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Abstract

Over the last three decades, there have been many studies in the area of missile
guidance and control. The result has been a great deal of progress and several ap-
proachs to the problem have emerged. The basic problem is to intercept a target
with great accuracy in an environment that is uncertain and noisy. One of the ear-
liest forms of missile guidance is that of command to line of sight and proportional
navigation, this involves establishing a line of sight between the tracking sensor
and the target. This work invistigates the guidance and control design problem for
a generic surface to air missile intercepting a given target using different optimised
guidance laws which are the optimised commznd to LOS, PN, and PD based guid-
ance. The performances of these guidance laws are tested against a given target
in terms of the acheived miss-distance and the time of closest approach. Furether-
more, qualitative comparative study between the aforementioned guidance laws is
presented.
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General Introduction

T he natural process of improvement of all aspects of our life includes also ad-
vances in development of sophisticated weapon systems, the means to defend

ourselves from enemies, those who consider wars as a way to improve their liv-
ing conditions. In lieu of the thrown stone, the cast spear, the flying bullet, the
dropping bomb, and the launched rocket, the defensive or destructive functions are
better performed by missiles. The fundamental goal of the destruction or defense,
destroy the target, has not changed. However, targets became more sophisticated.
Technological progress did not avoid them.

In this sense, missile guidance is, in fact, an intriguing and challenging subject
that needs the efforts and skills of different engineering desciplines to be aligned
and combined for successful system design.

Motivated by the need to develop more efficient and accurate missiles to defend
their areas from threats, governments and armies are constantly improving in the
developement of missile guidance and control system.

In this work, we are interested in investigating a particular guidance problem
related to the minimisation of the miss distance and the time of closest approach of
a generic surface-to-air missile. To approach towards the solution of such a problem,
we design and apply three different guidance laws.

Let us give a brief overview of the topics covered in this thesis, that would also
give an idea about the ways in which the thesis is organized.

• chapter 1 introduces some mathematical backeground concepts, that allow a
better understanding of the mathematical model of missile, its aerodynamic
characteristics , and the different methodes of control used in this thesis.

• chapter 2 describes in general terms the missile subsystems and functions. A
general idea about the missile classifications and its physical components is
given.

• chapter 3 concerned with the derivation of the mathematical dynamical model
of a missile in flight.
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• chapter 4 concerns the representation of aerodynamic data in the form of force
and moment coefficients, stability derivatives and the effects of atmospheric
properties and of airflow parameters on the aerodynamic forces and moments.

• chapter 5 describes the important functions and concepts in missile guidance
and control system, such as the various types of missile guidances techniques,
the different configurations of control system , autopilot, and their models and
also the different guidance laws applied in the simulation.

• chapter 6 presents the simulation chapter where the described missile model
is simulated and tested against a moving target with different maneuvers using
the different guidance laws cited in the fifth chapter. Then, a qualitative and
comparative study between the results is established.



Chapter 1

Mathematical background

1.1 Introduction

Certain physical quantities such as mass, pressure or the absolute temperature at some point only
have magnitude. Numbers alone can represent these quantities, with the appropriate units, and
they are called scalars. There are, however, other physical quantities that have both magnitude and
direction: the magnitude can stretch or shrink and the direction can reverse. These quantities can
be added in such a way that takes into account both direction and magnitude. Force is an example of
a quantity that acts in a certain direction with some magnitude that we measure in newtons. When
two forces act on an object, the sum of the forces depends on both the direction and magnitude of
the two forces. Position, displacement, velocity, acceleration, force, momentum and torque are all
physical quantities that can be represented mathematically by vectors.

1.2 Basic definitions and vector operations

The basic entity in dynamics is a vector. We shall denote vectors by boldface symbols and draw them
as arrows. A vector has both magnitude and direction and is represented by magnitudes along any
three mutually perpendicular axes, called a coordinate frame (or, a reference frame). Each axis of a
coordinate frame is represented by a unit vector, defined as a vector of unit magnitude.
There are two distinct ways in which vectors can be multiplied: the scalar product and the vector
product.

1.2.1 Scalar Product

As the name suggest, the scalar product (also called dot product) of two vectors ~A and ~B is a scalar
(a quantity with only magnitude), which represents the projection of ~A onto ~B multiplied by ‖~B‖,
and is defined as

~A · ~B = ‖~A‖‖~B‖ cos(θ ) (1.1)

Where
‖~A‖ and ‖~B‖ are the magnitudes of the two vectors ~A and ~B respectivly.
θ is the angle between the two vectors ~A and ~B, where 0≤ θ ≤ 180.
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Figure 1.1: The dot product of two vectors A and B.

Remark: From this definition, it is clear that the dot product of any two vectors with the same
direction is the product of their respective magnitudes, so:







~A.~i = Ax
~A.~j = Ay
~A.~k = Az

(1.2)

Analiticaly: the scalar product can be expressed as the sum of products of the respective components
of the two vectors. According to the Eqs (1.2) we can write the dot product of two vectors, ~A =
Ax
~i + Ay

~j + Az
~k and ~B = Bx

~i + By
~j + Bz

~k, as

~A · ~B = Ax Bx + Ay By + AzBz (1.3)

1.2.2 Vector product

The vector product (also called the cross product), ~A× ~B is vector, and can be expressed as follows:

~A× ~B = ‖~A‖‖~B‖ cos(θ )~e (1.4)

Where
‖~A‖ and ‖~B‖ are the magnitudes of the two vectors ~A and ~B respectivly.
θ is the angle between the two vectors ~A and ~B, where 0≤ θ ≤ 180.
~e is unit vector, it’s direction is normal to the plane formed by the two vectors ~A and ~B, and is given
by the right-hand rule as shown in the following figure:

Figure 1.2: Vector product of two vectors A and B.

Remark: From this definition, it is clear that the vector product of any two vectors with the same
(or opposite) direction is zero, while two mutually perpendicular vectors have a vector product with
magnitude equal to the product of their respective magnitudes.



















~i × ~i = ~0

~i × ~j = ~k

~i × ~k = −~j



















~j × ~i = −~k

~j × ~j = ~0

~j × ~k = ~i



















~k× ~i = ~j

~k× ~j = −~i

~k× ~k = ~0

(1.5)
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Figure 1.3: The memory circle and reference frame

Analiticaly: the vector product of two vectors, ~A= Ax
~i +Ay

~j +Az
~k and ~B = Bx

~i + By
~j + Bz

~k can
be expressed as the determinant of a square matrix as :

~A× ~B =

�

�

�

�

�

�

~i ~j ~k
Ax Ay Az

Bx By Bz

�

�

�

�

�

�

=
�

Ay Bz − ByAz

�

~i + (AzBx − BzAx) ~j +
�

Ax By − BxAy

�

~k (1.6)

1.2.2.1 Alternative ways to compute the cross product

The vector cross product also can be expressed as the product of a skew-symmetric matrix and a
vector as follow :

~A× ~B =
�

Ax Ay Az

�





~i
~j
~k



×
�

~i ~j ~k
�





Bx

By

Bz



 (1.7)

=
�

Ax Ay Az

�





~i × ~i ~i × ~j ~i × ~k
~j × ~i ~j × ~j ~j × ~k
~k× ~i ~k× ~j ~k× ~k









Bx

By

Bz



 (1.8)

According to the Eq (1.5) we get:

~A× ~B =
�

Ax Ay Az

�





~0 ~k −~j
−~k ~0 ~i
~j −~i ~0









Bx

By

Bz



 (1.9)

=
�

~i ~j ~k
�





~0 Az −Ay

−Az
~0 Ax

Ay −Ax
~0









Bx

By

Bz



 (1.10)

=
�

~i ~j ~k
�

ΩA





Bx

By

Bz



 (1.11)

Where ΩA is the cross-product operator matrix corresponding to the vector ~A in reference frame
coordinates.
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1.2.3 Vector triple product

The vector triple product is defined as the cross product of one vector with the cross product of two
others. The following relationship holds:

~A×
�

~B × ~C
�

=
�

~A · ~C
�

~B − (~A · ~B) ~C (1.12)

This relationship known as the Gibbs rule.

1.2.4 Mixed Triple Product of Three Vectors

The mixed product (or the scalar triple product) is the scalar product of the first vector with the cross
product of the other two vectors denoted as :

~A ·
�

~B × ~C
�

(1.13)

Geometrically: The mixed product is the volume of the parallelepiped defined by vectors ~A, ~B and
~C , as shown in the following figure:

Figure 1.4: Mixed product of three vectors ~A, ~B and ~C

The altitude of the parallelepiped is the projection of the vector ~A in the direction of the vector
~B× ~C , so

h= ‖~A‖ cos(θ ) (1.14)

Therefore, the scalar product of the vector ~A and vector ~B× ~C is equal to the volume V of the paral-
lelepiped .

~A ·
�

~B × ~C
�

= ‖~B× ~C‖.h= V (1.15)

Analitically: The mixed product can be expressed in terms of the components of the three vectors
~A= Ax

~i + Ay
~j + Az

~k, ~B = Bx
~i + By

~j + Bz
~k and ~C = Cx

~i + Cy
~j + Cz

~k as the following determinant:

~A ·
�

~B× ~C
�

=

�

�

�

�

�

�

Ax Ay Az

Bx By Bz

Cx Cy Cz

�

�

�

�

�

�

(1.16)

= Ax

�

By Cz − Cy Bz

�

+ Ay (Cx Bz − Bx Cz) + Az

�

Bx Cy − Cx By

�

(1.17)
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1.2.5 Magnitude and direction of a vector

The Cartesian coordinate system defined by ~i; ~j; ~k has perpendicular axes. The Pythagorean theo-
rem allows us to calculate the magnitude (length) of a vector given by its components.

Let we consider the vector ~r = ~A− ~B, the magnitude of vector ~r is given by :

‖~r‖= ‖~A− ~B‖=
Æ

(xA− xB)2 + (yA− yB)2 + (zA− zB)2 (1.18)

The direction of a vector can be described in one of three closely related ways:
? The unit vector.
? The direction angle.
? The direction cosines.

1.2.5.1 The unit vector

The direction of a vector is most easily described by a unit vector, also called a direction vector. A
unit vector, for a particular vector, is parallel to that vector but of unit length. For example, the unit
or direction vector corresponding to the vector ~r can be written as:

~u=
~r
‖~r‖

(1.19)

Where
~u is the unit vector, (‖~u‖= 1).

Figure 1.5: Unit vector ~u of correspending vector ~r

1.2.5.2 The direction angle

The direction of any directed line segment, or vector ~r, is specified by the direction angles α, β and
γ, in the correspending reference frame, as shown in the following figure:
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Figure 1.6: Direction angles α, β and γ of vector ~r .

1.2.5.3 The direction cosines

The direction cosines are defined as the cosines of the direction angles, namely:

a = cos(α)

b = cos(β)

c = cos(γ)

With
~u= a~i + b~j + c~k

where ~u is unit vector of the correspending vector ~r.

1.2.6 Change of basis (Change of frames)

The vectors expressed in one coordinate system frequently must be transformed into a different co-
ordinate system. In particular, assume that the original coordinate system have ~i, ~j, and ~k as a basis
and let ~a be a vector in the frame (o,~i, ~j, ~j) represented by the following ~a = (ax1

~i + ay1
~j + az1

~k).
We change the basis from ~i, ~j, and ~k to ~e1 ~e2 and ~e1 according to the next consideration
~e1 = α1

~i+β1
~j+γ1

~k, ~e2 = α2
~i+β2

~j+γ2
~k and ~e3 = α3

~i+β3
~j+γ3

~k . In compact matrix form we can write




~e1

~e2

~e3



=





α1 β1 γ1

α2 β2 γ2

α3 β3 γ3









~i
~j
~k



⇐⇒ [Base]2 = T[Base]1 (1.20)

We would like to find the coordinates of ~a in new reference frame with a new basis, but with the
same origin:

~a =
�

ax1
~i + ay1

~j + az1
~k
�

=
�

ax2 ay2 az2

�





~e1

~e2

~e3





=
�

ax2 ay2 az2

�





α1 β1 γ1

α2 β2 γ2

α3 β3 γ3









~i
~j
~k



 (1.21)
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



ax1

ay1

az1



=





α1 β1 γ1

α2 β2 γ2

α3 β3 γ3





T 



ax2

ay2

az2



⇐⇒





ax2

ay2

az2



=





α1 β1 γ1

α2 β2 γ2

α3 β3 γ3





−T 



ax1

ay1

az1



 (1.22)

1.2.7 Derivative of vectors

The position of a particle is completely described by the function r(t). In kinematics we study how
this function is related to the variables that control its behaviour, namely the velocity v(t) and the
acceleration a(t). In dynamics we are trying to answer the question how the net force acting on the
particle at any location r(x , y, z) governs the behaviour of r(t).
Given a vector r(t) that depends on a parameter of time.

Figure 1.7: The derivative of vector.

If corresponding to each value of a scalar t we associate a vector ~r , and then ~r is called a function
of t denoted by ~r(t). In three dimensions we can write ~r(t) = x(t)~i + y(t)~j + z(t)~k .
The derivative of ~r(t) is defined as:

d~r(t)
d t

= lim
h→0

~r(t + h)− ~r(t)
h

(1.23)

Where h is the increment of time.
We can also write the derivative of ~r in terms of its components such as:

d~r(t)
d t

=
d x(t)

d t
~i +

d y(t)
d t

~j +
dz(t)

d t
~k (1.24)

• The velocity is the first derivative of vector position, and can be written as:

~v(t) =
d~r(t)

d t
(1.25)

• The acceleration is the second derivative of vector position, and can be written as:

~a(t) =
d~v(t)

d t
=

d2~r(t)
d t2

(1.26)
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1.2.8 Differentiation: chain rule

The Chain Rule is used when we want to differentiate a function that may be regarded as a compo-
sition of one or more simpler functions.
If our function f (x) = (g ◦ h) (x), where g and h are simpler functions, then the Chain Rule may be
stated as :

f ′(x) = (g ◦ h)′(x) = (g ′ ◦ h)(x)h′(x) (1.27)

There is also another notation which can be easier to work with when using the Chain Rule. Let
w= f (x , y), where f is a differentiable function of x and y . If x = g(t) and y = h(t), where g and
h are differentiable function of t, then w is a differentiable function of t, we write it as follows

dw
dt
=

dw
d x

.
d x
d t
+

dw
d y

.
d y
d t

(1.28)

w

x y

t t

∂ w
∂ x

∂ w
∂ y

d x
d t

d y
d t

Figure 1.8: Diagram represents the derivative of w with respect to t

1.2.9 Linear momentum

We start with the idea of momentum. The momentum p of an object is the mass of the object times
the velocity of the object:

~p(t) = m~v(t) = m~r ′(t) =

∫

~F(t)d t

Assume that the mass of the object is constant. Then differentiation gives

~p′(t) = m ~r ′′(t) = ~F(t)

. Thus, the time derivative of the momentum of an object is the net force on the object:

~F(t) =
d(m~v(t))

d t
. If the net force on an object is continually zero, the momentum ~p(t) is constant.

This is the law of conservation of momentum.

1.2.10 Angular momentum

The angular momentum of an object about any given point is a vector quantity that is intended to
measure the extent to which the object is circling about that point. If the position of the object at
time t is given by the radius vector ~r(t), then the object’s angular momentum about the origin is
defined by the formula

~H(t) = ~r(t)× ~p(t) = m~r(t)× ~v(t) (1.29)
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~H(t) =

�

�

�

�

�

�

~i ~j ~k
x y z

mvx mvy mvz

�

�

�

�

�

�

= m
�

yvz − zvy

�

~i +m (zvx − x vz) ~j +m
�

x vy − yvx

�

~k (1.30)

At each time t of a motion, ~H(t) is perpendicular to ~r(t), perpendicular to ~v(t), and directed so that
~r(t), ~v(t), ~H(t) form a right-handed triple. The magnitude of ~H(t) is given by the relation

‖ ~H(t)‖= m‖~r(t)‖×‖~v(t)‖ sin(θ (t)) (1.31)

Figure 1.9: The angular momentum

Where θ (t) is the angle between ~r(t) and ~v(t). (All this, of course, comes from the definition
of the cross product.) If ~r(t) and ~v(t) are not zero, then we can express ~v(t) as a vector parallel to
~r(t) plus a vector perpendicular to ~r(t):

~v(t) = ~vq(t) + ~v⊥(t)

~H(t) = m~r(t)×(~vq(t) + ~v⊥(t)) = m~r(t)×~v⊥(t) (1.32)

Remark: The component of velocity that is parallel to the radius vector contributes nothing to angular
momentum. The angular momentum comes entirely from the component of velocity that is perpendicular
to the radius vector.

For more details see [14].



Chapter 2

Missile system description

2.1 Introduction

A missile is defned as a space-traversing unmanned vehicle which contains the means for control-
ling its flight path. A guided missile is considered to operate only above the surface of the Earth,
and can be controlled in flight till interception to achieve destruction of the target. While guided
missiles have become more and more sophisticated and smart, the fundamentals of missiles remain
unchanged. A host of different disciplines of science and engineering go into the making of a guided
missile system. This chapter gives a bird’s eye view of the different types of guided missile systems,
and the components, which go to make up a guided missile system[4].

2.2 Classification of missiles

The missiles are classifed by the physical areas of launching and the physical areas containing the
target. The four general categories of the guided missiles are:
(1) Surface-to-surface missile
(2) Surface-to-air missile
(3) Air-to-surface missile
(4) Air-to-air missile

Surface-to-Surface missiles and Air-to-Surface missiles are operated from an air or land platform
toward a surface target. However, the surface-to-air and Air-to-air missiles are operated toward an
air target.

Surface-to-air missile systems are designed to meet specified operational requirements. The va-
riety of requirements leads to different missile sizes and fictional arrangements. Many of the differ-
ences among missile systems are the results of variations in tracking implementations and guidance
concepts. The purpose of a surface-to-air missile system is to destroy threatening airborne targets.
The system includes the missile flight vehicle and supportive equipment such as a launcher, any
ground-based missile and/or target trackers, and any ground-based guidance processors.

Guided missiles may also be classified as strategic or tactical, with further subdivisions depending
on the role. Strategic missiles are large missiles, often with nuclear warheads and very long ranges,
meant to destroy the enemy’s ability to wage war. Tactical missiles, on the other hand, are meant for
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battlefield use for the limited purpose of winning the battle or encounter. These can be of different
kinds, depending on their roles[4].

2.3 Missile components

A guided missile is typically divided into four subsystems: the airframe, guidance, motor (or propul-
sion), and warhead[1].

Figure 2.1: Missile components

These subsystems(components) will now be examined in more detail:

2.3.1 Seeker

A missile seeker is composed of a seeker head to collect and detect energy from the target, a tracking
function to keep the seeker boresight axis pointed toward the target and a processing function to
extract useful information from the detection and tracking circuits. The following figure shows a
real seeker head.

Figure 2.2: Seeker head configuration

The seeker usually is mounted in the nose of the missile where it can have an unobstructed view
ahead. The seeker antenna or optical system is usually mounted on gimbals to permit its central
viewing direction (boresight axis) to be rotated in both azimuth and elevation relative to the missile
centerline .

0Fig 2.2 Avtomatika L-112E anti-radiation seeker.
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The gimballed portion of the seeker head usually is stabilized to keep it pointing in a fixed
direction regardless of perturbing angular motions of the missile body. The two most prevalent
means of stabilization are to spin a portion of the gimballed components so that they act as a gyro
and to use actuators to hold the seeker in a stabilized direction using control signals from gyros
mounted on the gimbal frames. In either case, signals from the tracking circuitry are required to
change the pointing direction of the seeker. The two gimbal angles are the azimuth (ψ) and elevation
(θ ) angles, which are defined in the same manner as the Euler angles. The x-axis indicates the line-
of-sight (LOS) direction.

Figure 2.3: Seeker gimbal

The two common seeker types are optical and radio frequency (RF) seeker.

2.3.1.1 Optical seekers

Seekers that sense radiation in the ultraviolet(UV), visual, and infrared (IR) portions of the elec-
tromagnetic spectrum are classed as optical seekers. The radiation is transmitted through the at-
mosphere from the target. Not all target radianuation. Optical radiation is attenuated by the ge-
ometrical distance from the source (inverse range squared); by absorption and scattering by the
atmosphere; by clouds, haze, rain, and snow, and by other obscurants such as smoke and dust. The
amount of attenuation is influenced by the wavelength of the radiation.

Figure 2.4: Generic IR seeker and its location in missile

There are three types of optical seekers based on the different techniques used to process the
optical image. These methods are reticle, pseudoimaging, and imaging.
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2.3.1.2 Radio Frequency Seekers

An RF seeker is essentially a radar in which the antenna is employed to collect RF radiation reflected
horn the target. The RF power may be generated by systems onboard the target, by a target illumi-
nator on the ground or by a transmitter onboard the missile.

Figure 2.5: Radio frequency seeker

• Passive RF seeker receives radiation generated by the target.

Figure 2.6: Passive seeker

• Semiactive seeker receives reflected target echoes of radiation originally generated by a
ground-based illuminator.

Figure 2.7: Semi-active seeker

• Active seeker receives target echoes of radiation originally generated and transmitted from
onboard the missile.
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Figure 2.8: Active seeker

The basic radar types applicable to surface-to-air missiles are pulse radars, continuous wave (CW)
radars, and pulse Doppler radars.

2.3.2 Autopilot

The autopilot in a missile serves as a "translator" between the guidance processor and the control
system.

2.3.3 Control system

A system that serves to maintain attitude stability of the missile and to correct deflections[5]. See
chapter 5 for more details.

2.3.4 Guidance system

A system which evaluates flight information, correlates it with target data, determines the desired
flight path of a missile, and communicates the necessary commands to the missile flight control
system[5]. See also chapter 5.

2.3.5 Warhead

The warhead is the reason-for-being of any service guided missile. It may be designed to inflict any
of several possible kinds of damage on the enemy. The other components are intended merely to
ensure that the warhead will reach its destination.

The types of warheads that might be used with guided missiles include: external blast, frag-
mentation, shaped-charge, explosive-pellet, chemical, biological, nuclear, continuous rod, clustered,
thermal, illuminating, psychological, and dummy. Some types of warheads which are used in surface
to air missile will be discussed in the following paragraphs.

2.3.5.1 Shaped Charge

This warhead is composed of many shaped charges directed radially outward from the centerline of
the missile. Each shaped charge expels hypervelocity particles of a metallic liner into a very narrow,
concentrated beam. The extremely high velocity of the fragments adds another damage mechanism,
called the vaporific effect, which resembles the effect of an explosion occurring inside the target
structure. Inspection of structures damaged by this mechanism shows aircraft skins peeled outward
rather than the inward deformation that would be typical of slower fragments and external blast.
In addition, between the shaped-charge spokes are areas of enhanced external blast effects, which
reach to much greater ranges than blast effects from isotropic warheads.
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Figure 2.9: Shaped charge warhead and its implimentation in 3D

1. Aerodynamic cover.

2. Air filled cavity.

3. Conical liner.

4. Detonator.

5. Explosive.

2.3.5.2 Continuous Rod

Continuous rod warheads are designed with a cylindrical casing composed of a double layer of
steel rods. The rods are welded in such a way that each end of a rod is connected to an end of a
neighboring rod. As the rods are blown out radially by the explosion, they hang together forming a
continuous circle. The objective of the continuous rod warhead is to cut long slices of target skins
and stringers and thus weaken the structure to the point at which aerodynamic loads will destroy
it. When the continuous ring of rods reaches its maximum diameter, it breaks up, and the lethality
drops off markedly.

Figure 2.10: Continuous rod warhead explosion test

0Image 2.10: Arena firing of continuous-rod warhead, 1972 at Naval Air Weapons Station China Lake.
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2.3.5.3 Fragment

Most surface-to-air missiles use blast-fragment warheads. Although damage is caused primarily by
the fragments, a bonus is obtained from coincident blast effects if the miss distance is small enough.
The approximately cylindrical metal warhead casing is fabricated by scoring or other means so that
the explosion of the charge breaks the casing into many discrete fragments of uniform shape and
size. These fragments fly out radially, approximately perpendicular to the centerline of the missile,
and form a circular band of fragments that expands in diameter. Fragments are not very effective in
causing target structural damage except at close miss distances at which a high density of fragments
can be applied. Fragments are very effective, however, against target components such as a pilot, fuel
cells, wiring, plumbing, electronic control equipment, electronic armament equipment, and engine
peripheral equipment.

Figure 2.11: Fragments warhead and its explosion test

2.3.6 Fuze

The guided missile fuze may be defined as that device which causes the warhead to detonate in such
a position that maximum damage will be inflicted on an average target. For most guided missiles the
guidance accuracy is such that the missile will not always actually impact the target but will usually
pass close to it Near misses can be converted to successful intercepts by the use of proximity fuzes
that sense the approach of the missile to the target and initiate a warhead detonation command.
Most surface-to-air missiles contain two fuzes an impact fuze that is triggered by impact with the
target and a proximity fuze that is triggered by a close approach to the target.

2.3.6.1 Impact fuze

An impact fuze is one that is actuated by inertial force that occurs when missile strikes the target.
For example, consider a cylindrical tube located in a warhead with a shock-sensitive explosive per-
cussion charge permanently fixed in the forward end of the tube (relative to the direction of flight)
and a heavy metallic plunger at the rear end of the tube, as shown in the following figure[6].

0Fig 2.11: Preformed fragments (the type of metal) in the matrix cured polymer (Widener et al., 2012).
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Figure 2.12: Impact fuze before and after impact

While in flight, the movable plunger remains against the rear end of the tube. However, when the
missile comes to a sudden stop against the target, the plunger, tending to remain in motion, rushes
to the forward end of the tube where it strickes and detonates the shock-sensitive fuze charge. The
fuze charge in turn detonates the bursting charge of the warhead. The right diagram illustrates the
position of the plunger after the target has been engaged.

Figure 2.13: Impact fuze

2.3.6.2 Proximity Fuze

Proximity fuzes, often called VT (variable time) fuzes, are actuated by some characteristic feature of
target or target area. Listed below are some basic proximity fuzes:

a. Photoelectric proximity fuzes

b. Accoustic proximity fuzes

c. Pressure proximity fuzes

d. Radio proximity fuzes

e. Electrostatic proximity fuzes.

Each of these fuzes is preset to function when the intensity of the target characteristic, or target
area characteristic, to which that fuze is sensitive, reaches a certain magnitude. Proximity fuzes are
designed so that the warhead burst pattern will occur at the most effective time and location relative
to the target. Adapting the proximity fuzes to the burst pattern of warhead is, in general, difficult
since the burst pattern is influenced by the relative velocity with which the missile approaches the
target.If targets with widely varying speeds are to attacked, it may be possible to automatically adjust
the fuze sensitivity on the basis of the target speed as predicted by a computer.
Proximity fuzes activate the auxiliary warhead detonating system after electrically integrating two
factors:
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(1) nearness to the target,
(2) rate of approach to the target.
However, if the target succeeds in jamming a proximity fuze, only a direct hit can be effective[6].

Figure 2.14: Proximity fuze

2.3.7 Airframe

The Airframe is the cylindrical tube structure that carries the warhead to the target, and houses all
the missile subsystems, attached end-to-end, and suports the control fins, stabilizing fins, and wings
(if any). The method of control influences the airframe configuration. Configurations with canard
control, tail control, and wing control. Airframe deflection (aeroelastic effect) is an important con-
sideration in missile design.

The front end (nose) of the missile is usually a radome or optical dome to house the seeker.
Radomes, housing RF seekers, have pointed noses to minimize drag under supersonic flow condi-
tions. Optical domes, housing optical seekers, are usually hemispherical to avoid optical ray diffrac-
tion, and the contribution to drag is acceptable because they can be made small. The rocket nozzle
exit usually forms the tail end of the airframe, and there are usually stabilizing fins located near the
tail to provide static stability.

The missile must be as light and compact as possible, yet strong enough to carry the warhead.
(and other components), and withstand the forces to which it will be subjected, such as gravity, air
pressure, winds, heat, stresses of acceleration and deceleration,and other forces. For every pound
of weight saved in the missile structure, less propulsion energy is required. The weight and balance
relationships must be given careful consideration. The initial location of the center of gravity is of
extreme importance. The center of gravity can change during missile flight because of the burning
of the propellant, and separation of the booster after burnout. These factors and others must be
carefully included in the calculations of the missile designers to produce a structure that will perform
as expected.

2.3.8 Propulsion system

This system provides the energy required to move the missile from the launcher to the target. There
are two basic types of jet propulsion power plants used in missile propulsion systems the atmo-
spheric (airbreathing) jet and the thermal jet propulsion systems. The basic difference between
the two systems is that the atmospheric jet engine depends on the atmosphere to supply the oxygen
necessary to start and sustain burning of the fuel. The thermal jet engine operates independently
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of the atmosphere by starting and sustaining combustion with its own supply of oxygen contained
within the missile.

2.3.8.1 Atmospheric jet propulsion system

Any jet-propelled system that obtains oxygen from the surrounding atmosphere to support the com-
bustion of its fuel is an atmospheric jet engine. Pulsejets, ramjets and turbojets, are all of this
type, although the latter are not used in guided missiles. Obviously, the operation of these engines is
limited by the amount of oxygen available, and they can operate only at altitudes where the oxygen
content of the air is adequate.

• Pulsejet: Pulsejet engines are so called because of the intermittent or pulsating combustion
process. A pulsejet engine can be made with few or no moving parts and is capable of running
statically. Pulsejet engines are a lightweight form of jet propulsion, but usually have a poor
compression ratio, and hence give a low specific impulse. Although pulsejet engines were used
by the U.S. Navy to propel an early missile, they are now considered obsolete[6].

Figure 2.15: Pulsejet engine

• Ramjet: A ramjet engine derives its name from the ram action that makes its operation possi-
ble. (This engine is sometimes referred to as the athodyd, meaning aerothermodynamic duct).
It is the simplest of the air-breathing propulsion engines, anthem no mowing parts. Ramjet
operation is limited to altitudes below about 90,000 feet because atmospheric oxygen is nec-
essary for combustion.

Figure 2.16: Ramjet engine

• Turbojet: A turbojet engine is an air-dependent thermal jet-propulsion device. It derives its
name from the fact, that its compressor is driven by a turbine wheel, which is itself driven by
the exhaust gases. A typical turbojet engine includes an air intake, a mechanical compressor
driven by a turbine, a combustion chamber, and an exhaust nozzle.

0Image 2.15: The Loon (Argus) pulse jet demonstrated at the Planes of Fame Air Museum.
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Figure 2.17: Turbojet engine

Turbojets may be divided into two types depending on the type of compressor. These are
centrifugal-flow turbojets and axial-flow turbojets.

The engine does not require boosting and can begin operation at zero acceleration.

2.3.8.2 Thermal jet propulsion system

Thermal jets include solid propellant, liquid propellant, and combined propellant systems. An AO
comes in contact with all three systems. The solid propellant and combined propellant systems are
currently being used in some air-launched guided missiles[14].

• Liquid propellant: Liquid propellant rocket motors use a liquid fuel and a liquid oxidizer–each
carried onboard in separate containers. The propellants are metered into a combustion cham-
ber in which high-temperature; high-pressure gases are generated and exhausted through a
nozzle to produce thrust. [14].

Figure 2.18: A simplified liquid propellant rocket

1)-Liquid rocket fuel.
2)-Oxidizer.
3)-Pumps carrying the fuel and oxidizer.
4)-The combustion chamber mixes and burns the two liquids.
5)-The hot exhaust is choked at the throat.
6)-Exhaust exits the rocket.
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• Solid propellant :A solid-propellant rocket or solid rocket is a rocket with a rocket engine that
uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by
gunpowder; they were used in warfare by the Chinese, Indians, Mongols and Persians, as early
as the 13th century. A simple solid rocket motor consists of a casing, nozzle, grain (propellant
charge), and igniter[14].

Figure 2.19: A simplified solid propellant rocket

1)- A solid fuel-oxidizer mixture (propellant) is packaed into the rocket, with a cylindrical hole
in the middle.
2)- An igniter combusts the surface of the propellant.
3)- The cylindrical hole in the propellant acts as a combustion chamber.
4)- The hot exhaust is choked at the throat.
5 )- Exhaust exits the rocket.

In some guided missiles, different thrust requirements exist during the boost phase as com-
pared to those of the sustaining phase. The dual thrust rocket motor (DTRM) is a combined
system that contains both of these elements in one motor. The DTRM contains a single propel-
lant grain made of two types of solid propellant—boost and sustaining. The grain is configured
so the propellant meeting the requirements for the boost phase burns at a faster rate than the
propellant for the sustaining phase. After the boost phase propellant burns itself out, the sus-
taining propellant sustains the motor in flight over the designed burning time (range of the
missile).

• Combined propellant : A hybrid engine consists of a liquid oxidizer, a solid fuel, and its asso-
ciated hardware. The liquid oxidizer is valved into a chamber containing the solid propellant.
Ignition is usually hypergolic. Neither of the propellants will support combustion by itself in a
true hybrid rocket. The combustion chamber is within the solid grain, as in a solid-fuel rocket;
the liquid portion is in a tank with pumping elements as in a liquid-fuel rocket. This type is
sometimes called a forward hybrid to distinguish it from a reverse hybrid, in which the oxidizer
is solid and the fuel is liquid. The biggest advantage of hybrids is the ability to use reactions
denied to other propulsion systems. A second advantage is that high density can be achieved,
with concurrently good specific impulse. The third great advantage is safety.
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Figure 2.20: Combined propellant



Chapter 3

Mathematical modeling of a missile

3.1 Introduction

Missile models are based on mathematical equations that describe the dynamic motions of missiles
that result from the forces and moments acting upon them. The mathematical tools employed are
the equations of motion, which describe the relationships between the forces acting on the missile
and the resulting missile motion. Three-degree-of-freedom models employ translational equations
of motion; six-degree-of-freedom models employ, in addition, rotational equations of motion. The
inputs to the equations of motion are the forces and moments acting on the missile; the outputs are
the missile accelerations that result from the applied forces and moments.

3.2 Forces and moments

The forces and moments are produced by aerodynamics, propulsion, and gravity. Aerodynamic
forces and moments are generated by the flow of air past the missile; they depend on the missile
speed, configuration, and attitude, as well as on the properties of the ambient air. Propulsive thrust
is usually designed to act through the missile center of mass and thus produces no moment about
the center of mass.

Figure 3.1: Forces, Velocities, Moments, and Angular Rates in Body Reference Frame
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3.2.1 Aerodynamic forces and moments

The magnitudes of aerodynamic forces and moments depend on ambient air conditions and on mis-
sile configuration, attitude, and speed. Missile configuration includes the configuration of the body
plus any fixed fins and the control surfaces. If the missile and surrounding air mass are considered
components of a single closed system the forces that develop between the air and the missile produce
equal but opposite changes in the momentums of the two systems; thus the momentum of the total
system is conserved in conformance with Newton’s laws.

3.2.1.1 Aerodynamic forces

The resultant aerodynamic force FA on the missile can be resolved in any coordinate frame to give
three orthogonal components. Often the most convenient reference frame for calculating aerody-
namic forces is the wind coordinate system (xw, yw, zw). As shown in figure 3.2, the total angle of
attack αt , and the resultant aerodynamic force FA lie on the xwzw-plane, and there is no side force
and no sideslip angle β in this system. The component of FA on the xw-axis is called the drag force
D, and the component on the zw-axis is called the lift force L. The term "lift” implies a force directed
upward to oppose the force due to gravity; however, in missile aerodynamics lift is applied in what-
ever direction is needed to control the flight path of the air vehicle.

Figure 3.2: Aerodynamic Force in Body and Wind-Frame Coordinates

If aerodynamic forces are calculated in the wind system, they must be transformed to the body
system for use in equations expressed in the body system. When FA is expressed in the body system,
its component on the xb-axis is called the axial force A (parallel with the missile longitudinal axis,
as shown in figure 3.2). The component on the zb-axis is called the normal force N (normal to the
missile longitudinal axis).
The lift L and drag D can be transformed to the normal force N and axial force A by:

A= D cosαt − L sinαt (3.1)

N= D sinαt + L cosαt (3.2)

Where
A = magnitude of aerodynamic axial force vector,
D = magnitude of aerodynamic drag force vector,
L = magnitude of aerodynamic lift force vector,
N = magnitude of aerodynamic normal force vector,
αt = the total angle of attack.
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3.2.1.2 Aerodynamic moments

The magnitude of the moment is equal to the product of the resultant aerodynamic force and a lever
arm defined as the perpendicular distance from the resultant aerodynamic force vector to the center
of mass of the missile. If aerodynamic moments are calculated in other than the body reference
frame, they are transformed to it. The components in the body frame of the vector representing the
sum of all aerodynamic moments are LA, MA, and NA along the xb, yb, and zb axes, respectively.

3.2.2 Propulsion forces and moments

3.2.2.1 Thrust force

The total thrust produced by a rocket motor is composed of two parts, the momentum thrust and
the pressure thrust. As the rocket propellant bums, the products of combustion are exhausted
through the rocket nozzle at high velocity. The force that propels these exhaust gases has an equal
and opposite reaction on the missile.

• The momentum thrust: The momentum imparted to the gases in the rearward direction is
balanced by the momentum imparted to the missile in the forward direction and thus con-
serves the momentum within the closed system. The portion of the total thrust attributed to
this momentum change has magnitude ṁeVre where ṁe is the mass rate of flow of the exhaust
gases (more details later) and Vre is the velocity of the exhaust gases relative to the missile.

• The pressure thrust: The average pressure pe of the expanding exhaust gases at the exit plane
of the rocket nozzle acts over the exit area Ae of the rocket nozzle. The remainder of the missile
is surrounded by the ambient atmospheric pressure pa. This imbalance of pressure constitutes
the pressure thrust, which has magnitude (pe − pa)Ae.

Combining the two thrust portions in vector form, the total thrust force on the missile is given by:

Fp = Fmomentum + Fpressure = ṁeVre + (pe − pa)Ae(uve) (3.3)

Where
Ae = rocket nozzle exit area
Fp = total instantaneous thrust force vector
ṁe = mass rate of flow of exhaust gas (me = -m)
pa = ambient atmospheric pressure
pe = average pressure across rocket nozzle exit area
uve = unit vector in direction of relative exhaust velocity Vre

Vre = velocity vector of expelled exhaust gas relative to center of mass of missile

É VARIABLE MASS:
A frequent error in the application of Newton’s equations of motion to systems with variable mass is
to assume that the rate of change of linear momentum is given by

Fex t =
d (mv)

d t
= mv̇ + ṁv (Wrong) (3.4)

Where
Fex t = vector sum of forces acting on the missile
m = instantaneous mass of missile (includes mass of unburned propellant)
ṁ = rate of change of missile mass m
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v = absolute linear velocity vector of missile
v̇ = absolute acceleration vector of center of mass of missile

The correct rate of change of momentum of the system must take into account the fact that not
all mass particles in the system have the same velocity. In the case of a missile, the missile itself (in-
cluding unburned propellant) has absolute velocity V, and the exhaust gases have absolute velocity
Ve or relative velocity Vre with respect to the center of mass of the missile.

In order to employ Newton’s second law, the system under consideration must be defined as one
of constant mass. This is accomplished by assuming a total, closed system that consists of the missile
flight vehicle plus the rocket exhaust gases expelled during an incremental time internal ∆t.

Although this total, closed system has constant mass, parts of the system have an interchange
of mass. During the time interval ∆t the missile body mass is reduced by the mass of the expelled
gases ∆me. At the end of the time interval, the mass of the missile is (m−∆me), the mass of the
ejected gases is∆me, and the momentum acquired by the gases is equal and opposite to the momen-
tum acquired by the missile. The momentum thus acquired by the missile is due to the momentum
component of thrust.

In the absence of forces external to this total, closed system, the overall momentum of the system
would be conserved. However, in reality, external forces are applied to the system, and the resulting
change in momentum is given by

Fex t =
dP
d t

(3.5)

Where
Fex t = vector sum of external forces applied to the total system
P = linear momentum vector of the total system

Since the momentum component of thrust is developed internally to the total system, as defined,
it does not contribute to the forces Fex t . For a missile the external forces Fex t consist of aerodynamic
forces, the pressure component of thrust, and gravity. These external forces are applied directly to
the missile body; therefore, they affect only the portion of the total system momentum attributable
to the missile. For rocket motors operating within the atmosphere, atmospheric interactions cause
external forces to be applied also to the exhaust gases; however, these forces do not affect the missile
and therefore can be disregarded.

From Eq (3.5) an appropriate result for the time interval ∆t can be written as

Fex t =
∆P
∆t
=

Pf − Pi

∆t
(3.6)

Where
Pi = initial total system momentum at beginning of time interval
Pf = final total system momentum at end of time interval
The values of the momentum of the total system at the beginning and end of the time interval are
given by

§

Pi = mv
Pf = (m−∆me) (v +∆v) +∆meve

(3.7)

Where
m = missile mass at beginning of time interval
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∆me = mass of exhaust gases expelled from missile during time interval
v = absolute velocity of missile at beginning of time interval
∆v = change in missile velocity during time interval
ve = absolute velocity of exhaust gases

Figure 3.3: Mass variation

Substitution of Eqs (3.7) into Eq (3.6) gives

Fex t =
(m−∆me) (v +∆v) +∆meve −mv

∆t
(3.8)

If ∆t approaches zero, i.e ∆t → 0, then

∆v
∆t
→

dv
d t
= v̇ ,

∆me

∆t
→

dme

d t
= ṁe ,

∆me∆v
∆t

→ 0

This will lead to the next result

Fex t = mv̇ + (ve − v) ṁe (3.9)

Letting vre = ve − v gives
Fex t = mv̇ + vreṁe (3.10)

This is known as Meshchersky equation for variable mass system.
Where
Fex t = vector of sum of external forces applied to the total system
m = missile mass at beginning of time interval
ṁe = mass rate of flow of exhaust gas
v̇ = absolute acceleration vector of center of mass of a body
vre = velocity vector of expelled exhaust gas relative to center of mass of missile

As previously stated the vector sum of forces external to the total, closed system Fex t consists of
the aerodynamic force FA, the pressure force (pe − pa)Ae (−uve), and the gravitational force Fg .

FA− vreṁe + (pe − pa)Ae (−uve) + Fg = mv̇ (3.11)

Where
Ae = rocket nozzle exit area
FA = resultant aerodynamic force vector
Fg = gravitational force vector including effects of earth rotation
m = instantaneous mass of a particle or body
ṁ = mass rate of flow of exhaust gas
pa = ambient atmospheric pressure
pe = average pressure across rocket nozzle exit area
uve = unit vector in direction of relative exhaust velocity
v̇ = absolute acceleration vector of center of mass of a body
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vre = velocity vector of expelled exhaust gas relative to center of mass of missile

Substituting the definition of Fp, which includes both the pressure and momentum components
of thrust, into this last equation, gives:

FA+ Fp + Fg = mv̇ (3.12)

Finally, setting Fex t equal to the sum of forces FA+ Fp + Fg acting directly on the missile allows one
to write

Fex t = mv̇ (3.13)

This is known as the Newton’s second low .
Finally, the rate of change of mass, which was used incorrectly in Eq (3.4) has been correctly ab-
sorbed into the momentum component of thrust. Thus it is shown that a missile with a rocket motor
is analyzed in the same way as any problem having constant mass except that the value of m to be
used in Eq (3.11) is a function of time[14].

3.2.2.2 Thrust moment

If the thrust vector Fp passes through the center of mass of the missile, no rotational moment is
generated by the thrust. When the thrust vector does not pass through the center of mass, either
by design or error, the resulting moment on the missile is equal to the product of the magnitude
of the thrust and the perpendicular distance between the thrust vector and the center of mass.The
components in the body frame of the vector representing the propulsion moment are Lp, Mp, and Np

along the xb, yb, and zb axes, respectively.

3.2.3 Gravitational force

The force of gravity observed on the earth is the result of two physical effects the Newtonian grav-
itational mass attraction and the rotation of the earth about its axis.

3.2.3.1 Newtonian Gravitation

The law of gravitation, defined by Newton, that governs the mutual attraction between bodies is

FG =
Gm1m2

R2
cm

(3.14)

Where
FG = magnitude of the mutual force of gravitational mass attraction between two masses
G = universal gravitational constant, 6.673x10−11m3/(kg − s2)
m1, m2 = masses of bodies, kg
Rcm = distance between centers of masses of two bodies

Gravitational attraction is exerted on a missile by all planets, stars, the moon, and the sun. It is
a force that pulls the vehicle in the direction of the center of mass of the attracting body. Within the
immediate vicinity of the earth, the attraction of the other planets and bodies is negligible compared
to the gravitational force of the earth.

In the absence of forces other than gravity, all objects, regardless of mass, that are allowed to fall
at a given position on the earth will have the same acceleration Ag This can be seen by combining



3.2. Forces and moments 51

Eqs (3.13) and (3.14) and canceling the term representing the mass of the falling object. This com-
bination gives

Ag =
Gmear th

R2
cm

�

uRcm

�

(3.15)

where
Ag = acceleration vector due to gravitational mass attraction between earth and a free-falling object
G = universal gravitational constant, 6.673 ∗ 10−11m3/(kg − s2)
mear th = mass of earth, 5.977 ∗ 1024kg
Rcm = distance from earth center to body mass center
uRcm

= unit vector directed from center of earth toward body

3.2.3.2 Gravity in Rotating Earth Frame

The acceleration calculated by Eq (3.15) is the acceleration of a body that would be measured with
respect to an inertial reference frame; therefore, Ag can be written as :

Ag = Arot +we× (we×Re) (3.16)

Taking Arot = g0 then:

g0 = Ag −we× (we×Re) (3.17)

Where
Ag = acceleration vector due to gravitational mass attraction between earth and a free falling object
g0 = vector of acceleration due to gravity at earth surface
Re = radius vector from earth center to point on earth surface
we = absolute (sidereal) angular rate of the earth

The gravitational force acts at the center of gravity of the missile and, hence, does not produce
any moments. Further, when specifying this term and other altitude dependent terms, distinction
must be made between the spherical earth and the flat earth cases in the equations of motion.Surface-
to-air missile simulations, however, usually are based on the assumption of a flat, nonrotating earth.
In this case the motion of the missile relative to the earth is best approximated by employing the
gravitational acceleration g which is given by

g = g0

�

R2
e

(Re + h)2

�

(3.18)

where
g = magnitude of acceleration-due-to-gravity vector g
g0 = magnitude of the acceleration due to gravity at the earth surface vector go
h = altitude above sea level
Re = radius of the earth

Gravitational force Fg is calculated by substituting the acceleration due to gravity into Newton’s
equation:

Fg = mg. (3.19)
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where
Fg = magnitude of gravitational force vector Fg
g = magnitude of acceleration-due-to-gravity vector g
m = mass of the body.
The term Fg is commonly called the weight of the object and is directed locally downward.

3.3 Motion of rigid body on fixed point

We have in polar coordinates: ~h = h~ir , with ~ir = cos(θ )~i + sin(θ )~j, notice that ~ir is time varying
don’t change magnitude, but its direction will change with time when the body is rotating about z
axis. As it is known in classical mechanics a moving vector ~h has a speed equal to the derivative of
its position[27].

~Vh =
d~h
d t
=

dh
d t
~ir + h

d ~ir

d t
(3.20)

d~ir

d t
=

dθ
d t
(− sin(θ )~i + cos(θ )~j) =

dθ
d t
~iθ (3.21)

The scalar quantities h, zr are constant with respect to time, means that ~r(t) = h~ir + zr
~k

~V (t) =
d ~ir(t)

d t
=

dh
d t
~ir + h

d ~ir

d t
+ zr

~k
d t

(3.22)

with

dh
d t
=

dzr

d t
= 0 (3.23)

and

d~k
d t
= ~0

~V (t) =
d ~r(t)

d t
= h

dθ
d t
~iθ (− sin(θ )~i + cos(θ )~j) (3.24)

From the projection of the vector ~r in the Cartesian coordinate we obtain the following compo-
nents: x r = h cos(θ ), yr = h sin(θ ), zr = r cos(φ) and h= r sin(φ) then we can write:
xr = r sin(φ) cos(θ )
yr = r sin(φ) sin(θ )
zr = r cos(φ)
Using the following well-known cross products of the unite vectors ~i×~j = ~k , ~j×~k = ~i , ~k×~i = ~j ,
~k×~k = ~0 and xr, yr, zr in the velocity equation we get:

~V (t) = h
dθ
d t

� yr

h
~k×~j +

xr

h
~k×~i +

zr

h
~k×~k

�

(3.25)

~V (t) =
�

h
dθ
d t
~k
�

� yr

h
~j +

xr

h
~i +

zr

h
~k
�

(3.26)

~V (t) =
�

dθ
d t
~k
�

×~r(t) (3.27)

~V (t) = ~ω×~r(t) (3.28)
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Remark

• We notice that the velocity vector for any point M of a body is equal to the vector product of the
angular velocity of that body and the radius vector of the point. ~V (t) = ~ω×~r(t).

Figure 3.4: General rigid body with angular velocity vector ω about its center of mass.

• In order to calculate the derivative of some rotating unit vectors ~i, ~j, ~k we assume that is the radius
of vector ~rM = ~i of a point M on the axis x at unit distance from the origin. Then

d~i
d t
=

d~rM

d t
= VM(t) (3.29)

But according to the velocity vector equation,~VM = ~ω×~rM = ~ω×~i, where ~ω is the angular velocity
of the rotation about axis OZ. Similar relationships are obtained for the derivatives of ~j and ~k ,
and finally we obtain the following eguations which are known as the Poisson equations :

d~i
d t
= ~ω×~i ,

d~j
d t
= ~ω×~j ,

d~k
d t
= ~ω×~k

3.4 The general motion of a rigid body in space

The general motion of a body can be described by the translation of the center of mass and the
rotation of the body about its center of mass. In order to solve the newton’s second low, one must
know r(t) (the vector position) for all the particles constituting the body that describing the rela-
tive motion of the particles with respect to the center of mass, be obtained by integrating additional
differential equations in time. Such equations of relative motion are obtained by taking into ac-
count the internal forces acting on the individual particles. However, if the body is rigid, the relative
distances of all particles with respect to the center of mass are fixed. The translational and rota-
tional motions can be studied separately, provided the net force and moment vectors do not depend
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upon the rotational and translational motions, respectively. For an atmospheric flight vehicle, the
aerodynamic force depends upon the vehicle’s attitude (rotational variables), and aerodynamic and
thrust moments depend upon the speed and altitude (translational variables); thus, the two mo-
tions are inherently coupled. However, when the time scale of rotation is much smaller than that of
translation, then, the two can effectively be decoupled. In such a case, the instantaneous rotational
parameters are treated as inputs to the translatory motion, and the position and velocity are treated
as almost constant parameters for the rotational motion.But in our case The decoupling of rotational
and translational motions may not be a good approximation for a high-performance missile, or an
aircraft.
We can summerize it in this equation :

General motion = Translation motion + Rotaional motion

So we Consider a fixed system (oxe yeze), assumed to be the inertial frame and another rotating
system (oxb ybzb) , assumed to be the body’s fixed frame, which rotate with respect to the first one
by an angular velocity ~ω . Let ~i, ~j, and ~k be a unit vectors along the axes of the rotating system. Let
~V be an arbitrary vector with components Vx ,Vy and Vz along the rotating axes. Then:

�

d ~V
d t

�

I

=

�

dVx

d t
~i +

dVy

d t
~j +

dVz

d t
~k

�

+ Vx
d~i
d t
+ Vy

d~j
d t
+ Vz

d~k
d t

(3.30)

�

d ~V
d t

�

I

=

�

d ~V
d t

�

B

+ Vx
d~i
d t
+ Vy

d~j
d t
+ Vz

d~k
d t

(3.31)

�

d ~V
d t

�

I

=

�

d ~V
d t

�

B

+ ~ω×
�

Vx
~i + Vy

~j + Vz
~k
�

(3.32)

�

d ~V
d t

�

I

=

�

d ~V
d t

�

B

+ ~ω×~V (3.33)

3.5 Equations of motion

The equations of motion are obtained from Newton’s second law, which states that the summation
of all external forces acting on a body is equal to the time rate of the momentum of the body, and
the summation of the external moments acting on the body is equal to the time rate of change of
angular momentum. Specifically, Newton’s laws of motion were formulated for a single particle[14].
Assuming that the mass m of the particle is multiplied by its velocity V, then the product

P = mV. (3.34)

is called the linear momentum (vector quantity). For a system of n particles, the linear momentum
is the summation of the linear momentum of all particles in the system. Thus:

P =
n
∑

i=1

(miVi) = m1V1 +m2V2 + ...+mnVn. (3.35)

Mathematically, Newton’s second law can be expressed in terms of conservation of both linear and
angular momentum by the following vector equations:
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Translat ion :
∑

Fex t =
�

d(mV )
d t

�

I
(3.36)

Rotation :
∑

M =
�

dH
dt

�

I
(3.37)

where Fex t represent the external forces, m is the mass,V is the linear velocity of the missile, H the
angular momentum, and the symbol I indicates the time rate of change of the vector Ḣ with respect
to inertial frame.

3.5.1 Translational equations

The basis of the translational equations of motion is the second Newton’s laws (F = m
dV
dt
) where: it

is understood from the discussion before, that F includes the sum of the external forces-aerodynamic,
pressure thrust, and gravitational and the internally generated momentum thrust and that the vari-
able mass has been correctly taken into account. In a missile flight simulation the usual procedure
used to solve the translational equation of motion, is to calculate the summation of forces F based
on aerodynamic, propulsive, and gravitational data, substitute F into the equation of motion, gives
:

∑

Fex t = m
�

dV
d t

�

I
. (3.38)

In general, when the derivative (or incremental change) of a vector is calculated using components
in a given reference frame, the resulting rate of change of the vector is rela-tive to that particular
reference frame. If that reference frame is not an inertial one, the rate of change is not an absolute
one as required by Newton’s laws. So a mathematical procedure is required to convert the rate-of-
change vector to one that is relative to an inertial frame, which known as the general motion of rigid
body in space.

�

d ~V
d t

�

I

=

�

d ~V
d t

�

B

+
�

~ω×~V
�

(3.39)

we substitute this equation in the second Newton’s laws, we obtain:

∑

~Fex t = m

��

d ~V
d t

�

B

+
�

~ω×~V
�

�

(3.40)

The linear velocity of the missile V can be broken up into components u, v, and w along the missile
(xb, yb, zb) body axes, respectively. Mathematically, we can write the missile vector velocity V, in
terms of the components as:

~V = u~ib + v ~jb +w ~kb (3.41)

where (ib, jb, kb) are the unit vectors along the respective missile body axes.
In a similar manner, the missile’s angular velocity vector ω can be broken up into the components
p, q, and r about the (xb, yb, zb) axes, respectively, as follows:

~ω= p ~ib + q ~jb + r ~kb (3.42)

where p is the roll rate, q is the pitch rate, and r is the yaw rate.
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The first part on the right-hand side of Eq (3.39) can be written as :

d ~V
d t
=
�

du
d t

�

~ib +
�

dv
d t

�

~jb +
�

dw
dt

�

~kb (3.43)

where
�

du
d t

�

= the longitudinal acceleration.
�

dv
d t

�

= the lateral acceleration.
�

dw
dt

�

= the vertical acceleration.

The second part on the right-hand side of Eq (3.39) which is the cross product of vectors ~ω and
~V can be written as:

~ω×~V =





~ib
~jb ~kb

p q r
u v w



= (qw− rv) ~ib + (ru− pw) ~jb + (pv − qu) ~kb (3.44)

next, we ca write the sum of external forces as :
∑

~Fex t =
∑

Fx
~ib +

∑

Fy
~jb +

∑

Fz
~kb (3.45)

such that :
∑

Fex t = FA+ FP + Fg (3.46)

Where FA represent the aerodynamic force, FP is the propulsion force and Fg is the gravitational
force.
Equating the components of Eqs (3.43), (3.44), and (3.45) yields the missile’s linear equations of
motion. Thus























∑

Fx = m (u̇+ qw− rv)
∑

Fy = m (v̇ + ru− pw)
∑

Fz = m (ẇ+ pv − qu)

(3.47)

Substituting the components of Eq (1.46) in (1.47) and rearrange the equations using the necessery
operations we obtain the final translation equations of missile model, thus







































u̇=

�

FAx + FP x + Fg x

�

m
− (qw− rv)

v̇ =

�

FAy + FP y + Fg y

�

m
− (ru− pw)

ẇ=

�

FAz + FPz + Fgz

�

m
− (pv − qu)

(3.48)

Where
FAx , FAy , FAz = components of aerodynamic force vector FA expressed in the body coordinate system
FP x , FP y , FPz = components of propulsive force vector FP expressed in the body coordinate system
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Fg x , Fg y , Fgz = components of gravitational force vector Fg expressed in the body coordinate system
m = instantaneous missile mass
p, q , r = components of angular rate vector ω expressed in the body coordinate system, (roll, pitch
and yaw, respectively)
u, v , w = components of absolute linear velocity vector V expressed in the body coordinate system
u̇, v̇ , ẇ = components of linear acceleration expressed in the body coordinate system

3.5.2 Rotational equations

The rotational motion of a vehicle is important for various reasons (aerodynamics, pointing of
weapons, payload, or antennas, etc.) and governs the instantaneous attitude (orientation). It was
evident that the instantaneous attitude depends not only upon the rotational kinematics, but also on
rotational dynamics which determine how the attitude parameters change with time for a specified
angular velocity.

The basis of the rotational equation of motion is Eq (3.37), so in a similar manner as the trans-
lation motion we can obtain the equations of angular motion. However, before we develop these
equations, an expression for the angular momentum H is needed to this end.

If we consider a missile to be rigid body which is constituting by a collection of particles of
elemental mass δm, and V the velocity of the elemental mass relative to the inertial frame, and δF
the resulting force acting on the elementa mass. So from Newton’s second law we have:

δF = δm
dV
dt

(3.49)

The total external force acting on the missile is found by summing all the elements of the missile.
Therefore,

∑

δF = F. (3.50)

The velocity of the differential mass δm is : ~V = ~vc +
d~r
d t

with ~vc is the velocity of the center of

mass of the missile and
d~r
d t

is the velocity of the element relative to center of mass.

Figure 3.5: The relative position vector

~F =
∑

δ~F =
d
d t

∑

�

~vc +
d~r
d t

�

δm (3.51)

= m
d ~vc

d t
+

d
d t

∑ d~r
d t
δm (3.52)
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= m
d ~vc

d t
+

d2

d t2

∑

~rδm. (3.53)

Because ~r is measured from the center of mass then
∑

~rδm= 0 and therefore we get:

~F = m
d ~vc

d t
. (3.54)

Similarly, we can develop the moment equation refered to a moving center of mass. For the differ-
ential element of mass, δm, the moment equation can be written as:

∑

δ ~M =
d ~H
dt
=

d
d t

�

~r×~V
�

δm (3.55)

with
∑

δ ~M = ~M .

The velocity of the mass element can be expressed in terms of the velocity of the center of the
mass and relative velocity,

~V = ~vc +
d~r
d t
= ~vc + ~ω×~r (3.56)

Where ~ω is the angular velocity of the rigid body and ~r is the position of the mass element measured
from the center of mass.
From Eqs (3.55) and (3.56) the total momentum can be written as:

~H =
∑

δ ~H =
∑

δm~r× ~vc +
∑

[~r× ( ~ω×~r)]δm (3.57)

we know that
∑

~rδm= 0 then :
~H =

∑

[~r× ( ~ω×~r)]δm (3.58)

Let define the the components of the angular velocity, the position of the mass element measured
from the center of mass, and the total momentum expressed in the body corrdinate system respec-
tively:
~ω= p ~ib + q ~jb + r ~kb , ~r= x ~ib + y ~jb + z ~kb , ~H = Hx

~ib +H y
~jb +Hz

~kb ,
We know that

~ω×~r=





~ib
~jb ~kb

p q r
x y z



= (qz − r y)~ib + (r x − pz) ~jb + (p y − qx) ~kb (3.59)

so we obtain

~r×( ~ω×~r) =





~ib
~jb ~kb

x y z
(qz − r y) (r x − pz) (p y − qx)





= [(y2 + z2)p− x yq− xzr]~ib + [(z
2 + x2)q− x yp− yzr] ~jb‘+ [(x2 + y2)r − xzp− yzq] ~kb (3.60)

we have
~H =

∑

[~r×( ~ω×~r)]δm=
∑

−[~r×(~r× ~ω)]δm (3.61)

then
~H =

∑

−(~r×[Ωr] ~ω)δm=
∑

([Ωr] ~ω×~r)δm (3.62)

~H =
∑

([Ωr][Ωr]
T ~ω)δm (3.63)
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we know from chapter 1:

[Ωr] =





0 −z y
z 0 −x
−y x 0



 (3.64)

and
[Ωr]

T = −[Ωr] (3.65)

so the product of Eq (3.64) and (3.65) is given by:

[Ωr][Ωr]
T =





(y2 + z2) −x y −xz
−x y (x2 + z2) −yz
−xz −yz (x2 + y2)



 (3.66)

so the angular momentum vector can be written as:

~H = [I] ~ω (3.67)

where

[I] =





Ix x −Ix y −Ixz

−Ix y I y y −I yz

−Ixz −I yz Izz



=

∫

[Ωr][Ωr]
Tδm (3.68)

This matrix is called the inertia matrix (or the inertia tensor).
where

Ix x =

∫

�

y2 + z2
�

dm, Ix y =

∫

(x y) dm

I y y =

∫

�

x2 + z2
�

dm, Ixz =

∫

(xz) dm

Izz =

∫

�

x2 + y2
�

dm, I yz =

∫

(yz) dm

and
x , y and z are coordinates of infinitesimal masses δm of the body.
Ix x ,I y y and Izz are the moments of inertia.
Ix y , Ixz and I yz are the products of inertia.

Due to the assumption that the given missile has a cruciform symmetry i.e the product of inertia
Ix y = Ixz = I yz = 0 and I y y = Izz, so the inertia matrix can be simplified as :

[I] =





Ix x 0 0
0 I y y 0
0 0 Izz



 (3.69)

from the Eq (3.67) the angular momentum can be written as :

~H = [I] ~ω=





Ix x 0 0
0 I y y 0
0 0 Izz









p
q
r



 (3.70)

Now we must determine the derivative of the vector ~H referred to the rotating body frame of refer-
ence, therfore:
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�

d ~H
dt

�

I

=

�

d ~H
dt

�

B

+ ~ω× ~H (3.71)

substituting Eq (3.70) in (3.37) we obtain :

∑

~M =

�

d ~H
dt

�

B

+ ~ω× ~H (3.72)

where the left-hand side of Eq (3.72) which is the summation of the external moments act on the
missile is given by:

∑

~M =
∑

L ~ib +
∑

M ~jb +
∑

N ~kb (3.73)

where L , M and N are components of total moment vector ~M expressed in body coordinate system
(roll, pitch, and yaw, respectively)

The first part on the right-hand side of Eq (3.72) expressed in the body reference frame can be
written as :

�

d ~H
dt

�

B

=
dHx

d t
~ib +

dH y

d t
~jb +

dHz

d t
~kb (3.74)

and



































dHx

d t
=

dp
d t

Ix x

dH y

d t
=

dq
d t

I y y

dHz

d t
=

dr
d t

Izz

(3.75)

where
Hx , H y , Hz = the components of the angular momentum.
p , q , r = the components of the angular velocity, along the xb, yb, zb axes of the body reference
frame, respectively.
Ix x , I y y , Izz = the components of diagonal inertia matrix [I].

The second part on the right-hand side of Eq (3.72) which is the cross-product of the angular
velocity ~ω and the angula momentum ~H expressed in the body reference frame is given by :

~ω× ~H =





~ib
~jb ~kb

p q r
Hx H y Hz



 =
�

qHz − rH y

�

~ib + (rHx − pHz) ~jb +
�

pH y − qHx

�

~kb (3.76)

we have


















Hx = pIx x ,

H y = qI y y ,

Hz = r Izz.

(3.77)
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Substituting the components of Eq (3.77) in (3.76) we obtain :

~ω× ~H = qr(Izz − Ix x)~ib + pr(Ix x − Izz) ~jb + pq(I y y − Ix x) ~kb (3.78)

Substituting the components of Eqs (3.74) and (3.78) in Eq (3.72). Thus























∑

Mx = ṗIx x + qr(Izz − Ix x)
∑

My = q̇I y y + pr(Ix x − Izz)
∑

Mz = ṙ Izz + pq(I y y − Ix x)

(3.79)

These equations are used to calculate the angular acceleration when the moments on the missile
are given. If the moment terms L, M , and N in Eq (3.73) are separated as :



















∑

L = LA+ LP
∑

M = MA+MP
∑

N = NA+ NP

(3.80)

the equations of rotational motion become :


















ṗ = [(LA+ LP) + qr(Izz − Ix x)]/Ix x

q̇ = [(MA+MP) + pr(Ix x − Izz)]/I y y

ṙ =
�

(NA+ NP) + pq(I y y − Ix x)
�

/Izz

(3.81)

where
ṗ , q̇, ṙ = components of angular acceleration ω̇ expressed in body coordinate system (roll, pitch,
and yaw, respectively)

p , q , r = components of angular rate vectorω expressed in body coordinate system (roll, pitch,
and yaw, respectively)

LA , MA , NA = components of aerodynamic moment vector expressed in body coordinate system
(roll, pitch, and yaw, respectively).

LP , MP , NP = components of propulsion moment vector expressed in body coordinate system
(roll, pitch, and yaw, respectively).

Ix x , I y y , Izz = the moments of inertia (diagonal elements of inertia matrix when products of
inertia are zero)

3.5.3 Rate of change of Euler angles

The angular orientation of the missile is given by three rotations ψ, θ , and φ relative to the inertial
frame of reference. These are called Euler rotations, and the order of the successive rotations is
important. Starting with the body coordinate frame (xb0, yb0, zb0) aligned with the earth coordinate
frame (xe, ye, ze), the generally accepted order is:
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1. Rotate the body frame about the zb-axis through the heading angleψ we obtain (xb1, yb1, zb1).

Figure 3.6: First rotation (Heading, Yaw angle ψ)





xb1

yb1

zb1



=





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









xb0

yb0

zb0



= T3(ψ)





xb0

yb0

zb0



 (3.82)

2. Rotate about the yb-axis through the pitch angle θ we obtain (xb2, yb2, zb2).

Figure 3.7: Second rotation (pitch angle θ)





xb2

yb2

zb2



=





cosθ 0 − sinθ
0 1 0

sinθ 0 cosθ









xb1

yb1

zb1



= T2(θ )





xb1

yb1

zb1



 (3.83)
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3. Rotate about the xb-axis through the roll angle φ we obtain (xb, yb, zb) as shown in this figure.

Figure 3.8: Third rotation (Roll angle φ)





xb

yb

zb



=





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









xb2

yb2

zb2



= T1(φ)





xb2

yb2

zb2



 (3.84)





xb

yb

zb



= T3(ψ)T2(θ )T1(φ)





xb0

yb0

zb0



 (3.85)

where
T(φ,θ ,ψ) = T3(ψ)T2(θ )T1(φ) (3.86)

by taking the inverse of T(φ,θ ,ψ) we get :





xb0

yb0

zb0



= TT (φ,θ ,ψ)





xb

yb

zb



 (3.87)

Properties: The rotation matrix T(φ,θ ,ψ) has the following properties:

1. TTT = TT T= I

2. det(T) = 1

3. Each column (and each row) of T is a unit vector.

4. Each columns (and each rows) of T are mutually orthogonal.
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Because the refernce frames are rotating relative to each other, the direction matrix T(φ,θ ,ψ)
is function of time ,taking the time derivative of the last equation we get:

d
d t





xb0

yb0

zb0



=





0
0
0



=
d
d t

TT (φ,θ ,ψ)





xb

yb

zb



+ TT (φ,θ ,ψ)
d
d t





xb

yb

zb



 (3.88)

we obtain

d
d t

TT (φ,θ ,ψ)





xb

yb

zb



+ TT (φ,θ ,ψ)





~ω× ~xb

~ω× ~yb

~ω× ~zb



=





0
0
0



 (3.89)

we know that ~a×~b = Ωa
~b with

[Ωa] =





0 −az ay

az 0 −ax

−ay ax 0



 (3.90)

so the Eq (3.89) can be written as :

d
d t

TT (φ,θ ,ψ)





xb

yb

zb



+ TT (φ,θ ,ψ)[Ωω]





xb

yb

zb



=





0
0
0



 (3.91)

we simplify the last equation by writting:
T(φ,θ ,ψ) = T
TT (φ,θ ,ψ) = TT

dTT

d t
+ TT [Ωω] = 0 (3.92)

so

[Ωω] = −T
�

dTT

d t

�

(3.93)

we know from the properties of the rotation matrix that TTT = I so:

�

dT
d t

�

TT + T
�

dTT

d t

�

= 0 (3.94)

this implies that:

[Ωω] =
�

dT
d t

�

TT = −T
�

dTT

d t

�

(3.95)

where

[Ωω] =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (3.96)

by applaying the chain rule we get :

dT
d t
=

dT
dφ

dφ
d t
+

dT
dθ

dθ
d t
+

dT
dψ

dψ
d t

(3.97)
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multiplying the Eq (3.97) by TT we get :
�

dT
d t

�

TT =
�

dT
dφ

dφ
d t
+

dT
dθ

dθ
d t
+

dT
dψ

dψ
d t

�

TT (3.98)

�

dT
d t

�

TT =
�

dT
dφ

�

TT φ̇ +
�

dT
dθ

�

TT θ̇ +
�

dT
dψ

�

TTψ̇ (3.99)

from the Eq (3.95) and (3.99) we can get the components of the angular velocity ~ω in terms of Euler
angles (φ,θ ,ψ) and its rate of change (φ̇, θ̇ , ψ̇) expressed in the rotating frame :

~ω= φ̇ ~xb + θ̇ ~yb2 + ψ̇ ~zb1

=
�

~xb ~yb ~zb

�





φ̇
0
0



+
�

~xb2 ~yb2 ~zb2

�





0
θ̇
0



+
�

~xb1 ~yb1 ~zb1

�





0
0
ψ̇





=
�

~xb ~yb ~zb

�





φ̇
0
0



+
�

~xb ~yb ~zb

�

T1(φ)





0
θ̇
0



+
�

~xb ~yb ~zb

�

T1(φ)T2(θ )





0
0
ψ̇





(3.100)

~ω=
�

~xb ~yb ~zb

�









φ̇
0
0


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By taking the inverse of the transformation matrix in the last equation we get the relationship which
represents the rate of change of the Euler angles in terms of the components of the angular velocity
ω in the body reference frame (p, q, r)















φ̇ = p+ (q sinφ + r cosφ) tanθ

θ̇ = q cosφ − r sinφ

ψ̇= (q sinφ + r cosφ)/ cosθ

(3.103)

where
φ , θ , ψ = the euler angles ratations in roll, pitch and yaw respectively.
φ̇ , θ̇ , ψ̇ = the rate of change of euler angles ratations in roll, pitch and yaw respectively.
p, q , r = the components of the angular velocity ω expressed in the body reference frame.
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The missile final model is given by these nine differential equations:
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φ̇ = p+ (q sinφ + r cosφ) tanθ

θ̇ = q cosφ − r sinφ

ψ̇= (q sinφ + r cosφ)/ cosθ



Chapter 4

Aerodynamics of a missile

4.1 Introduction

In the case of a missile in flight, its behaviour is directly influenced by initial and exterior condi-
tions, such as temperature, pressure, presence of wind, as well as the physical properties of the body
(in terms of mass, center of gravity and inertia). All these conditions have an effect on the aero-
dynamic coefficients. The importance of estimating them lies in the representation of aerodynamic
characteristics of a missile, which can be determined by the wind tunnel measurements, analytical
predictions, or by flight test.

4.2 Aerodynamic properties

Aerodynamic coefficients are the parameters describing and connecting forces and moments acting
on the missile to angles (α, β) and velocities (V and W ). Generally, they depend of the flight condi-
tion variables such as the velocity, incidence angles, angular rates or accelerations. In that respect,
the global coefficients for missile in flight can be characterized as a function of nondimensional quan-
tities as follows

Ci(α,β , Mn, ...) (4.1)

In practice this nondimentional parameters are inputs for aerodynamic forces and moments
which can be given by the familiar form of the aerodynamic force equation employed extensively in
aerodynamics:

F = 0.5ρV 2CFS. (4.2)

Where
CF = general aerodynamic force coefficient
F = general force (aerodynamic)
S = aerodynamic reference area
V = speed of a body, speed of air relative to a body
ρ = atmospheric density
This last equation is function of an important quantity known as the dynamic pressure parameter.

F =QCFS (4.3)
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• Dynamic pressure parameter : The dynamic pressure parameter is equal to the kinetic energy
per unit volume of air. There is two equivalent forms of the dynamic pressure parameter

Q = 0.5ρV 2 (4.4)

Q = 0.7PaM2
n (4.5)

Where
Mn = Mach number.
Pa = ambient atmospheric pressure.
Q = dynamic pressure parameter.

Whenever a fluid passes around an object there is a point at which the flow divides, part goes
one way and part the other. This point of division is called the stagnation point because,
theoretically, the molecules of fluid at this point are brought to rest relative to the object . At
the stagnation point the rise in pressure, caused by the loss of all kinetic energy of the fluid
is called the dynamic pressure, which in incompressible flow is equal to the dynamic pressure
parameter Q.

Figure 4.1: Aerodynamic characteristics of missile

Throughout the flight, two angles are defined to describe the aerodynamic effects acting on the
missile: the angle of attack ( α ) and the side-slip angle (β ). The lift and drag components of the
aerodynamic forces are oriented by α and β , where this two angles can be obtained by

α= tan−1(
w
u
) (4.6)

β = tan−1(
v
u
) (4.7)

The total angle of attack can be obtained by substituting this two lasts equations (4.6) and (4.7) in
the following equation, we get :

αt = cos−1(cosα cosβ) (4.8)

Where
α = angle of attack.
β = side-slip angle.
u, v, w = components of the linear velocity vector of the missile
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4.2.1 Force coefficients

The value of the aerodynamic force coefficients for a given body configuration is affected primarily
by the shape of the body (including any control-surface deflections), the orientation of the body
within the flow (angle of attack), and the flow conditions. The flow conditions can be specified by
two parameters: the Mach number and the Reynolds number.

• Effect of Mach Number:
The Mach number is the ratio of the missile speed, i.e., the relative speed of fluid flow, to the
speed of sound in the ambient air.

Mn=
VM

Vs
(4.9)

Vs is calculated using the following formula:

Vs =
p

γRT (4.10)

where
Vs = speed of sound at altitude h
R = gas constant (287.05)
T = temperature at an altitude
γ = ratio of specific heat (1.4)

As the missile speed approaches and exceeds the speed of sound, the compressibility charac-
teristics of the air have a pronounced effect on the aerodynamic forces and moments. The
aerodynamic coefficients in turn depend on these characteristics of the flow. The different
flow characteristics are grouped into five basic flow regimes based on Mach number Mn, these
regimes are described as :
1. Incompressible subsonic flow: 0< Mn< 0.3,
2. Compressible subsonic flow: 0.5≤ Mn< 0.8,
3. Transonic flow: 0.8≤ Mn< 1.2,
4. supersonic flow: 1.2≤ Mn< 5,
5. Hypersonic flow: 5≤ Mn.

• Effect of Reynolds Number :
The Reynolds number is a measure of the ratio of the inertial properties of the fluid flow to the
viscous properties. Reynolds number is given by :

Re=
ρV d
µ

(4.11)

Where:
Re = Reynolds Number.
d = aerodynamic reference length of body.
V = speed of a body, speed of air relative to a body,magnitude of velocity vector.
µ = atmospheric dynamic viscosity.
ρ = atmospheric density.

The reference length d is a scale factor that accounts for the effect of the size of the missile on
the flow characteristics. The missile diameter is often selected as the reference length, but the
length of the missile body is also commonly used. Force coefficients are functions of Reynolds
number. When a force coefficient is given, the Reynolds number upon which it is based must
also be given; in addition, the missile dimension used as a reference length for the Reynolds
number must be specified.
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4.2.2 Components of force coefficients

The decomposition of the force coefficients depends on the context and on the chosen reference
frame.

4.2.2.1 Drag coefficient CD

The drag coefficient CD corresponds to the aerodynamic resistance and is relied to the force which
is opposed to the body motion in a fluid. Mathematically, it is the component along the tangent to
the trajectory in the opposite direction of the relative body velocity

D = 0.5ρV 2CDS (4.12)

or
CD = CD0

+ kC2
L (4.13)

Where
D = magnitude of aerodynamic drag force vector
S = aerodynamic reference area
V = speed of body, speed of air relative to body, magnitude of velocity vector
ρ = atmospheric density
CD = aerodynamic drag coefficient
CD0
= zero-lift drag coefficient

k = constant depending on body shape and flow regime
CL = aerodynamic lift coefficient

4.2.2.2 Lift coefficient CL

The Lift coefficient CL is representative of the force perpendicular to the trajectory induced by the
pressure distribution around the missile when the angle of attack α is different of zero. In that
respect, it is more common to quantify the lift force coefficient slope CLα representing the derivative
of the lift force coefficient

L = 0.5ρV 2CLS (4.14)

or
CL = CLαα (4.15)

Where
L = magnitude of aerodynamic lift force vector
S = aerodynamic reference area
V = speed of body, speed of air relative to body, magnitude of velocity vector
ρ = atmospheric density
CL = aerodynamic lift coefficient
CLα = slope of curve formed by lift coefficient CL versus angle of attack α
α = angle of attack

4.2.3 Components of moment coefficients

The moments exerted by aerodynamic forces on a missile are calculated by the moment coefficients
Cl , Cm, and Cn for roll, pitch, and yaw, respectively. This moment usually is approximated by the
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normal force acting at the center of pressure with a lever arm equal to the distance between the
center of mass and the center of pressure.

• Rolling moment: Is the torque about the missile longitudinal axis (xb-axis) that is created by
a differential lift, generated by surfaces deflections and can be modeled by linear functin as:

LA = 0.5ρV 2ClSd (4.16)

• Pitching moment: Is the moment about the missile lateral axis ( yb-axis) that is generated the
result of the lift and the drag forces acting on the missile, which can be modeled by a linear
function as:

MA = 0.5ρV 2CmSd (4.17)

• Yawing moment: Is the torque about the vertical axis of the missile (zb-axis), and can be
modeled as:

NA = 0.5ρV 2CnSd (4.18)

Where
LA,MA , NA = components of aerodynamic moment vector M expressed in body coordinate system
(roll, pitch, and yaw, respectively).
S = aerodynamic reference area.
V = speed of body, speed of air relative to body.
ρ = atmospheric density.
Cl = aerodynamic roll moment coefficient about center of mass.
Cm = aerodynamic pitch moment coefficient about center of mass.
Cn = aerodynamic yaw moment coefficient about center of mass.

The missile aerodynamic moments M given in Eqs (4.10) , (4.11) and (4.12) can be represented
as the sum of the aerodynamic relative to the body (B), the fins (F) and the damping effect (D), as
follows :

M = MB +MF +MD

And as the distance between the center of mass and the center of pressure changs before motor
burnout because of the mass redistribution that occurs when propellant burns and expelled There-
fore, it is necessary to correct the moment coefficient.
This implies that the global moment coefficients, more precisely the roll, pitch and yaw moment
coefficients Cl , Cm and Cn can be written as:
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By taking
�

Cmre f
= Cmαα+ Cmδδp

Cnre f
= Cnββ + Cnδδy

(4.20)

Where
Cnβ = slope of curve formed by yawing moment coefficient Cn versus angle of sideslip
Cnδ = slope of curve i.e yawing moment coefficient Cn versus control-surface deflection δy

Cmα = slope of curve formed by pitch moment coefficient Cm versus angle of attack α
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Cnα = slope of curve i.e. pitch moment coefficient Cm versus control-surface deflection δp

δp = angle of effective control-surface deflection in the pitch direction
δr = effective control-surface defection angle corresponding to roll
δy = angle of effective control-surface deflection in the yaw direction

Since the missile is assumed to have cruciform symmetry, therefore

Cmα = Cnβ , Cmq
= Cnr

, Cmδ = Cnδ , Cmα̇ = Cnβ̇

So the equation of moments coefficients can be expressed as

Cl = Clδδr +
d

2V
Clp

p (4.21)

Cm = Cmre f
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d

�
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d

2V
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+ CNy

� xcm − x re f

d

�

+
d

2V
(Cnr

+ Cnβ̇
)r (4.23)

Where
Cm = aerodynamic pitch moment coefficient about center of mass
Cn = aerodynamic yaw moment coefficient about center of mass
V = speed of body, speed of air relative to body
Cmre f

= pitching moment coefficient about reference moment station
Cnre f

= yawing moment coefficient about reference moment station
d = aerodynamic reference length of body
p, q, r = missile (roll,pich,yaw ) rates, expressed in body coordinate system
α = angle of attack in pitch plane
β = sideslip angle
CNy
= coefficient corresponding to component of normal force on yb axis

CNz
= coefficient corresponding to component of normal force on zb axis

Cnr
= yaw damping derivative relative to yaw rate

Cnβ̇
= yaw damping derivative relative to angle-of sideslip rate

Cmq
= pitch damping derivative relative to pitch rate

Cmα̇ = pitch damping derivative relative to angle of attack rate
xcm = instantaneous distance from missile nose to center of mass
x re f = distance from missile nose to reference moment station

The coefficients corresponding to the components of the normal force in the yb and zb axes are
calculated by

CNy
=

FAyb

QS
(4.24)

CNz
=

FAzb

QS
(4.25)

Where
CNy
= coefficient corresponding to component of normal force on yb axis.

CNz
= coefficient corresponding to component of normal force on zb axis.

Q = dynamic pressure parameter.
S = aerodynamic reference area.
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4.3 Atmospheric properties

The aerodynamic forces depend on certain properties of the atmosphere such as temperature, pres-
sure, density and viscosity of the air, this last is important in aerodynamics because air tends to stick
to any surface over which it flows, slowing down the motion of the air. This properties changes with
altitude, that in turn produce variation in the aerodynamic forces and moments coefficients.

Equations used to extrapolate atmospheric properties are often based on the following simplify-
ing assumptions:
1. The air is dry.
2. The air behaves as a perfect gas.
3. The gravity field is constant.
4. The rate of change of temperature with altitude (lapse rate) is constant within a specified altitude
region.

• Tempertaure

T = T1 + a(h− h1) (4.26)

where
T = temperature at altitude h.
T1 = given temperature at altitude h1.
h = altitude for which atmospheric properties are to be calculated above sea level.
h1 = reference altitude at sea level (or earth surface).
a = lapse rate(0.0065 K/m).

• Pressure

P = P1 +
�

T
T1

�−
g0

(aR) (4.27)

Where
P = pressure at altitude h.
P1 = pressure at given altitude h1.
R = gas constant (287.05).
g0 = magnitude of the acceleration vector ~g0 due to gravity at the earth surface.
a = lapse rate(0.0065 K/m).

• Atmospheric density

ρ =
P

RT
(4.28)

Where
ρ = atmospheric density.
P = pressure at altitude h.
R = gas constant (287.05).
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Figure 4.2: Atmosphere characteristics.



Chapter 5

Guidance and control system

This chapter presents a discussion and overview of missile guidance and control system as well
as the basic equations that are used in intercepting a given target.

5.1 Introduction

The purpose of missile guidance and control is to make the missile hit the target at the end of its
flight. In order to achieve this goal, it is essential for the missile to constantly acquire the motion
information of the target and of the missile itself in the course of the flight and adopt a tactic (that is
a guidance law) to decide how to change the missile’s velocity direction based on the current missile
and target relative motion, allowing the missile to finally hit the target [7].

Figure 5.1 illustrates the missile guidance and control loop.

∑ Guidance
processor

Autopilot
Control
system

acflight path

Missile
position

PT e δc

−

PM

Figure 5.1: Guidance loop
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5.2 Guidance intercept techniques

Two basic guidance concepts will be discussed: (a) the homing guidance system, which guides
the interceptor missile to the target by means of a target seeker and an onboard computer; homing
guidance can be modeled as active, semiactive, and passive; and (b) command guidance, which relies
on missile guidance commands calculated at the ground launching (controlling) site and transmitted
to the missile. In addition to these guidance systems, two other forms of missile guidance have been
used in the past or are being used presently: (a) inertial guidance and (b) position-fixing guidance.
Some guided missiles may contain combinations of the above systems [1].

5.2.1 Homing guidance or onboard guidance

The expression "homing guidance" is used to describe a missile system that can sense the target by
some means, and then guide itself to the target by sending commands to its own control surfaces.

Homing is useful in tactical missiles where considerations such as autonomous (or fire-and-
forget) operation usually require sensing of target motion to be done from the interceptor missile
(or pursuer) itself. Consequently, in such cases the sensor limitations generally restrict the sensed
target motion parameters to the set consisting of the direction of the line of sight and its rates of
various orders.

5.2.1.1 Active homing

In an active homing system, the target is illuminated and tracked by equipment on board the missile
itself. That is, the missile carries the source of radiation on board in addition to the radiation sensor.
An active system has the potential to measure relative bearing and range from the missile to the
target angular rate of the line of sight to the target, and range rate for use in determining guidance
commands.

Figure 5.2: Active homing

5.2.1.2 Semiactive homing

A semiactive homing system is one that selects and chases a target by following the energy from an
external source, such as a tracking radar, reflecting from the target (Figure 5.3). This illuminating
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radar may be ground-based, ship-borne, or airborne. Semiactive homing requires the target to be
continuously illuminated by the external radar at all times during the flight of the missile. The
illuminating energy may be supplied by the target-tracking radar itself or by a separate transmitter
collimated with it.
The radar energy reflected by the target is picked up by a tracking receiver (the seeker) in the nose of
the missile and is used by the missile’s guidance system. Equipment used in the semiactive homing
systems is more complex and bulky than that used in passive systems. It provides homing guidance
over much greater ranges and with fewer external limitations in its application.

Figure 5.3: Semiactive homing

5.2.1.3 Passive homing

A passive guidance system transmits no-power. The power tracked by the onboard seeker is either
generated by the target itself (RF or IR), is reflected power generated by a natural source (solar),
or is background power blocked by the target (UV). Thus, passive homing guidance systems are
based on the use of the characteristic radiation from the target itself as a means of attracting the
missile, for example, as in infrared homing systems. In other words, the target acts as a lure. Once
a passive seeker is locked onto the target and launched, there is no more need for support from the
ground-based launch system. This gives rise to the concept of “fire and forget”, which permits the
ground-based system to turn its attention to new targets and new launches. Passive seekers have the
potential to measure relative bearing and the angular rate of the line of sight; they cannot, however,
measure range or range rate.

5.2.2 Ground based guidance

Long-range missiles may require very large target-tracking sensors, too large to be carried onboard
the missiles. Also very sophisticated high-speed computations involved in guidance processing and
countermeasures rejection have in the past required computation equipment that is too bulky and
heavy to be carried onboard the missiles. For these reasons missile systems have been developed
with sensors and computers located on the ground. Another reason for ground-based sensors and
computation, even for short-range missiles with relatively simple guidance processors, is simply to
keep the expendable flight hardware as simple and low in cost as possible.
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Figure 5.4: Passive homing

5.2.2.1 Command guidance

Command guidance receives its name from the fact that guidance commands are generated by a
guidance processor that is not a part of the missile .Command guided missiles are missiles whose
guidance instructions or commands come from sources outside the missile. In this type of guidance,
a tracking system that is separated from the missile is used to track both the missile and the target.
Therefore, a missile seeker is not required in command guidance. The tracking system may consist
of two separate tracking units, one for the missile and one for the target aircraft, or it may consist of
one tracking unit that tracks both vehicles. The tracking can be accomplished using radar, optical,
laser, or infrared systems. A radar beacon or infrared flare on the tail of the missile can be used to
provide information to the tracking system on the location of the missile. Measured position data
for the target and missile are fed into a computer located on the ground. The computer calculates
the guidance commands, and they are transmitted to the missile where they are carried out by the
autopilot and control system of the missile.

Figure 5.5: Command guidance
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5.2.2.2 Beam Rider

Beam riding is another form of command guidance. Specifically, in this type of guidance, the aircraft
(target) is tracked by means of an electromagnetic beam, which may be transmitted by a ground
(or ship or airborne) radar or a laser tracking system (e.g., a ladar (laser detection and ranging),
or laser radar). In order to follow or ride the beam, the interceptor missile’s onboard guidance
equipment includes a rearward-facing antenna, which senses the target-tracking beam. By utilizing
the modulation properties of the beam, steering signals that are a function of the position of the
missile with respect to the center (or the scanning axis) of the target-tracking beam are computed
on board and sent to the control surfaces.

These correction signals produce control surface movements intended to keep the missile as
nearly as possible in the center of the target-tracking beam (or scanning axis). For this reason, the
interceptor missile is said to ride the beam. Either the beam that the missile rides can track the target
directly, or a computer can be used to predict the direction the missile beam should be pointing in
order to effect an eventual collision of the interceptor missile with the target. In this case, a separate
tracker is required to track the target.

Figure 5.6: Beam rider guidance

5.2.2.3 Retransmission Guidance or TVM guidance

This technique is largely similar to command guidance but with a unique twist. The target is tracked
via an external radar, but the reflected signal is intercepted by a receiver onboard the missile, as
in semi-active homing. However, the missile has no onboard computer to process these signals.
The signals are instead transmitted back to the launch platform for processing. The subsequent
commands are then retransmitted back to the missile so that it can deflect control surfaces to adjust
its trajectory.
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Figure 5.7: TVM guidance

This method is also sometimes called "track via missile" (TVM) since the missile acts as a conduit
of tracking information from the target back to the ground control station. The advantage of TVM
homing is that most of the expensive tracking and processing hardware is located on the ground
where it can be reused for future missile launches rather than be destroyed. Unfortunately, the
method also requires excellent high-speed communication links between the missile and control
station, limiting the system to rather short ranges. Retransmission guidance is used on the Patriot
surface-to-air missile.

5.3 Missile autopilot

The autopilot is a link between the function that indicates a change of heading is needed (guidance
processor) and the mechanism that can change the heading (control system) as illustrated in the
diagram below (5.8).

The " autopilot " receives guidance commands and processes them to the controls such as de-
flections or rates of deflection of control surfaces or jet controls. The control subsystem transfers the
autopilot commands to aerodynamic or jet control forces and moments to change the position of the
airframe, to attain the commanded maneuver by rotating the body of a missile to a desired angle of
attack.
The autopilot response should be attended quickly with minimum overshoot. Minimal overshoot
enables a missile to avoid exceeding structural limitations.

The design of the autopilot depends on the aerodynamics of the missile airframe and the type
of controls employed. Since some guided missiles must perform over extreme ranges of flight con-
ditions, the autopilot may be designed to compensate for some of the nonlinearities in the aerody-
namics in order to ensure a stable system. If the missile design requires roll control, the autopilot
may sense roll position or roll rate and issue appropriate control commands. Some missiles require
control to compensate for the acceleration due to gravity; in this case the autopilot receives the
necessary sensor data and determines the direction and magnitude of the commands required to
compensate for gravity.
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The autopilot may introduce airframe damping to prevent large overshoots in response to ma-
neuver commands or to compensate for dynamic instabilities. It may contain amplifiers, integrators,
and mixing circuits that send signals to the proper control surface actuators. In some applications
missile maneuver commands may be produced solely on the basis of the seeker output.

Seeker or
guidance
processor

Autopilot
Control
system

Flight path error Fin deflection

Figure 5.8: Autopilot function

5.3.1 Autopilot Modeling

As discussed in the introduction above, an autopilot in a missile has two basic functions to ensure
stable flight and to translate the guidance law into control-surface deflection commands.

Figure 5.9: Control surfaces

The autopilot model may scale and limit the guidance commands for the structural integrity and
stability of the missile and provide feedback loops to ensure that the commands are being accurately
executed, depending on the design of the missile and on the objectives of it.

It is assumed in our simulation case that the missile has four control surfaces in a cruciform
pattern and that commanded control-surface deflections are proportional to commanded lateral ac-
celerations for maneuver commands and proportional to commanded roll rates for roll commands.

5.3.1.1 Six degree of freedom model

In Six degree of freedom model, the pitch and yaw channels can be considered as decoupled single-
input single-output systems; this simplifies their design. A constant roll position creates normal
working conditions for missile components.

The relationship between the actuator commands δP , δY , δR and the individual fin deflections is
given for this model as follow

δP =
δ2 −δ4

2
, (5.1a)

δY =
δ1 −δ3

2
, (5.1b)

δR =
δ1 +δ2 +δ3 +δ4

4
. (5.1c)
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where
δP = autopilot pitch fin command,
δY = autopilot yaw fin command,
δR = autopilot roll fin commands.
δi = deflection angle of i th control surface, i = 1,2,3,4.

The restrictions related to the fin deflections are transformed into the autopilot limits (δP , δY ,
δR), which, in turn, impose constrains on the missile acceleration [5].

5.3.1.2 Five degree of freedom model

In Five degree of freedom model, the pitch and yaw channels are coupled and roll rate is set to zero,
thus the actuator commands are

δP =
δ2 −δ4

2
, (5.2a)

δY =
δ1 −δ3

2
, (5.2b)

δR = 0. (5.2c)

where
δ1 = −δ3,
δ2 = −δ4.
The negative sign is a consequence of the difference in orientation direction see ( figure 5.9 ).

5.4 Missile control system

Once the guidance processor has determined the magnitude and direction of the error in the missile
flight path and the autopilot has determined the steering command, the missile control system must
adjust the control surfaces to produce the acceleration required to correct the flight path. This
corrective acceleration is applied in a lateral direction (perpendicular to the missile flight path) to
change the direction of the missile velocity vector. A moment, i.e., a force multiplied by a lever arm,
is required to cause a missile to rotate to achieve an angle of attack. This moment can be developed
by several means such as thrust vector control and aerodynamic fin deflection.

5.4.1 Fin deflection control

In aerodynamic fin deflection the airflow over the deflected control surfaces produces an aerody-
namic moment on the missile that causes the missile to rotate relative to its velocity vector and thus
achieve an angle of attack. Commonly, aerodynamically guided missiles have two axes of symmetry,
that is, arranged in a cruciform configuration as shown in Figure (5.9).

5.4.1.1 Canard control

The lift in canard control configuration is developed on the fin itself. This lift, acting on the lever arm
relative to the missile center of mass, produces a nose-up moment when the fin is deflected as shown
in figure 5.10. The magnitude of the aerodynamic moment is proportional to the lift L that acts on
the control surface. The lift in turn is dependent on the deflection angle of the control surface.
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Figure 5.10: Aerodynamic moment in canard control

5.4.1.2 Tail control

Figure 5.11 shows the use of tail surfaces for control. With tail control the lift on the control surface
is in the direction opposite to the desired lateral acceleration of the missile so that the lift on the
control surface subtracts from the overall missile lift.

Figure 5.11: Aerodynamic moment in tail control

5.4.2 Thrust vector control

In thrust vector control, steering of the missile is accomplished by altering the direction of the efflux
from the propulsion motor. In this design, a thrust vector controller is used to follow the thrust
vector command see figure 5.12.
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Figure 5.12: Aerodynamic moment in canard control

More specifically, the fire control system can command the thrust generator to generate the thrust
amplitude and direction commands. Consequently, the thrust amplitude obtained by controlling the
exhaust mass flow rate and the thrust direction generated by controlling the thrust vector control
servo are combined to construct a thrust vector control. As in the conventional fin control actuation
systems, a servo control system can be used. In such a case, an autopilot can be used to follow
the trajectory shaping and optimization commands and to stabilize the missile during flight. The
advantage of this method is that it does not depend on the dynamic pressure of the atmosphere. On
the other hand, a missile using the thrust vector control method becomes inoperative after motor
burnout.

5.4.3 Control system modeling

The designs of the control system components-power sources, power transmission media, servos,
and actuators of different missiles may vary considerably, but all have a common purpose, i.e., to
convert autopilot commands into fin deflections.

For many purposes, regardless of the details of the control system design, the control system
components can be aggregated and described by a simple control system model that uses trans-
fer functions. The input to the model is the control-surface deflection command; the output is the
control-surface defection achieved. The relationship between the output and the input is defined
mathematically by appropriate transfer functions and logical elements such as limits on the magni-
tudes of control-surface defections. Transfer functions provide a powerful means of representing the
operation of missile control systems in an aggregated form without the need for detailed simulation.

∑

G(s) =
Ks

s

δc error δ

Feedback loop

−

Figure 5.13: Closed loop diagram
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By definition, the transfer function is equal to the ratio of the Laplace transform of the output of
the system to the Laplace transform of the input, that is

δ(s)
δc(s)

= G(s) (5.3)

Where
s = Is the Laplace variable
δ(s) = Laplace transform of the achieved control-surface deflection, rad(deg)
δc(s) = Laplace transform of the commanded control-surface deflection, rad(deg)
G(s) = Control system transfer function, dimensionless.

Transfer functions can be obtained for a given control system by two methods. The first is by
computation, i.e., start with the differential equations of the system and solve them for the desired
ratio. The second method is by experimental measurement.

To illustrate the computation of the transfer function of a simple servo, it is assumed that the
rate of fin defection is proportional to the magnitude of the deflection command. The differential
equation describing this servo is

δ̇ = Ksδc (5.4)

Where
Ks = servo system gain, s−1

δ = angular rate control-surface deflection, rad/s.

The Laplace transform of Eq 5.4 ignoring initial conditions is

sδ(s) = Ksδc(s) (5.5)

Solving for the transfer function gives
δ(s)
δc(s)

=
Ks

s
(5.6)

Therefore, the transfer function is G(s) =
Ks

s
for a control system consisting of only the servo with

no feedback.
Fig 5.13 shows the block diagram of a closed-loop control system in which the fin deflection

achieved is fed back and compared with the input. For this case the input to the control servo is
the difference between the output and the input to the control system. By a derivation, the transfer
function for the entire closed-loop control system, not just the servo, is determined to be

G(s) =
1

1+τs
(5.7)

where τ=
1
Ks

, control system time constant.

The response of the control system is modeled as a first order system.
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5.5 Guidance laws

A guided missile engagement is a highly dynamic process. The conditions that determine how close
the missile comes to the target are continuously changing, sometimes at a very high rate. A guidance
sensor measures one or more parameters of the path of the missile relative to the target. A logical
process is needed to determine the required flight path corrections based on the sensor measure-
ments. This logical process is called a guidance law. The objective of a guidance law is to cause the
missile to come as close as possible to the target. Guidance laws usually can be expressed in math-
ematical terms and are implemented through a combination of electrical circuits and mechanical
control functions. The two basic criteria on which guidance laws are based are that the guidance
must
(1) be effective under anticipated conditions of use.
(2) be able to be implemented using the particular sensor configuration selected.

A number of different schemes and their many variations have been used for missile guidance,
chief among which are intercept point prediction, pursuit, beam-rider, proportional navigation, and
methods based on modern control theory.

5.5.1 Beam rider or line of sight guidance

Command-to-line-of-sight guidance is similar to beam-rider guidance, in that both forms attempt to
keep the missile within a guidance beam transmitted from the ground.

As shown in Figure 5.14, the vector e represents the error in missile position relative to the
guidance beam at any given instant. This error is defined as the perpendicular distance from the
missile to the centerline of the guidance beam. The missile guidance commands generated by beam-
rider and command-to-line-of-sight systems are proportional to the error vector e and the rate of
change of that vector ė. The proportionality with e causes the missile to be steered toward the
center of the guidance beam; the proportionality with ė provides rate feedback, which causes the
missile flight path to maneuver smoothly onto the centerline of the guidance beam without large
overshoots.

A third parameter, the Coriolis acceleration AC c, may be included in the guidance equation. This
Coriolis acceleration results from the angular rotation of the guidance beam. The Coriolis component
of missile acceleration is required in order to allow the missile to keep up with the rotating beam
as the missile flies out along the beam. In surface-to-air missile applications the angular rate of the
guidance beam is typically great enough to cause this parameter to be significant.

Equations for calculating the guidance parameters will be given and the method of combining
them to form the missile commanded-lateral-acceleration vector also ac.

The equation for calculating e is
e = PB − PM (5.8)

where
e = vector of error in missile position relative to the guideline, m
PB = position vector of a point on the guideline at the point of intercept with the error vector e, m
PM = position vector of the missile, m.

The vector PB should be written in terms of the guideline and the missile position vector PM

PB = (ugl · PM)ugl (5.9)
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Figure 5.14: Guidance Error for Beam Rider or Command to Line of Sight

where
ugl = unit vector tha represents the direction of the guideline.

The error rate vector ė is calculated as the difference between the component of missile velocity
VM perpendicular to the guideline and the component of the velocity of point B perpendicular to the
guideline. The error rate vector ė is given by

ė = VB perp − VM perp (5.10)

The components of velocities, for substitution into Eq 5.10 are given by using
�

VB perp =ωgl × PB

VM perp = (ugl × VM)× ugl
(5.11)

where
ωgl = angular rate vector of the guideline, rad/s.

The Coriolis acceleration term AC c is calculated using

AC c = Mag[ωgl × (VM · ugl)ugl] (5.12)

Mag[] = the magnitude of the argument vector.

Finally, using the terms calculated in Eqs.5.8, 5.10, and 5.12 the commanded-lateral-acceleration
vector, to guide the missile onto the centerline of the guide beam, is given by

ac = k1eue + k2 ėuė + k3AC cuc (5.13)

where
k1, k2 and k3 are proportionality constants (gains)
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uc = unit vector in the direction of the component of e that is perpendicular to the missile centerline.
The Eq 5.13 represents the commanded-lateral-acceleration vector that is fed to the control system
to produce the convenient deflection to minimize the error e.

The choice of the proportionality constants k1, k2 and k3 is done in the simulation chapter using
the PSO algorithm to minimize as possible the miss distance.

5.5.2 Proportional navigation

Proportional Navigation is the most widely known and used guidance law for short- to medium-
range homing missiles, because of its inherent simplicity and ease of implementation. Proportional
navigation is so robust, however, that acceptable miss distances can be achieved even against targets
that perform relatively severe evasive maneuvers if the missile response time is short enough and if
the missile is capable of sufficient acceleration in a lateral maneuver.

Simply stated, classical proportional navigation guidance is based on recognition of the fact that
if two bodies are closing on each other, they will eventually intercept if the line of sight (LOS) be-
tween the two does not rotate relative to the inertial space. More specifically, the PN guidance law
seeks to null the LOS rate against nonmaneuvering targets by making the interceptor missile heading
proportional to the LOS rate. For instance, in flying a proportional navigation course, the missile
attempts to null out any line-of-sight rate that may be developing. The missile does this by com-
manding wing deflections to the control surfaces. Consequently, these deflections cause the missile
to execute accelerations normal to its instantaneous velocity vector. Thus, the missile commands g’s
to null out measured LOS rate [1].

The relation describing the the commanded normal (or lateral) acceleration can be expressed as
follows:

ac = NVc
dλ
d t

(5.14)

where
ac = the commanded normal (or lateral) acceleration [ft/sec2] or [m/sec2 ],
N = the navigation constant (also known as navigation ratio, effective navigation ratio, and naviga-
tion gain), a positive real number [dimensionless],
Vc = the closing velocity [ft/sec] or [m/sec],
dλ
d t = the LOS rate measured by the missile seeker [rad/sec].
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Figure 5.15: Geometry for derivation of proportional navigation.

Figure 5.15 shows the geometry from which the equations representing proportional navigation
can be derived. In the derivation of the proportional navigation equations, it will be assumed that
the missile speed and target speed remain constant during the time of flight of the missile; this is
normally a good assumption.

From the engagement geometry of Figure 5.15, we note that the range between the missile and
the target has a value R, and the line of sight has rotated through an angle λ from the initial value.
The rate of rotation of the line of sight at any time is given by the difference in the normal components
of velocity of the target and missile, divided by the range. This can be expressed by the equation

R
�

dλ
d t

�

= vt sin(γt −λ)− vm sin(γm −λ), (5.15)

while the velocity component along the line of sight is given by the equation

dR
d t
= vt cos(γt −λ)− vm cos(γm −λ) (5.16)

where
R = range between missile and target,
vm = interceptor missile velocity,
vt = velocity of the target,
λ = line-of-sight (LOS) angle,
γm = missile flight path (or heading) angle, that is, angle between the missile velocity vector and
inertial reference,
γt = target flight path angle.

The proportional navigation guidance law states that the rate of change of the missile heading
(γm) is directly proportional to the rate of change of the line-of-sight angle (λ) from the missile to
the target. Therefore, the basic differential equation for this case is given by

dγm

d t
= N

dλ
d t

, (5.17)
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where N is the navigation constant (see also 5.14). Equations 5.15, 5.16, and 5.17 represent the
complete equations of motion for the system. The dependent variables are R, γm, and λ; the ve-
locities vm, vt and the target’s flight path angle γt must be known or assumed. The usual means of
implementing a proportional navigation guidance system is to use the target tracker (or seeker) to

measure the line-of-sight rate (
dλ
d t

).

We will now develop the general proportional navigation guidance equation. In order to do this,
we begin by differentiating 5.15, yielding

Ṙλ̇+ Rλ̈= (γ̇t − λ̇)vt cos(γt −λ)− (γ̇m − λ̇)vm cos(γm −λ) (5.18a)

Ṙλ̇+ Rλ̈= γt vt cos(γt −λ)− γ̇mvm cos(γm −λ)− λ̇[vt cos(γt −λ)− vm cos(γm −λ)]. (5.18b)

Substituting (5.16) and (5.17) into (5.18b), we obtain

2Ṙλ̇+ Rλ̈= γ̇t cos(γt −λ)− N λ̇vm cos(γm −λ) (5.19)

or
d2λ

d t2
+ (
λ̇

R
)[2Ṙ+ N vm cos(γm −λ)] =

1
R
γ̇t vt cos(γt −λ) (5.20)

In the above derivation, we note that the equation system consisting of (5.16), (5.17), and (5.20)
constitutes the proportional navigation guidance in the plane. We will now investigate the case
whereby the target flies a straight-line course. For a straightline course, the target’s flight path

angle rate in (5.20) is zero; that is,
dγt

d t
= 0. Therefore,with this conditionwe have a homogeneous

differential equationfor
dλ
d t

. Now, in order for
dλ
d t

to approximate the zero line,
dλ
d t

and
d2λ

d t2
must

have different signs. Thus, we have the inequality

2
�

dR
d t

�

+ N vm cos(γm −λ)> 0, (5.21)

since by definition R> 0. From (5.21), we obtain the navigation ratio N as

N >
§

−2
�

dR
d t

�

/vm cos(γm −λ)
ª

f or cos(γm −λ)> 0. (5.22)

The condition cos(γm − λ) means that the missile’s direction of flight forms an angle with the LOS

to the target. Substituting
dR
d t

from (5.16) into (5.22), one obtains

N > 2 {1− [cos(γt −λ)/(κ cos(γm −λ))]} (5.23)

where we have substituted κ= vm/vt . We can now write (5.23) as

N = N ′ {1− [cos(γt −λ)/(κ cos(γm −λ))]}

= −N ′
§�

dR
d t

�

/vm cos(γm −λ)
ª

(5.24)

or

N ′ = −N
§

vm cos(γm −λ)/
�

dR
d t

�ª

(5.25)

where N ′(N ′ > 2) is commonly called the effective navigation ratio, and - dR
d t is the missile’s closing

velocity (i.e., −dR
d t = vc). We note from (5.20) that when d2λ

d t remains finite, then as R→ 0, ( dλ
d t )→ 0

also.
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Since the missile velocity vector cannot be controlled directly, the missile normal acceleration an

or ac is defined as

ac = vm
dγt

d t
, (5.26)

where dγt
d t is the missile’s turning rate. Substituting (5.17) into (5.26), we have

ac = vm
dγt

d t
= vmN

�

dλ
d t

�

. (5.27)

Furthermore, substituting (5.24) into (5.27) results in

ac =
�

−NṘvm/(vm cos(γm −λ))
	

�

dλ
d t

�

= {N vc/ cos(γm −λ)}
�

dλ
d t

�

(5.28)

where the closing vc is equal to – (
dR
d t

), and N is given in terms of (5.24). Equation (5.28) is the

well-known general classical proportional navigation guidance equation and is similar to (5.14).
This equation is used to generate the guidance commands, with the missile velocity expressed in
terms of the closing velocity vc (between the missile and the target) and the seeker gimbal angle
(γm −λ). For more details see [1].

5.5.3 Proportional derivative based guidance law

Model-based PID control synthesis is a typical low-order controller design problem. The three con-
trol blocks in the PID control have different actions in the process. A proportional controller Kp has
the effect of reducing the rise time and will reduce, but never eliminate, the steady-state error. An
integral control Ki has the effect of eliminating the steady-state error, but it may make the transient
response worse. A derivative control Kd has the effect of increasing the stability of the system , re-
ducing the overshoot and improving the transient response [27].

The expression for the output of the PID controller in terms of the error and the corresponding
transfer function are given as

u(t) = Kp

�

e(t) +τd
de(t)

d t
+

1
τi

∫ t

0

e(τ)dτ

�

(5.29)

The figure 5.16 shows the structure of a PID controller.

∑ PID con-
troller

System
dynamics

ref e(t) u(t) x

Feedback loop

−

Figure 5.16: PID controller block diagram.

In the simulation chapter where PD method implemented we’ve assumed that the missile and
target positions are known, thus we’ve defined the normal acceleration to be

ac = Kpsgn(E) + Kdsgn(Ė) + Kc (5.30)
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where
Kp, Kd , Kc = proportionality gains ∈ R2×3,

Kp =

�

kp11
kp12

kp13
kp21

kp22
kp23

�

, Kd =
�

kd 11 kd 12 kd 13
kd 21 kd 22 kd 23

�

, Kc =
�

kc11 kc12 kc13
kc21 kc22 kc23

�

E = Range vector defined as follows,

E =





Ex = PT (x)− PM(x)
Ey = PT (y)− PM(y)
Ez = PT (z)− PM(z)





Ė = Range vector derivative is given by

Ė =





Ėx = ṖT (x)− ṖM(x)
Ėy = ṖT (y)− ṖM(y)
Ėz = ṖT (z)− ṖM(z)





PT = Target position vector expressed in earth coordinate system,
PM = Missile position vector expressed in earth coordinate system.

• Sign function: In mathematics, the sign function is an odd mathematical function that extracts
the sign of a real number. In mathematical expressions the sign function is often represented
as sgn, see ( figure 5.17 ).

1

−1

x

y

Figure 5.17: Sign function y = sgn(x).

The reason behind the use of the sgn function in equation ( 5.30 ) is to eliminate the chattering
effect due to the presence of unmodeled dynamics in the system which may steer the system
into instability. With this function we obtain a smooth continous control signal.
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5.5.4 Optimisation techniques applied to guidance laws

5.5.4.1 Introduction

Optimisation methods are widely used in various fields. The task is to choose the best or a satis-
factory one from amongst the feasible solutions to an optimisation problem. The process of using
optimisation methods to solve a practical problem mainly involves these two steps. First, formulate
the optimisation problem which involves determining the decision variables, objective function and
constraints, and possibly an analysis of the optimisation problem. Second, select an appropriate
numerical method, solve the optimisation problem, test the optimal solution and make a decision
accordingly. Mathematically, an optimisation problem may be summarised as follows

max( f (x)) or min( f (x)) (5.31)

where
f (x) is the objective function
x is an N -dimensional vector consisting of the decision variables.

5.5.4.2 PSO algorithm

Swarm intelligence refers to a class of algorithms that simulates natural and artificial systems com-
posed of many individuals that coordinate using decentralised control and self-organisation. The
algorithm focuses on the collective behaviours that result from the local interactions of the individu-
als with each other and with the environment where these individuals stay. Some common examples
of systems involved in swarm intelligence are colonies of ants and termites, fish schools, bird flock,
animal herds [25].

The particle swarm optimisation (PSO) algorithm falls into the category of SI algorithms and is
a population-based optimisation technique originally developed by Kennedy and Eberhart in 1995.

In PSO algorithm, Each agent is treated as a particle with infinitesimal volume with its properties
being described by the current position vector, its velocity vector and the personal best position
vector. Each agent knows the global best particle (g best) between all the best particles (pbests).

1. Velocity vector: denotes the increment of the current position.
It is given for each agent or (particle) by

vi
k+1 = σvi

k + c1rand1 × (pbest i − si
k) + c2rand2 × (g best i − si

k) (5.32)

where
vi

k = agent i current velocity at the kth iteration,
σ = inertia weight or (weighting function),
c j = inertia weight factor,
rand = random number between 0 and 1,
si

k = agent i current position at the kth iteration,
pbest = i th agent’s best position,
g best = group’s best position.

2. Inertia weight: is given as follows

σ = σmax −
σmax −σmin

i termax
× i ter (5.33)

The equation 5.33 is called the "Inertia Weights Approach(IWA)".
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3. Position vector: is modified according to the following equation

si
k+1 = si

k + vi
k+1 (5.34)

where
si

k = agent current position,
si

k+1 = agent modified position,
vi

k+1 = agent modified velocity.

PSO concepts presented above are illustrated in the following flow diagram 5.18.[26]

START

Initial state
generation for

each agent

Evaluation of
the fitness value
for each agent

Updating the
position vector
according to

state equations

Max
iteration

END

YES

NO

Figure 5.18: PSO diagram

In the simulation chapter we’ve used this optimisation technique and we’ve defined the miss
distance to be the function subject to the minimisation. A matlab code of the PSO algorithm is
provided is the appendices.



Chapter 6

Application of guidance laws to a generic
surface to air missile

6.1 Introduction

A simulation is based on mathematical models of the missile, target and environment, and these
mathematical models consist of equations that describe physical laws and logical sequences. The
missile model includes factors such as missile mass, thrust aerodynamics, guidance and control, and
the equations necessary to calculate the missile attitude and flight path. The target model is of-
ten less detailed but includes sufficient data and equations to determine the target flight path. The
model of the environment contains, at a minimum, the atmospheric characteristics and gravity.

6.2 Program structure

In a digital simulation the processing is done in discrete time steps, the size of which must be carefully
considered to ensure faithful representation of the highest frequency components of the simulated
missile system. At any given time step the processing proceeds through each task and calculates any
changes that occur within that time increment. After completion of all tasks appropriate to that time
increment, the program steps to the next time increment and repeats the cycle. This last is described
in the following diagram that shows the flow of processing from one task to the next.

Each block in the diagram represents a major function, or group of functions, or a major logic
process in the computer program (see figure 6.1). The direction of processing flow is indicated by
arrows. One cycle through the flow diagram represents an incremental time step.
Missile and target position and velocity vectors are used to calculate the relative position and velocity
vectors with respect to the target. A test is performed to determine whether the missile has reached
its closest approach to the target, which of course will not occur until the end of the engage- ment.
If the test shows that the closest approach has been reached, the program sequence is diverted to a
routine that calculates miss distance and the program ends. Otherwise, the program continues into
the guidance routine.
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END

NO

YES
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Figure 6.1: Diagram for computaional cycle of missile flight simulation

For purposes of illustration it is assumed that a particular missile configuration is to be inves-
tigated. The missile configuration to be studied is controlled by torque-balanced canard control
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surfaces, and the canards and stabilizing tail fins are arranged in a cruciform configuration. The
description of the missile required for the simulation model is given in the paragraphs that follow.

• Mass:
m0 = 85.0, missile mass at launch [Kg]
mb0 = 57.0, missile mass at burnout [Kg]
The equation describing the mass variation in the correspending missile simulation example is
given by:

m= m0 −
1
Isp

∫

Fpre f
d t, kg (6.1)

I0 = 61, moment of inertia about x,y and z axes at launch [K g.m2]
Ib0 = 47, moment of inertia about x,y and z axes at launch [K g.m2]
The moment of inertia varies linearly with the mass:

I = I0 − (I0 − Ib0)
�

m0 −m
m0 −mb0

�

, kg.m2 (6.2)

xcmb0
= 1.55, distance from nose to center of mass at launch [m]

xcmb
= 1.35, distance from nose to center of mass at burnout [m]

The location of the center of mass varies also linearly with the mass, it is given as follows:

xcm = xcm0
−
�

xcm0
− xcmb0

�

�

m0 −m
m0 −mb0

�

, m (6.3)

• Propulsion:
tb0 = 5.6, time of burnout
Pr e f = 101314, ambient pressure (Pa)
Ae = 0.011, exit area of rocket nozzle (m2)
Isp = 2224, specific impulse (N.s/Kg)

Evolution of thrust in time
Time (s) Thrust (N)

0 0
0.01 450
0.04 17800
0.05 23100
0.08 21300
0.1 20000
0.2 18200
0.3 17000
0.6 15000
1 13800

1.5 13300
2.5 13800

Time (s) Thrust (N)
3.5 14700
3.8 14300
4 12900

4.1 11000
4.3 7000
4.5 4500
4.7 2900
4.9 1500
5.2 650
5.6 0
100 0

• Aerodynamics:
S = 0.0127, missile aerodynamic reference area, m2

d = 0.127, aerodynamic reference length, m
x re f = 1.35, distance from nose to reference moment station, m
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Coefficients / Mach number 0 0.8 1.14 1.75 2.5 3.5
CD0 0.8 0.8 1.2 1.15 1.05 0.94
CLα 38 39 56 55 40 33
Cmα -160 -170 -185 -235 -190 -150
Cmδ 180 250 230 130 80 45

Cmq
+ Cmα̇ -6000 -13000 -16000 -13500 10000 -6000
k 0.0255 0.0305 0.0361 0.0441 0.0540 0.0665

6.3 Simulation of a missile launch

In this section, we present all the simulation results obtained when simulating the missile launch,
without acting on the fins (no deflection is made), in order to visualize missile parameters variations
and its trajectory.

• Inputs for open loop simulation
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Figure 6.2: Input for open loop simulation

• Thrust variation
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Figure 6.3: Thrust variation.
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The figure 6.3 shows that the missile atteinds its peak of thrust at the first instants of its flight
because the missile need a maximum of energie to fly so far as possible with highest velocity.
At this point the thrust begins to decrease under the influence of the resistance of the air versus
the missile.

• Mass variation
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Figure 6.4: Mass variation

The Figure 6.4 illustrates the change in mass of the missile during its flight. As the figure
shows, we can decompose the missile mass evolution into tow phases :
Phase 01 : begins at the instnant of luanch to 5.6 s, in this interval, we can see that the mass
of the correspending missile decrease from 85 kg to 57 kg, however, this decreasing is refered
to the consumption of the propellant during the flight.
Phase 02 : this phase is the last time of simulation, where the mass become constant (i.e : no
thrust, no fuel consumption), the missile fly only with its propere mass.
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Figure 6.5: Inertia variation on x , y and z axes respectively

This figures show the evolution of inertia moment on x , y and z axes respectively, this variation
is related linearly with changing in mass by a mathematical equation described in the missile
modeling chapter.

• Center of mass variation
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Figure 6.6: Center of mass variation

As the missile mass changes, the position of the center of mass also changes linearly with it.
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• Atmospheric parameters
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(b) Pressure variation
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Figure 6.7: Evolution of atmospheric parameters.

The previous figures 6.7 (a, b, c and d) show the evolution of the atmospheric parameters
during the missile flight. As the missile’s altitude increase the atmospheric parameters decrease
on the first half time of flight until the missile gets its highest level of altitude. However, these
parameters increase in the second half of flight because the missile’s altitude decrease. So
these parameters are inversely proportional with missile’s altitude.



102 6. Application of guidance laws to a generic surface to air missile

• Mach number variation
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Figure 6.8: Mach number variation

Figure 6.8 presents the evolution of Mach number during the flight as function of time , it
is clearly seen that the Mach number increases rapidly in the first 5 s until its highest value
(Mach = 2.3 at t= 5.6 s), this refers to the enormous thrust of missile at the beginnig of its
flight. After this point the missile Mach number begins to decrease because of the termination
of thrust.

• Gravity variation
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Figure 6.9: Gravity variation

Figure 6.9 correspends to the gravity variation durig the missile flight. it shows a little variation
which can be neglected, the gravity variation is also inversely proportional to the missile’s
altitude.
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• Lift and Drag force variation
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Figure 6.10: Evolution of Lift and Drag forces.

• Angle of attack variation
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Figure 6.11: Angle of attack variation

Figyre 6.11 shows the behavior of the angle of attack during the flightest. It can be seen that,
there is some variation in the first 3 s, due to the increasing in drag force under the infleunce
of the viscosity of the air which perturbs the missile motion.
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• Side-slipe angle variation
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Figure 6.12: Side-slipe angle variation.

• Total angle of attack variation
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Figure 6.13: Total angle of attack variation.
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• Pitch and Yaw moments variation
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Figure 6.14: Picth and Yaw momens variation.

Figure 6.14 illustrates the variation of pitch and yaw rotational moments of missile, where the
pitch moment is caused by the variation in the angle of attack during the first 5 s of flight. The
yaw moment is zero during the whole flight because there is no damping effect on the missile
(side-slipe angle = 0).

• Linear velocities variation
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Figure 6.15: Evolution of Linear velocities.

Figure 6.15 shows the evolution of the linear velocities during the missile flight. It is clearly
seen that the majority of speed is about the center-line axis of missile (x-axis), the speed about
this axis increases linearly in the first 5 s until it gets its highest value (u = 750 m/s at t = 5.6
s). After this point the missle speed begins to decrease because of the termination of thrust,
and continues to decrease until the end of simulation.
As it appears in figure 6.15(b), there is also a small variation on the pitch axis which can be
neglected in front of the speed on the center-line axis.
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• Angular velocities variation
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Figure 6.16: Angular velocities variation.

Figure 6.16 presents the evolution of the angular velocities during the time of simulation. It is
clearly seen that the angular velocity about the two axes yaw and roll are zero because there
is no moments about these two axes.

• Euler angles variation
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Figure 6.17: Euler angles variation.

Figure 6.17 shows the history of change of euler angles ψ , θ and φ in heading, pitch and roll
respectively. As we see, there is no change in roll angle (φ = 0) during the flight (nonrolling
missile characteristics). The heading angle (φ) is constant on φ = 15o from the launch to the
end of simulation. However, the pitch angle decreases rapidly in the first 5 s (from 40o to 29o)
because of the increasing in drag during the boost phase of flight, after this point the heading
angle continues to decrease linearly until the end of simulation under the influence of gravity
force acting on the missile.
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• Missile trajectory
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Figure 6.18: Missile trajectory.

Figure 6.18 illustrates the missile launch trajectory during its flight without acting on the de-
flection surfaces (the missile in this case is like a projectile).

6.4 Simulation results of missile-target 3D-engagement

In this section, we’ll present all the simulation results obtained when applying the different guid-
ance laws to guide the missile toward the target. We will restore the capacity of each method to
keep track of the target in each maneuvers, straight and curved path with shortest time and lowest
miss-distance.

In the coming results some parameters such as : thrust, mass, moment of inertia, center of mass,
atmospheric prameters (temperature, pressure, air-density and speed of sound), gravity and Mach
number are not presented because they are’nt affected by the use of guidance laws.

6.4.1 Target in straight flight with constant speed

In this simulation the target is flying at an altitude of 3 km and a speed of 250 m/s, and the target
flight path is straight and offset laterally 1 km from the missile launch site. At the instant of missile
launch the target is inbound at a downrange distance of 4 km from the launch site. The time of
simulation is limited at 8 s, because we need 7.6 s at most to destruct the target.
The target position vector at a given time is calculated by using:

PT = PT0 + VT t, m (6.4)
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6.4.1.1 Proportional Navigation results

• Inputs variation
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Figure 6.19: First and second inputs variation

Figure 6.19 illustrates the variation in deflection surfaces durig the flight. As we see, guidance
is not initiated until a short time called "time to go t go" after launch in order to permit the mis-
sile to gain enough speed so that it can be controlled. After this point the autopilot bases the
missile maneuver commands on the achieved seeker-head angular rate vector, and the control
system responds to autopilot commands by deflecting the control surfaces. In the early time
of flight the fins are deflected violently because the seeker seeks to track the line of sight, once
he got it the deflections will be smooth as possible.

• Lift and Drag forces variation
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Figure 6.20: Lift and Drag forces variations.
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• Angle of attack and Side-slipe angle variation
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Figure 6.21: Angle of attack and Side-slipe angle histories.

The angle of attack and sideslipe angle histories that result from the moments applied to the
missile are shown in Figure 6.21 . During the half second before guidance is initiated, the angle
of attack begins to increase slightly because gravity causes the missile flight path to deviate
downward from the direction the missile is initially pointed as it leaves the launcher. The
restoring moment, caused by this small angle of attack, rotates the missile downward to point
into its relative wind; this reduces the angle of attack essentially to zero by the time guidance
is initiated and the missile begins to track the desired angles and tries to remain there.

• Total angle of attack variation
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Figure 6.22: Total angle of attack variation.
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• Pitch and Yaw moments variation
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Figure 6.23: Picth and Yaw momens variation.

The pitch and yaw rotational moments on the missile caused by the combination of fin deflec-
tions, the restoring moment from the resulting angle of attack, and the damping effect of the
missile angular rate-are shown in Figure 6.23 . When the control fins are initially deflected a
large moment is generated and the missile rotates and overshoots the trim angle of attack. A
restoring moment is generated to rotate the missile back toward the trim condition; this results
in an oscillatory motion. The damping moment causes the oscillations to diminish until trim
conditions are achieved.

• Linear velocities variation
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Figure 6.24: Evolution of Linear velocities.

Figure 6.24 illustrates the evolution of missile linear velocities about the three axes pitch, yaw
and roll respectively. The majority of missile speed is about the center line axis (the one in
bleu), which increases linearly in the first 4 seconds until its highest value (u = 750 m/s at t =
4.45 s),the flight perturbation of the speed during the first 2 s is caused by the increased drag
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that results from the missile maneuvers. After this point the speed decreases linearly until the
interception with target.
There is also some variation in speed about y and z axes which oscillats in the first 3 s after
t go = 0.5s, caused by the oscillation in the inputs.

• Angular velocities variation
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Figure 6.25: Angular velocities variation.

Figure 6.25 shows the variation of the angular rates p, q and r of roll, pitch and yaw respectively.
During the first half second, we remark small decreasing in the pitch angular rate (q) results of
the gravity effect. After this point, the two angular rates of pitch and yaw (q and r respectively)
begin to oscillate as a result of pitching and yawing moments in order to guide the missile
toward the target.

• Euler angles variation
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Figure 6.26: Euler angles variation.

Figure 6.26 illustrates the behavior of the euler angles ψ , θ and φ in heading, pitch and roll
respectively, during the missile flight. As the missile change its orientation in space toward the
target, the euler angles rates change.
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• Missile and Target trajectories
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Figure 6.27: Missile and Target engagement in 3 dimensions.

Figure 6.27 shows the missile and target trajectories during the flight, and their interception
point in 3D. As we see in this figure the launcher is aimed directly at the target at the time of
launch, the proportional navigation guidance causes the missile to turn in a direction to lead
the target as is required to strike a moving target. This missile maneuver is initiated when
guidance is turned on (0.5 s). At this early time in the flight, the missile speed is slow, which
causes the amount of lead, and, therefore, the amount of the maneuver to be overestimated.
As the missile gains speed, the missile flight path is corrected until intercept with target at t =
7.4587 s with miss-distance = 0.004 m as we see in the simulation result.
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6.4.1.2 Beam Rider or Command to line of sight results

• Inputs variation
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Figure 6.28: First and second inputs variation.

• Lift and Drag forces variation
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Figure 6.29: Lift and Drag forces variations.
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• Angle of attack and Side-slipe angle variation
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Figure 6.30: Angle of attack and Side-slipe angle variation.

• Total angle of attack variation
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Figure 6.31: Total angle of attack variation.
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• Pitch and Yaw moments variation
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Figure 6.32: Picth and Yaw momens variation.

• Linear velocities variation
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Figure 6.33: Evolution of Linear velocities .
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• Angular velocities variation
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Figure 6.34: Angular velocities variation.

• Euler angles variation
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Figure 6.35: Euler angles variation.
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• Missile and Target trajectories
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Figure 6.36: Missile and Target engagement in 3 dimensions.

Discussion:

Figures from 6.28 to 6.36 show the variation of different parameters during the missile en-
gagement when Beam Rider or CLOS guidance used.The dynamics seems to be the same, in
other words there is’nt a remarkable difference between the three guidance laws in terms of
the dynamics.

Figure 6.32 illustrates the variation of the pitch and yaw rotational moments caused by the
diffrence of pressure applied on the control surfaces, this figure show some chattering which
can be minimized by the damping effect of the missile.

Figure 6.33 shows the evolution of the linear velocities during the flight. It can be seen that
the majority of speed is about the center-line axis (the blue one "u"), some variation on pitch
and yaw axes is marked also.

The angular rates show some oscillations and chattering caused by the rotational moments
applied about the pitch and yaw axes as shown in the figure 6.34.

From the flight path figure (figure 6.36) we can see that the center-line axis of missile is directed
toward the target at each instant during the flight until the interception point (or at closet
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approach), where the miss-distance = 0.4655 m at t = 7.5197 s. This is the geometry of the
Beam rider guidance where the missile’s centerline is always pointing toward the target.

6.4.1.3 PD based guidance results

• Inputs variation
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Figure 6.37: First and second inputs variation.

• Lift and Drag forces variation
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Figure 6.38: Lift and Drag forces variations.
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• Angle of attack and Side-slipe angle variation
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Figure 6.39: Angle of attack and Side-slipe angle variation.

• Total angle of attack variation
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Figure 6.40: Total angle of attack variation
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• Pitch and Yaw moments variation
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Figure 6.41: Picth and Yaw momens variation

• Linear velocities variation
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Figure 6.42: Evolution of Linear velocities .
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• Angular velocities variation
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Figure 6.43: Angular velocities variation.

• Euler angles variation
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Figure 6.44: Euler angles variation.
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• Missile and Target trajectories
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Figure 6.45: Missile and Target engagement in 3 dimensions.

Discussion:

Through the above simulation figures, we have illustrated the effect of this command on the
evolution of each parameter during the time of simulation. This method is easily implemented
and the desired tracking performance can be obtained by suitably selecting the controller gains
using PSO algorithm.

The use of the sign function in the lateral acceleration equation ( see ( 5.29 )) served to
minimize oscillations

Figure 6.45 shows the two paths of missile and target, and their interception point at t =
7.4508 s with miss-distance = 1.0492 m.

6.4.2 Target in a weaving flight

In this case the target is flying at an altitude of 3 km. The target flight path is curved and offset
laterally 1 km from the missile launch site. At the instant of missile launch the target is inbound at
a downrange distance of 4 km from the launch site.
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The weaving flight path can be modeled by calculating the maneuver acceleration as a function of
time by using:

AT =ωT × VT (t −∆t) (6.5)

where
ωT = the angular rate vector of the target flight path, rad/s
VT (t −∆t) = the previous target speed.

The velocity vector VT (t) is given by:

VT (t) = VT (t −∆t) + AT∆t (6.6)

then the target position vector is obtained by using:

PT (t) = PT (t −∆t) + VT (t −∆t)∆t +
AT∆t2

2
(6.7)

6.4.2.1 Proportional Navigation results

• Inputs variation
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Figure 6.46: First and second inputs variation.
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• Lift and Drag forces variation

0 1 2 3 4 5 6 7 8

time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

[N
]

Lift force

(a) Lift force

0 1 2 3 4 5 6 7 8

time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

[N
]

Drag force

(b) Drag force

Figure 6.47: Lift and Drag forces variations.

• Angle of attack and Side-slipe angle variation
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Figure 6.48: Angle of attack and Side-slipe angle variation.
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• Total angle of attack variation
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Figure 6.49: Total angle of attack variation.

• Pitch and Yaw moments variation
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Figure 6.50: Picth and Yaw momens variation.
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• Linear velocities variation
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Figure 6.51: Evolution of Linear velocities .

• Angular velocities variation
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Figure 6.52: Angular velocities variation.
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• Euler angles variation
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Figure 6.53: Euler angles variation.

• Missile and Target trajectories
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Figure 6.54: Missile and Target interception.
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Discussion:

Figures from 6.46 to 6.54 show the variation of different parameters during the missile en-
gagement when PN used. The 3D plot in figure 6.54 shows clearly the geometry of PN which
is the constant bearing angle kept between the LOS and the missile centerline.

6.4.2.2 Beam Rider or Command to line of sight results
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Figure 6.55: First and second inputs variation.
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• Lift and Drag forces variation
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Figure 6.56: Lift and Drag forces variations.

• Angle of attack and Side-slipe angle variation
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Figure 6.57: Angle of attack and Side-slipe angle variation.
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• Total angle of attack variation
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Figure 6.58: Total angle of attack variation.

• Pitch and Yaw moments variation
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Figure 6.59: Picth and Yaw momens variation.
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• Linear velocities variation
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Figure 6.60: Evolution of Linear velocities.

• Angular velocities variation
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Figure 6.61: Angular velocities variation.
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• Euler angles variation
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Figure 6.62: Euler angles variation.

• Missile and Target engagement in 3 dimenions.
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Figure 6.63: Missile and Target engagement in 3 dimensions.
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Discussion:

Figures from 6.5 to 6.63 show the variation of different parameters during the missile engage-
ment when LOS guidance applied. The figure 6.55 shows that the control signal was aggressive
and oscillating, this may cause instability and uncertainty for the missile.

6.4.2.3 PD based guidance results

• Inputs variation
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Figure 6.64: First and second inputs variation.
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• Lift and Drag forces variation
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Figure 6.65: Lift and Drag forces variations.

• Angle of attack and Side-slipe angle variation
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Figure 6.66: Angle of attack and Side-slipe angle variation.
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• Total angle of attack variation
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Figure 6.67: Total angle of attack variation.

• Pitch and Yaw moments variation
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Figure 6.68: Picth and Yaw momens variation.
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• Linear velocities variation
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Figure 6.69: Evolution of Linear velocities .

• Angular velocities variation
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Figure 6.70: Angular velocities variation.
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• Euler angles variation
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Figure 6.71: Euler angles variation.

• Missile and Target trajectories
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Figure 6.72: Missile and Target engagement in 3 dimensions.
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Discussion:

Figures from 6.64 to 6.72 show the variation of different parameters during the missile en-
gagement when PD guidance applied. The remarkable thing which make this method differs
from the others is that the yaw deflection surface deflects in the negative sens after initiating
guidance, which make the side-slipe angle oscillates in the negative sens as shown in figure
6.66, that in turn affect the variation of the yaw moment (see figure 6.68)

Figure 6.72 shows the missile and the target trajectories and their point of intercept in 3 di-
mensions. It can be seen that the missile flies approximately in straight line toward the target.

6.5 Comparison between simulation results

6.5.1 Target in straight flight

Proportional CLOS guidance PD based
navigation or Beam Rider guidance

Miss-distance 0.0040 0.4655 1.0492
(m) (m) (m)

Time of closest approach 7.4587 7.5197 7.4508
(s) (s) (s)

Table 6.1: Comaprison between the guidance laws in straight path.

6.5.2 Target in weaving flight

Proportional CLOS guidance PD based
navigation or Beam Rider guidance

Miss-distance 0.1612 0.4597 0.4799
(m) (m) (m)

Time of closest approach 7.4275 7.5070 7.3853
(s) (s) (s)

Table 6.2: Comaprison between the guidance laws in curved path.
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Discussion:
According to the comparison tables above, which illustrate the missile performances in both

sraight and curved path. We observe that

Proportional navigation command shows good tracking, and records the lowest miss-distance in
shortest time, thus it is the most well-known used guidance law.

The command to line of sight has also good results in miss-distance, even it tooks more time than
the other two methods.

The PD command marked acceptable results due to the utilisation of optimised gains.

The tables also show that the PN scored the lowest miss-distance, while the PD scored the short-
est time of closest approach.

Another criteria that is not mentioned in this study which is the energy in control signals (com-
manded accelerations) showed that the PD based guidance law generates very high control signals.
These signals must be limited by limiters and conditions on the commanded accelerations to make
this method more realistic.

In general, the dynamics still the same but the performances depend on the applied guidance
law.



General conclusion

In this dissertation, we’ve presented a comparative study between three guidance
laws, namely the proportional navigation, the beam-rider or LOS command guid-

ance and PD based guidance law, when applied to the dynamics of a generic surface
to air missile.

After an introduction of the missile’s modeling, aerodynamic concepts and the-
oretical foundation of different guidance laws, this work was divided mainly into
two parts. The first part addresses the mathematical modeling of a missile. The
second part, however, contributed to the design of guidance laws that allow bet-
ter performances and accuracy. The three synthesized guidance laws proportional
navigation, the beam-rider or LOS command guidance and PD based guidance law,
were compared in terms of their performance to achieve the control objective and
their characteristics as well. Overall, we conclude from this study that the PN out-
performs the other methods in terms of miss-distance, while PD guidance is better
in terms of time of closest approach.

The work conducted in this thesis can be extended in different directions. For
instance, one may reconsider the modeling of disturbances and introduce the con-
cept of noise and filtering even for the target or missile, one also may reconsider
a target making random evasive maneuvers. Moreover, for such type of developed
models more sophisticated guidance laws could be applied and tested, for example
Higher order sliding mode , adaptive controllers, and augmented or extended PN.
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Appendix

A.1 MATLAB programs

A.1.1 Missile flight simulation CODE

1 %% MISSILE FLIGHT SIMULATION===============================================
2 % this program is a simulation of missile flight written in MATLAB CODE
3

4 clear all
5 close all
6 clc
7

8 %% INITIAL CONDITIONS
9 velocity = [];altitude = [];temperature = [];gravity = [];pressure = [];

10 air_density = [];mass_v = [];inertia = [];center_g = [];pousse = [];
11 attack_angle = [];sideslipe = [];mach_number = [];
12 sound_speed = [];pitch = [];yaw = [];roll = [];
13 total_attack = [];
14 lift = [];
15 drag = [];
16 Pm = [];Pt = [];
17 y1 = [];y2 = [];y3 = [];y4 = [];y5 = [];y6 = [];y7 = [];y8 = [];y9 = [];
18 u1 = [];u2 = [];
19

20 mo = 85.0; % missile mass at launch [Kg]
21 mbo = 57.0; % missile mass at burnout [Kg]
22 Io = [0.7 0 0;...
23 0 61 0;...
24 0 0 61]; % moment of inertia about x,y and z axes at launch [Kg.m^2]
25 Ibo = [0.45 0 0;...
26 0 47 0;...
27 0 0 47]; % moment of inertia about x,y and z axes at launch [Kg.m^2]
28 xcmo = 1.55; % distance from nose to center of mass at launch [m]
29 xcmbo = 1.35; % distance from nose to center of mass at burnout [m]
30 do = 0.127; % aerodynamic reference length(missile’s diameter [m]
31 l = 1.6; % fuselage length (length from missile tile to center of mass [m]
32 S = 0.0127; % missile aerodynamic reference area [m^2]
33 x_ref = 1.35; % distance from missile’s nose to reference moment station [m]
34 rho_o = 1.223; % air density at sea level [Kg/m^3]
35 T1 = 288.1667; % temperature at sea level [K]
36 a = 0.0065; % lapse rate [K/m]
37 Rg = 287.26; % gas constant [N.m/(Kg.k)]
38 R_e = 6378000; % earth radius at equator [m]
39 g_o = 9.80665; % acceleration due to gravity [m/s^2]
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40 p_ref = 101314; % reference ambient pressure [pa]
41 gama = 1.4 ; % ratio of specific heat
42 Ae = 0.011; % exit area of rocket nozzle [m^2]
43 I_sp = 2224; % specific impulse [N.s/Kg]
44

45 P_M = [0 0 0]; % missile’s initial position
46 P_T = [4000 1000 -3000] ;% target’s initial position
47 V_T = [-250 0 0]; % target initial velocity [m/s]
48 V_Mn = 30; % magnitude of missile initial velocity
49 R = P_T-P_M; % range vector from missile to target
50 u_r = R/norm(R);% unit range vector
51 u_cl = u_r ;% unit centerline vector
52 V_M = V_Mn*u_cl;
53

54 psi = atan(u_cl(2)/u_cl(1));
55 tita = atan(-u_cl(3)/sqrt((u_cl(1))^2+(u_cl(2))^2));
56 phi = 0;
57 p = 0; q = 0; r = 0; % initial angular velocities
58

59 T_be = [cos(psi)*cos(tita) cos(tita)*sin(psi) -sin(tita);...
60 -sin(psi) cos(psi) 0;...
61 cos(psi)*sin(tita) sin(psi)*sin(tita) cos(tita)];
62 T_eb = T_be’;
63

64 V_m = T_be*V_M’;
65 u = V_m(1);
66 v = V_m(2);
67 w = V_m(3);
68

69 V_M = V_M’;
70

71 alpha = 0; beta = 0; alpha_t = 0; % initial angles
72

73 t_bo = 5.6; % time of burnout [s]
74 t_max = 60; % maximum time of flight [s]
75 Delta_t = 0.005; % integration time step [s]
76 t = 0; % initial time
77

78 xcm = 1.55; % distance from nose to center of mass at launch [m]
79 I = [0.7 0 0;...
80 0 61 0;...
81 0 0 61]; % moment of inertia about x,y and z axes at launch [Kg.m^2]
82 rho = 1.223; % air density at sea level [Kg/m^3]
83 pres = 101314 ;
84 mass = 85.0; % missile mass at launch [Kg]
85 grav = 9.80665; % acceleration due to gravity [m/s^2]
86 tem = 288.1667; % temperature at sea level [K]
87 alt = 0 ;
88

89 alpha_pa = 0 ;
90 alpha_ya = 0 ;
91 w_ach = [0 0 0] ;
92 w_f = [0 0 0] ;
93 A_Tach = 0;
94 yo = [p;q;r;u;v;w;phi;tita;psi];
95

96 kk = 1;
97 [fref,mass] = trust_1;
98

99 ex_d = 0;ey_d = 0;ez_d = 0;
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100 errorx_d = 0;errory_d = 0;errorz_d = 0;
101

102 K1 = [10 5.5839 8.4240;-10 -8.0385 7.2738];
103 K2 = [-2.6266 9.8147 6.3610;4.1722 -4.1955 -8.6924];
104

105 %% THE LOOP
106 %%
107

108 while t <= t_max
109

110 %% ATMOSPHERE
111 alt0 = 0;
112 tem = T1 - a*(alt-alt0); % temperature
113 grav = g_o*(R_e^2/(R_e+alt)^2); % variation of gravity at diff levels
114 pres = p_ref*exp((-g_o./(tem*Rg))*(alt-alt0));
115 rho = pres/(Rg*tem); % air density
116

117 %% MACH NUMBER
118 v_s = sqrt(gama*Rg*tem); % speed of sound
119 M_n = norm(V_M)/v_s ; % mach number
120 if( M_n>=0 & M_n<0.8)
121 C_Do = 0.8;C_La = 38;C_ma = -160;C_ms = 180;C_m_n = -6000 ;K = 0.0255; %

aerodynamic coefficients
122 end
123 if( M_n>=0.8 & M_n<1.14)
124 C_Do = 0.8;C_La = 39;C_ma = -170;C_ms = 250;C_m_n = -13000 ;K = 0.0305; %

aerodynamic coefficients
125 end
126 if( M_n>=1.14 & M_n<1.75)
127 C_Do = 1.2;C_La = 56;C_ma = -185;C_ms = 230;C_m_n = -16000 ;K = 0.0361; %

aerodynamic coefficients
128 end
129 if( M_n>=1.75 & M_n<2.5)
130 C_Do = 1.15;C_La = 55;C_ma = -235;C_ms = 130;C_m_n = -13500 ;K = 0.0441; %

aerodynamic coefficients
131 end
132 if( M_n>=2.5 & M_n<3.5)
133 C_Do = 1.05;C_La = 40;C_ma = -190;C_ms = 80;C_m_n = -10000 ;K = 0.0540; %

aerodynamic coefficients
134 end
135 if( M_n>=3.5)
136 C_Do = 0.94;C_La = 33;C_ma = -150;C_ms = 45;C_m_n = -6000 ;K = 0.0665; %

aerodynamic coefficients
137 end
138

139 %% DYNAMIC PRESSURE
140 Q = .5*rho*(norm(V_M)).^2;% dynamic pressure
141

142 %% RELATIVE POSITION AND VELOCITY
143 %--------------------------------
144 V_tm = V_T - V_M’ ;% relative velocity
145 u_tm = V_tm./norm(V_tm);
146 R_prev = norm(R) ;
147 R = P_T-P_M; % range vector from missile to target
148 R_next = norm(R) ;
149 if (R_prev-R_next) < 0
150 M_d = R - dot(R,u_tm)*u_tm;
151 norm(M_d)
152 t_ca = t - dot(R,u_tm)/norm(V_tm)
153 disp(’******************************************* ’)
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154 disp(’*------ THE TARGET HAS BEEN DESTROYED ----* ’)
155 disp(’*--------------- GAME OVER ---------------* ’)
156 disp(’******************************************* ’)
157 break
158 end
159

160 u_r = R/norm(R);% unit range vector
161 V_c = -dot(u_r,V_tm) ;% closing speed
162

163

164 %% SEEKER------------------------------------------------------------------
165 % in this part we will use two different guidance laws
166

167 %% PROPORTIONAL NAVIGATION
168 tau1 = 0.01 ;
169 tau2 = 0.01 ;
170 wsm = 25;
171 lamdam = 40;
172 tgon = .59;
173 tau3 = 0.04;
174 sigma_max = .3491;
175 NR = 4 ;
176 Gn = 250;
177 % Gn = 254.1;
178 tnr = 1;
179 gam = R;
180 u_sa = gam/(norm(gam));
181 lamda = acos(dot(u_sa,u_cl));
182 w_g = (cross(gam,V_tm)/norm(gam)^2);
183 w_ach = w_ach*exp(-Delta_t/tau1) + w_g*(1-exp(-Delta_t/tau1));
184 w_f = w_f*exp(-Delta_t/tau2) + w_ach*(1-exp(-Delta_t/tau2));
185 Gs = NR*norm(V_M);
186 Ac = Gs*(cross(w_f,u_cl));
187 % if t < tgon
188 % Ac = [0 0 0];
189 % end
190 Acb = T_be*Ac’;
191

192 %% BEAM RIDER AND COMMAND TO LINE OF SIGHT---------------------------------
193 % u_gl = P_T./norm(P_T);
194 % P_B = (dot(u_gl,P_M))*u_gl;
195 % e = P_B-P_M;
196 % V_Mp = cross(cross(u_gl,V_M),u_gl) ;
197 % w_gl = V_T*(P_T(3)/(norm(P_T))^2);
198 % %w_gl = w_f ;
199 % V_Bp = cross(w_gl,P_B);
200 % e_d = V_Bp - V_Mp ;
201 % u_c = cross(w_gl,u_cl)./norm(cross(w_gl,u_cl));
202 % A_c_c = norm(cross(w_gl,(dot(V_M,u_gl).*u_gl)));
203 % k1 = 4.07675;
204 % k2 = -0.012;
205 % k3 = 0.1151;
206 % Ac = k1*e + k2*e_d + k3*A_c_c*u_c ;
207 % Acb = T_be*Ac’;
208

209 %% MIMO PID MISSILE
210 ex = P_T(1)-P_M(1);
211 ey = P_T(2)-P_M(2);
212 ez = P_T(3)-P_M(3);
213
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214 errorx_d =(ex - ex_d(kk))/Delta_t;
215 errory_d =(ey - ey_d(kk))/Delta_t;
216 errorz_d =(ez - ez_d(kk))/Delta_t;
217

218 sigmaa = K1*[tanh(ex);tanh(ey);tanh(ez)]+K2*[tanh(errorx_d);tanh(errory_d);
tanh(errorz_d)];

219 % sigma_p = sigmaa(1);
220 % sigma_y = sigmaa(2);
221 % Acb = [0 sigmaa(1) sigmaa(2)];
222 % Acb = T_be*Ac’;
223

224 %% GUIDANCE AND CONTROL----------------------------------------------------
225 alpha_p = -Gn*Acb(3)/Q;
226 alpha_y = Gn*Acb(2)/Q;
227 alpha_pa = alpha_pa*exp(-Delta_t/tau3) + alpha_p*(1-exp(-Delta_t/tau3));
228 alpha_ya = alpha_ya*exp(-Delta_t/tau3) + alpha_y*(1-exp(-Delta_t/tau3));
229

230 sigma_p = alpha_pa - alpha;
231 sigma_y = alpha_ya - beta;
232

233 % sigma_p = sigmaa(1);
234 % sigma_y = sigmaa(2);
235

236 if t < tgon
237 sigma_p = 0 ;
238 sigma_y = 0 ;
239 end
240

241 % if abs(sigma_p)> sigma_max
242 % abs(sigma_p) = sigma_max;
243 % end
244 % if abs(sigma_y)> sigma_max
245 % abs(sigma_y) = sigma_max;
246 % end
247

248 if sigma_p >= sigma_max
249 sigma_p = sigma_max;
250 end
251 if sigma_y >= sigma_max
252 sigma_y = sigma_max;
253 end
254 if sigma_p <= -sigma_max
255 sigma_p = -sigma_max;
256 end
257 if sigma_y <= -sigma_max
258 sigma_y = -sigma_max;
259 end
260

261 %% inputs
262 sigma_r = 0;
263

264 %% AERODYNAMICS
265 C_L = C_La*alpha_t;% lift coefficient
266 C_D = C_Do + K*C_L^2;% drag coefficient
267 L = Q*S*C_L;% lift force
268 D = Q*S*C_D;% drag force
269 A = D*cos(alpha_t)-L*sin(alpha_t); % axial force
270 N = D*sin(alpha_t)+L*cos(alpha_t); % normal force
271 F_a = [-A N*(-v/sqrt(v^2 + w^2)) N*(-w/sqrt(v^2 + w^2))];% aerodynamic force
272 Cnz = F_a(3)/(Q*S);
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273 Cny = F_a(2)/(Q*S);
274 C_mref = C_ma*alpha + C_ms*sigma_p;
275 C_nref = C_ma*beta + C_ms*sigma_y;
276 %C_l = C_ls*sigma_r + (do/(2*norm(V_mb)))*C_lp*y(1);
277 C_m = C_mref - Cnz*((xcm-x_ref)/do)+ (do/(2*norm(V_M)))*(C_m_n)*q;
278 C_n = C_nref + Cny*((xcm-x_ref)/do)+ (do/(2*norm(V_M)))*(C_m_n)*r;
279 L_a = Q*S*do*0;%*C_l;% moment about roll axis
280 M_a = Q*S*do*C_m;% moment about pitch axis
281 N_a = Q*S*do*C_n;% moment about yaw axis
282

283 %% PROPULSION
284 if t >= 5.6
285 fref(kk) = 0;
286 end
287

288 fp = fref(kk) + (p_ref - pres)*Ae ;
289 F_p = [fp 0 0];% propulsion force
290

291 %% GRAVITY
292 F_g = [-mass(kk)*grav*sin(tita) mass(kk)*grav*cos(tita)*sin(phi) mass(kk)*

grav*cos(tita)*cos(phi)];% gravity force
293 pousse = [pousse;v_s];
294

295 %% RUNGR-KUTTA method
296 %--------------------------------------------------------------------------
297 H = Delta_t;
298 HH = H/2;
299 H6 = H/6;
300 % first step
301 V = yo ;
302 dydx = derivs(mass(kk),I,L_a,M_a,N_a,F_a,F_g,F_p,V) ;
303 yt = yo + HH*dydx’ ;
304 % second step
305 V = yt ;
306 dyt = derivs(mass(kk),I,L_a,M_a,N_a,F_a,F_g,F_p,V) ;
307 yt = yo + HH*dyt’;
308 % third step
309 V = yt ;
310 dym = derivs(mass(kk),I,L_a,M_a,N_a,F_a,F_g,F_p,V) ;
311 yt = yo + H*dym’ ;
312 dym = dyt + dym ;
313 % fourth step
314 V = yt ;
315 dyt = derivs(mass(kk),I,L_a,M_a,N_a,F_a,F_g,F_p,V) ;
316 yout = yo + H6*(dydx’ + dyt’ + 2*dym’);
317 %--------------------------------------------------------------------------
318 d = yout;
319 p = d(1);q = d(2);r = d(3);u = d(4);v = d(5);w = d(6);phi = d(7);
320 tita = d(8);psi = d(9);
321

322 yo = [p;q;r;u;v;w;phi;tita;psi];
323 y1 = [y1;p];y2 = [y2;q];y3 = [y3;r];y4 = [y4;u];y5 = [y5;v];
324 y6 = [y6;w];y7 = [y7;phi];y8 = [y8;tita];y9 = [y9;psi];
325

326 %% MISSILE POSITION
327 T_be = [cos(psi)*cos(tita) cos(tita)*sin(psi) -sin(tita);...
328 -sin(psi) cos(psi) 0;...
329 cos(psi)*sin(tita) sin(psi)*sin(tita) cos(tita)];
330 T_eb = T_be’;
331 V_m = [u;v;w];
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332 V_M = T_eb*V_m ;
333 % P_M = position(V_M) + P_M;
334 P_M = P_M + V_M’.*(Delta_t) ;
335

336 %% TARGET POSITION
337 % V_T = [-250 0 0]; % target initial velocity [m/s]
338 ng = L/mass(kk)*grav ; % load factor
339 Amax = grav.*sqrt(4);
340 % Amax = .6;
341 tmi = 1;
342 Pd = 120 ;
343 tau4 = 0.01;
344 % A_Tc = Amax*sign(cos(2*pi*tmi/Pd));
345 A_Tc = Amax*cos(2*pi*tmi/Pd);
346 A_Tach = A_Tach*(exp(-Delta_t/tau4)) + A_Tc*(1-exp(-Delta_t/tau4));
347 w_t = [0 0 A_Tc/norm(V_T)] ;
348 A_T = cross(w_t,V_T);
349 V_T = V_T + A_T*Delta_t;
350 P_T = P_T + V_T.*(Delta_t) + A_T.*Delta_t^2/2;% target position
351 % P_T = P_T + V_T.*(Delta_t) + A_T/2;% target position
352

353 %% MISSILE ALTITUDE
354 alt = -P_M(3); % missile altitude
355 altitude = [altitude;alt];
356

357 %% UPDATING
358 t = t + Delta_t ; % time updating
359 kk = kk +1 ;
360 ex_d = [ex_d;ex];
361 ey_d = [ey_d;ey];
362 ez_d = [ez_d;ez];
363 % p1 = 306.31;p2 = -4310.4;p3 = 21066;p4 = -42224;p5 = 29337;p6 = 12043;
364 % mass = 85 - (1/I_sp)*((p1/6)*t.^6+ (p2/5)*t.^5 + (p3/4)*t.^4 +(p4/3)*t.^3

+ (p5/2)*t.^2 +(p6)*t);
365 if t>=t_bo
366 mass(kk) = 56.618;
367 end
368 mass_v = [mass_v;mass(kk)];
369 xcm = xcmo - (xcmo-xcmbo)*((mo-mass(kk))/(mo-mbo));
370 center_g = [center_g;xcm];
371 I = Io - (Io-Ibo)*((mo-mass(kk))/(mo-mbo));
372 inertia = [inertia;(diag(I))’];
373 u_cl = [cos(tita)*cos(psi) cos(tita)*sin(psi) sin(-tita)];
374 u_vm = V_M/norm(V_M);
375 alpha = atan(w/u); % angle of attack
376 beta = atan(-v/u); % angle of sideslip
377 alpha_t = acos(dot(u_vm,u_cl));% alpha total
378 % alpha_t = acos(u/norm(V_M));
379

380 Pm = [Pm;P_M];
381 Pt = [Pt;P_T];
382 RTD = 180/pi;
383 u1 = [u1;sigma_p*RTD];
384 u2 = [u2;sigma_y*RTD];
385 temperature = [temperature;tem];
386 gravity = [gravity;grav];
387 air_density = [air_density;rho];
388 pressure = [pressure;pres];
389 attack_angle = [attack_angle;alpha*RTD];
390 total_attack = [total_attack;alpha_t*RTD];
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391 sideslipe = [sideslipe;beta*RTD];
392 mach_number = [mach_number;M_n];
393 sound_speed = [sound_speed;v_s];
394 pitch = [pitch;M_a];
395 yaw = [yaw;N_a];
396 lift = [lift;L];
397 drag = [drag;D];
398

399

400 end
401 tt = [0:length(u1)-1]*0.005;
402 tt = tt’;
403 figure
404 xm = Pm(:,1); ym = Pm(:,2); zm = Pm(:,3);
405 xt = Pt(:,1); yt = Pt(:,2); zt = Pt(:,3);
406 plot3(xm,ym,-zm,’r’,’linewidth’,1.5)
407 hold on
408 plot3(xt,yt,-zt,’b’,’linewidth’,1.5)
409 hold all
410 grid on
411 xlabel(’x axis’)
412 ylabel(’y axis’)
413 zlabel(’z axis’)
414 title(’FLIGHT SIMULATION’)
415 legend({’Missile’,’Target’},’Location’,’northeast’,’NumColumns’,1)
416 % %% PLot States
417 % % %
418

419 y = [y1 y2 y3 y4 y5 y6 y7 y8 y9];
420

421 figure
422 y1 = y(:,1).*180/pi;
423 plot(tt,y1)
424 grid on
425 hold on
426 y2 = y(:,2).*180/pi;
427 plot(tt,y2)
428 grid on
429 hold on
430 y3 = y(:,3).*180/pi;
431 plot(tt,y3)
432 grid on
433 hold on
434 legend({’p’,’q’,’r’},’Location’,’northeast’,’NumColumns’,1)
435 xlabel(’time (s)’)
436 title(’angular rates’)
437

438 figure
439 y4 = y(:,4);
440 plot(tt,y4)
441 grid on
442 hold on
443 y5 = y(:,5);
444 plot(tt,y5)
445 grid on
446 hold on
447 y6 = y(:,6);
448 plot(tt,y6)
449 grid on
450 hold on
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451 legend({’u’,’v’,’w’},’Location’,’northeast’,’NumColumns’,1)
452 xlabel(’time (s)’)
453 ylabel(’[m/s]’)
454 title(’linear velocities’)
455

456 figure
457 y7 = y(:,7).*180/pi;
458 plot(tt,y7)
459 grid on
460 hold on
461 y8 = y(:,8).*180/pi;
462 plot(tt,y8)
463 grid on
464 hold on
465 y9 = y(:,9).*180/pi;
466 plot(tt,y9)
467 grid on
468 hold on
469 legend({’\phi’,’\theta’,’\psi’},’Location’,’northeast’,’NumColumns’,1)
470 xlabel(’time (s)’)
471 title(’Euler angles’)
472 %%
473 figure
474 %subplot(221)
475 plot(tt,temperature,’linewidth’,2)
476 hold on
477 grid on
478 xlabel(’time (s)’)
479 ylabel(’[K]’)
480 title(’Temperature variation’)
481 figure
482 %subplot(222)
483 plot(tt,pressure,’linewidth’,2)
484 hold on
485 grid on
486 xlabel(’time (s)’)
487 ylabel(’[pa]’)
488 title(’Pressure variation’)
489 figure
490 %subplot(223)
491 plot(tt,air_density,’linewidth’,2)
492 hold on
493 grid on
494 xlabel(’time (s)’)
495 ylabel(’[kg/m^3]’)
496 title(’Air density variation’)
497 figure
498 %subplot(224)
499 plot(tt,gravity,’linewidth’,2)
500 hold on
501 grid on
502 xlabel(’time (s)’)
503 ylabel(’[m/s^2]’)
504 title(’Gravity variation’)
505

506 figure
507 plot(tt,mass_v,’linewidth’,2)
508 hold on
509 grid on
510 xlabel(’time (s)’)
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511 ylabel(’[kg]’)
512 title(’Mass variation’)
513

514 figure
515 %subplot(121)
516 plot(tt,pitch,’linewidth’,2)
517 hold on
518 grid on
519 xlabel(’time (s)’)
520 ylabel(’[N.m]’)
521 title(’Pitch moment’)
522 figure
523 %subplot(122)
524 plot(tt,yaw,’linewidth’,2)
525 hold on
526 grid on
527 xlabel(’time (s)’)
528 ylabel(’[N.m]’)
529 title(’Yaw moment’)
530

531 figure
532 %subplot(121)
533 plot(tt,mach_number,’linewidth’,2)
534 hold on
535 grid on
536 xlabel(’time (s)’)
537 ylabel(’[]’)
538 title(’Mach number’)
539 figure
540 %subplot(122)
541 plot(tt,sound_speed,’linewidth’,2)
542 hold on
543 grid on
544 xlabel(’time (s)’)
545 ylabel(’[m/s]’)
546 title(’Sound speed’)
547

548 figure
549 %subplot(121)
550 plot(tt,u1,’linewidth’,2)
551 hold on
552 grid on
553 xlabel(’time (s)’)
554 ylabel(’[deg]’)
555 title(’First input: \delta_{p}’)
556 figure
557 %subplot(122)
558 plot(tt,u2,’linewidth’,2)
559 hold on
560 grid on
561 xlabel(’time (s)’)
562 ylabel(’[deg]’)
563 title(’Second input: \delta_{y}’)
564

565 figure
566 %subplot(121)
567 plot(tt,attack_angle,’linewidth’,2)
568 hold on
569 grid on
570 xlabel(’time (s)’)
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571 ylabel(’[deg]’)
572 title(’Angle of Attack: \alpha’)
573 figure
574 %subplot(122)
575 plot(tt,sideslipe,’linewidth’,2)
576 hold on
577 grid on
578 xlabel(’time (s)’)
579 ylabel(’[deg]’)
580 title(’Sideslipe: \beta’)
581

582 figure
583 %subplot(221)
584 plot(tt,inertia(:,1),’linewidth’,2)
585 hold on
586 grid on
587 xlabel(’time (s)’)
588 ylabel(’[kg.m^2]’)
589 title(’I_x’)
590 figure
591 %subplot(222)
592 plot(tt,inertia(:,2),’linewidth’,2)
593 hold on
594 grid on
595 xlabel(’time (s)’)
596 ylabel(’[kg.m^2]’)
597 title(’I_y’)
598 figure
599 %subplot(223)
600 plot(tt,inertia(:,3),’linewidth’,2)
601 hold on
602 grid on
603 xlabel(’time (s)’)
604 ylabel(’[kg/m^2]’)
605 title(’I_z’)
606 figure
607 %subplot(224)
608 plot(tt,center_g,’linewidth’,2)
609 hold on
610 grid on
611 xlabel(’time (s)’)
612 ylabel(’[m]’)
613 title(’Mass center’)
614

615 figure
616 plot(tt,total_attack,’linewidth’,2)
617 hold on
618 grid on
619 xlabel(’time (s)’)
620 ylabel(’[deg]’)
621 title(’Total angle of attack: \alpha_t’)
622

623 figure
624 %subplot(121)
625 plot(tt,lift,’linewidth’,2)
626 hold on
627 grid on
628 xlabel(’time (s)’)
629 ylabel(’[N]’)
630 title(’Lift force’)
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631 figure
632 %subplot(122)
633 plot(tt,drag,’linewidth’,2)
634 hold on
635 grid on
636 xlabel(’time (s)’)
637 ylabel(’[N]’)
638 title(’Drag force’)
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A.1.2 ODE’s function CODE

1 function h = derivs(mass,I,L_a,M_a,N_a,F_a,F_g,F_p,V)
2

3 y = V ;
4

5 % angular velocities-------------------------------------------------------
6 yout(1) = (L_a - y(2)*y(3)*(I(3,3) - I(2,2)))/I(1,1);
7 yout(2) = (M_a - y(1)*y(3)*(I(1,1) - I(3,3)))/I(2,2);
8 yout(3) = (N_a - y(1)*y(2)*(I(2,2) - I(1,1)))/I(3,3);
9

10 % linear velocities--------------------------------------------------------
11 yout(4) = -(y(2)*y(6)-y(3)*y(5))+(F_a(1)+F_g(1)+F_p(1))/mass;
12 yout(5) = -(y(3)*y(4)-y(1)*y(6))+(F_a(2)+F_g(2))/mass;
13 yout(6) = -(y(1)*y(5)-y(2)*y(4))+(F_a(3)+F_g(3))/mass;
14

15 % Euler angles (accelerations)---------------------------------------------
16 yout(7) = y(1)+(y(2)*sin(y(7))+y(3)*cos(y(7)))*tan(y(8));
17 yout(8) = y(2)*cos(y(7))-y(3)*sin(y(7));
18 yout(9) = (y(2)*sin(y(7))+y(3)*cos(y(7)))/cos(y(8));
19

20 h = yout ;
21

22 end



154 A. Appendix

A.1.3 THRUST interpolation CODE

1 function [a,b] = trust_1()
2

3

4 x=[0 0.01 0.04 0.05 0.08 0.1 0.2 0.3 0.6 1.0 1.5 2.5 3.5 3.8 4.0 4.1...
5 4.3 4.5 4.7 4.9 5.2 5.6];
6 y=[0 450 17800 23100 21300 20000 18200 17000 15000 13800 13300 ...
7 13800 14700 14300 12900 11000 7000 4500 2900 1500 650 0];
8

9 xq = (0:0.005:5.6);
10 vq = interpn(x,y,xq,’pchip’);
11

12 % figure
13 % plot(x,y,’o’,xq,vq,’--’,’linewidth’,1.7);
14 % grid on
15 % xlabel(’Time (s)’)
16 % ylabel(’Thrust’)
17 % title(’Thrust variation’)
18 % legend(’Samples’,’Cubic Interpolation’);
19 %
20

21

22 t=0:0.005:5.6;
23 n=length(t);
24 pp = spline(x,y);
25 ye = ppval(pp,x);
26

27 time=0.005;
28 m0=85;
29

30 for i=1:n
31

32 % m = m0-(integral(@(x)ppval(pp,x),0,time))/2224
33 m(:,i)= m0-(integral(@(x)ppval(pp,x),0,time))/2224;
34 time = time+0.005;
35

36 end
37

38 % figure(2)
39 % plot(t,m,’r-’,’linewidth’,1.7)
40 % xlabel(’Time (s)’)
41 % ylabel(’mass (kg)’)
42 % title(’Mass variation’)
43 % grid on
44

45 a = vq ;
46 b = m ;
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A.1.4 PSO Algorithm CODE

1 clear all
2 clc
3

4 wmax=0.9;
5 wmin=0.8;
6 c1=0.49;
7 c2=0.49;
8 n=20;
9 itermax=30;

10 xmin=[-2 -2 -.2];
11 xmax=[5 5 .5];
12 m = 3;
13 v = zeros(m,n);
14 rand(’state’,0);
15

16 for i=1:n
17 for j=1:m
18 x(j,i)=xmin(j)+rand*(xmax(j)-xmin(j));
19 end
20 e(i) = PSO_MISSILE(x(1,i),x(2,i),x(3,i));
21 fun_marge(i)=e(i);
22 end
23

24 xbest = x;
25 fbest = fun_marge;
26 fgbest = min(fun_marge);
27 gbest = x(:,find(fun_marge==fgbest));
28

29

30 for iter=1:itermax
31 w = wmax-(wmax-wmin)*iter/itermax;
32 for i=1:n
33 v(:,i) = w*v(:,i)+c1*rand*(xbest(:,i)-x(:,i))+c2*rand*(gbest-x(:,i));
34 x(:,i) = x(:,i)+v(:,i);
35 for jj = 1:m
36 if x(jj,i)>xmax(jj)
37 x(jj,i)=xmax(jj);
38 end
39 if x(jj,i)<xmin(jj)
40 x(jj,i)=xmin(jj);
41 end
42 end
43

44

45 e(i) = PSO_MISSILE(x(1,i),x(2,i),x(3,i));
46 fun_marge(i)=e(i);
47

48 if fun_marge(i) < fbest(i)
49 xbest(:,i)=x(:,i);
50 fbest(i)=fun_marge(i);
51 end
52 if fun_marge(i) < fgbest
53 gbest=x(:,i);
54 fgbest=fun_marge(i);
55 end
56 end
57 result(iter)=fgbest;
58 end
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59 fprintf(’ the optimal value is %3.4f\n’, gbest)
60 fprintf(’ the minimum value of func is %3.4f\n’, fgbest)
61

62 e = PSO_MISSILE(gbest(1),gbest(2),gbest(3));
63 plot([1:itermax], result,’--r’,’linewidth’,1.5)
64 xlabel(’Iteration’)
65 ylabel(’Function’)
66 grid on
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B.1 Numerical solution of a differential equation

Differential equations of first order can be solved using variety of mathematical tools. But for solving
the equations using different initial conditions and real time inputs, we need a computer generated
approximate solution. This is where numerical integration techniques come handy.
Any normal system of differential equations can be written as a first-order normal system, which in
vector notation has the form

dY
d t
= G(t, Y ) (B.1)

Where
G(t, Y ) = vector o function of ùtù and Y
t = independent variable (time)
Y = vector of dependent variables.
The general solution of this differential equation is given by

Y = f (t) (B.2)

B.1.1 Runge-Kutta Method

The Runge-Kutta method and its variations are very popular simulations. The method provides
good accuracy, is simple to program, requires minimum storage, and is stable under most circum-
stances with integration intervals of reasonable size . The basic derivation of the method involves
a summation of terms, the number of which is arbitrary. The most common form of the method is
based on the summation of four terms; consequently, it is referred to as the fourth-order Runge-Kutta
method. Also in the derivation of the method are certain arbitrary constants. In the fourth-order
Runge-Kutta method, the most frequently selected arbitrary constants lead to a set of difference
equations of the form.

Yn+1 = Yn +
T
6
(H1 + 2H2 + 2H3 +H4) (B.3)

Where
H1 = G(tn, Yn)
H2 = G(tn + 1/2T, Yn + T H1)
H3 = G(tn + 1/2T, Yn + T H2)
H4 = G(tn + T, Yn + T H3)
T = integration step size
Yn = vector of dependent variables at beginning of step n
Yn+1 =vector of dependent variables at beginning of step n+ 1
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B.2 Coordinate system

A number of different coordinate systems may be used in a given missile flight simulation. Coordi-
nate systems are characterized by the positions of their origins, their angular orientations, and their
motions relative to inertial space or relative to other specified systems. A given vector can be de-
scribed by its coordinates in any of the coordinate systems. If the coordinates of a vector are given in
one reference frame, the coordinates of that vector in any other reference frame can be determined
if the position and orientation of one reference frame relative to the other is known.

B.2.1 Earth Coordinate System (xe, ye, ze)

In a flat-earth simulation the earth is usually assumed to be fixed in space, i.e., neither translating
nor rotating. In this case, absolute accelerations can be measured with respect to any coordinate
system fixed to the earth. Such a system is called an earth coordinate system and is commonly used
as a basis for measuring accelerations, velocities, and positions of a missile, target, and decoys.

B.2.2 Body Coordinate System (xb, yb, zb)

The body coordinate system is fixed to the missile and aligned with the principal axes of the missile.
Thus the system is particularly useful for calculations of angular rates because the equations of
motion contain no terms involving the products of the moments of inertia and the moments of
inertia about the reference frame axes are independent of missile attitude.

B.2.3 Wind Coordinate System (xw, yw, zw)

The movement of undisturbed air relative to the missile (relative wind) is tangent to the missile
flight path. The wind coordinate system is viewed as being aligned with the relative wind to simplify
the calculation of aerodynamic forces and moments. By definition, the aerodynamic drag and lift
vectors are aligned with wind system axes.
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