

UNIVERSITE SAAD DAHLAB DE BLIDA 1 FACULTE DE TECHNOLOGIE DEPARTEMENT DE MECANIQUE

Laboratoire de Construction Mécanique

Projet de Fin d'Etudes Pour l'obtention du Diplôme de Master en Génie Mécanique

Titre

Calcul du K_{III} pour une section circulaire fissurée par la méthode de collocation de frontière avec la méthode de résolution SVD.

Proposé et encadré par :

Dr. FERDJANI Hichem

<u>Réalisé par :</u>

Slamani Ikram Ouansa Amina

Année universitaire 2019/2020

Résumé

L'objectif de cette étude est de calculer le facteur d'intensité de contrainte en mode III d'une section circulaire à l'aide de la méthode de collocation de frontière, en utilisant le logiciel Matlab. Le calcul est basé sur la résolution des systèmes mal conditionnés à l'aide de la méthode de décomposition en valeur singulière (SVD).

Nous étudions deux problèmes : fissure centrale et non centrale dans une section circulaire. Pour chaque problème, nous calculons avec Matlab le facteur d'intensité de contrainte FIC. Puis nous déterminons l'expression du facteur de forme à l'aide d'une fonction polynomiale. Les coefficients du polynôme sont déterminés par la méthode des moindres carrés.

Mots clés : FIC, SVD, Moindres carrés, Matlab.

The objective of this study is to calculate the mode III stress intensity factor of a circular section using the boundary collocation method, using Matlab software. The calculation is based on solving poorly conditioned systems using the singular value decomposition (SVD) method.

We study two problems: central and non-central crack in a circular section. For each problem, we calculate with Matlab the stress intensity factor FIC. Then we determine the expression of the form factor using a polynomial function. The coefficients of the polynomial are determined by the method of least squares

Key words : FIC, SVD, Method of least squares, Matlab.

Remerciement

En préambule à ce mémoire ; Louange à DIEU le tout puissant, le miséricordieux, de nous avoir Donner le courage, la force, la santé et la persévérance pour pouvoir effectuer ce travail dans de meilleures conditions.

Ce mémoire n'aurait pas été possible sans l'intervention, consciente, d'un grand nombre de personnes. Nos remerciements s'adressent en premier lieu à Notre promoteur, Dr **Ferdjani Hicham** pour son amabilité, sa bienveillance et pour son encouragement constant. Il a dirigé et accompagné de très près, jour par jour, et avec beaucoup de patience, la longue et lente rédaction de ce travail. Nos remerciements vont ensuite aux membres du jury,

Nous tenons à exprimer notre profonde gratitude à Pr **Temmar Mustapha** chef de département pour sa grande disponibilité et son inconditionnel soutien durant ces années. Qu'il trouve ici l'expression de nos profondes reconnaissances.

Nous avons été extrêmement sensibles à ses qualités humaines, d'écoute, et de compréhension. Nous tenons enfin à exprimer notre reconnaissance à toutes les personnes qui ont contribué de près ou de loin à la réalisation de ce modeste travail ainsi qu'à toute personne qui fera l'effort de lire ce document.

Pour la même occasion, on adresse nos remerciements à tous nos enseignants pour leurs efforts qui ont guidé nos pas et enrichi nos travaux tout au long de nos études universitaires.

Je dédie cet humble travail

A mes chers parents ; Sources de mes joies, secrets de ma force. Vous serez toujours le modèle

A MON TRÈS CHER PÈRE

Autant de phrases et d'expressions aussi éloquentes soient-elles ne sauraient exprimer ma gratitude et ma reconnaissance. Tes conseils ont toujours guidé mes pas vers la réussite. Ta patience sans fin, ta compréhension et ton encouragement sont pour moi le soutien indispensable que tu as toujours su m'apporter. Je te dois ce que je suis aujourd'hui et ce que je serai demain et je ferai toujours de mon mieux pour rester ta fierté et ne jamais te décevoir. Ma réussite est la tienne que Dieu le tout puissant te préserve, t'accorde santé, bonheur, quiétude de l'esprit et te protège de tout mal.

A MA TRÈS CHÈRE MÈRE

Autant de phrases aussi expressives soient-elles ne sauraient montrer le degré d'amour et d'affection que j'éprouve pour toi. Tu m'as comblé avec ta tendresse et affection tout au long de mon parcours. Tu n'as cessé de me soutenir et de m'encourager durant toutes les années de mes études, tu as toujours été présente à mes côtés. Tu as tant souhaité que je parvienne à ce but. En ce jour mémorable, pour moi ainsi que pour toi, reçoit ce travail en signe de ma vive reconnaissance et ma profonde estime. Puisse le tout puissant te donner santé, bonheur et longue vie afin que je puisse te combler à mon tour.

A Ma chère grand-mère

Que ce modeste travail soit l'expression des vœux que vous n'avez cessé de formuler dans vos prières. Que Dieu vous préserve santé et longue vie.

A mes sœurs et mon frère unique

En souvenir d'une enfance dont nous avons partagé les meilleurs et les plus agréables moments. Pour toute la complicité et l'entente qui nous unissent. Ce travail est un témoignage de mon attachement et de mon amour

. A mon binôme Amina, ma meilleure amie que je la prends non seulement pour amie mais pour la sœur d'âme, avec laquelle j'ai vécu les meilleurs souvenirs.

. *A ma chère amie*, Hayate pour tout l'amour qu'elles me témoignent chaque jour, pour leur indéfectible soutien et à qui je souhaite un avenir radieux plein de réussite et de bonheur.

. Une spéciale dédicace à cette personne qui compte déjà énormément pour moi et surtout pour avoir su me supporter patiemment tout au long de mon parcours. Merci ABDELHADI.

Je dédie le fruit de mes cinq années d'études

A la meilleure des mères Zhor/Isma

Elle est morte le 29 octobre 2019, Que Dieu l'accueille dans Son Grand Paradis INCHA'ALLAH. Pour toi maman, la femme unique, affable, honorable Tu es partie mais tu représentes pour moi le symbole de la bonté par excellence, la source de tendresse et l'exemple du dévouement qui n'a pas cessé de m'encourager et de prier pour moi. Ta prière et ta bénédiction m'ont été d'un grand secours pour mener à bien mes études. Tu as fait plus qu'une mère puisse faire pour que ses enfants suivent le bon chemin dans leur vie et leurs études. Repose en paix et sois certaine de toujours rester vivante en moi.

A mes grands parents maternels

Qui m'ont a accompagné par ses prières, sa douceur. Puisse ALLAH lui prêter longue vie et beaucoup de santé et de bonheur.

A mon grand frère Merouane

Le doux, au cœur si grand. Aucune dédicace ne saurait exprimer tout l'amour que j'ai pour vous, votre joie et votre gaieté me comblent de bonheur.

A mes deux chères sœurs Nour El-Houda & Meriem

Mes fidèles accompagnantes dans les moments les plus délicats de cette vie mystérieuse. Les mots ne suffisent guère pour exprimer l'attachement, l'amour et l'affection que je porte pour vous.

Puisse ALLAH vous gardez et vous aidez à réaliser à votre tour vos vœux les plus chers.

A mes chers tantes et oncles, à mes chers cousines et cousins

Veuillez trouver dans ce travail l'expression de mon respect le plus profond et mon affection la plus sincère.

A mon binôme Ikram

AMINA

Qui m'a supporté durant la réalisation de ce travail. Et en souvenir de notre sincère et profonde amitié et des moments agréables que nous avons passés ensemble.

Table des matières

ntroduction générale	. 1
----------------------	-----

Chapitre I : Etude bibliographique

I.1.	Introduction	
	I.2. Approche globale de la mécanique linéaire de la rupture	3
	I.2.1. Définition de la mécanique de la rupture	4
	I.2.2. Différents Modes de rupture	4
	I.2.3. Facteur d'intensité des contraintes FIC	5
	I.2.4. Description du champ des contraintes à l'extrémité d'une fissure à l'aide facteur d'intensité des contraintes	5
	I.3. Rappel d'élasticité anti-plane	7
	I.4. Méthodes de calcul du facteur d'intensité de contraintes	7
	I.5. Résolution d'un système mal conditionné – Méthode SVD	8
	I.5.1. Présentation de la Méthode SVD	9
	I.5.2. La Forme standard	9
	I.5.3. L'inverse généralisé et SVD	. 9
	Conclusion	10

Chapitre II : Développement des contraintes

Méthode de collocation de frontière

II.1. Introduction	
II.2. Développement des contraintes en série infinie	12
II.3. Facteur d'intensité de contrainte KIII	14

II.4. Méthode de collocation de frontière	15
Conclusion	16

Chapitre III : Problèmes traités

III.1. Introduction			
III.2. Cas d'une fissure centrale dans une section circu	laire18		
III.2.1. Résultats de Serghini/Tefiani			
III.2.2. Résultats par la méthode SVD	21		
III.3. Comparaison entre les deux méthodes	22		
III.4. Cas d'une fissure non centrale dans une section d	circulaire23		
III.4.1. Résultat de Serghini/Tefiani	24		
III.4.2. Résultats par la méthode SVD	27		
III.4.3. Comparaison avec les résultats de Serghini/Tefiani			
III.4.4. L'expression analytique de K _{III} (Serghini/Tefiani).	31		
III.4.5. Détermination de l'expression analytique K _{III}			
III.4.6. Comparaison entre les deux résultats			
Conclusion générale	41		
Références bibliographiques			

Annexe

Liste des figures

Numéro de figure	Titre	Page
Figure I-1	Courbe contrainte/déformation	3
Figure I-2	Les trois modes élémentaires de rupture	4
Figure I-3	Définition des $axes(x,y)$ et des coordonnées (r,θ) au voisinage de l'extrémité d'une fissure.	5
Figure II-1	Fissure droite et coordonnées polaires	15
Figure II-2	Section fissurée et points de collocation	16
Figure III-1	Fissure centrale dans une section circulaire	18
Figure III-2	Fissure centrale dans une section circulaire, points de collocation	19
Figure III-3	KIII en fonction de nombre des points de collocation p (Serghini et Tifiani)	20
Figure III-4	Facteur K _{III} en fonction de p pour une fissure centrale dans une section circulaire avec la méthode SVD.	22
Figure III-5	Fissure non centrale dans une section circulaire	23
Figure III-6	Fissure non centrale, points de collocation	23
Figure III-7	Courbe de K _{III} en fonction de p pour f=0.005 (Méthode d'inversion matricielle).	26
Figure III-8	Courbe de K _{III} en fonction de p pour f=1.9 (Méthode d'inversion matricielle).	27
Figure III-9	Courbe de K _{III} en fonction de p pour f=1.8 (Méthode SVD).	28
Figure III-10	La courbe de K _{III} en fonction de f.	30

Liste des tableaux

Numéro de tableau	Titre	Page
Tableau III-1	K _{III} en fonction de p pour une fissure centrale dans une section circulaire (Serghini et Tefiani).	20
Tableau III-2	K _{III} en fonction de p pour une fissure centrale dans une section circulaire avec la méthode SVD.	21
Tableau III-3	Comparaison entre les deux méthodes.	22
Tableau III-4	Valeurs de K _{III} pour déférentes valeurs de f (Serghini/Tefiani).	25
Tableau III-5	Valeurs de K _{III} pour f=0.005 (Méthode d'inversion matricielle).	25
Tableau III-6	Valeurs de K _{III} pour f=1.9 (Méthode d'inversion matricielle).	26
Tableau III-7	K _{III} en fonction de p (f=1.8).	28
Tableau III-8	Valeurs de K _{III} pour différentes valeurs de f.	29
Tableau III-9	Comparaison entre les deux résultats.	31
Tableau III-10	Comparaison entre Tableau (III-4) et l'expression (III-8).	32
Tableau III-11	Comparaison entre Tableau (III-8) et l'expression (III-11).	37
Tableau III-12	Comparaison entre les deux erreurs.	38

Nomenclatures

Im : partie imaginaire.

- Re : partie réelle.
- Z : nombre complexe.
- X, Y : composantes du repère cartésien.
- r, θ : composantes du repère polaire.
- K_I, K_{II}, K_{III} : Facteurs d'intensité de contrainte respectivement en mode 1,2 et3.
- σ_{ij} : champ de contrainte.
- I : nombre imaginaire.
- Ui : champ de déplacement.
- Eij: champ de déformation.

fij , gij : Deux fonctions adimensionnelle, dépendant du mode de chargement et de la géométrie de la pièce.

 t_3 : composante de vecteur contrainte dans la direction x_3 .

n : vecteur normal.

 $C_{n:}$ coefficient complexe.

 A_n , B_n : coefficients réels.

- m : nombre de points de collocation.
- p : nombre de termes.
- σ : Contrainte normale.
- f : longueur de la fissure.
- μ : Coefficient de cisaillement.

Introduction Générale

La mécanique élastique linéaire s'intéresse à la rupture des matériaux fragiles, c'est–à-dire aux matériaux ayant un comportement élastique obéissant à la loi de Hooke jusqu'à la rupture. Elle est très largement utilisée par les ingénieurs. Le facteur d'intensité des contraintes (FIC) est un paramètre permettant de quantifier la dangerosité des fissures.

Il existe plusieurs méthodes numériques pour calculer le FIC, l'une des plus utilisées est « la méthode de collocation de frontière ». L'utilisation de la formulation forte a été introduite pour la première fois en 1977 par Liszka et Orkisz [11]. Mais le grand progrès dans ce domaine est la méthode de Kansa en 1990 [12.13]. Plusieurs travaux ont été effectués avec cette méthode en mode III. Mezouani [4] a calculé le FIC pour une section circulaire avec une fissure centrale. Serghini et Tefiani [10] ont calculé le FIC d'une section circulaire avec une fissure non centrale. Dans [10] la résolution du système a été effectuée par la méthode d'inversion matricielle. Cette méthode ne donne pas de résultats précis lorsque la matrice est mal-conditionnée. Pour cette raison, Serghini et Tefiani [10] n'ont pu calculer le FIC que lorsque la longueur de la fissure est dans un certain intervalle ([0,1-1,7]).

Le but de notre travail est d'utiliser la méthode SVD afin de calculer le FIC pour toutes les longueurs de fissure possibles. Cette méthode est une méthode spéciale pour résoudre les systèmes mal-conditionnés. Nous calculons donc le FIC, en mode III, pour une section circulaire avec une fissure centrale et non centrale. Nous déduisons également des expressions analytiques pour le FIC en utilisant la méthode des moindres carrées.

Notre travail est organisé en trois chapitres :

• Le premier chapitre consiste en une étude bibliographique, afin de rappeler les principales notions de la mécanique de la rupture et de présenter les outils nécessaires à cette étude, on parlera de la méthode SVD.

• Dans le deuxième chapitre, on établit le développement des contraintes en mode III, dans une section fissurée. Nous présentons également la méthode de collocation de frontière.

• Dans le troisième chapitre, on calcule le facteur d'intensité de contrainte K_{III} pour une section circulaire avec une fissure centrale et non centrale. Nous déterminons également une expression polynomiale du K_{III} en fonction de la longueur de la fissure.

• Nous terminons par une conclusion générale.

Chapitre I Rappels théoriques

I.1. Introduction :

Dans ce chapitre, on va présenter :

- Un rappel théorique sur la mécanique de la rupture fragile. On insistera sur la notion de Facteur d'Intensité de contrainte (FIC).
- Un rappel sur l'élasticité anti-plane.
- On présentera les différentes méthodes de calcul du FIC.
- On terminera par la présentation de la méthode SVD.

I.2. Approche globale de la mécanique linéaire de la rupture [1] :

La rupture désigne la séparation d'un corps en plusieurs parties sous l'action d'une contrainte de nature statique ou dynamique. Il peut s'agir d'une contrainte de traction, de compression, de cisaillement ou de torsion. Les deux modes de rupture des matériaux à usage industriel sont la rupture ductile et la rupture fragile [1]. Une telle classification repose sur la capacité d'un matériau à subir une déformation plastique. Le comportement lié au rapport entre la contrainte de traction et la déformation à ces deux types de rupture est illustré par la figure I-1.

Figure I-1 : Courbe contrainte/déformation [1].

I.2.1. Définition de la mécanique de la rupture [2] :

La théorie de la mécanique de la rupture est un moyen pour estimer la stabilité des fissures qui peuvent survenir à cause des défauts. Elle permet de prévoir l'évolution de la fissure jusqu'à la ruine de la structure. L'objet de mécanique de la rupture est l'étude de la propagation de la fissure en fonction des chargements appliqués et des caractéristiques du matériau constituant.

I.2.2. Différent Modes de rupture [3] :

Une fissure est définie comme une surface séparant localement un solide en deux parties. La rupture d'un composant mécanique se produit par fissuration du matériau selon l'un ou une combinaison des trois modes élémentaires décrits ci-dessous :

- ✓ Le mode I : Mode d'ouverture. (Contrainte de traction appliquée perpendiculairement au plan de la fissure).
- ✓ Le mode II : Mode glissement plan (scission dans le plan de la fissure et appliquée perpendiculairement au front de la fissure)
- ✓ Le mode III : Cisaillement anti-plan (scission dans le plan de la fissure et appliquée parallèlement au front de la fissure).

Dans le cas général, la surface de rupture se développe suivant une combinaison de ces trois modes

Remarque : Le mode I est considéré comme le mode le plus endommageant.

Figure I-2 : Les trois modes élémentaires de rupture [3].

I.2.3. Facteur d'intensité des contraintes FIC [4] :

Dans la zone singulière, le champ de contraintes présente une singularité en $r^{-1/2}$ à la pointe de fissure. L'intensité de la singularité est caractérisée par les paramètres appelés facteurs d'intensité de contraintes, notés K_I, K_{II} et K_{III} pour chacun des modes élémentaires. A l'aide de la théorie de l'élasticité, Irwin a montré que les contraintes σ_{ij} dans cette zone singulière peuvent être exprimées en fonction des facteurs d'intensité de contraintes.

I.2.4. Description du champ des contraintes à l'extrémité d'une fissure à l'aide facteur d'intensité des contraintes [5] :

Dans un matériau dont le comportement est élastique et linéaire, la forme générale du champ des contraintes au voisinage de l'extrémité d'une fissure est de la forme :

$$\sigma_{ij} = \frac{\kappa}{\sqrt{2\pi r}} f_{ij}(\theta) + \sum_{m=0}^{\infty} \alpha_m r^{\frac{m}{2}} g_{ij}^{\ m}(\theta)$$
(I.1)

Où les coordonnées (r, θ) sont repérées par rapport à l'extrémité de la fissure (figure I-3). La fonction adimensionnelle f_{ij} dépend du mode de sollicitation, l'autre fonction adimensionnelle g_{ij} dépend à la fois du mode de sollicitation, de l'état de contrainte et de la géométrie du corps fissuré.

Figure I-3 : Définition des axes (x,y) et des coordonnées (r, θ) au voisinage de l'extrémité d'une fissure [5].

Au voisinage immédiat de l'extrémité de la fissure, les contraintes présentent une singularité en $1/\sqrt{r}$ (c'est à dire lorsque r $\rightarrow 0$, le produit $\sqrt{r\sigma_{ij}}$ tend vers une constante). Comme les termes d'ordre plus élevé $r^{\frac{m}{2}}$ avec (m ≥ 2) de la relation (I-1) sont négligeables devant $1/\sqrt{r}$, la zone la plus critique est bien le voisinage immédiat de l'extrémité de la fissure. Pour ces raisons, seuls les termes en $1/\sqrt{r}$ sont considérés.

les champs de contraintes asymptotiques sont de la forme :

$$\sigma_{ij} = \frac{\kappa}{\sqrt{2\pi r}} f_{ij}(\theta)$$
 (I-2)

Ces champs asymptotiques sont décrits et exprimés à l'aide des facteurs d'intensité des contraintes K_I, K_{II} et K_{III} respectivement en mode I, II et III (équations (I-3), (I,4) et (I-5)).

Mode I:

$$\begin{cases}
\sigma_{xx} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} - \sin \frac{3\theta}{2}\right) \\
\sigma_{yy} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} - \sin \frac{3\theta}{2}\right) \\
\tau_{xy} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}
\end{cases}$$
(I-3)

Mode II:

$$\begin{cases}
\sigma_{xx} = -\frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2}\right) \\
\sigma_{yy} = \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \\
\tau_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)
\end{cases}$$
(I-4)

Mode III :
$$\begin{cases} \tau_{13} = -\frac{K_{III}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \\ \tau_{23} = \frac{K_{III}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \end{cases}$$
(I-5)

I.3. Rappel d'élasticité anti-plane [6] :

Le problème qui sera traité dans ce travail est un problème de fissure en mode III. Le mode III existe dans le cadre de l'élasticité anti-plane. Nous présentons ci-dessous les équations correspondantes.

On est dans une situation anti-plane, dans le plan (x_1,x_2) , si le champ de déplacement $\vec{U}(x)$ est de la forme : $\begin{cases}
U_1 = 0 & (I-6) \\
U_2 = 0 & \\
U_3 = w(x_1,x_2)
\end{cases}$

Le champ des petites déformations se déduit de (I-6), on obtient :

$$\begin{cases} \boldsymbol{\epsilon}_{11} = \boldsymbol{\epsilon}_{22} = \boldsymbol{\epsilon}_{33} = \boldsymbol{\epsilon}_{12} = \boldsymbol{0} \\ \boldsymbol{\epsilon}_{13} = \frac{1}{2} \frac{\partial w}{\partial x_1} \\ \boldsymbol{\epsilon}_{23} = \frac{1}{2} \frac{\partial w}{\partial x_2} \end{cases}$$
(I-7)

La loi de comportement élastique donne le champ de contrainte suivant :

$$\begin{cases} \sigma_{11} = \sigma_{22} = \sigma_{12} = \sigma_{33} = \mathbf{0} \\ \sigma_{13} = \mu \frac{\partial w}{\partial x_1} \\ \sigma_{23} = \mu \frac{\partial w}{\partial x_2} \end{cases}$$
(I-8)

Où μ est le module de cisaillement.

L'application des équations de l'équilibre local donne (en négligeant les forces volumiques) :

$$\frac{\partial^2 w}{\partial x_1^2} + \frac{\partial^2 w}{\partial x_2^2} = \Delta w = 0$$
 (I-9)

Cela veut dire que $w(x_1,x_2)$ est une fonction harmonique.

I.4. Méthodes de calcul du facteur d'intensité de contraintes [7] :

Il existe plusieurs techniques pour calculer le facteur d'intensité des contraintes, parmi les plus utilisées, on peut citer :

- 1. La méthode du principe de superposition.
- 2. La méthode d'extrapolation des déplacements.
- 3. La méthode de collocation de frontière.
- 4. La méthode des éléments finis.

I.5. Résolution d'un système mal conditionné – Méthode SVD [8] :

Lorsqu'on étudie la résolution des systèmes linéaires d'un point de vue purement théorique, on distingue le cas où la matrice est régulière, qui conduit à une solution unique, et le cas où la matrice est singulière, d'où aucune solution ou une infinité de solutions. Lorsqu'il s'agit de résolution numérique, un cas supplémentaire doit être envisagé : la matrice peut être "presque singulière". Chacune des équations d'un système linéaire d'ordre n définit un hyperplan à n-1 dimensions dans un espace à n dimensions. La solution est représentée par les coordonnées de l'intersection de ces n hyperplans. Dans le cas d'un système d'ordre 2, il s'agit de l'intersection de 2 droites dans le plan.

Considérons maintenant deux systèmes ayant la même matrice et des seconds membres très peu différents :

Exemple :

$$\begin{pmatrix} +0.200 & +0.500 \\ -0.200 & -0.550 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} +0.700 \\ -0.780 \end{pmatrix}$$
$$\begin{pmatrix} +0.200 & +0.500 \\ -0.200 & -0.550 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} +0.700 \\ -0.700 \end{pmatrix}$$

Leurs matrices sont presque singulières. Les équations définissent donc des droites qui se coupent sous un angle très aigu.

On voit que de très petites différences dans les seconds-membres conduisent à des solutions très différentes, puisqu'on a pour l'un des systèmes x_1 =-0,500 et x_2 =1,600 et pour l'autre x_1 =3,500 et x_2 =0,000. On voit qu'un tel système est très sensible à de petites variations du second-membre. On dit que sa matrice est mal conditionnée. Le plus souvent, la cause de ce mauvais conditionnement réside dans une maladresse lors de la mise en équations du problème physique. S'il n'est pas possible de l'éviter, parce que le problème est intrinsèquement instable, il faudra utiliser une méthode de résolution plus stable et plus coûteuse. Cette méthode s'appelle la méthode de décomposition en valeur singulière (SVD).

I.5.1. Présentation de la Méthode SVD [8] :

La factorisation peut toujours être réalisée. Si la matrice A est singulière, alors une ou plusieurs des valeurs singulières, stockées sur la diagonale principale de la matrice S sont nulles.

I.5.2. La Forme standard :

$$A = U S V^{T}$$

On définit les vecteurs auxiliaires y et z en posant :

$$U z = B$$

S y = z
 $V^T x = y$

La matrice U étant orthogonale, le calcul du vecteur z ne pose aucun problème.

$$z = U^T B$$

Pour déterminer chaque composante y_k du vecteur y, on doit diviser la composante z_k du vecteur z par la valeur singulière correspondante S_k , ce qui est évidemment impossible si celle-ci est nulle. On a alors recours à l'astuce suivante : on met à zéro la composante y_k qui sans cela serait infinie, résultant d'une division par zéro.

La matrice V étant orthogonale, le calcul du vecteur x ne pose aucun problème.

$$x = V y$$

On appelle pseudo-inverse de Moore-Penrose le produit $M = V S^{-1}U^T$.

La solution du système est donc :

$$x = M B$$

I.5.3. L'inverse généralisé et SVD [9]:

Soit A $\in R^{m \times n}$ une matrice de rang r, ainsi que sa décomposition en valeur singulière

$$A = U S V^{T}$$

La matrice

 $A^{-1} = V S^{-1} U^T$

Est appelée matrice pseudo-inverse ou inverse généralisée de A, avec :

$$S^{-1} = \operatorname{diag}(1/\sigma_1, \dots, \frac{1}{\sigma_r}, 0, \dots, 0)$$

— $A^{-1}A = I_r$ (matrice d'identité de rang r).

— *si* rang (A) = n < m, alors
$$A^{-1} = (A^T A)^{-1} A^T$$

— $si \operatorname{rang} (A) = n = m$, alors $A^{-1} = A^T$

Conclusion :

Dans ce chapitre, nous avons présenté un rappel théorique sur la mécanique de rupture et le facteur d'intensité de contrainte K, Nous avons évoqué aussi la singularité de contrainte qui est modélisée par la suite en collocation de frontière, finalement nous avons présenté la méthode SVD.

Chapitre II Développement des contraintes Méthode de collocation de frontière

II.1. Introduction :

Nous présentons dans ce chapitre, le développement des contraintes en sérié infinie pour une fissure droite en mode III et la méthode de collocation de frontière.

II.2. Développement des contraintes en série infinie [10] :

En mode III, on est dans le cas de l'élasticité anti-plane. Nous rappelons que dans ce cas, toutes les contraintes sont nulles sauf τ_{13} et τ_{23} . Nous introduisons la formulation en variables complexes qui s'écrit :

$$\begin{cases} \tau = \tau_{23} + i\tau_{13} \\ n = n_1 + in_2 \\ t = t_3 = Im(\tau n) \end{cases}$$
 (II-1)

Où τ est la contrainte complexe, t est une abréviation pour t₃ la composante selon X₃ du vecteur contrainte, n est la normale complexe unitaire extérieure au domaine, et n₁et n₂ ses composantes selon X₁et X₂.

La contrainte complexe τ qui est une fonction analytique, peut être exprimée par une série infinie de fonctions puissance :

$$\tau = \sum_{N=-\infty}^{+\infty} C_N Z^{\lambda_N}$$
 (II-2)

Ou les $C_N = A_N + iB_N$ sont des nombres complexes, les λ_N sont des réels et $\mathbf{Z} = \mathbf{r}e^{i\theta}$ avec \mathbf{r} et $\boldsymbol{\theta}$ les coordonnées polaires.

En regroupant les parties réelles et imaginaires dans (II-2), il vient :

$$\tau = \sum_{N=-\infty}^{+\infty} r^{\lambda N} \{ [A_N \cos(\lambda_N \theta) - B_N \sin(\lambda_N \theta)] + i [A_N \sin(\lambda_N \theta) + B_N \cos(\lambda_N \theta)] \}.$$
(II-3)

Pour satisfaire les conditions de bord libre sur les lèvres de la fissure (figure II-1), et en utilisant (II-1) on a Re(τ)= τ_{23} =0 pour $\theta = \pm \pi$. En prenant la partie réelle de (II-3) et en remplaçant θ par π *et* – π respectivement, on obtient les équations suivantes (r \neq 0) :

$$A_N \cos(\lambda_N \pi) - B_N \sin(\lambda_N \pi) = 0$$
 (II-4)

$$A_N \cos(\lambda_N \pi) + B_N \sin(\lambda_N \pi) = 0$$
 (II-5)

Si λ_N n'est ni entier ni demi-entier, (II-4) et (II-5) donnent $A_N = B_N = 0$, solution triviale sans intérêt. Nous devons donc considérer séparément le cas entier et le cas demi-entier :

$$\begin{cases} \lambda_N = N - 1 \Longrightarrow A_N = 0 \qquad B_N \forall que \\ \chi_N = N - \frac{3}{2} \Longrightarrow B_N = 0 \qquad A_N \quad \forall que \end{cases}$$
(II-6)

Avec N entier.

Pour éviter une énergie déformation infinie, on doit avoir $\chi_N \ge -\frac{1}{2}$ ($N \ge 1$). En tenant compte de (II-6), (II-3) devient :

$$\tau = \sum_{N=1}^{\infty} \{ [A_N r^{(-\frac{3}{2}+N)} \cos \left[(-\frac{3}{2}+N) \theta \right] - B_N r^{N-1} \sin((N-1)\theta)] + [(-2^{+N}) \sin \left[(-1+N_2) \theta \right] + B_N r^{N-1} \cos((N-1)\theta)] \}$$
(II-7)

L'expression (II-7) est approximée par la série tronquée suivante :

$$\tau = \sum_{N=1}^{p} \{ [A_N r^{(-\frac{3}{2}+N)} \cos [(-\frac{3}{2}+N)\theta] - B_N r^{N-1} \sin((N-1)\theta)] + [(-2^{+N})\sin^3 [(-\frac{3}{2}+N)\theta] + B_N r^{N-1} \cos((N-1)\theta)] \}$$
(II-8)

où p est appelé nombre de termes. Nous constatons que (II-8) contient 2p constantes inconnues : A_N , B_N , N=1 à p.

Nous avons besoin de l'expression de t (la composante selon X_3 du vecteur contrainte). En utilisant (II-1) et (II-8), on obtient :

$$t = \sum_{N=1}^{p} \{ [A_N r^{(-\frac{3}{2}+N)} \cos [(-\frac{3}{2}+N)\theta] n_2] + \sin [(-\frac{3}{2}+N)\theta] n_1] + B_N r^{N-1} [-\sin[(N-1)\theta] n_2 + \cos[(N-1)\theta] n_1] \}.$$
 (II-9)

II.3. Facteur d'intensité de contrainte K_{III} :

En développant (II-8) pour N=1, on obtient :

$$\tau = A_1 r^{-\frac{1}{2}} \cos\left(\frac{\theta}{2}\right) + i \left(-A_1 r^{-\frac{1}{2}} \sin\frac{\theta}{2} + B_1\right) + \dots = \tau_{23} + i\tau_{13}$$

En identifiant les parties réelle et imaginaire, de part et d'autre de l'équation, on obtient :

$$\begin{cases} \tau_{23} = A_1 r^{-\frac{1}{2}} \cos\left(\frac{\theta}{2}\right) + \cdots \\ \tau_{13} = -A_1 r^{-\frac{1}{2}} \sin\left(\frac{\theta}{2}\right) + B_1 + \cdots \end{cases}$$
(II-10)

D'autre part, nous savons que le développement asymptotique des contraintes en mode III s'écrit de la manière suivante [6]:

$$\begin{cases} \tau_{23} = \frac{\text{KIII}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \\ \tau_{13} = -\frac{\text{KIII}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \end{cases}$$
(II-11)

Par identification, on obtient :

$$K_{III} = A_1 \sqrt{2\pi} \qquad (II-12)$$

Figure II-1 : Fissure droite et coordonnées polaire[10].

II.4. Présentation de la méthode de collocation de frontière [10]:

La méthode de collocation de frontière est une méthode de calcul du facteur d'intensités de contrainte à partir du développement des champs des contraintes dans un solide contenant une fissure droite. L'idée générale est qu'étant donnée les conditions aux limites en contrainte pour un problème donné, on exprime les contraintes en un nombre fini de positions, appelées points de collocation, à l'aide du développement avec des coefficients inconnus (II-9).

Pour chaque point de collocation, on obtient une équation pour les coefficients inconnus. Il suffit d'avoir au moins autant de points de collocation que de coefficients inconnus, afin de résoudre le système d'équations et obtenir les coefficients recherchés. La valeur du coefficient correspondant à la singularité de contrainte en $1/\sqrt{r}$ est le facteur d'intensité de contrainte.

Soit la section circulaire fissurée de forme quelconque représentée sur la figure II-2. On suppose que la composante t soit connue en tout point de la frontière. Pour déterminer K_{III} on choisit d'abord 2p points sur la frontière, appelés points de collocation. Pour chaque point q, on utilise (II-9). On obtient le système de 2p équations à 2p inconnues suivant ([10]) :

$$t_{q} = \sum_{N=1}^{p} \{ \left[A_{N} r^{\left(-\frac{3}{2}+N\right)} \cos\left[\left(-\frac{3}{2}+N\right) \theta_{q} \right] n_{2}^{q} \right] + \sin\left[\left(-\frac{3}{2}+N\right) \theta_{q} \right] n_{1}^{q} \right] + B_{N} r^{N-1} [-\sin\left[(N-1) \theta_{q} \right] n_{2}^{q} + \cos\left[(N-1) \theta_{q} \right] n_{1}^{q}] \}, \ q = 1 \ a \ 2p \qquad (II-13)$$

La résolution du système (II-13) donnera les inconnues A_N et B_N et en utilisant (II-12), on obtient K_{III} .

Figure II-2 : Section fissurée et points de collocation [10].

Conclusion :

Dans ce chapitre, nous avons présenté la méthode de collocation de frontière. Dans le prochain chapitre, on présentera les problèmes traités.

Chapitre III

Problèmes traités

III.1. Introduction :

Dans ce chapitre on va calculer le facteur d'intensité de contrainte K_{III}, pour trois structures différentes :

- La première consiste en une section circulaire avec une fissure centrale.
- La seconde consiste en une section circulaire avec une fissure non centrale. Dans ce cas une expression analytique de K_{III} est déduite.

Nous comparons ensuite les résultats obtenus avec les résultats de Tefiani [10].

III.2. Cas d'une fissure centrale dans une section circulaire :

On considère une section circulaire de rayon R contenant une fissure centrale, sous chargement tangentiel $t_3 = T \sin \theta$ (figure (III-1). Afin d'adimensionaliser le problème, on prendra R=1 et T=1.

Figure III-1 : Fissure centrale dans une section circulaire.

Nous choisissons 2p points de collocation équidistants, repartis uniformément sur la frontière du cercle. Les points sont répartis uniformément sur le cercle :

$$\theta_q = \frac{2*\pi*q}{2p+1} - \pi \qquad q=1...2p \quad (III-1)$$

Figure III-2 : Fissure centrale dans une section circulaire, points de collocation.

Remarque :

Les points $\theta_q = \pm \pi$ sont à éviter car ce sont des points anguleux, où la normale n'est pas définie.

Nous reprenons le système d'équation (II-13) :

$$t_{q} = \sum_{N=1}^{p} \{ [A_{N}r^{\left(-\frac{3}{2}+N\right)} \cos\left[\left(-\frac{3}{2}+N\right)\theta_{q}\right] n_{2}^{q}] + \sin\left[\left(-\frac{3}{2}+N\right)\theta_{q}\right] n_{1}^{q}] + B_{N}r^{N-1}[-\sin\left[\left(N-1\right)\theta_{q}\right] n_{2}^{q} + \cos\left[\left(N-1\right)\theta_{q}\right] n_{1}^{q}] \}, q = 1 \text{ à } 2p \qquad \text{(III-2)}$$

On pose dans (III-2) :

$$\begin{cases} t_q = \sin \theta_q \\ r_q = 1 \\ n_1^q = \cos \theta_q, n_2^q = \sin \theta_q \end{cases}$$
(III-3)

La résolution du système (III-2) en tenant compte de (III-3), permet d'obtenir les A_N et B_N . Le FIC est donné par : $K_{III} = A_1 \sqrt{2\pi}$.

III.2.1.Résultats de Serghini /Tefiani [10] :

Serghini et Tefiani ([10]) ont calculé le FIC K_{III} pour ce problème. Ils ont utilisé la méthode d'inversion matricielle. Les résultats sont présentés dans le Tableau (III-1) et dans la Figure (III-3). Le Tableau(III-1) montre qu'à partir de p = 129 de K_{III} converge vers 2.1278.

Р	K _{III}
1	4.3416
2	2.6356
80	2.1281
90	2.1280
110	2.1279
129	2.1278
170	2.1278

Tableau III-1 : K_{III} en fonction de p pour une fissure centrale dans une section circulaire (Serghini et Tefiani).

Figure III-3 : K_{III} en fonction de nombre des points de collocation p pour une fissure centrale dans une section circulaire [10].

III.2.1. Résultats par la méthode SVD :

En utilisant la méthode SVD, le système d'équation (III-2) est résolu numériquement à l'aide du logiciel Matlab. Le programme correspondant est présenté dans l'Annexe 1. Nous effectuons plusieurs calculs, en augmentant à chaque fois le nombre de termes p jusqu'à convergence. Les résultats sont présentés dans le Tableau III.2 et la figure III.4 ci-dessous.

Р	K _{III}	Р	K _{III}
1	4.3416	87	2.1280
2	2.6356	93	2.1280
3	2.3628	100	2.1280
4	2.2647	110	2.1279
5	2.2177	115	2.1279
6	2.1915	128	2.1279
10	2.1517	129	2.1278
12	2.1446	133	2.1278
15	2.1387	142	2.1278
20	2.1340	145	2.1278
45	2.1290	155	2.1278
66	2.1283	160	21278
75	2.1282	170	2.1278

Tableau III-2 : K_{III} en fonction de p pour une fissure centrale dans une section circulaire avec la méthode SVD.

Figure III-4 : Facteur K_{III} en fonction de p pour une fissure centrale dans une section circulaire avec la méthode SVD.

Discussion des résultats :

On constate sur le Tableau III-2 et la Figure III-4, que le facteur d'intensité de contrainte converge à partir de **p=129** vers la valeur de **2.1278**.

III.3. Comparaison entre les deux méthodes :

Dans les deux sections précédentes, Nous constatons que le résultat final est le même avec les deux méthodes. Cette comparaison constitue une première validation de notre programmation de la méthode SVD. Nous présentons, pour chaque valeur de p, la comparaison entre les deux méthodes dans le Tableau III-3 ci-dessous.

р	(Tableau III-2)	K_{III} (Tableau III-1)	Erreur %
1	4.3416	4.3416	0
80	2.1281	2.1281	0
90	2.1280	2.1280	0
115	2.1279	2.1279	0
129	2.1278	2.1278	0
170	2.1278	2.1278	0

Tableau III-3 : Comparaison entre les deux résultats pour chaque valeur de p.

III.4. Cas d'une fissure non centrale dans une section circulaire :

On considère une section circulaire de rayon R, contenant une fissure non centrale de longueur f, et sous chargement tangentiel $t_3 = T \sin \theta$ (Figure (III-5). Afin d'adimensionnaliser le problème, on prendra R=1 et T=1.

Figure III-5 : Fissure non centrale dans une section circulaire.

Figure III-6 : Fissure non centrale, points de collocation.
Nous choisissons des points de collocation équidistants, repartis uniformément sur la frontière du cercle (Figure III-6). L'angle θ_0^q pour chaque point est calculé par la formule suivante :

$$heta_0^q = rac{2*\pi*q}{2p+1} - \pi \ , q=1....2p$$

Le rayon de cercle R et donné par : R=1

La coordonnées radiale r_q est donnée par :

$$r_q = \sqrt{(R - f + R\cos(\theta_0^q))^2 + (R\sin(\theta_0^q))^2}$$
(III-4)

L'angle θ_q est calculé par l'expression suivante :

$$\theta_q = atan2(R\sin(\theta_0^q), R - f + R\cos(\theta_0^q))$$
(III-5)

Les composantes radiales et tangentielles de la normale n_q sont données par :

 $n_1^q = \cos(\theta_0^q)$, $n_2^q = \sin(\theta_0^q)$ (III-6)

La résolution du système (III-2) en tenant compte de (III-4), (III-5) et (III-6) permet d'obtenir les A_N et B_N . Le FIC est donné par : $K_{III} = A_1 \sqrt{2\pi}$

III.4.1. Résultats de Serghini / Tefiani [10] :

En utilisant la méthode d'inversion matricielle, Serghini et Tefiani ont calculé K_{III} pour ce problème pour f \in [0.1,1.7]. Les résultats sont présentés dans le Tableau (III-4) ci-dessous.

f	K _{III}	f	K _{III}
0.1	0.5672	1	2.1280
0.2	0.8137	1.1	2.3048
0.3	1.0096	1.2	2.4987
0.4	1.1831	1.3	2.7176
0.5	1.3445	1.4	2.9731
0.6	1.4993	1.5	3.2850
0.7	1.6517	1.6	3.6889
0.8	1.8052	1.7	4.2600
0.9	1.9628	/	/

Tableau-III-4 : Valeurs de KIII pour déférentes valeurs de f ([10]).

Pour f < 0.1 ou f > 1.7, les calculs n'ont pas convergé, à cause de l'instabilité numérique. A titre d'exemple, nous présentons ci-dessous les résultats obtenus dans les Tableaux (III-5 et III-6) pour f = 0.005 et f = 1.9 respectivement.

р	K _{III}	р	K _{III}
1	4.0382	77	0.2668
2	1.8793	92	0.2106
3	1.3762	113	0.2323
4	1.1335	137	-0.2223
5	0.9851	145	0.1970
7	0.8069	153	-0.4633
10	0.6606	160	-1.5778
15	0.5314	166	-1.1431
41	0.3156	170	0.4582

Tableau-III-5 : Valeurs de Kin pour f=0.005 (Méthode d'inversion matricielle).

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.152627e-64.

Capture d'écran 1 : Système est mal conditionné pour f=0.005.

Figure III-7 : courbe de K_{III} en fonction de p pour f=0.005 (Méthode d'inversion matricielle)

р	K _{III}	р	K _{III}
1	46.6608	73	20.6232
2	4.7189	92	12.4837
3	18.4460	113	7.0582
4	5.1143	137	21.8898
5	13.7071	145	8.1651
7	11.4275	153	19.4585
10	6.1720	160	17.2059
15	8.3175	167	-2.0616
41	5.0504	170	7.0079

Tableau-III-6 : Valeurs de Kill pour f=1.9 (Méthode d'inversion matricielle).

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.164904e-40.

Capture d'écran 2 : Système est mal conditionné pour f=1.9.

Figure III-8 : courbe de K_{III} en fonction de p pour f=1.9 (Méthode d'inversion matricielle)

Discussion:

Les résultats obtenus dans les Tableaux (III-5 et III-6) montrent qu'il n'y a pas de convergence pour f < 0.1 et f > 1.7.

Les deux captures précédant indiquent une instabilité dans ce domaine ce qui justifie l'utilisation de la méthode SVD.

III.4.2. <u>Résultats par la méthode SVD :</u>

En utilisant la méthode SVD, nous avons calculé K_{III} pour $0.005 \le f \le 1.9$. Le système d'équations est résolu numériquement à l'aide du logiciel Matlab. Le programme correspondant est présenté dans l'Annexe 1. Pour chaque valeur de f, nous augmentons le nombre des points de collocation jusqu'à convergence du K_{III} . A titre d'exemple, nous présentons, ci-dessous, les résultats détaillés pour f = 1.8 (pour les autres valeurs de f, voir Annexe 3).

р	K _{III}	р	K _{III}
1	21.8945	37	5.1951
2	4.3574	39	5.1944
3	8.5939	40	5.1941
4	4.5013	46	5.1928
5	6.6948	48	5.1917
16	5.1585	49	5.1917
25	5.2050	50	5.1917
33	5.1972	51	5.1917

Tableau III-7 : K_{III} en fonction de p (f=1.8).

Figure III-9 : courbe de K_{III} en fonction de p pour f=1.8 (Méthode SVD)

Nous présentons dans le Tableau III-8 ci-dessous, les valeurs de K_{III} pour toutes les valeurs de f.

f	K _{III}	f	K _{III}
0	0	0.5	1.3448
0.005	0.3646	0.6	1.4994
0.01	0.3739	0.7	1.6518
0.02	0.3872	0.8	1.8052
0.03	0.4065	0.9	1.9628
0.04	0.4302	1	2.1280
0.05	0.4534	1.1	2.3048
0.06	0.4757	1.2	2.4987
0.07	0.5041	1.3	2.7176
0.08	0.5283	1.4	2.9732
0.09	0.5559	1.5	3.2853
0.1	0.5802	1.6	3.6895
0.2	0.8156	1.7	4.2606
0.3	1.0110	1.8	5.1917
0.4	1.1839	1.9	6.9244

Tableau-III-8 : Valeurs de K_{III} pour différentes valeurs de f.

Nous présentons sur la Figure III-10, la courbe du K_{III} en fonction de f, pour $0.005 \le f \le 1.9$

Figure III-10 : La courbe de K_{III} en fonction de f.

Discussion des résultats :

Nous remarquons que K_{III} est une fonction croissante de la longueur de la fissure f sur tout le domaine de f. Ces résultats sont logiques, car plus une fissure est longue plus elle est dangereuse. Nous constatons également que la courbe est légèrement convexe dans le domaine [0,005-0.4], pratiquement linéaire dans le domaine [0,4-1], et concave dans le domaine [1,1.9].

III.4.3. Comparaison avec les résultats de Serghini / Tefiani :

Nous présentons sur la Tableau III-9 ci-dessous, une comparaison entre nos résultats et ceux de Serghini /Tefiani [10].

f	K _{III} (Tableau III-4)	K _{III} (TableauIII-8)	Erreur %
0.1	0.5672	0.5802	2.24
0.2	0.8137	0.8156	0.23
0.3	1.0096	1.0110	0.13
0.4	1.1831	1.1839	0.06
0.5	1.3445	1.3449	0.02
0.6	1.4993	1.4994	0.006
0.7	1.6517	1.6518	0.006
0.8	1.8052	1.8052	0
0.9	1.9628	1.9628	0
1	2.1280	2.1280	0
1.1	2.3048	2.3048	0
1.2	2.4987	2.4987	0
1.3	2.7176	2.7176	0
1.4	2.9731	2.9732	0.003
1.5	3.2850	3.2853	0.009
1.6	3.6889	3.6895	0.01
1.7	4.2600	4.2606	0.01

Tableau III-9 : Comparaison entre les deux résultats.

Discussion :

Nous observons que l'erreur est très petite. Ceci constitue une deuxième confirmation de notre programmation de la méthode SVD.

III.4.4. l'expression analytique de K_{III} (Serghini/Tefiani)[10].

Serghini et Tefiani ont déterminé une expression analytique de K_{III} en fonction de f , pour f = [0.1-1.7], elle est donnée par :

$$\mathbf{K}_{\mathrm{III}}(\mathbf{f}) = \left[1.8876 * \mathbf{f}^{\frac{1}{2}} - 0.7553 * \mathbf{f}^{\frac{3}{2}} + 2.4737 * \mathbf{f}^{\frac{5}{2}} - 2.2748 * \mathbf{f}^{\frac{7}{2}} + 0.7996 * \mathbf{f}^{\frac{9}{2}} \right] \qquad \mathrm{III-8}$$

Le Tableau III-10, ci-dessous, présente les erreurs entre les valeurs numériques (Tableau III-4) et les
valeurs données par l'expression (III-8).

f	K_{III} (Tableau III-4)	K_{III} (III-8)	Erreur %
0.1	0.5672	0.5802	2.24
0.2	0.8137	0.8133	0.05
0.3	1.0096	1.0016	0.79
0.4	1.1831	1.1739	0.77
0.5	1.3445	1.3393	0.39
0.6	1.4993	1.5006	0.086
0.7	1.6517	1.6589	0.43
0.8	1.8052	1.8151	0.55
0.9	1.9628	1.9712	0.44
1	2.1280	2.1308	0.13
1.1	2.3048	2.2999	0.21
1.2	2.4987	2.4873	0.46
1.3	2.7176	2.7048	0.47
1.4	2.9731	2.9679	0.17
1.5	3.2850	3.2958	0.32
1.6	3.6889	3.7118	0.61
1.7	4.2600	4.2438	0.38

Tableau III-10 : Comparaison entre Tableau (III-4) et l'expression (III-8).

Discussion :

Nous constatons que la concordance est très bonne (erreur maximale 2.24%).

III.4.5Détermination de l'expression analytique de K_{III} po<u>ur f∈[0.005-1.9]</u>

Nous choisissions la forme polynomiale suivante :

Où les coefficients d1...d11 seront déterminés par indentification avec les résultats du Tableau (III-8).

On obtient le système surdéterminé de 56 équations à 11 inconnues suivant (III-10) :

$$d_1 * 0.005^0 + d_2 * 0.005^1 + d_3 * 0.005^2 + d_4 * 0.005^3 + d_5 * 0.005^4 + d_6 * 0.005^5 + d_7 * 0.005^6 + d_8 * 0.005^7 + d_9 * 0.005^8 + d_{10} * 0.005^9 + d_{11} * 0.005^{10} = 0.3646 \\ d_1 * 0.01^0 + d_2 * 0.01^1 + d_3 * 0.01^2 + d_4 * 0.01^3 + d_5 * 0.01^4 + d_6 * 0.01^5 + \\ d_7 * 0.01^6 + d_8 * 0.01^7 + d_9 * 0.01^8 + d_{10} * 0.01^9 + d_{11} * 0.01^{10} = 0.3739 \\ d_1 * 0.015^0 + d_2 * 0.015^1 + d_3 * 0.015^2 + d_4 * 0.015^3 + d_5 * 0.015^4 + d_6 * 0.015^5 + \\ d_7 * 0.015^6 + d_8 * 0.015^7 + d_9 * 0.015^8 + d_{10} * 0.015^9 + d_{11} * 0.015^{10} = 0.3829 \\ d_1 * 0.02^0 + d_2 * 0.02^1 + d_3 * 0.02^2 + d_4 * 0.02^3 + d_5 * 0.02^4 + d_6 * 0.02^5 + \\ d_7 * 0.02^6 + d_8 * 0.02^7 + d_9 * 0.02^8 + d_{10} * 0.02^9 + d_{11} * 0.02^{10} = 0.3872 \\ d_1 * 0.025^0 + d_2 * 0.025^1 + d_3 * 0.025^2 + d_4 * 0.025^3 + d_5 * 0.025^4 + d_6 * 0.025^5 + \\ d_7 * 0.025^6 + d_8 * 0.025^7 + d_9 * 0.025^8 + d_{10} * 0.025^9 + d_{11} * 0.021^{10} = 0.3979 \\ d_1 * 0.03^0 + d_2 * 0.03^1 + d_3 * 0.03^2 + d_4 * 0.03^3 + d_5 * 0.03^4 + d_6 * 0.03^5 + \\ d_7 * 0.03^6 + d_8 * 0.03^7 + d_9 * 0.03^8 + d_{10} * 0.03^9 + d_{11} * 0.03^{10} = 0.4065 \\ d_1 * 0.035^0 + d_2 * 0.035^1 + d_3 * 0.035^2 + d_4 * 0.035^3 + d_5 * 0.035^4 + d_6 * 0.035^5 + \\ d_7 * 0.035^6 + d_8 * 0.037^7 + d_9 * 0.035^8 + d_{10} * 0.035^9 + d_{11} * 0.035^{10} = 0.4173 \\ d_1 * 0.04^0 + d_2 * 0.04^1 + d_3 * 0.04^2 + d_4 * 0.04^3 + d_5 * 0.04^4 + d_6 * 0.04^5 + \\ d_7 * 0.04^6 + d_8 * 0.04^7 + d_9 * 0.04^8 + d_{10} * 0.04^9 + d_{11} * 0.04^{10} = 0.4302 \\ d_1 * 0.04^0 + d_2 * 0.04^{51} + d_3 * 0.05^2 + d_4 * 0.04^5 + d_5 * 0.05^4 + d_6 * 0.05^5 + \\ d_7 * 0.045^6 + d_8 * 0.045^7 + d_9 * 0.045^8 + d_{10} * 0.045^9 + d_{11} * 0.045^{10} = 0.4386 \\ d_1 * 0.05^0 + d_2 * 0.05^1 + d_3 * 0.05^2 + d_4 * 0.05^3 + d_5 * 0.05^4 + d_6 * 0.05^5 + \\ d_7 * 0.05^6 + d_8 * 0.05^7 + d_9 * 0.05^8 + d_{10} * 0.05^9 + d_{11} * 0.05^{10} = 0.4634 \\$$

 $d_1 * 0.06^0 + d_2 * 0.06^1 + d_3 * 0.06^2 + d_4 * 0.06^3 + d_5 * 0.06^4 + d_6 * 0.06^5 + d_6$ $d_7 * 0.06^6 + d_8 * 0.06^7 + d_9 * 0.06^8 + d_{10} * 0.06^9 + d_{11} * 0.06^{10} = 0.4757$ $d_1 * 0.065^0 + d_2 * 0.065^1 + d_3 * 0.065^2 + d_4 * 0.065^3 + d_5 * 0.065^4 + d_6 * 0.065^5 + d_6 * 0.065^$ $d_7 * 0.065^6 + d_8 * 0.065^7 + d_9 * 0.065^8 + d_{10} * 0.065^9 + d_{11} * 0.065^{10} = 0.4940$ $d_1 * 0.07^0 + d_2 * 0.07^1 + d_3 * 0.07^2 + d_4 * 0.07^3 + d_5 * 0.07^4 + d_6 * 0.07^5 + d_6$ $d_7 * 0.07^6 + d_8 * 0.07^7 + d_9 * 0.07^8 + d_{10} * 0.07^9 + d_{11} * 0.07^{10} = 0.5041$ $d_1 * 0.075^0 + d_2 * 0.075^1 + d_3 * 0.075^2 + d_4 * 0.075^3 + d_5 * 0.075^4 + d_6 * 0.075^5 + d_6 * 0.075^$ $d_7 * 0.075^6 + d_8 * 0.075^7 + d_9 * 0.075^8 + d_{10} * 0.075^9 + d_{11} * 0.075^{10} = 0.5159$ $d_1 * 0.08^0 + d_2 * 0.08^1 + d_3 * 0.08^2 + d_4 * 0.08^3 + d_5 * 0.08^4 + d_6 * 0.08^5 + d_6$ $d_7 * 0.08^6 + d_8 * 0.08^7 + d_9 * 0.08^8 + d_{10} * 0.08^9 + d_{11} * 0.08^{10} = 0.5283$ $d_1 * 0.085^0 + d_2 * 0.085^1 + d_3 * 0.085^2 + d_4 * 0.085^3 + d_5 * 0.085^4 + d_6 * 0.085^5 + d_6 * 0.085^$ $d_7 * 0.085^6 + d_8 * 0.085^7 + d_9 * 0.085^8 + d_{10} * 0.085^9 + d_{11} * 0.085^{10} = 0.5446$ $d_1 * 0.09^0 + d_2 * 0.09^1 + d_3 * 0.09^2 + d_4 * 0.09^3 + d_5 * 0.09^4 + d_6 * 0.09^5 + d_6$ $d_7 * 0.09^6 + d_8 * 0.09^7 + d_9 * 0.09^8 + d_{10} * 0.09^9 + d_{11} * 0.09^{10} = 0.5559$ $d_1 * 0.095^0 + d_2 * 0.095^1 + d_3 * 0.095^2 + d_4 * 0.095^3 + d_5 * 0.095^4 + d_6 * 0.095^5 + d_6 * 0.095^$ $d_7 * 0.095^6 + d_8 * 0.095^7 + d_9 * 0.095^8 + d_{10} * 0.095^9 + d_{11} * 0.095^{10} = 0.5676$ $d_1 * 0. 1^0 + d_2 * 0. 1^1 + d_3 * 0. 1^2 + d_4 * 0. 1^3 + d_5 * 0. 1^4 + d_6 * 0. 1^5 + d_6$ $d_7 * 0.1^6 + d_8 * 0.1^7 + d_9 * 0.1^8 + d_{10} * 0.1^9 + d_{11} * 0.1^{10} = 0.5802$ $d_1 * 0.15^0 + d_2 * 0.15^1 + d_3 * 0.15^2 + d_4 * 0.15^3 + d_5 * 0.15^4 + d_6 * 0.15^5 + d_6$ $d_7 * 0.15^6 + d_8 * 0.15^7 + d_9 * 0.15^8 + d_{10} * 0.15^9 + d_{11} * 0.15^{10} = 0.7059$ $d_1 * 0.2^0 + d_2 * 0.2^1 + d_3 * 0.2^2 + d_4 * 0.2^3 + d_5 * 0.2^4 + d_6 * 0.2^5 +$ $d_7 * 0.2^6 + d_8 * 0.2^7 + d_9 * 0.2^8 + d_{10} * 0.2^9 + d_{11} * 0.2^{10} = 0.8156$ $d_1 * 0.25^0 + d_2 * 0.25^1 + d_3 * 0.25^2 + d_4 * 0.25^3 + d_5 * 0.25^4 + d_6 * 0.25^5 + d_6$ $d_7 * 0.25^6 + d_8 * 0.25^7 + d_9 * 0.25^8 + d_{10} * 0.25^9 + d_{11} * 0.25^{10} = 0.9170$ $d_1 * 0.3^0 + d_2 * 0.3^1 + d_3 * 0.3^2 + d_4 * 0.3^3 + d_5 * 0.3^4 + d_6 * 0.3^5 +$ $d_7 * 0.3^6 + d_8 * 0.3^7 + d_9 * 0.3^8 + d_{10} * 0.3^9 + d_{11} * 0.3^{10} = 1.0110$ $d_1 * 0.35^0 + d_2 * 0.35^1 + d_3 * 0.35^2 + d_4 * 0.35^3 + d_5 * 0.35^4 + d_6 * 0.35^5 + d_6$ $d_7 * 0.35^6 + d_8 * 0.35^7 + d_9 * 0.35^8 + d_{10} * 0.35^9 + d_{11} * 0.35^{10} = 1.0994$ $d_1 * 0.4^0 + d_2 * 0.4^1 + d_3 * 0.4^2 + d_4 * 0.4^3 + d_5 * 0.4^4 + d_6 * 0.4^5 +$ $d_7 * 0.4^6 + d_8 * 0.4^7 + d_9 * 0.4^8 + d_{10} * 0.4^9 + d_{11} * 0.4^{10} = 1.1839$ $d_1 * 0.45^0 + d_2 * 0.45^1 + d_3 * 0.45^2 + d_4 * 0.45^3 + d_5 * 0.45^4 + d_6 * 0.45^5 + d_6$ $d_7 * 0.45^6 + d_8 * 0.45^7 + d_9 * 0.45^8 + d_{10} * 0.45^9 + d_{11} * 0.45^{10} = 1.2656$ $d_1 * 0.5^0 + d_2 * 0.5^1 + d_3 * 0.5^2 + d_4 * 0.5^3 + d_5 * 0.5^4 + d_6 * 0.5^5 +$ $d_7 * 0.5^6 + d_8 * 0.5^7 + d_9 * 0.5^8 + d_{10} * 0.5^9 + d_{11} * 0.5^{10} = 1.3448$ $d_1 * 0.55^0 + d_2 * 0.55^1 + d_3 * 0.55^2 + d_4 * 0.55^3 + d_5 * 0.55^4 + d_6 * 0.55^5 + d_6$ $d_7 * 0.55^6 + d_8 * 0.55^7 + d_9 * 0.55^8 + d_{10} * 0.55^9 + d_{11} * 0.55^{10} = 1.4227$ $d_1 * 0.6^0 + d_2 * 0.6^1 + d_3 * 0.6^2 + d_4 * 0.6^3 + d_5 * 0.6^4 + d_6 * 0.6^5 +$ $d_7 * 0.6^6 + d_8 * 0.6^7 + d_9 * 0.6^8 + d_{10} * 0.6^9 + d_{11} * 0.6^{10} = 1.4994$ $d_1 * 0.65^0 + d_2 * 0.65^1 + d_3 * 0.65^2 + d_4 * 0.65^3 + d_5 * 0.65^4 + d_6 * 0.65^5 + d_6$ $d_7 * 0.65^6 + d_8 * 0.65^7 + d_9 * 0.65^8 + d_{10} * 0.65^9 + d_{11} * 0.65^{10} = 1.5757$ $d_1 * 0.7^0 + d_2 * 0.7^1 + d_3 * 0.7^2 + d_4 * 0.7^3 + d_5 * 0.7^4 + d_6 * 0.7^5 +$ $d_7 * 0.7^6 + d_8 * 0.7^7 + d_9 * 0.7^8 + d_{10} * 0.7^9 + d_{11} * 0.7^{10} = 1.6518$

 $d_1 * 0.75^0 + d_2 * 0.75^1 + d_3 * 0.75^2 + d_4 * 0.75^3 + d_5 * 0.75^4 + d_6 * 0.75^5 + d_6$ $d_7 * 0.75^6 + d_8 * 0.75^7 + d_9 * 0.75^8 + d_{10} * 0.75^9 + d_{11} * 0.75^{10} = 1.7182$ $d_1 * 0.8^0 + d_2 * 0.8^1 + d_3 * 0.8^2 + d_4 * 0.8^3 + d_5 * 0.8^4 + d_6 * 0.8^5 +$ $d_7 * 0.8^6 + d_8 * 0.8^7 + d_9 * 0.8^8 + d_{10} * 0.8^9 + d_{11} * 0.8^{10} = 1.8052$ $d_1 * 0.85^0 + d_2 * 0.85^1 + d_3 * 0.85^2 + d_4 * 0.85^3 + d_5 * 0.85^4 + d_6 * 0.85^5 + d_6$ $\ddot{d}_7 * 0.85^6 + \ddot{d}_8 * 0.85^7 + \ddot{d}_9 * 0.85^8 + d_{10} * 0.85^9 + d_{11} * 0.85^{10} = 1.8833$ $d_1 * 0.9^0 + d_2 * 0.9^1 + d_3 * 0.9^2 + d_4 * 0.9^3 + d_5 * 0.9^4 + d_6 * 0.9^5 +$ $d_7 * 0.9^6 + d_8 * 0.9^7 + d_9 * 0.9^8 + d_{10} * 0.9^9 + d_{11} * 0.9^{10} = 1.9628$ $d_1 * 0.95^0 + d_2 * 0.95^1 + d_3 * 0.95^2 + d_4 * 0.95^3 + d_5 * 0.95^4 + d_6 * 0.95^5 + d_6$ $\ddot{d}_7 * 0.95^6 + \ddot{d}_8 * 0.95^7 + \ddot{d}_9 * 0.95^8 + \dot{d}_{10} * 0.95^9 + \dot{d}_{11} * 0.95^{10} = 2.0442$ $d_1 * 1^0 + d_2 * 1^1 + d_3 * 1^2 + d_4 * 1^3 + d_5 * 1^4 + d_6 * 1^5 +$ $d_7 * 1^6 + d_8 * 1^7 + d_9 * 1^8 + d_{10} * 1^9 + d_{11} * 1^{10} = 2.1280$ $d_1 * 1.05^0 + d_2 * 1.05^1 + d_3 * 1.05^2 + d_4 * 1.05^3 + d_5 * 1.05^4 + d_6 * 1.05^5 + d_6$ $d_7 * 1.05^6 + d_8 * 1.05^7 + d_9 * 1.05^8 + d_{10} * 1.05^9 + d_{11} * 1.05^{10} = 2.2146$ $d_1 * 1.1^0 + d_2 * 1.1^1 + d_3 * 1.1^2 + d_4 * 1.1^3 + d_5 * 1.1^4 + d_6 * 1.1^5 +$ $d_7 * 1.1^6 + d_8 * 1.1^7 + d_9 * 1.1^8 + d_{10} * 1.1^9 + d_{11} * 1.1^{10} = 2.3048$ $d_1 * 1.15^0 + d_2 * 1.15^1 + d_3 * 1.15^2 + d_4 * 1.15^3 + d_5 * 1.15^4 + d_6 * 1.15^5 + d_6$ $\dot{d}_7 * 1.15^6 + \dot{d}_8 * 1.15^7 + \dot{d}_9 * 1.15^8 + \dot{d}_{10} * 1.15^9 + \dot{d}_{11} * 1.15^{10} = 2.3992$ $d_1 * 1.2^0 + d_2 * 1.2^1 + d_3 * 1.2^2 + d_4 * 1.2^3 + d_5 * 1.2^4 + d_6 * 1.2^5 +$ $d_7 * 1.2^6 + d_8 * 1.2^7 + d_9 * 1.2^8 + d_{10} * 1.2^9 + d_{11} * 1.2^{10} = 2.4987$ $d_1 * 1.25^0 + d_2 * 1.25^1 + d_3 * 1.25^2 + d_4 * 1.25^3 + d_5 * 1.25^4 + d_6 * 1.25^5 + d_6$ $d_7 * 1.25^6 + d_8 * 1.25^7 + d_9 * 1.25^8 + d_{10} * 1.25^9 + d_{11} * 1.25^{10} = 2.6044$ $d_1 * 1.3^0 + d_2 * 1.3^1 + d_3 * 1.3^2 + d_4 * 1.3^3 + d_5 * 1.3^4 + d_6 * 1.3^5 +$ $d_7 * 1.3^6 + d_8 * 1.3^7 + d_9 * 1.3^8 + d_{10} * 1.3^9 + d_{11} * 1.3^{10} = 2.7176$ $d_1 * 1.35^0 + d_2 * 1.35^1 + d_3 * 1.35^2 + d_4 * 1.35^3 + d_5 * 1.35^4 + d_6 * 1.35^5 + d_6$ $\dot{d}_7 * 1.35^6 + \dot{d}_8 * 1.35^7 + \dot{d}_9 * 1.35^8 + \dot{d}_{10} * 1.35^9 + \dot{d}_{11} * 1.35^{10} = 2.8398$ $d_1 * 1.4^0 + d_2 * 1.4^1 + d_3 * 1.4^2 + d_4 * 1.4^3 + d_5 * 1.4^4 + d_6 * 1.4^5 +$ $d_7 * 1.4^6 + d_8 * 1.4^7 + d_9 * 1.4^8 + d_{10} * 1.4^9 + d_{11} * 1.4^{10} = 2.9732$ $d_1 * 1.45^0 + d_2 * 1.45^1 + d_3 * 1.45^2 + d_4 * 1.45^3 + d_5 * 1.45^4 + d_6 * 1.45^5 + d_6$ $d_7 * 1.45^6 + d_8 * 1.45^7 + d_9 * 1.45^8 + d_{10} * 1.45^9 + d_{11} * 1.45^{10} = 3.1206$ $d_1 * 1.5^0 + d_2 * 1.5^1 + d_3 * 1.5^2 + d_4 * 1.5^3 + d_5 * 1.5^4 + d_6 * 1.5^5 +$ $d_7 * 1.5^6 + d_8 * 1.5^7 + d_9 * 1.5^8 + d_{10} * 1.5^9 + d_{11} * 1.5^{10} = 3.2853$ $d_1 * 1.55^0 + d_2 * 1.55^1 + d_3 * 1.55^2 + d_4 * 1.55^3 + d_5 * 1.55^4 + d_6 * 1.55^5 + d_6$ $d_7 * 1.55^6 + d_8 * 1.55^7 + d_9 * 1.55^8 + d_{10} * 1.55^9 + d_{11} * 1.55^{10} = 3.4726$ $d_1 * 1.6^0 + d_2 * 1.6^1 + d_3 * 1.6^2 + d_4 * 1.6^3 + d_5 * 1.6^4 + d_6 * 1.6^5 +$ $d_7 * 1.6^6 + d_8 * 1.6^7 + d_9 * 1.6^8 + d_{10} * 1.6^9 + d_{11} * 1.6^{10} = 3.6895$ $d_1 * 1.65^0 + d_2 * 1.65^1 + d_3 * 1.65^2 + d_4 * 1.65^3 + d_5 * 1.65^4 + d_6 * 1.65^5 + d_6$ $d_7 * 1.65^6 + d_8 * 1.65^7 + d_9 * 1.65^8 + d_{10} * 1.65^9 + d_{11} * 1.65^{10} = 3.9468$ $d_1 * 1.7^0 + d_2 * 1.7^1 + d_3 * 1.7^2 + d_4 * 1.7^3 + d_5 * 1.7^4 + d_6 * 1.7^5 +$ $d_7 * 1.7^6 + d_8 * 1.7^7 + d_9 * 1.7^8 + d_{10} * 1.7^9 + d_{11} * 1.7^{10} = 4.2606$ $d_1 * 1.75^0 + d_2 * 1.75^1 + d_3 * 1.75^2 + d_4 * 1.75^3 + d_5 * 1.75^4 + d_6 * 1.75^5 + d_6$ $\dot{d}_7 * 1.75^6 + \dot{d}_8 * 1.75^7 + \dot{d}_9 * 1.75^8 + \dot{d}_{10} * 1.75^9 + \dot{d}_{11} * 1.75^{10} = 4.6588$

$$\begin{array}{c} d_{1}*1.\ 8^{0}+d_{2}*1.\ 8^{1}+d_{3}*1.\ 8^{2}+d_{4}*1.\ 8^{3}+d_{5}*1.\ 8^{4}+d_{6}*1.\ 8^{5}+\\ d_{7}*1.\ 8^{6}+d_{8}*1.\ 8^{7}+d_{9}*1.\ 8^{8}+d_{10}*1.\ 8^{9}+d_{11}*1.\ 8^{10}=5.\ 1917\\ d_{1}*1.\ 85^{0}+d_{2}*1.\ 85^{1}+d_{3}*1.\ 85^{2}+d_{4}*1.\ 85^{3}+d_{5}*1.\ 85^{4}+d_{6}*1.\ 85^{5}+\\ d_{7}*1.\ 85^{6}+d_{8}*1.\ 85^{7}+d_{9}*1.\ 85^{8}+d_{10}*1.\ 85^{9}+d_{11}*1.\ 85^{10}=5.\ 9779\\ d_{1}*1.\ 9^{0}+d_{2}*1.\ 9^{1}+d_{3}*1.\ 9^{2}+d_{4}*1.\ 9^{3}+d_{5}*1.\ 9^{4}+d_{6}*1.\ 9^{5}+\\ d_{7}*1.\ 9^{6}+d_{8}*1.\ 9^{7}+d_{9}*1.\ 9^{8}+d_{10}*1.\ 9^{9}+d_{11}*1.\ 9^{10}=6.\ 9244 \end{array}$$

Le système (III-10) est résolu par la méthode des moindres carrés, le programme Matlab correspondant est présenté dans l'Annexe 2. Nous obtenons finalement l'expression suivante :

 $K_{III}(f) = \begin{bmatrix} 0.3499 * f^{0} + 1.8245 * f^{1} + 7.8153 * f^{2} - 41.5541 * f^{3} + \\ 95.2743 * f^{4} - 119.3793 * f^{5} + 85.1745 * f^{6} - 32.6036 * f^{7} + 5.0722 * f^{8} + \\ 0.2549 * f^{9} - 0.1015 * f^{10} \end{bmatrix}$ (III-11)

A titre de vérification, nous recalculons K_{III} pour les valeurs de f du Tableau (III-8) avec l'expression (III-11), et nous comparons avec les valeurs de K_{III} du même Tableau Les résultats sont présentés dans le Tableau III-11 ci-dessous.

f	K _{III} Tableau	K _{III} (III-11)	Erreur	f	K _{III} Tableau	K _{III} (III-11)	Erreur
	(111-8)		%		(111-8)		%
0.005	0.3646	0.3592	1.48	0.55	1.4227	1.4187	0.28
0.01	0.3739	0.3689	1.33	0.6	1.4994	1.4954	0.26
0.015	0.3829	0.3789	1.04	0.65	1.5757	1.5726	0.19
0.02	0.3872	0.3892	0.51	0.7	1.6518	1.6502	0.09
0.025	0.3979	0.3998	0.47	0.75	1.7182	1.7283	0.58
0.03	0.4065	0.4106	0.99	0.8	1.8052	1.8065	0.07
0.035	0.4173	0.4217	1.04	0.85	1.8833	1.8852	0.1
0.04	0.4302	0.4330	0.64	0.9	1.9628	1.9644	0.08
0.045	0.4386	0.4444	1.3	0.95	2.0442	2.0448	0.02
0.05	0.4534	0.4560	0.57	1	2.1280	2.1271	0.04
0.055	0.4634	0.4678	0.94	1.05	2.2146	2.2123	0.1
0.06	0.4757	0.4797	0.83	1.1	2.3048	2.3015	0.14
0.065	0.4940	0.4917	0.46	1.15	2.3992	2.3958	0.14
0.07	0.5041	0.5038	0.05	1.2	2.4987	2.4961	0.1
0.075	0.5159	0.5159	0	1.25	2.6044	2.6035	0.03
0.08	0.5283	0.5281	0.03	1.3	2.7176	2.7188	0.04
0.085	0.5446	0.5404	0.77	1.35	2.8398	2.8429	0.1
0.09	0.5559	0.5527	0.57	1.4	2.9732	2.9770	0.12
0.095	0.5676	0.5650	0.45	1.45	3.1206	3.1231	0.08
0.1	0.5802	0.5774	0.48	1.5	3.2853	3.2844	0.02
0.15	0.7059	0.6993	0.93	1.55	3.4726	3.4666	0.17
0.2	0.8156	0.8143	0.15	1.6	3.6895	3.6783	0.3
0.25	0.9170	0.9197	0.29	1.65	3.9468	3.9332	0.34
0.3	1.0110	1.0156	0.45	1.7	4.2606	4.2513	0.21
0.35	1.0994	1.1037	0.38	1.75	4.6588	4.6613	0.05
0.4	1.1839	1.1861	0.18	1.8	5.1917	5.2030	0.21
0.45	1.2656	1.2650	0.04	1.85	5.9779	5.9300	0.80
0.5	1.3448	1.3421	0.2	1.9	6.9244	6.9134	0.15

Tableau III-11 : Comparaison entre Tableau (III-8) et l'expression (III-11).

Discussion :

Nous constatons que l'erreur est très petite (erreur maximale 1.48%), cela veut dire que l'expression (III-9) est valide dans cet intervalle [0.005- 1.9].

III.4.5. Comparaison entre les deux résultats :

Selon les résultats des tableaux III-10 et III-11, nous constatons que l'erreur est très petite et les expressions (III-7) et (III-11) est valide. Nous présentons un Tableau qui présenté l'erreur de deux résultats pour différent valeur de f.

f	Erreur (III-7) %	Erreur (III-11) %
0.1	2.24	0.48
0.2	0.05	0.15
0.3	0.79	0.45
0.4	0.77	0.18
0.5	0.39	0.2
0.6	0.086	0.26
0.7	0.43	0.09
0.8	0.55	0.07
0.9	0.44	0.08
1	0.13	0.04
1.1	0.21	0.14
1.2	0.46	0.1
1.3	0.47	0.04
1.4	0.17	0.12
1.5	0.32	0.02
1.6	0.61	0.3
1.7	0.38	0.21
Erreur moyenne	0.5	0.17

Tableau III-12 : Comparaison entre les deux erreurs.

Discussion:

Nous concluons que l'erreur moyenne obtenue avec notre expression 0.17% est largement inférieure à celle obtenu avec l'expression de Serghini/Tefiani 0.5%. Cela veut dire que notre expression est plus précise. De plus, notre expression est plus générale puisqu'elle est valable pour

f \in [0.005, 1.9], alors que celle de [10] n'est valable que pour f \in [0.1, 1.7].

Conclusion Générale

Ce travail est une application de la méthode de collocation de frontière en élasticité anti-plane au cas d'une section circulaire. Deux cas en été considérés, fissure centrale et non centrale. Notre point de départ est un exemple traité par Serghini et Tefiani [10].

Les principaux résultats de ce travail sont les suivants :

- Dans le cas de la fissure centrale, nous avons calculé le FIC avec la méthode SVD pour R=1 et un chargement t₃ = sin θ. Nous avons comparé avec les résultats obtenus par [10] et nous avons constaté que les deux méthodes convergent vers le même résultat (K_{III} = 2.1278)
- ✓ Dans le cas de la fissure non centrale, nous avons calculé K_{III} pour R=1 et t₃ = sin θ pour plusieurs longueurs de fissure f ∈ [0.005, 1.9]. Nous avons obtenu des résultats quasiment identiques à ceux de [10] pour f ∈ [0.1, 1.7], ce qui constitue une validation de notre programmation de la méthode SVD.
- ✓ Nous avons déterminé une expression analytique du *K*₁₁₁ en fonction de f. La comparaison avec les résultats numériques a donné une erreur maximale de 1.48%, ce qui montre que notre expression est valide. Nous l'avons également comparée avec celle de [10]. Les résultats de la comparaison ont montré que l'erreur moyenne pour notre expression est de 0.17 %, alors qu'elle est de 0.5% pour [10], ce qui montre que notre que pour f € [0.005, 1.9], alors que celle de [10] n'est valable que pour f € [0.1, 1.7].

Les perspectives que l'on peut dégager de ce travail sont les suivantes :

- ✓ Considérer d'autre forme de section (rectangulaire, triangulaire, etc.).
- ✓ Reprendre le même exemple en mode I et II.
- ✓ Les résultats pour f ϵ [0.005, 0.1[, et f > 1.7 n'ont pas encore été validés. Nous projetons donc de refaire les calculs avec la méthode des éléments finis en utilisant le logiciel ABAQUS.

Références bibliographiques

Les Références

[1]: BELMOKHTAR Abdelkader « Contribution au développement d'un modèle de propagation pour la prédiction de la durée de vie en fatigue » Mémoire pour l'obtention du diplôme en Post-Graduation Magister en génie mécanique Ecole Doctorale : Mécanique des Matériaux & Structures université Abou Bekr Belkaid Telmcen,2013.

[2] : Saïd Hariri, Mansour Afzali & Haïdar Jaffal « NOCIVITE DES DEFAUTS ET PROPAGATION DE FISSURES DANS LES EQUIPEMENTS SOUS PRESSION ». Ecole des Mines de Douai 2007.

[3]: Mr Ahmed BENHAMOUDA « ETUDE DU COMPORTEMENT DES FISSURES DANS LES TUBES SOUS PRESSION INTERNE » mémoire de magister En Génie Mécanique UNIVERSITE MENTOURI CONSTANTINE FACULTE DES SCIENCES DE L'INGENIEUR(2010).

[4] : MEZOUANi Yassine « Application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte en mode III » mémoire de master département de génie mécanique, UNIVERSITE SAAD DAHLEB BLIDA (2014).

[5] : Abderrahim ZEGHLOUL « concepts fondamentaux de la mécanique de la rupture » Master MATERIAUX, MECANIQUE, STRUCTURES, PROCEDES Mention SCIENCES POUR L'INGENIEUR, Université de Lorraine, 2016.

[6] : Dr. Hicheme FERDJANI. Cours mécanique de la rupture fragile. Université Blida 1, USDB (2019).

[7] : SAIDI Mohamed et OULD AHMED« calcul de FACTEUR D'INTENSITÉ DE CONTRAINTE PAR ABAQUS POURUNE FISSURE CENTRALE ET UNE FISSURE DÉBOUCHANTE »MÉMOIRE DE MASTER, département de génie mécanique, université de Blida, Juin 2016.

[8] : Jean-Marc Blanc « Résolution des systèmes linéaires »site(http://jmblanc.developpez.com/),2008.

[9] : SOUYEH Siham « Décomposition en valeurs singulières des problèmes malposés » Mémoire de Fin D'étude Présenté pour l'obtention du diplôme de Licence Domaine Mathématique et Informatique, UNIVERSITÉ DE M'SILA (2017).

[10] : SERGHINI ET TEFIANI « Application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte en mode III » mémoire de master, département de génie mécanique, UNIVERSITE SAAD DAHLEB BLIDA (2019).

- [11]: T. Liszka and J. Orkisz. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures, 11:83 – 95, 1980.
- [12] : E. J. Kansa. Multiquadrics A scattered data approximation scheme with applications to Computational fluid- dynamics. I. Surface approximation and partial derivative estimates.
 Computers mathematics with application 19 :127 – 145, 1990.
- [13]: E. J. Kansa. Multiquadrics A scattered data approximation scheme with applications to computational fluid- dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equation Computers Mathematics with Applications, 19:147 – 161, 1990.

Annexe1

Les programmes de calcul du FIC Pour fissure centrale et non centrale

Programme pour la fissure centrale

```
clear
syms H
pmax=input('nombre de termes maximal=170');
r=1
for p=1:pmax;
   m=2*p;
for q=1:m
    teta(q)=q*2*pi/(m+1)-pi;
    T(q) = sin(teta(q));
    n1=cos((teta(q)));
    n2=sin((teta(q)));
for N=1:p
    u(q, N) = r^{(-3/2)+N} (\cos(((-3/2)+N)) + teta(q))) + n2 + sin(((-3/2)+N)) + teta(q)) + n1;
    e(q, N) = r^{((N-1)*-sin((N-1)*teta(q))*n2)} + (cos((N-1)*teta(q))*n1);
    H=[u,e];
end
end
% resolution systeme lineaire par la methode directe(svd)
[U, S, V] = svd(H);
% calcul inv(S)=S1
[a,b]=size(H);
for i=1:b
for j=1:a
if i~=j
    S1(i,j)=0;
end
end
S1(i,i)=1/S(i,i);
end
S1;
Y=S1*U'*T';
C=V*Y
% calcul le FIC
fic(p)=C(1)*sqrt(2*pi);
end
fic
p=1:pmax
figure
plot(p,fic(p),'g')
xlabel('nombre des termes "p"')
ylabel('facteur d intensite de contrainte "fic"')
```

Programme pour la fissure non centrale

```
clear
% converge pour 0<=f<=1.9
pmax=100;
R=1;
f=input('donne la longueur de la fissure f=);
for p=1:pmax;
m=2*p;
for q=1:m
teta0=q*2*pi/(m+1)-pi;
x=R*cos(teta0)+R-f; y=R*sin(teta0);
r=sqrt(power(x, 2) + power(y, 2));
teta=atan2(y,x);
T(q) = sin(teta0);
nx=cos(teta0);
ny=sin(teta0);
for N=1:p
u(q, N) = r^{(N-3/2)} (\cos((N-3/2) + teta) + sin((N-3/2) + teta) + nx);
e(q, N) = r^{(N-1)} (-sin((N-1)) + teta) + ry + cos((N-1)) + teta) + nx);
H=[u,e];
end
end
% resolution systeme lineaire par la methode directe
[U,S,V]=svd(H);
% calcul inv(S)=S1
[a,b]=size(H);
for i=1:b
for j=1:a
if i~=j
S1(i,j)=0;
end
end
S1(i,i)=1/S(i,i);
end
S1;
Y=S1*U'*T';
C=V*Y
% calcul le FIC
fic(p)=C(1)*sqrt(2*pi);
end
fic
p=1:pmax
figure
plot(p,fic(p),'g')
xlabel('nombre des termes "p"')
ylabel('facteur d intensite de contrainte "fic")
```

Annexe2

Programme pour l'expression du *K*_{III} clear all

F=[0.3646;0.3739;0.3829;0.3872;0.3976;0.4065;0.4173;0.4302;0.4386;0.4534;0.4634; 0.4757;0.4940;0.5041;0.5159;0.5283;0.5446;0.5559;0.5676;0.5802;0.7059;0.8156;0.9170; 1.0110;1.0994;1.1839;1.2656;1.3448;1.4227;1.4994;1.5757;1.6518;1.7182;1.8052;1.8833; 1.9628;2.0442;2.1280;2.2146;2.3048;2.3992;2.4987;2.6044;2.7176;2.8398;2.9732;3.1206; 3.2853; 3.4726; 3.6895; 3.9468; 4.2606; 4.6588; 5.1917; 5.9779; 6.9244]; M=[0.005^0 0.005^1 0.005^2 0.005^3 0.005^4 0.005^5 0.005^6 0.005^7 0.005^8 0.005^¥ 0.005^10: 0.01^0 0.01^1 0.01^2 0.01^3 0.01^4 0.01^5 0.01^6 0.01^7 0.01^8 0.01^9 0.01^10; 0.015^0 0.015^1 0.015^2 0.015^3 0.015^4 0.015^5 0.015^6 0.015^7 0.015^8 0.015^9 0.015' ^10; 0.02^0 0.02^1 0.02^2 0.02^3 0.02^4 0.02^5 0.02^6 0.02^7 0.02^8 0.02^9 0.02^10; 0.025^0 0.025^1 0.025^2 0.025^3 0.025^4 0.025^5 0.025^6 0.025^7 0.025^8 0.025^9 0.025 ✓ ^10; 0.03^0 0.03^1 0.03^2 0.03^3 0.03^4 0.03^5 0.03^6 0.03^7 0.03^8 0.03^9 0.03^10; 0.035^0 0.035^1 0.035^2 0.035^3 0.035^4 0.035^5 0.035^6 0.035^7 0.035^8 0.035^90.035✓ ^10; 0.04^0 0.04^1 0.04^2 0.04^3 0.04^4 0.04^5 0.04^6 0.04^7 0.04^8 0.04^9 0.04^10; 0.045^0 0.045^1 0.045^2 0.045^3 0.045^4 0.045^5 0.045^6 0.045^7 0.045^8 0.045^9 0.045' ^10; 0.05^0 0.05^1 0.05^2 0.05^3 0.05^4 0.05^5 0.05^6 0.05^7 0.05^8 0.05^9 0.05^{10}; 0.055^0 0.055^1 0.055^2 0.055^3 0.055^4 0.055^5 0.055^6 0.055^7 0.055^8 0.055^9 0.055✓ ^10; 0.06^0 0.06^1 0.06^2 0.06^3 0.06^4 0.06^5 0.06^6 0.06^7 0.06^8 0.06^9 0.06^10; 0.065^0 0.065^1 0.065^2 0.065^3 0.065^4 0.065^5 0.065^6 0.065^7 0.065^8 0.065^90.065 ✓ ^10; 0.07^0 0.07^1 0.07^2 0.07^3 0.07^4 0.07^5 0.07^6 0.07^7 0.07^8 0.07^9 0.07^10; 0.075^0 0.075^1 0.075^2 0.075^3 0.075^4 0.075^5 0.075^6 0.075^7 0.075^8 0.075^90.075√ ^10; 0.08^0 0.08^1 0.08^2 0.08^3 0.08^4 0.08^5 0.08^6 0.08^7 0.08^8 0.08^9 0.08^{10}; 0.085^0 0.085^1 0.085^2 0.085^3 0.085^4 0.085^5 0.085^6 0.085^7 0.085^8 0.085^90.085 ✓ ^10; 0.09^0 0.09^1 0.09^2 0.09^3 0.09^4 0.09^5 0.09^6 0.09^7 0.09^8 0.09^9 0.09^10; 0.095^0 0.095^1 0.095^2 0.095^3 0.095^4 0.095^5 0.095^6 0.095^7 0.095^8 0.095^90.095**4** ^10; 0.1^0 0.1^1 0.1^2 0.1^3 0.1^4 0.1^5 0.1^6 0.1^7 0.1^8 0.1^9 0.1^10; 0.15^0 0.15^1 0.15^2 0.15^3 0.15^4 0.15^5 0.15^6 0.15^7 0.15^8 0.15^9 0.15^10; 0.2^0 0.2^1 0.2^2 0.2^3 0.2^4 0.2^5 0.2^6 0.2^7 0.2^8 0.2^9 0.2^10; 0.25^0 0.25^1 0.25^2 0.25^3 0.25^4 0.25^5 0.25^6 0.25^7 0.25^8 0.25^9 0.25^{10}; 0.3^0 0.3^1 0.3^2 0.3^3 0.3^4 0.3^5 0.3^6 0.3^7 0.3^8 0.3^9 0.3^10; 0.35^0 0.35^1 0.35^2 0.35^3 0.35^4 0.35^5 0.35^6 0.35^7 0.35^8 0.35^9 0.35^{10}; 0.4^0 0.4^1 0.4^2 0.4^3 0.4^4 0.4^5 0.4^6 0.4^7 0.4^8 0.4^9 0.4^10; 0.45^0 0.45^1 0.45^2 0.45^3 0.45^4 0.45^5 0.45^6 0.45^7 0.45^8 0.45^9 0.45^{10}; 0.5^0 0.5^1 0.5^2 0.5^3 0.5^4 0.5^5 0.5^6 0.5^7 0.5^8 0.5^9 0.5^10; 0.55^0 0.55^1 0.55^2 0.55^3 0.55^4 0.55^5 0.55^6 0.55^7 0.55^8 0.55^9 0.55^{10}; 0.6^0 0.6^1 0.6^2 0.6^3 0.6^4 0.6^5 0.6^6 0.6^7 0.6^8 0.6^9 0.6^{10}; 0.65^0 0.65^1 0.65^2 0.65^3 0.65^4 0.65^5 0.65^6 0.65^7 0.65^8 0.65^9 0.65^{10}; 0.7^0 0.7^1 0.7^2 0.7^3 0.7^4 0.7^5 0.7^6 0.7^7 0.7^8 0.7^9 0.7^10; 0.75^0 0.75^1 0.75^2 0.75^3 0.75^4 0.75^5 0.75^6 0.75^7 0.75^8 0.75^9 0.75^10; 0.8^0 0.8^1 0.8^2 0.8^3 0.8^4 0.8^5 0.8^6 0.8^7 0.8^8 0.8^9 0.8^{10}; 0.85^0 0.85^1 0.85^2 0.85^3 0.85^4 0.85^5 0.85^6 0.85^7 0.85^8 0.85^9 0.85^{10}; 0.9^0 0.9^1 0.9^2 0.9^3 0.9^4 0.9^5 0.9^6 0.9^7 0.9^8 0.9^9 0.9^10; 0.95^0 0.95^1 0.95^2 0.95^3 0.95^4 0.95^5 0.95^6 0.95^7 0.95^8 0.95^9 0.95^10; 1^0 1^1 1^2 1^3 1^4 1^5 1^6 1^7 1^8 1^9 1^10; 1.05^0 1.05^1 1.05^2 1.05^3 1.05^4 1.05^5 1.05^6 1.05^7 1.05^8 1.05^9 1.05^10; 1.1^0 1.1^1 1.1^2 1.1^3 1.1^4 1.1^5 1.1^6 1.1^7 1.1^8 1.1^9 1.1^10; 1.15^0 1.15^1 1.15^2 1.15^3 1.15^4 1.15^5 1.15^6 1.15^7 1.15^8 1.15^9 1.15^10; 1.2^0 1.2^1 1.2^2 1.2^3 1.2^4 1.2^5 1.2^6 1.2^7 1.2^8 1.2^9 1.2^10; 1.25^0 1.25^1 1.25^2 1.25^3 1.25^4 1.25^5 1.25^6 1.25^7 1.25^8 1.25^9 1.25^{10}; 1.3^0 1.3^1 1.3^2 1.3^3 1.3^4 1.3^5 1.3^6 1.3^7 1.3^8 1.3^9 1.3^10;

```
1.35^0 1.35^1 1.35^2 1.35^3 1.35^4 1.35^5 1.35^6 1.35^7 1.35^8 1.35^9 1.35^10;
1.4^0 1.4^1 1.4^2 1.4^3 1.4^4 1.4^5 1.4^6 1.4^7 1.4^8 1.4^9 1.4^10;
1.45^0 1.45^1 1.45^2 1.45^3 1.45^4 1.45^5 1.45^6 1.45^7 1.45^8 1.45^9 1.45^10;
1.5^0 1.5^1 1.5^2 1.5^3 1.5^4 1.5^5 1.5^6 1.5^7 1.5^8 1.5^9 1.5^10;
1.55^0 1.55^1 1.55^2 1.55^3 1.55^4 1.55^5 1.55^6 1.55^7 1.55^8 1.55^9 1.55^10;
1.6^0 1.6^1 1.6^2 1.6^3 1.6^4 1.6^5 1.6^6 1.6^7 1.6^8 1.6^9 1.6^{10};
1.65^0 1.65^1 1.65^2 1.65^3 1.65^4 1.65^5 1.65^6 1.65^7 1.65^8 1.65^9 1.65^10;
1.7^0 1.7^1 1.7^2 1.7^3 1.7^4 1.7^5 1.7^6 1.7^7 1.7^8 1.7^9 1.7^10;
1.75^0 1.75^1 1.75^2 1.75^3 1.75^4 1.75^5 1.75^6 1.75^7 1.75^8 1.75^9 1.75^10;
1.8^0 1.8^1 1.8^2 1.8^3 1.8^4 1.8^5 1.8^6 1.8^7 1.8^8 1.8^9 1.8^10;
1.85^0 1.85^1 1.85^2 1.85^3 1.85^4 1.85^5 1.85^6 1.85^7 1.85^8 1.85^9 1.85^10;
1.9^0 1.9^1 1.9^2 1.9^3 1.9^4 1.9^5 1.9^6 1.9^7 1.9^8 1.9^9 1.9^10;];
% moindre carre
D=M'
T,=D*M
G=M'*F
% resoudre par la methode directe
A=[L G];
n=size(A,1);
for k=1:n-1;
for i=k+1:n;
w=A(i,k)/A(k,k);
for j=k:n+1;
A(i,j) = A(i,j) - w * A(k,j);
end
end
end
Α;
for i=n:-1:1;
s=0;
for j=i+1:n;
s=s+A(i,j)*x(j);
end
x(i) = ((A(i, n+1) - s) / A(i, i));
end
H=x'
% vecteur du facteur de forme
a=input('f=a')
y=0.3499*(a)^0+1.8245*(a)^1+7.8153*(a)^2-41.5541*(a)^3+95.2743*(a)^4-119.3793*(a)
^5+85.1745* (a) ^6-32.6036* (a) ^7+5.0722* (a) ^8+0.2549* (a) ^9-0.1015* (a) ^10
```

Annexe3

Résultats pour le cas d'une fissure non centrale dans une section fissurée

Résultats pour f=0.000

Figure A3-1 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.000)

р	K _{III}	Р	K _{III}
1	4.0403	25	0.4022
2	1.8794	32	0.3613
3	1.3754	55	0.8802
4	1.1321	70	0.0001
5	0.9832	72	0.0000
7	0.8043	77	0.0000
10	0.6570	93	0.0000
15	0.5267	100	0.0000

Tableau A3- 1 : K_{III} en fonction de p (f=0.000)

Résultats pour f=0.005

Figure A3-2 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.005)

р	K _{III}	Р	K _{III}
1	4.0382	23	0.4262
2	1.8793	26	0.4007
3	1.3762	30	0.3759
4	1.1335	32	0.3646
5	0.9851	33	0.3646
7	0.8069	35	0.3646
10	0.6606	36	0.3646
15	0.5314	37	0.3646

Tableau A3- 2 : K_{III} en fonction de p (f=0.005)

Figure A3-3 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.01)

р	K _{III}	р	K _{III}
1	4.0361	22	0.4423
2	1.8793	25	0.4155
3	1.3771	30	0.3830
4	1.1350	31	0.3739
5	0.9871	33	0.3739
7	0.8097	35	0.3739
10	0.6642	36	0.3739
16	0.5189	37	0.3739

Tableau A3- 3 : K_{III} en fonction de p (f=0.01)

Figure A3-4 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.015)

р	K _{III}	p	K _{III}
1	4.0340	22	0.4490
2	1.8793	25	0.4228
3	1.3780	30	0.3907
4	1.1365	34	0.3790
5	0.9891	40	0.3829
7	0.8125	41	0.3829
10	0.6680	42	0.3829
16	0.5243	43	0.3829

Tableau A3- 4 : K_{III} en fonction de p (f=0.015)

Figure A3-5 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.02)

р	K _{III}	р	K _{III}
1	4.0319	24	0.4385
2	1.8794	30	0.3997
3	1.3789	32	0.3923
4	1.1381	33	0.3872
5	0.9912	34	0.3872
7	0.8154	35	0.3872
10	0.6720	39	0.3872
16	0.5299	40	0.3872

Tableau A3- 5 : K_{III} en fonction de p (f=0.02)

Figure A3-6 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.025)

р	K _{III}	р	K _{III}
1	4.0298	22	0.4634
2	1.8794	29	0.4141
3	1.3799	36	0.4000
4	1.1397	33	0.3979
5	0.9934	34	0.3979
7	0.8184	35	0.3979
11	0.6438	39	0.3979
15	0.5524	41	0.3979

Tableau A3- 6 : K_{III} en fonction de p (f=0.025)

Figure A3-7 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.03)

р	K _{III}	р	K _{III}
1	4.0277	22	0.4712
2	1.8795	29	0.4235
3	1.3809	32	0.4113
4	1.1414	33	0.4065
5	0.9956	34	0.4065
7	0.8215	35	0.4065
11	0.6483	38	0.4065
15	0.5581	39	0.4065

Tableau A3-7 : K_{III} en fonction de p (f=0.03)

Figure A3-8 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.035)

р	K _{III}	р	K _{III}
1	4.0257	22	0.4792
2	1.8796	29	0.4334
3	1.3820	32	0.4204
4	1.1431	33	0.4173
5	0.9978	35	0.4173
7	0.8247	37	0.4173
11	0.6529	39	0.4173
15	0.5641	40	0.4173

Tableau A3-8 : K_{III} en fonction de p (f=0.035)

Figure A3-9 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.04)

р	K _{III}	p	K _{III}
1	4.0236	25	0.4654
2	1.8797	29	0.4437
3	1.3830	33	0.4316
4	1.1449	35	0.4273
5	1.0001	38	0.4302
8	0.7715	39	0.4302
12	0.6311	40	0.4302
15	0.5703	43	0.4302

Tableau A3-9 : K_{III} en fonction de p (f=0.04)

Figure A3-10 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.045)

р	K _{III}	p	K _{III}
1	4.0216	22	0.4963
2	1.8799	29	0.4544
3	1.3841	33	0.4419
4	1.1467	35	0.4386
5	1.0025	38	0.4386
8	0.7752	40	0.4386
12	0.6365	42	0.4386
15	0.5767	41	0.4386

Tableau A3-10 : K_{III} en fonction de p (f=0.045)

Figure A3-11 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.05)

р	K _{III}	р	K _{III}
1	4.0196	25	0.4849
2	1.8800	29	0.4654
3	1.3853	30	0.4616
4	1.1485	31	0.4534
5	1.0049	32	0.4534
8	0.7791	35	0.4534
12	0.6419	36	0.4534
16	0.5682	37	0.4534

Tableau A3-11 : K_{III} en fonction de p (f=0.05)

Figure A3-12 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.055)

р	K _{III}	р	K _{III}
1	4.0176	25	0.4952
2	1.8802	27	0.4848
3	1.3865	29	0.4766
4	1.1504	31	0.4634
5	1.0074	35	0.4634
8	0.7831	37	0.4634
14	0.6067	39	0.4634
21	0.5223	41	0.4634

Tableau A3-12 : K_{III} en fonction de p (f=0.055)

Figure A3-13 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.06)

р	K _{III}	p	K _{III}
1	4.0156	25	0.5056
2	1.8804	27	0.4959
3	1.3877	30	0.4850
4	1.1523	33	0.4757
5	1.0100	35	0.4757
8	0.7871	37	0.4757
14	0.6133	39	0.4757
19	0.5487	40	0.4757

Tableau A3-13 : K_{III} en fonction de p (f=0.06)

Figure A3-14 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.065)

р	K _{III}	р	K _{III}
1	4.0136	25	0.5163
2	1.8807	29	0.4999
3	1.3889	39	0.4876
4	1.1543	40	0.4940
5	1.0126	41	0.4940
8	0.7913	43	0.4940
14	0.6201	44	0.4940
19	0.5574	45	0.4940

Tableau A3-14 : K_{III} en fonction de p (f=0.065)

Figure A3-15 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.07)

р	K _{III}	p	K _{III}
1	4.0116	25	0.5272
2	1.8809	27	0.5187
3	1.3902	29	0.5118
4	1.1563	30	0.5041
5	1.0153	34	0.5041
8	0.7956	39	0.5041
14	0.6270	40	0.5041
19	0.5663	44	0.5041

Tableau A3-15 : K_{III} en fonction de p (f=0.07)

Figure A3-16 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.075)

р	K _{III}	р	K _{III}
1	4.0097	25	0.5383
2	1.8812	27	0.5304
3	1.3915	29	0.5239
4	1.1584	31	0.5159
5	1.0180	34	0.5159
8	0.7999	39	0.5159
14	0.6341	40	0.5159
20	0.5673	42	0.5159

Tableau A3-16 : *K*_{III} en fonction de p (f=0.075)

Figure A3-17 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.08)

р	K _{III}	p	K _{III}
1	4.0077	25	0.5496
2	1.8815	27	0.5422
3	1.3928	32	0.5304
4	1.1605	33	0.5283
5	1.0208	35	0.5283
8	0.8044	38	0.5283
14	0.6414	39	0.5283
20	0.5770	40	0.5283

Tableau A3-17 : K_{III} en fonction de p (f=0.08)

Figure A3-18 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.085)

р	K _{III}	р	K _{III}
1	4.0058	25	0.5609
2	1.8818	27	0.5541
3	1.3942	28	0.5511
4	1.1627	29	0.5446
5	1.0236	35	0.5446
8	0.8090	38	0.5446
14	0.6488	39	0.5446
20	0.5868	43	0.5446

Tableau A3-18 : *K*₁₁₁ en fonction de p (f=0.085)

Figure A3-19 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.09)

р	K _{III}	р	K _{III}
1	4.0039	25	0.5724
2	1.8822	27	0.5660
3	1.3956	30	0.5592
4	1.1649	33	0.5559
5	1.0265	35	0.5559
8	0.8136	38	0.5559
14	0.6564	40	0.5559
20	0.5967	45	0.5559

Tableau A3-19 : K_{III} en fonction de p (f=0.09)

Figure A3-20 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.095)

р	K _{III}	p	K _{III}
1	4.0020	25	0.5839
2	1.8826	27	0.5780
3	1.3971	30	0.5718
4	1.1672	32	0.5676
5	1.0295	35	0.5676
8	0.8184	38	0.5676
15	0.6508	39	0.5676
22	0.5959	40	0.5676

Tableau A3-20 : K_{III} en fonction de p (f=0.095)

Figure A3-21 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.1)

р	K _{III}	р	K _{III}
1	4.0001	20	0.6169
2	1.8830	25	0.5955
3	1.3986	28	0.5858
4	1.1695	32	0.5816
5	1.0325	33	0.5802
10	0.7522	34	0.5802
15	0.6591	35	0.5802
17	0.6386	37	0.5802

Tableau A3-21 : K_{III} en fonction de p (f=0.1)

Figure A3-22 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.15)

р	K _{III}	р	K _{III}
1	3.9822	25	0.7110
2	1.8844	37	0.7039
3	1.4156	42	0.7056
4	1.1955	43	0.7059
5	1.0663	45	0.7059
10	0.8175	46	0.7059
15	0.7478	49	0.7059
17	0.7345	50	0.7059

Tableau A3-22 : K_{III} en fonction de p (f=0.15)

Figure A3-23 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.2)

р	K _{III}	р	K _{III}
1	3.9660	22	0.8228
2	1.8966	26	0.8192
3	1.4367	29	0.8177
4	1.2268	33	0.8164
5	1.1065	37	0.8157
10	0.8913	38	0.8156
15	0.8415	39	0.8156
17	0.8332	40	0.8156

Tableau A3-23 : K_{III} en fonction de p (f=0.2)

Figure A3-24 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.25)

р	K _{III}	р	K _{III}
1	3.9517	25	0.9206
2	1.9080	30	0.9186
3	1.4622	40	0.9171
4	1.2635	42	0.9170
5	1.1529	43	0.9170
10	0.9703	44	0.9170
15	0.9348	45	0.9170
24	0.9212	47	0.9170

Tableau A3-24 : K_{III} en fonction de p (f=0.25)

Figure A3-25 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.3)

р	K _{III}	p	K _{III}
1	3.9396	32	1.0121
2	1.9228	35	1.0116
3	1.4923	37	1.0113
4	1.3057	39	1.0111
5	1.2050	40	1.0110
10	1.0516	41	1.0110
17	1.0213	42	1.0110
24	1.0148	48	1.0110

Tableau A3-25 : K_{III} en fonction de p (f=0.3)

Figure A3-26 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.35)

р	K _{III}	р	K _{III}
1	3.9301	32	1.1008
2	1.9413	41	1.0996
3	1.5272	44	1.0995
4	1.3531	45	1.0994
5	1.2624	46	1.0994
10	1.1332	48	1.0994
17	1.1089	50	1.0994
24	1.1033	51	1.0994

Tableau A3-26 : *K*_{III} en fonction de p (f=0.35)

Résultats pour f=0.4

Figure A3-27 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.4)

р	K _{III}	p	K _{III}
1	3.9235	30	1.1858
2	1.9640	40	1.1843
3	1.5670	45	1.1840
4	1.4055	46	1.1839
5	1.3241	47	1.1839
10	1.2140	49	1.1839
17	1.1931	50	1.1839
24	1.1878	52	1.1839

Tableau A3-27 : K_{III} en fonction de p (f=0.4)

Figure A3-28 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.45)

р	K _{III}	р	K _{III}
1	3.9202	33	1.2669
2	1.9911	40	1.2660
3	1.6117	44	1.2657
4	1.4624	48	1.2655
5	1.3894	59	1.2656
10	1.2934	62	1.2656
17	1.2744	63	1.2656
25	1.2689	64	1.2656

Tableau A3-28 : *K*_{III} en fonction de p (f=0.45)

Figure A3-29 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.5)

р	K _{III}	р	K _{III}
1	3.9208	32	1.3466
2	2.0230	40	1.3455
3	1.6613	48	1.3450
4	1.5233	49	1.3449
5	1.4574	53	1.3448
10	1.3716	55	1.3448
17	1.3536	59	1.3448
25	1.3484	61	1.3448

Tableau A3-29 : K_{III} en fonction de p (f=0.5)

Figure A3-30 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.55)

р	K _{III}	р	K _{III}
1	3.9259	40	1.4235
2	2.0599	51	1.4228
3	1.7154	60	1.4226
4	1.5876	67	1.4227
5	1.5275	68	1.4227
10	1.4486	69	1.4227
17	1.4313	70	1.4227
25	1.4262	72	1.4227

Tableau A3-30 : K_{III} en fonction de p (f=0.55)

Figure A3-31 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.6)

р	K _{III}	p	K _{III}
1	3.9361	48	1.4999
2	2.1020	55	1.4996
3	1.7740	63	1.4995
4	1.6548	64	1.4994
5	1.5991	67	1.4994
10	1.5249	70	1.4994
17	1.5081	72	1.4994
25	1.5031	73	1.4994

Tableau A3-31 : K_{III} en fonction de p (f=0.6)

Figure A3-32 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.65)

р	K _{III}	р	K _{III}
1	3.9522	49	1.5762
2	2.1497	57	1.5759
3	1.8365	60	1.5758
4	1.7243	65	1.5757
5	1.6719	70	1.5757
10	1.6007	75	1.5757
17	1.5843	80	1.5757
25	1.5794	88	1.5757

Tableau A3-32 : K_{III} en fonction de p (f=0.65)

Figure A3-33 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.7)

р	K _{III}	р	K _{III}
1	3.9753	49	1.6524
2	2.2030	64	1.6520
3	1.9028	70	1.6519
4	1.7959	72	1.6518
5	1.7458	80	1.6518
16	1.6615	85	1.6518
25	1.6556	90	1.6518
33	1.6538	100	1.6518

Tableau A3-33 : *K*₁₁₁ en fonction de p (f=0.7)

Figure A3-34 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.75)

р	K _{III}	p	K _{III}
1	4.0064	57	1.7286
2	2.2619	65	1.7284
3	1.9723	73	1.7283
4	1.8693	76	1.7282
5	1.8206	78	1.7282
16	1.7378	80	1.7282
25	1.7320	83	1.7282
33	1.7302	86	1.7282

Tableau A3-34 : *K*_{III} en fonction de p (f=0.75)

Figure A3-35 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.8)

р	K _{III}	Р	K _{III}
1	4.0470	48	1.8060
2	2.3264	65	1.8055
3	2.0449	74	1.8054
4	1.9444	81	1.8053
5	1.8966	85	1.8052
16	1.8148	90	1.8052
25	1.8090	96	1.8052
33	1.8073	99	1.8052

Tableau A3-35 : K_{III} en fonction de p (f=0.8)

Figure A3-36 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.85)

р	K _{III}	Р	K _{III}
1	4.0986	57	1.8838
2	2.3963	65	1.8836
3	2.1203	73	1.8835
4	2.0212	81	1.8834
5	1.9739	86	1.8833
16	1.8928	90	1.8833
25	1.8871	96	1.8833
33	1.8854	100	1.8833

Tableau A3-36 : *K*₁₁₁ en fonction de p (f=0.85)

Figure A3-37 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.9)

р	K _{III}	Р	K _{III}
1	4.1633	49	1.9636
2	2.4715	65	1.9631
3	2.1983	75	1.9630
4	2.1000	81	1.9629
5	2.0529	91	1.9628
16	1.9723	93	1.9628
25	1.9666	97	1.9628
33	1.9649	100	1.9628

Tableau A3-37 : K_{III} en fonction de p (f=0.9)

Figure A3-38 : facteur d'intensité de contrainte K_{III} en fonction de p (f=0.95)

р	K _{III}	Р	K _{III}
1	4.2433	57	2.0447
2	2.5514	65	2.0445
3	2.2791	73	2.0444
4	2.1810	81	2.0443
5	2.1340	91	2.0442
16	2.0536	93	2.0442
25	2.0480	98	2.0442
33	2.0463	100	2.0442

Tableau A3-38 : K_{III} en fonction de p (f=0.95)

Figure A3-39 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1)

р	K _{III}	Р	K _{III}
1	4.3416	49	2.1288
2	2.6356	65	2.1283
3	2.3628	70	2.1282
4	2.2647	81	2.1281
5	2.2177	86	2.1280
16	2.1374	90	2.1280
25	2.1317	96	2.1280
33	2.1300	100	2.1280

Tableau A3-39 : K_{III} en fonction de p (f=1)

Figure A3-40 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.05)

р	K _{III}	р	K _{III}
1	4.4617	49	2.2154
2	2.7237	65	2.2150
3	2.4500	73	2.2148
4	2.3516	81	2.2147
5	2.3045	93	2.2146
16	2.2240	94	2.2146
25	2.2184	96	2.2146
33	2.2167	100	2.2146

Tableau A3-40 : K_{III} en fonction de p (f=1.05)

Figure A3-41 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.1)

р	K _{III}	р	K _{III}
1	4.6078	49	2.3056
2	2.2149	65	2.3051
3	2.5414	70	2.3050
4	2.4423	81	2.3049
5	2.3950	88	2.3048
16	2.3142	90	2.3048
25	2.3086	97	2.3048
33	2.3069	100	2.3048

Tableau A3-41 : K_{III} en fonction de p (f=1.1)

Figure A3-42 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.15)

р	K _{III}	р	K _{III}
1	4.7855	49	2.4000
2	2.9087	65	2.3995
3	2.6380	73	2.3994
4	2.5376	81	2.3993
5	2.4901	90	2.3992
16	2.4087	94	2.3992
25	2.4030	97	2.3992
33	2.4013	100	2.3992

Tableau A3-42 : K_{III} en fonction de p (f=1.15)

Figure A3-43 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.2)

р	K _{III}	Р	K _{III}
1	5.0012	49	2.4995
2	3.0045	70	2.4990
3	2.7416	81	2.4989
4	2.6381	90	2.4988
5	2.5905	94	2.4987
16	2.5083	96	2.4987
25	2.5026	98	2.4987
33	2.5008	100	2.4987

Tableau A3-43 : K_{III} en fonction de p (f=1.2)

Figure A3-44 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.25)

р	K _{III}	Р	K _{III}
1	5.2637	50	2.6052
2	3.1017	65	2.6048
3	2.8541	72	2.6046
4	2.7445	81	2.6045
5	2.6975	92	2.6044
16	2.6141	96	2.6044
25	2.6083	98	2.6044
33	2.6065	100	2.6044

Tableau A3-44 : K_{III} en fonction de p (f=1.25)

Figure A3-45 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.3)

р	K _{III}	р	K _{III}
1	5.5836	60	2.7180
2	3.1998	65	2.7179
3	2.9786	74	2.7178
4	2.8576	80	2.7177
5	2.8127	84	2.7176
16	2.7274	93	2.7176
25	2.7215	94	2.7176
33	2.7197	96	2.7176

Tableau A3-45 : K_{III} en fonction de p (f=1.3)

Figure A3-46 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.35)

р	K _{III}	Р	K _{III}
1	5.9752	57	2.8403
2	3.2986	65	2.8401
3	3.1193	74	2.8400
4	2.9780	80	2.8399
5	2.9383	84	2.8398
16	2.8498	87	2.8398
25	2.8438	90	2.8398
33	2.8420	94	2.8398

Tableau A3-46 : *K*₁₁₁ en fonction de p (f=1.35)

Figure A3-47 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.4)

р	K _{III}	Р	K _{III}
1	6.4574	49	2.9740
2	3.3982	62	2.9734
3	3.2821	66	2.9734
4	3.1061	75	2.9733
5	3.0774	79	2.9732
16	2.9834	82	2.9732
25	2.9772	85	2.9732
33	2.9753	87	2.9732

Tableau A3-47 : K_{III} en fonction de p (f=1.4)

Figure A3-48 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.45)

р	K _{III}	Р	K _{III}
1	7.0555	49	3.1212
2	3.4989	57	3.1209
3	3.4754	62	3.1207
4	3.2423	65	3.1205
5	3.2346	66	3.1206
16	3.1308	67	3.1206
25	3.1245	69	3.1206
33	3.1226	71	3.1206

Tableau A3-48 : *K*₁₁₁ en fonction de p (f=1.45)

Figure A3-49 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.5)

р	K _{III}	Р	K _{III}
1	7.8053	49	3.2859
2	3.6015	50	3.2858
3	3.7117	57	3.2856
4	3.3869	61	3.2854
5	3.4169	66	3.2853
16	3.2958	67	3.2853
25	3.2893	68	3.2853
33	3.2874	70	3.2853

Tableau A3-49 : K_{III} en fonction de p (f=1.5)

Figure A3-50 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.55)

р	K _{III}	Р	K _{III}
1	8.7578	41	3.4736
2	3.7074	48	3.4731
3	4.0101	57	3.4728
4	3.5401	60	3.4727
5	3.6352	61	3.4726
16	3.4834	63	3.4726
25	3.4766	64	3.4726
33	3.4746	65	3.4726

Tableau A3-50 : K_{III} en fonction de p (f=1.55)

Figure A3-51 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.6)

р	K _{III}	Р	K _{III}
1	9.9894	40	3.6906
2	3.8181	45	3.6902
3	4.3999	49	3.6899
4	3.7025	57	3.6896
5	3.9074	58	3.6895
16	3.7005	59	3.6895
25	3.6936	60	3.6895
33	3.6915	61	3.6895

Tableau A3-51 : K_{III} en fonction de p (f=1.6)

Figure A3-52 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.65)

р	K _{III}	Р	K _{III}
1	11.6201	40	3.9477
2	3.9359	45	3.9473
3	4.9291	50	3.9470
4	3.8755	51	3.9469
5	4.2637	53	3.9468
16	3.9574	54	3.9468
25	3.9510	55	3.9468
33	3.9487	57	3.9468

Tableau A3-52 : K_{III} en fonction de p (f=1.65)

Résultats pour f=1.7

Figure A3-53 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.7)

р	K _{III}	Р	K _{III}
1	13.8492	40	4.2618
2	4.0634	45	4.2613
3	5.6794	49	4.2611
4	4.0619	51	4.2610
5	4.7584	54	4.2606
16	4.2694	55	4.2606
25	4.2653	56	4.2606
33	4.2628	58	4.2606

Tableau A3-53 : K_{III} en fonction de p (f=1.7)

Figure A3-54 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.75)

р	K _{III}	Р	K _{III}
1	17.0351	37	4.6610
2	4.2030	39	4.6607
3	6.8003	40	4.6606
4	4.2674	44	4.6603
5	5.4955	45	4.6588
16	4.6588	48	4.6588
25	4.6651	49	4.6588
33	4.6618	51	4.6588

Tableau A3-54: K_{III} en fonction de p (f=1.75)

Figure A3-55 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.85)

р	K _{III}	Р	K _{III}
1	30.0985	30	5.9606
2	4.5288	32	5.9720
3	11.7675	34	5.9683
4	4.7776	35	5.9780
5	8.8885	36	5.9779
16	5.8153	38	5.9779
25	6.0141	42	5.9779
27	6.0018	45	5.9779

Tableau A3-55: K_{III} en fonction de p (f=1.85)

Résultats pour f=1.9

Figure A3-56 : facteur d'intensité de contrainte K_{III} en fonction de p (f=1.9)

р	K _{III}	Р	K _{III}
1	46.6608	30	7.1586
2	4.7189	32	7.1940
3	18.4460	33	7.2998
4	5.1143	34	7.2322
5	13.7071	40	7.2402
16	6.7052	46	6.9244
25	7.5286	47	6.9244
27	7.4693	48	6.9244

Tableau A3-56: *K*₁₁₁ en fonction de p (f=1.9)