

OPTION: GÉOTECHNIQUE.

THEME

<u>ETUDE DE LA STABILITE AU GLISSEMENT DU SITE :</u> <u>« PARC DOUNIA, DELLY-BRAHIM, ALGER »</u>

<u>Présenté par :</u>

KHIDA LAMIA

<u>Encadré par :</u>

M^r : ABED Younes

ملخص

هذا المشروع هو دراسة الاستقرار في الموقع "دنيا بارك" دالي ابراهيم الجزائر العاصمة للقيام بهذا المشروع كان من الضروري تحديد كل المواصفات و المعطيات الجيوفيزيائية و الجيولوجية و مناخ المنطقة بعد تحديد المواصفات البدنية و الميكانيكية للتربة من خلال اختبارات المعلوماتية و تجارب الميدانية و لهذا حسبنا عامل الامان FS للمنحدر من خلال برنامج الاستقرار TALREN .

- النتائج التي توصلنا اليها تدل على الحاجة الى تعزيز تركيبة الارض من أجل استقرار المنحدر
- و لهذا الغرض اوصينا بإنشاء نظام تسيير للإبقاء على الجدار المموه الذي قدم لنا القيم المقبولة لنظام FS

كامات المفاتيح : عامل الأمان، منحدر، تسمير، المموه.

Résumé :

Ce projet est l'étude de la stabilité du site : « parc Dounia, Delly Brahim, Alger » pour ce projet il a été nécessaire de déterminer toute les données géologiques, géophysiques, climatiques de la région. Après avoir déterminer les caractéristiques physiques, mécaniques de sol par le biais des essais de laboratoire et des essais in situ,

Nous avons calculé le coefficient de sécurité F_S de ce talus par logiciel de stabilité TALREN4.

Les résultats auxquels nous sommes arrivé, indiquent la nécessité de procéder a un système de confortement du sol pour stabiliser les talus.

Nous avons, a cet effet, recommander la réalisation de trois types de confortement ; un système de clouage par pieux, murs soutènement en béton armé; des soutènements en géotextile. Qui nous ont donné des valeurs acceptables du coefficient de sécurité Fs.

Mots clés :

Coefficient de sécurité, talus ,clouage, géotextile.

Abstract:

This project is the study of the stability of the site: "Dounia Park, Dely Brahim, Algiers" for this project it was necessary to determine any geological, geophysical, climate of the region. After determining the physical, mechanical soil through laboratory tests and field trials,

We calculated the safety factor FS of the slope stability TALREN4 by software.

The results we have arrived indicate the need for a system of soil reinforcement to stabilize the slope.

We have, for this purpose, recommend the implementation of three types of reinforcement, a system by nailing piles, reinforced concrete retaining walls, retaining walls of geotextile. Who gave us acceptable values of the safety factor Fs. Keywords:

Safety factor, slope, nailing, geotextile.

Résumé

-

DEDICACE

Je dédie ce mémoire :

A ma très chère et adorable mère qui m'a éclairée mon chemin et qui m'a encouragé Et soutenue tout au long de mes études

A mon cher père.

A mon encadreur Monsieur ABED YOUNES.

A ma grande mère et mon grand père.

A mon frère REDA.

A mes sœurs : NABILA ET ASSIA.

A ma très chère tante SOUHILA

A mes oncles et tantes

A mes meilleurs amis : SOUMIA ; AMEL ; AMINA ; NASIRA ; BARKHOM ; SOUAD, KHADIJA; RYAD;SOFIANE ; ISMAIL.

Remercîment

Au terme de ce travail, je remercie le BON DIEU tout puissant qui m'a donné la force et la volonté d'achever cette réalisation et nous lui rendons grâce.

J'adresse mes sincères remerciements à mon encadreur pour ses nombreux conseils, son aide précieuse et sa comprèhension durant l'élaboration de cette recherche.

Je tiens à remercier Mme k. BELAID, directrice des études SAGC qui ma aidé dans mes recherches.

Je remercie également toute le personnel de laboratoire LHCC d'OEUD -SAMAR et d'AIN TAYA

Je veux aussi remercie tous les professeurs Du département de génie civil de l'université de Blida

Enfin, je remercie toutes les personnes, qui de près ou de loin, m'ont aidé à la réalisation de ce travail.

Liste de figure
Liste des photos
Liste des tableaux
Introduction générale

Chapitre I : généralité sur les mouvements de terrain

I.1.Introduction générale	01
I.2.Qu'est ce que un glissement de terrain ?	01
I.3.Les différents mouvements de terrain	02
I .3.1.Ecroulement el les éboulements	02
I .3.1.1. Ecroulement	02
I .3.1. 2. Eboulement	03
I.3.2.Glissements	04
I.3.2.1Glissement plan	05
I .3.2.2.Glissement rotationnel simple	05
I .3.2.3.Glissement rotationnel complexe	07
I .3.3.Fluage et solifluxion	07
I.3.3.1. Fluage	07
I.3.3.2. Solifluxion	07
I .3.4.Coulées boueuses	
I .3.5.Synthèse	
I .4. Talus artificiel	09
I .4.1.Talus en déblai et talus en remblai sur sols non compressibles	09
I .4.2.Talus en remblai sur sols compressibles	10
I .4.3.Stabilité sous les soutènements	10

I .4.4.Digues et barrages en terre	11
I.5.Classement géotechnique des glissements de terrain	11
I .6.Conditions de stabilité	12
I.6.1.Géométrie	12
I .6.2.Résistance au cisaillement des sols ou des roches	12
I .6.3.Conditions hydrauliques	12
I .6.4.Facteur climatique et anthropiques	13
I.6.4.1. Pluie, neige, évapotranspiration	13
I .6.4.2.Séisme	13
I.6.4.3. Construction sur pente	14
I.6.4.4. Déblais sur pente	14
I .6.4.5.Modification de l'utilisation des sols	14
I .7. Vitesse de déplacement des glissements	14
I.7.1.pré-rupture	14
I.7.2.rupture	14
I.7.3.post-rupture	15
I.7.4.réactivation	15
I.8.quelque cas pathologique observés	15
I.8.1. En ALGERI	15
I.8.2. En EUROPE	17
I.8.3. En ASIE	19
I.8.4. En AMERIQUE	
I.9.conclusion	21

Chapitre II : Les méthodes de calcul

II. Calcul de la stabilité au glissement	22
--	----

II1. Méthodes classiques du calcul de stabilité des pentes
• Facteur de sécurité
• Critère de rupture
II1.1. Rupture plane
II.1.2. Rupture circulaire (Méthodes des tranches)
II.1.2.1. Méthode des tranches de Fellenius
II.1.2.2. Méthode des tranches de BISHOP
II.1.2.2.1.Méthode de BISHOP détaillée
II.1.2.2.2. Méthode de BISHOP simplifiée41
II.1.2.3. Rupture non circulaire, quelconque
II.2 calcul automatique de la stabilité des pentes
II.2.1. Logiciel SLOP/W49
II.2.2. Logiciel SLIDE
II.2-3- logiciel talren
II.2-4- logiciel plaxis
II.3.conclusion
Chapitre III : Méthodes de stabilisation

III.1. Introduction	51
III.2. Méthodes de stabilisation des talus	.51
III.2.1.Drainage	51
III.2.1.1Types de drainage	52

a) Collecte et canalisation des eaux de surface
b) Tranchées drainantes
c) Drains subhorizontaux54
d) Masques et éperons drainants54
e) Drains verticaux, galeries drainantes
III.2.1.2.Domaine d'utilisation
III.2.2.Modification géométriques
III.2.2.1. Déchargements
III.2.2.2. Reprofilage
III.2.2.3. Substitution
III .2.2.4.Purge
III .2.3. Introduction d'éléments résistants
III .2.3.1.Les ouvrages de soutènements
III .2.3.2. Tirants d'ancrages
III.2.3.3.Renforcement par géotextiles
a) Définition des géotextiles60
III. 2.3.4. Durabilité et comportement à long terme64
III.3.Conclusion
Chapitre IV : présentation du cas d'étude
IV.1.Présentation de la Wilaya65
IV.1.1Localisation générale65
IV.1.2. but du projet65
IV.I.3. Sismicité de la région65

IV.I.5. Aperçu hydrologique et climatologique	66
IV.2. Dégradations observées	67
IV.2.1. Voie d'accès à Dar Dounia	67
IV.3. Description des instabilités	70
IV.3.1 Les ravinements	70
IV.3. 2 Le fluage (les mouvements lents)	70
IV.3. 4 Glissement de terrain proprement dit	71
IV.4. Cause des instabilités observées	73
IV.4.1. La géomorphologie du site	73
IV.4.2. La nature lithologique	73
IV.4.3.L'action de l'eau	73
IV.4.4. L'action sismique	74
IV.4.5.L'action anthropique	74

Chapitre V : la reconnaissance du site

	V.1.Introduction	75
	V. Campagne d'investigation réalisée	75
	V.1.Essais in-situ	75
	V.2.1.1.Sondage carotté	75
	V.2.1.2.Essais aux pénétromètres dynamiques lourds	76
	V.2.1.3.1'essai piézométrique	78
	V.2.1.4.Sondages préssiométriques	78
	V.2.1.5. Essai géophysiques	78
	A/Profils sismiques	78
	B/ imageries electrique	79
	V.2.2.Essais de laboratoire	79
V.2	2.2.1. Résultats des essais de laboratoire	80

	V.2.2.3 l'essai triaxiale	86
V.:	3.Campagne d`investigation réalisée	87
V.:	3.1.Essais in-situ	87
V.:	3.1.1. Sondage carotté	87
	V.3.1.2.1'essai piézométrique	89
	V.3.1.3.Sondages préssiométriques	90
	V.3.1.4. Essais de pénétration dynamique	91
	V.3.1.5. Essai géophysiques	91
	A/Profils sismiques	91
	B/imageries électrique	92
	V.3.2. ESSAIS DE LABORATOIRE	93
	V.3.2.2.Résultats des essais de laboratoire:	93
	V.4.Interprétation des résultats	102
	V.4.1. Essais in-situ	102
	V.4.1.1.Essai géophysiques	102
	A/Profils sismiques	102
	B/imageries électriques	108
	V.4.2. Essais de laboratoire	107
	V.4.2.1. Classification des sols	107
	V.4.2.2. Compressibilité des sols	109
	V.4.2.2.1. Caractéristique de compressibilité des sols	109
	V.4.2.3.2.Etat de consolidation des sols	109
	V.4.2.3.3. Etat de compressibilité des sols	109
	V.4.2.3.4. Résultats et Interprétation	110
	V.4.2.4 Resistance au cisaillement des sols	111
	V.4.2.4.1 – L'essai de cisaillement rectiligne (Résultats et interprétation)	111

V.4.2.4.2 – L'essai de triaxiale (Résultats et interprétation)	
V.4.2.5- Essais de compression simple	
VI.4.2.6- : interprétation d'analyse chimique	112
V.5. L'étude de l'homogénéité des caractéristiques ϕ et C	
V.5. Synthèse du sol	114

Chapitre VI : calcule de la stabilité

VI .1.Introduction	117 117
VI.2.1. Les principales caractéristiques du TALREN 4	117
VI .2.1.1. Le menu principal VI .2.1.2. La barre de boutons principale	117 118
VI.2.1.3. Barre de boutons contextuelle "Données du projet"	
VI .2.1.4. Barre de boutons contextuelle "Phasage/Calculs"	119
VI .2.2 caractéristiques du sol VI .2.3 caractéristiques géométriques des talus modalises	120
VI.3. Actions et charges	121
VI.3.1. Actions du séisme	121 121
VI.4. Les méthodes utilisées dans l'analyse	121
VI.4.1. Calcul de stabilité en rupture circulaire VI.4.1.1. calcul du facteur de sécurité à l'aide du logiciel TALREN4	122
VI.4.2. Calcul de stabilité en rupture non circulaire	126
VI.5.Choix de la méthode de confortement VI.6. Résultats du facteur de sécurité après confortement	128
VI.6.1. Avec un mur de soutènement VI.6.2. Avec géotaxtile	
VI.6.3. Avec les clous	134
VI.7.Conclusion	137

Conclusion générales

Référence bibliographique

Annexes

Introduction générale :

Les problèmes de stabilité des pentes se rencontrent fréquemment dans la construction des routes, des canaux, des digues et des barrages. En outre certaines pentes naturelles sont où pouvant devenir instables. Une rupture d'un talus peut être catastrophique et provoque des pertes en vies humaines ainsi que des dégâts naturelles considérables.

L'estimation de la sécurité réelle vis-à-vis du risque de rupture est une question complexe surtout dans le domaine des données limitées ou peu connues.

L'étude d'un talus comporte outre, la reconnaissance du site et le choix des caractéristiques mécaniques des sols, un calcul de stabilité pour déterminer d'une part la courbe de rupture le long de laquelle le risque de glissement est le plus élevé, d'autre part la valeur du coefficient de sécurité correspondant.

Notre étude consiste à l'analyse de la stabilité au glissement du site : « PARC DOUNIA, DELY BRAHIM, ALGER ». Le travail présenté est cerné en six (06) chapitres :

Chapitr*e* I : dans ce chapitre On a essayé de donné une aidé sur le phénomène de glissement de terrain, ses types et ses causes.et quelques cas pathologiques dus aux glissements des terrains en plusieurs pays dans le monde pour but de savoir l'importance de l'étude de stabilité des talus.

Chapitre II: dans ce chapitre on a présenté les différentes méthodes de calculs qui peuvent être utilisées dans l'analyse

· Chapitre III: dans ce chapitre on a présenté les différents méthodes de confortement peuvent être utilisé.

Chapitre IV: présentation du cas d'étude

Chapitre V : comporte une généralité sur la reconnaissance pratique des sols, et on d'écrit les différentes études et compagnes expérimentales in-situ et de laboratoires réaliser sur le site, ainsi une analyse et interprétation des résultats des essais expérimentaux.

Chapitre VI: on présente un calcul de stabilité et confortement du versent étudié.

Conclusions générales : une conclusion générale sur notre étude.

Liste des figures :

<u>Chapitre I</u>

N° de page

Figure I	.1 glissement de terrain	02
Figure I	.2 écroulement rocheux associé à un glissement sur bancs	03
Figure I	.3 Un Eboulement	04
Figure I	.4 un glissement	05
Figure I	.5 Croquis d'un glissement plan	05
Figure I	.6 Glissement rotationnel	06
Figure I	.7 Glissements successifs emboîtés	07
Figure I	.8 schéma général du mécanisme de fluage	07
Figure I	.9 Schéma type de coulées boueuses	08
Figure I	.10 différent types de rupture circulaire	09
Figure I	.11 remblai sur sol mou	10
Figure I	.12 rupture circulaire sous un soutènement	11
Figure I.	13 Digues et barrages en terre	11
Figure I.	14 Fissures longitudinales dans la route affectée par le glissement	15
Figure I.	15 Cinématique du glissement	16
Figure I.	16 Affaissement de plus de 50cm du glissement en bas du talus	17
Figure I.	17 Des images montrent l'évolution du glissement de la Clapière (Nice)	
Au fil des	années	17
Figure I.	18 glissement de terrain spectaculaire dans le sud de la sicile	18
Figure I principale	19 Un glissement de terrain sur une colline située au dessus de Kuala ville de Malaisie	-Lumpur, la 19

Figure I.21 Glissements de La Leona près de San Vicente(a) et de Las Collinas (b).....20Figure I.22 Morphologie de la zone de glissement de Villatina Medellin en Colombie......22

<u>Chapitre I</u>I

Figure II.1 droite de coulomb ou courbe intrinsèque	24
Figure. II 2 : courbe intrinsèque d'un sol pulvérulent	25
Figure II.3 : Courbe intrinsèque d'un sol Cohérent	
Figure II.4 : Analyse de stabilité en glissement plan	
Figure II.5 : Schéma de bloc discrétisé en des tranches	
Figure II.6 : Représentations de la masse à la rupture	
Figure II.7 : Bilan des efforts d'une tranche élémentaire	

Figure II.8: Différents types des cercles de glissement	35
Figure II.9 : Détermination du cercle critique	36
Figure II.10: Découpage en tranches d'un talus	37
Figure II.11: Forces agissants sur une tranche (Hypothèse de Fellenius)	37
Figure II.12 : Forces agissants sur une tranche	40
Figure II.13 : Schématisation des écoulements	43
Figure II.14 : Abaque de Taylor – Définitions des paramètres	45
Figure II.15: Valeur de Ns pour les sols purement cohérents	45
Figure II.16 : Détermination de α , θ et nd	46
Figure II.17: Valeur de Ns pour les sols cohérents	47
Figure II .18: Abaque de Taylor – Biarez	48

<u>Chapitre II</u>I

Figure III.1– Coupe type d'une tranchée drainante	53
Figure III.2. Types d'éperons drainants	54
Figure III.3. Galerie drainant	55
Figure III.4 Pente modifiée par déchargement de la masse glissante Figure III .5: Classification des ouvrages de soutènement d'après le mode d poussée	56 le reprise de la 59
Figure III .6 – Stabilisation par ancrages précontraints : Dimensionnement d'un d'un modèle à trois blocs	n tirant à l'aide 60
Figure III.7 géotextile	61
Figure III.8 géotextile séparation	61
Figure III.9 géotextile filtration	
Figure III.10 géotextile drainage	62
Figure III .11 géotextile protection	62
Figure III .12 géotextile renforcement	63

Figure. III .13 Mise en œuvre du géotextile	4
<u>Chapitre IV</u>	
Figure IV.1. Carte géologique de la région des Grands Vents	65
Figure IV.6 Sens d'écoulement des eaux de ruissellement	69
<u>Chapitre</u> V	
Figure V.7. Essai de cisaillement direct Schéma de la boite cisaillement	85
Figure V.9 essai triaxiale	86
Figure V.10 Carte d'implantation des essais in situ du site « Glissement de terrain Dounia-Delly Brahim-Alger » Figure V.11 Principe d'imagerie électrique, dispositif de Wenner	87 93
Figure V.12 carte d'implantation des profils d'imagerie électrique	94
Figure VI.13. Essai de compressibilité a l'oedomètre Schéma du moule oedométrique Figure VI.14. Essai de compressibilité à l'oedomètre Courbe oedométrique Figure V.15 Coupe Géo sismique PS1	101 102 104
Figure V.16. Coupe géosismique PS 2	105
Figure V.17 coupe géosismique PS 3	106
Figure V.18 Coupe Géosismique PS4	107

<u>Chapitre VI</u>

Figure	VI .1.	Organigramme	montrent	les	différents	options	de	la	barre	d'outil
TALRE	N4							•••••		120
Figure V	VI .2. Le	e menu de donnée	S							120
Figure V	V I .3. La	a barre de boutons	s principale							121
Figure V	V I .4 . La	barre de boutons	s contextue	lle "E	Données"					121
Figure V	V I .5. La	barre de boutons	s contextue	lle "P	hasage/Cale	culs"				121

Liste des photos :

<u>CHAPITRE I</u>	N° de page
Photo I.5 Glissement plan	05
Photo I.6 glissement rotationnel de parc DouniaPhoto I.9 Coulée de boue en terrain boisé	06
<u>CHAPITRE</u> IV	
Photo IV.1. Affaissement important de la chaussée	67
Photo IV.2 Fissures de tractions sur l'accotement de la route	
Photo IV. 3. Ravinement dans les formations argilo marneuse	
Photo IV.4 Aspect moutonné indiquant le fluage	71
Photo IV. 5 Rupture du gabionnage	71
Photo IV. 6 Arrachement des talus	
Photo IV.7. Les surfaces de ruptures sont tangentes aux formation	as d'argile marneuse73
<u>CHAPITRE</u> V	
Photo V.1. Le sondage carotté	76
Photo. V. 2 Essai au pénétromètre dynamique lourd	77
Photo V 3. Essai de limites d'Atterberg	
Photo V.4. Granulométrie par tamisage Série de tamis	
Photo V.5.Granulométrie par sédimentométrie Eprouvette et agitate Photo V.6.L'oedomètre : appareil pour essai de compressibilité	eur
Photo V.8.L'appareil de cisaillement direct	

Liste des tableaux :

CHAPITRE I

N° de page

Tableau II.1: Différents exemples de définitions d'un coefficient de sécurité, LAMBE23

CHAPITRE IV

tableau-1-Climatologiques du cumul mensuel des précipitations, période de 2001-2010......67

CHAPITRE V

Tableau V.1 Coordonnées des sondages.	88
Tableau V.2.Lithologie des sondages carottés	89
Tableau V.3 Niveaux piézométriques.	90
Tableau V. 4 Coordonnées des sondages pressiométriques.	90
Tableau V.5 Lithologie des sondages pressiométriques	91
Tableau V. 6 Résultats des paramètres pressiométriques	91
Tableau V.7 Résultats des essais de pénétration dynamique	91
Tableau V.8. Résultats des essais de laboratoire : « caractéristique physiques » Poids volumique – teneur en eau	95
Tableau V.9. Caractéristiques chimiques du sol du site : Glissement de terrain, PARC DOUNIA DELY BRAHIM»	102
Tableau V.10 Modèle de terrain de chaque tir effectué pour le profil sismique PS1	103
Tableau V.11 Modèle de terrain de chaque tir effectué pour le profil sismique PS2	.104
Tableau V.12 Modèle de terrain de chaque tir effectué pour le profil sismique PS3	.106
Tableau V.13 Modèle de terrain de chaque tir effectué pour le profil sismique PS4	.107

LISTE DES TABLEAUX

Tableau V.14. Résultats de la classification des sols du site	110
Tableau V.15. Résultats de la compressibilité des sols du site étudié	112
Tableau V.16. Résultats de la résistance au cisaillement des sols du site Tableau V.17. Résultats de triaxiale des sols du site	112
Tableau V.17. Resultats de la résistance à la compression Rc et la cohésion	113
Tableau V.19.Les caractéristiques de sol	116

<u>CHAPITRE VI</u>

Tableau VI .1 caractéristiques du sol	
Tableau VI .2 caractéristique géométrique.	
Tableau VI.3. Tableau récapitulatif	138

I.1.Introduction :

Les problèmes de stabilité de pente, en relation avec les variations de teneur en eau (liées à une pluviométrie très irrégulière), provoquent d'importants dégâts: ils affectent les versants naturels ainsi que des talus créés de façon artificielle, et constituent une menace pour les infrastructures ou les zones habitées.

Parfois, les moyens actuels ne permettent qu'un pronostic souvent imprécis. En effet, il n'est pas rare d'observer certains talus très raides qui sont stables et on se demande ce qui les fait réellement tenir. Dans le cas contraire, on assiste à certains talus qui glissent d'une façon inattendue. Les actions en cours portent donc sur l'amélioration de la prédiction, avec le développement d'outils de modélisation plus performants.

La sécurité d'un talus dépend de nombreux facteurs, notamment:

- de l'inclinaison de la pente
- de la hauteur du talus
- de la position de la nappe phréatique
- des surcharges statiques et dynamiques
- des propriétés du terrain
- etc.

C'est seulement lorsque l'ensemble de ces éléments sont connus, qu'il est possible de réaliser un calcul de stabilité par différentes méthodes.

Depuis longtemps, la quasi-totalité des méthodes proposées sont des méthodes de calcul à la rupture basées sur des hypothèses émises au sujet de la forme de la surface de glissement. Nombreux sont ceux qui se sont intéressés à ce problème et qui y ont attaché leur nom: Fellenius, Caquot, Taylor, Bishop, Janbu, etc. sans parler de Terzaghi qui apporta là encore une importante contribution, comme il le fît dans tous les domaines de la mécanique des sols. Pour la plupart, ces méthodes ne peuvent traiter que des lignes de rupture circulaire, tout en ne vérifiant pas complètement les équations de l'équilibre statique. Elles donnent de bons résultats pour les talus de hauteur moyenne, taillés dans des sols relativement homogènes

I.2.Qu'est ce que un glissement de terrain ?

Les glissements de terrain sont des mouvements qui affectent les talus et les versants naturels. Ils peuvent provoquer des dommages importants aux ouvrages et aux constructions, avec un impact économique sensible, et parfois causer des victimes. Ils surviennent à la suite d'un événement naturel – forte pluie, érosion de berge, séisme, par exemple – ou sont la conséquence plus ou moins directe d'actions de l'homme, telles que travaux de terrassements ou déforestation. L'étude des glissements de terrain et la prévention des risques qu'ils engendrent relèvent de la géologie appliquée et de la mécanique des sols.

Un glissement de terrain est le déplacement vers le bas de matériaux géologiques sur un versant. Le terme glissement fait également référence aux formes de terrain qui résultent de ce mouvement. Les glissements de terrain présentent une grande diversité, reflétant ainsi les différents milieux du pays.

Figure I.1 Glissement de terrain.

I.3.Les différents mouvements de terrain :

De nombreuses classification ont été proposées pour les mouvement de versant ; elles s'appuient sur des notions de cinématique, de nature de sol, de stratigraphie,etc.

De façon simplifiée, on peut considérer quatre familles principales :

- Ecroulement et les éboulement,
- Glissement,
- Fluage et solifluxion,
- Coulées boueuses.

I .3.1. Ecroulement el les éboulements :

I.3.1.1. Ecroulement :

Lors d'un écroulement, un grand volume du massif rocheux (un à plusieurs millions de m³) se détache soudainement, sans que le mode de rupture correspondant ne soit déterminant. Le mécanisme initial peut par exemple s'expliquer par le développement d'une surface de glissement inclinée. Le mécanisme de mouvement de l'écroulement est déterminé par la topographie, de même que par l'interaction marquée entre les composants de la masse écroulée et par leur fragmentation intense.

Les vitesses des écroulements sont très importantes, tout au moins dans les phases de rupture. Bien qu'aucun écroulement n'ait été mesuré avant la rupture, il est logique de penser que la vitesse d'ouverture des fissures doit être d'abord faible et constante puis tout à coup de façon beaucoup plus rapide que dans un glissement. Ceci est dû au fait que les matériaux donnant lieu à des écroulements sont en moyenne plus fragiles (dans leurs conditions naturelles) que ceux des glissements.

Il faut noter que leurs grandes masses et leur départ très brutal (c'est le mouvement dont le départ est le plus brutal) font des écroulements un phénomène très dangereux auquel sont soumises toutes les parois des roches dures. On a tendance à en oublier l'éventualité du fait de leur rareté.

* Les terrains donnant lieu à des éboulements sont exclusivement les roches massives pouvant former de hautes falaises (calcaire, roches cristallines et cristallophylliennes).

* Comme pour le glissement les paramètres influant sur les mécanismes de rupture sont les phénomènes climatiques (pluie, fonte de neiges...) ou mécaniques (séismes, vibrations).

Figure. I.2 écroulement rocheux associé à un glissement sur bancs.

I.3.1.2. Eboulement :

Lors d'un éboulement, un volume de roche important, se fragmentant plus ou moins intensément, se détache en bloc du massif rocheux et s'éboule. Le volume de matériaux concernés est en général compris entre 100 et 100000 m³ par événement. Dans des cas exceptionnels, des volumes sensiblement plus grands peuvent s'ébouler.

Dans la pratique, l'estimation d'un volume de roche qui présente un danger potentiel d'éboulement exige des études détaillées du massif rocheux, comprenant une analyse approfondie de l'orientation spatiale des surfaces de discontinuité.

Figure. I.3 Un Eboulement.

Le mode de rupture au sein du massif a en général peu d'influence sur le déroulement de l'événement. En comparaison avec le phénomène d'écroulement, les interactions entre les éléments de roche formant l'éboulement et l'énergie mise en œuvre sont relativement limitées. Les vitesses de transport se situent principalement entre 10 et 40m/s.

I.3.2.Glissements :

Les glissements de terrain sont des mouvements de masses compactes et/ou de terrain meuble, glissant vers l'aval. Ils résultent d'une rupture par cisaillement et se produisent en général sur des talus ou des versants de pente modérée à raide. Les instabilités naturelles de ce genre sont extrêmement courantes et apparaissent sous de nombreuses formes diversifiées.

Le volume et la vitesse de rupture sont très variables, la rupture est précédée de signes précurseurs mais peut être également brutale.

La pluie, fonte de neige, érosion, variations de cote d'un plan d'eau, travaux de terrassements, secousse sismique sont les causes principales de glissement.

<u>Figure. I.4</u> un glissement.

I.3.2.1Glissement plan :

En général, la ligne de rupture suit une couche mince de mauvaise caractéristique sur laquelle s'exerce d'ailleurs souvent l'action de l'eau. Une telle couche est appelée : couche savon.

<u>Figure. I.</u> 5

Croquis d'un glissement plan

Photo. I.5 Glissement plan

I .3.2.2.Glissement rotationnel simple :

Nous décrirons plus précisément ce type de glissement car il est fréquent. La surface de rupture a une forme simple et peut être assimilée à un cylindre dans la plupart des cas.

Photo. I.6 glissement rotationnel de parc Dounia.

Figure I.6 Glissement rotationnel.

La figure a représente un tel glissement. On distingue :

-en tète des fissures de traction,

-un espacement correspondant au départ de la surface de glissement.

-à la base. Un bourrelet formé par des matières glissées.

La figure b donne la représentation schématique du glissement.

Dans la plupart des cas, la ligne de rupture peut être assimilée à un cercle, d'où le nom de glissement circulaire.

Dans le cas contraire, la surface de rupture est plus complexe et le glissement sera désigné sous le terme de glissement non circulaire.

I .3.2.3.Glissement rotationnel complexe :

Il s'agit de glissements multiples « emboités » les uns dans les autres, dus à la suppression de la butée provoquée par le glissement précédent, ce qui entraine des glissements successifs remontant vers l'amont.

I.3.3.Fluage et solifluxion :

I.3.3.1. Fluage :

Le fluage correspond à des mouvements lents dus à des sollicitations proches de la rupture (domaine plastique) .l'état ultime peut être, soit la stabilisation, soit la rupture.

I.3.3.2. Solifluxion :

La solifluxion est un cas particulier de fluage.

Il s'agit d'un phénomène superficiel du aux variations volumique du sol au cours des saisons (gel et dégel en montagne, alternance de saisons sèches et pluvieuses).

Les mouvements alternés, lorsqu'ils affectent des pentes, conduisent à une reptation du sol vers l'aval.la solifluxion se repère par la présence d'ondulation du sol et l'inclinaison des arbres.

La solifluxion se produit essentiellement dans les pentes taillées dans des argiles gonflantes.

I.3.4.Coulées boueuses :

Les coulées boueuses sont dues à des écoulements d'eau importants transportant des mâtereaux solides. Elles se produisent essentiellement en montagne.

Figure. I.9 Schéma type de coulées boueuses

Photo. I.9 Coulée de boue en terrain boisé.

I.3.5.Synthèse :

Le tableau il présente les différentes familles de mouvement et leur caractérisation en termes de nature de matériaux, de vitesses de déplacement, de volume déplacés et de déclenchant.

Terrain		Vitesse	volume	Facteurs	
		moyenne		déclenchant	
	Sols	Très lent à	De quelque m ³	Eau,	
glissement	Massifs	moyenne	a plus de dix	terrassements	
	fracturés		million de m ³		
	Formation		De quelques	Chargement,	
fluage	Meubles	Très lente	m ³ a plus de	évolution du	
			dix million de	matériau	
			m^3		
	Massifs	De très lent a	De quelque m ³	Eau, gel-dégel	
écroulement	rocheux	rapide	a plus de dix	séisme	
			mille m ³		
	Sols argileux		De dix à	Très fortes	
coulée	et limoneux	Très rapide	plusieurs	pluies, rupture	
	lâches		centaines de	de digues	
			milliers de m ³		

Tableau (1) : éléments caractérisant les différentes familles de mouvements [1].

I.4.Talus artificiel :

I .4.1. Talus en déblai et talus en remblai sur sols non compressibles :

Les ruptures ont, d'une façon générale, l'allure de glissement rotationnel circulaire.

On distingue :

- Les cercles de talus,
- Les cercles de pied,
- Les cercles profonds.

Figure I.10 différent types de rupture circulaire.

Les glissements de talus se produisent généralement dans les sols hétérogènes, la base du cercle correspondant à une couche plus résistante :

- Les cercles de pied sont plus courants dans ce type d'ouvrage,
- Les cercles profonds ne se produisent que dans le cas ou le sol situé sous le niveau du talus est de mauvaise qualité.

I .4.2. Talus en remblai sur sols compressibles :

Ils correspondent au dernier des cas évoqués ci-dessus. Le remblai en sol compacté (remblai routier par exemple) repose sur une couche d'argile molle, de vase ou de tourbe.

Les ruptures seront profondes ; les cercles de rupture sont de plus tangents à la base de la couche molle lorsque celle-ci est relativement peu épaisse.

Si le coefficient de sécurité vis-à-vis de la rupture est peu élevé tout en étant supérieur à 1, il peut se produire un fluage du sol de fondation entrainant un tassement anormal du remblai et un renflement latéral de la couche molle.

Cette déformation à volume constant vient s'ajouter au tassement du à la consolidation du sol.

Figure. I.11 remblai sur sol mou

I .4.3. Stabilité sous les soutènements :

Dans ce cas d'ouvrage, il faut s'assurer les risques de rupture circulaire profonde.

Figure. I .12 rupture circulaire sous un soutènement.

I .4.4.Digues et barrages en terre :

L'étude de la stabilité des talus amont et aval est la partie essentielle de la conception des barrages en terre. Différents cas doivent être étudiés en tenant compte de l'état des pressions interstitielles à l'intérieur de la digue.

I.5. Classement géotechnique des glissements de terrain :

Les glissements de terrain peuvent être classés aussi en fonction de la profondeur de leur surface de glissement et de la vitesse moyenne du mouvement.

Classification d'après la profondeur de la surface de glissement (en m sous la surface du sol)

Glissement	Surface de glissement		
Superficiel	0 – 2m		
Semi-profond	2 – 10m		
Profond	10 – 30m		
Très profond	>30m		

Classification selon l'activité (en fonction de la vitesse moyenne du glissement en cm par an à long terme)

Glissement	Vitesse de glissement
Stabilité, très lent	0 - 2 cm/an
Peu actif, lent	2 - 10 cm/an
Actif (Ou lent avec phases rapides)	>10cm/an

I .6.Conditions de stabilité :

Le processus d'instabilité d'une pente dépend de différents facteurs :

- Sa géométrie.
- La résistance au cisaillement des sols ou des roches,
- Les pressions de l'eau interstitielles.
- Les sollicitations extérieures (climatiques et anthropiques).

I .6.1.Géométrie :

La pente de la surface du terrain constitue le premier facteur de stabilité ou d'instabilité. La pente critique dépend de la nature des sols ou des roches et de la présence d'eau dans le massif.

I .6.2. Résistance au cisaillement des sols ou des roches :

Parmi les facteurs qui régissent la stabilité d'une pente.la résistance mécanique des sols et des roches constitue un élément essentiel.

Cette résistance dépend de la nature du matériau, de son histoire et de l'état de contrainte.

En cas de réactivation de glissements de versants naturels, les déplacements se produisent le long de la surface. De rupture préexistante. Sur cette surface de rupture, la résistance au cisaillement mobilisée est appelée résistance résiduelle.

La détermination de l'état de stabilité d'un versant nécessite donc la connaissance de deux types de paramètres des terrains rencontrés :

- La résistance au cisaillement a court ou long terme,
- La résistance au cisaillement résiduelle.

I.6.3.Conditions hydrauliques :

La compréhension du régime hydraulique du site est un élément essentiel pour l'analyse d'une instabilité et dans la recherche des solutions. Ceci conduit a s'intéresser a une zone nettement plus grande que celle qui est en mouvement : en effet, les conditions d'alimentation peuvent être complexes et dépendre couche de terrain situées bien en amont.

La connaissance des conditions hydraulique les plus défavorables nécessite une longue durée d'observation sur le terrain.

La détermination du régime hydraulique est souvent très difficile du fait de l'étendue des zones a prospecter et de l'hétérogénéité des sols rencontrés et notamment de la présence d'accident technique qui perturbent sensiblement les nappes.

Certain élément sont de première importance, il s'agit :

- Des pressions interstitielles au niveau de la surface de rupture ;
- De l'alimentation hydraulique du site ;
- De l'évolution de la nappe au cours du temps.

Le tableau illustre l'influence du type d'écoulement sur la stabilité d'une pente constitue d'un matériau homogène et isotrope, et supposée infinie. Il donne l'inclinaison β . Sur l'horizontal de la pente infinie en limite de stabilité (F=1). Cet angle varie dans un rapport de 2 selon l'écoulement.

Type de	Angle β limite	Sable	Argile	Argile
l'écoulement	théorique	(φ '=35°)	(φ'=22°)	(φ '=14°)
Parallèle à la	β=tan-1	β=19,3°	β=11,4°	β=7,1°
ponte	(0,5tan \varphi')			
Horizontale	$\beta = \phi'/2$	β=17,5°	β=11°	β=7°
Verticale	$\beta = \phi'$	β=35°	β=22°	β=14°
descendant				

Tableau(2) : inclinaison limite d'une pente infinie en fonction du type d'écoulement [1].

I .6.4. Facteur climatique et anthropiques :

Les facteurs climatiques prépondérants sont constitués par les apports d'eau. L'autre action externes, susceptibles se modifier l'état d'équilibre d'un versant, résultant principalement de modification de géométrie, de chargement et de déchargement.

I.6.4.1. Pluie, neige, évapotranspiration :

Les nappes sont alimentées principalement par les pluies et la fonte des neiges.

I .6.4.2.Séisme :

Les sollicitations sismiques peuvent être la cause de glissement de terrain, deux phénomènes entrent en jeu dans ce cas :

- La liquéfaction des limons et sables fin saturé,
- La force interstitielle déstabilisatrice due au séisme lui-même.
I.6.4.3. Construction sur pente :

La construction de remblais sur pente naturelle diminue la stabilité de l'ensemble pente et remblai.

I.6.4.4. Déblais sur pente :

Les terrassement en déblai dans une pente, qui sont souvent réalisé pour construire des bâtiment ou des routes, peuvent conduire a des désordre, ces phénomène s'observe dans les pentes naturelle en équilibre limite, avec des surface de glissement remontant loin en amont.

I .6.4.5. Modification de l'utilisation des sols :

Une autre cause d'instabilité est le changement d'utilisation des sols :

- Remembrement ;
- Déforestation;
- Abandon d'exploitation agricoles (culture en terrasses, drainages agricoles).

I .7. Vitesse de déplacement des glissements :

Une pente naturelle connait plusieurs périodes dans son évolution, vaunat et al. (1994) proposant de considérer quatre phases :

- Pré-rupture,
- Rupture,
- Post-rupture,
- Réactivation.

I.7.1.pré-rupture :

En phase de pré-rupture, deux situations sont susceptibles d'être observées :

- L'absence d'évolution mesurable du massif,
- L'existence de mouvement de faible amplitude,

I.7.2.rupture :

La rupture correspond à la période, généralement de court duré pendant laquelle le massif connait des déplacements important.

Les vitesses de glissement atteintes lors de la rupture peuvent être très importantes et, en général, l'intervention pour stabiliser le massif a lieu après cette phase de mouvement très intense.

Lorsque les mouvements sont déclenchés par des séismes, on observe en générales vitesse élevées plusieurs heures après le passage de l'onde sismique.

I.7.3.post-rupture :

Cette phase succède immédiatement à la phase de rupture.

Le cas de la post-rupture correspond au cas le plus couramment rencontré par le géotechnicien, selon les types de phénomènes, les vitesses moyennes durant cette phase correspondent à celles présentées dans le tableau (1), dans la plage « très lente » à « très rapide » en fonction des facteurs pluviométrique et géométrique.

I.7.4.réactivation :

La réactivation désigne un mouvement qui se produit le long d'une surface de rupture créée lors de déplacement anciens et après qu'ils se sont arrêtés pendant une période de temps plus ou moins important.

I.8. quelque cas pathologique observés :

I.8.1. En ALGERIE :

On peut citer plusieurs cas de glissement de terrain survenus en Algérie, plus particulièrement celui de Bejaia et la route des Abattoirs à Ténès (Chlef).

• Cas de Bejaia :

Comme le montre la figure II-1, le terrain concerné par le glissement de terrain présente une forte pente supérieure à 60° et qui est sujette à un glissement certain, compte tenu de la forte pluviométrie affectant la région de Bedjaia.

Il a concerné une route avec un profil mixte déblai-remblai dans une zone montagneuse. La zone s'étend sur une longueur de 80m. Les investigations géotechniques ont mis en évidence depuis la surface, des éboulis gréseux, des bancs gréseux et des alternances de marnes schisteuses et de grés.

Figure I.14 Fissures longitudinales dans la route affectée par le glissement

La figure (I.15) présente un schéma global du glissement survenu à Bejaia où des infiltrations d'eau du coté amont et l'absence totale de drainage ont favorisé l'évolution du

glissement. Les couches supérieures ont glissés sur la couche de marne d'épaisseur limitée et la couche de grés altérés

Figure I.15 Cinématique du glissement

• Cas de la Route des Abattoirs Ténès (Chlef) :

Le glissement de la route des abattoirs Ténès, se trouvant sur un talus de 10m environ de hauteur (D'après des informations recueillies par la DTP de Chlef agissant comme maître de l'ouvrage). Ce glissement a été provoqué dans les années 80 sous l'effet des infiltrations souterraines ayant fait déplacer la masse de remblai composée d'alluvions récentes.

L'étude à été réalisée par le laboratoire des travaux publics du centre (Antenne de Chlef), où une solution à été dégagée consistant à recharger les pieds du talus tout en proposant des murs de soutènement reposant sur des pieux ancrées à plus de 25 m de profondeur.

Dans ce but depuis 1982 à 2006 de graves préjudices ont été observés sur le terrain (voir fig. I-16), dont la partie se trouvant en haut du talus a été complètement déplacée et touchant même les fondations des bâtiments se trouvant à côté de l'emprise.

De ce fait, compte tenu des dégâts observés sur les lieux, les parties concernées ont pris au sérieux ce problèmes pathologiques et ont refait une deuxième fois l'étude par le laboratoire citée ci-dessus et ce pour aboutir aux solutions du mur de soutènement et dont les travaux ont repris incessamment.

<u>Figure I.16</u> Affaissement de plus de 50cm du glissement en bas du talus (Les routes des Abattoirs Ténès).

I.8.2. En EUROPE :

4 Cas de France :

Le glissement de la Clapière, dans l'arrière-pays niçois, est l'un des plus rapides au monde et est étroitement surveillé par le CETE.

Figure I.17 Des images montrent l'évolution du glissement de la Clapière (Nice) Au fil des années

Ainsi, le glissement de La Clapière (Alpes-Maritimes) est particulièrement surveillé depuis 1970, par le Centres d'études techniques de l'équipement (<u>CETE</u>) d'Aix-en-Provence. Ce phénomène atteint une hauteur de plus de 650 mètres, ce qui fait de lui le plus grand glissement actif d'Europe. L'écoulement, amorcé depuis quelques années, est dû à une masse instable, de l'ordre de 50 millions de m3, qui glisse de 1 à 10 m par an. Spectaculaire et très connu dans la région, il est susceptible de barrer la vallée de la Tinée. Il provoquerait alors l'inondation en amont de la ville de Saint-Étienne-de-Tinée et, en cas de rupture de ce barrage instable, la destruction, par la vague déferlante, des villages situés en aval.

🖕 Cas d'Italie :

Dans le sud de l'Italie et en Sicile, plusieurs villages ont dû être évacués suite à de gigantesques coulés de boue où de nombreux bâtiments ont été fissurés.

Figure I.18: Glissement de terrain spectaculaire dans le sud de la Sicile.

De plus en plus d'Italiens du Sud sont évacués à cause de violents glissements de terrain. L'évacuation a commencé durant la nuit de lundi à mardi par le village de Maierato. Selon les médias italiens, environ 2.300 personnes qui se trouvaient dans le bâtiment d'une école de police et dans un hall sportif ont été emmenées dans la ville toute proche de Vibo Valentia. "*La montagne a simplement glissé vers le bas - un spectacle digne de l'Apocalypse*",

La situation à San Fratello, à l'ouest de la ville portuaire de Messine en Sicile, est tout aussi dramatique. Sur les 4.000 personnes que compte le village, la moitié d'entre elles a été évacuée ou est parti volontairement durant le week-end.

I.8.3. En ASIE :

🖊 Cas de Malaisie :

Figure I.19 Un glissement de terrain sur une colline située au dessus de Kuala-Lumpur, la principale ville de Malaisie

Le glissement de terrain engloutissant plusieurs maisons et coupant l'accès à des quartiers périphériques de la capitale Malaisienne. Des coulées de boue, provoquées par les pluies torrentielles qui se sont abattues sur ville

Les coulées de boue ont recouvert une zone 500 mètres de large, selon la source, les eaux boueuses ayant atteint par endroit le 3e étage des bâtiments.

4 Cas de Kirghizistan :

Le Kirghizistan, une république de l'Asie centrale située au milieu des montagnes Tian Shan, est particulièrement menacé par des glissements de terrain provoqués par des tremblements de terre. Ceci est une conséquence directe de la jeunesse des Tian Shan mountains et du degré élevé d'activité tectonique et sismique dans cette région, dû à la collision et la convergence de l'Inde vers l'Eurasie qui provoque de nombreux mouvements de la croûte. C'est pourquoi des tremblements de terre importants (M>6.0) sont fréquents dans cette région.

Figure I.20 Photographie d'un glissement de terrain important (mise à disposition par l'Institut de Sismologie du Kirghizistan)

Cette région est confrontée de longue date à des glissements de terrain associés à des tremblements de terre, dont certains avec des effets catastrophiques.Le glissement le plus important, situé dans la région de Bielogorka, avait une épaisseur de 20-30 mètres, une largeur de 500 mètres, s'étalait sur 2000 mètres et transportait 25 millions de m³ de matière. Les glissements de terrain ont obstrué une rivière, retenant l'eau et créant ainsi un lac.

I.8.4. En AMERIQUE :

🖊 Cas de Salvador :

A la suite d'un tremblement de terre de magnitude 7.6 à l'échelle Richter survenu en 2001 au large des cotes du Salvador, deux glissements de terrain se sont produits : le glissement de La Leona près de San Vicente et le glissement de Las Collinas.

Figure I.21 Glissements de La Leona près de San Vicente(a) et de Las Collinas (b)

4 Cas de Colombie:

Le glissement a eu lieu en 1987 au quartier de Villatina Medellin qui est localisé sur le flanc oriental de l'aval du Rio Medellin. Il est l'une des grandes catastrophes naturelles qui ont eu lieu en Colombie dans une zone urbaine. Le nombre des victimes a été entre 450 et 500, avec plus de 120 maisons détruites.

Le glissement est parti de la zone de dunites (roches argileuses fracturées) qui a une pente supérieure à 20%, il est descendu en suivant la ligne de plus forte pente (Figure I-20).

Figure I.22 Morphologie de la zone de glissement de Villatina Medellin en Colombie.

I.9. Conclusion :

Dans ce chapitre on a démontré les différents types de glissements qui existent dans la nature,

Et quelque cas pathologiques cités précédemment montre l'importance des effets de glissement pouvant engendrer des dégâts humains et matériels pouvant se chiffrer en plusieurs millions de Dinars dont les gouvernements doivent prêter beaucoup d'attention.

II. calcul de la stabilité au glissement :

L'analyse de la stabilité des pentes se fait soit manuellement par les méthodes classiques ou numériquement par l'utilisation des logiciels.

II.1. Méthodes classiques du calcul de stabilité des pentes :

L'analyse de la stabilité d'une pente est l'étude des conditions d'équilibre d'une masse du sol délimité par une surface de rupture, consiste à supposer que cette masse et monolithique et soumise aux efforts suivants : poids propre du massif, réactions du sol en place le long de la surface de rupture, pressions interstitielles, chargements extérieurs éventuels.

Le matériau sol est caractérisé par l'angle de frottement φ , la cohésion C, le poids volumique γ et la largeur B de talus qui est supposée très grande par rapport à la hauteur H et la largeur L.

Le problème de glissement serait alors bidimensionnel.

Deux principaux termes entrent dans le calcul de la stabilité des pentes :

"Le critère de rupture", et "le facteur de sécurité" qui sont définis comme suit :

> Facteur de sécurité :

L'analyse courante de la stabilité consiste, sur la base d'une description à deux dimensions de la pente, à étudier les conditions d'équilibre de la masse de sol, supposée monolithique, délimitée par une surface de rupture et soumise aux efforts suivants : poids propre du massif, réactions du sol en place le long de la surface de rupture, pressions interstitielles, chargements extérieurs éventuels.

En un point de la surface de rupture potentielle, le coefficient de sécurité (local) est défini comme le rapport de la résistance au cisaillement du sol τ_{max} à la contrainte de cisaillement τ s'exerçant réellement sur la surface :

 F_{local} = τ_{max}/τ = résistance au cisaillement maximale mobilisable / résistance au cisaillement nécessaire à l'équilibre

Si F > 1, il n'y a pas rupture ; si F = 1, il y a rupture locale. La définition de ce coefficient de sécurité global se heurte à deux difficultés : on ne sait pas évaluer, sauf cas particuliers simples ou appel à modélisation complexe, la répartition des contraintes le long de la surface de rupture et, si l'on possède une telle évaluation, on constate en général que le coefficient de sécurité n'est pas constant le long de la surface de rupture. La résistance au cisaillement (τ_{max}) est égale à la cohésion non drainée pour les sols fins à court terme. Dans le cas général, elle dépend de la contrainte effective normale σ ' selon le critère de rupture de Mohr-Coulomb :

 $\tau_{max} = c' + \sigma' \tan \phi'$. Il est donc nécessaire de faire des hypothèses sur la répartition des contraintes normales σ' . Une façon d'évaluer les contraintes de cisaillement τ consiste à écrire qu'elles résultent de l'équilibre limite pour des caractéristiques du sol réduites :

 $\tau = c' / F + \sigma' \tan \phi / F$

L'étude de stabilité consiste à rechercher la surface de rupture la plus défavorable (dans une famille donnée, par exemple circulaire), c'est-à-dire dont le coefficient de sécurité est le plus faible : c'est elle qui conditionne la stabilité du versant. On verra que, généralement, un coefficient de sécurité de 1,2 à 1,5 suivant les cas est recherché.

Définition	Formule
Rapport de contraintes	$F = \tau_{max} / \tau$
Rapport de forces	F=E résist / E moteur
Rapport de moments	F=M résist / M moteur
Rapport de grandeurs	Par ex : H / Hmax

Tableau II.1: Différents exemples de définitions d'un coefficient de sécurité, LAMBE[1973].

Critère de rupture:

Pour la plupart des méthodes de calcul de la rupture, on utilise le critère de la loi de plasticité de Coulomb :

Figure II.1 droite de coulomb ou courbe intrinsèque.

 $\tau = c + \sigma \tan \phi$

Dans lequel τ et σ désignant la contrainte tangentielle et normale sur une surface de rupture donnée.

c Et φ désignent la cohésion et l'angle de frottement interne du sol eu point considéré. Ce critère est valable pour un corps homogène monophasique, mais malgré que le sol et souvent hétérogène on applique ce critère pour les bousions des calculs.

La condition de validité d'application de ce critère au sol est que ce dernier doit être saturé.

L'expression de la résistance au cisaillement dépend de la nature du sol comme suit :

• Sol grenu "pulvérulent" propre et sec :

Dans ce type de sol la cohésion "c" est nulle et la résistance au cisaillement est donnée par :

Figure. II 2 : courbe intrinsèque d'un sol pulvérulent

 $\tau_{\max} = \sigma \tan \rho$

• Sol fin "cohérent" :

Pour ce type de sol on distingue deux comportements :

1- Comportement à court terme :

Le coefficient de perméabilité est faible et l'eau est considérée incompressible.

Après chargement, le sol se déforme à volume constant, d'où l'expression de la résistance au cisaillement serait :

 $\tau_{max} = C_u + \sigma \tan \phi_u$

(Pour un sol argileux saturé $\varphi u = 0$)

2- Comportement à long terme :

Par l'application des charges. Les surprissions interstitielles seront dissipées et le comportement du sol et régit par le comportement du squelette solide (contraintes effectives).

Figure II.3 : Courbe intrinsèque d'un sol Cohérent.

L'expression de la résistance au cisaillement est donnée par :

 $\tau_{max} = C' + \sigma \tan' \phi'$

Avec :

C' : Cohésion effective

 ϕ' : Angle de frottement interne effectif.

Suivent la surface de rupture on peut classer les méthodes classiques de calcul en trois classes : la première classe est celle relative à la surface de rupture plane, la seconde est celle relative à la surface de rupture circulaire et la troisième est celle qui correspond à la surface de rupture quelconque. Les trois classes sont détaillées dans ce qui suit :

II .1.1. Rupture plane :

Considérons un versant plan parallèle au substratum de longueur infinie dont l'angle avec l'horizontal est β et ayant les caractéristiques suivantes :

- > Poids spécifique γ (au-dessus de la nappe) ;
- Poids spécifique saturé γ_{sat} (au-dessous de la nappe) ;
- > La cohésion C' et l'angle de frottement interne ϕ' ;

La nappe se trouve à une hauteur h_{w.}
 Etudions l'équilibre du versant soumis :

- A une surcharge verticale uniforme q_0 (fig. II.4)

Les contraintes s'exerçant en un point M appartenant au plan de rupture sont :

$$\sigma + q_0 \cos\beta \,dx + \gamma h \cos\beta \,dx / \frac{dx}{\cos\beta} \tag{1}$$

$$U = (\gamma w. hw \cos \beta dx) / \frac{dx}{\cos \beta}$$
(2)

$$t + \frac{(q_{odx}\sin\beta) + \gamma h(dw\sin\beta)}{\frac{dx}{\cos\beta}}$$
(3)

Le coefficient de sécurité au glissement est :

$$F = \frac{\tau_{max}}{\tau}$$

- A court terme (sol argileux saturé $\phi_{\mu} = 0$)

$$F = \frac{Cu}{(q_0 + \gamma_{sat}h)\sin\beta\cos\beta} \qquad (4)$$

- A long terme :

$$F = \frac{C' + (q_0 + \sigma \gamma_{sat}h - \gamma w) \cos \beta \tan \phi}{(q_0 + \gamma_{sat}h - hw.\gamma w) \sin \beta}$$
(5)

Remarque :

Le coefficient de sécurité diminue quand le niveau de la nappe augmente, C'està-dire F minimal correspond à une nappe au niveau du sol ($h_w=h$).

Figure II.4: Analyse de stabilité en glissement plan.

II.1.2. Rupture circulaire (Méthodes des tranches) :

Les méthodes des tranches consistent à partager le talus (le bloc glissent ABCDA) caractérises par yi, Ci.

Dans ces méthodes, chaque tranche est soumise à :

- Son poids ;
- Forces de contact inter-tranches.

Figure II.5 : Schéma de bloc discrétisé en des tranches

Hypothèses :

- Le talus est suffisamment long pour que le calcul soit fait à deux dimensions (yox).

- Les déformations ne se manifestent qu'au moment de la rupture et en tout point de la ligne de glissement.

- Les sols sont isotropes (même caractéristiques physiques dans toutes les directions).

- Le coefficient de sécurité est supposé constant le long de la ligne de rupture.

Figure II.6: Représentations de la masse à la rupture.

Examinons l'équilibre du volume de sol limite par (AMB) que l'on considère comme un bloc rigide.

Avec :

Z(x): Equation de la ligne de talus ;

Y(x): Equation de la ligne de rupture étudiée.

 $\tan \alpha = \frac{dy}{dx}$, La tangente à la ligne de rupture ;

e(x): Equation de la ligne d'action de la force interne s'exerçant sur une tranche verticale.

- D'une tranche élémentaire :

Figure II.7: Bilan des efforts d'une tranche élémentaire.

➢ Projection sur ox :

 $E - (E + dE) + \sigma \sin \alpha \, ds + \tau \cos \alpha \, ds = 0$

 $-dE + \sigma \sin \alpha ds - \tau \cos \alpha ds = 0$ (6a)

➢ Projection sur oy:

$$T + dT - T + \sigma \cos \alpha \, ds + \tau \sin \alpha \, ds = \gamma h dx$$

$$dT + \sigma = \cos \alpha ds + \tau \sin \alpha ds = \gamma h dx$$

$$-\sum_{i=1}^{i=1} \frac{M^{i}}{M} = 0$$

$$-E(e - y + de/2) + (E + dE)(e - de/2 - y) + T\frac{dx}{2} + (T + dT)\frac{dx}{2} = 0$$

$$-Ee + Ey - E\frac{de}{2} + Ee - E\frac{de}{2} - Ey + edE - dE\frac{de}{2} - ydE + T\frac{dx}{2} + T\frac{dx}{2} + \frac{dTdx}{2}$$

$$= 0$$

$$-E\frac{\mathrm{d}e}{2} - E\frac{\mathrm{d}e}{2} + e\mathrm{d}E - \frac{\mathrm{d}E\mathrm{d}e}{2} - y\mathrm{d}E + T\mathrm{d}x + \frac{\mathrm{d}E\mathrm{d}x}{2} = 0$$

 $\frac{dEde}{2} = 0$ (Le produit de deux différentielles est négligeable).

$$\frac{\mathrm{dTdx}}{2} = 0$$

-Ede + dE(e - y) + Tdx = 0

$$T + \frac{dE}{dx}(e - y) - \frac{de}{dx}E = 0$$
 (8)

Condition aux limites:

Dans notre, on s'intéresser à des talus non surchargés.

$$e(X_0) = y(X_0)$$
, $e(X_1) = y(X_1)$
 $E(X_0) = E(X_1) = 0$ (13)
 $T(X_0) = T(X_1) = 0$

Détermination σ et τ des équations (6a) et (7a).

$$\sigma = \frac{dE + \tau \cos \alpha \, ds}{\sin \alpha \, ds} \qquad (dx = ds \, \cos \alpha)$$
$$\sigma = \frac{\tau}{\tan \alpha} + \frac{dE}{dx} \frac{1}{\tan \alpha}$$
$$\sigma = \tan \alpha \left(\tau + \frac{dE}{dx}\right)$$

Remplaçons σ par son expression dans (7a).

$$\frac{dT}{dx} + \sigma + \tau \tan \alpha = \gamma h$$

$$\frac{dT}{dx} + \frac{1}{\tan \alpha} \left(\tau + \frac{dE}{dx} \right) + \tau \tan \alpha = \gamma h$$

$$\tau \left(\tan \alpha + \frac{1}{\tan \alpha} \right) + \frac{dT}{dx} + \frac{1}{\tan \alpha} \frac{dE}{dx} = \gamma h$$

$$\tau \left(\frac{tg^2 \alpha + 1}{\tan \alpha} \right) = -\frac{dT}{dx} - \frac{1}{\tan \alpha} \frac{dE}{dx} + \gamma h$$

$$\tau \left(\frac{1}{\cos^2 \alpha} \right) = -\frac{dT}{dx} \tan \alpha - \frac{dE}{dx} + \gamma h. \tan \alpha$$

$$\tau = \cos^2 \alpha \left[\left(\gamma h - \frac{dT}{dx} \right) \tan \alpha - \frac{dE}{dx} \right]$$
(7b)
$$\sigma = \frac{1}{\tan \alpha} \left[\cos^2 \alpha \left[\left(\gamma h - \frac{dT}{dx} \right) \tan \alpha - \frac{dE}{dx} \right] + \frac{dE}{dx} \right]$$

$$\sigma = \cos^{2} \alpha \left[\gamma h - \frac{dT}{dx} - \frac{dE}{dx} \frac{1}{\tan \alpha} \right] + \frac{1}{\tan \alpha} \frac{dE}{dx}$$
$$\sigma = \cos^{2} \alpha \left[\gamma h - \frac{dT}{dx} - \frac{dE}{dx} \frac{1}{\tan \alpha} + \frac{dE}{dx} \frac{1}{\tan \alpha \cdot \cos^{2} \alpha} \right]$$
$$\sigma = \cos^{2} \alpha \left[\gamma h - \frac{dT}{dx} - \frac{dE}{dx} \left(\frac{1}{\tan \alpha} - \frac{1}{\tan \alpha \cdot \cos^{2} \alpha} \right) \right]$$
$$\sigma = \cos^{2} \alpha \left[\gamma h - \frac{dT}{dx} + \frac{dE}{dx} \tan \alpha \right] \qquad (10b)$$

Intégrons l'équation (8) ; on peut tirer e(X).

On a:

$$\tan \alpha = \frac{dE}{dx} = \frac{dy}{dx}$$
$$T - E\frac{dy}{dx} + \frac{dE}{dx}(e - y) = 0$$

$$\frac{dE}{dx}(e - y) = -T + E \cdot \frac{dy}{dx}$$
$$\frac{dE}{dx}(e - y) = -\left(T - E \cdot \frac{dy}{dx}\right)$$
$$\int_{x0}^{x1} (e - y) \frac{dE}{dx} dx = -\int_{x0}^{x1} (T - E \cdot \tan \alpha) dx$$

Calculons:

$$\int_{x0}^{x1} (e(x) - y(x)) \frac{dE}{dx} dx$$

Posons :

$$(e(x) - y(x)) = U \quad \rightarrow dU = d(e(x) - y(x))dx$$
$$\frac{dE}{dx}dx = dv \qquad \rightarrow v = E(x)$$
$$\int_{x0}^{x} (e(x) - y(x))\frac{dE}{dx}dx = [(e(x) - y(x)).E(x)]_{x0}^{x} - E\int_{x0}^{x} d(e(x) - y(x))dx$$

$$d(e(x) - y(x)) = 0Cartan \alpha = \frac{de}{dx} = \frac{dy}{dx}$$

D'où de = dy
Sachant que :
$$e(x_0) = y(x_0)etE(x_0) = 0 On aura :$$
$$e(x) = y(x) - \frac{\int_{x_0}^{x} (T - E \cdot tan \alpha)}{E(x)} (10)$$

Ce qui donne la ligne d'action e(x) en fonction de T et E.

Ecrivons l'équation d'équilibre des moments de l'ensemble du talus prise par rapport à l'origine des axes (o).

Le moment des forces inter tranches (T et E) pour l'ensemble du talus est nul.

$$\int_{x0}^{x} [\sigma(x - y \tan \alpha) + \tau(y + x \tan \alpha)] dx = \int_{x0}^{x} x_0 \cdot \gamma \cdot h dx$$
(11)

Ajouter aux équations précédentes les équations aux limites :

$$E(x_0) = E(x_1)T(x_0) = T(x_1)$$

Remarque :

$$e(X_1) = y(X_1) - \frac{\int_{x_0}^{x_1} (T - E. tg \alpha)}{E(x)}$$

Or :

$$\mathbf{e}(\mathbf{X}_1) = \mathbf{y}(\mathbf{X}_1)$$

Donc :

$$\int_{x0}^{x} (T - E. \tan \alpha) dx = 0 \qquad (12)$$

2) Pour $X=X_0$ et $X=X_1$ on aura (e=y)

L'équation (13) s'écrira sous la forme :

$$T(x_0) - E(x_0)\frac{de}{dx}(X_0) = 0$$
$$T(x_1) - E(x_1)\frac{de}{dx}(X_1) = 0$$

Relation de Coulomb :

La définition de F se traduit par :

$$\tau = \frac{\hat{C} - U.\tan\phi}{F} + \sigma \frac{\tan\phi}{F} \quad (13)$$

Dans le cas où le sol n'est pas homogène \acute{C} et $\acute{\phi}$ sont donnes en fonction de X.

En tenant compte des équations (6b), (7b) et l'équation (13) peut s'écrire :

$$A\frac{dT}{dx} - B\frac{dE}{dx} = \frac{\hat{C} - U.\tan\phi}{F\cos^2\alpha} + A.\gamma.h \quad (14)$$

Avec :

$$A = \frac{\tan \phi}{F} - tg \alpha$$

Et :

$$B = 1 - \frac{\tan \phi}{F} tg \alpha$$

En résume nous aurons le système suivant :

- $-dE + \sigma \sin \alpha \, ds + \tau \cos \alpha \, ds = 0 \tag{6a}$
- $dT + \sigma \cos \alpha \, ds + \tau \sin \alpha \, ds = \gamma . h. \, dx \tag{7a}$

$$T + \frac{dE}{dx}(e - y) - \frac{de}{dx}E = 0$$
(8)

$$\int_{x0}^{x} (T - E. \tan \alpha) dx = 0$$
(12)

$$e(X_0) = y(X_0)$$
; $e(X_1) = y(X_1)$
 $E(X_0) = E(X_1) = 0$ (9)

$$T(X_0) = T(X_1) = 0$$

$$\tau = \frac{\hat{C} - U \tan \phi}{F} + \sigma \frac{\tan \phi}{F}$$
(13)

Nous disposons d'un système de quatre (04) équation à cinq (05) inconnues, à savoir : T(x), E(x), $\sigma(x)$, $\tau(x)$ et e(x).

Le problème est indéterminé et il est nécessaire d'ajouter une équation sous forme d'hypothèse supplémentaire. C'est le point de divergence de différentes méthodes des tranches.

Les méthodes des tranches les plus connues sont :

- Fellenius (1927)
- Taylor (1948)
- Caquot (1954)
- Janbu (1954)
- Biarez (1955)
- Bishop(1955)
- Morgenstern de Price (1965)
- Méthode de perturbations (1972)

Il existe quatre (04) types de rupture de forme circulaire possible. (Voir Figure (II.5))

Figure II.8 : Différents types des cercles de glissement

1). Rupture de talus : une partie du talus est emportée par le glissement assez fréquent dans les remblais artificiels ;

2). Rupture profonde : toute la masse constituant le talus est emportée, cette rupture n'est pas très fréquente mais c'est elle qui cause le plus des dégâts ;

3). Rupture d'une partie de la pente est prolongée jusqu'au pied du talus ;

4). Rupture seulement d'une partie de la pente.

1- Principe de calcul :

La méthode de calcul consiste à calculer la rupture pour tous les cercles possibles, le cercle que représentera le minimum de coefficient de sécurité sera retenu Comme surface de rupture. (Voir Fig. II .9)

Figure II.9 : Détermination du cercle critique.

III.1.2.1. Méthode des tranches de Fellenius:

- Principe de la méthode :

Considérons un talus recoupant un certain nombre de couches de sols de caractéristiques différentes Ci , ϕ_i , γ_i .

Soit un cercle quelconque de centre "O" et rayon "R" pour lequel on vérifie la sécurité vis-à-vis du risque de glissement.

La méthode consiste à découper le volume de sol intéressé (compris dans l'arc EMF) en un certain nombre de tranches limitées par des plans verticaux comme suit :

Il convient de réaliser le découpage de telle façon que l'intersection du cercle de glissement et d'une limite de couche (point G et H sur la figure II.10) corresponde à une limite entre deux tranches ; l'expérience montre qu'il n'est pas nécessaire de découper le massif en un très grand nombre de tranches pour obtenir une précision satisfaisante.

Figure II.10: Découpage en tranches d'un talus

Etudions l'équilibre de l'une de ces tranches par exemple la tranche «ABCD» Les forces agissantes sur cette tranche (Figure (II .11)) sont les suivantes :

- Son poids $W_i = \gamma h_1 dx$

- Les efforts inter-tranches, qui se divisent en efforts verticaux et horizontaux.

- La réaction Rn du milieu sous-jacent sur l'arc AB ;

Figure II.11: Forces agissants sur une tranche (Hypothèse de Fellenius)

L'hypothèse de base de Fellenius est de négliger les forces inter-tranches qui sont parallèles à la base de chaque tranche.

$$\frac{dE}{dx} = \frac{dT}{dx} = 0 \qquad \qquad \forall x \qquad (15)$$

Pour un talus non surcharge.

$$E(x) = T(x) \qquad \forall x$$

C'est l'équation complémentaire de Fellenius.

L'équation (14) en tenant compte de l'équation (15) deviendra :

$$A\frac{dT}{dx} - B\frac{dE}{dx} = \frac{\hat{C} - U \operatorname{tg} \varphi_i}{FS \cos^2 \alpha} + A.\gamma h$$

$$\frac{dE}{dx} = \frac{C_{i} - U \tan \phi_{i}}{\left(1 - \frac{\tan \phi_{i}}{fs} \tan \alpha\right) \cdot FS \cdot \cos^{2} \alpha} + \frac{\left(\frac{\tan \phi_{i}}{fs} - \tan \alpha\right)}{\left(1 - \frac{\tan \phi_{i}}{fs} \tan \alpha\right)} \gamma h$$

$$\frac{dE}{dx} = 0 \quad \Longrightarrow \quad \frac{C_i - U \tan \phi_i}{\left(1 - \frac{\tan \phi_i}{fs} \tan \alpha\right) \cdot FS \cdot \cos^2 \alpha} + \frac{\left(\frac{\tan \phi_i}{fs} - \tan \alpha\right)}{\left(1 - \frac{\tan \phi_i}{fs} \tan \alpha\right)} \gamma h = 0$$

$$\frac{C_{i} - U \tan \phi_{i} + FS \cdot \cos^{2} \alpha \left(\frac{\tan \phi_{i}}{fs} - \tan \alpha\right) \gamma h}{\left(1 - \frac{\tan \phi_{i}}{fs} \tan \alpha\right) \cdot FS \cdot \cos^{2} \alpha} = 0$$

$$\Rightarrow \frac{C_{i} - U \cdot \tan \phi_{i} + \cos^{2} \alpha \cdot \gamma h \left(\frac{\tan \phi_{i}}{fs} - FS \cdot \tan \alpha\right)}{FS} = 0$$

 $\gamma h.\,FS.\,tan\alpha.\,cos^2\,\alpha=\,C_i-\,U\,.\,tan\,\phi_i-\,cos^2\,\alpha\,.\,\gamma h\,.\,tan\,\phi_i$

$$F_{s} = \frac{C_{i} - U \cdot \tan \phi_{i}}{\gamma h \cdot \tan \alpha \cdot \cos^{2} \alpha} + \frac{\gamma h \cdot \tan \phi_{i} \cdot \cos^{2} \alpha}{\gamma h \cdot tg \alpha \cdot \cos^{2} \alpha}$$

$$F_{s} = \frac{1}{\gamma h \cdot \sin \alpha} \left(\frac{C_{i} - U \tan \phi_{i}}{\cos \alpha} + \gamma h \cdot \tan \phi_{i} \cdot \cos \alpha \right)$$

$$F_{s} = \frac{1}{W \cdot \sin \alpha} \left[C_{i} \frac{b}{\cos \alpha} + \left(W \cdot \cos \alpha - \frac{U \cdot b}{\cos \alpha} \right) \cdot \tan \phi_{i} \right]$$

C'est l'expression du coefficient de sécuriste pour tranche ;

Pour l'ensemble du talus le coefficient de sécurité global a pour expression :

$$F_{s} = \frac{\sum_{n=1}^{n=m} \left[\hat{c}_{i} \frac{b}{\cos \alpha} + \left(W.\cos \alpha - \frac{U.b}{\cos \alpha} \right). \tan \varphi_{i} \right]}{\sum_{n=1}^{n=m} W.\sin \alpha}$$
(16)

Avec :

$$U = \gamma_{W}. H_{W}$$
$$W = \gamma. h. b$$

 H_W : Hauteur de l'eau comprise entre le milieu de la tranche et la surface libre de la nappe.

B : Largeur de la tranche.

n : Nombre de tranche.

II.1.2.2. Méthode des tranches de BISHOP :

Principe de la méthode :

Son principe est le même que celui de Fellinius.

Hypothèse :

Le coefficient de sécurité Fs est constant le long de la ligne de rupture.

II.1.2.2.1. Méthode de BISHOP détaillée :

Les équations de la statique sont :

 $-dE + \sigma \sin \alpha . dS - \tau \cos \alpha . dS = 0$ (6a)

 $dT + \sigma \cos \alpha . dS - \tau \sin \alpha . dS = \gamma h. dx$ (7a)

$$\tau = \frac{C}{Fs} + \frac{\sigma \tan \phi}{Fs} \left(\left(\gamma h - \frac{dT}{dx} \right) \tan \alpha - \frac{dE}{dx} \right) \cos^2 \alpha$$

 $\sum M^{max}$

$$F_{s} = \frac{C + \sigma \tan \phi}{\tau}$$

$$\tau = \frac{C}{F_{s}} + \frac{\sigma \tan \phi}{F_{s}}$$

$$T + \frac{dE}{dx}(e - y) - E\frac{de}{dx} = 0 \quad (8)$$

$$\sigma = \left(\gamma h - \frac{dT}{dx} + \frac{dE}{dx}\tan\alpha\right)\cos^{2}\alpha$$

$$\tau = \left(\left(\gamma h - \frac{dT}{dx}\right)tg\alpha - \frac{dE}{dx}\right)\cos^{2}\alpha$$

$$F_{s} = \frac{C + \sigma \tan \phi}{\tau}$$

$$\tau = \frac{C - L}{\tau} + (\sigma - U) \cdot L\frac{\tan \phi}{\tau}$$

$$F_{s} = \frac{\sum M^{max} resistant}{\sum M^{max} moteur}$$

$$\sum M^{max} \text{ moteur} \qquad / \ 0 = \sum \text{wi.} \alpha i$$

reisist
$$/ \ 0 = \sum \tau f^{max}. \text{Li.} R = \sum R(C. L + (\sigma - U). L. \tan \phi)$$

$$F_{s} = \frac{R.\sum_{1}^{n}(C.Li + (\sigma - U).Li.tan\phi_{i})}{\sum wi.\alpha i} \quad ; \ F_{s} = \frac{\sum_{1}^{n}(C.Li - (\sigma - U).Li.tan\phi_{i})}{\sum wi.sin\alpha i}$$

Revenons à l'équation (8a)

$$\begin{split} dT + & \sigma \cos \alpha .\, dS - \tau \sin \alpha \,\, .\, dS = \gamma h.\, dx \\ & \sigma \cos \alpha .\, L + \tau \sin \alpha \,\, .\, L = \,w. \frac{dx}{dx} - dT \\ & (\acute{\sigma} + U) \cos \alpha .\, L + \left(\frac{\acute{c}}{Fs} + \frac{\acute{\sigma} \tan \dot{\phi}}{Fs}\right) .\, L. \sin \alpha = w - dT \\ & \acute{\sigma} \left(\cos \alpha .\, L + \frac{\tan \dot{\phi}}{Fs} \,\, L. \sin \alpha\right) = w - dT - \frac{\acute{c}}{Fs} \,\, L. \sin \alpha - U. \cos \alpha .\, L \\ & \acute{\sigma} = \frac{w - dT - \frac{\acute{c}}{Fs} \,\, L. \sin \alpha - U. \cos \alpha .\, L}{\cos \alpha .\, L + \frac{\tan \dot{\phi}}{Fs} \,\, L. \sin \alpha} \\ & F_s = \frac{1}{\sum_1^n w_i .\sin \alpha_i} \sum_1^n \frac{L.C. \left(\cos \alpha + \frac{\tan \dot{\phi}}{Fs} \sin \alpha\right) \left(w_i - dT - \frac{\acute{c}}{Fs} \,\, L. \sin \alpha - U. \cos \alpha .L\right) \tan \phi_i}{\cos \alpha_i + \frac{\tan \phi_i}{Fs} \sin \alpha_i} \end{split}$$

$$F_{s} = \frac{1}{\sum_{1}^{n} w_{i}.\sin\alpha_{i}} \sum_{1}^{n} \frac{(C.b + (w_{i} - T_{i+1} - T_{i}) - U.b) \tan\phi_{i}}{\cos\alpha_{i} + \frac{\tan\phi_{i}}{F_{s}} \sin\alpha_{i}}$$
(17)

II.1.2.2.2. Méthode de BISHOP simplifiée :

Dans cette méthode, les forces inter-tranches verticales sont nulles.

 $T_{i+1} - T_i = 0$

$$\frac{dT(x)}{dx} = 0 \qquad \forall x \qquad (18)$$

$$F_{s} = \frac{1}{\sum_{1}^{n} w_{i} \cdot \sin \alpha_{i}} \sum_{1}^{n} \frac{(C.b + (w_{i} - T_{i+1} - T_{i}) - U.b) \tan \phi_{i}}{\cos \alpha_{i} + \frac{\tan \phi_{i}}{Fs} \sin \alpha_{i}}$$

C'est l'équation complémentaire de BISHOP.

L'expression de Fs devient :

$$F_{s} = \frac{1}{\sum_{1}^{n} w_{i}.\sin\alpha_{i}} \sum_{1}^{n} \frac{C.b + (w_{i} - U.b) \tan\phi_{i}}{\cos\alpha_{i} + \frac{\tan\phi_{i}}{F_{s}} \sin\alpha_{i}}$$
(19)

a) Cas d'un sol cohérent, saturé (φ=0) :

La formule de Fellenius devient :

$$F_{s} = \frac{\sum_{1}^{n} Cu. b}{\sum_{1}^{n} w_{i}. \sin \alpha_{i}} \times \frac{1}{\cos \alpha_{i}}$$

On remarque que F_s (Fellenius)= (Bishop simplifiée).

II.1.2.3. Rupture non circulaire, quelconque :

La morphologie particulaire de certains sites, présentant des zones de faiblesse mécanique, conduit parfois à envisager des surfaces de glissement probables qui ne sont ni circulaire ni planes : elles sont appelées **surface de rupture non circulaires**.

La stabilité peut être étudiée par différent méthodes dont la plus usuelle est **la méthode des perturbations**.

a) Talus dans un sol pulvérulent :

-Sans écoulement:

Pour un sol pulvérulent la pente maximale d'un talus est $\beta = \varphi$.

Avec β est l'angle de frottement interne du sol.

Et le coefficient de sécurité Fs s'exprime par:

$$F_{s} = \frac{\tan \varphi}{\tan \beta} \quad (20)$$

- Avec écoulement:

Soit βliml'angle d'équilibre limite pour Fs=1,

La combinaison de la gravité et de la poussée d'écoulement conduit ou résultats suivants :

- Écoulement parallèle à la pente, (du par exemple à des infiltrations d'eau (Fig. (II.13.a)).

$$\tan\beta_{\lim} = \frac{1}{2} \tan\phi \qquad (21)$$

- Écoulement horizontal du, par exemple, à un talus de déblai recoupant une nappe phréatique (Fig. II.13.b).

$$\tan\beta_{\rm lim} = \frac{1}{2}\phi$$
 (22)

- Écoulement vertical descendant du, par exemple, à une infiltration dans un remblai muni d'un drain (Fig. (II.13.c))

$$\beta_{\lim} = \phi$$
 (23)

L'équation (20) est applicable aussi pour ces trois cas, car la stabilité n'est pas modifiée par l'écoulement.

Figure II.13: Schématisation des écoulements

b) Talus dans un sol homogène cohérent :

Sol purement cohérents – Abaque de Taylor

Considérons les hypothèses suivantes :

- Un talus de hauteur H et de largeur horizontale B tel que β =H/B.
- Une surface libre horizontale.
- Un sol homogène et purement cohérent caractérisé par :
- Poids volumique γ ,
- Cohésion C=0,

Angle de frottement $\phi=0$,

- La présence d'un substratum résistant à la profondeur nd H.

La formule de Fs devient :

$$F_{s} = \frac{C.L}{\sum T}$$

Avec : longueur total de l'arc AB.

Le coefficient de sécurité dépend d'un nombre sans dimensions, appelé par Taylor coefficient de stabilité N_s dont l'expression est :

$$N_{s} = \frac{\gamma.H}{c}$$
(24)

Figure II.14 : Abaque de Taylor – Définitions des paramètres

La valeur de N_s peut être déterminée à partir de l'Abaque de (Fig. II. 15), qui correspond à un coefficient de sécurité de 1, connaissant nd et B.

Figure II.15: Valeur de Ns pour les sols purement cohérents

Cet abaque précise également le type de glissement susceptible de se produire :

- Les cercles de talus tangent au substratum ne sont critiques que si nd est voisin de 1.

- Si β >35° le cercle critique est cercle de pied.

- Si β <35° le cercle critique peut être de l'un des trois types évoqués, selon

Les valeurs de Ns et de nd.

Si le cercle critique est un cercle de pied, son centre peut être localisé en connaissant les angles de θ et α (Fig. II.14.b).

La (Fig. II .16 .a) donne la valeur α et de θ en fonction de β .

Et l'abscisse de son pied n_x et donnée par la (Fig. II .16 .b), qui est fonction de β et n_d

Ces abaques permettent soit de déterminer la hauteur critique H_c correspondant à un coefficient de sécurité égal à 1 pour la cohésion réel du sol, soit de calculer la cohésion minimale C_{min} nécessaire pour que le talus de hauteur H soit stable, toujours pour un angle de sécurité égale à 1.

Alors le coefficient de sécurité global des détermine par les formules suivantes :

a) Détermination de α et de θ b) Détermination de na

Figure II.16 : Détermination de α , θ et nd

Sols cohérents à frottement interne:

Si φ >3°, le cercle critique et toujours un cercle de pied.

Le coefficient de sécurité global Fs toujours de coefficient de stabilité Ns et de β et de ϕ , la (Fig. (II.17)) de Taylor donne la valeur de Ns en fonction de β et ϕ , et cela toujours pour un coefficient de sécurité égale à 1.

Figure II.17 : Valeur de Ns pour les sols cohérents

Le coefficient de sécurité global peut être pris sur C et ϕ , et leur formule est:

$$\sum T = \frac{C.L}{F_s} + \frac{\sum N.\tan\varphi}{F_s}$$
(26)

Cette formule peut être présentée sous forme graphique (Fig. (II .18))

Considérons un talus de hauteur H et de pente β_1 taillé dans un sol de caractéristique : γ_1 , ϕ_1 , C_1 . Si A et le point figuratif correspondant à H, γ_1 , ϕ_1 , C_1 le point B étant celui ou le droit OA recoupe la courbe correspondant à β_1 , le coefficient de sécurité globale est défini par le rapport.

$$F_s = \frac{OA}{OB}$$

Figure II .18 Abaque de Taylor – Biarez

II.2. Calcul automatique de la stabilité des pentes :

Avec l'avènement de l'outil informatique, L'analyse de la stabilité des talus aujourd'hui peut être effectuée d'une manière automatique. Il existe des logiciels utilisant des méthodes classiques permettant le calcul du coefficient de sécurité de toutes les surfaces de glissement possibles un peu du temps.

On cite parmi ces logiciels GEO-SLOPE, SLIDE, TALREN.

Un calcul numérique en éléments finis est possible permettant le calcul des efforts et des déformations en tout point du massif; ce calcul peut être effectué par PLAXIS.

II.2.1. Logiciel GEO-SLOP:

GEO-SLOP/W, développé par GEO-SLOP international canada, est utilisée pour l'analyse de la stabilité des talus.

Ce logiciel est basé sur les théories et les méthodes d'équilibre limite discutés dans la section précédente et il peut même utiliser la méthode des éléments finis mais a l'aide de la modélisation obtenu de logiciel SIGMA/W.

Le logiciel calcule le coefficient de sécurités pour différents surface de cisaillement, par exemple circulaire, ou no circulaire. Cependant, seule la surface de cisaillement circulaire est automatiquement recherchée.

Plusieurs méthodes de calcule sont disponible dans SLOP/W, il permet de calculer coefficient de sécurité on utilisant la méthode ordinaire, bishop, janbu généralisé, spencer, Morgenstern, et d'autres.

II.2.2. Logiciel SLIDE :

Le logiciel SLIDE, dévlopé par Rocscience Inc Toronto, canada, est également utilisé pour l'analyse de la stabilité des pentes de sol et des talus rocheux. Le logiciel est egalement basé sur 2D-EL, peut etre appliqué pour évalué la stabilité de la surface de rupture circulaire ou non circulaire.

En fait, on trouve SLIDE similaire a SLOPE/W, mais il y a un peu de fonctions supplémantaires, par exemple l'analyse des eaux souterraines.

II.2-3- logiciel TALREN :

C'est un autre logiciel qui offre diverses méthode de calcule interactif (méthodes de Bishop, Felleniuse et perturbation) avec possibilité d'etudier le renforcement du sol par tirant d'ancrage ou par coulage.

II.2-4- logiciel PLAXIS :

PLAXIS est un programme d'elements finis spécialement concu réalisé des analyses de déformation et de stabilité pour différent type d'appliqué géotechniques.
Les situation réélles peuvent etre representé par un modele plan ou axisymetrique.le programme utilisé une interface graphique pratique permettent aux utilisateur de generer rapidement un modele géomrtrique et un maillage d'element finis basées sur la coupe verticale de projet ou de sol étudier.

PLAXIS est destiné pour fournir un instrument à l'analyse pratique à etre utilisé par les ingénieurs de géotechnique qui ne sont pas nécessairement des spécialistes numériques.

II.3.conclusion :

Les méthodes d'équilibre limite sont les plus classiques en mécanique des sols mais elles nécessitent une prédétermination des lignes de rupture (ou une recherche automatique du minimum parmi un ensemble de courbes). Quant aux méthodes par éléments finis dans laquelle la courbe de glissement la plus probable se déduit naturellement de l'analyse de l'état des contraintes et déformations, elles nécessitent la

Connaissance des caractéristiques de déformabilité du massif, en plus de celles de résistance.

Le choix de l'une ou l'autre méthode dépendra donc de la disponibilité des caractéristiques mécaniques et de la bonne appréciation qu'il est possible de faire de la position de la ligne de rupture critique.

III. Méthodes de stabilisation des glissements de terrain:

III.1. Introduction :

Face à un problème de stabilité, une première solution consiste à s'affranchir des mouvements de la pente instable sans les empêcher.

Deux types de solutions sont possibles :

— implanter ou déplacer le bâtiment, l'ouvrage d'art ou la route en dehors de la zone en mouvement, dans un secteur reconnu comme stable ;

— concevoir l'ouvrage de telle sorte qu'il ne soit pas endommagé par le mouvement de terrain : soit en résistant aux efforts apportés par le mouvement de terrain (solution réservée aux petits glissements), soit en adaptant le mode de construction de sorte que les fondations soient dissociées du sol en mouvement.

Si ce type de solution n'est pas retenu, on est amené à conforter la pente avec l'une des techniques présentées dans les paragraphes ci-après.

Lorsqu'il s'agit de dimensionner un dispositif de confortement préventif, on recommande de prendre un coefficient de sécurité F = 1,5 pour l'ouvrage en service. Dans une intervention de réparation après glissement, si le calage des caractéristiques mécaniques paraît de bonne qualité, le coefficient de sécurité demandé peut se limiter à 1,3. Si toutefois certaines caractéristiques du site sont mal connues, ou si les techniques employées sont susceptibles de perdre de leur efficacité avec le temps (colmatage de drains par exemple), ou encore si l'on ne peut tolérer de déformations, on choisit plutôt F = 1,5.

III.2. Méthodes de stabilisation des talus :

D'une manière générale, les méthodes de confortement peuvent être groupées en quatre groupes:

- Modifications géométriques (Déchargement, Reprofilage et Substitution);
- Organes résistants en pied;
- Renforcement par inclusions rigides ou souples (clouage ou géotextile);
- Traitement chimique ou biologique (en cas des sables lâches).

III.2.1.Drainage :

Dans la plupart des cas de glissement, l'eau joue un rôle moteur déterminant. Aussi utilise-t-on couramment les techniques de drainage, qui ont pour but de réduire les pressions interstitielles, au niveau de la surface de rupture lorsque celle-ci existe.

C'est donc en termes de diminution de pression interstitielle, et non de débit d'exhaure, qu'il faut évaluer l'efficacité d'un dispositif de drainage.

Les différentes techniques qui peuvent être mises en oeuvre pour atteindre cet objectif relèvent de deux options fondamentales :

— éviter l'alimentation en eau du site ;

- expulser l'eau présente dans le massif instable.

De nombreux paramètres conditionnent l'efficacité d'un système de drainage, en particulier la nature et l'hétérogénéité des terrains, la géométrie des couches aquifères, la perméabilité et l'anisotropie des sols, les alimentations et les exutoires. De ce fait, et compte tenu des difficultés de détermination de l'ensemble de ces éléments, le dimensionnement d'un système de drainage est fait en prenant un coefficient de sécurité plus élevé que celui pris pour d'autres techniques (terrassements, renforcements).

Comme la plupart des ouvrages, les dispositifs de drainage nécessitent un entretien régulier qui, s'il n'est pas réalisé, peut leur enlever toute efficacité. On distingue : les drainages de surface et les ouvrages de collecte des eaux, les tranchées drainantes, les drains subhorizontaux, les masques et éperons drainants, les drains verticaux, et enfin les galeries et autres ouvrages profonds. Toutes ces techniques peuvent être utilisées seules ou associées, ou en complément d'autres techniques de stabilisation.

III.2.1.1Types de drainage :

a) Collecte et canalisation des eaux de surface :

L'objectif est de limiter les infiltrations dans le massif en mouvement. Les eaux peuvent provenir de zones de sources, d'un défaut d'étanchéité sur un réseau ou un bassin de stockage à l'amont ou plus simplement de l'impluvium et des eaux de ruissellement. En effet, les eaux de surface ont tendance à s'infiltrer dans les fissures, à stagner dans les zones de faible pente et aggravent ainsi une instabilité amorcée. Aussi les ouvrages de collecte des eaux (fossés, caniveaux, cunettes) et l'étanchéification des fissures de surface, bien que ne constituant pas des ouvrages de drainage à proprement parler, sont-ils réalisés en première urgence dans de nombreux cas de glissements.

On ne décrira pas dans le détail les ouvrages de collecte des eaux de surface : ils sont d'usage courant en génie civil, comme les fossés et caniveaux qui peuvent éventuellement être étanchés par des géomembranes. Il est recommandé de façon générale d'éviter d'implanter des ouvrages rigides sur les fissures provoquées par les mouvements.

b) Tranchées drainantes :

Les tranchées drainantes, dont une coupe type est présentée sur la figure III.1, sont des ouvrages couramment utilisés pour rabattre le niveau de la nappe. Elles sont implantées sur le site de façon à venir recouper les filets d'eau (lignes de courant dans un horizon homogène, couche aquifère, venues d'eau ponctuelles, etc.). Le choix de l'implantation (dans le sens de la plus grande pente ou dans un sens parallèle aux lignes de niveau, ou encore en épis), de la profondeur et de l'espacement des tranchées dépend des résultats de l'étude hydrogéologique et conditionne l'efficacité du drainage.

Figure III.1- Coupe type d'une tranchée drainante

Ces tranchées peuvent être réalisées de plusieurs façons :

— à la pelle mécanique : la profondeur de la tranchée peut atteindre 5 à 6 m sur une largeur de l'ordre du mètre. Un drain souple est généralement placé au fond avec un sable propre en protection. Le remplissage est réalisé en matériau drainant ; un géotextile est parfois disposé comme filtre ;

— à la trancheuse : les profondeurs atteintes sont du même ordre de grandeur, mais la largeur de la tranchée est par contre réduite, de l'ordre de 30 cm. Un dispositif mécanisé permet de mettre en place un géotextile, le drain en plastique et le matériau drainant de remplissage ;

— à la haveuse de paroi : les profondeurs atteintes sont plus importantes (jusqu'à 20 m). La technique de creusement est identique à celle utilisée pour les parois moulées, par panneaux successifs (de 2 à 3 m). La tenue des parois de la fouille est assurée par une boue biodégradable.

c) Drains subhorizontaux :

Lorsque les contraintes d'accessibilité du site ou les conditions de circulation interdisent la réalisation de tranchées, la réalisation de drains subhorizontaux peut permettre de diminuer les pressions interstitielles et de décharger des aquifères localisés.

La technique consiste à réaliser de nombreux forages avec une pente sur l'horizontale $(2 \text{ à } 5^\circ)$ et à y placer des tubes crépinés. Ces tubes sont généralement en PVC (50 à 80 mm de diamètre), parfois en acier lorsque de grandes déformations sont susceptibles de se produire. Un dispositif de captage des eaux recueillies dans les drains avec un exutoire adapté complète l'ensemble. Les drains subhorizontaux sont disposés en un ou plusieurs faisceaux ou plus simplement en lignes.

Cette technique s'emploie dans de nombreuses configurations de glissement et dans de nombreuses formations géologiques.

Cependant, les terrains très peu perméables s'y prêtent mal ; en effet, le rayon d'action des drains est dans ce cas très faible. Les drains subhorizontaux permettent en particulier de drainer des couches et des poches aquifères, éventuellement en charge, et des circulations d'eau localisées (dans des fractures, dans des couches de faible épaisseur).

Le bon fonctionnement des drains nécessite :

- une protection contre le gel à la sortie des drains ;

— une lutte contre le colmatage (utilisation de jets d'eau sous pression, d'acide oxalique pour dissoudre des dépôts calcaires, etc.) ;

- un entretien du système de collecte des eaux d'exhaure.

d) Masques et éperons drainants :

Les masques drainants sont des ouvrages en matériaux granulaires grossiers mis en place en parement de talus ; leur rôle est d'annuler la pression interstitielle dans la portion correspondante de terrain, mais leurs caractéristiques très frottantes apportent également un gain de stabilité. Les éperons drainants sont des sortes de masques discontinus ; s'il est inutile ou difficile de réaliser un masque, on se contente de faire des saignées remplies de matériau drainant régulièrement espacées.

Figure III.2. Types d'éperons drainants

e) Drains verticaux, galeries drainantes :

Les puits drainants équipés de pompes, installés en ligne, constituent un écran drainant, à condition bien sûr que la maintenance soit correctement assurée. Le forage de drains subhorizontaux depuis le fond de puits de gros diamètre permet d'accroître leur rayon d'action.

Figure III.3. Galerie drainant

Les drains-siphons sont des forages verticaux équipés d'un système d'évacuation de l'eau par siphonage vers un point bas du versant (de cote inférieure à celle du fond de forage).

Le creusement de galeries drainantes est une solution onéreuse mais efficace. Par exemple, le glissement du Billan (Isère) qui menaçait la retenue EDF de Grand'maison a été traité avec succès par une galerie de 850 m de long, forée sous la surface de rupture, avec des forages verticaux ascendants (1 300 m au total).

III.2.1.2.Domaine d'utilisation :

Les drains subhorizontaux sont principalement utilisés:

- Dans les interventions de confortement des glissements rotationnels. Ils sont alors placés à la hauteur des zones d'arrachement.

- Dans tous les cas où l'inclinaison du versant est élevée.

Les drains subhorizontaux sont couramment associés à des puits verticaux de grand diamètre ou à des galeries drainantes. Ils sont alors disposés en éventail sur un ou plusieurs niveaux, ou parallèlement entre eux.

Les éperons drainants sont utilisés dans les interventions de confortement des pentes en mouvement qui nécessitent, à cause de la profondeur du plan de glissement, des caractéristiques lithologiques ou de l'inclinaison du terrain, l'association d'une action résistante par rapport aux poussées des terrains en mouvement à l'action drainante elle-même.

Les galeries drainantes sont couramment associées aux drains subhorizontaux et aux puits. Elles sont utilisées dans les interventions de confortement et de stabilisation des pentes en mouvement, dans le cas de conditions hydrogéologiques particulières (présence de zones de failles ou d'intense fracturation, contact entre le substratum rocheux et les dépôts de couverture, etc.). Afin de garantir la stabilité des ouvrages importants, ces situations requièrent toutes un abaissement du niveau de la nappe.

Les tranchées drainantes sont utilisées pour le drainage des eaux d'infiltration et de la nappe. L'abaissement du niveau piézométrique et la réduction des pressions d'eau dans le terrain permettent d'obtenir une augmentation de la cohésion, améliorant ainsi les conditions de stabilité du versant.

Les tranchées drainantes, de même que les éperons et les parois drainantes sont utilisées dans les interventions de confortement des glissements rotationnels et/ou des glissements peu profonds.

III.2.2.Modification géométriques :

La pente du talus et la présence des sols de mauvaises caractéristiques sont les principaux facteurs dans la mobilisation du glissement de terrain.

Pour cela, la modification géométrique et morphologique s'impose en premier lieu, elle peut être envisagée par plusieurs méthodes selon la nature du problème; parmi ces méthodes on cite.

III.2.2.1. Déchargements :

Les techniques de terrassement s'accompagnent fréquemment de purges du matériau déplacé par le glissement. Cette solution est généralement limitée aux glissements De taille modeste. On peut, dans certains cas, purger l'ensemble du matériau glissé, à condition que la surface mise à nu soit stable.

Figure III.4 Pente modifiée par déchargement de la masse glissante

III.2.2.2. Reprofilage :

Les conditions de stabilité d'un talus étant directement liées à sa pente, on peut assez simplement augmenter la sécurité par retalutage du terrain naturel. Dans ce sens, le procédé s'apparente à l'allègement en tête : il consiste en un adoucissement de la pente moyenne.

Ce type de traitement est particulièrement bien adapté aux talus de déblais, et il est de pratique courante. Notons que l'exécution de risbermes a l'avantage d'améliorer la stabilité par rapport à une pente unique et de créer des voies d'accès pour l'entretien ou des travaux complémentaires. L'adoucissement de la pente est généralement mal adapté aux versants naturels instables car il met en jeu des volumes de sol très importants.

III.2.2.3. Substitution :

La substitution totale consiste à venir purger l'ensemble des matériaux glissés ou susceptibles de glisser, et à les remplacer par un matériau de meilleure qualité. Cela permet de reconstituer le profil du talus initial.

Il importe de vérifier la stabilité au cours des phases de travaux et celle du talus définitif dans lequel on prend en compte les caractéristiques du matériau de substitution et du matériau en place.

La substitution de matériaux glissés suppose que l'on connaisse le volume de matériaux concerné, que l'on excave plus profondément que la surface de rupture, et que l'on réalise des redans afin d'assurer un bon accrochage entre le substratum et le sol d'apport. La tenue des talus provisoires de la purge dépend des conditions de terrassement, de la météorologie, des hétérogénéités locales.

Des substitutions partielles sont souvent employées, sous forme de bêches ou de contreforts discontinus. Le coefficient de sécurité de la pente ainsi traitée peut être estimé en prenant la moyenne pondérée des coefficients de sécurité de la pente avec et sans substitution.

III .2.2.4.Purge :

Les techniques de terrassement s'accompagnent fréquemment de purges du matériau déplacé par le glissement. Cette solution est généralement limitée aux glissements de taille modeste. On peut, dans certains cas, purger l'ensemble du matériau glissé, à condition que la surface mise à nu soit stable.

III .2.3. Introduction d'éléments résistants :

On entend par éléments résistants les structures telles que :

- murs de soutènement ;
- tirants d'ancrage et murs ancrés ;
- clouages par des barres, des micropieux ;
- rangées de pieux, de barrettes ou de profilés métalliques.

Ces techniques ne s'attaquent pas à la cause des mouvements mais visent à réduire ou à arrêter les déformations. Elles sont intéressantes dans les cas où les solutions curatives

(terrassements et drainages) ne peuvent pas être techniquement ou économiquement mises en œuvre.

On peut également introduire des éléments résistants à titre préventif, de façon à éviter les déplacements, dont une conséquence serait de diminuer la résistance au cisaillement des sols. La compatibilité des déplacements du sol et des structures doit être prise en compte lors du choix de ce type de technique. En effet, dans le cadre de travaux de stabilisation de glissements de terrain très actifs, l'exécution d'ouvrages rigides tels que des tirants précontraints n'est pas envisageable : les déplacements du sol conduiraient à la rupture des tirants. Il est préférable de construire, dans ces cas, des ouvrages qui supportent mieux les déformations.

III .2.3.1.Les ouvrages de soutènements :

Les ouvrages rigides ne sont pas les mieux adaptés à la stabilisation des glissements de terrain, du fait de leur incompatibilité avec toute déformation ; en outre, le dimensionnement doit prendre en compte les efforts très importants engendrés par le glissement.

Lorsque l'ouvrage est correctement ancré et suffisamment résistant vis-à-vis des efforts qui lui sont appliqués, il est fixe. La pratique est de dimensionner l'ouvrage en prenant en compte un effort limite de butée du sol en amont, qui est l'effort maximal apporté par les masses en mouvement (la déformation du sol étant une compression).

Les ouvrages souples sont des structures obtenues à partir de gabions, de murs cellulaires, ou de sol renforcé par fils, par armatures synthétiques ou métalliques, par nappes de géotextiles, par grilles métalliques ou synthétiques.

Figure III .5: Classification des ouvrages de soutènement d'après le mode de reprise de la poussée

Ces ouvrages fonctionnent comme les massifs poids décrits ci-dessus. On les dimensionne en deux phases : vis-à-vis de la stabilité interne selon une méthode propre à chacune des techniques, et vis-à-vis de la stabilité externe ainsi que décrit précédemment.

Ces techniques, qui admettent les déformations du sol, sont utilisées nettement plus couramment que les murs rigides.

III.2.3.2. Tirants d'ancrages :

Le principe consiste à réduire les forces actives du glissement et à accroître les contraintes normales effectives sur la surface de rupture. Pour ce faire, on ancre des tirants constitués de câbles d'acier multitorons dans le terrain stable situé sous la surface de rupture, et on applique en tête un effort de traction. Cet effort peut être réparti sur la surface du terrain par l'intermédiaire de plaques ou de petits massifs en béton armé. Dans de nombreux cas, les tirants sont combinés à un mur ou à des longrines.

Il est prudent de se réserver la possibilité de venir reprendre la tension dans les tirants, aussi bien en cas d'augmentation que de diminution de celle-ci. Pour ce faire, il est judicieux de prévoir un suivi régulier des déformations du terrain (par le biais de tubes inclinométriques) et quelques cales dynamométriques pour la surveillance des tensions dans les tirants.

Figure III .6 : Stabilisation par ancrages précontraints :

Dimensionnement d'un tirant à l'aide d'un modèle à trois blocs

III.2.3.3.Renforcement par géotextiles :

En quelques années, l'emploi des géotextiles s'est révélé l'une des techniques les plus populaires d'amélioration des sols et des ouvrages en terre. On leur attribue quatre modes d'action qui peuvent êtres combinés : le drainage, la filtration, la séparation de couches de granulométrie différente et le renforcement mécanique.

Ce dernier aspect, qui a été utilisé plus tardivement que les trois autres, donne maintenant lieu à des applications de plus en plus nombreuses et très prometteuses. La

Déformabilité et la grande résistance des nappes de géotextile s'adaptent en effet particulièrement bien aux propriétés mécaniques des sols meubles.

a) Définition des géotextiles :

Les géotextiles appartiennent à la famille des Géo synthétiques, terme générique désignant un produit dont au moins l'un des constituants est à base de polymère synthétique ou naturel.

Il se présente sous forme de feuille, de bandelette ou d'une structure tridimensionnelle, utilisé en contact avec le sol ou avec d'autres matériaux dans les domaines de la géotechnique et du génie civil.

Les géotextiles possèdent plusieurs caractéristiques permettant de les utiliser pour :

- La séparation : Il évite le mélange de deux sols ou matériaux de remblai de nature différente.

Figure III.8 géotextile séparation.

- La filtration : Il maintient le sol et permet le passage de fluides à travers ou dans son plan.

<u>Figure III.9</u> géotextile filtration.

- Le drainage : Il collecte et transporte les eaux pluviales, souterraines et/ou d'autres fluides dans son plan.

Figure III.10 géotextile drainage.

- La protection : Il empêche ou limite les endommagements localisés par un élément ou un matériau donné.

Figure III .11 géotextile protection.

- Le renforcement : Il a la capacité de résister pour améliorer les propriétés mécaniques du sol ou d'autres matériaux de construction.

Figure III.12 géotextile renforcement.

1) Le choix de géotextile non tissé adapté à la protection :

Les critères sont la résistance au poinçonnement exprimée en kilo Newton (kN), la résistance à la traction et la valeur de perforation dynamique exprimée en millimètre (mm) qui s'évaluent à travers des critères et tests précis.

2) La mise en œuvre du Géotextile:

Le géotextile est principalement conditionné en rouleau. Il peut être aussi présenté plié sur palette lorsqu'il a été façonné pour un bassin de dimension précise, il s'agit là de surmesure.

Le géotextile se pose en fond de bassin directement sur la terre, avec un recouvrement de 40 à 50 cm entre les lés. Il sera fixé et bloqué en même temps que la membrane dans une tranchée d'ancrage (20 cm à 30 cm de profondeur) en tête de talus (voir figure III.15).

Le géotextile de protection présente un intérêt non négligeable pour faciliter la mise en place des membranes qui glissent plus aisément sans risque de détérioration.

Figure.III.13 Mise en œuvre du géotextile.

III. 2.3.4. Durabilité et comportement à long terme :

Les ouvrages en sol renforcé sont classés en trois catégories: ouvrages provisoires, temporaires et permanents, suivant leur durée de service. Les limites entre ces catégories varient suivant le règlement et le type de renforcement. À titre d'exemple, pour le clouage des sols, la durée de service d'un ouvrage provisoire est inférieure à 18 mois, celle d'un ouvrage temporaire est inférieure à 30 ans, tandis que les ouvrages permanents sont calculés pour 100 ans.

III.3.Conclusion :

La réalisation d'ouvrages de confortement consistant à :

- ajouter une résistance dans le terrain par inclusions soit verticales (pieux, barrettes ...) soit horizontales (clouage, tirantage ...)
- reconstituer une butée en pied du glissement permettant de 'reprendre' les efforts générés par la masse glissée (murs, rideaux de palplanches, paroi moulée, paroi tirantée, pieux jointifs ...).

Ce principe est limité à des glissements n'excédant pas 12 à 15 m de profondeur. En solution variante, cette butée de pied peut être constituée de matériaux améliorant le drainage (enrochements, remblais drainants armés de géotextiles ...).

IV.1.Présentation de la Wilaya

IV.1.1.Localisation générale:

Le site objet de la présente étude se trouve à Dely Brahim. Delly Ibrahim est une commune de la wilaya d'Alger, située dans la banlieue Ouest d'Alger à environ 10 km à l'ouest d'Alger, elle est limitée par :

- -Beni messous au Nord ;
- Ben aknoun à l'Est ;
- -El achour au Sud ;
- Cheraga a l'Ouest.

IV.1.2. but du projet:

Le projet de fin d'étude qui nous a été confié consiste à l'étude d'un glissement qui affecte essentiellement le parc Dounia de Delly Brahim (ALGER).

L'étude s'intéresse à la vérification de la stabilité de la zone 1 (voir plan de délimitation des zones étudiées en annexe).

IV.I.3. Sismicité de la région:

La commune de Delly Brahim se situe dans la **zone III** (sismicité élevée) de la wilaya d'Alger selon le RPA 99 version 2003.

IV. I.4. Aperçu géologique :

La géologie de la région des Grands Vents, tirée de la carte de CHERAGA, au 1/50000^{ème}, ou elle met en évidence les formations géologiques suivantes ;

Figure IV.1. Carte géologique de la région des Grands Vents.

A s : Sable argileux plus ou moins rubéfié.

q_{1cm}: poudingue à ciment calcaire ; grés calcaires et plages de galets.

p_{2a:} fasciés argilo – sableux.

P_{2c}: fasciés calcaire ou calcaréo gréseux.

P1: marneux ou argileux du plaisancien.

Selon Glangeand et Al (1952) ; la région est constituée en grande partie par des formations marneuses plaisanciennes qui sont sensibles à l'eau. Suivant leur degré d'altération, les marnes plaisanciennes ont des comportements tout à fait différents vis-à-vis de la stabilité de pentes et de leur résistance à la rupture.

Les marnes altérées présentent un aspect terreux à la cassure, une grande porosité liée à leur remaniement et perdent toute cohésion en présence d'eau.

Les glissements de terrains se produisent dans les niveaux plaisanciens franchement marneux altérés, lorsque les pentes égalent ou dépassent 10%, ils sont du type fluage et sont reconnaissables à leur morphologie.

Dans les zones où elles affleurent, les formations plaisanciennes sont massives. Elles ont une puissance de plus de 200 mètres. Ailleurs, elles sont recouvertes par des dépôts récents. Ces argiles marneuses sont parfois sableuses, elles sont de couleurs gris bleu. En profondeur, (à partir d'environ 10 m), la marne est saine. Elle se présente comme une roche compacte indurée, surmontée par une zone décomprimée, fissurée et légèrement altérée. Cette zone intermédiaire peut atteindre les 8.0 mètres.

Prés de la surface, la marne est très altérée gris jaune-gris verdâtre et souvent bariolée à cassure franchement terreuse. L'épaisseur de cette couche varie suivant l'intensité de l'altération et l'importance de la déclivité des versants. Avec les fortes pentes, les marnes altérées ne peuvent pas se développer. Très souvent, les marnes sont recouvertes par de la terre végétale ou du remblai.

IV.I.5. Aperçu hydrologique ET climatologique:

Lorsqu'elle est saine la marne est quasiment imperméable. Elle constitue le mur de plusieurs aquifères, les ressources en eau de la formation marneuse devrait être nulle. Toutefois, les sondages ont mis en évidence la présence d'eau dans les niveaux altérés. Cette eau constitue une nappe superficielle temporaire formée pendant la saison pluvieuse par infiltration dans le réseau de fissures.

D'après l'Office National Météorologique (ONM), les statistiques climatologiques du cumul mensuel des précipitations pour la station météorologique de Bouzareah période 2001-2010, sont données dans le tableau suivant :

	Janvier	Février	Mars	Avril	Mai	Juin
cumuls moyens mensuels des	85.0	59.1	62.8	45.6	54.8	3.4
précipitations en mm	Juillet	Aout	Septembre	Octobre	Novembre	Décembre
	5.0	15.7	38.7	63.9	157.9	112.1

Tableau-1-Climatologiques du cumul mensuel des précipitations, période de 2001-2010.

IV.2. Dégradations observées:

IV.2.1. Voie d'accès à Dar Dounia:

Parmi les dégradations observées on cite entre autres :

Affaissement très important de la chaussée avec des fissurations et rupture de sol entraîné vers le versant du talus.

Photo IV .1. Affaissement important de la chaussée.

Des fissures de traction très ouvertes sur l'accotement de la route et inclinaison des arbres vers le bas de pente attestent un mouvement continu du remblai de la route.

Photo IV.2 Fissures de tractions sur l'accotement de la route.

Ainsi, pendant la saison hivernale, la situation est devenue critique menaçant de rupture totale des tronçons en glissement et le blocage de la circulation.

Création d'une surface lisse entre les remblais et le sol naturel (frottement très faible).

Les instabilités relevées le long de la section en glissement peuvent être causées par plusieurs facteurs.

Parmi ces facteurs on cite:

4 Les pentes du versant portant la chaussée de la voie d'accès

Les pentes atteignent **60%**, pouvant être à l'origine de la rupture d'équilibre du sol en question.

🔸 l'eau

Les infiltrations d'eau sur les versants passent dans les remblais et entraînent sa désorganisation avec lessivage des matériaux fins et une chute de ses caractéristiques intrinsèques.

Le problème de drainage est posé.

Figure IV .6 Sens d'écoulement des eaux de ruissellement.

🖊 Fluage du sol naturel en dessous les remblais

Le fluage de l'argile marneuse sous les remblais routier correspond au cas de figure qui pourrait contribuer au déclenchement des anomalies observées.

4 Qualité des matériaux des remblais de l'assise de la voie d'accès

L'épaisseur des remblais sous la voie d'accès est d'environ 3.0 m.

Le matériau constituant les remblais en dessous la route, d'après la description visuelle, est de natures géologiques diverses. Ils ne présentent pas les exigences des règles de l'art, d'autant plus, qu'ils sont constitués par des matériaux plastiques.

🕂 Tassement

Le phénomène de tassement pourrait se manifester dans le cas des instabilités de la route comme suit :

- Soit qu'il s'agit d'un tassement du sol sous le poids des remblais.

- Soit qu'il s'agit d'un tassement de la structure des remblais elle-même.

Des indices particuliers de tassement du sol ont été relevés sur le site tel que:

- L'enfoncement vertical des remblais

- L'enfoncement vertical combiné au déplacement latéral du sol de fondation sous l'emprise des remblais.

- Le déplacement latéral de sol hors de l'emprise des remblais (inclinaison des arbres).

En conclusion les facteurs prépondérants qui sont à l'origine des dégâts observés sont liés aux conditions de drainage, aux mouvements par fluage et/ou tassement des remblais mis en place caractérisés par des paramètres géotechniques médiocres. Comme mesure temporaire pour faciliter l'accès à Dar Dounya, le maitre de l'ouvrage nous a proposé un matériau de substitution au remblai sur lequel reposera la voie d'accès, ce matériau a fait l'objet d'une caractérisation complète en vue de son utilisation comme matériau de remplissage.

IV.3. Description des instabilités:

L'observation sur le terrain nous a permis d'identifier et d'étudier différents types d'instabilités et de les cartographier.

IV.3.1 Les ravinements:

Les terrains argilo-marneux représentent la plupart de notre secteur d'étude, ils sont caractérisés par une absence de couvert végétal protecteur associé à une pente généralement atteignant 40%.

Photo IV. 3. Ravinement dans les formations argilo marneuse.

Les eaux de ruissellement se concentrent au niveau des talwegs et accentuent l'érosion et le ravinement entrainant des suppressions de butée donc déstabilisation des versants.

IV.3. 2 Le fluage (les mouvements lents) :

Les mouvements lents se distinguent des autres instabilités par leur grande extension et leur vitesse très faible et continue.

Ils sont caractéristiques des sols argilo-marneux à forte plasticité, ces mouvements sont exprimés par un phénomène de fluage et se traduisent dans la topographie par des moutonnements.

Ce type de mouvement affecte les formations marneuses et argileuses altérées au niveau des versants à grandes pentes.

Photo IV.4 Aspect moutonné indiquant le fluage.

On note également la rupture des ouvrages de protection superficiels comme les gabionnages

Photo IV. 5 Rupture du gabionnage

IV.3. 4 Glissement de terrain proprement dit :

Ces mouvements se manifestent par le déplacement d'une masse le long d'une ou plusieurs surfaces de ruptures.

Photo IV. 6 Arrachement des talus.

Glissements profonds

Mobilisant de grands volumes de matériaux, ils intéressent surtout les remblais sur les sols mous, où les surfaces de ruptures sont tangentes aux formations d'argile marneuse.

Photo IV.7. Les surfaces de ruptures sont tangentes aux formations d'argile marneuse

IV.4. Cause des instabilités observées:

Ces glissements se sont produits suite à la saturation de la couche du remblai par les eaux de ruissellement et par l'infiltration des eaux provenant de l'amont des talus.

Sur la base d'observations faites sur le terrain nous allons décrire les différents types d'instabilités, les désordres causés et donner certaines recommandations.

Les mouvements de terrain sont généralement dus à l'action conjuguée de plusieurs facteurs.

IV.4.1. La géomorphologie du site:

La pente constitue le moteur essentiel de tous les mouvements de versants, la pente critique dépend de la nature des sols. Dans notre secteur d'étude les pentes sont très accentuées surtout dans le versant de la zone 01, où elles peuvent atteindre par endroits 40 %.

IV.4.2. La nature lithologique:

Les terrains touchés par les mouvements de versant sont essentiellement argilo marneux très sensibles aux variations de la teneur en eau, réduisant ainsi la résistance au cisaillement et favorisant les glissements surtout dans les zones de grande pente.

IV.4.3.L'action de l'eau:

L'eau représente la cause principale des mouvements gravitaires, surtout pour les sols sensibles à l'eau. Dans notre secteur d'étude où les ruissellements sont importants et le réseau hydrographique bien développé, les formations argileuses et marneuses sont souvent altérées et érodées donc propices aux mouvements de versants.

IV.4.4. L'action sismique:

L'action sismique peut causer le déclenchement de nouveaux glissements ou la réactivation d'anciens glissements, les accélérations du sol engendrées par les séismes causent l'augmentation des pressions interstitielles dans les sols saturés.

IV.4.5.L'action anthropique:

L'intervention de l'homme par les différents travaux peut rompre l'équilibre naturel d'un site et amorcer un processus de rupture d'un site auparavant stable.

La surcharge apportée par les constructions sur les talus, et les remblais déposés anarchiquement ont joué un rôle dans la déstabilisation des terrains. Les terrassements effectués au pied des talus créent des suppressions de butée.

V. 1.Introduction :

La reconnaissance des sols permet d'appréhender les problèmes qui peuvent se poser lors de l'étude d'un projet de construction ou lors de l'expertise de sinistres. La reconnaissance des propriétés d'un terrain constitue le lien entre la cause d'un sinistre et les remèdes que l'on se propose de mettre en place.

Cette phase permet de définir les emprises du glissement, et de caractériser les sols concernés par le glissement.

Pour cela des compagnes de reconnaissance in-situ interviennent comme moyen indispensable permettant de fournir les renseignements sur la nature lithologique des différentes couches, d'apprécier leur homogénéité et d'estimer leurs caractéristiques.

Dans le cadre d'une reconnaissance géotechnique, ces compagnes s'appuient sur les résultats des sondages carottés et les essais géotechniques telles que : les essais de pénétration dynamique et statique, les pressiomètres, etc.

V.2.Généralité sur la reconnaissance du sol :

V.2.1.Essais in-situ :

V.2.1.1.Sondage carotté :

Le sondage carotté (photo V.1) permet d'extraire des échantillons du sol en profondeur. Ces échantillons remanies ou intacts permettent d'une part de reconnaitre de visu la nature géologique des terrains et donc de compléter les informations géologiques locales recueillies dans l'étude préliminaire et d'autre part de mener la campagne d'essais de laboratoire pour aboutir aux caractéristique d'identification physique et mécanique du sol.

Celles-ci sont utilisées, entre autres pour étudier la résistance au cisaillement du sol ainsi que sa prédisposition à tasser.

Photo V.1. Le sondage carotté

Les échantillons extraits sont dits ``remanies`` lorsque les conditions de leur conservation et transport détruisent l'état de la structure de sol tel qu'il était en place. Ces échantillons utilisés pour identifier les sols notamment par les essais de granulométrie, de ``limites d'ATTERBERG`` et de poids volumique ``

Les échantillons extraits sont dits ``intacts`` lorsque l'on prend le plus grand soin dans ce cas consiste à paraffine l'échantillons de sol des son extraction; ce qui permettra de conserver au maximum la structure et l'état du sol tel qu'il était en place. Ces échantillons peuvent servir a tous les essais de laboratoire aussi bien d'identification (granulométrie, limites d'Atterberg.....) que mécanique (compressibilité et cisaillement).

Il est à signaler que les forages, obtenus suite a un sondage carotté peuvent être utilises soit pour détecter la présence éventuelle d'une nappe phréatique par la mise en place de piézomètres, soit pour la réalisation de l'essai préssiométrique Ménard.

Il est important de signaler aussi que les sondages carottés étant la partie la plus couteuse d'une compagne de reconnaissance géotechnique; il importe d'arrêter judicieusement leur implantation et d'exploiter au maximum les renseignements qu'ils peuvent fournir.

V.2.1.2.Essais aux pénétromètres dynamiques lourds :

Principe de l'essai :

L'essai au pénétromètre dynamique lourd (photo V.2) consiste à faire pénétré dans le sol par battage un train de tiges lisses, muni a son extrémité d'une pointe, a l'aide d'un mouton tombant d'une hauteur donnée.

Chapitre V

On compte le nombre de coups N correspondant à chaque enfoncement de 20cm de la tige dans le sol. L'enfoncement en profondeur de la tige est fonction de la compacité du sol. Dans un sol homogène, l'enfoncement est proportionnel au nombre de coups.

Photo. V. 2 Essai au pénétromètre dynamique lourd

On dit que le ``refus`` est atteint lorsque le nombre de coups N, pour une pénétration inferieur ou égale a 20cm, devient très élevé (plus de 100coups).

Les résultats des essais sont représentés par des diagrammes donnant en fonction de la profondeur, la résistance en pointe au battage Rp déduite de la formule des Hollandais. Celle-ci est donnée par :

 $Rp=M^2$. g. H / e. (M+M`). A

Avec :

A : section droite de la pointe

e : pénétration moyenne par coup

- g : accélération de la pesanteur
- H : hauteur de chute
- M : masse de mouton

M` : somme des masses du train de tiges, de l'enclume et de la tige guide.

Les valeurs de ces caractéristiques sont variables suivant les types d'appareils. Aussi, tout diagramme de pénétration dynamique devra mentionner ces caractéristiques.

Le pénétromètre dynamique que nous avons utilisé pour la réalisation de nos essais possède les caractéristiques suivantes :

- Pointe de diamètre Øp = 50 mm, de section A = 19.63 cm²

- Mouton de masse M = 63.5 kg
- tige de masse M = 6.1 kg, de diamètre Øt = 32 mm et de longueur 1 m.

V.2.1.3.l'essai piézométrique :

La méthode consiste à introduire dans un tube mis en place dans un forage une sonde piézométrique, et à mesurer la profondeur du niveau d'eau par rapport au sommet du tube piézométrique

Les mesures piézométriques ont pour but de déterminer localement les variations du niveau de la nappe libre.

V.2.1.4.Sondages préssiométriques :

L'essai pressiométrique est un essai de chargement du sol en place .Il consiste à dilater radialement au sein de sol une sonde cylindrique et à déterminer la relation entre la pression imposée et le déplacement de la paroi de la sonde.

Cet essai permet de déterminer à différents niveaux les paramètres suivants :

- P₁: pression limite.
- E_p : module pressiométrique.

Il permet aussi de :

- D'apprécier la succession des couches de sol et éventuellement leur nature.
- De définir l'aptitude des terrains à recevoir certain type de constructions et d'orienter le choix des fondations d'ouvrages.
- De dimensionner les fondations.
- D'évaluer les déplacements des structures en fonction des sollicitations auxquelles elles sont soumises.

V.2.1.5. Essai géophysiques :

A/Profils sismiques :

• Principe de l'essai :

La sismique réfraction consiste à provoquer un ébranlement artificiel à l'aide d'un marteau, l'ébranlement déforme le milieu traversé, ces déformations se propagent sous forme d'ondes réfractées sur les surfaces de discontinuité et enregistrées à l'aide des géophones. Les temps de propagation permettent de calculer les vitesses de propagation des ondes dans le sous-sol. Dans notre étude on ne s'intéresse qu'aux ondes primaires de vitesse " V_P ", qui permettent de mesurer les épaisseurs des couches et d'apprécier leur nature, et aux ondes secondaires de vitesse " V_S " qui permettent de classer le sol d'après les règles parasismiques Algériennes.

B/IMAGERIES ELECTRIQUES :

• Principe de l'essai

Le principe est de mesurer les résistivités apparentes des sols à partir de la surface au moyen d'un dispositif appelé quadripôle. Un courant électrique continu d'intensité "I" connue est injecté dans le sol au moyen d'électrodes A et B et on mesure la différence de potentiel entre les deux électrodes M et N résultant du passage du courant dans le sol.

La résistivité apparente ρ est donnée par:

$$\rho = k. \ \Delta V / I \ (\text{Ohm. m}) \text{ telque } k = \pi. \frac{\overline{AM}. \overline{AN}}{\overline{MN}}$$

Les données sont enregistrées à l'aide d'un appareil de mesure et leurs traitements numériques nous fournissent une tomographie de résistivité électrique apparente continue de la structure du sous-sol sous forme d'images 2D.

V.2.2.Essais de laboratoire :

Les essais de laboratoires peuvent êtres subdivisées en trois (03) grandes catégories :

• Les essais d'identification :

Ceux sont essentiellement le « poids volumique », la « teneure en eau », les « limites d'Atterberg », la « granulométrie » (par tamisage ou par sédimentémétrie) et l'analyse chimique.

• Les essais de résistances :

Ceux sont des essais qui permettent d'étudier la résistance du sol, en particulier au cisaillement, d'en déduire sa capacité portante, et de conclure sur la stabilité des fondations superficiels ou profondes, des ouvrages de soutènements, ...etc.

• Les essais de compressibilités :

Ceux sont les essais qui permettent d'évaluer les tassements d'un sol sous le poids d'une charge donnée (fondation, remblai, ...etc.). Le plus connu est l'oedomètre qui donne certaines caractéristiques de compressibilités nécessaires pour évaluer ces tassements.

VI.2.2.1. Résultats des essais de laboratoire:

A - Poids volumique :

Le poids volumique d'un sol est le rapport du poids total d'une certaine quantité de sol, au volume de cette même quantité. On le note $\gamma = P/V$ et on l'exprime généralement en KN /m3.

La valeur du poids volumique d'un sol est différente selon l'état d'humidité de ce sol : saturé noté γ sat ; sec noté γ d ou humide noté γ h.

La densité d'un sol est le rapport de son poids volumique au poids volumique de l'eau qui est généralement pris égal à 10KN /m3. La densité est sans unité.

Cette caractéristique '' densité '' ou poids volumique, est importante notamment dans le calcul de la capacité portante du sol.

B - Teneur en eau naturelle :

C'est le rapport du poids d'eau qu'un échantillon de sol contient au poids des éléments secs de même échantillon. Ces deux quantités sont obtenues en pesant l'échantillon dans son état naturel humide puis dans son état sec après dessiccation à l'étuve à 105 °C

La teneur en eau est noté $\omega = [P\omega / P]$.100 et est exprimée en pourcentage (%)

La connaissance de la teneur en eau d'un sol est très importante, car elle permet avec d'autres caractéristiques d'apprécier l'état dans lequel se trouve le sol.

C-Limite'Atterberg :

En fonction de la teneur en eau, un sol remanié se présente suivant des consistances variables pour les quelle on peut distinguer trois état : état liquide, état plastique et état solide.

Le passage du sol d'un état à un autre se fait graduellement et les frontières séparant ces états sont définies conventionnellement par ce qu'on appelle les ''limites d'Atterberg''

Les limites d'Atterberg sont donc deux teneurs en eau particulières, déterminée expérimentalement (photo VI.4) qui séparent les trois(03) états de consistance ; celle qui sépare l'état liquide de l'état plastique est appelée ''limites de liquidité', notée @L celle qui sépare l'état plastique de l'état solide est appelée ''limite de plasticité'' notée @p.

La teneur en eau est calculée par $\omega = [P\omega / Ps].100$ et exprimée en pourcentage (%).

Photo V 3. Essai de limites d'Atterberg.

Sur un axe portant les teneurs en eau OL et Op peuvent êtres représentées comme suit :

Les limites d'Atterberg ont une importance essentielle en mécanique des sols.

Elles permettent en particulier de classer les sols fins et interviennent dans la classification des sols grenus.

D – analyse granulométrique :

L'analyse granulométrique permet de mesurer la distribution dimensionnelle en poids des éléments d'un matériau .Selon la taille des grains, cette analyse comprend deux opérations :

D-1. Le tamisage :

L'analyse granulométrique du tamisage se fait pour particules du sol de dimensions supérieures à ou égale à 80micrométres. Elle consiste à tamiser l'échantillon de sol sec de masse ''m'' par une série de tamis superposés (photo VI.5) de diamètres décroissants de haut en bas. On mesure les masses de sol retenues par les différents tamis (appelés refus) et on déduit les masses de sol ayant traversés les tamis (appelés tamisas).

Photo V.4.Granulométrie par tamisage Série de tamis.

Les résultats de cette analyse sont traduit sous forme de courbe dite ''courbe granulométrique'' tracée dans un repère semi-logarithmique, d'ordonnée les tamisas exprimés en pourcentage (%) et d'abscisse les diamètres des tamis en mm.

D-2- La sédimentométrie :

L'analyse granulométrique par sédimentométrie (Photo V.6) se fait pour les particules de dimensions inférieures à 80micrométres. Elle consiste à dissoudre un échantillon du sol dans une quantité d'eau et de le laisser se décanter. En se basant sur la loi de **stocks**, qui donne la vitesse d'une particule tombant sous l'action de la pesanteur dans un liquide visqueux on calcul les diamètres des particules ''dy '' et les pourcentages y correspondants. De même que pour l'analyse granulométrique par tamisage, les résultats permettent de tracer la courbe granulométrique pour les diamètres inférieurs à 80 μ m.

Photo V.5.Granulométrie par sédimentométrie Eprouvette et agitateur.

Il convient de signaler que l'analyse granulométrique contribue à l'identification du matériau et permet de prévoir certaines de ses propriétés. Elle est notamment utilisée pour la classification des sols grenus, qui nécessite le calcul de deux coefficients Cu (Le coefficient d'uniformité) et Cc (Le coefficient de courbure).

Il est à signaler que l'analyse granulométrique, par tamisage ou par sédimentométrie, s'effectue sur des échantillons remaniés.

E - Essai de compression simple :

Le but de cet essai est la détermination d'une valeur de la résistance à la compression uniaxiale d'une éprouvette cylindrique ou cubique, saturé d'eau, de sol cohérent, homogène, non remanié ou remanié, et de perméabilité suffisamment faible pour que l'essai soit effectué en conditions non drainées.

La résistance à la compression uniaxiale des sols, présentant de la cohésion, peut servir à la détermination d'une cohésion non drainée Cu, par la formule Rc = 2Cu, et par la suite obtenir la résistance au cisaillement non drainé du sol.

F -Essais de compressibilité :

Un des essais les plus importants réalisés en mécanique des sols est l'essai de compressibilité à l'oedomètre (photo V.6). Il permet d'étudier la compressibilité du sol et d'en déduire certaines caractéristiques pour évaluer l'amplitude des tassements des ouvrages construit sur ce sol.

Photo V.6.L'oedomètre : appareil pour essai de compressibilité.

G - Essais de résistance au cisaillement :

La résistance au cisaillement des sols constitue l'aspect le plus important de la géotechnique ; du fait de son influence directe sur la capacité portante des fondations superficielles et profondes, la stabilité au glissement et la conception des murs de soutènement.

On doit concevoir les structures et les pentes de façon à éviter qu'une rupture ne se produise lorsqu'elles sont soumises aux charges maximales. C'est le cas des méthodes, dites ''à l'équilibre limite'' qui exigent la connaissance de la résistance (ou ultime) du sol.

Au laboratoire la résistance au cisaillement du sol est souvent déterminée par l'essai de cisaillement direct. Dans cet essai l'échantillon est placé entre deux demi-boites qui peuvent se déplacer horizontalement l'une par rapport à l'autre. Un piston permet d'exercer sur le sol une contrainte σ donnée (figure V.7 ''schéma de la boite de cisaillement). La demi-boite inférieure est entrainée horizontalement à vitesse de dé déplacement constante.

L'échantillon est cisaillé suivant un plan imposé, sur lequel on exerce une contrainte normale et une contrainte tangentielle déterminées.

Figure V.7. Essai de cisaillement direct Schéma de la boite de cisaillement

On mesure à l'aide d'un anneau dynamométrique fixé à la demi-boite supérieure la force totale de cisaillement. En répétant plusieurs fois l'essai avec des valeurs différentes de la contrainte normale, on peut définir les deux caractéristiques mécaniques importantes du sol : la cohésion 'c' et l'angle de frottement φ .

Un des essais utilisé pour calculer ces caractéristiques est l'essai de cisaillement direct (appelé aussi essai de cisaillement rectiligne ou essai de cisaillement à la boite) (photo V.8).

Photo V.8.L'appareil de cisaillement direct.
V.2.2.2 l'essai triaxiale :

Les essais triaxiaux se réalisent sur 3 éprouvettes au minimum et permettent de déterminer des cohésions et des angles de frottement internes à court et long terme.

Figure V.9 essai triaxiale.

Il existe 3 types d'essais triaxiaux, à choisir en fonction du chantier et des données nécessaires à l'étude géotechnique :

- L'essai non consolidé non drainé (UU) afin de déterminer des caractéristiques à court terme,

 L'essai consolidé non drainé avec mesure de la pression intertitielle (CU+u) pour des caractéristiques à long terme,

- L'essai consolidé drainé (CD), cet essai sensiblement identique à l'essai CU+u, reproduit parfaitement les conditions géostatiques du sol in situ et assure un contrôle du comportement du sol de manière plus satisfaisante.

V.3.Campagne d'investigation réalisée :

V.3.1.Essais in-situ :

Sur la base de ce qui a été fait dans l'investigation préliminaire du site, nous avons implante nos essai in –situ tels que sont montrés sur la figure carte de zonage et d'implantation des essais''.

Figure V.10 Carte d'implantation des essais in situ du site « Glissement de terrain, parc Dounia-Delly Brahim-Alger »

V.3.1.1. Sondage carotté:

Coordonnées des sondages effectués

N°	X (m)	Y (m)	Z (m)
SC01	497148	4066372	257
SC02	497221	4066357	264
SC03	497378	4066369	261
SC04	497315	4066519	223
SC5	497207	4066444	248
SC6	497233	4066397	255
SC7	497097	4066459	240

Tableau V.1 Coordonnées des sondages.

Lithologie obtenue à partir des sondages carottés réalisés

La lithologie des sondages carottés effectués est résumée dans le tableau suivant :

N° du sondage	Profondeurs	Descriptions du sol
	0.0-2.5 m	Remblai.
	2.5-11.0 m	Argile marneuse altérée friable
SC01	11.0-30.0 m	grisâtre.
5001		Argile marneuse grisâtre
		compacte.
	0.0-3.0m	Remblai.
	3.0-6.7 m	Argile marneuse très altérée
		friable à passage d'argile
SC02	6.7-20.0 m	marneuse peu graveleuse entre
5002		5.4 et 6.7 m grisâtre.
		Argile marneuse grisâtre à
		traces d'oxydations compacte.
	0.0-3.0m	Remblai.
	3.0-6.0m	Argile marneuse altérée friable
	6.0-20.0 m	peu graveleuse grisâtre.
SC03		Argile marneuse grisâtre à
		traces d'oxydations compacte
		friable.
	0.0-3.0m	Remblai.
	3.0-7.4 m	Argile marneuse peu graveleuse
	7.4-9.0 m	grisâtre.
	90-15.0 m	Argile marneuse grisâtre friable
SC04		altérée.
		Argile marneuse grisâtre friable
		compacte.
SC05	0.0-0.3 m	Remblai.
5005	0.3-3.4 m	Argile marneuse grisâtre

	3.4-10.0 m	bariolée du beige.
		Argile marneuse grisâtre à
		traces d'oxydations friable à
		compacte.
		Remblai.
	0.0-2.0 m	Argile marneuse altérée très
	2.0-6.0 m	oxydée grisâtre.
SC6	6.0-10.0 m	Argile marneuse grisâtre peu
	10.0-16.0 m	compacte très oxydée.
		Argile marneuse grisâtre friable
		compacte.
	0.0-2.0 m	Remblai.
	2.0-3.0 m	Argile marneuse beige à traces
	3.0-6.0 m	d'oxydations.
SC7	6.0-12.0 m	Argile marneuse grisâtre à
		traces d'oxydations compacte.
		Argile marneuse grisâtre friable
		compacte.

 Tableau V.2.Lithologie des sondages
 carottés

V.3.1.2.1'essai piézométrique :

L'investigation géotechnique a consisté en la réalisation de (05) piézomètres, afin de relever le niveau d'eau, ces relevés ont été effectués le 25/05/2011, et ce, après des pluies torrentielles abattues durant les jours de 19,20 et 21 du mois de mai 2011.

Les niveaux d'eaux sont consignés dans le tableau suivant :

N° sondage	Niveau d'eau (m)
SC01	0.3
SC02	10
SC03	3.7
SC6	0.3
SC7	0.3

Tableau V.3 Niveaux piézométriques.

V.3.1.3.Sondages préssiométriques :

Constantion	J			
Coordonnees	aes	sondages	pressiometriq	ues effectues

N°	X (m)	Y (m)	Z (m)
SP01	497188	4066451	248
SP02	497133	4066471	241
SP03	497064	4066350	249

:

 Tableau V. 4 Coordonnées des sondages pressiométriques

Lithologie obtenue à partir des sondages pressiométriques

La lithologie des sondages préssiométriques effectués est résumée dans le tableau suivant :

N° du sondage	Profondeurs	Descriptions du sol
SP01	0.0-9.0 m	Argile marneuse grisâtre altérée.
	9.0-15.0 m	Argile marneuse compacte grisâtre.
SP02	0.0-9.0 m	Argile marneuse grisâtre altérée.
	9.0-15.0 m	Argile marneuse compacte grisâtre.
SP03	0.0-6.0 m	Argile marneuse grisâtre altérée peu graveleuse.
	6.0-15.0 m	Argile marneuse compacte grisâtre.

 Tableau V.5 Lithologie des sondages pressiométriques.

Résultats des paramètres pressiométriques :

Les résultats des paramètres pressiométriques sont résumés dans le tableau suivant :

Sondage	Pl (bars)	Ep (bars)
SP01	7.46-35.99	98.37-726.15
SP02	5.35-36.8	152.57-1085.43
SP03	11.12-26.12	163.79-1870.17

 Tableau V. 6 Résultats des paramètres pressiométriques

V.3.1.4. Essais de pénétration dynamique :

Résultats obtenus à partir des essais de pénétration dynamique

Les résultats obtenus par cet essai sont résumés dans le tableau suivant :

N° de l'essai	Profondeur du refus (m)
01/02/03/04/	6.8-13.0

Tableau V.7 Résultats des essais de pénétration dynamique

• Les refus enregistrés, sont dus à la formation argilo-marneuse compacte.

V.3.1.5. Essai géophysiques :

A/Profils sismiques :

Nous avons réalisé quatre (04) profils de sismique réfraction dans le but de mesurer les vitesses successives des couches sous-jacentes ainsi que leurs épaisseurs et de classer le terrain prospecté.

• Équipements de mise en œuvre :

Le laboratoire a réalisé les essais de reconnaissance géophysique par sismique réfraction à l'aide d'un équipement performant constitué des éléments suivants :

- Un sismographe modèle PASI SISMOLPC 12S12L, à canaux multiples.
- 12 géophones verticaux connectés à une tresse sismique modèle SM4 10 HZ.
- 12 géophones horizontaux connectés à une tresse sismique modèle SM4 10 HZ.
- Une source d'énergie sismique.

• Position des profiles sismiques :

Nous avons réalisé des profils sismiques avec une longueur égale à 39 mètres et un pas régulier de 3 mètres, puis nous avons effectué cinq tirs :

Trois tirs avec connexion des géophones verticaux pour générer les ondes de compression :

Un tir au milieu du profil (tir centré (T_C)) et 2 tirs symétriques par rapport à ce milieu (tir direct (T_D) et tir reverse (T_R)).

 Deux tirs avec connexion des géophones horizontaux pour enregistrer les ondes de cisaillement (tir direct (TD) et tir reverse (TR)).

B/IMAGERIES ELECTRIQUES :

Quatre (04) profils d'imagerie électrique ont été réalisés dans le but de donner une idée sur la présence d'éventuelles anomalies souterraines, déterminer les différents contraste de résistivité des formations géologiques et leurs épaisseurs.

• Réalisation des essais de reconnaissance

Cette méthode combine le trainé électrique et le sondage électrique (Fig. V.11). Elle consiste à implanter un grand nombre d'électrodes à intervalle constant et le long d'un profil rectiligne. Toutes les électrodes sont reliées à un dispositif de mesure de potentiel et d'injection de courant. Les électrodes jouent alternativement le rôle d'électrodes d'injection et d'électrodes de mesure du potentiel. On réalise automatiquement pour un quadripôle de longueur donnée un traîner électrique, et on fait varier la longueur du quadripôle pour le combiner au sondage : on réalise alors les mesures pour toutes les longueurs possibles du dispositif.

Figure V.11 Principe d'imagerie électrique, dispositif de Wenner.

Quatre (04) profils d'imagerie électrique ont été réalisés : Pr 01, Pr 02 d'une longueur égale à 235 mètres et Pr03et Pr04d'une longueur égale à 115 mètres, avec un espacement entre électrodes de 05 mètres.

• Résultats obtenus

Les résultats mesurés sur terrain (les valeurs de résistivité électrique apparente) sont des résultats bruts, elles sont représentés sous forme de cartes de résistivité apparente, souvent appelées pseudo-section. Cette dernière ne peut pas être interprétée directement vue

l'hétérogénéité du terrain. Cependant, le but consiste plutôt à obtenir le modèle synthétique de résistivité électrique vraie du milieu étudié à partir de la pseudo-section de résistivité électrique apparente observée ; Ce processus s'appelle l'inversion.

Les résultats obtenus sont des cartes de résistivité inversée (voir annexe). L'inversion des mesures, en termes de variation de la résistivité interprétée en fonction de la position du dispositif et de la profondeur, est réalisée à l'aide du logiciel RES2DINV.

Figure V.12 carte d'implantation des profils d'imagerie électrique

V.3.2. ESSAIS DE LABORATOIRE :

sondage	Prof (m)	γd	γh	W	Sr
		(KN/m3)	(KN/m3)	(%)	(%)
SC 01	2.4-2.7	16	20.1	26	98
	7.3-7.5	19.1	22.1	16	100
	7.5-8	19.3	22.2	15	100
	8-8.3	18	21.2	17	93
	8.3-8.7	18.8	21.9	17	100
	8.7-8.8	18.3	21.5	18	100
	9.1-9.5	18.8	21.9	16	100
	10-10.5	19.2	22.1	15	100
	11-11.5	18.9	22.1	17	100

• VI.3.2.2.Résultats des essais de laboratoire:

	15.2-15.6	19.1	22	17	100
	16-16.7	19.5	22.4	15	100
	17-17.5	19.1	22.2	16	100
	17.5-18	18.9	22	16	100
	18-18.6	18.7	22	17	100
	19.5-19.9	17.4	20.8	19	94
SC 02	4.4-4.7	16.9	20.5	22	98
	6.7-7.3	17.7	20.3	20	100
	13.2-13.8	19.7	22.7	15	100
	15-15.4	18.2	21.5	18	100
SC 03	17-17.7	19.1	22.2	16	100
	18.4-19	19.5	22.4	15	100
	3.6-4	17.2	20.8	21	100
	4.7-5.1	17.1	20.6	21	96
	7.7-8.3	17.9	21.2	20	100
	10.5-11	19.4	22.3	15	100
	11 4-11 8	19.6	22.5	15	100
	12 4-12 7	19.0	22.5	13	100
	19.3-19.6	19.5	22.3	10	100
SC 04	77_79	17.7	11 3	20	100
50.04	85.0	17.7	21	20	100
	10.4-11	17.4	21	18	9/
	10.4-11	18.7	21 21 8	16	00
	13.7-14	18.6	21.0	10	100
	14.5-15	16.0	21.0	23	74
	9-9.2	10.9	20.7	23	74
	9.0-10 12 7 12	17.1	20.4	20	92
	12./-13	18.5	21./	18	100
	15.3-15.9	19.1	21.9	17	100
	10.5-17	18./	21.9	1/	100
	18.0-19	19	22	16	100
90.05	19.5-19.9	19	22.2	16	100
SC 05	5-5.8	15	19.1	27	91
	6-6.8	16	20	25	98
	7.4-7.8	17.2	20.5	19	90
	8.5-8.9	18.6	21.7	16	95
0000	10.5-11	19.2	22.1	15	99
SC 06	2.6-3	16.1	19. 7	23	91
	3-3.4	15.9	19.6	23	88
	8.4-9	17.3	20.9	20	98
~~~ <b>~</b>	9-9.5	18.1	21.4	18	100
SC 07	2-2.5	16.2	20	23	93
	2.7-3	16.9	20.5	21	95
	5.6-5.8	17.8	21	18	92
	6.5-6.9	18.4	21.6	18	100
	7.5-7.8	19.3	22	14	93
	8.5-8.8	18.6	21.4	15	91
	11.3-11.9	20.1	22.7	13	100
SC 08	4-4.5	17.7	21.2	19	99

8-8.6	18.7	21.9	17	100

 Tableau V.8. Résultats des essais de laboratoire : « caractéristique physiques »

 Poids volumique – teneur en eau

#### A-Limite d'Atterberg :

21 mesures des limites d'Atterberg sont exécutées sur des échantillons de notre projet dont les résultats sont donnés ci-après (Voire aussi Annexe V).

### SC 01 :

Profondeur 6.7 m-7.3m

### LIITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL= 53
Teneur en eau de plasticité %	W _p = 27
Indice de plasticité %	Ip= 26

# SC 01 :

Profondeur 12.5m-12.8m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=51
Teneur en eau de plasticité %	W _p =25
Indice de plasticité %	Ip= 26

#### SC 01 :

Profondeur 14m-14.30m

#### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=54
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	Ip= 27

### SC 02 :

Profondeur 3.6m-4m

#### LIITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL= 57
-	

Teneur en eau de plasticité %	W _p = 28
Indice de plasticité %	Ip= 29

# SC 02 :

Profondeur 4.7m-5.10m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=53
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	I _p = 26

# SC 02 :

Profondeur 7.70m-8.30m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=56
Teneur en eau de plasticité %	Wp=28
Indice de plasticité %	Ip= 28

# SC 02:

Profondeur 12.14m-12.70m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=52
Teneur en eau de plasticité %	Wp=26
Indice de plasticité %	Ip= 26

# SC 03 :

Profondeur 3.00m-3.50m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=54
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	Ip= 27

# SC 03 :

Profondeur 8.5m-9m

# LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=55
Teneur en eau de plasticité %	W _p =28
Indice de plasticité %	Ip= 27

# SC 03:

Profondeur 10.40m-11.00m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=53
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	Ip= 26

# SC 03 :

Profondeur 14.50m-15.00m

#### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=57
Teneur en eau de plasticité %	W _p =29
Indice de plasticité %	Ip= 28

### SC 04 :

Profondeur 6.00m-6.8m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=56
Teneur en eau de plasticité %	W _p =28
Indice de plasticité %	I _p = 28

### SC 04:

Profondeur 7.40m-7.80m

# LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=52
Teneur en eau de plasticité %	W _p =26
Indice de plasticité %	Ip= 26

# SC 04 :

Profondeur 8.50m-8.90m

#### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=52
Teneur en eau de plasticité %	W _p =26
Indice de plasticité %	Ip= 26

# SC 04 :

Profondeur 10.50m-11.00m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=54
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	Ip= 27

# SC 05:

Profondeur 2.6m-3m

### LIITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	$W_L = 52$
Teneur en eau de plasticité %	$W_p=26$
Indice de plasticité %	Ip= 26

# SC 05:

Profondeur 9m-9.5m

# LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=54
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	Ip= 27

SC 06:

Profondeur 2m-2.5m

#### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=54
Teneur en eau de plasticité %	W _p =27
Indice de plasticité %	Ip= 27

# SC 06 :

Profondeur 5.6m-5.8m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=51
Teneur en eau de plasticité %	W _p =25
Indice de plasticité %	Ip= 26

# SC 06 :

Profondeur 8.5m-8.8m

### LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=56
Teneur en eau de plasticité %	W _p =28
Indice de plasticité %	Ip= 28

### SC 06 :

# Profondeur 11.3m-11.9m LIMITES DE LIQUIDITE A LA COUPELLE DE CASAGRANDE

Teneur en eau de liquidité %	WL=54
Teneur en eau de plasticité %	W _p =26
Indice de plasticité %	Ip= 28

### **B- analyse granulométrique :**

Pour le site étudié nous avons réalisé (21) analyses granulométriques dont les résultats sont donnés ciaprès dans la annexe V.

### C - Essai de compression simple :

Pour le site étudié Nous avons réalisé trois (3) essai de compression simple, dont les données sont données Ci-après dans la annexe V.

#### D-Essais de compressibilité :

Pour évaluer les tassements du sol sous le poids d'une charge (fondation, remblai, ...), il est nécessaire de connaitre certaines caractéristiques relatives à la compressibilité du sol. L'essai le plus utilisé en mécanique des sols, ayant pour but la détermination de ces caractéristiques, est l'essai de compressibilité à l'oedomètre (Figure V.13).



Figure VI.13. Essai de compressibilité a l'oedomètre Schéma du moule oedométrique.

Cet essai à pour objet essentiel l'étude de la consolidation d'éprouvettes saturées de sols intact, soumises à des charges verticales uniformes, drainées sur les deux faces (inférieure et supérieure).

L'essai est répété pour des valeurs croissantes de la charge, pour chaque charge, l'indice des vides « e » en fin de consolidation est calculé (« e » est égal au rapport du volume des vides Vv sur le volume des grains solides Vs), et on trace la courbe oedométrique (Figure V.14).

Pour le site étudié nous avons réalisé six (06) essais de compressibilités à l'oedomètre, dont les résultats sont donnés ci-après (Voire Annexe V).



Figure VI.14. Essai de compressibilité à l'oedomètre Courbe oedométrique.

# E - Essais de résistance au cisaillement :

Pour étudier la résistance au cisaillement du sol à différents endroits de notre site, nous avons réalisé (12) essais de cisaillement rectiligne, six (06) essais de type non consolidé non drainé et six(06) essais de type consolidé drainé.

Les résultats de cet essai de résistance sont donnés ci-après (Voire aussi Annexe V)

### F- essai triaxiale :

Pour le site étudié Nous avons réalisé trois (3) essai de type non consolidé non drainé deux (2), et un (01) essai de type consolidé drainé.

Les résultats de cet essai de résistance sont donnés ci-après (Voire aussi Annexe V)

### g -Essais d'analyse chimique :

Dans le but de se prononcer sur l'agressivité ou non du sol, une analyse chimique à été réalisé sur un échantillon de sol extrait du site étudié dont les résultats sont donnés au tableau V.9 suivant :

sondage	Profondeur	Sulfates	Carbonates	Chlourres	Matiere	insolubles	PH
	(m)	SO4	CaCO3	Cr	organiques		
SC 02	3.6-4	traces	15.81	traces	0.67	N-D	N -D
SC 03	3-3.5	1.38	16.64	traces	0.89	N -D	N -D
SC 06	2-2.5	0.19	17.47	traces	0.31	N-D	N-D

Tableau V.9. Caractéristiques chimiques du sol du site :

« Glissement de terrain, PARC DOUNIA DELY BRAHIM»

### VI.4.Interprétation des résultats :

#### VI.4.1. Essais in-situ :

#### VI.4.1.1.Essai géophysiques :

#### **A/Profils sismiques :**

#### • Interpretations des profiles sismiques :

L'objectif de ces profils (voir les profils sismiques en annexe), est la détermination des épaisseurs des formations géologique et les contrastes de vitesses dans le site. Les tableaux suivants résument les résultats :

	Vitesses d des ondes	Épaisseurs des couches			
	V _{P1} (m/s)	V _{P2} (m/s)	h ₁ (m)	h ₂ (m)	
Tir direct	440	610	1420	1.9	5.3
T _C inverse	440	680	/	1.4	/
T _C direct	390	730	/	1.7	/
Tir inverse	350	730	1440	1.7	5.5
Les valeurs moyennes	410	690	1430	1.8	5.4

Tableau V.10 Modèle de terrain de chaque tir effectué pour le profil sismique PS1



Figure V.15 Coupe Géosismique PS1

	Vitesses d des ondes	Épaisseurs des couches			
	V _{P1} (m/s)	$ \begin{array}{ c c c c c } V_{P2} & & & \\ (m/s) & & V_{p3} (m/s) \\ \end{array} $		h ₁ (m)	h ₂ (m)
Tir direct	370	940	2130	3.0	5.2
T _C inverse	400	1000	/	2.4	/
T _C direct	390	1040	/	2.4	/
Tir inverse	400	1180	2480	4.5	5.4
Les valeurs moyennes	390	1040	2310	3.1	5.3

Tableau V.11 Modèle de terrain de chaque tir effectué pour le profil sismique PS2



Figure V.16. Coupe géosismique PS 2

	Vitesses de	Épaisseurs des			
	des ondes	couches			
	<i>V_{P1} (m/s)</i>	V _{P2} (m/s)	h ₁ (m)	$h_2(m)$	
Tir direct	550	1570	/	2.9	/
T _C inverse	590	1740	/	2.7	/
T _C direct	670	1720	/	3.5	/
Tir inverse	480	1750	/	3.5	/
Les valeurs moyennes	570	1420	/	3.1	/

Tableau V.12 Modèle de terrain de chaque tir effectué pour le profil sismique PS3



Figure V.17 coupe géosismique PS 3

	Vitesses de des ondes d	Épaisseurs des couches			
	V _{P1} (m/s)	<i>h</i> ₁ ( <i>m</i> )	$h_2(m)$		
Tir direct	670	960	2170	1.8	8.3
T _C inverse	430	750	2220	1.4	/
T _C direct	430	980	/	1.5	/
Tir inverse	610	1070	2260	3.0	5.5
Les valeurs moyennes	540	940	2220	1.9	6.9

 Tableau V.13 Modèle de terrain de chaque tir effectué pour le profil sismique PS4



#### Figure V.18 Coupe Géosismique PS4

#### Synthèse des résultats

L'interprétation des données a permis de différentier généralement trois terrains présentant les vitesses suivantes :

↓ Une couche de recouvrement superficielle apparaît avec une épaisseur moyenne de 1.8 à 3.1 mètres, révèle des vitesses des ondes de compression de l'ordre de 520 m/s à 700 m/s et des vitesses des ondes de cisaillement de l'ordre de 190 m/s à 230 m/s.

↓ Un deuxième terrain apparait dans les profils PS1, PS2 et PS4 d'épaisseur variant de 5.3 à 6.9 mètres, présente des valeurs de vitesses moyennes des ondes de compression de l'ordre de 1330 m/s à 1590 m/s et des vitesses des ondes de cisaillement de l'ordre de 390 m/s à 410 m/s.

Le troisième terrain apparaît dans les profils sismiques PS1 et PS3, à partir de la profondeur 5.2 mètres en moyenne, présentant des valeurs de vitesses moyennes des ondes de compression de l'ordre de 1430 m/s à 1700 m/s et des vitesses des ondes de cisaillement de l'ordre de 640 m/s à 670 m/s.

Le quatrième terrain apparaît dans les profils sismiques PS2 et PS4, à partir de la profondeur 8.6 mètres en moyenne, présentant des valeurs de vitesses moyennes des ondes de compression de l'ordre de 2220 m/s à 2310 m/s et des vitesses des ondes de cisaillement de l'ordre de 730 m/s à 820 m/s.

#### Caractéristiques élastiques des formations de sol

Selon la théorie de l'élasticité, les vitesses sismiques sont calculées à partir des deux formules suivantes :

$$v_p = \sqrt{\frac{E(1-v)}{\rho(1-2v)(1+v)}} \operatorname{Et} v_s = \sqrt{\frac{E}{2\rho(1+v)}}$$

D'où on peut tirer les deux paramètres élastiques suivants :

*E* Module élastique de sol.

v Coefficient de poisson.

#### **B/IMAGERIES ELECTRIQUES :**

#### • Interprétation:

Dans le terrain étudié, nous remarquons qu'il présente une seule couche très saturée d'eau caractérisée par de faibles résistivités, variant entre 2 Ohm.m à 22 Ohm.m.

On conclut que l'assiette d'étude ne présente aucune anomalie géoélectrique.

#### VI.4.2. Essais de laboratoire :

VI.4.2.1. Classification des sols :

Sond	Prof. (m)	5mm	2mm	0.08mm	20µm	2µm	WL	Wp	Ic	Ip	Classe
Sc01	6.9-7.3	100	100	99	82	27	53	27	134.	26	At
									6		
	12.5-	100	99	96	80	24	51	25	138.	26	At
	12.8								4		
	14-	100	100	100	82	20	54	27	133.	27	At
	14.3								3		
Sc02	3.6-4	100	100	100	78	24	57	28	124.	29	At
									13		
	4.7-	100	100	98	81	32	57	27	138.	26	At
	5.10								46		
	7.7-8.3	100	100	100	83	30	56	28	128.	28	At
									57		
	12.4-	100	100	99	75	19	52	26	150	26	At
	12.70										
Sc03	3-3.5	100	100	98	84	39	54	27	-	27	At
	8.5-9	100	100	99	83	27	55	28	125.	27	At
		100	100		-		50		92	2.6	
	10.4-11	100	100	99	/9	21	53	27	134.	26	At
	14515	100	100	100	74	16	57	20	61 152	20	
	14.5-15	100	100	100	/4	16	57	29	155.	28	At
Se04	5 5 9	100	100	00	96	26	54	27	04	27	<u>A</u> +
5004	5-5.8	100	100	99	00	30	54	27	100	27	At
	6-6.8	100	100	100	86	40	56	28	110. -	28	At
									7		
	7.4-7.8	100	100	99	85	30	52	26	127	26	At
	8.5-8.9	100	100	99	50	10	52	26	138.	26	At
									4		
	10.5-	100	100	100	72	20	54	27	150	27	At
	11										
Sc05	2.6-3	100	100	97	80	38	52	26	111.	26	At
									5		
	9-9.5	100	100	97	85	42	54	27	133.	27	At
									33		

	2-2.5	100	100	97	81	36	54	27	114.	27	At
									8		
SC06	5.6-5.8	100	100	95	64	34	51	25	127	26	At
	8.5-8.8	100	100	97	72	36	56	28	146.	28	At
									4		
	11.3-	100	100	98	74	38	54	26	146.	28	At
	11.9								4		

Tableau V.14. Résultats de la classification des sols du site

Ip >17%, le sol est hautement plastique.

### V.4.2.2. Compressibilité des sols :

#### V.4.2.2.1. Caractéristique de compressibilité des sols :

De la courbe oedmetrique, on déduit les valeurs des trois caractéristiques de compressibilité importantes suivantes

- la pression de pré consolidation  $\sigma$ `c, qui représente l'abscisse de l'intersection des pentes des deux parties de la courbe AB et BC ;

- l'indice de compression Cc qui représente la pente de la partie de la courbe BC sa valeur est calculée par : Cc = - ( $\Delta$ e) / ( $\Delta$  log  $\sigma$ `)

- l'indice de gonflement Cs ou Cg qui représente la pente de la partie de la courbe CD, généralement la même que celle de la partie AB, sauf pour le cas des sols gonflants ou la pente CD est très marquée. Cs est calcule de la même manière que Cc.

#### VI.4.2.3.2.Etat de consolidation des sols :

En comparent la valeur de la consolidation de pré consolidation  $\sigma$ `c a celle de la contrainte verticale initiale  $\sigma$ `v0 due au poids des terres calculée (*), le sol peut se trouver dans trois (03) situations quant a son état de consolidation :

- Sol sous-consolide : lorsque  $\sigma$ `c <  $\sigma$ `v₀
- Sol normalement consolide : lorsque  $\sigma' c = \sigma' v_0$
- Sol sur consolidé lorsque  $\sigma$ `c >  $\sigma$ `v₀

### VI.4.2.3.3. Etat de compressibilité des sols :

- les sols sous-consolides sont généralement inconstructibles car ils sont très compressibles et continuent de se déformer même en l'absence de surcharge.

- les sols normalement consolides sont compressibles lorsqu'ils sont charges ; leur compressibilité est d'autant plus importante que le coefficient de compressibilité Cc est élève.

On peut donner les appréciations suivantes :

Cc < 0.020	sol incompressible
0.020 < Cc < 0.050	sol très peu compressible
0.050 < Cc < 0.100	sol peu compressible
0.100 < Cc < 0.200	sol moyennement compressible
0.200 < Cc < 0.300	sol assez fortement compressible
0.300 < Cc < 0.500	sol très compressible
Cc < 0.050	sol extrêmement compressible

- Les sols surconsolidés sont de compressibilité très négligeable lorsque la pression ramenée par la fondation ne dépasse pas la pression de préconsolidation  $\sigma$ `c.

Dans le cas contraire, la compressibilité peut être appréciée selon les valeurs de Cc comme précédemment pour les sols normalement consolides

La contrainte verticale initiale  $\sigma v_0$  due au poids des terres est calculée par  $\sigma v_0 = \gamma$ x Z avec  $\gamma = \gamma d. (1 - \gamma w / \gamma s)$  et  $\gamma s = 27 \text{ kN} / \text{m}^3$ 

### VI.4.2.3.4. Résultats et Interprétation :

Nous avons reporté sur le (tableau V.) les valeurs des caractéristiques de compressibilité selon le sondage et la profondeur à la quelle l'échantillon a été prélevé.

sondage	Prof (m)	Pc (bar)	Cg (%)	Cc (%°	Etat de
					Compressibilité
Sc01	6.7-6.9	1.94	3.89	15.75	moyennement compressible
	14-14.3	2.58	4.31	13.07	moyennement compressible
Sc02	10.5-11	2.08	2.69	8.71	très peu compressible
	4.7-5.10	1.12	5.51	23.59	moyennement compressible
Sc03	7.7-7.9	3.11	1.91	10.98	moyennement
Sc04	6-6.8	1.69	10.53	21.44	moyennement compressible
Sc06	5.6-5.8	2.22	5.30	15.41	moyennement compressible
	8.5-8.8	2.49	5.21	12.96	moyennement compressible

Tableau V.15. Résultats de la compressibilité des sols du site étudié

# VI.4.2.4 Resistance au cisaillement des sols :

### VI.4.2.4.1 – L'essai de cisaillement rectiligne (Résultats et interprétation) :

Sondage	Prof (m)	Type d'essai	C (bar)	φ (°)
Sc01	12.5-12.8	UU	1.5	10
Sc02	4.4-4.7	UU	1.17	22
Sc03	14.5-15	CD	0.38	15
Sc04	5-5.8	UU	0.78	14
	7.4-7.8	CD	0.38	15
Sc05	2.6-3	UU	0.59	20
	3-3.4	CD	0.77	19
	8.4-9	UU	0.78	16
Sc06	2-2.5	CD	1.09	11
	2.7-3	CD	0.32	16

Tableau V.16. Résultats de la résistance au cisaillement des sols du site.

Sondage	Prof (m)	Type d'essai	C (bar)	φ (°)
Sc01	13.1-13.8	UU	0.87	14
Sc02	6.7-7.3	CD	0.32	15
Sc03	3.6-4	UU	1.0	15
	7.7-8.3	UU	0.83	13
	15.3-15.9	UU	0.91	17

VI.4.2.4.2 – L'essai de triaxiale	(Résultats et interprétation) :
-----------------------------------	---------------------------------

Tableau V.17. Résultats de triaxiale des sols du sit
------------------------------------------------------

### VI.4.2.5- Essais de compression simple :

La résistance à la compression uni axiale des sols ; présentant de la cohésion peut servir à la détermination de la cohésion non drainée Cu par la formule Rc = 2Cu et par la suite obtenir la résistance au cisaillement non drainée du sol. Les valeurs de Rc et de Cu sont récapitulatives sur le tableau V.17.

Sondage	Profondeur (m)	Résistance à la compression Rc (bar)	Cohésion Cu (bar)
Sc03	10.4-11	2.45	1.225
	19.5-19.9	2.72	1.36

Tableau V.18. Résultats de la résistance à la compression Rc et la cohésion

### VI.4.2.6- : interprétation d'analyse chimique :

- Les formations d'argiles contiennent un taux de carbonate CaCO₃ compris entre (10 et 20%), ce qui classe le sol dans la catégorie des argiles faiblement marneuses.
- Le sol ne présente aucune agressivité vis-à-vis des bétons des fondations.

# VI.5. L'étude de l'homogénéité des caractéristiques $\phi$ et C :

- 🔸 Pour la couche 1 (remblai) :
- pour  $\gamma d$ :

 $\gamma d \text{ moy} = \frac{\Sigma \gamma d}{n} = \frac{16.1 + 16.2 + 16}{3} = 16.1 \text{ KN/m}$ 

➢ L'écart type :

$$SD = \sqrt{\frac{(16.1 - 16.1)^2 + (16.2 - 16.1)^2 + (16 - 16.1)^2}{2}} = 0.1$$

Le coefficient de variation:

$$C_V = \frac{SD}{\gamma d \mod} = \frac{0.1}{16.1} = 0.0062 ; \quad 0.62 \% < 10 \%$$

Le sol est un sol homogène.

### Done On prend $\gamma d = 16.1 \text{ KN/m}$

• pour  $\gamma h$ :

$$\gamma h \text{ moy} = \frac{\Sigma \gamma h}{n} = \frac{19.7 + 20 + 20.1}{3} = 19.33 \text{ KN/m}$$

➢ L'écart type :

$$SD = \sqrt{\frac{(19.7 - 19.33)^2 + (20 - 19.33)^2 + (20.1 - 19.33)^2}{2}} = 0.76$$

> Le coefficient de variation:

$$Cv = \frac{SD}{\gamma hmoy} = \frac{0.76}{19.33} = 0.039 ; 3.9 \% < 10 \%$$

Le sol est un sol homogène.

#### Donc on prend $\gamma$ h =19.33 KN/m

- pour  $\varphi$  et C :
- UU: Cu=0.59bar; qu=20°
- CD: C'=1.09bar ;  $\phi$ '=11°

Pour la couche 2 (argile marneuse altérée) : γd =17.89 KN/m γh =20.77 KN/m

Pour  $\phi$  :

$$\varphi moy = \frac{\Sigma \varphi i}{n} = \frac{17 + 22 + 14 + 16}{4} = 17.25^{\circ}$$

> L'écart type :

$$SD = \sqrt{\frac{(17 - 17.25)^2 + (22 - 17.25)^2 + (14 + 17.25)(16 - 17.25)^2}{3}} = 3.40$$

Le coefficient de variation:

$$Cv = \frac{SD}{\varphi moy} = 0.19$$
 ;  $19\% > 10\%$ 

Le sol n'est pas homogène vis-à-vis l'angle de frottement.

Donc on prend  $\phi=14^{\circ}$ 

Pour C:

$$\mathbf{Cmoy} = \frac{\Sigma Ci}{n} = 0.97 \text{bar}$$

➢ L'écart type :

SD = 0.22

Le coefficient de variation:

$$Cv = \frac{SD}{Cmoy} = 0.23$$
; 23% >10 %

Le sol n'est pas homogène vis-à-vis la cohésion.

Donc on prend C= 0.78bar

Pour la couche 3 (argile marneuse compacte) :
 γd =18.92 KN/m
 γh =21.9 KN/m

Pour  $\phi$ :

φ=10°

**Pour C :** 

C=1.5bar.

### V.5. Synthèse du sol :

La classe LCPC	Argile très plastique At
La couleur	Gris bleu
La plasticité	Hautement plastique
L'homogénéité	Non homogène
Nappe (m)	Supposée en surface

Tableau V.19.Les caractéristiques de sol.

#### profil des sondages :



Figure V.19 coupe 6-1



#### Figure V.20 coupe 4-3



Figure V.21 coupe 3-2



Figure V.22 coupe 4-10-2.

# VI .1.Introduction :

Ce chapitre est consacré à l'analyse de la stabilité et le confortement du site

« Parc Dounia ; DELY –BRAHIM ». L'analyse de la stabilité a pour but de déterminer les coefficients de sécurité des cercles de glissements les plus probables. Le calcul se fait d'une manière automatique en utilisant le logiciel TALREN 4(les méthodes utilisées sont Fellenius, Bishop et Perturbations), Trois solutions de confortement sont proposées pour la présente

# VI .2. étude de stabilité :

Trois profils ont été choisis pour étude de la stabilité, le logiciel utilisé pour l'étude de stabilité des terres en pente est le TALREN 4.

Le logiciel TALREN 4 consiste à tester plusieurs surfaces de ruptures probables des glissements observés correspondant à des coefficients de sécurité minimums (FS  $\leq$  1.5).

Comme on va le voir par la suite, ce logiciel permet d'analyser la stabilité des déférentes sections de la pente selon plusieurs méthodes classiques et numériques sur des surfaces de ruptures circulaire et non-circulaire.

Dans ce programme, toutes les données du problème sont modifiables de façon itérative, ce qui permet de tester successivement des jeux de valeurs (géométrique, hydraulique, paramètres géotechniques, la force sismique, les surcharges...etc.) et donc de dégager l'influence de chacun de ces paramètres sur la stabilité.

La géométrie du talus est décrite dans un repère cartésien (OXY). L'axe (OX) étant orienté horizontalement et dans la direction de l'aval et l'axe (OY) étant dirigé verticalement; orienté vers le haut.

Le logiciel TALREN 4 constitue une évolution majeure par rapport aux versions précédente de TALREN, et notamment par rapport à TALREN 97.

TALREN 4 est un nouveau logiciel très convivial fonctionnant sous Windows®, et les utilisateurs de TALREN 97 comme les nouveaux utilisateurs de TALREN trouveront son utilisation très facile.

Les principales caractéristiques ainsi que le détail des fonctionnalités disponibles de TALREN 4 sont abordées ci-dessous.

### VI .2.1. Les principales caractéristiques du TALREN 4 :

#### VI .2.1.1. Le menu principal :

Le menu, dont l'arborescence complète est illustrée sur la Figure VI.1, comporte les rubriques principales suivantes :

- Fichier
- Edition
- Affichage
- Données

- Phases et situations
- Calcul et résultats
- Options
- Aide



Figure VI .1. Organigramme montrent les différents options de la barre d'outil TALREN4

É TALREN 4 v1.11 - C:\Program Files\TALREN 4\Exemple					
Fichier	Edition	Affichage	Données Options Aide		
			Descrip Géomé	otion géné trie…	rale
			Surcharges		
			Renforcements		
			Caractéristiques des sols		
			Phasage/calculs		



# VI .2.1.2. La barre de boutons principale :



Figure VI .3. La barre de boutons principale

Les boutons ci-dessus correspondent dans l'ordre aux fonctions suivantes :

- Nouveau fichier ;
- Ouvrir un fichier ;
- Enregistrer un fichier ;
- Imprimer ;
- Zoom sur une fenêtre définie par l'utilisateur ;
- Zoom avant ;
- Zoom arrière ;
- Copier dans le presse-papier l'élément sélectionné ;
- Capture d'écran ;
- Commentaires généraux ;

# VI.2.1.3. Barre de boutons contextuelle "Données du projet" :



Figure VI .4. La barre de boutons contextuelle "Données"

Les boutons ci-dessus correspondent dans l'ordre aux fonctions suivantes :

- Outil "Sélection" ;
- Description générale du projet ;
- Dessin de lignes géométriques ;
- Dessin de surcharges (surcharges réparties puis torseurs) ;
- Dessin de renforcements (clous, tirants, bandes puis butons);
- Définition des jeux de caractéristiques de sol (ouverture d'une boîte de dialogue) ;
- Basculement en mode "Phasage/Calculs".

# VI .2.1.4. Barre de boutons contextuelle "Phasage/Calculs" :

Celle-ci comporte principalement les boutons et objets équivalents aux fonctions des menus "Phases et situations" et "Calculs et résultats" :

Données du projet	+		Σ	Σ _Σ	žE			TE E
-------------------	---	--	---	----------------	----	--	--	------

Figure VI .5. La barre de boutons contextuelle "Phasage/Calculs"

Les boutons ci-dessus correspondent dans l'ordre aux fonctions suivantes :

• Basculement en mode "Données" ;

- Définition des conditions hydrauliques (ouverture d'une boîte de dialogue) ;
- Propriétés de la situation sélectionnée (ouverture d'une boîte de dialogue) ;
- Calcul de la situation sélectionnée ;
- Calcul de toutes les situations de la phase sélectionnée ;
- Calcul de toutes les situations pour toutes les phases ;

• Configuration de l'affichage graphique des résultats (ouverture d'une boîte de dialogue, accessible seulement si des résultats sont disponibles pour la situation affichée).

• Résultats détaillés par surface (ouverture d'une boîte de dialogue, accessible seulement si des résultats sont disponibles pour la situation affichée) ;

• Efforts dans les renforcements (ouverture d'une boîte de dialogue, accessible seulement si des résultats sont disponibles pour la situation affichée) ;

• Résultats détaillés par tranches (ouverture d'une boîte de dialogue, accessible seulement si des résultats sont disponibles pour la situation affichée).

Type de sol	$\gamma$ sat	φ(°)	C (kpa)
remblai	20.14	10	8
Argile marneuse altérée	21.27	14	78
Argile marneuse	21.92	10	150
compacte			

# VI .2.2 caractéristiques du sol :

indicana vi i i caracteribridaeb aa bor.
------------------------------------------

### VI .2.3 caractéristiques géométriques des talus modalises :

N° profil	N° point	X(m)	Z(m)
PRO 01	01	0	261
	02	15	255
	03	38	250
	04	57	245
	05	73	240
	06	99	235
	07	131	230
PRO 02	01	0	264
	02	17	260
	03	40	255
	04	66	250
	05	84	245
	06	105	240
	07	122	235
	08	138	230
PRO 03	01	0	255
	02	10	254
	03	37	254
	04	51	252

05	64	248
06	79	245
07	106	240

Tableau VI .2	caractéristique	géométrique
---------------	-----------------	-------------

# VI.3. Actions et charges :

#### VI.3.1. Actions du séisme :

La commune de Delly Brahim se situe dans la zone III (sismicité fort) de la wilaya d'Alger selon le RPA 99 version 2003.

Alors on peut tirer le coefficient d'accélération de la zone :

$$K_h = 0.5 \ (\% \text{ g});$$
  
 $K_v = 0.3 K_h$ 

Le coefficient A est le coefficient d'accélération de zone.

Pour notre cas :

A=0.25;  

$$K_h = 0.125(\% g);$$
  
 $K_v = 0.0375(\% g).$ 

#### VI.3.2. la surcharge :

La surcharge de la maison d'environnements égale a 150 Kpa.

# VI.4. Les méthodes utilisées dans l'analyse :

Les calculs numériques ont été faits en utilisant à la fois la méthode de Fellenius, de Bishop, de Perturbation.

Profile 01:

Phase 01 :

- Le niveau de la nappe en surface ;
- Avec séisme.

Les mêmes procédures pour la profile 02.

Profile 03:

Phase 01 :

- Le niveau de la nappe en surface ;
- Sans chargement ;
- Avec séisme.
#### Phase 02 :

- Le niveau de la nappe en surface ;
- Avec chargement ;
- Avec séisme.

### VI.4.1. Calcul de stabilité en rupture circulaire : VI.4.1.1. calcul du facteur de sécurité à l'aide du logiciel TALREN4 :

Après la modélisation du talus et le calcul on a obtenus les résultats suivants : **Profile (01) :** 

#### Avec la méthode de Fellenius :



Le résultat trouver par le logiciel est Fs = 0.87

#### Avec la méthode de Bishop :



Le résultat trouver par le logiciel est Fs = 0.87

## Profile (02) :

#### Avec la méthode de Fellenius



Le résultat trouvé par le logiciel est Fs = 0.7

## Avec la méthode de Bishop

Fichier Edition Affichage Phases et situations Calcul et résultats Options Aide	
🗅 🗃 📓 🧉 🗆 🖉 👂 🎭 🙀 🛐 🕬 Données du projet 📑 🗔	Σ   ½   ½   🚼 🚍 遇 現
ng	e 30 66 120 116 220 126 149 250 149 270 166 
70	070 0.000 0.000
	0.5* 1.65 1.34 0.57 1.57 1.55 1.35
	1/40 110 10 10 10 10 10 10 10
Náthode de calcul Bishop       Système de pondérabon : Clouterre fundamenta//standare       Prote - 6.7	
Licence accordée à: Demo	Etude: profil 2 pde/stabilité
Cià Ràseau	Ethelle: 1/885
X 67.00 m	Y [28.50. m

Le résultat trouvé par le logiciel est Fs = 0.7

## Profile (03) :

#### Avec la méthode de Fellenius

### a)Sans chargement :

Fichier Edition Affichage Phasesetsituations Calculetrésultats Options Aide	
E 10 23 30 40 80 e8 70 80 93 100 100 170 170 130 140 188 168 170 180 189 200 218 	100
112 ···································	
200 //fregranua po	
1, <b>30</b> mar	
ASTREET	
su in Bernaha	
5.40	
20 2.77 10/00/00/2010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- Apple to a second sec	
70	
783 200 400	
en	
287	
un 2 Méthode de catul Fellenius 19	
Isysteme de pontenation : Clouterre landamentaristandard Finim - 1.8 · · · · · · · · · · · · · · · · ·	
Licence accoratée à Demo Etude profile Sistabilité	
Clé Réseau Echelle: 1/1 021	
X [05:00 m] Y [07:50 m]	

Le résultat trouver par le logiciel est Fs = 1.80

### b) Avec chargement :

Fichier Edition Affichage Phases et situations	Calcul et résultats Options Aide	
🖸 😹 🖨 🗢 🖉 🖉 🐚 🙀 🛣	🗅 Données du projet 📥 📮 🗵 💈 🧏 🏂 🗮 🗮 🗮	
	Image: Construction     Image: Construction	130 140 150 180 170 18( → Phase(1) → Situation (1)
P0_ 00_ 00_ 00_ 00_ 00_ 00_ 00_	1149424944949491977986 2.10 4.52 2.18 2.57 2.59 3.45 10 10 10 10 10 10 10 10 10 10 10 10 10	
< The second sec		×
<b>T</b> Talren 4	Licence accordée à: Demo Clé Réseau	Etude: profile 5/stabilité Echelle: 1/862
	X 111.50 m Y 48.00 m	

- > Avec la méthode de Bishop :
- a) Sans chargement :

[近] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
0 10 20 30 40 50 e8 70 68 80 100 110 126 130 140 150 168 170 168 180 208 710 F-	
📕 da ta da ta farta la tada da tada da tada da tada ta da da tada ta da tada ta bahada ta da tada da tada da tada da tada da ta	Struction (1)
2.05	Sitterior (1)
1.12 With the	
uco takanteha data	
102 100 00 00 00 00 00 00 00 00 00 00 00 00	
0 Children (1997)	
234	
au 288 Unseautoice therefore	
Tablesson	
289	
224	
270 224	
3.0	
an Methode de calcul. Eisthop 12 Beelinge de nondrivation. Conderne fundamental/Manchard	
2 [mm - 1.83	
TP Talron 4 License acordee a Demo Elude profile Sistabilite	
Echelle: 1/1 221	
× 104.50 m V 44.50 m	

#### b) Avec chargement :



Le résultat trouvé par le logiciel est Fs = 1.4

## VI.4.2. Calcul de stabilité en rupture non circulaire :

- Avec la méthode des perturbations :
- **Profile (01) :**



Le résultat trouver par le logiciel est Fs = 0.87

# Profile (02) :



Le résultat trouvé par le logiciel est Fs = 0.7

## Profile (03) :

a) Sans chargement :

Fichier Edition Affichage Phases et situations	s Calcul et résultats Options Aide	
	🐨 Données du projet 📥 🕁 Σ Σ _Σ	12 🔚 = 🚉 🕱
الله الم	Image: Compose dupoiet     Image: Compose dupoiet <thimage: compose="" dupoiet<="" th="">     Image: Compose dupoiet</thimage:>	
er 4 Melhode de calcul Perturbations Sestime de pondération : Cloulerre fundar From = 4.83 <	210 200 400 250 201 250 201 251 201 10 201 251	Fluce profile Statutot
Talren 4	Clé Réseau	Erhelle 1/1536
_	× 107.50 m ¥ 49.51	

Le résultat trouver par le logiciel est Fs = 1.83

b) Avec chargement :



### VI.5. Choix de la méthode de confortement :

Pour traiter le glissement du terrain Delly Brahim, les dispositifs de confortement techniquement et économiquement possible sont :

ouvrages de soutènement

#### Le clouage par pieux

Celui-ci constitue la solution la plus convenable pour fixer les masses de terre instable sur substratum sans trop remanier le terrain.

#### > Les géosynthétiques :

Les géotextiles possèdent plusieurs caractéristiques permettant de les utiliser et dans notre cas le drainage et le renforcement. Ils collectent et transportent les eaux pluviales et Ils ont la capacité de résister pour améliorer les propriétés mécaniques du sol.

### VI.6. Résultats du facteur de sécurité après confortement :

### VI.6.1. Avec un mur de soutènement: Profile (01) :

Avec la méthode de Fellenius :

n 20	40 p0	80 100 120	140	50 160	200 220	🖯 🍶 Phase (1)
	1.0 2 10 10 10 10 10 10 10 10 10 10 10 10 10	1.10 0.05			2010/10/00/00/00/00/00/00/00/00/00/00/00/	- England
1,	55au yaba	a70				8
- 1	PORODER STRAT	11a				
i in	178 29. 924 April	1000 C				8
100,000	552-0526X030	4C7 7,40				8
- Manuel	99003,450	7Å0 701				8
	90408-85	750				8
4 /	400	431 7.24 7.24 7.62				8
		7.84				
		7.20 7.57				8
		7.51				
	1 and 1	730 771				8
2	10	ECU				
2	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Mélhode de calcul, Fellen	ins.	and the second				
Système de pondération	Clouterre fundamental/standard					
-						r.
Talrar	Licence accorde	ès à Demo		Etude profile 1 pfeistabilité		
	🖌 🐨 Cié Réseau			Echelle: 1/1111		

### Avec la méthode de Bishop :



Le résultat trouvé par le logiciel est Fs = 1.57

Avec la méthode des perturbations :

Fichier Edition Affichage Phases et stuations Calculet résultats Op	n: Aide - [] 도 정 박 <b>말 로 경 양</b>
Image: Space of the s	Image: Control in the second secon
- Fmn = 1.57	
Talren 4 Licence accordée	Jemo Etude: profile 4 pře/stabilité Echejle: 1/793
×	6 m Y 81.58 m

## **Profile (02):**

Avec la méthode de Fellenius :



Le résultat trouvé par le logiciel est Fs = 1.66

Avec la méthode de Bishop :



### Avec la méthode des perturbations :



Le résultat trouvé par le logiciel est Fs = 1.67

## VI.6.2. Avec géotaxtile:

## Profile (01):

Avec la méthode de Fellenius :



Avec la méthode de Bishop :



Le résultat trouvé par le logiciel est Fs = 1.53

Avec la méthode des perturbations :



## **Profile (02):**

### Avec la méthode de Fellenius :



Le résultat trouvé par le logiciel est Fs = 1.47

Avec la méthode de Bishop :





#### Avec la méthode des perturbations :

Le résultat trouvé par le logiciel est Fs = 1.49

### VI.6.3. Avec les clous :

### **Profile (03):**

Avec la méthode de Fellenius :

B & C & A & B	🕰 🗠 Données du projet 📥	Σ 52 52	= 🚉 🔻	1010					
	بالبريه أستاب بالبريه	en en en en	···· / ··· / ····	⁸⁰ i		100	110 110 - 110	120	E - Phase (1)
	27 k ale ag	1211201/01/01/451/46		2,59				<u>^</u>	
	Pri (20123)	/101/401/401/481/45	2.0	4					
	2203B41661501821	#14 45 et at							1
	20h p016 h 56t 52t 4	FH 47- 40-							1
	188164160162	1,40 197,301,48							
	176-00	1.671-21-20152		2,35					1
	1.001/9176166160151	100 0115-157 1.03			2,90				1
	1781,551,531,521,591,54	5465-67.00							
	177102155154104100		2,64						
	in the p	ealized holles			211				1
		1		2014					
	1								1
the bar	<u>.</u>		-						1
			6		368			11	1
			-/	1	-				
						TO	-		
itode de calcul : Fallenius	(1) = <u></u>			12			1		4
stème de pondération : Clouterre fun	damentai/standard						-		
in = 1.45							<b>*</b>		1
and the second second	Licence accordée à Demo				Etude: prof	le 5/stabilité	10		1
r lairen 4	Clé Réseau				Echelle: 1/6	04			
	Lu Francisco		-				1		

> Avec la méthode de Bishop :

TALREN 4 v2.0.3 - CNUsers\fs\Desktop\profil 3	pieux 10m.pg		Contraction of the local division of the loc	- Andrewson and Party of	
Fichier Edition Affichage Phases et situations	Calcul et résultats Options Aide				
	100 100 100 100 100 100 100 100 100 100	348	110 120 130 	140 190 193	1/3 78K → Phase (1) → Struction (1)
32/	тически странатически 1989/1989/104400/040074 2.10 14400/04/905/98/999/1368 1989/1999/144/05/2019/05/2019/14 1989/14/06/02/2019/05/2019/14 174/2019/14/2019/05/2019/15 174/2019/14/2019/15	201 ¹¹ 281			_
	5.71 623	3.19 HCC			
Mélhode de calcul : Bishop Oystême de pondération : Clouterre fundan Finin - 1.51	mental/standard	V 22			<u></u>
Telmon A	Licence accordée à Demo		Etude: prot	file 5/stabilité	
	Clé Réseau		Echelle: 1/	962	
	X 103.50 m Y 54.50	m [			
3 0 🔚 🕹 🤇	ê 🚺 😵 🖉				FR 🔺 🏲 4: anii 18:02 19/06/2012

Le résultat trouvé par le logiciel est Fs = 1.51

> Avec la méthode des perturbations :

TALREN 4 v2.0.3 - C\Users\ts\Desktop\profil 3 p	neux 10m.pg					- 0 <b>- X</b>
Fichier Edition Affichage Phases et situations	Calcul et résultats Options Aide					
	🕫 Données du projet 📥 🛄 🗵 🔤	5 🖬 = 🛃 🖲				
	40 50 60 70	ec se res	110 120 130 	140 150 		Phase (1)
102	100 10030800516404580065050 177	3.48				
50.0	100000102015001010400					
328	A READEST PRESERVES					
80	15454515151515151515151505152 2.00	201				
	1545451515455888,0183,7158					
70	1.00.04590959069076.02.13 171	2.40				
eu	271					
	921	3,718				
		405				
	1.					
Méthode de calcul : Perturbations suSystème de pondération : Clouterre fundame suSystème de pondération : Clouterre fundame	ental/standard	13				
4				1	······································	
	Licence accordée à Demo		Etude p	rofile 5/stabilité		
- rairen 4	Clé Réseau		Echelle	1/862		
	X 104.50 m Y 40.00	m [				
🔊 p 🛅 🙆 🤌		-			FR	18:03

profil	Méthodes	Sans	Avec	après confortement			
Î		chargement	chargement	Géotextile	mur	pieux	
Profil	Bishop	0.87	-	1.53	1.55	-	
(01)	Fellenius	0.87	-	1.53	1.57	-	
	Perturbation	0.87	-	1.54	1.57	-	
Profil	Bishop	0.7	-	1.47	1.66	-	
(02)	Fellenius	0.7	-	1.47	1.67	-	
	Perturbation	0.7	-	1.49	1.67	-	
Profil	Bishop	1.8	1.36	-	-	1.45	
(03)	Fellenius	1.83	1.4	-	-	1.51	
	Perturbation	1.83	1.4	-	-	1.50	

4 Les résultats du coefficient de sécurité donnée par les différentes méthodes :

Tableau VI.3. Tableau récapitulatif.

### VI.7.Conclusion :

D'après les résultats obtenus du coefficient de sécurité après renforcement (mur de soutènement ; géotextile) du profil 1 et 2, par les trois méthodes donnent des résultats assez proches.et aussi les résultats obtenus du coefficient de sécurité après renforcement (pieux) du profil 3, par les trois méthodes donnent des résultats acceptable. mais du coté économique, Les produits géosynthetiques sont entrain de remplacer les solutions connues en raison de leur légèreté, leur rapidité de mise en œuvre, leur grande fiabilité et leur faible coût.

## **CONCLUSION GENERALE**

L'analyse et l'interprétation des données géologiques, hydrogéologiques, sismiques et géotechniques de notre zone d'étude à permit de bien comprendre les mécanismes qui conduisent aux différentes instabilités de terrain.

L'étude des instabilités montre les formations argileuses et marneuses sensibles à l'eau sont le siège de plusieurs instabilités. L'analyse des résultats du calcul de stabilité montre que les glissements affectent la couche de remblai ou les couches superficielles des formations marneuses et argileuses altérées, et dès qu'on atteint les horizons sains en profondeur le talus devient stable ce qui montre que ces glissements sont superficiels.

Il est important de terminer par quelques recommandations afin de stabiliser ou de ralentir les glissements existants ou bien d'éviter le déclanchement de nouveaux glissements :

- Mettre en place un bon système de drainage pour drainer les eaux de ruissellement, et un bon système d'étanchéité au tour des ouvrages.
- Eviter les grands terrassements.
- Faire les terrassements en saison estivale.
- Implantation d'arbres sur les talus de faibles stabilités et instables.
- Faire une étude géotechnique bien détaillée, avant chaque projet de construction.

## Bibliographie :

1-Technique et méthodes des laboratoires des ponts et chaussées, guide technique, stabilisation des glissements de terrain, février 1998, pp 9-19.

2-COSTET, J. SANGLERAT, G, cours pratique de mécanique des sols, 2. Calcule des ouvrages, troisième édition. 1983, pp 265-271.

3- Bulletin de liaison des Laboratoires des Ponts et Chaussées, stabilité des talus, versants naturels, mars 1926, pp 22-24.

4-DURVILLE, J.SEVE, G, stabilité des pentes, glissement en terrain meuble, techniques de l'ingénieure, traité construction, pp 254-5 – 254-14.

5-PHILLIPONNAT, G-fondation et ouvrage en terre, 1979, pp 148-155.

6-LATRAOUI YACINE ET MOHMED EL HAJ TADJEDDINE, étude et traitement de glissement de terrain extension de capacité sur la RN N° 01 PK82+700 MÉDÉA. Pour obtention de mastère 2 (2011).

7-BENTAIBA FATIMA ; HENDI FATMA ZOHRA, étude de stabilité au glissement d'un terrain devant recevoir le projet de 47 logements à CHERGA, Alger pour l'obtention du diplôme ingénieur d'état en génie civil, (2010).

8-N.MOUMNI. N.SEIFI, étude géotechnique d'un glissement de terrain d'Ain hammam Tizi-Ouzou, pour l'obtention du diplôme ingénieur d'état en génie civil, (2010).



plan de délimitation des zones.



Carte d'implantation des essais in situ.

# ANNEXE



Carte d'implantation des profils d'imagerie électrique

## ANNEXE

	Diffeit		Cumbolas	Conditions	Appellations
-	Definitio	ns	Symboles	Conditions	repellatorio
_	0,08mm ont un n	5% des	Gb	$Cu = \frac{D_{60}}{D_{10}} > 4$ et $Cc = \frac{(D_{10})^2}{D_{10}D_{60}}$ compris entre 1 et3	Grave propre bien graduée
GRAVET	iéments>i ètre >2mr	Moins de éléments < 0,08 m	Gm	Une des conditions de Gb non satisfaite	Grave propre mal graduée
	50% des é diam	2% des nts mm	GI	Limites d'Atterberg au-dessous de la ligne A	Grave limoneuse
	Plus de	Plus de 1; éléme < 0,08	Ga	Limites d'Atterberg au-dessus de la ligne A	Grave argileuse
	ts iamètre < 2 mm	s de 5% des léments m	Sb	$Cu = \frac{D_{un}}{D_{un}} > 4$ et $Cc = \frac{(D_{u0})^2}{D_{u0}D_{u0}}$ comprisentre 1 et3	Sable propre bien gradué
SABLE	te 50% de n ont un d	Moins é < 0,08 m	Sm	Une des conditions de Gb non satisfaite	Sable propre mal gradué
	Plus ( > 0,08 mn	12% hents n	SI	Limites d'Atterberg au-dessous de la ligne A	Sable limoneux
	éléments	Plus de des élén < 0,08 mn	Sa	Limites d'Atterberg au-dessus de la ligne A	Sable argileux

### Organigramme de Classification des sols grenus d'après le L.C.P.C

 $\%80\mu$  : le pourcentage des éléments du sol ayant un diamètre inférieur ou égal à 0.08 mm ;

%2mm : le pourcentage des éléments du sol ayant un diamètre inférieur ou égal à 2 mm ;

Cu : le coefficient d'uniformité ou de Hazen ;

Cc : le coefficient de courbure ;

- WL : la limite de liquidité du sol ;
- Ip : l'indice de plasticité du sol.



Diagramme de Casagrande pour la classification des sols fins.