{bna} = 8,48.MPa$	$\sigma_{ba} = 11,53MPa$
Avec $d = 1m$			

Tableau VIII.58 : Calcul de σ_{ba} et σ_{bna} pour l'exemple.

Remarque :

 σ_{ba} = 11,53 MPa correspondant à A_s= 0,1% de B_{et}

 $B_{et} = (0,2) (1,125) m^2$

 $A_s = 2,25 \text{ cm}^2$

Tableau VIII.59 : Calcul des armatures verticales de l'exemple

		4	•	-		
Maile		1	2	3		4
(ou élément de voile)						
Dimensions (m ²)	0,	225	0,225	0,225	0,	225
$(a^*l^i) = S_j$,					
Contrainte moyenne pa		7,1	1,07	0,92	6,8	
bande σ _j (MPa)						
Force de traction	1,	597	0,24	0,207	1	,53
$F_t(MN) = \sigma_j S_j$						
Section d'acier (cm ²)	31	1,95	4,8	4,14	3	0,6
$A = F_t$						
$A_s - \overline{\sigma_s}$						
(situation						
accidentelle $\gamma_s = 1$)						
Aciers minimaux (cm ²)	2	,25	2,25	2,25	2,25	
1. Selon BAEL:						
$0,1\%\mathrm{S_{béton}}$						
2. Selon RPA99:	3,	375	3,375	3,375	3,375	
0,15 % Sbéton						
choix	2×5T16	2×3T16	2×5T14	2×5T14	2×3T16	2×5T16
Avadopté(cm ²)	32	2,16	15,4	15,4	32,16	
St: espacement (cm)	10	20	20	20	20	10

• Armatures de joint de bétonnage (aciers de couture)

$$A_{vj} = 1,1 \frac{V}{f_e} ; \quad \overline{V} = 1,4V_u^{cal} ; \quad \overline{V} = S_{12}.a.Li$$
$$A_{vj} = 1,1 \frac{1,76(200)(1125)}{500} 1,4 = 87 \, 1mm^2$$
$$A_{vj} = 8,7 \, 1cm^2$$

Cette quantité d'acier sera ajoutée le long des joints de reprise de coulage.

• Aciers horizontaux

$$A_{h1} = \frac{\bar{\tau}_u.a.S_t}{(0.8f_e)0.8}$$

$$\bar{\tau}_u = 1.4\tau_u = 1.4S_{12}$$

 $S_{t max}=30 \text{ mm}$

$$A_{h1} = \frac{1,4 (1,76) (200) (300)}{(0,8) (500) (0,8)} = 4,62.cm^{2}$$

$$A_{h2} = \frac{2}{3} A_{V} ; A_{V} = \{\text{section d'acier vertical de la Maille la plus armé}\}$$

$$A_{h2} = \frac{2}{3} (32,16) = 21,44.cm^{2}$$

$$A_{h\min} = (0,15\%) a l = \frac{0,15}{100} (20) (112,5) = 3,375.cm^{2}$$
D'où :
$$A_{h} = Max(A_{h1}, A_{h2}, A_{h}^{\min}) = 21,44.cm^{2}$$

Soit :
$$2x8T14 = 10.99 \text{ cm}^2$$

Avec :
$$S_t = \frac{112,5}{7} = 16,07.cm$$

On prend : $S_t = 16 \text{ cm} < S_{t \min} = 30 \text{ cm}$... vérifié

Figure VIII.12 : Disposition des voiles

Nota

Les valeurs des contraintes dans les voiles données dans les tableaux ci-après correspondent à la combinaison de charge 0,8G+E

Les résultats de ferraillage des voiles sont regroupés dans les tableaux suivant :

- **♦ Voiles** (**V1**, **V6**) : L=4,5m
- Aciers verticaux

Tableau VIII.60 : Calcul des aciers verticaux du voile (V1, V6)

Hauteur (m)	Maille	S _i (m ²)	σ _j (MPa)	Ft (MN)	Av (cm ²)	Le choix	Avadopté (cm ²)	St (cm)
	1	0.225	7 1	1 507	31.05	2×5T16	32.16	10
RDC	1	0,223	7,1	1,397	51,95	2×3T16	52,10	20
-	2	0,225	1,07	0,24	4,8	2×5T14	15,4	20
1 ^{èr}	3	0,225	0,92	0,207	4,14	2×5T14	15,4	20
	4	0.225	6.8	1 52	20.6	2×3T16	22.16	20
	4	0,223	0,8	1,55	50,0	2×5T16	52,10	10
	1	0.225	5.2	1 17	23.4	2×5T14	24.62	10
2 ^{ème}	1	0,223	5,2	1,17	23,4	2×3T14	24,02	20
	2	0,225	0,75	0,168	3,36	2×5T12	11,3	20
3 ^{ème}	3	0,225	0,42	0,094	1,88	2×5T12	11,3	20
	4	0.225	12	0.045	18.0	2×3T14	24.62	20
	4	0,223	4,2	0,945	10,9	2×5T14	24,02	10
	1	0.225	22	0.517	10.24	2×5T12	10 1	10
∕lème	1	0,223	2,3	0,317	10,54	2×3T12	10,1	20
4	2	0,225	0,4	0,09	1,8	2×5T10	7,85	20
5 ème	3	0,225	0,2	0,045	0,9	2×5T10	7,85	20
5	4	0.225	2.04	0.450	0.19	2×3T12	10 1	20
	4	0,223	∠,04	0,439	9,18	2×5T12	10,1	10

• Aciers horizontaux

Tableau VIII.61 : Calcul des aciers horizontaux du voile (V1, V6)

Niveaux	$ au_{\mathrm{u}}$	Ah1	Ah2	Ah ^{min}	Ah	choix	Ah ^{adopté}	St
	(Mpa)	(cm ²)	(cm ²)	(cm ²)	(cm ²)		(cm ²)	(cm)
RDC 1èr	1,76	4,62	21,44	3,375	21,44	2x8T14	24,62	15
$2^{\text{ème}} 3^{\text{ème}}$	1,46	3,83	16,41	3,375	16,41	2x8T12	18,1	15
$4^{\text{ème}}$ $5^{\text{ème}}$	1,01	2,65	12,06	3,375	12,06	2x8T10	12,56	15

• Armature de joint de bétonnage (acier de couture)

Tableau VIII.62 : Calcul des aciers de couture du voile (V1, V6)

Etage	τu (Mpa)	$A_{vj}^{cal}(cm^2)$	Le choix	Aadopté(cm ²)
RDC 1èr	1,76	12,19	2x6T12	13,58
$2^{\text{ème}} 3^{\text{ème}}$	1,46	10,11	2x7T10	11
$4^{\text{ème}} 5^{\text{ème}}$	1,01	6,99	2x5T10	7,86

Ferraillage des éléments résistants

CHAPITRE VIII

- **♦ Voiles (V2, V4, V5, V7, V9, V10)** : L=3m
- Aciers verticaux

Hauteur (m)	Maille	Si (m ²)	σ _j (Mpa)	Ft (MN)	Av (cm ²)	Le choix	Avadopté (cm ²)	St (cm)
	1	0.2	3 /	0.68	13.6	2×4T14	21.4	10
RDC	1	0,2	3,4	0,08	13,0	2×3T14	21,4	20
	2	0,2	0,7	0,14	2,8	2×5T10	7,86	20
1èr	2	0.2	10	0.06	10.2	2×3T14	21.4	20
	3	0,2	4,0	0,90	19,2	2×4T14	21,4	10
	1	0,2	1,7	0,34	6,8	2×4T12	15,84	10
2 ^{ème}	1					2×3T12		20
	2	0,2	-0,13	/	/	/	/	/
3 ^{ème}	2	0.2	2.6	0.72	14.4	2×3T12	15 9/	20
	5	0,2	5,0	0,72	14,4	2×4T12	13,64	10
	1	0.2	0.72	0 1 4 4	200	2×4T10	11	10
4 ^{ème}	1	0,2	0,72	0,144	2,00	2×3T10	11	20
	2	0,2	-0,19	/	/	/	/	/
5 ^{ème}	2	0.2	1.82	0.364	7 28	2×3T10	11	20
	5	0,2	1,82	0,504	1,20	2×4T10	11	10

Tableau VIII.63 : Calcul des aciers verticaux du voile (V2, V4, V5, V7, V9, V10)

• Aciers horizontaux

Tableau VIII.64 : Calcul des aciers horizontaux du voile (V2, V4, V5, V7, V9, V10)

Niveaux	τ _u (Mpa)	Ah1 (cm ²)	Ah2 (cm ²)	Ah ^{min} (cm ²)	A _h (cm ²)	choix	A _h ^{adopté} (cm ²)	St (cm)
RDC 1èr	1,37	3,6	14,26	3	14,26	2×5T14	15,4	20
$2^{\text{ème}} 3^{\text{ème}}$	1,05	2,75	12,56	3	12,56	2×6T12	13,58	15
$4^{\text{ème}}$ $5^{\text{ème}}$	0,71	1,86	7,33	3	7,33	2×5T10	7,86	20

• Armature de joint de bétonnage (acier de couture)

Tableau VIII.65 : Calcul des aciers de couture du voile (V2, V4, V5, V7, V9, V10)

Etage	τu (Mpa)	$A_{vj}^{cal}(cm^2)$	Le choix	$A_{adopt\acute{e}}(cm^2)$
RDC 1èr	1,37	8,44	2×5T12	11,3
$2^{\text{ème}} 3^{\text{ème}}$	1,05	6,47	2×5T10	7,86
4 ^{ème} 5 ^{ème}	0,71	4,37	2×5T8	5,02

♦ Voiles (V3, V8) : L=2,35m

• Aciers verticaux

Hauteur	Mailla	Si	σյ	Ft	Av	Le choix	AVadopté	St
(m)	Wante	(m ²)	(MPa)	(MN)	(cm^2)	Le choix	(cm ²)	(cm)
	1	0 1 1 9	47	0.554	11.08	2×2T14	12 22	10
RDC	1	0,110	4,7	0,554	11,00	2×2T14	12,32	20
-	2	0,118	1,6	0,188	3,76	2×3T12	6,78	20
1 ^{èr}	3	0,118	0,92	0,108	2,16	2×3T12	6,78	20
	4	0 1 1 9	2 /	0.4	Q	2×2T14	12 22	20
	4	0,110	5,4	0,4	0	2×2T14	12,32	10
	1	0 1 1 9	22	0.271	5 12	2×2T12	0.04	10
2 ème	1	0,110	2,5	0,271	3,42	2×2T12	9,04	20
	2	0,118	0,83	0,097	1,94	2×3T10	4,72	20
3 ^{ème}	3	0,118	0,35	0,041	0,82	2×3T10	4,72	20
	4	0 1 1 9	1 54	0 1 9 1	3.62	2×2T12	0.04	20
	4	0,110	1,34	0,181	3,02	2×2T12	9,04	10
	1	0 1 1 9	0.70	0.002	1.96	2×2T10	6 79	10
∕ème	1	0,110	0,79	0,095	1,00	2×2T10	0,28	20
4	2	0,118	-0,7	/	/	/	/	/
ζème	3	0,118	-0,2	/	/	/	/	/
5	4	0 1 1 9	0.49	0.056	1 1 2	2×2T10	6 29	20
	4	0,118	0,48	0,030	1,12	2×2T10	0,28	10

Tableau VIII.66 :Calcul des aciers verticaux du voile (V3, V8)

• Aciers horizontaux

Tableau VIII.67 : Calcul des aciers horizontaux du voile (V3, V8)

Niveaux	τu	Ah1	Ah2	Ah ^{min}	Ah	choix	Ah ^{adopté}	St
	(Mpa)	(cm ²)	(cm ²)	(cm ²)	(cm ²)		(cm ²)	(cm)
RDC 1èr	2,2	5,77	8,21	2,36	8,21	2×4T12	9,04	20
$2^{\text{ème}} 3^{\text{ème}}$	1,85	4,86	6,03	2,36	6,03	2×4T10	6,28	20
$4^{\text{ème}}$ $5^{\text{ème}}$	1,43	3,75	4,19	2,36	4,19	2×4T10	6,28	20

• Armature de joint de bétonnage (acier de couture)

 Tableau VIII.68 :
 Calcul des aciers de couture du voile (V3, V8)

Etage	τu (Mpa)	$A_{vj}^{cal}(cm^2)$	Le choix	Aadopté(cm ²)
RDC 1èr	2,2	15,92	2×6T14	18,48
$2^{\text{ème}} 3^{\text{ème}}$	1,85	13,39	2×6T12	13,58
$4^{\text{ème}}$ $5^{\text{ème}}$	1,43	10,35	2×5T12	11,3

Voiles V1,V6 (RDC,1er)

Voiles V1,V6 (2éme,3éme)

Figure VIII.13 : Ferraillage Voile 1et 6

V. CONCLUSION

Les éléments principaux jouent un rôle capital dans la résistance et la transmission des sollicitations. Ils doivent donc être correctement dimensionnées et bien armés.

Le ferraillage des éléments structuraux doit impérativement répondre aux exigences des règlements qui prennent en considération la totalité de la charge d'exploitation ainsi que la charge sismique

Outre la résistance, l'économie est un facteur très important qu'on peut concrétiser en jouant sur le choix de la section du béton et de l'acier dans les éléments résistants de l'ouvrage, tout en respectant les sections minimales requises par le règlement en vigueur. Il est noté que le ferraillage minimum du RPA est souvent plus important que celui obtenu par le calcul. On en déduit que le RPA favorise la sécurité avant l'économie

I. INTRODUCTION

Les fondations superficielles et profondes sont des ouvrages géotechniques fréquemment rencontrés dans les projets de construction. Il existe une diversité de configurations, en fonction de la nature du sol, et de la structure.

La fondation est la partie de la structure qui transmet les charges directement au sol. Donc elles constituent une partie essentielle de l'ouvrage.

II. FONCTIONS ASSUREE PAR LES FONDATIONS

Dans le cas le plus général, un élément déterminé de la structure peut transmettre à sa fondation :

- Un effort normal : charge verticale centrée dont il convient de connaître les valeurs extrêmes.
- Une force horizontale résultant, dû à l'action du vent ou du séisme, qui peut être variable en grandeur et en direction.
- Un moment qui peut être de grandeur variable et s'exercer dans des plans différents.

Compte tenu de ces sollicitations, la conception générale des fondations doit assurer la cohérence du projet vis-à-vis du site, du sol, de l'ouvrage et interaction sol structure.

III. CLASSIFICATION DES FONDATIONS

Fondé un ouvrage consiste essentiellement à répartir les charges qu'ils supportent sur le sol ou dans le sol suivant l'importance des charges et la résistance du terrain.

• Lorsque les couches de terrain capable de supportée l'ouvrage sont à une faible profondeur on réalise les fondations superficielles (semelles isolées, filantes ou radier général).

• Lorsque les couches de terrain capable de supportée l'ouvrage sont à une grande profondeur on réalise les fondations profondes et semi profondes (puits ou pieux).

IV. CHOIX DU TYPE DE FONDATION

Le choix du type de fondation la plus appropriée est dicté par certains facteurs tels que :

- La nature de la structure ;
- Les charges appliquées par la structure ;
- Les caractéristiques du sol sous la fondation ;
- Les coûts des fondations.

D'après les caractéristiques du sol (une contrainte moyenne admissible =2,50 bars)

V. CALCUL DES FONDATIONS

Afin de satisfaire la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage nous devons prendre en considération la charge que comporte l'ouvrage – la portance du sol – l'ancrage et les différentes donnée du rapport du sol. On commence le choix de fondation par les semelles isolées, filantes et radier, chaque étape fera l'objet de vérification.

On suppose que l'effort normal provenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

On doit vérifier la condition suivante :

$$\frac{N}{S} = \sigma_{sol} \to S \ge \frac{N}{\sigma_{sol}}$$

Avec :

 σ_{sol} : Contrainte du sol. sol=2,50 bar

N : Effort normal appliqué sur la fondation.

S : Surface de la fondation.

V.1.Semelles isolées

On adoptera une semelle homothétique, c'est-à-dire le rapport de A sur B est égal au rapport a sur

$$\mathbf{b}: \frac{a}{b} = \frac{A}{B}$$

-Pour les poteaux carrés : a=b donc A=B \Rightarrow S=A²

A est déterminé par ; $A = \sqrt{S}$ d'où $S \ge \frac{N}{\sigma_{sol}}$

Avec: $\sigma_{sol} = 2,5 \ bar$

Figure IX.1 : Semelle isolée sous poteau

Les résultats des sections des semelles isolées sont résumés dans le tableau suivant :

Poteaux	N(KN)	S (m ²)	A(m)	Achoisie(m)
A2	75,84	0,30	0,55	1,2
A3	588,14	2,35	1,53	2
A4	553,67	2,21	1,47	2
A5	575,75	2,30	1,51	2
B2	594,73	2,38	1,54	2
B3	1334,12	5,33	2,30	2,5
B4	1536,21	6,14	2,48	3
B5	959,6	3,84	1,96	2
C2	713,84	2,85	1,67	2
C3	1400,58	5,60	2,37	2,5
C4	1632,65	6,53	2,55	3
C5	943,1	3,77	1,94	2
D2	594,53	2,38	1,54	2
D3	1222,44	4,89	2,21	2,5
D4	1768,58	7,07	2,66	3
D5	810,57	3,24	1,80	2
D6	638,12	2,55	1,60	2
D7	452,99	1,81	1,34	1,5
E1	357,68	1,43	1,19	1,5
E2	477,6	1,91	1,38	1,5
E3	548,21	2,19	1,48	2
E4	1467,09	5,87	2,42	2
E5	866,12	3,46	1,86	2
E6	491,53	1,96	1,40	2
E7	428,08	1,71	1,31	1,5
F1	642,68	2,57	1,60	2
F2	645,83	2,58	1,60	2
F3	697,97	2,79	1,67	2
F4	1519,19	6,07	2,46	3
F5	1157,01	4,63	2,15	2,5
F6	580,5	2,32	1,52	2
F7	496,93	1,99	1,41	2
G1	448,16	1,79	1,34	1,5
G2	545,76	2,18	1,48	2
G3	973,17	3,89	1,97	2
G4	1204,53	4,82	2,19	2,5
G5	990,42	3,96	1,99	2
G6	539,42	2,16	1,47	2
G7	494,84	1,98	1,41	2

Tableau IX.1 : Sections des semelles isolées

Exemple de calcul (poteau D4)

 $N = 1768,58 \, kN$

$$\frac{N}{S} = \sigma_{sol}$$

$$S = \frac{1768.58}{250} = 7,07m^2$$
$$A = B = \sqrt{S} = 2,66m.$$
$$A_{choisie} = 3 m.$$

Vérification de la mécanique des sols (vérification de l'interférence entre deux semelles) :

Il faut vérifie que : $L \min \ge 1,5xB$

Tel que L min est l'entre axe minimum entre deux poteaux

On a: $L_{min} = 2,35m < 1,5x3 = 4,5m$non vérifie

On remarque qu'il y a chevauchement des semelles, on passe alors a l'étude des semelles filantes.

V.2.Semelles filantes

Le recours à des semelles filantes se fait quand les poteaux et par conséquent les semelles dans une direction donnée sont proches les unes des autres de façon que la somme des contraintes des deux semelles au niveau du point d'interface dépasse la contrainte du sol.

On peut dire que la semelle continue sous poteaux travail sous des contraintes linéaires réparties. L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux qui se trouvent dans la même ligne.

CHAPITRE IX

On doit vérifier que :

$$\sigma_{sol} \ge \frac{N}{S}$$

Tel que :

 $N = \sum N_i$ De chaque file de poteaux.

$$S = B \times L \to B \ge \frac{N}{L\sigma_{sol}}$$

B: Largeur de la semelle.

L: Longueur de la file considérée.

File	N(KN)	L(m)	S(m ²)	B(m)	B ^{choisie} (m)
1	1448,52	8,55	5,79	0,68	1
2	3648,13	26,55	14,59	0,55	1
3	6764,63	26,55	27,06	1,02	1,5
4	9681,92	26,55	38,73	1,46	1,5
5	6302,57	26,55	25,21	0,95	1
6	2249,50	13,05	9	0,67	1
7	1872,84	13,05	7,49	0,57	1
Α	1793,40	12	7,17	0,60	1
В	4424,66	12	17,7	1,43	1,5
С	4690,17	12	18,76	1,56	1,5
D	5487,23	18	21,95	1,22	1,5
Ε	4636,31	21	18,54	0,88	1
F	5740,11	21	22,96	1,1	1,5
G	5740,11	21	20,78	0,98	1
SOMME	63936,36		255,74		

Tableau IX.2 : Sections des semelles filantes

Exemple de calcul (la file 4)

 $N = 9681,92 \ kN$

$$\frac{N}{S} = \sigma_{sol}$$

$$S = \frac{9681,92}{250} = 38,73 \ m^2$$

$$S = B \times L \to B \ge \frac{S}{L}$$

$$B \ge \frac{38,73}{26,55} = 1,46 m$$
$$B_{choisie} = 1,5 m.$$

-Il faut vérifie que : $L \min \ge 2.5 \times B$

Tel que L min est l'entre axe minimum entre deux poteaux

On à L min=2,35 m < 2.5xB =3,75 mnon vérifie

-Il faut vérifier que:

$$\frac{S_s}{S_b} \le 50\%$$

 $S_{semelle} = 255,74 m^2$

$$S_{batiment} = 439m^2$$

Le rapport entre la surface du bâtiment et la surface totale des semelles vaut :

$$\frac{S_s}{S_b} = \frac{255,74}{439} = 58,25\% > 50\%$$

La surface totale de la semelle dépasse 50% de la surface d'emprise du bâtiment, ce qui induit le chevauchement de ces semelles. Pour cela on a opté pour un radier général comme type de fondation pour fonder l'ouvrage. Ce type de fondation présente plusieurs avantages qui sont :

- L'augmentation de la surface de la semelle qui minimise la forte pression apportée par la structure.

- La réduction des tassements différentiels.
- La facilité d'exécution.

Donc tout cela nous oblige d'opter pour un choix du radier générale.

V.3.Radier général

Un radier est une dalle pleine constituant l'ensemble des fondations d'un bâtiment. Il s'étend sur toute la surface de l'ouvrage.

Dans notre cas, on optera pour un radier nervuré (plus économique que pratique).

L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.

Ce mode de fondation est utilisé dans deux cas :

- lorsque la capacité portante du sol est faible : le radier est alors conçu pour jouer un rôle répartiteur de charges. Son étude doit toujours s'accompagner d'une vérification du tassement général de la construction
- lorsque le sous-sol d'un bâtiment est inondable : le radier joue alors le rôle d'un cuvelage étanche pouvant résister aux sous-pressions.

Ce type d'ouvrage ne doit pas être soumis à des charges pouvant provoquer des tassements

Différentiels trop élevés entre les différentes zones du radier.

Dans notre cas, on optera pour un radier nervuré (plus économique que pratique).

Figure IX.3 : Disposition des nervures par rapport au radier et aux poteaux

V.3.2.Surface Nécessaire

Pour déterminer la surface du radier in faut que : $\sigma_{\rm max} \leq \sigma_{\rm sol}$

$$\sigma_{\max} = \frac{N}{S_{nec}} \le \sigma_{sol} \to S_{nec} \ge \frac{N}{\sigma_{sol}}$$

Pour : $\begin{cases} N = 32511,99kN \\ \sigma_{sol} = 2,5bars \end{cases}$

On trouve : $S \ge 130,05m^2$

D'où la surface nécessaire est inférieure à celle du bâtiment.

- La surface occupée par l'ouvrage = $439m^2 > S_{nec}$.
- La section totale du radier est de : S rad =439m²

V.3.3. Pré dimensionnement de radier

V.3.3.1.Dalle

L'épaisseur de la dalle du radier doit satisfaire aux conditions suivantes :

a. Condition forfaitaire

L'épaisseur (h) du radier doit vérifier la condition suivant :

$$h_1 \ge \frac{L_{max}}{20}$$

Avec :

Lmax: La longueur maximale entre les axes des poteaux.

 $L_{max}=6,20m$

$$h_1 \ge 31 cm$$

On prend : h_1 =35cm. pour l'épaisseur de la dalle

CHAPITRE IX

V.3.3.2.largeur des nervures

a. Condition de coffrage

$$b \ge \frac{L_{max}}{10} \to b = \frac{620}{10} = 62cm$$

On prend :b = 65cm.

b. Condition de la raideur

Pour étudier la raideur de la dalle du radier, on utilise la notion de la longueur élastique définie par l'expression suivante :

$$L_{max} \le \frac{\pi}{2} L_e$$

Avec : $L_e = 4 \sqrt{\frac{4EI}{bK}}$

Et :

I: Inertie de la section transversale du radier $\left(I = \frac{bh^3}{12}\right)$

E: Module d'élasticité du béton (prendre en moyenne E=20000MPa).

b=1: Largeur de la semelle par bande d'un mètre (b=1m).

K: Coefficient de raideur du sol $(0,5kg/cm^3 \le K \le 12kg/cm^3)$.

On pourra par exemple adopter pour K les valeurs suivantes :

K=0,5[kg/cm³] \rightarrow pour un très mauvais sol.

K=4 [kg/cm³] \rightarrow pour un sol de densité moyenne.

 $K=12[kg/cm^3] \rightarrow pour un très bon sol.$

On aura:

$$h_1 \ge \sqrt[3]{\frac{3K\left(\frac{2L_{max}}{\pi}\right)^4}{E}} \rightarrow h_1 \ge 113, 42cm$$

c. Condition de cisaillement

On doit vérifier que:

$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u = Min(0, 1f_{c28}; 4MPa) = 2,5MPa$$

Avec:

$$T_u = \frac{qL}{2}$$
 ; $q = \frac{N_u 1ml}{S_{rad}}$

 $N_u = 32511,99kN$

L= 6,2 m; b=1 m

$$\tau_u = \frac{qL}{2bd} = \frac{N_u L.1ml}{2S.b.d} = \frac{N_u L}{2S.b.(0,9h)} \le \overline{\tau} \qquad \Longrightarrow h_2 \ge \frac{N_u L.1ml}{2Sb(0,9\overline{\tau})} = 102,03cm$$

Nous optons pour les dimensions de notre radier suivant :

 $h \ge max(h_1; h_2) = 113,42cm$

On prend:h = 1,20m.

- Résumé

Epaisseur de la dalle du radier:h = 35cm.

Les dimensions de la nervure: $\begin{cases} h_N = 120 \text{ cm} \\ b = 65 \text{ cm} \end{cases}$

V.3.4.caractéristiques géométriques du radier

Position du centre de gravité

 $x_{G} = 15,31m$

 $y_{G} = 10,38m$

Moments d'inertie

$$I_{\rm xx}=12252m^4$$

$$I_{vv} = 25836,4m^4$$

$$I_{xv} = 2310m^4$$

V.3.5.Vérifications Nécessaires

V.3.5.1.Vérification de la stabilité du radier

Selon le [1], quel que soit le type de fondation (superficielle ou profonde), nous devons vérifier que l'excentrement des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié du centrale de la base des éléments de fondation résistant au reversement.

$$e_0 = \frac{Mr}{Nr} \le \frac{B}{4}$$

Avec :

e₀ : La plus grande valeur de l'excentricité due aux charges sismiques.

Mr : Moment de renversement dû aux forces sismique.

CHAPITRE IX

Nr : effort normal de la structure

B : la largeur du radier.

 $Mr = M_0 + V_0.h$

 \mathbf{M}_{0} : moment à la base de la structure

Vo: effort tranchant à la base de la structure

h : profondeur de l'ancrage de la structure

M₀, V₀ sont tirés à partir du fichier **ETABS**.

Figure IX.4 : Schéma statique du bâtiment

Sens xx

$$\begin{split} M_0 &= 17776,49 \text{ KN.m}; \ V_0 &= 5386,34 \text{kN}; \ h = 4,12 \text{m} \\ \text{Donc: } M_R &= 39968, 21 \text{ KN.m} \\ N_{ser} &= N_{ser} (\text{structure}) + \text{poids propre de radier nervuré} \\ N_{ser} &= 32511,99 + (439 \times 25 \times 0, 35) = 36353,24 \text{ KN} \\ B_X &= 26,95 \text{ m} \implies \frac{B_X}{4} = 6,73 \text{ m} \\ e_x &= \frac{39968,21}{36353,24} = 1,10 \leq \frac{B_X}{4} = 6,73 \text{ m} \dots \text{ vérifié} \\ \textbf{Sens yy} \\ M_0 &= 16968, 19 \text{ KN.m}; \ V_0 &= 5953,02 \text{kN}; \ h = 4,12 \text{m} \\ \text{Donc: } M_R &= 41494, 63 \text{ KN.m} \end{split}$$

N_{ser} = N_{ser} (structure) +poids propre de radier nervuré N_{ser} 32511,99 + (439×25×0, 35) =36353,24 KN B_y= 21, 40 m $\implies \frac{B_X}{4} = 5,35$ m e_y = $\frac{41494,63}{36353,24} = 1,15 \le \frac{B_y}{4} = 5,35$ m vérifié
La condition est vérifiée donc notre structure est stable dans les deux sens.

V.3.5.2. Vérification des contraintes cous le radier

Le rapport du sol nous offre la contrainte de sol déterminé par les différents essais in-situ et au laboratoire : $\sigma_{sol}=2,5$ bars

Les contraintes du sol sont données par :

a. Sollicitation du premier genre

On doit vérifier que :
$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} \le \overline{\sigma}_{sol}$$

 $\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = \frac{36353,24}{439} = 82,80 kN/m^2$
 $\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = 82,80 kN/m^2 \le \overline{\sigma}_{sol} = 250 kN/m^2$ Condition vérifiée

b. Sollicitation du second genre

$$\sigma_{1,2} = \frac{N}{S} \pm \frac{M_r \times V_{\max}}{I}$$

Avec : σ_1 : Contrainte maximale du sol.

 σ_2 : Contrainte minimale du sol.

*Si $\sigma_2 > 0$: la Répartition est trapézoïdale; La contrainte au quart de la largeur de la semelle, ne doit pas dépasser la contrainte admissible σ_{sol}

$$(\sigma_{\rm m}=\frac{3\sigma_1+\sigma_2}{4} \leq \sigma_{\rm sol}).$$

*Si $\sigma_2 = 0$: la Répartition est triangulaire; La contrainte σ_1 ne doit pas dépasser 1,33 fois la contrainte admissible.

Avec :

 $I_{xx} = 12252 \text{ m}^4$ $I_{yy} = 25836,40 \text{m}^4$

Figure IX.5 : Contraintes sous le radier

• ELU

Nu=Nu (structure) +1.35xpoids propre de radier nervuré.

N_{u=} 42103,5+1,35x3841, 25

N_u= 47289,2 KN

M : est le moment de renversement.

 $\sigma sol = 250 \text{kN/m}^2$

	σ1 (kN/m ²)	$\sigma_2 (kN/m^2)$	$\sigma_m\left(\frac{L}{4}\right)$ (kN/m ²)
Sens x-x	121,55	93,9	114,63
Sens y-y	114,53	100,92	111,13
Vérification	$\sigma_1^{\max} \leq 1,5 \sigma_{sol} = 375$	$\sigma_2^{min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol} = 332,5$

Tableau IX.3 : Contraintes sous le radier à l'ELU

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

• ELS

Nser= 36353,24 KN

 $\sigma sol = 250 \text{ kN/m}^2$

	$\sigma_1 (kN/m^2)$	$\sigma_2 (kN/m^2)$	$\sigma_m\left(\frac{L}{4}\right)$ (kN/m ²)
Sens x-x	96,64	68,98	89,73
Sens y-y	89,62	76	86,22
Vérification	$\sigma_1^{max} \le 1,5 \sigma_{sol} = 375$	$\sigma_2^{min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol} = 332,5$

 Tableau IX.4 :
 Contraintes sous le radier à l'ELS

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement

CHAPITRE IX

c. Détermination des sollicitations les plus défavorables

Le radier se calcul sous l'effet des sollicitations suivante :

ELU

$$\sigma_u = \sigma\left(\frac{L}{4}\right) = 114,63kN/m^2$$

ELS

$$\sigma_{ser} = \sigma\left(\frac{L}{4}\right) = 89,73 kN / m^2$$

V.3.6.Ferraillage De La Table Du Radier

La table du radier est considérée comme une dalle pleine d'épaisseur de 35cm.

Détermination des efforts :

-Si $0,4 \prec \frac{L_x}{L_y} \prec 1,0 \Rightarrow$ La dalle travaille dans les deux sens, et les moments au centre de la

dalle, pour une largeur unitaire, sont définis comme suit :

 $M_x = \mu_x q L_x^2$sens de la petite portée.

 $M_{y} = \mu_{y}M_{x}$sens de la grande portée.

Pour le calcul, on suppose que les panneaux sont encastrés aux niveaux des appuis, d'où on déduit les moments en travée et les moments sur appuis.

• Panneau de rive

- Moment en travée:

- Moment sur appuis:

$$M_{a x} = \int M_{a y} = 0.3M_{x} \text{ (appui de rive)}$$

$$M_{a x} = M_{a y} = 0.5M_{x} \text{ (autre appuis)}$$

 $M_{tx} = 0.85 M_x$

- Panneau intermédiaire
- Moment en travée: $M_{tx} = \int 0.75 M_x$

$$LM_{ty}=0,75M_y$$

- Moment sur appuis: Max=May=0,5Mx

-Si
$$\frac{L_x}{L_y} \prec 0,4 \Rightarrow$$
 La dalle travaille dans un seul sens.

- Moment en travée: M_t=0,85M₀
- Moment sur appuis : $M_a=0,5M_0$ Avec : $M_0 = \frac{ql^2}{8}$

CHAPITRE IX

Valeur de la pression sous radier :

- **ELU**: $q_u = \sigma_m^u \cdot 1m = 114,63 kN/m$
- **ELS**: $q_{ser} = \sigma_m^{ser} . 1m = 89,73 kN/m$
- 🖊 Moment en travée et sur appuis à l'ELU (v=0) :

On prend le panneau le plus sollicité.

Figure IX.6 : Panneau de la dalle du radier

- Calcul des moments
- Dans le sens de la petite portée : $M_x = \mu_x q_u L_x^2$
- Dans le sens de la grande portée : $M_y = \mu_y M_x$

Les coefficients μ_x et μ_y sont en fonction de $\rho = \frac{L_x}{L_y}$ et de v.

• v: Coefficient de poisson
$$\begin{cases} 0 & al' ELU \\ 0,2 & al' ELS \end{cases}$$

. μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaires [40]

$$0,4 < \frac{L_x}{L_y} = \frac{4,5}{6,2} = 0,725 \le 1 \Rightarrow$$
 La dalle travaille dans les deux sens.

$$\rho = 0.72 \Rightarrow \begin{cases}
\mu_{\rm x} = 0.0658 \\
\mu_{\rm y} = 0.4624
\end{cases}$$

 $M_x = \mu_x \cdot q_u \cdot L_x^2 = 152,74 \text{ kNm}$

 $M_y = \mu_y$. $M_x = 70,63$ kNm

a. Moments en travées

 $M_{tx} = 0.85 M_x = 129.83 \text{ KN.m}$

Mty=0,85My=60,04 KN.m

b. Moments sur appuis

 $M_{ax} = M_{ay} = 0,5M_x = 76,37kNm$

A. Ferraillage de la dalle

 $b{=}100cm \ ; \ h{=}35cm \ ; \ d{=}31,5cm \ ; \ f_{e}{=}500MPa \ ; \ f_{c28}{=}25MPa \ ; \ f_{t28}{=}2,1MPa \ ; \ \ \sigma_{s}{=}435MPa$

Les résultats sont récapitulés dans le tableau suivant :

Section minimale

- **Sens-y--y** : 0,08% b.h=2,8 cm².
- Sens x-x : $A_{s \min} = 1, 2.(A_{\min} \text{ suivant } y-y) = 3,36 \text{ cm}^2$.

	Sens	Mu (KN.m)	Μ	Α	Z (cm)	As ^{cal} (cm ²)	Choix	As ^{ad} (cm ²)
Travée	Х-Х	129,83	0,092	0,121	29,97	9,96	5T16	10,05
	у-у	60,04	0,042	0,053	30,83	4,48	6T10	4,71
Appui	Х-Х	76,37	0,054	0,069	30,63	5,73	4T14	6,16
	у-у							

Tableau IX.5: Ferraillage des Panneaux du Radier

Vérifications nécessaires

• Espacement:

En travée

Sens x-x:

 $Esp \leq min\{3h; 33cm\} \rightarrow S_t \leq min\{105cm; 33cm\} = 33cm$

$$S_t = \frac{100}{5} = 20$$

On opte :St=20 cm.

Sens y-y:

 $Esp \leq min\{4h; 40cm\} \rightarrow S_t \leq min\{140cm; 40cm\} = 40cm$

$$S_t = \frac{100}{6} = 16,66cm$$

On prend St=20 cm

Aux Appuis :

$$S_t = \frac{100}{4} = 25cm$$

CHAPITRE IX

On prend $S_t = 25 \text{ cm}$

• Condition de non fragilité :

$$A_s^{\min} = 0,23bd \frac{f_{t28}}{f_e} = 3,04cm^2$$
 vérifiée

Moment en travée et sur appuis à l'ELU (v=02)

Tableau IX.6: Calcul des moments à l'ELS.

L _x /L _y	μx	μy	q _{ser} (kN/m)	Mx (KN.m)	Mtx (KN.m)	My (KN.m)	Mty (KN.m)	M _a (KN.m)
0,72	0,0719	0,6063	89,73	130,64	111,04	79,20	67,32	65,32

Vérification des contraintes à l'ELS

Béton :
$$\sigma_b = \frac{M_{ser}}{I}$$
. $y \le \overline{\sigma_b} = 15$ MPa

Acier:
$$\sigma_s = \eta \frac{M_{ser}}{I} . (d - y) \le \overline{\sigma_s} = 250 \text{ MPa} \quad \dots \dots \text{ (F.P)}$$

Tableau IX.7: Vérification des contraintes

	Sens	M _{ser} (KN.m)	As (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérif.
Troy	х-х	111,04	8,45	7,76	87011,02	9,9	15	453,68	250	Non
Irav	у-у	67,32	5,04	6,19	56334,95	7,39	15	454,44	250	Non
Арр		65,32	4,88	6,10	54791,74	7,27	15	438,72	250	Non

Remarque :

La contrainte d'acier n'est pas vérifié ni en travée ni en appuis donc on augmente la section de l'acier.

Tableau IX.8: Vérification des contraintes (correction)

	Sens	Mser (KN.m)	As (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérif.
Trav	X-X	111,04	5,08	10,15	144800,33	7,78	15	245,58	250	Dui
IIav	у-у	67,32	12,06	9,02	115880,25	5,24	15	195,89	250	Oui
Арр		65,32	8,04	7,59	83520,43	5,94	15	213,04	250	Oui

Figure IX.7 : Schéma de ferraillage Dalle du radier

B. Ferraillage des nervures

Les nervures sont considérées comme des poutres de **120 cm** de hauteur et de **65 cm** de largeur

> Calcul des efforts

Pour le calcul des efforts, on utilise la méthode forfaitaire [40]

On a :
$$M_0 = \frac{PL^2}{8}$$

- **En travée :** $M_t = 0.85 M_0$
- **Sur appuis :** $M_a = 0.5M_0$
- > Calcul des armatures longitudinales :

$$b = 65 cm$$

$$h = 120cm$$

d = 108cm

Sens x-x :

- $L = 6,2m; q_u=114,63kN/ml; M_0=550,8kN.m$

Tableau IX.9: Ferraillage de	es nervures sens x-x
------------------------------	----------------------

	Mu (kNm)	Μ	А	Z (cm)	A _s ^{cal} (cm ²)	Choix	As ^{adp} (cm ²)
Travée	468,18	0,044	0,055	105,6	9,19	6T14	9,23
Appuis	275,4	0,026	0,033	106,57	5,94	6T12	6,79

Sens y-y:

- L = 4.5 m; $q_u = 114.63 \text{ kN/ml}$; $M_0 = 290.16 \text{kN.m}$

	Mu (kNm)	μ	Α	Z (cm)	As ^{cal} (cm ²)	Choix	As ^{adp} (cm ²)
Travée	246,63	0,023	0,029	106,74	5,31	6T12	6,79
Appuis	145,08	0,014	0,017	107,26	3,11	6T12	6,79

Tableau IX.10: Ferraillage des nervures sens y-y

Vérifications nécessaires

• Condition de non fragilité

$$A_s^{min} = 0,23bd \frac{f_{128}}{f_e} = 6,78cm^2....non vérifié (sens Y - Y)$$

Donc : $A_{s}^{cal} = A_{s}^{min} = 6,78 \text{ cm}^{2}$

Choix (Appuis et Travée) 6T12 et As= 6,79 cm²

Vérification des contraintes à l'ELS

Nous avons : $q_{ser}=89,73$ kN/ml

Tableau IX.11: Vérification des contraintes

	Sens	M _{ser} (kNm)	As (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{_{bc}}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérif.
Annuia	x – x	215,58	6,79	3,84	15	310,14	250	Non
Appuis	y – y	113,57	6,79	2,02	15	155,72	250	Oui
	x – x	366,48	10,78	5,40	15	339,35	250	Non
Travée	y – y	193,06	6,79	3,43	15	277,74	250	Non

Remarque :

La contrainte d'acier n'est pas vérifiée en travée dans les deux sens et en appuis dans le sens **X-X** donc on augmente la section de l'acier, le redimensionnement de la section d'armature est présenté dans le tableau suivant :

 Tableau IX.12:
 redimensionnement des armatures des nervures.

	Sens	As ^{cal} (cm ²)	choix	As ^{adp} (cm ²)	St (cm)
Appuis	x – x	5,94	6T16	12,06	18
	y – y	3,11	6T12	6,79	18
	x – x	10,19	12T16	24,13	10
Travée	y – y	5,31	6T14	9,24	18

Apres vérification nous obtenons les résultats résumés dans le tableau suivant :

	Sens	M _{ser} (kNm)	As (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{_{bc}}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérif.
A	x – x	215,58	10,78	3,18	15	199,62	250	Oui
Appuis	y – y	113,57	6,79	2,02	15	155,72	250	Oui
	x – x	366,48	21,99	4,03	15	169,13	250	Oui
Travée	y – y	193,06	9,24	3,01	15	205,82	250	Oui

Tableau IX.13 : Vérification des contraintes après augmentation des armatures.

Vérification de la contrainte tangentielle du béton

On doit vérifier que : $\tau_u \le \overline{\tau_u} = Min (0.1 f_{c28}; 4 MPa) = 2.5 MPa$

$$\tau_{u} = \frac{T_{u}}{b.d} \qquad \text{Avec} \qquad T_{u} = \frac{P_{u}.L}{2} = \frac{114,63 \times 6,2}{2} = 355,35 \text{kN}$$

$$\tau_{u} = \frac{355,35.10^{3}}{650 \times 1080} = 0,506 \text{MPa}$$

$$\tau_{u} = 0,506 \text{MPa} \le 2,5 \text{ MPa} \qquad \text{vérifiée}$$

• Armatures transversales

Selon le règlement [2]

$$* \frac{A_t}{b_0 S_t} \ge \frac{\tau_u - 0.3 f_{tj} K}{0.8 f_e} \qquad (K = 1 \text{ pas de reprisede bétonnage})$$
$$* S_t \le Min(0.9d; 40 \text{ cm}) = 40 \text{ cm}$$
$$* \frac{A_t f_e}{b_0 S_t} \ge Max \left(\frac{\tau_u}{2}; 0.4 \text{ MPa}\right) = 0.4 \text{ MPa}$$

Selon le règlement [1]

La valeur du diamètre φ_l des armatures longitudinales à prendre est le plus petit diamètre utilisé,

$$*\frac{A_{t}}{S_{t}} \ge 0,003b_{0}$$
$$*S_{t} \le Min\left(\frac{h}{4};12\varphi_{1}\right) = 14,4cm....Zone nodale$$
$$*S_{t} \le \frac{h}{2} = 60cm...Zone courante$$

Avec

$$\phi_t \leq Min\left(\frac{h}{35}; \phi_t; \frac{b}{10}\right) = 1, 2cm \quad et \quad \phi_t \geq \frac{1}{3}\phi \max = 4mm$$

 f_e =500MPa ; τ_u =0,506MPa ; f_{t28} =2,1MPa ; b=65cm ; d=108cm

On trouve :

- S_t=20cm.....Zone nodale.
- S_t=30cm.....Zone courante.
- Zone nodale $A_t \ge 2,13 \text{ cm}^2$
- Zone courant $A_t \ge 2,70 \text{ cm}^2$

	Section Zone S		St (cm) $\frac{\Phi t}{(cm)}$		At calculée (cm ²)	Choix des armatures	At (cm ²)
nervures	65x120	courante	30	10	3,66	6T10	4,71
		Nodale	20	10	4,06	6T10	4,71

Tableau IX.14 : Choix des armatures transversales

✓ Armatures de peau :

Pour les poutres de grande hauteur, il y a lieu de prévoir des armatures de peau dont la section dépend du préjudice de la fissuration .En effet on risquerait en l'absence de ces armatures d'avoir des fissures relativement ouvertes en dehors des zones armées par les armatures longitudinales inférieures et supérieures. Leur section est au moins 3cm² /ml par mettre de longueur de paroi mesuré perpendiculairement à leur direction (h=120 cm).

Ap=3cm²/m x 1,20 =3,60cm²

On opte : $4T12 = 4,62cm^2$

SENS	Х	-	Х
------	---	---	---


```
SENS Y - Y
```


Figure IX.8 : Ferraillage Des Nervures

C. Ferraillage du débord

Le débord est assimilé à une console courte encastrée dans le radier de longueur L = 100cm, soumise à une charge uniformément repartie.

Figure IX.9 : Schéma statique du débord

Evaluation des charges et surcharges

- **E.L.U**: $q_u = 114,63$ kN/ml \longrightarrow
- **E.L.S**: $q_{ser} = 89,73$ kN/ml \longrightarrow Pour une bande de 1m.
- > Calcul des efforts

La section dangereuse est au niveau de l'encastrement

E.L.U : Mu =
$$\frac{q_u \cdot L^2}{2}$$
 = 57,32kN.m
T_u = -q_u · L = -114,63kN

Figure IX.10 :Diagramme des Moments.

Pour une bande de 1m.

E.L.S:
$$M_{ser} = \frac{q_{ser} \cdot L^2}{2} = 44,87 \text{kN.m}$$

 $T_{ser} = -q_{ser} \cdot L = -89,73 \text{kN}$

Calcul de ferraillage :

Le ferraillage se fera pour une bande de 1m, et selon l'organigramme I (voir annexe). Avec : b = 100cm, h = 35cm, d = 31,5cm, fc28=25MPa, $\sigma_{bc}=14.17$ MPa

Tableau IX.15 : Ferraillage du débord

Mu (kNm)	Μ	α	Z (cm)	$A_s^{cal}(cm^2)$
57,32	0,04	0,051	30,86	4,27

Condition de non fragilité

$$A_s^{\min} = 0,23 b.d. \frac{f_{t28}}{f_e} = 3,04 cm^2. < 4,27 \ cm^2.....vérifieé$$

Choix : 4T12, avec $A_s = 4,52$ cm², esp=25 cm

Armature de répartition

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Longrightarrow 1,13 \, cm^2 \le A_r \le 2,26 \, cm^2$$

On adopte : $4T8=2,01 \text{ cm}^2$, $S_T=25 \text{ cm}$

Vérification de la contrainte tangentielle du béton:

On doit vérifier que : $\tau_u < \overline{\tau}_u = Min(0.1 f_{c28}; 4MPa) = 2,5MPa$

Avec :

$$\begin{aligned} \tau_{u} &= \frac{T_{u}}{bd} \\ T_{u} &= q_{u}l = 114,63kN \\ \tau_{u} &= \frac{114,63.10^{3}}{1000 \times 315} = 0,36MPa < \bar{\tau}_{u} = 2,5MPa.....Vérifiée \end{aligned}$$

Vérification des contraintes à l'ELS:

La fissuration est considérée comme préjudiciable

$$\overline{\sigma}_s = \zeta = \min\left(\frac{2}{3}f_e; \max(0.5f_e; 110\sqrt{\eta f_{t28}})\right) = 250 \text{ MPa}$$

M _{ser} (kNm)	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{_{bc}}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
44,87	3,33	5,86	15	452,36	250	Non vérifiée

Tableau IX.16 : Vérification des contraintes à l'ELS

Remarque :

la contrainte dace elle non vérifie, il faut augmenter la section d'acier

M _{ser} (kNm)	As (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{_{bc}}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
44,87	9,24	3,86	15	168,55	250	vérifiée

Tableau IX.17 : Vérification des contraintes à l'ELS (correction)

V.4. Etude du voile périphérique

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec les planchers du RDC, le sous-sol et les fondations.

Figure IX.11: Illustration du voile périphérique

Pré dimensionnement

Pour le pré dimensionnement du voile périphérique, on se réfère aux prescriptions du **[39]**. Ce qui suit :

- Les ossatures au-dessous du niveau de base comportent un voile périphérique continu entre le niveau de fondation et le niveau de base
- Ce voile doit avoir les caractéristiques minimales ci-dessous : Epaisseur e≥20cm
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0,1%B dans les deux sens (horizontal et vertical).
- Les ouvertures dans ce voile ne doivent pas réduire sa rigidité d'une manière importante.
- La longueur de recouvrement est de 50Ø avec disposition d'équerres de renforcement dans les angles.

Avec : B=20 cm (Section du voile).

Évaluation des Charges

On considère le voile comme une dalle pleine reposant sur quatre appuis, et qui supporte les charges horizontales dues aux poussées des terres. On considère le tronçon le plus défavorable.

Les charges et surcharges prise uniformément répartie sur une bande de 1m se situe à la base du voile (cas le plus défavorable).

 $L_x=2,35m$; $L_y=4,5m$; e =20 cm

Figure. IX.12 : Vue illustrant les dimensions du panneau

la charge de poussées des terres est données [40]

Avec : $\mathbf{Q}=\mathbf{A}\times\gamma\times h$

Q : Contrainte sur une bande de 1m.

- γ : Poids spécifique des terres ($\gamma = 18,40$ KN/m³).
- *h* : Hauteur du voile.

A: coefficient numérique en fonction de l'angle de frottement interne.

$$\varphi = 29,34^{\circ} \Rightarrow A = f(\varphi) = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 0,34$$

 $Q = A.\gamma.H = 0,34x18,40x3,74 \Rightarrow Qu = 1,35 \times 23,4 = 31,59 \ kN/ml$

Effort dans la Dalle

 $\frac{L_x}{L_y} = 0.52 > 0.4 \Rightarrow$ La dalle travaille dans les deux sens.

 $\mu_x = 0,0937$; $\mu_y = 0,25$

 $M_x = \mu_x Q_u L_x^2 = 16,35 \text{ kNm}$

- $M_{y} = \mu_{y}M_{x} = 4,09 \text{ kNm}$
- Moment en travée

 $M_{tx}=0.85M_{x}=13.9$ kNm

 $M_{ty}=0,85M_{y}=3,48kNm$

• Moment sur appuis

Max $\{M_{ax}, M_{ay}\}=0, 5M_x=8, 18 \text{ kNm}$

Calcul du Ferraillage :

b=100cm; h=20cm; d=18cm; $\sigma_{bc}=14,17MPa$

Les résultats du ferraillage sont regroupés dans le tableau suivant :

	Sens	M _u (kNm)	М	A_s' (cm ²)	А	Z (cm)	$\begin{array}{c} A_s^{cal} \\ (cm^2) \end{array}$	Choix	A_s^{adp} (cm ²)	Esp (cm)
Travás	Х-Х	13,9	0,03	0	0,038	17,72	1,8	5T10	3,93	20
Iravee	у-у	3,48	0,008	0	0,01	17,93	0,4	5T10	3,93	20
Appuis	х-х у-у	8,18	0,018	0	0,023	17,83	1,05	5T10	3,93	20

Tableau IX.18 : Ferraillage du Voile Périphérique

• Condition de Non Fragilité

Pour les dalles travaillant dans les deux sens et dont l'épaisseur est compté entre 12 et $30 \text{cm} (12 \le h \le 30) \text{ (cm)}.$

$$\begin{cases} A_x \ge A_x^{\min} = \rho_0 \left[3 - \frac{L_x}{L_y} \right] \frac{bh}{2} \\ A_y \ge A_y^{\min} = \rho_0 bh \\ \rho_0 = 0,0006 \text{ pour les barres FeE500} \end{cases}$$

$$\begin{cases} A_x^{\min} = 0,0006 \left(3 - \frac{2,35}{4,5} \right) \frac{100x20}{2} = 1,48cm^2 \\ A_y^{\min} = 0,0006x100x20 = 1,2cm^2 \end{cases}$$

- En travée

$$A_x = 3.93cm^2 > A_x^{\min} = 1.48cm^2$$

 $A_y = 3.93cm^2 > A_y^{\min} = 1.2cm^2$

- Sur appuis

$$\begin{cases} A_x = 3,93cm^2 > A_x^{\min} = 1,48cm^2 \\ A_y = 3,93cm^2 > A_y^{\min} = 1,2cm^2 \end{cases}$$

> Vérification de l'Effort Tranchant :

On doit vérifier que :

$$\tau_{u} = \frac{T_{u}^{\max}}{bd} \le \bar{\tau}_{u} = 0.05 f_{c28} = 1.25 MPa$$

$$T_{x} = \frac{q_{u}L_{x}L_{y}}{2L_{x} + L_{y}} = 36,31 \ kN$$

$$T_{y} = \frac{q_{u}L_{x}}{3} = 24,75 \ kN$$

$$T_{u}^{\max} = Max(T_{x};T_{y}) = 36,31 \ kN$$

$$\tau_{u} = \frac{36,31x10^{3}}{1000x180} = 0,2 \ MPa < 1,25MPa.....Vérifiée$$

> Vérification à l'ELS :

• Evaluation des sollicitations à l'ELS

$$\frac{L_x}{L_y} = 0,52 > 0,4 \Longrightarrow \mu_x = 0,0974 \qquad \mu_y = 0,3853$$

$$Q_{ser} = 23,40 \ kN/ml$$

$$M_x = \mu_x Q_{ser} L_x^2 = 12,59 \ kNm$$

$$M_y = \mu_y M_x = 4,85kNm$$

- Moment en travée

M_{tx}=0,85M_x=10,70 kNm

$$M_{ty}=0.85M_{y}=4.12$$
 kNm

- Moment sur appuis

Max=May= 0,5 Mx=6,30 kNm

• Vérification des contraints :

Il faut vérifier que: $\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$

Le tableau suivant récapitule les résultats trouvés

	Sens	Mser (kNm)	As (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{_{bc}}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
Travée	X-X	10,70	3,93	3,45	15	178,22	250	oui
	у-у	4,12	3,93	1,33	15	68,62	250	oui
Appuis	х-х у-у	6,30	3,93	2,03	15	104,93	250	oui

Tableau IX.19 : Vérification des Contraintes à l'ELS

Figure IX.13: Ferraillage du voile périphérique

VI. CONCLUSION

Plusieurs techniques sont disponibles pour fonder les bâtiments, il faut effectuer un choix au regard d'arguments techniques (qualité du sol et caractéristiques du bâtiment) et économiques (coût relatif des différentes solutions possibles).

Pour notre structure nous avons procédé à un calcul avec semelle isolée. Ces dernières ne conviennent pas à cause du chevauchement qu'elles engendraient. Le même problème a été observé en menant le calcul avec semelle filante. Nous sommes donc passé à un calcul avec radier. Ce dernier s'est avéré le type de fondation qui convenait à notre structure.

Au niveau de l'infrastructure, un voile périphérique est prévu pour supporter l'action des poussés des terres. Le voile est calculé et ferraillé comme une dalle plaine sur quatre appuis.

Conclusion générale

Notre travail de mémoire a porté dans les deux premier partie sur le comportement rhéologique des pâtes cimentaires autoplaçantes sur lesquelles nous avons remplacé une partie du ciment par de la poudre de marbre issue d'un déchet d'une marbrerie de (Blida, Algérie).

Le choix de l'utilisation de la poudre de marbre est basé sur le faite que cet ajout est en abondance à un faible prix. L'emploi de ces matériaux comme addition aux bétons autoplaçants en remplacement du ciment pour des raisons économiques intéressantes.

Les pâtes sont testées en présence d'un superplastifiant et d'un agent de viscosité.

On a essayé de mener deux programmes d'essais mais le rhéomètre ne montre pas les résultats : le premier en utilisant des essais empiriques plus simples et faciles à réaliser (essai d'étalement au mini-cône et l'essai d'écoulement au cône de Marsh et essai de l'entonnoir v funnel) pour mesurer l'étalement et le temps d'écoulement des pâtes ; le second en utilisant le rhéomètre pour mesurer le seuil de cisaillement et la viscosité plastique des pâtes.

Sous la lumière des résultats des essais réalisés on a trouvé que :

- ✓ Les résultats de cette étude rhéologique montrent l'importance du superplastifiant. Le superplastifant agit directement sur la configuration des particules solides dans la pâte modifiant ainsi de manière importante les propriétés rhéologiques. Cependant une quantité excessive de superplastifiant peut être inutile sur le comportement de la pâte. Il est donc important de déterminer une quantité optimisée de superplastifiant.
- ✓ Nous avons constaté que les superplastifiants, par leur action de défloculation, ont une grande influence sur l'ouvrabilité, plus le SP augmente plus l'écoulement augmente.
- ✓ Les agents de viscosité ont un double effet : d'une part ils augmentent la viscosité des suspensions, d'autre part ils font lubrifier le contact entre les grains. La géométrie du cône de Marsh favorise l'écoulement par conséquent il diminue le frottement entre ces derniers.

Pour la dernière partie nous avons étudié un bloc administratif en R+5 +Sous-Sol implantée en zone III. L'étude de ce projet nous a permis d'acquérir toutes les connaissances necesaires pour

le calcul des structures et nous familiariser avec les logiciels de calcul en particulier le logiciel ETABS V9.6.0, ainsi que l'application des règlements et codes conçus pour le calcul des structures tel que le CBA99 et le BAEL99.

A l'issu de notre étude nous avons constaté ce qui suit :

- ✓ Il est important de souligner la nécessite de garantir une meilleure qualité des matériaux, et leur mise en œuvre. Une construction peut s'effondrer suite à l'utilisation des matériaux de qualité médiocre
- ✓ La disposition et les dimensions des voiles jouent un rôle très important dans le comportement dynamique des structures.
- ✓ Il est indispensable d'équilibrer entre les deux critères économiques et résistance, autrement dit, il faut se baser sur la sécurité afin de garantir la stabilité de l'ouvrage tout en assurant l'économie qui sert à diminuer le cout du projet.
- ✓ Le radier général permet d'avoir une distribution uniforme de charges qui lui sont appliquées par la superstructure.

Le but de notre étude était d'étudié la rhéologie d'un BAP et de l'appliquer à l'étude de notre bloc administratif. Par manque de place dans le laboratoire, nous avons pris du retard et donc nous avons commencé par le calcul de la structure avant de faire les essais sur les BAP. C'est pour cela qu'il n'y a pas de lien entre les deux parties étudiées de notre projet de fin d'étude.

Perspectives

En perspectives à notre étude, nous souhaitons compléter notre travail avec des essais de rhéomètre pour :

- Déterminer avec exactitude l'influence des ajouts organiques sur les paramètres rhéologiques des pates BAP à savoir le seuil de cisaillement, la viscosité et la fluidité
- > Déterminer le comportement rhéologique des pates des BAP.
- Aussi il faut compléter notre étude par l'étude des BAP à l'état durci (retrait, absorbions capillaire, ect....)

Références bibliographique

[1] : A. HAMOUINE « Contribution à l'étude de l'adhérence acier-béton de hautes performances »Thèse de doctorat, INSA TOULOUSE 1996.

[2] : Mme Ben akili Sarah, «caractérisation expérimental des bétons autoplaçant obtenus par ajout des déchets de construction ", thèse de magister université de Mouloud Mammeri de Tizi-Ouzou 2009.

[3] :Yagoub.M, « matériaux de construction (chapitre 2) », cours en génie civil, université Mohamed Khaider à Biskra, 2009.

[4] : NF EN 197-1, « ciment, composition et critères », l'association française de normalisation, Février 2001.

[5] :Khélifa.R, « influence des ciments à base d'ajouts minéraux sur les propriétés mécaniques des mortiers et des bétons », thèse de magister, université Mentouri de Constantine, 11 Juillet 2001.

[6]: CIM béton, « le ciment et ses applications », 10émé édition, a principe Paris, Juillet 2001.

[7] : Hanaa Farés. «Propriétés mécaniques et physicochimiques De bétons autoplaçants exposés à une température élevée», thèse de doctorat en Génie Civil, université de Cergy Pontoise, le 07 Décembre 2009.

[8] : Collection Technique CIM béton, Fiches techniques, Tome 2 ", Les bétons : formulation, Fabrication et mise en œuvre ", Édition octobre 2006.

[9]: Boudchicha Abdelaziz, « utilisation des additions minérales et des adjuvants fluidifiants pour l'amélioration des propriétés rhéologiques et mécanique des bétons», thèse doctorat, université Mentouri à Constantine, Décembre 2007.

[10] : Merniz Mohamed, « étude de l'influence de la nature et les dimensions des fibres sur les propriétés rhéologiques et mécaniques des bétons autoplaçants (BAP) », mémoire master, université Mohamed Boudiaf à M'sila, 2015.

[11]: Ferraris, C.F, "Measurement of the Rheological Properties of High Performance Concrete", State of the Art Report, Journal of Research of the National Institute of Standards and Technology 1999; 104(5): 461-78.

[12]: Wallevik, O.H, "Rheology - A scientific approach to develop self-compacting concrete ", Proceedings of the Third International Symposium of SCC, Reykjavik, Island, 17-20 August, 2003; 23-34.

[13]: Beaupre, D, "Rheology of High Performance Shotcrete", Ph.D. Thesis, University of British Columbia, 1994.

[14]: The Concrete Society, BRE, "Technical report No.62 self-compacting concrete: a review". Day RTU, Holton IX, editors, Camberley, UK, Concrete Society, Surrey GU17 9AB, UK, 2005.

[15]: Hackley, V.A., and Ferraris, C.F, "The use of nomenclature in dispersion science and technology", NIST Recommended Practice Guide, SP 960-3, 2001.

[16] : OKAMURA H. ; OZAWA K. (1994), « Self-compactable high performance concrete in Japan », International workshop on high performance concrete, Bangkok, Thailande, 16p, nov.

[17] : TRUDEL A. (1996), «Maniabilité, uniformité et comportement structural du béton

autonivelant à hautes performances», thèse de doctorat, université de Scherbrooke, Canada

[18] : MIVRA Y. (1998), « Property of Self-compacting concrete using a now superplasticizer », CONSEC98, international conference 2 p 2007-2016, Trowso, G.B.

[19] : HASNI L. (1999), « Bétons autoplaçants- Synthèse bibliographique», Rapport n° 98-004/98006 CEBTP, nb de page 46.

[20] : KHAYAT K.H. (1996), « Les bétons autonivelants », Les bétons : bases et données pour leurformulation, J.Barron et J.P Ollivier, Ed EYROLLES, p474-483.

[21] : SEDRAN T. (1995), « Les bétons autonivelants – Synthèse bibliographique », Bulletin de liaison des laboratoires des ponts et chaussées, N° 196, mars-avril, p53-60.

[22] : AMBROISE J. ; PERA J.; ROLS S. (1997), « Les bétons autonivelants », Annales du bâtiment et des travaux publics, n°1, jan.

[23]: KHAYAT K.H. (1995), «Effects of anti-washout admixtures on fresh concrete properties», ACI materials journal, vol.92, n°2, mars-avril, p.164-171.

[24]: OKAMURA H.; OZAWA K. (1995), « Mix design for self-compacting concrete», Concrete library of JSCE, n°25, june.

[25]: OUCHI M.; HIBINO M.; OKAMURA H. (1997), « Effect of superplasticizer on selfcompactibility of fresh concrete », Transportation research board, 76th annual meeting,

washington DC, 12-16 jan.

[26] :PH.TURCRY et A.LOUKILI, Différentes approches pour la formulation des BAP, revue française de génie civil volume 7 n°4, 2003.

[27] : ZINNE EDDINE ABIB, Formulation et caractérisation des bétons autoplaçants, thèse de magistère en Génie Civil, USTHB, Alger 2004.

[28] : PETERSSON O.; BILLBERG P.; VAN B.K. (1996), « A model for self-compacting concrete», International RILEM conference on —production methods and workability of concretel, RILEM Proc. 32.

[29] : DE LARRARD F. et al (1994), « Prévision de la compacité des mélanges granulaires par lemodèle de suspension solide n°1-fondements théoriques et calibration du modèle », Bulletin des laboratoires des ponts et chaussées n°194, nov-dec.

[**30**] : OH S.G. ; NOGUCHI T. ; TOMASAWA F. (1999), « Toward mix design for rheology of self-compacting concrete », Proc. Of the first RILEM symposium on self-compacting concrete, Stockholm, 13-15 Sep.

[**31**] : OUCHI M.; EDAMATSU Y. (1999), « A simple evaluation method for interaction between coarse agregat and mortar particules in self-compacting concrete», Proc. Of the first RILEM symposium on self-compacting concrete, Stockholm, 13-15 sep.

[32] : Conrrazé G., Grossiord J.L. "Initiation à la rhéologie", Tec & Doc, 3ème édition. (2000).

[**33**] : Benjamin H, Influence de la température sur la thixotropie des bétons autoplaçants, thèse de doctorat, Université d'Artois, 2009.

[**34**] : Mouret, M. and Cyr., A discussion of the paper "The effect of measuring procedure on the apparent rheological properties of Self-Compacting Concrete" by Geiker. M. R, et al, Cement and Concrete Research, Vol.33, No.11, pp.1901-1903, 2003.

[**35**] : Cyr M., Legrand C., Mouret M., "Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives", Cement and Concrete Research, 30, pp. 1477-1483,2000.

[36] : T.L.H. Nguyen, N. Roussel, P.Coussot, "Correlation between L-Box test and rheological

Parameters of a homogenous yield stress fluid", Cement and Concrete Research, 36, 1789-1796 (2006).

[37] : F.Messaoudi, influences des agents de viscosite sur les parametres rheologiques intrinseques des mortiers des bétons autoplaçants, thése de doctorat, Université de Mouloud Mammeri Tizi Ouzou, 2016.

[38] : R. Bouras, Rhéologie des pâtes cimentaires pour bétons autoplaçants, thése de doctorat,

Université de Mouloud Mammeri Tizi Ouzou, 2011.

[39]: Règlement Parasismique Algérien, RPA 99 version 2003.

[40] : BAEL 91 modifié 99.

[**41**] : CBA 93

[42]: Charges Permanentes et charges d'exploitation, DTR B C 22

[43] : Rafik taleb, (règles parasismique algerienneRPA99-Version 2003 pour les structures de bâtiment en béton armé : Interprétation et proposition), journal of matériels and engineering structures 4(2007)139-154

[44] : DTU B 23.1-NF : règles de conception et de calcul des parois et mur en béton banché Paris CSTB 1976