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Abstract 

The focus of this study is to analyze the effects of earthquake parameters on the ground motion 

characteristics and structural behavior. The intensity measures of the ground motion investigated 

are the peak ground acceleration, significant duration, and the mean period. These measures were 

strategically selected to take into account the main features of the ground motion, such as the 

amplitude of the motion, cumulative effect, and frequency content. As for the engineering demand 

measures investigated, the inelastic response spectra and hysteretic energy demand spectra are 

selected to evaluate the nonlinear behavior of structures. For each of the parameters considered, a 

predictive model is developed, tested, and finally used to perform a sensitivity analysis. 

The strong motion database developed in this study includes 1104 records, collected from the 

Kiban Kyoshin Network (KiK-Net) from 10 events. The selected events have a depth less than 

13km, a magnitude between 4.8 and 7.3 and an epicentral distance ranging between 15 to 200 km. 

The Artificial Neural Network ANN technique is used as an alternative to regression methods. 

Compared to the existing attenuation models, in addition to the earthquake independent 

parameters used for attenuation relationships, a new aspect is considered in this dissertation called 

directionality. An analysis of the effect of directionality on the Peak Ground Acceleration (PGA) 

was performed, and it was found that their effect could cause an increase in the PGA that may reach 

up to 35%. Therefore, a radial angle parameter has been included in the input of the predictive 

model. The performance criteria used indicate that the predicted values of the intensity measures by 

the neural network are in good accordance with the observed ones.  Finally, a sensitivity analysis 

for the earthquake parameters was performed in order to quantify the influence of each parameter 

on the intensity measures and structural behavior using the synaptic weights of the validated ANN. 

The ANN model with only one hidden layer and a limited number of neurons, makes it easy 

to implement it in a spreadsheet or a simple computer program using the synaptic matrices and the 

bias vector, so that it can be routinely integrated in engineering applications and for Seismic Hazard 

Analysis studies. 

 

Keywords: Seismological parameters, earthquake ground motion, Artificial Neural 

Networks, KiK-net network, Intensity Measures. 
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Résumé 

Ce travail a pour objet d'analyser les effets des paramètres sismologiques sur les 

caractéristiques de mouvement du sol et le comportement structurel des batiments. Les mesures 

d'intensité du mouvement du sol étudié sont l'accélération maximale du sol, la durée significative et 

la période moyenne. Ces mesures ont été sélectionnées pour prendre en compte les principales 

caractéristiques du mouvement du sol, telles que l'amplitude du mouvement, l'effet cumulatif et le 

contenu fréquentiel. En ce qui concerne la réponse structurelle, les spectres de réponse inélastique 

et les spectres d'énergie hystérétique ont été sélectionnés pour évaluer le comportement non linéaire 

des structures. Pour chacun des paramètres considérés, un modèle prédictif est développé, testé et 

finalement utilisé pour réaliser une analyse de sensibilité. 

La base de données de mouvement fort développée dans cette étude comprend 1104 

enregistrements, collectés à partir du réseau Kiban Kyoshin (KiK-Net) à partir de 10 événements 

sismiques. Les séismes sélectionnés ont une profondeur inférieure à 13 km, une magnitude comprise 

entre 4,8 et 7,3 et une distance épicentrale comprise entre 15 et 200 km. La méthode basée sur les 

réseaux de neurones artificiels est utilisée comme alternative aux méthodes de régression 

statistiques. 

Par rapport aux modèles d'atténuation existants, en plus des paramètres indépendants du 

séisme utilisés dans les équations d'atténuation, un nouvel aspect est considéré dans cette thèse 

appelé directionnalité. Une analyse de l'effet de la directionnalité sur le PGA a été réalisée, et il a 

été constaté que leur effet pouvait entraîner une augmentation du PGA pouvant atteindre 35%. Par 

conséquent, un nouveau paramètre nommé « angle radial » a été introduit dans l'entrée du modèle 

prédictif. Les critères de performance utilisés indiquent que les valeurs des mesures d'intensité 

prédites par le réseau neuronal sont en bon accord avec celles observées. Une analyse de sensibilité 

des paramètres sismiques a été réalisée afin de quantifier l'influence de chaque paramètre sur les 

mesures d'intensité et le comportement structurel à l'aide des poids synaptiques de l'ANN validé. 

Le modèle ANN avec une seule couche cachée et un nombre limité de neurones, facilite sa 

mise en œuvre dans un tableur Excel ou un simple programme informatique en utilisant les matrices 

synaptiques et le vecteur de biais, de sorte qu'il puisse être systématiquement intégré dans les 

applications d'ingénierie et pour études des risques sismiques. 

 

Mots clés: paramètres sismologiques, mouvement du sol, réseaux de neurones artificiels, 

réseau KiK-Net, mesures d'intensité. 
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 ملخص

جمیع أشكال التحمیل  على السلوك الزلزالي للھیاكل. من المعروف أن الزلزالیةتھدف الأطروحة إلى تقییم تأثیر المعلمات 

لمعلمات الزلزالیة االتصمیم مشتقة في الأصل من سجلات الحركة الزلزایة الأرضیة. ولذلك، فإن تأثیر الزلزالي المستخدمة في 

المعروفة باسم لنماذج اقتراح مئات ا سابقة، تمبحثنا. وفقاً لبحوث  إطاریة تم تناولھا في لالزلزاالأرضیة على خصائص الحركة 

 لتعقیدزل. نظرًا والتي تربط خصائص الحركة الزلزالیة بمعلمات الزلا  .نالتنبؤ بالحركة الأرضیة، أو علاقات التوھی نماذج

یادة من سنة إلى في الز یستمر عدد نماذج تنبىء الحركة تطور الإدخال،بمعلمات  والارتیاب المتعلقالنشاط الزلزالي  ظاھرة

لزلزال.انماذج التنبىء بحركة  أخرى. الا یومنا ھذا لا تزال ھناك حاجة الى دمج معملات زلزالیة جدیدة في تطویر   

ي بحثنا . ف تھاشد خصائص ، ومعاییر قیاسزلزالیةحركة الال توصیففي الجزء الأول من الأطروحة ، تمت معالجة 

 عاییر قیاس الشدةمعاییر قیاس الشدة التي تم فحصھا ھي ذروة تسارع الأرض ، والمدة المعبرة للزلزال ، ومتوسط التردد.  م

ة والتأثیر التراكمي اختیارھا بشكل استراتیجي لمراعاة السمات الرئیسیة لحركة الأرض مثل سعة الحركة الزلزالی تم الزلزالیة

عالمیة المقدمة من وتردد الحركة الزلزالیة. ملفات الحركة المستخدمة في ھذه الدراسة تم حصول علیھا من قاعدة البیانات ال

طویر نموذج یربط ض والكوارث. استخدمت ملفات الحركة الزلزالیة المحصل علیھا لتالمعھد الوطني الیاباني لبحوث علوم الأر

 طناعیة كبدیل لطرقالاص العصبیةالشبكة  تقنیة.  في ھذه الدراسة استخدمت الزلزالیةبین خصائص الحركة الزلزالیة والمعلمات 

بواسطة الشبكة العصبیة  القیم المتوقعة لمقاییس الشدة الانحدار لنجاعاتھا في عدید من المجالات التقنیة. تشیر النتائج إلى أن

مختلفة على خصائص تم إجراء تحلیل الحساسیة للتحقیق في كیفیة تأثیر المدخلات ال لذلك،تتوافق مع القیم المرصودة. نتیجة 

الیة. خصائص الحركة الزلز على خصائص الحركةتأثیر متفاوت الحركة الزلزالیة ، وتبین من النتائج أن المعلمات الزلزالیة لھا 

الأطروحة تم التطرق الى  الزلزالیة في حد ذاتھا لا توفر أي معلومات عن الاستجابة الھیكلیة للبنایات. لھذا في الجزء الثاني من

یكلیة. تم الاستجابة الھ مقدارالعلاقة بین مقاییس الشدة التي تمیز حركة الزلزالیة ومعلمات الطلب الھندسي للبنایات والتي تمثل 

ي التي تم فحصھا ھي فإن مقاییس الطلب الھندس بذالكدرجة الحریة الواحدة المكافئة  ذات الاعتماد في ھذه المرحلة على أنظمة

الدینامیكیة غیر الخطیة  تم إجراء التحلیلات دراستناأطیاف الاستجابة غیر المرنة وأطیاف الطلب على الطاقة  التخلقیة. في اطار 

اء نماذج الشبكة العصبیة أد أظھرخدام نھج القوة الثابتة ، لفترات اھتزاز مختلفة عند مستویات قوة الخضوع المختلفة. لأنظمة باست

.توافقاً جیداً بین القیم المتوقعة والمحسوبة لكل من خصائص الحركة الزلزالیة و الاستجابة الھیكلیة  

السھل تنفیذه في  مخفیة واحدة وعدد محدود من العقد یمكن من من منظور الجانب العملي نماذج الشبكة العصبیة مع طبقة

شكل متكامل في بسیط باستخدام المصفوفات متشابك وناقلات التحیز، بحیث یمكن أن تدرج ب كمبیوترأو برنامج  بیاناتجدول 

.التطبیقات الھندسیة ودراسات التحلیل للمخاطر الزلزالیة  

 

: المفتاحیةالكلمات   

الاصطناعیة الشبكات العصبونیة , ةینماذج التنبؤ بالحركة الأرض, سجلات الحركة الزلزایة, الیةالزلزالمعلمات   
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Chapter I. INTRODUCTION 
 
 
 
 

I.1. Background 

One of the popular methodologies used to characterize the seismic behavior of civil 

structures is called Performance-Based Earthquake Engineering (PBEE). It is considered the most 

common approach used for evaluating seismic risk decision-making. The first step in this process 

is to analyze and evaluate the seismic hazard to obtain a good estimate of the earthquake's force. 

The complexity of the earthquake phenomena poses a challenge to identify, assess and control the 

seismic hazard level. 

The ground motions recorded from previous earthquake are the basis of all forms of seismic 

loading. From a practical perspective the earthquake accelerogram is a key component that links the 

seismological parameters to the structural response (figure I.1). The scalar parameters characterizing 

the ground motion are called intensity measures (IMs), which are usually used in assessing the 

seismic demand for a given location. As the ground motion is complex and transiency excitation, a 

complete description of earthquake ground motion requires consideration of various features. 

Therefore, multiple parameters have been proposed in the literature to describe the ground motion 

records. The intensity measures can be categorized into three groups:  

(1) Peak ground motion parameters, which are used to determine the peak amplitude of 

different measures such as the acceleration (PGA), the velocity (PGV), and the displacement (PGD). 

These parameters primarily influence the response of structural systems.  

(2) Duration and cumulative parameters, these measures are used to assess the cumulative 

effects of ground motion, which correlate well with the energy imparted to structures. Well-known 

parameters such as the Intensity Arias (IA) and Significant Duration (SD) are widely used to take 

into account the cumulative effect.  

(3) Frequency content, it is well known that the frequency of earthquake loading has a great 

impact on the seismic response of engineering systems. Several parameters derived from the Fourier 

Amplitude Spectrum (FAS) are proposed to characterize this last, such as the mean period (Tm), the 

average spectral period (Tavg), the smoothed spectral predominant period (To), and the predominant 

spectral period (Tp). 
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Investigating the relationship between the intensity measures and seismological independent 

parameters is increasingly becoming a vital factor in seismic hazard and risk analysis. The 

relationship form expressing a single intensity measure (e.g., PGA, PGV, etc.) in terms of 

seismological parameters (e.g., magnitude, source-to-site distance, and site condition, etc.) is called 

the Ground Motion Prediction Equation (GMPE) or attenuation relationship. 

The attenuation equation not only helps to capture the effects of seismological parameters 

on the properties of ground motion, but it can also predict the hazard level for a given site so that 

earthquake-resistant buildings can be appropriately designed. 

Most of the GMPEs developed in the literature relate the intensity measures of ground 

motion (e.g., Peak Ground Acceleration, PGA, significant duration, SD) to a set of explanatory 

variables describing earthquake source, path, and site condition. Douglas (2019) summarized 440 

models published between 1964 and 2019 for the PGA. Compared to PGA, a limited number of 

predictive models have been published on the duration and frequency content. Kempton et Al. 

(2006) expressed the significant duration of earthquake ground motion as a function of magnitude, 

closest site-source distance, shear wave velocity, basin depth, and near-fault parameters [1]. Several 

recent studies have proposed Ground Motion Prediction Equations (GMPEs) expressing various 

duration definitions as a function of source, path, and site parameters [2-4]. Despite the fact that the 

frequency content of ground motion is an important aspect in earthquake engineering, the number 

of existing attenuation models for frequency content is limited. To date only a few empirical models 

have been developed. The generally used model is that of Rathje et al. (2004), which was an update 

of the previously developed model by Rathje et al. (1998) [5, 6]. Other models have been proposed 

for specific regions to predict the frequency content as a function of earthquake parameters, such as 

the United States, and Iran [7, 8]. 

On the other hand, there has been an increasing interest in developing GMPEs for 

engineering demand parameters with the purpose of capturing the influence of earthquake 

parameters on structural response measures (e.g., inelastic response spectra). In earthquake 

engineering, The inelastic response spectra have played a significant role [9]. The concept is 

especially convenient in modal analysis of structural systems, where the maximum response of a 

Multi Degree Of Freedom (MDOF) system can be efficiently approximated by a modal combination 

of the maximum responses of a series of Single Degree Of Freedom (SDOF) modal systems. 

Therefore, expressing the response spectra for a given site in terms of seismological parameters and 

structural properties has received increasing interest; a number of studies have been conducted to 

develop prediction models, which express the inelastic response spectra in terms of seismological 

parameters in the form of attenuation relationships [10]. 



3 
 

Due to the ground motion complexity and the uncertainty related to earthquake parameters, 

the number of GMPEs continues to increase from year to year. Nonetheless, to date, there still a 

need to:   (1) Incorporate new seismological parameters and examine their effects on the intensity 

measures of ground motion; (2) Use new data modelling tools (such as nonlinear regression, Fuzzy 

logic methods, Neural network methods) to capture and express the relationship between the 

earthquake parameters and the intensity measures of ground motion; (3) Extend and use new ground 

motion databases collected from different sources. 

The seismograph network installed on the surface captures the ground motion during an 

earthquake; each station provides three components of the accelerogram (two in the main horizontal 

direction, EW and NS and one in the vertical direction). The ground motions vary in intensity as a 

function of the orientation of interest. Most of GMPEs predict the geometric mean of the intensity 

measures of two horizontal components of ground motion. In some cases, it may be of greater 

interest to know the maximum value, over all possible directions, of the intensity measures. 

Although a large number of prediction equations for intensity measures, the ground-motion 

directionality effect is rarely addressed. This study presents a simplified approach, which considers 

the directionality aspect in GMPE development by introducing new parameters called the radial 

angle epicenter-station as an explanatory variable. 

 

I.2. Objectives and scope 

The present dissertation, in the framework of PBEE methodologies, focuses on the interface 

between hazard analysis and structural responses and aims to analyze the effects of the seismological 

parameters on Intensity Measures and Engineering Demand Parameters by developing new Ground 

Motion Prediction Equations (GMPEs) expressing the Intensity Measures and Engineering Demand 

Parameters in terms of seismological parameters. 

Compared to the existing attenuation models, in addition to the earthquake independent 

parameters used for attenuation relationships, a new aspect is considered in this dissertation called 

directionality. An analysis of the effect of directionality on the PGA was performed, and it was 

found that their effect could cause an increase in the PGA that may reach up to 35%. 

In this work, a new approach is proposed to take into account the directionality effect by 

introducing a new parameter called radial angle as an explanatory variable. 

A ground motion database collected from the Kiban Kyoshin seismograph network (KiK-

NET) is compiled and prepared, including all the metadata such as event name, station, time, place, 

time step, etc. The intensity measures that characterize the main features of ground motion 
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(amplitude motion, duration, and frequency content) were selected and investigated. Consequently, 

Ground Motion Prediction Equations (attenuation relationships) have been developed and used to 

analyze the effects of seismological parameters based on sensitivity analysis. In the second stage, 

the engineering demand parameters that characterize structural response is addressed. For this 

purpose, a dataset is constructed based on dynamic time history analysis of SDOFs systems 

subjected to a series of ground motion records carefully selected. The dataset was then used to 

develop predictive models. These latter were used to investigate the effects of intensity measures 

and seismological parameters on the engineering demand parameters. 

 

 

I.3. Thesis organization 

This dissertation is organized into six chapters. The first chapter presents the background and 

motivation factors and sets the present study in its framework. An explanation of the role and the 

importance of the characterization of ground motions to understand the effects of the seismological 

parameters on structural responses is given. The second chapter presents a description of the 

seismological parameters and provides an overview of the intensity measures and engineering 

demand parameters and their corresponding empirical prediction relationships proposed in the 

literature. The third chapter is dedicated to the methodology adopted. A brief description of the 

database developed is given and a summary of the knowledge required to develop a prediction 
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model using the Artificial Neural Network is provided. Chapter 4 covers data modeling analysis for 

the intensity measures, including the formulating of the neural models using the Feed-Forward-

Back-Propagation algorithm. This chapter consists of three sections, each of which concerns a single 

intensity measure. Chapter 5 covers data modeling analysis. This chapter concerns the Engineering 

Demand Parameters and has the same structure as chapter four. Chapter 6 offers a summary of the 

results and findings of this study.  
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Chapter II. Ground Motion prediction equations or 

« Attenuation models » 
 
 
 
 

II.1. Introduction 

During an earthquake, the ground shaking can cause severe damage to the structural and non-

structural members, the seismic excitation applied in the low part of the structure produce force and 

displacement, which may exceed the structural capacity. One of the most popular approaches for 

characterizing seismic behavior of civil structures is called Performance-Based Earthquake 

Engineering. It is considered the modern approach to earthquake-resistant design currently being 

applied in seismic design and evaluation on various buildings and bridges. The PBEE goal is to 

design buildings that sustain a given level of seismic demand while maintaining the desired level of 

performance.  The performance levels are classified as fully operational, operational, life safety, and 

near collapse, while hazard levels are classified as frequent, occasional, rare, and very rare events.  

 

 
Figure II-1 Vision 2000 recommended seismic performance. Reproduced from Krawinkler (2005) [11] 

 

As illustrated in Figure II-2, The Performance-based design can be summarized into four 

following main steps: hazard analysis, structural analysis, damage analysis, and loss analysis. The 

PBEE methodology begins with the estimation of one (or more) ground motion Intensity Measures 
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(IMs) that should capture the important characteristics of earthquake ground motion that influence 

the response of the structural and nonstructural components and building contents.  The end result 

of hazard analysis is the Hazard Curve, which describes the variation of the selected IM versus its 

Mean Annual Frequency (MAF) of exceedance parameter using the attenuation relationship for a 

specific location of the building and its mechanical characteristics (e.g., first and second mode 

periods).  

The second step is to define the Engineering Demand Parameters that characterize the building 

behavior. This step is accomplished by structural response simulations using the IMs and 

corresponding earthquake motions from step one. The EDPs are used along with component fragility 

functions to determine Damage Measures (DMs) specific to facility components.  Lastly, given 

these DMs, a set of variables including operability, repair costs/duration and potential for casualties 

can be evaluated. Such performance measures are referred to as decision variables (DVs) since they 

serve to inform stakeholder decisions regarding future performance. 

 

 
Figure II-2  Overview of PEER-PBEE methodology. Reproduced from Krawinkler (2005)[11]. 

 

Determining the level of hazard for the facility site is regarded as a critical component in 

PBEE methodologies. Forecasting a probable seismic demand for a given site is not an easy task 

since it combines multiple types of uncertainties related to the earthquake source, path, and site 
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conditions. A well-known approach called Probabilistic Seismic Hazard Analysis “PSHA” has been 

developed and widely used to quantify these uncertainties and combine them to estimate the 

probability of the parameters related to the ground shaking that may occur at a particular site over a 

given return period.  

The outcomes of the Probabilistic Seismic Hazard Analysis (PSHA) process is used for a wide 

range of applications such as (1) Site-specific seismic demand analysis and design of earthquake-

resistant structures and facilities; (2) Development of official seismic hazard maps which provide 

important information to help mitigate disasters; and (3) social and financial loss estimation. As 

shown in Figure II-3 the Probabilistic Seismic Hazard Analysis is composed of five following steps 

[12]: 

1. Identification and characterization of all earthquake sources. 

2. Characterization of the recurrence rate of various earthquake magnitudes expected to occur. 

3. Description of the distribution of source-to-site distances corresponding to potential 

earthquakes. 

4. Use the attenuation relationship to predict the resulting distribution of ground-motion 

intensity measures as a function of earthquake magnitude, distance, etc. 

5. Combine uncertainties in earthquake size, location, and ground motion intensity based on 

the probability computations to determine the hazard curves. 

The end results of probabilistic seismic hazard analysis are the seismic hazard curves, which 

show the mean annual rate of exceedance of a particular intensity measures of ground motion. The 

probabilistic seismic hazard analysis has been widely used for almost 50 years by governments and 

industry applications. Many  types of research have been conducted to investigate each step. In this 

dissertation, the steps 4 of PSHA methodology regarding predicting the intensity measures of 

ground motion for a given earthquake parameters is addressed.  

The attenuation relationships (GMPE's) are key components of PSHA methodology, which 

represents a tool commonly used to: give a prediction of the level of ground motion at a given site; 

evaluate the influence of seismological parameters on ground motion characteristics. By definition, 

the GMPE or “Attenuation model” is an equation typically developed from statistical analysis of 

earthquake motions to estimate the level of ground motion as a function of various variables 

characterizing the earthquake proprieties.  

Up-to-date the availability of the ground motion database and the evolution of robust 

regression techniques have made dramatic progress in developing and updating the Empirical 

predictive relationships. In literature, many researchers have proposed GMPEs and investigated 

their performances. The attenuation relationship can be classified into two main categories 
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depending on the nature of the parameter to be addressed; the first group concerns the Intensity 

measures (IMs), which are parameters that describe quantitatively different features of ground 

motion records. The second group relates to the Earthquake Demand Parameters (EDP), which are 

structural response measures that can be used to assess seismic damage.

The present chapter includes an overview of the IMs and EDPs investigated in this study and 

provides a literature review of the prediction models. 

 

 
Figure II-3 Main steps of PSHA 
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II.2. The independent seismological parameters used 

For practical purposes, earthquake information needs to be expressed in the form of specific 

physical parameters called seismological parameters or earthquake parameters. These parameters 

serve as an important tool for generalists and synthesizers in seismology since they are used as an 

initial starting basis to build practical theories. As illustrated in Figure II-4, the seismological 

parameters were divided into three categories:  

 Source parameters (e.g., moment magnitude, mechanism of faulting);  

 Path parameters (e.g., site-to-site distance, site-to-site orientation)  

 Site parameters (e.g., shear-wave-velocity and site frequency). 

The parameters used in this study are presented briefly in the following paragraphs.  

 

 
 

Figure II-4 Groups of seismological parameters 
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II.3. Source Parameters  

Source parameters, which characterize the effects of earthquake size and characteristics of rupture, 

these parameters are constant for a given earthquake event, the fundamental source parameters used in 

this study are earthquake magnitude (M), the depth to the top of the fault rupture (d). 

II.3.1.   Moment Magnitude  

In this study, the moment magnitude (Mw) was adopted as the magnitude measure. The moment 

magnitude has several advantages over other magnitude scales including that it ties the magnitude 

directly to earthquake source processes, it does not saturate for magnitudes greater than 6, and it is 

directly proportional to the area of the fault plane that ruptured times the average displacement along 

the rupture plane. The moment magnitude has been adopted by engineers and engineering seismologists 

worldwide as a unifying reliable magnitude measure [13, 14]. This measure is primarily linked to the 

characteristics of the fault rupture and the energy released during the earthquake. Katsumata (1996) 

proved that the average difference between MJMA (Japan Meteorological A) and moment magnitude Mw 

is not significant, especially in the magnitude range from 5 to 7 [15].  

II.3.2. Depth 

The depth of focus from the epicenter, referred to as “Focal Depth”, is an important parameter 

in determining the damage potential of an earthquake. Most of the damaging earthquakes have 

shallow focus with focal depths less than about 70km. 

II.4. Path Parameters  

The path parameters are used to characterize the propagation and attenuation of the seismic 

energy from the earthquake source to the site of interest. Two parameters are used in this study: 

Source to site distance and source to site orientation. 

II.4.1. Source-to-site distance 

Source-to-site distance is a primary input parameter for evaluating the intensity measure 

parameters in risk and hazard analysis [16]. The distance measure is the basis for the assessment of 

the attenuation effect in seismic excitation. Multiple definitions of distance measures have been 

proposed in the literature. Douglas (2003) provides an extensive review of these definitions [17]. 

As illustrated in Figure II-5, various definitions of source-to-site distance are available in the 

literature. Typical distance measures employed in attenuation relationship investigations are based 

on either a point-source representation or an extended-source representation (fault plane). The 

epicentral distance (Repi) and hypocentral distance (Rhypo) are the point source-based measures, 

while the Joyner-Boore distance (Rjb, the shortest distance to the surface projection of a fault plane) 
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and rupture distance (Rrup, shortest distance to a fault plane) are the extended source-based 

measures. 

This study uses the epicentral distance (Repi) defined as the horizontal distance between the 

surface projection of the hypocenter and the site. 

 

 
 

Figure II-5 Source-to-site distance definition 
 

 

II.4.2. Source-to-site orientation 

Source-to-site orientation is the angle formed between the orientation of the epicenter-station 

path and the direction of the component (see Figure II-7). This parameter is considered in this study 

following an analysis of the directionality effect which was found significant. The details of this 

analysis are presented in Chapter 4 section 2. Therefore, the source-to-site angle parameter is 

introduced as an input to take into account the directionality effect. 

It should be noted that the metadata associated with ground motion records includes the 

coordinates (latitude/longitude) for each record and the seismic source, as presented in Figure II-6.  
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Figure II-6 Radial angle θ for two components of AKTH02 station during 26-07-2003 earthquake M=6.2. 

 

II.5. Site Parameters  

The geotechnical parameters are practically measured locally and used to investigate the 

influence of the local site condition on the intensity measures of ground motion. The Kyoshin 

database provides geotechnical information on the site of each KiK-Net station. This information 

includes a description of the lithology and the velocity profile for both S and P waves.   

Local site effect is one of the most important aspects in earthquake engineering design and is 

often characterized by a set of simplified parameters, such as the site predominant period [18], the 

geological and geotechnical description of soil layers, and site period [19].  

In the present study, two parameters were used to consider the site condition, the shear wave 

velocity (Vs30), and resonant site frequency (f800). 

II.5.1. Shear wave velocity 

The average soil shear-wave velocity down to a depth of 30m (VS30) is successfully used by 

many recent ground motion prediction equations (GMPE) to introduce the site effects [20-22].  The 

Vs30 is calculated using the following equation: 
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 (1) 

 
In this dissertation, the distribution of the site classes is performed according to NEHRP 

classification (see Table II-1) which is based on the shear wave velocity Vs30 [23]. 

 
Table II-1 NEHRP Site Classification (BSSC, 2003) 

Site Class Vs30 (m/s) General Description 

SA >1500 Hard rock 

SB 760-1500 Rock with moderate weathering 

SC 360-760 Very dense soil and soft rock 

SD 180-360 Stiff soil 

SE <1800 Soft clay soil 
 

 

II.5.2. The resonant frequency 

Besides VS30, the resonant frequency f800 is also considered as a governing parameter to 

characterize the site effect on the intensity measures of the strong ground motion. The f800 for each 

site is calculated using the following equation: 

 

 
(2) 

  

 hi: thickness of ith layer   

 vi: shear wave velocity 

 hl : the thickness of the lth layer  

 Vsl : the shear velocity of the lth layer. 

 Z800: the depth down to a velocity 800 m/s (reference site) 
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Figure II-7  Site seismic parameters. 

 

II.6. Predictive models for Intensity measures (IMs) 

The intensity measure of ground motion are parameters that describe quantitatively various 

aspects of the earthquake ground motion records. The characterization of earthquake strong motion 

is essential in risk assessment and earthquake-resistant design methodologies. It is considered as a 

link between seismic hazard analysis and seismic demand analysis. In earthquake engineering 

practice, various definitions of IMs were proposed and used with the aim of evaluating the potential 

damage of an earthquake motion. 

As presented in Figure II-8, the intensity measures can be categorized into three groups: 

 (1) Peak ground motion parameters, which are used to determine the peak amplitude of 

different measures such as the acceleration (PGA), the velocity (PGV), and the displacement (PGD). 

These parameters primarily influence the response of structural systems.  

(2) Duration and cumulative parameters,  these measures are used to assess the cumulative 

effects of the ground motion which correlate well with the energy imparted to structures, well-
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known parameters such as Intensity Arias (IA) and significant duration (SD) are widely used to take 

into account the cumulative effect. 

 (3) Frequency content, it is well known that the frequency of earthquake loading has a great 

impact on the seismic response of the engineering systems. 

The intensity measures are intended to characterize the three aspects of ground motion, 

namely, the amplitude of motion, duration, and frequency content. In this dissertation, for each of 

the ground motion features, one parameter is investigated namely, respectively, PGA, Significant 

duration, and Mean period. 

 

  
Figure II-8  Classification of Intensity measures parameters 

 

II.6.1. GMPEs for the Peak ground acceleration (PGA) 

Peak ground motion parameters influence the response of the structures and correlate well 

with the structural response during seismic excitation. The most commonly used parameter is the 
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Peak Ground Acceleration, which is equal to the maximum ground acceleration recorded on an 

accelerogram at a given site.   

Until now, the GMPE has attracted considerable interest. Most of attenuation relationships 

developed are addressed to the PGA parameters, which are frequently presented as functions of 

seismological parameters. The early models were based on two parameters, source-to-site distance 

and the magnitude. Presently, advanced attenuation models are mainly considered the source to site 

distance, earthquake magnitude, geotechnical site condition, and faulting mechanism and stress 

drop, rupture propagation, directivity.[22, 24, 25] 

The attenuation relationship for the PGA has undergone a revolutionary development, 

especially with the availability of data records and computational tools. for example, a brief 

comparison between the first attenuation model proposed by Esteva and Rosenblueth (1964) [26] 

and Abrahamson et al. (2014) [27]. The GMPE of Esteva and Rosenblueth (1964) was based on 

only 46 records and its three coefficients were estimated via standard least-squares regression. In 

contrast, the model of Abrahamson et al. (2014) is based on over 15 000 records from more than 

300 earthquakes, and its roughly 40 coefficients were determined based on random-effects 

regression. As is common for early GMPEs, Esteva and Rosenblueth (1964) do not report the 

standard deviation (σ) of their equation, whereas Abrahamson et al. (2014) concentrate much of 

their effort on deriving a complex σ that models the different components of ground-motion 

variability. 

Attenuation models for the PGA are currently published at the rate of more than one per month 

and, at the last count, A number of reviews of GMPEs have been made in the past, Douglas 

performed an extensive analysis of earlier empirical models and summarized 400 empirical 

equations for the prediction of PGA published between 1964 and 2019. Table II-2 summarizes some 

of the attenuation models proposed in the literature. Basically, the proposed attenuation models are 

strongly depend on the data records used which varied greatly with geographical regions [28].  Due 

to the increasing development of the GMPEs, Bommer suggested criteria to select the GMPE [29].  

The typical forms of the attenuation models are expressed as follow:  

 (3) 

While: 

Y is the measure of ground-motion (PSA, PSV, or PGA, PGV, etc.). 

 fsource is a function that appropriately scales ground-motion with magnitude,  

fpath is a function accounting for attenuation, and fsite is a function that accounts for local effects 

(e.g., amplification) at the recording site.  
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 Table II-2 Typical attenuation relationships for PGA  

 

II.6.2. GMPEs for Significant Duration of ground motion  

In literature, more than 10 definitions characterize the seismic duration were proposed. Two 

classes can be distinguished: significant and bracketed duration.  

II.6.2.1. Bracketed duration 

Bracketed duration is defined as the time interval between the first and last exceedance of 

ground acceleration above or below a specified threshold value. [34]  

 

The bracketed duration was initially used by Ambraseys and Sarma 1967 [35]. They selected 

a threshold of 0.03g. Page et al. (1972) [36] had slightly changed the initial definition by using a 
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threshold equal to 0.05g. The term “brackted duration” was first introduced by bolt 1973, he used 

the interval between the first and last excursion greater than or equal to 0.05 or 0.1g. [37] 

 Mcguire and Barhad [38] suggested bracketed duration based on various threshold values 

(e.g. 0.1g, 0.15g, and 0.2g). Figure II-9 illustrates as an example the calculation of the bracketed 

duration for a threshold acceleration of 0.05g.

The bracketed duration depends strongly on the absolute values of the acceleration, if the 

records are scaled to different levels of peak ground acceleration the duration value substantially 

changed. To overcome this shortcoming and eliminate the acceleration amplitude dependence. A 

new concept called fractional duration was proposed and used, which defines the threshold as a 

proportional of the peak acceleration. Since then, this concept has been used by several studies and 

is known as the normalized bracketed duration [39]. 

The main advantage of bracketed duration is the simplicity, while their disadvantage lies in 

the sensitivity to a small change in the threshold level. 

 

 
Figure II-9 Bracketed duration for The Northridge (USA) earthquake of January 17, 1994 record  

Source: PEER Strong Motion Database 
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II.6.2.2. Significant duration 

The “Significant Duration” refers to all definitions of ground motion duration that uses the 

energy content of an earthquake.  

Most of the definitions of significant duration in the literature use Arias intensity, which is a 

measure of the energy content of the acceleration time history, by definition, the intensity of Arias 

equal to the integral of the square of the acceleration time history divided on (2xpi) value. Various 

approaches have been suggested to calculate the significant duration. Kempton and Stewart [1] have 

proposed a definition based on the square of the velocity time history while Trifunac and Brady [40] 

have used the squares of both the velocity and the displacement time history (2006, 1975, 

respectively).   

The Arias intensity measure is a good representative parameter to evaluate the potential 

destructiveness of an earthquake [41]. Since it takes into account the characteristics of amplitude, 

frequency content, and duration of ground motion. Arias intensity appears to correlate well with 

several commonly used demand measures of structural performance and liquefaction [42, 43]. 

The total Arias intensity Ia is expressed as follow:  

 (4) 

Where: 

 a(t) : ground motion time history  ground acceleration time-history 

 tmax: duration time of accelerogram 

 g : gravitational acceleration 

Husid (1969) [44] defines the duration of strong shaking of an earthquake record as the time 

interval from 0% to 95 % of Arias intensity, whereas Trifunac (Trifunac and Brady 1975) used the 

time interval (SD595) between 5% and 95% of the Arias intensity which was more suitable. 

Similarly, (Somerville et al. 1997) [45] defined the significant duration as the time interval (SD575) 

between 5% and 75%. The last two significant duration definitions are investigated in the present 

study. The Trifunac and Brady definition of duration is illustrated in the Husid plot in Figure II.10. 

In the present dissertation, the adopted significant duration is the one given by Trifunac and 

Brady (1975) which has been successfully used in previous researches. It represents the time interval 

tmax needed to reach a specific percentage of the total Arias intensity Ia.  
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II.6.3. Significant duration relationships 

Developing an attenuation relationship to estimate the significant duration of potential strong 

motion at any given site is challenging in seismic hazard analysis. Several recent studies have 

proposed predictive models to express various duration definitions based upon seismological 

consideration (Bommer et al. 2009 [2]; Afshari and Stewart 2016 [3], Hammal et al.2017 [46]).  

 Kempton and Stewart (2006) proposed an attenuation relationship that expresses the 

significant duration of earthquake ground motion as a function of magnitude, closest site-source 

distance, near-surface, shear wave velocity, basin depth, and near-fault parameters. Their ground 

t5%  t95%  5% t95%

Significant duration 

Figure II-10     Significant duration for The Northridge (USA) earthquake of January 17, 1994 record 
Source: PEER Strong Motion Database 
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motion database used is collected from the worldwide strong ground motion records database, which 

records refer to the active tectonic regions such as USA (California) and Japan.  

Lee and Green (2014) used  the nonlinear-mixed effects regression technique to develop an 

empirical predictive relationship for a significant duration of horizontal strong ground motions in 

stable continental regions. Boore and Thompson (2014) [47]  suggested an equation for path 

duration that can be used in the stochastic method.  

Additionally, simple functional forms employing predictor seismological variables have been 

proposed by (Afshari and Stewart 2016; Du and Wang 2016) using Next Generation Attenuation-

West2 (NGA-West2) database to predict the significant duration.  

Nolasco et al. (2014) [48] used neural networks to determine the strong motion duration for 

the Mexican cities, even though based on a limited database.  

Table II-3 summarizes some of the recent GMPEs for significant duration including the 

functional form. It can clearly be seen from this table that Abrahamson and Silva (1996) [49]and 

Kempton and Stewart (2006) [1] used a very similar functional form. 

 
Table II-3 Empirical Models for Significant Duration 

Investigators Function form Year 

Triffunac and Brady 

[40] 
 1975 

Dobry et al.[50]  1978 

Abrahamson and 

Silva[49]  
1996 

Kempton and 

Stewart[1]  
2006 

Bommer et al. [2]  2009 
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II.6.4. GMPEs for Frequency content  

The frequency content of an earthquake ground motion is one of the key information to assess 

the severity of seismic action and is still often used as a parameter to describe strong ground motion. 

When the frequency content of an earthquake ground motion closely matches the natural period of 

geotechnical or structural systems (e.g., Soil deposit, Dam, Building, Bridge), the dynamic response 

is enhanced, larger force is exerted on the system, and significantly damage may occur.  

A scalar representation of frequency is an essential parameter to compare the  frequency 

content of different strong ground motions quickly and easily. A scalar frequency content parameter 

can be compared with the natural period of a dynamic system to evaluate the possibility of resonance 

conditions or an enhanced dynamic response. The existing parameters of frequency content are 

based on Fourier amplitude spectrum (FAS) which is a conversion of the motion from a time domain 

to a frequency domain through a Fourier transform.  Figure II-11 illustrates an example of a typical 

Fourier amplitude spectrum for the S00E component of El Centro, the Imperial Valley earthquake 

of May 18, 1940. Four parameters have been proposed in the literature to characterize the frequency 

content of strong ground motions, which are (1) the mean period (Tm), (2) the average spectral 

period (Tavg), (3) the smoothed spectral predominant period (To), and (4) the predominant spectral 

period (Tp).  

 Figure II-11 Representation of Northridge record in frequency domain using Fourier 
amplitude spectrum (FAS) 
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In this dissertation, the adopted parameter is the mean period (Tm) which has been used and 

recommended in a number of past studies [6]. Several models have been proposed in literature to 

predict the frequency content; a predictive model is an empirical relationship that expresses the 

frequency content as a function of earthquake parameters. 

The mean period (Tm) is a stable and reliable indicator of frequency content because it is 

based on all frequencies of engineering interest included in time history .The definition of the mean 

period initially proposed by Rathje et al is  used, expressed mathematically as: 

 

(5) 

For 0.25 Hz <fi<20 Hz   

 Discrete fast Fourier transform (FFT) rang 0.25-0.25Hz  

 Fourier Amplitude corresponding to the frequency fi 

Although the mean period (Tm) is an important and widely used frequency content parameter 

in earthquake engineering, the number of attenuation relationships for Tm is limited. Only a few 

empirical models have been proposed to estimate the Tm.  

The widely applicable model was proposed by Rathje et al (2004), which is updated to their 

previous own model developed in 1998. Rathje et al. (1998). [5] A limited number of research has 

proposed predictive models based on data from different regions, such as the western and central-

east US [7] and Iran [8].  Table II-4 summarizes the existing prediction equation for Tm and the 

predictor variables used to predict the Tm.  Noted that: Mw: moment magnitude; Rrup: closest 

distance from site to the rupture plane (km); Sc, Sd and Ss: indicators of site types; FD and Idir: 

indicators of the directivity effect; Vs30: time-average shear wave velocity of the upper 30 m (m/s); 

Z1: depth to the 1.0 km/s shear wave isosurface (km); Ztor: depth to the top of rupture (km). 

 
Table II-4 Summary of the existing prediction equation forTm 

 

Authors Year  Predictor Variables Range of application 

Rathje et al [5] 1998 Mw, Rrup 5.2<Mw<7.3, R<200km 

Rathje et at [6] 2004  Mw,Rrup,Sc,Sd,FD 4.9<Mw<7.6, R<200km 

Lee [7] 2009 Mw,Rrup,Sa 4.5<Mw<7.6, R<200km 

Yaghmari-Sabegh [8] 2015 Mw,Rtup,Sc,Sd 3.7<Mw<7.7, R<293km 

Wenqui Du [51] 2019 Mw,Rrup,Vs30,Z1,Ztor,Idir 3.05<Mw<7.9, R<499.5km 
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II.6.5. Predictive models for Engineering Demand Parameters (EDP) 

The reliable determination of engineering demand parameters (EDP) takes special 

consideration in current earthquake design and evaluation methodologies [52]. Although such 

engineering demand parameters can be calculated by means of sophisticated non-linear response 

history analyses, their application in the field of seismic assessment and evaluation of existing 

structures is still hindered by the considerable time, cost, and expertise required. Therefore, there is 

a need for simplified yet reliable methods for the estimation of structural seismic demands. 

Moreover, although in many cases structures do not behave as single-degree-of-freedom (SDOF) 

systems, various studies have shown that equivalent SDOF models can provide the basis for the 

estimation of global demands on building structures [53]; 

Equivalent single-degree-of-freedom (ESDOF) systems have made a significant contribution 

to many types of research in the field of earthquake and structural engineering [54-57]. The response 

of the multi-degree-of-freedom (MDOF) structure, including regular RC buildings, can be related 

to the response of an equivalent SDOF system, if the response is controlled by a single-mode, 

determined from a high enough modal participation factor. Different methods also make use of 

equivalent SDOF systems to predict damage in structures. Furthermore, recent recommendations 

are proposed to evaluate the maximum deformation in buildings based on such SDOF representation 

[58]. 

 

 
Figure II-12 Process of idealization of MDOF to Equivalent SDOF 

 

Several studies agree with the application of a simplified nonlinear analysis procedure to base-

isolated buildings [59-61]. The simplified nonlinear analysis procedure, which combines the 

nonlinear static (pushover) analysis of a Multi-Degree-Of-Freedom (MDOF) model with the 
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response spectrum analysis of an equivalent single-degree-of-freedom (SDOF) model, is widely 

applied to the traditional earthquake-resistant structures. 

Numerous studies have used SDOF models to develop predictive relationships in terms of 

earthquake parameters and structural proprieties [62-65]. Some of these studies have focused on the 

estimation of strength ratios for systems of known ductility, distinguishing between stiff and soft 

soils and providing relationships that can be useful in the design of new structures to attain specified 

target ductility levels [64]. On the other hand, other studies have evaluated peak displacement 

demands for strength-defined structures and have provided relationships, which are useful for the 

seismic assessment of existing buildings. More recently, Bozorgnia et al. [65] performed a detailed 

investigation on inelastic deformations in SDOF systems based on predictive equations formulated 

on the basis of a large database including 3122 records. The attenuation relationship for EDP can 

be used to produce hazard curve and uniform hazard spectra. 

The second part of this dissertation focuses on two engineering demand measures: Inelastic 

Displacement and Hysteretic Energy. Which are usually combined to evaluate the seismic 

damage. 

II.7. Response spectrum 

The structural damage can be related to seismic displacement demand and in particular to 

interstory drift ratios. Well-known methods such as the Capacity Spectrum Method (CSM) are based 

on superimposing the seismic capacity over the corresponding seismic demand for a given hazard 

level to determine the expected response of the structure. The capacity curve relies on the use of 

nonlinear static analysis (pushover method) while the seismic demand is a representation of the 

earthquake ground motion, generally it is obtained directly by time-history analyses of inelastic 

SDOF systems, or indirectly from elastic spectra [66]. 

Expressing the response spectra for a given site in terms of seismological parameters and 

structural properties has received much interest; a large number of studies have been conducted to 

develop the Ground Motion Prediction Equation (GMPE), which express the response spectra in 

terms of seismological parameters in the form of attenuation relationships [9, 10]. Two approaches 

have been proposed to estimate the inelastic seismic demand. In the first approach, the inelastic 

response is derived from the elastic one through a reduction coefficient,  which  has been criticized 

and many researchers contend that these reduction factors used in seismic code are highly 

simplified, and have shown that they depend on the natural period, local site condition, Magnitude 

and source to site distance [67]. To overcome this shortcoming, a second approach was proposed 
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which consists of developing Ground Motion Prediction Equations (GMPEs) of inelastic response 

spectra, without the need to resort first to elastic spectra.  

II.8. Energy spectrum 

The earthquake input energy imparted into structural systems can be classified into two 

groups, namely recoverable and irrecoverable (Figure II-13). Specifically, the elastic strain (Es) and 

kinetic energies (Ek) are stored components that vanish when the vibration of the system ceases, 

whereas the damping (Ed) and hysteretic energy (EH) are dissipated throughout damping and 

inelastic deformations. 

 

 

The dissipated energies are essential in the evaluation and design of the structures. From a 

practical perspective, several damage indices have been proposed to quantify the local and global 

structural damage of buildings, the most commonly used is called the Park-Ang index, which relies 

on two aspects, the maximum ductility and hysteretic energy dissipation demand imposed by the 

earthquake [68]. The hysteretic energy term is investigated in this dissertation, which is considered 

as the most important energy component contributing to structural damage. 

In current practice, both conventional Force-Based Design (FBD) and Displacement-Based 

Design (DBD) can not appropriately consider the cumulative damage from numerous inelastic 

cycles [69, 70]. The Energy-based design (EBD) is attracting an increasing interest due to its ability 

to take into account both strength and displacement characteristics as well as hysteretic behavior of 

Input energy (Ei)

Recoverable energy 
(Elastic response)

Elastic Strain Energy 
(Es)

Kinetic Energy (Ek)

Irrecoverable energy 
(Plastic response)

Damping energy (Ed)

Hysteretic energy 
(Eh)

Figure II-13 Energy component 
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the structure.  Hounser [71] initially discussed the energy-based concept during the First Word 

Conference Engineering (1956). He reached the conclusion that safe design could be achieved if the 

cumulative elastic energy (energy supply) is greater than or equal to total input energy (energy 

demand). Akiyama (1985) has traced the evolution of the energy-based method in his 

groundbreaking study where he has concluded that the total input energy is generally controlled by 

the fundamental period and the total mass of the structure [72]. Since then, various studies have 

introduced the energy concept to design and seismic assessment [69, 73] Several researchers have 

agreed that the next generation building  code would consider the energy principle . For instance, a  

proposal has been carried out to introduce the energy-based spectrum load into the Japanese building 

code [74]. Which was followed in other countries by various discussions on the same issue. 

Donaire-Avila [75] has summarized the energy-based design process in four main issues:   

(1) The input energy into the structure during earthquake ground motion;  

(2) The distribution of the input energy throughout the structure;  

 (3) The energy absorption capacity of structural members;  

(4) The relationship between the cumulative plastic strain energy and the maximum inelastic 

displacement, that is, the equivalent number cycle. 

 It has been clearly specified that each of the following issues required further investigation. 

As part of this dissertation, the first issue related to the evaluation of the input energy demand is 

addressed. The prediction of the seismic demand in terms of energy spectrum has received an 

increasing interest. In Seismic Hazard Analysis (SHA), probabilistic models are used to determine 

the intensity measure of the ground motions for a given hazard level. Compared to the amount of 

research performed on the parameters characterizing the strong ground motion, there are few works 

on energy-based parameters, in literature, a limited number of attenuation models have been 

proposed for elastic input energy by analyzing ground motion records collected from different 

regions [76-78]. Alici and Haluk (2016) [79] proposed two approaches for predicting input energy 

spectra, in the first approach; an attenuation model has been developed through nonlinear regression 

analysis while the second approach utilizes probabilistic seismic hazard maps. The seismic 

hysteretic energy spectra is proposed in the form of an attenuation relationship by Gong et al. (2012) 

[80], in which the hysteretic energy is expressed as a function of earthquake parameters such as 

earthquake magnitude, source-to-site distance, and site class.  Alreja et al. (2015) [81] proposed a 

prediction model to estimate the hysteretic energy demand in steel moment-resisting frames, using 

Multivariate Adaptive Regression Spline (MARS) and Least Squares Support Vector Machines 

(LSSVMs). These models are used to establish a relation between the hysteretic energy demand and 

several effective parameters such as earthquake intensity, number of stories, soil type, period, 
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strength index.  Zhai, Ji et al. (2018) [82] proposed a hysteretic energy prediction equation as a 

function of the vibration period, ductility value, and damping ratio.

Most of the prediction models of energy demand available in the literature are developed in 

form of attenuation relationship i.e. the energy input is expressed in terms of earthquake parameters 

such as magnitude and distance (see Figure II-14-a).  Dindar [83] has attempted to incorporate the 

intensity measure parameter such as the  PGA in addition to the structural proprieties, site condition, 

and target structural ductility as an input to predict energy demand spectra (see Figure II-14-b). In 

this dissertation, the hysteretic energy demand spectra are predicted by considering as inputs the 

Intensity measures (IMs) which characterize the main features of ground motion rather than 

expressing it in terms of earthquake parameters (see Figure II-14-c). The new approach is proposed 

in an attempt to reduce the uncertainties related to earthquake and seismological parameters.  

Earthquake parameters 
(Magnitude, Distance, site 

condition …) 

Earthquake 
parameters Predictive Model Energy Demand 

Spectra 

Intensity 
measure (PGA) 

Attenuation model 
(GMPE) 

Attenuation 
model 

(GMPE)

Intensity measures 
(PGA, Significant 

duration, frequency 
content) 

Structural Proprieties 
(Natural period, 

ductility, damping …) 

Site condition 

Structural Proprieties 
(Natural period, yield 

damping …) 

Predictive Model Energy Demand 
Spectra 

Predictive Model 
Energy Demand 

Spectra 

Structural Proprieties 
(Natural period, yield 

damping …) 

Earthquake 
parameters 

a. Approach commonly used in literature

b.     Dindar’s model (2015) [16]: introducing PGA as an input

c.   The proposed approach   Figure II-14 Flowchart of procedures used in literature to predicting energy 
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II.9. Conclusion 

A brief state of the art of the existing attenuation models for the intensity measures of ground 

motion has been presented. The intensity measure are parameters that describe quantitatively the 

main features of the earthquake ground motion namely, the amplitude, the cumulative effect and the 

frequency content.  The earthquake parameters used to develop the ground motion prediction 

equation can be classified into three groups: 1) Source characteristics, 2) Path characteristics 3) Site 

characteristics. 

In earthquake engineering, there is still a need to consider the directionality of ground motion 

effects.  Various empirical relationships have been suggested in the literature in order to estimate 

the intensity measures of the ground motion; few researchers have addressed the directionality 

aspect of ground motion. 

Researchers have chosen their techniques based on the available data from past earthquake, 

which varies greatly with geographical region. However, there is still a need to include more 

independent parameters into the attenuation models. 
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Chapter III. METHODOLOGY 
 
 
 

 

III.1. Introduction 

The characteristics of ground motion and Engineering demand measures of SDOF are 

investigated in this dissertation. The methodology can be summarized in three steps: (a) Data 

collection (b) Data modeling using artificial neural network (c) interpretation of results. The 

information collected from strong motion records is the basic input for Seismic Hazard Analysis 

(SHA) and earthquake-resistant structure design and rehabilitation. There is a large number of 

seismogram networks installed around the world, which provide valuable information and ground 

motion database. Various sources of the strong motion database are freely available to the research 

community, such as Pacific Earthquake Engineering Research (PEER), Consortium of 

Organizations for Strong-Motion Observation Systems (COSMOS), and National Research Institute 

for Earth (NIED).  

For a given earthquake event, the strong motion database comprises:  

(1) The strong motion file accelerogram records for each station.  

(2) The metadata parameters such as magnitude, station location, epicenter location, and site 

condition parameters.  

The ground motion database used in this dissertation is collected from the KiK-Net network. 

One of the major advantages of the KiK-Net database is that the borehole data set is available for 

each station, which is useful information to evaluate the site effects. 

The Artificial neural network is used to analyze the data, which is highly recommended in 

such complex phenomena due to its ability to take into consideration the nonlinear relationships 

between the independent and the dependent parameters. An overview on the Artificial Neural 

Networks presented in this chapter 

III.2. Ground Motion Data Set 

III.2.1. Data acquisition 

K-NET (Kyoshin Network) is a nation-wide strong-motion seismograph network, which 

consists of more than 1,000 observation stations distributed every 20 km uniformly covering Japan 

(see Figure III-1). KiK-Net has been operated by the National Research Institute for Earth Science 
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and Disaster Resilience (NIED) since June, 1996. At each K-NET station, a seismograph is installed 

on the ground surface with standardized observation facilities. 

  KiK-Net (Kiban Kyoshin Network) is a strong-motion seismograph network, which consists 

of pairs of seismographs installed in a borehole together with high sensitivity seismographs (Hi-net) 

as well as on the ground surface, deployed at approximately 700 locations nationwide. NIED 

constructed KiK-Net under the plan 'Fundamental Survey and Observation for Earthquake Research' 

directed by 'the Headquarters for Earthquake Research Promotion'. 

  The strong-motion data recorded by K-Net and KiK-Net are immediately transmitted to the 

data management center of NIED in Tsukuba. The observed strong-motion data are widely available 

to the public through the internet from the official web site. The soil condition data explored at K-

NET stations and the geological and geophysical data derived from drilling boreholes at KiK-net 

stations are also available. [84] 

 

 
Figure III-1 K-NET & KIK-Net observation stations covering JAPAN  

 



33 
 

 

III.2.2. Statistics of strong Ground Motion Data Set 

The strong motion database, collected for this study, includes 1 104 accelerograms from 10 

earthquake events which magnitudes vary between M= 4.8 to 7.3, taken place in Japan during the 

period 2000-2016 (see  

Table III-1). The earthquake ground motions were thoroughly selected from the KiK-Net 

database. The records distribution versus magnitude and Peak Ground Acceleration (PGA) are 

presented in chapter IV. The adequate selection of samples or data may significantly improve the 

performance of the predictive models. A complete list of the strong motion records selected for use 

in this study is included in Appendix. 

A total set of 1,104 values is divided into three sets, [85, 86] 

 The training dataset, used to train the model, represents 70% of the complete data. 

 The validation dataset, used to avoid overtraining and monitor the training process, 

represents 15% of the complete data. 

 And the testing dataset, used to judge the performance of the trained model, 

represents the remaining 15% of the complete data 
 

Table III-1 Summury of the events collected for the ANN development (training and validation) freely available at: 
http://www.kyoshin.bosai.go.jp/ 

Origin Time Latitude Longitude Depth Magnitude Earthquake name or epicenter 
region 

Rupture 
process 

2011/03/11-14:46 38.10N 142.86E 024km M9.0 The 2011 off the Pacific coast of 
Tohoku Earthquake 

Link 

2008/06/14-08:43 39.03N 140.88E 008km M7.2 The Iwate-Miyagi Nairiku 
Earthquake in 2008 

Link 

2007/07/16-10:13 37.56N 138.61E 017km M6.8 The Niigataken Chuetsu-oki 
Earthquake in 2007 

Link 

2007/03/25-09:42 37.22N 136.69E 011km M6.9 The Noto Hanto Earthquake in 
2007 

Link 

2005/03/20-10:53 33.74N 130.18E 009km M7.0 West off Fukuoka Link 

2004/10/23-17:56 37.29N 138.87E 013km M6.8 The Mid Niigata prefecture 
Earthquake in 2004 

Link 

2000/10/06-13:30 35.28N 133.35E 011km M7.3 The Western Tottori prefecture 
earthquake in 2000 

  

2016/04/16-07:23 32.79N 130.77E 012 km M4.8     

2016/04/16-07:11 33.27N 131.40E 006 km M5.4     

1998/04/22-20:32 35.17N 136.56E 010 km M5.4     
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2016/04/18-20:42 33.00N 131.20E 009 km M5.8     

2011/03/23-07:12 37.08N 140.79E 008 km M6.0     

2003/07/26-07:13 38.40N 141.17E 012 km M6.2 Northern Miyagi prefecture   

2016/10/21-14:07 35.38N 133.85E 011 km M6.6     
 

III.3. Data-modeling analysis: Artificial Neural Network (ANN) 

III.3.1. Background and Basic concept 

Artificial intelligence (AI) is the study and science of making intelligent systems, that are 

capable of receiving inputs from the environment, perceiving, thinking, learning, and adapting their 

behavior, to achieve a particular goal or objective over a period of time. Artificial intelligence 

techniques have proved their efficiency in almost all fields of science and engineering.  

Various similar AI techniques were proposed and used, such as Neural networks, Fuzzy 

Systems, Genetic Algorithm, and Genetic Programming. These techniques are successfully used as 

an alternative to traditional mathematical models because of their faster computational efficiency. 

Artificial Neural Network (ANN) is the most popular AI technique that has been applied and proved 

its relevance. 

The artificial neural network (ANN) is a computational model inspired by the way the human 

brain works, consisting of interconnected networks of simple processing units that attempt to 

recognize underlying relationships based on a set of data through a process of learning from 

experience by adjusting the connections. 

The ANN is a very rough imitation of the brain’s structure. The human nervous system is a 

complex neural network consisting of connected neurons (see Figure III-2). The nucleus is the center 

of the neuron and it is connected to other nuclei through the dendrites and the axon. This connection 

is called a synaptic connection. A typical neuron collects signals from others through a host of fine 

structures called dendrites. The neuron sends out spikes of electrical activity through the axon, 

which can split into thousands of branches.  When a neuron receives enough electric pulses through 

its dendrites, it activates and fires pulse through its axon, which is then received by other neurons. 

In this way, information can propagate through the neural networks. The synaptic connections 

change throughout the lifetime of a neuron and the number of incoming pulses needed to activate a 

neuron (the threshold) also change.  Learning occurs by changing the effectiveness of the synapses 

so that the influence of one neuron on other changes. [48, 87, 88] 
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Figure III-2 A biological neuron 

 

ANNs have been developed as generalizations of mathematical models of human cognition 

or neural biology, based on the assumptions that: 

• Information processing occurs in many simple elements called neurons. 

• Signals are passed between neurons over connection links. 

• Each connection link has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted. 

• Each neuron applies an activation function (usually nonlinear) to its net input (sum 

of weighted input signals) to determine its output signal. 

As illustrated in Figure III-3, a neuron consists of three main parts:  

 A set of synapses, which connect the input signal xj to the neuron via a set of 

weights, wkj ;  

 An adder uk which sums up the input signals, weighted by the respective synapses 

of the neuron;  

 Activation function Ø (.) for limiting the amplitude of the output of the neuron. At 

times, a bias bk is added to the neuron to increase or decrease the net output of the 

neuron. 

Mathematically, a neuron k is described as (Haykin, 1994) [89] 
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Figure III-3 The block diagram of a neuron (Haykin, 1994) 

 

Where x1, x2 , x3, …, xn are the input signals; wk1, wk 2 , …, wkn are the weights for the neuron 

k; bk is the bias; uk is the adder or the linear combiner;  (.) is the activation function; and yk is the 

output signal of the neuron. 

The selection of activation function is the most critical step in the development of Artificial-

Neural-Network-based models, which allow capturing nonlinear behavior and dealing with 

complex phenomena.  By definition, the activation function is a mathematical equation that delivers 

an output based on inputs. As shown in Figure III-4, several activation functions such as hyperbolic 

tangent, sigmoid and linear functions are commonly used in the mapping process. There is no 

systematic theory to determine the accurate architecture and define the number of hidden layer 

nodes. Thus, trial and error is a fundamental method used to select the optimal configuration of the 

neural network models. 

 

Figure III-4 some common activation functions 
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III.3.2. Areas of application 

The development and application of neural networks is an extremely interdisciplinary field. 

The Artificial Neural Network has been used in every area of engineering to study and simulate 

various phenomena. Over the years, various researches have been conducted to incorporate the 

machine-learning concept in all fields of civil engineering such as structural engineering, 

geotechnical engineering, earthquake engineering, structural identification and control, transport 

infrastructure issues, management and technology in construction and installation issues.  Abedi 

(1989) initially presented the first paper on the introduction of Neural Network in civil engineering. 

His  groundbreaking study entitled “ "Perceptron learning in engineering design", appeared in the 

journal “Microcomputers in Civil Engineering”, which proposed an approach to introduce the 

machine learning model in engineering design of meal frame based on a concept of internal control 

parameters and perceptron [90]. 

In structural engineering, the neural network was largely used to develop a mechanism model 

that included factors that their effects on structural systems are poorly understood. The counter-

propagation neural networks with competition and interpolation layers was presented and applied 

to several structural engineering issues such as [91]: 

 (1) Development of a mapping neural network that defines the relationship between the 

ultimate bending moment and the depth of a reinforced concrete beam with a rectangular cross-

section.  

(2) The prediction of the locations and magnitudes of maximum moments in a simply 

supported rectangular plate subjected to a unit concentrated load somewhere on the plate.  

(3) The prediction of elastic critical lateral torsional buckling moments of wide-flange steel 

beams (W shapes) subjected to a uniform bending moment.  

Other studies have used  the NN for reinforced concrete structures, steel structures.  Xu (2001) 

proposes an adaptive multiplayer perceptron (MLP) technique for the detection of cracks in 

anisotropic laminated plates [92]. Su and Ye (2005) developed A guided Lamb wave-based damage 

identification scheme monitoring of composite structures “in service”, according to damage 

assessment[93]. Ganesh (2006 ) investigated the feasibility of using multilayer feed-forward neural 

networks to learn the complicated nonlinear mapping between the input parameters associated with 

profiled deck and the output parameters m and k associated with horizontal shear resistance of the 

composite deck [94]. Kumar (2008) developed a neural network approach for the identification and 

control of a smart composite laminated spherical shell [95]. Tsompanakis (2008) presented 

applications of soft computing techniques, involving ANNs, in computationally demanding tasks in 
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mechanics. The possibility to use ANNs for the approximation of the inverse structural mapping 

was investigated [96]. The identification of the damaged structures can be achieved with neural 

networks.  

In 1992 Wu, Ghaboussi and Garrett presented a structural damage detection system using a 

backpropagation algorithm, the results of case studies indicated that neural networks are capable of 

learning about the behavior of undamaged and damaged structures and can identify the damaged 

member and the extent of the damage from patterns in the frequency response of the structure [97]. 

A method of identifying damage to steel moment-frame structures connected by welding subjected 

to seismic actions using frequencies and vibration modes is proposed [98]. Adeli (2009) presents a 

probabilistic neural network for predicting the magnitude of the largest earthquake in a pre-defined 

future time period in a seismic region using eight mathematically computed parameters known as 

seismicity indicators [99].  Calabrese (2013) used artificial neural network to implement, in order 

to determine the unknown nonlinear seismic and geotechnical input data versus the expected 

performance of the structural system [100].   

The ANN has been successfully used for deriving fragility curves of the considered structures: 

A Soft Computing (SC) based framework for the fragility assessment of 3D buildings is proposed 

by Chara et al. (2011) [101]. Wang et al. (2018) proposed a methodology of ANN meta-models for 

the computation of fragility curves for nuclear power plant equipment. The ANN meta-model is 

utilized to build the statistical relation between the seismic intensity measures and the structural 

response [102]. Studies in the Structural identification and control problems area have attracted 

strong interest; The ANN is considered a powerful tool for identifying structural nonlinear 

dynamical systems. A review of journal articles published on system identification of structures was 

presented by Sirca and Adeli (2012) [103]. Facchini et al. (2014) proposed the application of neural 

networks for output-only modal identification of structural systems. Four frequency-dependent 

indicators, based on specific properties of the spectral tensor of vibration measurements, are defined 

and employed to build a likelihood function for the presence of structural resonances [104]. 

The computation of geotechnical engineering analysis is characterized by uncertainties on 

design values of geotechnical indices with significant impact. knowledge and experience are also 

the foundation for effective resolution of geotechnical problems. The Artificial Neural Networks 

are strongly recommended for modeling complex phenomena in geotechnical engineering (soil 

types and their associations in complex stratigraphic profiles), which by their nature, show a wide 

variety.  The neural networks modeling does not need any assumptions about the fundamental rules 

governing the problem. Its capacity to learn from experiences gives neural network modeling 

superiority as an alternative to traditional methods.[105] 
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The difficulty encountered in geotechnical engineering problems due to the inhomogeneous 

soil, Neural Networks can be an optimal solution for modeling many problems in geotechnical 

engineering.  Consequently, a large number of studies have been conducted to track the soil’s 

behaviour and find its characteristics. 

The application  of ANNs in geotechnical  engineering  was initially discussed  in the early 

1990s by  Goh  (1994)  and  Ghaboussi  and  Sidarta  (1998) [106, 107]. Basma (2004) investigated 

the feasibility of using neural networks to model the complex relationship between soil parameters, 

loading conditions, and the collapse potential using a backpropagation neural network process 

[108]. Several studies used various types of neural networks, such as backpropagation, probabilistic 

neural networks, and generalized regression, to estimate geotechnical slope stability and geometric 

parameters. [109-111]  

The ANN has received, in recent years, a growing interest by the scientific community in the 

field of earthquake engineering and seismic risk assessment: Prediction of intensity measures of 

ground motion [46, 112]; generating artificial earthquakes and response spectra [113]; estimation 

of artificial time history and related spectral response [113, 114]. 

 

III.3.3. Type of ANN 

ANNs are commonly classified by their network topology, node characteristics, learning, or 

training algorithms (Fausett, 1994). Based on the connection pattern (architecture), ANNs can be 

grouped into two categories (see Figure III-5) [115] 

• Feed-forward networks, in which graphs have no loops, and 

• Recurrent (or feedback) networks, in which loops occur because of feedback connections. 

[116, 117]. 

Figure III-5 A taxonomy of feed-forward and recurrent/feedback network architectures. 
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In a feed-forward neural network structure, Feedforward neural networks were the first type 

of artificial neural network invented and are simpler than their counterpart, recurrent neural 

networks. They are called feedforward because information only travels forward in the network 

(no loops), first through the input nodes, then through the hidden nodes (if present), and finally 

through the output nodes. 

 
Figure III-6 A single layer feed-forward neural network 

 
In Figure III-6, a single layer feed-forward neural network (fully connected) is shown. 

Including the input layer, there are two layers in this structure. In Figure III-7, a multi-layer feed-

forward neural network with one “hidden layer” is depicted. As opposed to a single-layer network, 

there is (at least) one layer  of “hidden neurons” between the input and output layers. 

 
Figure III-7 A multi-layer feed-forward neural network 

 

For recurrent (or feedback) networks, it include any network design in which the activity 

must go through the network more than once before the weights (output coefficients) are adjusted 

and the output is produced, the inputs of each layer can be affected by the outputs from previous 

layers (see Figure III-8).  
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Figure III-8 recurrent (or feedback) networks 

 

Another way of classifying ANNs is mode of training applied. Two modes of training are 

present in neural training, supervised and unsupervised learning networks (Konar, 1999) [118]. 

Supervised training: requires an external teacher to control the learning and incorporates 

global information. The teacher may be a training set of data or an observer who grades the 

performance. Examples of supervised learning algorithms are the least mean square (LMS) 

algorithm and its generalization, known as the back propagation algorithm, and radial basis function 

network. In supervised learning, the purpose of a neural network is to change its weights according 

to the input/output samples [119].  

Unsupervised learning: When there is no external teacher, the system must organize itself 

by internal criteria and local information designed into the network. It is required in many 

recognition problems, where the target pattern is unknown. sometimes referred to as self-organizing 

learning, i.e. learning to classify without being taught. In this category, only the input samples are 

available and the network classifies the input patterns into different groups. 

 

III.3.4. Backpropagation algorithm 

The Feedforward backpropagation (FFBP) is considered as the most utilized forward neural 

network which is based on a mechanism updating the weights using gradient descent, It was first 

described by Rummelhart  and McClelland (1986) [120], FFBP has a structure in which neurons are 

organized in successive layers. The first layer is referred to as the input layer, the last layer as the 

output layer, and all intermediate layers as the hidden layer. The backpropagation technique is a 

process of iteration in order to modify the weights from the output layer to input layer until no 

further correction is required (see Figure III-9). A simple hidden backpropagation neural network 

layer can generally approximate any nonlinear function with arbitrary precision [121, 122]. This 
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feature makes FFBP popular for predicting complex nonlinear systems [123, 124].  This type of 

ANN has evolved for a diverse range of engineering applications. It has been used and 

recommended to solve some of the difficult problems in various fields, including structural 

engineering. Various functions that can be used as activation or transfer functions such as hyperbolic 

tangent, sigmoid and linear functions. The type of activation function contributes significantly, and 

has a key role to introducing the nonlinearity so that it can deal even with complex phenomena. A 

systematic theory to determine the number of input nodes and hidden layer nodes is unavailable 

[122]. The most common means to determine the appropriate number of inputs and hidden layer is 

via experiments or by trial and error based on the performance assessment criteria. 

 

 
Figure III-9 Back-propagation training algorithm 
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III.3.5. Data Normalization 

An optimal efficiency of the ANN requests a prior data conditioning, i.e. all the data are 

normalized [85, 86, 125]. The data set used in the present dissertation , including inputs and target 

outputs are scaled as follows::   

 

 

(6) 

Where: P, Pn are respectively matrix and scaled matrix of input vectors; T, Tn are respectively 

matrix and scaled matrix of output vectors; Pmin, Pmax are respectively minimal and maximal 

component value of each input vectors; Tmin, Tmax are respectively minimal and maximal values of 

each output vectors; I is the vector unity. 

The developed neural network models are trained using the data derived from the scaling 

process, whereas the target output becomes: 

 (7) 

 

III.4. Conclusion:  

The strong motion database, collected for this study, includes 1,104 records from 10 events 

ranging in magnitude from M= 4.8 to 7.3, occurred in Japan during the period 2000-2016. A 

complete list of the strong motion records selected for use in this study is included in Appendix. 

The adequate selection of samples or data may considerably increase the efficiency of prediction 

model.  

The artificial neural network (ANN) technique is used as an alternative to regression methods. 

The ANN with Back-Propagation (BP) learning algorithm is strongly recommended for highly 

nonlinear modeling problems. A theoretical framework for the artificial neural network is presented 

in this chapter. 
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Chapter IV. PREDICTION OF INTENSITY MEASURES 
 
 
 
 

IV.1. Introduction 

 
 The characterization of ground motion is a fundamental step in seismic analyses of structures 

subjected to earthquake ground motion. The effects of seismological parameters on seismic action 

are not explicitly incorporated in current design practice. The prediction of the intensity measures 

of the ground motion for a given earthquake parameter is an essential step in hazard and risk seismic 

analysis. Three parameters are considered PGA, SD, and Tm. Each of these measures characterize 

a feature of ground motion, namely, amplitude, cumulative effect, and frequency content. The 

independent seismological parameters used in this study are the magnitude (Mjma), the epicentral 

distance (Repi), the shear-wave velocity (Vs30), the resonant frequency (f800), the focal depth (d), and 

the angle epicenter-station (θ). The ANN with Back-Propagation (BP) learning algorithm is used as 

an alternative to regression methods, which is strongly recommended for highly nonlinear modeling 

problems. 

IV.2. Directionality effect: 

In earthquake engineering, there is still a need to consider the directionality of ground motion 

effects.  Various empirical relationships have been suggested in the literature to estimate the 

intensity measures of the ground motion; few researchers have addressed the directionality aspect 

of ground motion. 

The component of ground motion corresponding to an azimuth given by an increment of 

rotation angle is determined as a function of two ground motion components (EW and NS) as follow: 

[46, 126, 127]: 

 (8) 

θ: rotational angle  

a1, a2: horizontal component  acceleration E-W et N-S 

arot: horizontal component corresponding to a rotational angle θ 

t: time. 

According to Eqn.(8), The two ground motion components (EW and NS) are combined into 

a single component corresponding to an increment of rotation angle. For each set of two as-recorded 
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orthogonal-component time series, the ratio between the maximum value and the recorded value of 

the PGA in the EW and NS is determined. The procedure steps are described as follows [128]:    

 In the orientation set to 0 degree, calculate the target characteristics of ground motion such 

as PGA value  

 Rotate the horizontal component by an increment of 1 degree and calculate the 

characteristics 

 Repeat the steps a and b for  range between 0 to 180 degree 

 Calculate the target intensity measure (PGA value) for all the rotation angles. 

 Sort the maximum for each of the target intensity measures (PGA  value). 

 
Figure IV-1 PGA variation according to critic direction 

 

As presented in Figure IV-1, the results show the effect of directionality on the PGA values. 

The ratio of the maximum to the minimum may reach up to 1.35 (increase of 35%). In an attempt 

to consider this effect, new input parameters “angle epicenter-station” that characterize the direction 

source-to-site is introduced an earthquake parameter.  

The angle epicenter-station parameters is defined as the angle between the orientation of the 

epicenter-station path and the direction of the component (see II.4.2 section). This parameter is used 

among other inputs in the ANN model to predict the peak acceleration of the strong ground motion. 
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IV.3. Peak ground acceleration 

 
 Peak ground acceleration (PGA) is one of the key measures employed to assess the 

importance of seismic action and is still often used as a parameter to describe strong ground motion 

and to scale earthquake design spectra. The question that then arises is how to estimate the PGA at 

a site where no recording station is installed. The prediction of the PGA in terms of seismological 

parameters is developed in this section. As presented in  chapter 3 the ground motion database was 

obtained from the KiK-Net nationwide strong motion networks, the records used to develop the 

prediction model have been carefully selected from the database depending on the type of the 

parameter (i.e. IM or EDP). The distributions of ground motion records versus earthquake 

magnitude and PGA in Figure IV-2. 

 

 

IV.3.1. Artificial Neural Network Model  

The selection of the optimal architecture of an ANN is not an easy task as it is necessary to 

test a large number of architectures to achieve the best one. The results show that the configuration 

with a hyperbolic tangent function for the hidden layer and for the output layer gives the best 

results. (see Table IV-1, Table IV-2) 

According to the above provisions, inputs to the network are defined here by the values of 

magnitude (Mjma), epicentral distance (Repi), shear-wave velocity (Vs30), resonant frequency (f800), 

the focal depth (d) and the angle epicenter-station (θ). The output node is represented by peak ground 
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acceleration PGA (Figure IV-3). A standardization of all data was performed to improve the 

performance of the model. 

 
 

 

 

A total of 1104 values have been divided into three sets: 

The training set, which is about 70% of the complete database, has been used to train the 

network; the validation set, which is about 15%, has been used for the purpose of monitoring the 

training process, and to guard against overtraining; and the testing set, which is about 15%, has been 

used to judge the performance of the trained network. The training was stopped when the cross-

validation error began to increase, i.e., when the cross-validation error reached a minimum, the 

training should be stopped. 

In this dissertation, a large number of architectures were tested using various parameters in 

order to obtain the best ANN model.  

The performance of the developed neural network models is carried out by comparing the 

target PGA and those predicted by the ANN model. Figure IV-4 shows the regression curves for all 

data (1104 samples) which reveal a coefficient of correlation R equal to 0.86. 
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Figure IV-3 Input /Output of PGA models developed 
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Because the predictive model depends on multiple variables (inputs), the plots of residuals against 

the main variables are used here to evaluate the accuracy of the model and the correlation of the 

variables with the predicted values. In Figure IV-5 the residuals, expressed by: 

 (4) 

Where:  

obsPGAi and prePGAi are the recoded and predicted PGA 

The residuals plots are plotted against the epicentral distance, the magnitude and the focal depth 

(see Figure IV-5) the plots are pretty symmetrically distributed, tending to cluster towards the 

middle of the plots showing no bias or trend in the residuals in any of these plots.  

 

Figure IV-4 Linear regression between the target and predicted PGA 
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Figure IV-5 Intra-Event Residuals of PGA as function of distance Repi and magnitude and Depth 



50 
 

IV.3.2. Results and discussions 

IV.3.2.1. Neural network topology optimization 

As it was described before, to determine the optimal architecture of an ANN it was necessary 

to test a large number of neural topologies. Table IV-1 shows the activation function used for layers 

and lists for each configuration the correlation coefficient for each subset: training, validation and 

test (Rtrain, Rvalid and Rtest).The obtained results in this study are presented in Table IV-2. 

The accuracy of the prediction is evaluated by comparing the performance criteria; Table IV-

1 shows the performance of the four ANN architectures, along with their respective prediction 

accuracy. On one hand it is observed that the best value of correlation coefficient (R) with small 

value of Mean Square Error (MSE) is associated with the combinations (tanh-sigmoid – tanh-

sigmoid) as a function activation, on the other hand it has been found that the neuron number 

considered of the hidden layer have approximately same prediction accuracy which mean that the 

number of neurons used in the hidden layer has no influence on the performance of this particular 

models. This table lists the MSE and R for different tests using different combinations. Following 

various tests on the different combinations and architectures used, it can be concluded that the PGA 

predicted by the ANN with six inputs using the combination of activation function (tanh-sigmoid – 

tanh-sigmoid) with ten neurons has been found to be more accurate.  

 

 

 

Table IV-1 Test of different combination of activation function 

 

 

 
PGA 

Layer 01 Layer 02 Rtrain Rvalid Rtest MSE 

log-sigmoid log-sigmoid <0.1 <0.1 <0.1 >0.5 

log-sigmoid linear 0.89 0.88 0.88 0.01 

Tanh-sigmoid linear 0.9 0.88 0.85 0.01 

Tanh-sigmoid Tanh-sigmoid 0.88 0.84 0.84 0.004 

 

Table IV-2 Influence of number of neuron activation function (tanh-sigmoid – tanh-sigmoid) 

 

  PGA 

Neuron  Rtrain Rvalid Rtest RAll MSE 
5 0.92 0.82 0.83 0.89 0.005 

10 0.88 0.84 0.84 0.86 0.004 

15 0.9 0.87 0.89 0.89 0.01 

20 0.92 0.86 0.9 0.9 0.008 
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IV.3.2.2. Effect of magnitude, epicentral distance and soil velocity on the peak ground 

acceleration  

The PGA is plotted against epicentral distance on Figure IV-6. It can be noticed that the trend 

of the variation of the PGA is more sensitive to the magnitude and is almost decreasing with 

distance.  

As illustrated in Figure IV-6, comparisons are made between the predicted PGA in three types 

of site: A site characterized by a shear-wave velocity VS30= 200m/s (f800=1.67Hz soft soil) and the 

other one characterized by a shear-wave velocity VS30= 800m/s (f800= 6.68 Hz Rock site). This figure 

shows clearly for both cases that the PGA decreases with the distance. It can be noted that the soft 

soil (Vs30=200m/s; f800=1.67 Hz) produces more than 50 % greater PGA value than those on the 

rock site. 

 

 

Figure IV-6 Predicted PGA for Vs30 of 200m/s and 400m/s, 800m/s and Mw 5-5.5-6-6.5 
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IV.3.3. Comparison with existing models 

The model proposed in this study is compared with four existing PGA attenuation 

relationships:  Zhao and al. (2006), Cotton and al. (2008), Kanno and al (2006) and Derras and al 

(2010) [18, 124, 129, 130]. The common characteristic of these four existing models is the source 

of the database used (K-Net and KiK-Net). 

Figure IV-7 compares the predicted value of PGA, for magnitude earthquakes M=6 for site 

class (Vs30 = 600 m/s and f800=5hz), and those provided by four empirical relationships.  

For the sites characterized by epicentral distance (R) lesser than 15 km, the proposed model 

predicts PGA value which is 20% smaller than those from the empirical models. 

 Conversely, for distance range between 15 and 200 km, the proposed ANN provides values 

falling between the empirical attenuation relationships predictions. This distance range represents 

the validity limits of the developed model. 

 

 
Figure IV-7 Comparison of proposed PGA model with existing relationships Mja= 6; Vs30=600 m/s; principal direction. 
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IV.3.4. Sensitivity Analysis 

A sensitivity analysis for the input variables was performed in order to quantify the influence 

of each of the earthquake parameters on the IMs and EDPs considered. In this dissertation, 

percentages of synaptic weight, Pi, that correspond to each of the six parameters were computed 

using the following equation [131]: 

 (9) 

 

Where:  wij: synaptic weights of the ANN; 

For PGA neural model  1  i 6 and 1  j 10 

Nh: number of hidden neurons Nh=10; N: number of input variables N=6 

This analysis was conducted for the models developed and the overall results are summarized 

in Figure IV-8. As can be seen on this figure, the inputs parameters have almost the same effects on 

the PGA except that the soil frequency parameter f800 which has less influence. 

 

 
Figure IV-8 . Input sensitivity analysis for PGA 
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IV.4. Significant duration. 

The second IM parameter considered in this dissertation is the duration of the strong ground 

motion. In the present study, the adopted definition of the significant duration is the one given by 

Trifunac and Brady (1975) which is detailed in the chapter II. 

In recent years, there has been growing interest in the influence of the duration of ground 

motion on the behaviour of structures [132, 133]. Therefore, significant correlations were revealed 

between significant duration and potential damage of the earthquake [134-136]. 

In the present section, the artificial neural network (ANN) is considered as an alternative 

option to multiple regression analysis, The objective is to predict the significant duration (fractiles 5%, 

75% and 95%: SD595 and SD575) of the ground motions records. It investigates also the influence of 

seismological parameters. 

The earthquake ground motions were thoroughly selected from the KiK-Net database 

prepared as a part of this dissertation. The records distribution versus magnitude and Significant 

Duration (SD595)  are presented in Figure IV-9. The adequate selection of samples or data may 

significantly improve the performance of the trained neural network training. 

IV.4.1. Artificial neural network model  

As mentioned before, the most common means to determine the appropriate number of inputs 

and hidden layers is via experiments or by trial and error based on the performance assessment 

criteria.  For achieving the best ANN model, several architectures are tested. The results summarized 

in Table IV-3 and Table IV-4, As illustrated in the tables that the configuration that presents optimal 

result is based on hyperbolic tangent sigmoid as an activation function for the hidden layer. 

Therefore, as shown in Figure IV-10, the inputs to the network are presented by the magnitude (Mja), 

epicentral distance (R), shear wave velocity (Vs30), resonant frequency (f800), the focal depth (D) 

and the angle epicenter-station (θ). Two neural-network models are proposed to predict the 

significant duration: SD575 and SD595. Both models are developed with six inputs and one output 

(SD575 or SD595). To strengthen the model performance, a prior standardization of all data 

(Input/Output) is performed.  
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The training process is stopped once the cross-validation reaches its minimum.    The 

performance of the developed ANN is carried out by comparing the target significant durations and 

those predicted by the models. Figure IV-11 and Figure IV-12 shows the regression curves for all 

data (1,104 samples) which reveal a correlation coefficient R equal to 0.95 for SD595 and 0.98 for 

SD575.  

 
Figure IV-10 Input /Output of models developed 
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Figure IV-9 Magnitude versus Distance. 
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Figure IV-11 Linear regression between the target and predicted SD. SD575 Model 

 

 
Figure IV-12 Linear regression between the target and predicted SD. SD595 Model 
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Since the predictive model depends on multiple variables (inputs), the plots of residuals 

against the main variables are drawn in Figure IV-13 and Figure IV-14 to evaluate the accuracy of 

the model and the correlation of the variables with the predicted values., the residuals are expressed 

by: 

 (10) 

Where: obsSDi and preSDi are the observed (recorded) and predicted significant durations. 

The residuals are plotted against the epicentral distance, the magnitude and the focal depth. For both 

predictions SD575 and SD595, the plots are pretty symmetrically distributed, tending to cluster 

towards the middle of the plots showing no bias or trend in the residuals in any of these plots. 
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Figure IV-13 Intra-event residuals as function of distance R, magnitude and Depth. SD575 Model 
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Figure IV-14 Intra-event residuals as function of distance R, magnitude and Depth. SD595 Model 
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IV.4.2. Results and discussions 

IV.4.2.1. Neural network topology optimization 

In order to define the optimal architecture of a neural model, it is necessary to test various 

neural typologies. The results are presented in Table IV-3 and Table IV-4, which list the Mean 

Square Error (MSE) and correlation coefficient (R) for different tests using different combinations. 

Following various tests on the different combination and architecture. The findings indicate that the 

significant duration measures (SD595 and SD575) predicted by the proposed models with six inputs 

using the combination of tangent hyperbolic function (tanh-sigmoid) as an activation function for 

both the hidden layer and output layer, with ten neurons, appears to be the most accurate. 

 
Table IV-3 Test of different combination of activation function 

 
 
Table IV-4 Influence of number of neuron activation function (tanh-sigmoid – tanh-sigmoid) 

                              SD595 SD575 

Neuron Rtrain Rvalid Rtest RAll MSE Rtrain Rvalid Rtest RAll MSE 

5 0.93 0.93 0.94 0.94 0.024 0.98 0.97 0.98 0.97 0.007 

10 0.96 0.95 0.94 0.95 0.018 0.98 0.98 0.98 0.98 0.007 

15 0.96 0.94 0.92 0.95 0.02 0.99 0.95 0.97 0.97 0.011 

20 0.97 0.94 0.85 0.96 0.017 0.99 0.93 0.97 0.97 0.016 

 

 

  SD595 SD575 

Layer 01 Layer 02 Rtrain Rvalid Rtest MSE Rtrain Rvalid Rtest MSE 

log-sigmoid log-sigmoid <0.1 <0.1 <0.1 >0.5 <0.1 <0.1 <0.1 >0.5 

log-sigmoid linear 0.95 0.95 0.95 0.017 0.98 0.98 0.97 0.01 

Tanh-
sigmoid 

linear 0.96 0.93 0.91 0.019 0.98 0.98 0.97 0.007 

Tanh-
sigmoid 

Tanh-
sigmoid 

0.96 0.95 0.94 0.018 0.98 0.98 0.98 0.007 
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IV.4.2.2.  Effect of magnitude, epicentral distance and soil velocity on the significant 

duration  

The significant durations SD595 and SD575 are plotted against epicentral distance, see Figure 

IV-15 and Figure IV-16. It can be noticed that the variation trend of the SD575 is less sensitive to 

the magnitude and is almost linearly increasing with distance. However, the SD595 is more sensitive 

to magnitude in far field, which means that the weakest part of the motion tends to last longer with 

higher magnitudes and longer distances. It is also noticed that soft soil tends to expand more the 

SD595, according with distance for low amplitudes. 

 Figure IV-17 and Figure IV-18 shows the variation of the significant duration with respect to 

distance from the source, for soft and rock soil types, at three levels of magnitude M=5, 5.5 and 6. 

The soft soil is characterized by a shear wave velocity VS30 = 200m/s (f800=1.67 Hz), the rock 

soil (reference site) has a shear wave velocity VS30 = 800m/s (f800= 6.68 Hz). It is clearly shown that, 

in both cases, the significant duration increases with the distance and the site effect is more important 

on SD595 duration compared to SD575. The soft soil produces more than 60% elongation of the 

significant duration, in the case of rock site at low magnitudes. Figure IV-17 compares the trend in 

the variation of the two significant duration measures SD575 and SD595 with respect to the distance 

from the source. It shows that the significant duration D575 has better stability than the D595, 

especially for greater amplitudes. 
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Figure IV-15  Predicted significant duration for Vs30 in {200m/s, and 400m/s, 800m/s}wc and Mw in {5, 

5.5, 6, 6.5}. SD575 Model 
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Figure IV-16 Predicted significant duration for Vs30 in {200m/s, and 400m/s, 800m/s} and Mw in {5, 5.5, 

6, 6.5}. SD595 Model 
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Figure IV-17 Effects of distance and site class on predicted models for M in {5, 5.5, 6}.SD575 Model 
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Figure IV-18 Effects of distance and site class on predicted models for M in {5, 5.5, 6}.SD595 Model 
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IV.4.1. Comparison with existing models 

The model proposed in this study is compared with two existing significant duration 

relationships:  Abrahamson  and Silva (1996) and Afshari and Stewart (2016). Figure IV-20 

compares the predicted value of both significant duration definitions (SD595 and SD575), for 

magnitude earthquakes equal to 5.5 for site class D (Vs30 = 200 m/s), and those provided by three 

empirical relationships: the one proposed in this study and those proposed by Abrahamson  and 

Silva (1996) and Afshari and Stewart (2016). These two laters (empirical attenuation relationships) 

use an additive site effect term (rock or soil parameter for Abrahamson and Vs30 for Afshari and 

Stewart 2016). [3, 49] 

For the sites characterized by epicentral distance (R) greater than 100 km, the proposed model 

predicts significant duration value which is 30% greater than those from the two empirical 

relationships. Conversely, for distance range between 0.0 and 100 km, the proposed ANN provides 

values falling between the two empirical attenuation relationships predictions. 

 
Figure IV-19 Comparison of proposed Model Prediction SD575 and SD595 for Vs = 200m/s. 
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Figure IV-20 Comparison of proposed significant duration model with two existing relationships Mja= 

5.5; Vs30=200 m/s; principal direction. 

 

IV.4.2. Sensitivity analysis 

A sensitivity analysis investigates how the different inputs affect the significant duration 

models. the overall results are summarized in Figure IV-21 and Figure IV-22, which shows that the 

inputs parameters have almost the same effects on the significant duration, whereas the depth 

parameter is dominant and the radial angle has less influence. 
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Figure IV-21 Input sensitivity analysis. SD575 Model 

 

 
Figure IV-22 Input sensitivity analysis. SD595 Model 
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IV.5. Frequency content  

The mean period parameter (Tm) of a ground shaking is considered as a simplified parameter 

to describe the frequency content. This parameter is preferred due to its ability to distinguish 

between various spectral shapes of ground motion, and its relationship with seismological 

parameters. 

The objective of this section is to predict the mean period (Tm) of the strong ground motions and 

analyze the effects of seismological parameters using feed forward artificial neural network (ANN) with 

a gradient back-propagation rule for the training. The inputs are the magnitude, the focal depth, the 

epicentral distance, the shear wave velocity and the radial angle epicenter-station while the target outputs 

are represented by the mean period (Tm). Then, a sensitivity analysis is carried out in an attempt to 

capture the influence of the seismological parameters on the mean period of the ground motion. 

IV.5.1. Artificial Neural Network Model  

The results show that the configuration with a hyperbolic tangent function for the hidden 

layer and linear function for the output layer gives the best results. 

According to the above provisions, inputs to the network are defined here by the values of 

magnitude (Mjma), epicentral distance (Repi), shear-wave velocity (Vs30), resonant frequency (f800), 

the focal depth (d) and the angle epicenter-station (θ). The output node is represented by mean 

period (Tm) (Figure V-26). A standardization of all data was performed to improve the performance 

of the model. 
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Figure IV-23 Input /Output of models developed 
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In this section, a large number of architectures were tested using various parameters in order 

to obtain the best ANN model.  

The performance of the developed neural network models is carried out by comparing the 

target Tm and those predicted by the models. Figure IV-24 shows the regression curves for all data 

(1104 samples) which reveal a coefficient of correlation R equal to 0.8. 

 

 
Figure IV-24 Linear regression between the target and predicted Tm 

 
IV.5.2. Results And Discussions 

As it was described before, to determine the optimal architecture of an ANN it was necessary to 

test a large number of architectures. To train and test the ANN models, a computer program was 

developed that includes routines for MATLAB Neural Network Tool Box. All architecture used and 

the results obtained in this study are presented in Table IV-5 and Table IV-6. 

The accuracy of the prediction is evaluated by comparing the performance criteria; Table IV-5 

shows the performance of all the three ANN architectures, along with their respective prediction 

accuracy. On one hand it is observed that the best value of R with small value MSE associated with 

the combinations (tanh-sigmoid –linear) as function activation, on the other hand it has been found 

that the neuron number considered of the hidden layer have approximately same prediction accuracy 
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which mean that the number of neurons used in the hidden layer has no influence on the performance 

of this particular models. This table lists the MSE and R for different tests using different 

combinations,  Summing up the results it can be concluded that the Tm (Mean period) predicted by 

the ANN with ten neurons for the activation function using the combination of activation function 

(tanh-sigmoid –linear) has been found to be more accurate.  

 
Table IV-5 Test of different combination of activation function 

Layer 01 Layer 02 Rtrain Rvalid Rtest Rall MSE 
log-sigmoid log-sigmoid <0.1 <0.1 <0.1 <0.1 >0.5 
log-sigmoid linear 0.78 0.71 0.76 0.76 0.032 

Tanh-sigmoid linear 0.81 0.8 0.77 0.8 0.027 
Tanh-sigmoid Tanh-sigmoid 0.84 0.73 0.76 0.81 0.038 

 
Table IV-6 Influence of number of neuron activation function (tanh-sigmoid –linear) 

Neurone nbr Rtrain Rvalid Rtest RAll MSE 
5 0.75 0.77 0.7 0.75 0.025 

10 0.806 0.8 0.77 0.8 0.019 
15 0.8 0.67 0.8 0.78 0.024 
20 0.82 0.72 0.81 0.8 0.027 

 
IV.5.3. Sensitivity Analysis:  

This analysis was conducted for the models developed and the overall results are summarized 

in Figure IV-25. As can be seen on this figure, the shear-wave velocity down to a depth of 30m 

(VS30) and the resonant frequency f800 are the most influent parameters, followed by the magnitude 

and focal depth. Nevertheless, the distance and the orientation of path turned out to be less 

influential. 

 

 
Figure IV-25 Input sensitivity analysis for Tm 
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IV.6. The functional form 

The functional form for each of the developed model is expressed in Equation (11), for any 

given set of input data, the first step is the normalization preprocessing according to Equation (6), 

to get Pn.. The output of the model is then obtained through the ANN according to Equation: 

 (11) 

where : 

w1: is the (Nh, N) matrix of synaptic weights between the input parameters and the hidden 

layer;  

w2: is a vector of size Nh that contains the synaptic weights between the hidden layer and the 

single-output parameter;  

{b1} and {b2}: are the bias vectors of the hidden layer and output layer, respectively. The 

values of the synaptic weight matrices and bias vectors for each of the ANN models developed are 

included in the appendix.  The scaled output Tn is then unscaled, using Equation (7). 

The Tanh dependency is related to the selection of the Tanh-sigmoid activation function. 

For each of the earthquake parameters considered as an input the validation limits are 

summurized  in Table IV-7. 
Table IV-7 Validation limits 

 f800 Vs30 Mw R Depth 

min 0.12 144 4.8 15 16 

max 20 1500 7.3 205 13 

 

IV.7. Conclusion 

The prediction of the intensity measures of ground motion for a given site is of paramount 

importance in many practical applications of earthquake engineering. In this chapter of the 

dissertation, a neural network based method has been used to predict the intensity measures for a 

given set of seismological parameters.  

The elaborated models have six input factors: the magnitude (Mjma), the epicentral distance 

(Repi), the shear-wave velocity (Vs30), the resonant frequency (f800), the focal depth (d) and the angle 

of the epicenter-station (θ). 

 A large number of ground motions extracted from the KiK-Net strong motion database were 

used to train the ANN. Performance criteria such as mean square error (MSR) and correlation 
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coefficient are used to evaluate accuracy. It is found that the predicted values of the intensity 

measures by the neural network correlate well with the observed ones. 

Moreover, in previous models, the intensity measure variation due to different orientations 

was not explicitly incorporated and it was based on the geometric mean or the maximum of the two 

orthogonal components. The ANN models proposed take into account both components of the 

ground motions, and consider the directionality effect through the radial angle as an input parameter. 

For the PGA model, the results show that the configuration with a hyperbolic tangent function 

for both the hidden layer and output layer gives the best PGA, which converges to the recorded 

value with the highest level of correlation coefficient, equal to 0.86. 

The PGA increases with magnitude and decreases with increasing distance and Vs30 (stiffer 

sites). These observations are consistent with those shown in previous studies. On the basis of a 

sensitivity analysis, it can be concluded that all input parameters are comparably influencing the 

PGA, including the newly introduced parameter θ. 

For the Significant Duration (SD) model, the results confirm previous studies outcomes, i.e. 

Abrahamson and Silva (1996), Afshari and Stewart (2016). They are all in good accordance as long 

as distance is less than 100km. However, the ANN model provides a slightly higher duration at 

distance greater than 100km. The discrepancies, at distances greater than 100km, are attributed to 

the significantly enriched far field content (site at distance greater than 100km) of the collected 

database. 

A sensitivity analysis concludes that the magnitude and the focal depth are first order 

parameters influencing the significant duration, in comparison to the epicenter distance and shear 

wave velocity down to 30 m, which have a small impact. The additional parameter "θ" defined as 

the angle formed between the orientation of the path epicenter-station and the direction of a 

component (EW or NS) improves further the performance of the models despite its small effect on 

the models compared to others inputs.  

For the mean period, the sensitivity analysis shows that the shear wave velocity and the 

resonant frequency are, first order parameters influencing the mean period compared to the 

magnitude and the depth, which have a small impact. 
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Chapter V. PREDICTION OF ENGINEERING DEMAND 

PARAMETERS (EDPS) 
 

 

 

V.1. Introduction 

Engineering Demand Parameters (EDPs ) are structural response measures that can be used 

to evaluate the damage to different components structural and non-structural. Various EDPs 

parameters are proposed in literature to quantify the response of structures such as inter-story drift 

or floor acceleration.   As a part of probabilistic based seismic design, Estimate the EDPs for a given 

hazard level is an essential step, which are often used to assess the amount of damage (structural, 

non-structural and content), The EDPs used in this study are based on equivalent SDOF. As 

illustrated in Figure V-1 the selected EDPs are the inelastic response and the hysteretic energy, 

which correlate well with the potential damage of the earthquake. The objective of this chapter is to 

propose predictive models for EDPs and analyze the effect of seismological parameters and intensity 

measures. 

 
Figure V-1 EDPs considered in this dissertation 

Engineering demand 
measures for SDOF

Ductility

Inelastic response 
spectrum

Cumulative response

Hysteretic Energy 
Spectrum
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V.2. Inelastic Response Spectra 

V.2.1. Computation of inelastic response spectrum  

Equivalent single-degree-of-freedom (ESDOF) systems are commonly used in the field of 

earthquake and structural engineering [54, 55] to approximate the response of multi-degree-of-

freedom (MDOF) structures, including regular RC buildings, when the response is dominated by a 

single mode with a high modal participation factor. Different methods also make use of equivalent 

SDOF systems to predict damage in structures. [56, 137] 

Most of the Ground Motion Prediction Equations for elastic and inelastic response spectra 

proposed in literature are based on the response of constant-ductility systems and are developed for 

design purpose [9]. Furthermore, the seismic assessment and design verification are based on the 

evaluation of the ductility demand of structures with given strength, stiffness and restoring force 

characteristics. This investigation is predicated on the constant-strength approach. Consequently, 

five-yield strength reduction factors (q) equal to 1,2,3,4 and 5 are considered. 

A set of 21 SDOF systems are considered to cover periods of vibration ranging from 0.1 sec to 4 

sec (step 0.2 sec). Yielding strength values (fy) are computed dividing the elastic strength (Fe), 

corresponding to the period of interest, by a yield strength reduction factor (q). A total number of 

21 000 nonlinear time history analyses were carried out. As illustrated in Figure V-2, an Elastic-

Perfectly-Plastic (EPP) model is used.  

For an inelastic damped SDOF system subjected to ground acceleration, the differential equation 

of motion can be expressed as follows: 

 (12) 

 

Where: m, c and f represent the mass, damping and resisting force of the inelastic system, 

respectively;  denotes the ground acceleration; represent respectively the acceleration, 

velocity and deformation of a SDOF. 

In this investigation, Bouc-Wen model is selected for its simplicity, stability and it can simulate 

any extended plastic deformation [138]. Runge-Kutta method is adopted to solve the model 

differential equation numerically [139]. According to Bouc-Wen, the resisting force  is defined 

as the sum of the linear part and the hysteretic part, and depends on history of deformation.  

 (13) 
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Where:  is the post-yield stiffness; Q is the yield strength (ordinate at origin of creeping 

part) whereas  represents the yielding force; and the adimensional variable z(t) which 

characterizes the Bouc-Wen hysteresis model : 

 
(14) 

Where:  z(t) depends on the yield displacement fy, as well as A, B, λ and β that are the 

parameters that control the shape of the hysteresis loop. The adopted values are:  

A=1, B=0.1, λ=0.9, β=6 and  for bilinear elastic-perfectly plastic system 

 

 
Figure V-2 Elastic-Perfectly-Plastic relationship of inelastic single-degree-of-freedom 

 

V.2.2. Artificial neural network  

There are several functions such as hyperbolic tangent, sigmoid and linear functions that can be 

used as activation or transfer function. The type of activation function plays an important role, and 

allows the introduction of nonlinearity so that it can deal even with complex phenomena. The 

concept of the ANN in estimating the inelastic response spectra is illustrated in Figure V-5 together 

with a schematic representation of the input and output parameters.  
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Figure V-3 and Figure V-4 shows the flowchart for the process of computation of the inelastic 

response spectra. The constant-strength inelastic response is calculated by reducing the elastic 

strength of SDOF system from the corresponding reduction factor. A global flowchart of the 

procedure used in this study is shown in Figure V-4. The selected ground motions from the KiK-

Net database are first used to construct the ANN database using the constant-strength approach and 

then introduced to train, test and validate the ANN model. 

Seismological parameters: 
Magnitude (M) 

Source-to-site distance(R) 

Local site condition (Vs30) 

Depth (d) 

Structural 

proprieties: 
Natural period (T) 

Strength yielding (fy) 

Damping coefficient (ξ) 

Inelastic 
Response 
Spectra 

ANN 
predictive 
Model 

Equivalent SDOF 

Figure V-3 Process of estimating the inelastic response spectra (Sd) 
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Input ground motion  
(Accelerogram) 

Specify T, ξ, Q-factor 

Elastic analysis  
Calculate Fe 

Determine fy corresponding 
to a given strength 
reduction factor 

Nonlinear time history 
analysis 
Calculate Sd 

Construct database of 
Inelastic Response Spectra 

Next T 
step of 
0.2s 
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Develop the neural model  
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Predictive ANN model  
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TS 
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R
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Figure V-4 Flowchart presented overall procedure for predicting inelastic response spectra  
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V.2.3. Results and discussion  

V.2.3.1. Neural network topology optimization 

Various neural typologies were tested to define the optimal architecture of a neural model. The 

results are presented in Table V-1, which list the Mean Square Error (MSE) and correlation 

coefficient (R) for different tests using different combinations.  Following various tests on the 

different combination and architecture. It turned out that the inelastic response spectra predicted by 

the proposed models with five inputs using the combination of tangent hyperbolic function (tanh-

sigmoid) as an activation function for the hidden layer and linear function (lin) for the output layer, 

with ten neurons, appears to be the most accurate (Figure V-5). [140] 

 

 

 

Input parameters  
5 nodes 

Hidden layer 

10 nodes 

Output layer 

21 values of inelastic 

response  

Inelastic Response Spectra 

SD (T1)  SD (T2)   2) SD (T3)  3) SD (T4)  SD (T21)  

Figure V-5 Structure of ANN model 
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Figure V-6 shows the regression curve, which plots the values of the inelastic response estimated 

by the proposed model against the calculated values. The correlation coefficient (R) shows that the 

values predicted by the neural model are in good agreement with the target values (R=0.93). 

 
Figure V-6 Linear regression between the target and predicted Sd 

To evaluate the statistical behavior of the developed model the residuals are plotted against the 

M, the R and the Vs30 for predicted inelastic response spectra. As illustrated in Figure 8, generally 

there is no bias of trend in the residuals. However, It should be noted that in small magnitude events 

(M=4.5) and in the large distance (R>150km; Far field) significant bias values were observed with 

respect to Magnitude and distance. The bias in the model is attributed to insignificant response 

amplitudes due to the attenuation of the ground motion with Magnitude and Distance. 
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Figure V-7 Intra-event residuals as function of distance R, magnitude and Vs30. 

 

 
Table V-1 Test of different combination of activation function 

ACTIVATION FUNCTION PERFORMANCE CRITERIA 

Layer 01 Layer 02 Rtrain Rvalid Rtest Rall MSE 
log-sigmoid log-sigmoid <0.1 <0.1 <0.1 <0.1 >0.5 
log-sigmoid linear 0.95 0.92 0.91 0.93 0.008 
Tanh-sigmoid linear 0.94 0.92 0.92 0.93 0.007 
Tanh-sigmoid Tanh-sigmoid 0.86 0.83 0.87 086 0.018 
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V.2.3.2. Effect of intensity measures on Inelastic response spectra  

This section presents the effect of the chosen vector-valued seismological parameters on the 

inelastic response spectra predicted by the ANN model.  Figure V-8 shows the variation of the Sd 

amplitudes with natural periods for three values of magnitude (M 5.5,6 and 6.5) while keeping the 

same values of: source-to-site distance (R 50km), Depth (d 10km) and Shear wave velocity (Vs30 

180m/s). The trend of variation for all magnitudes is similar and tends to increase the inelastic 

displacement demand further in the long-period region (2s<T<3.5s).  

 

Source-to-site distance-dependent inelastic response spectra are shown in Figure V-9 for two 

scenario: Near field (R 20km) and Far Field (R 70km) with the same M, d and Vs30. The results 

indicate clearly that the inelastic deformation demand is still more pronounced in the long-period 

region with the same trend for both the near and far field scenario. Logical trend is observed, there 

is systematic increase in the Sd spectra with a decrease in the source-to-site distance.  

 
Figure V-8 Predicted inelastic response spectra  for M  in (5.5, 6, 6.5). 
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Figure V-9 Predicted inelastic response spectra for R in (20km, 70km). 

 
To highlight the influence of the site condition on the inelastic response spectra, the curves 

corresponding to the  spectra predicted by the ANN model are plotted in Figure V-10 for three 

values of Vs30 (180m/s, 270m/s and 360m/s). It shows that the effect of the Vs30 is similar to the 

previous parameters and small values of Vs30 (soft soil) produce larger response than site with high 

values of Vs30. 
 

 
Figure V-10 Predicted inelastic response spectra  for Vs30  in (180m/s, 270m/s, 360m/s). 

The reduction factor is used to reduce the yielding strength obtained from a linear analysis in 

order to take into account the non-linear structural capacities. Figure V-11 elucidate further the 
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influence of reduction factor on the inelastic response spectra where each increment of q-factor leads 

to decreasing nonlinear response. 

Based on the results illustrated in Figures 7, 8, 9 and 10, the relation between the inelastic 

response spectra and seismological parameters present a similar trend and all the parameters 

considered as inputs are more effective in the large-period region. 

The 

dependence of the inelastic response spectra on seismological parameters, such as magnitude, 

distance, and soil condition, was investigated. The obtained results are well substantiated by the 

physical meaning of the magnitude as an increase in the magnitude values leads to consistent 

increase of inelastic response demand. It is well known that strong ground motions attenuate 

with distance, this was clearly reflected in Figure V-9 where significant reduction in the inelastic 

response spectra is observed in the far fields. On the other hand, as expected, structures on soft soil 

foundations are exposed to higher ductility demands than those on stiff soil foundations.  

V.2.4. Sensitivity analysis 

A sensitivity analysis of the seismological input parameters is performed, in order to gauge the 

individual influence of each parameter on the Sd spectra. Percentages of synaptic weight Pi that 

corresponds to each of the four parameters are computed using the following equation : 

 (15) 

wij: synaptic weights of the ANN where i  [1..N] and j  [1..Nh], with N=10 and Nh=4. 

 

Figure V-11 Predicted inelastic response spectra  for Q-factor  in (1,2,5). 
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The overall results are summarized in Figure V-12, which shows that the seismological 

parameters have almost the same effects on the Sd spectra, whereas the depth has less influence. 

 

 
Figure V-12 Input sensitivity analysis 

 

V.3. Hysteretic energy demand spectra 

The different types of seismic energy component imparted to structures are presented in 

chapter II. In this section, we investigated the hysteretic energy component. This objective is to 

predict the hysteretic energy demand spectra by considering as inputs the Intensity measures (IMs) 

which characterize the main features of ground motion rather than expressing it in terms of 

earthquake parameters (see Figure V-13). The proposed approach is intended to reduce the 

uncertainties related to earthquake and seismological parameters using feed forward Artificial 

Neural Network (ANN) with gradient back-propagation rule for the training. For this purpose, a 

database of hysteretic energy response spectra is constituted using 5% damped Single-Degree-Of-

Freedom (SDOF) systems subjected to 570 strong ground motion components  judiciously extracted 

from the KiK-Net strong-motion network. 
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The earthquake ground motions were attentively selected from the KiK-Net database prepared 

initially, the distributions of the records in terms of intensity measures are presented in Fig. V-14, 

V-15 and V-16. The intensity measures (IMs) considered in this study are strategically selected to 

take into consideration the three essential features of the ground motion; the Peak Ground 

Acceleration (PGA) for the amplification, the Significant Duration (SD) for the duration, and the 

mean period (Tm) for the frequency content.  

As illustrated in Fig. V-14, More than 70% (414 records) of the ground motion records used 

in this study to train the neural network, have a PGA range between 50 to 250 gal. 
 

Attenuation 

model 

(GMPE) 

Intensity measures 

(PGA, Significant 

duration, frequency 

content) 

Predictive 

Model 

Energy Demand 

Spectra 

Structural Proprieties (Natural 

period, yield damping …) 

Earthquake 

parameters 

Figure V-13 the approach used to predict the hysteretic energy demand 
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Figure V-14 PGA distribution 

 
More than 50% (280 records) of the ground motion records used in this study to train the 

neural network, have a significant duration range between 5 to 25 s (Fig. V-15). 
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Figure V-15 Significant duration distribution 
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A computer algorithm was developed to compute the energy response time-histories of SDOF 

systems under the selected earthquake ground motions. Consequently, a dataset of hysteretic energy 

demand spectra was constructed and used in the learning process. To this end, a range of SDOF 

systems is considered. Each SDOF system is characterized by a natural period (T), a critical 

damping ratio (ζ) and a mass-normalized yield strength (Cy), which is defined as: 

 
(16) 

Where, Fy is the yield force of the system. The force-deformation relation of the system is 

elastic-perfectly-plastic and damping ratio is taken 5% of critical damping. The interval of variation 

of the natural period is composed of 14 values ranging from 0.1 sec to 2.5 sec. 

Most of the Ground Motion Prediction Equations for energy demand spectra proposed in 

literature are based on the response of constant-ductility systems and are developed for design 

purpose [83]. Furthermore, the seismic assessment and design verification are based on the 

evaluation of the ductility demand of structures with given strength, stiffness and restoring force 

characteristics. As illustrated in Figure V-17, this investigation is predicated on five levels of mass-

normalized yield strength (Cy) equal to 10,5,2,1 and 0.5 m/s2. A total number of 39 900 nonlinear 

time history analyses were computed. For an inelastic damped Single-Degree-of-Freedom (SDOF) 

system subjected to ground acceleration. 
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Figure V-16 Mean period distribution 
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V.3.1. Artificial neural network 

There are several functions such as hyperbolic tangent, sigmoid and linear functions that can 

be used as activation or transfer function. The type of activation function plays an important role, 

and allows to deal even with complex phenomena. A systematic theory to determine the number of 

input nodes and hidden layer nodes is unavailable. 

 

Figure V-17 levels of normalized yield strengths 

Figure V-18 Structure of ANN model 
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Therefore, the selection of an architecture of the neural network is determined by trial and 

error [141]. In this paper, a large number of architectures are tested by using various parameters in 

order to obtain the best ANN model. The model is developed with four inputs and 14 output neurons 

and a 20 nodes hidden layer as illustrated in Figure V-18.  

 

Various neural typologies were tested to define the optimal architecture of a neural model. 

The results are presented in Table V-2, which list the Mean Square Error (MSE) and correlation 

coefficient (R) for different tests using different combinations.  After several trials on the different 

combination and architecture, it turned out that the hysteretic energy spectra predicted by the 

proposed models with four inputs using the combination of tangent hyperbolic function (tanh-

sigmoid) as an activation function for the hidden layer and the linear function for the output layer, 

with twenty neurons, is the most accurate. 

 

  
Figure V-19 Linear regression between the target and predicted Sd 



91 
 

 
Table V-2 Test of different combination of activation function 

Activation Function Performance Criteria 

Layer 01 Layer 02 Rtrain Rvalid Rtest Rall MSE 

log-sigmoid log-sigmoid <0.1 <0.1 <0.1 <0.1 >0.5 

log-sigmoid linear 0.88 0.73 0.89 0.85 0.005 

Tanh-

sigmoid 
linear 0.86 0.83 0.86 0.85 0.004 

Tanh-

sigmoid 

Tanh-

sigmoid 
0.85 0.73 0.70 0.80 0.006 

 

 

V.3.2. Results and discussion 

V.3.2.1. Neural network topology optimization 

Figure V-19 shows the regression results which compare the value of the hysteretic energy 

estimated by the proposed model and the calculated values. The correlation coefficient (R=0.85) 

indicates that the values estimated by neural model are in agreement with the calculated target 

values. 

To evaluate the statistical behavior of the developed model, the residuals are plotted against 

the PGA, the SD and the Tm for predicted hysteretic energy spectra. As illustrated in Figure V-20, 

the plots are fairly  symmetric and tend to cluster towards the middle  showing no bias or trend in 

the residuals. 
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V.3.2.2. Effect of intensity measures on the hysteretic spectra  

The effect of the intensity measures on the predicted hysteretic energy spectra is presented in 

this section.  Figure V-21 shows Five curves of the predicted hysteretic energy demand spectra 

corresponding to increasing values of PGA  (PGA 0.2g, 0.4g, 0.6g, 0.8g and 1.0g) while keeping 

the same values of the significant duration (SD 15s), the mean period (Tm 0.4s) and the normalized 

yield strength (Cy=1 m2/s2).  

The effect of PGA is mostly felt in the short-period region (T<0.7s). The hysteretic energy 

demand depends strongly on the PGA, an increase in the PGA leads to consistent increase of 

hysteretic energy demand.  

Figure V-20 Intra-event residuals as function of PGA, SD and Tm 
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Duration-dependent hysteretic energy spectra obtained for three scenarios (SD 5 s), (SD 20 s) 

and (SD 40 s) with the same PGA and Tm (PGA 0.5g and Tm 0.4s) are depicted in Figure V-22. It 

is clearly shown that, for T<0.8s the long duration (SD 40s) procures more than 75% growth of the 

hysteretic energy compared to the short duration (SD 5s). The results indicate clearly that the effect 

of significant duration attenuate as we increase the naturel period value. Therefore, the duration 

effect is more pronounced in the short-period region (T<0.7s) while the large-period region is less 

sensitive to the duration of the strong motion. In the other hand, there is significant increase in the 

hysteretic energy demand with an increase in the duration. This lends support to previous finding in 

literature. [142] 

 

Figure V-21 Predicted Eh spectra for PGA in {0.2g, 0.4g, 0.6g, 0.8g and 1.0g} 

Figure V-22Predicted Eh spectra for SD in {5s, 20s and 40s} 



94 
 

To highlight the influence of the frequency content on the hysteretic energy. The latter is 

predicted for  short period ground motion (Tm 0.2 s) and long period ground motion (Tm 0.8 s). and 

plotted in Figure V-23.  

The spectral shape of hysteretic energy spectra depends on the mean period (Tm). The short 

period ground motion affects more the system in short period region (0.2s<T<0.5s) while the 

systems in period greater than 0.5s, the hysteretic energy demand are consistently smaller.  

Compared to the short period ground motion (Tm 0.2s), the long period ground motion (Tm 0.8) 

produces more than 200% increase of the hysteretic energy demand in period greater than 0.5s. 

 

 
 

The proposed model is based on the response of constant-strength oscillators which is useful 

for seismic evaluation of existing structures. Figure V-24 clarify further the influence of mass 

normalized yield strength (Cy) on the hysteretic energy demand spectra. As expected an increase of 

Cy leads to an extended elastic phase, which consequently is reflected by a consistent decrease in 

the amplification shape of the hysteretic energy demand spectra. 

 

Figure V-23 Predicted Eh spectra for Tm in {0.2s and 0.8s} 
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V.3.3. Numerical comparison with existing models 

The model proposed in this study is compared with two existing empirical relationships: 

Decanini and Mollaioli (2001) and Dindar et al. (2015) [83, 143].   

Figure V-25 compares the hysteretic energy spectrum computed on the basis of the intensity 

measures values corresponding to Kobe record and the parameters  given in Table V-3. 

 
Table V-3 Input parameters used to construct hysteretic energy spectra 

PGA (g) SD (s) Tm (s) μ Site class ξ (%) 

0.8 40 0.5 4 Stiff soil 5  

 

Note that the existing models are based on the response of a constant-ductility ratio, while the 

proposed model is developed for a constant-strength ductility. To conduct the comparison the mass 

normalized yield strength is calculated for each period. 

Figure V-25 shows that the overall trends of the spectra of the proposed model and those of 

Decanini and Mollaioli (2001) and Dindar et al. (2015) are similar. 

 

Figure V-24 Predicted Eh spectra for Cy  in {1,5 and 10} 
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V.3.4. Sensitivity analysis 

A sensitivity analysis for the input variables is performed  in order to quantify the individual 

influence of each parameter on the hysteretic energy demand spectra.  

The results of the sensitivity analysis are plotted in Figure V-26, which shows that the IMs 

parameters have almost the same effects on the hysteretic energy demand spectra, whereas the Cy 

has less influence. 

 

 
  

Figure V-25 Comparison with existing models 

Figure V-26 Input sensitivity analysis 
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V.4. Conclusion 

In this chapter, a neural network based method is developed, in order to predict the inelastic 

displacement and the hysteretic energy spectra, for a given set of structural proprieties and intensity 

measures of ground motion.   

The proposed hysteretic energy model adopts four input parameters: the peak ground 

acceleration (PGA), the significant duration (SD), the mean period (Tm) and the mass-normalized 

yield strength (Cy). The database is constructed using nonlinear time history analysis (NLTHA) of 

SDOF systems subjected to ground motion records that has been  selected  from the KiK-Net 

network. The test phase shows that the predicted values of the hysteretic energy demand spectra by 

the neural network are reasonably close to the target values and show also a similar trend with 

existing empirical formulations. A parametric study shows the hysteretic energy demand spectra 

increase with peak ground acceleration and significant duration in short-period region. In large 

period range, the hysteretic energy spectrum is less sensitive to the characteristics of the ground 

motion.  Similarly, the short-period ground motion influences more the SDOF systems in the short 

period region while the long-period ground motion influence covers a wide range of period. The 

resulting synaptic weights of the trained NN reveal that the intensity measures represented by: PGA, 

SD and Tm are first order parameters influencing the hysteretic energy demand spectra, in 

comparison to the Cy, which have a lesser impact. 

As for the inelastic response spectra, Unlike most of previous studies based on the constant-

ductility approach, this investigation adopt the constant-strength approach in the development of 

GMPE, which is useful for evaluating the seismic performance of the existing structures.  Based on 

performance criteria such as mean square error (MSR) and correlation coefficient (R),  the proposed 

ANN model predicts the inelastic response spectra with an acceptable precision compared to  the 

real spectra. The result of residual analysis corroborate the model reliability with some bias and 

poor performance in the small magnitude and far field, this weakness can be justified by the 

insignificant response amplitudes due to the attenuation of the ground motion with Magnitude and 

Distance. The use of this GMPE is recommended for events with larger magnitude (M>5.5) in the 

near fields ( R<150 km). A sensitivity analysis concludes that the seismological parameters have 

almost the same influence on the inelastic response spectra as predicted by the ANN model except 

the depth parameter which has a reduced impact. 
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Chapter VI.

This dissertation investigated the effects of the seismological parameters on the structural 

response on two stages. Firstly, we interested on the ground motion characteristics and how it is 

affected by the seismological parameters. Afterward, the structural aspects is addressed, the 

influence of the earthquake parameters on the nonlinear behavior of structures is investigated.

The methodology can be summarized in three steps: (a) Data collection (b) Data analysis using 

artificial neural network (c) interpretation of results. The ground motion database developed in this 

dissertation is obtained from the nation-wide strong-motion seismograph network KiK-NET (Kyoshin 

Network), which consists of more than 1,000 observation stations distributed every 20 km uniformly 

covering Japan

The Artificial neural network is used to analyze the data, which the artificial neural network 

(ANN) is considered as an alternative option to multiple regression analysis, the ANN with back-

propagation (BP) is an efficient way of solving nonlinear modelling problems.

In the chapter 4, the intensity measures (IMs) considered in this study are strategically 

selected to take into consideration the three essential features of the ground motion; the Peak Ground 

Acceleration (PGA) for the amplification, the Significant Duration (SD) for the duration, and the 

mean period (Tm) for the frequency content.

Neural models are developed to predict the intensity measures (IMs). The models are then 

used to investigate also the influence of seismological parameters. 

The governing input parameters are the magnitude, the focal depth, the epicentral distance, 

the shear wave velocity, the resonant frequency and the radial angle epicenter-station. The target 

outputs correspond to intensity measures (IMs). Compared to the existing attenuation models, in 

addition to the earthquake independent parameters used for attenuation relationships, a new aspect 

is considered in this dissertation called directionality. 

An analysis of the effect of directionality on the PGA was performed; the findings of this 

analysis highlight the effects of directionality on the amplitude of ground motion. the ratio 

(max/min) may reach up to 1.35 (increase of 35%). Therefore, a radial angle parameter has been 

included in the input of the predictive model.

The database used in most recent Ground Motion Prediction Equations (GMPEs) is based on 

one record at each station derived from the combination of two horizontal components EW and NS 

(usually the geometric mean). Compared to previous research works, one of the most important 
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advantage in introducing the angle epicenter-station (θ) as an input model parameter is that both 

components E-W and N-S are considered apart in the database. 

Performance criteria such as mean square error (MSR) and correlation coefficient are used to 

evaluate the accuracy. It is shown that the predicted values of the intensity measures (IMs) by the 

neural network are in good accordance with the observed ones. 

A sensitivity analysis investigates how the different inputs affect the significant duration 

models, it has been found that: 

 For the significant duration, the inputs parameters have almost the same effects on the 

significant duration, whereas the depth parameter is dominant and the radial angle has 

less influence. The additional parameter “θ” defined as the angle formed between the 

orientation of the path epicenter-station and the direction of a component (EW or NS) 

improves further the performance of the models despite its small effect on the models 

compared to others inputs. 

 For the PGA, The inputs parameters have almost the same effects on the PGA except 

that the soil frequency parameter f800, which has less influence. 

 For the mean period, the shear-wave velocity down to a depth of 30m (VS30) and the 

resonant frequency f800 are the most influent parameters, followed by the magnitude 

and focal depth. Nevertheless, the distance and the orientation of path turned out to be 

less influential. 

The structural behavior is addressed in chapter 5, the ductility and dissipated energy, which 

correlate well with the structural damage during an earthquake are investigated. Equivalent SDOF 

systems are considered with a set of 21 periods of vibration ranging from 0.1 sec to 4 sec (step 0.2 

sec). Based on the response time history of SDOF systems subjected to ground motion records 

selected attentively from the database, two engineering demand measures are considered: (1) the 

inelastic displacement response spectra. (2) Hysteretic energy demand spectra. 

A Ground Motion Prediction Equations (GMPEs) is developed to predict the inelastic 

response spectra without the need to resort first to elastic spectra. The inelastic response is expressed 

in terms of seismological parameters and structural proprieties using feed forward artificial neural 

network (ANN) with a gradient back-propagation rule. 

The use of this GMPE is recommended for events with larger magnitude (M > 5.5) in the near 

fields (R <150 km). A sensitivity analysis concludes that the seismological parameters have almost 

the same influence on the inelastic response spectra as predicted by the ANN model except the depth 

parameter that has a reduced impact. 
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The energy concept is addressed in the second section of chapter 5 by considering the 

hysteretic energy demand spectra. A neural model is developed by considering as inputs the 

Intensity measures (IMs) which characterize the main features of ground motion rather than 

expressing it in terms of earthquake parameters. The proposed approach is intended to reduce the 

uncertainties related to earthquake and seismological parameters using feed forward Artificial 

Neural Network (ANN) with gradient back-propagation rule for the training. 

A parametric study shows the hysteretic energy demand spectra increase with peak ground 

acceleration and significant duration in short-period region. In large period range, the hysteretic 

energy spectrum is less sensitive to the characteristics of the ground motion.  Similarly, the short-

period ground motion influences more the SDOF systems in the short period region while the long-

period ground motion influence covers a wide range of period. 

The resulting synaptic weights of the trained NN reveal that the intensity measures represented 

by: PGA, SD and Tm are first order parameters influencing the hysteretic energy demand spectra, 

in comparison to the Cy, which has a lesser impact. For the engineering demand measure considered 

in this dissertation, the performance of the developed model reveals a good match between the 

computed and predicted values of hysteretic energy demand spectra. 

The results of this study were compared to those of the previous study on significant duration 

and hysteretic energy spectra. The proposed models are in good accordance with the existing 

models. 

From a practical perspective, the ANN model with only one hidden layer and a limited number 

of neurons has been implemented in a simple computer program (see appendix). Therefore, the 

developed models can be routinely integrated into engineering applications and for probabilistic 

seismic hazard analysis (PSHA) studies.  
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Appendix. A   Synaptic weight matrices and bias vectors for the ANN model. 

w1:  the matrix of synaptic weights, its dimensions are Nh×N the input parameters and the hidden layer. 

w2:  the vector of size Nh that contains the synaptic weights. 

b1, b2: The bias vectors of the hidden layer and output layer.  

PGA Model: 

w1 = 

1.1483 -1.6031 0.91218 0.048856 -0.56716 -0.64599 

0.10273 0.42777 -0.36178 0.057407 -0.12529 -0.27508 

-1.727 0.38588 2.0824 -0.486 0.1813 -0.48307 

1.3525 -0.67121 0.92101 -1.5773 -0.016869 -1.4048 

-0.59759 0.19538 1.0443 0.097137 0.085263 -1.6796 

-1.206 -1.1835 1.5556 -0.70775 -0.67736 0.68444 

-0.42559 -0.35528 0.24135 0.83902 0.2252 1.67 

-0.37471 0.92767 -1.6935 -0.82764 0.61669 -0.98461 

0.90866 0.21944 -0.8056 1.6722 0.45942 0.4847 

0.40843 0.74955 -1.2999 -0.54665 0.74894 -0.74042 

b1= 

[-1.9878; 

 -0.53903; 

 2.3438; 

 -0.37136; 

 -0.99748; 

 0.58767; 

 -0.59632; 

 1.2691; 

 1.4337; 

 2.3942] 

w2= 

[-0.38069 2.3815 -0.58706 -0.41775 -0.30508 0.4202 -0.61476 -0.32847 0.0023957 -0.38659] 

 

b2= 

[-0.79503] 
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Synaptic weight matrices and bias vectors SD 595 Model  

Synaptic weight matrices and bias vectors SD 575 Model  

  

w1   b1  w2  b2 

1.388 1.095 1.206 -1.032 1.766 -0.003  -1.589  1.032  -0.185 

0.174 0.424 0.180 0.591 -1.251 0.183  0.555  -1.111   

1.374 0.513 0.851 -0.181 0.878 0.065  -0.966  -1.322   

1.291 -0.889 -0.200 0.929 -1.412 0.181  -1.236  1.078   

0.213 -1.364 -0.872 0.595 -0.216 0.149  0.206  -0.968   

5.937 1.249 0.391 0.319 -0.347 0.042  2.370  -1.970   

-0.406 -0.994 -0.533 -1.534 -0.493 0.172  1.034  -0.274   

0.957 0.651 -1.495 0.145 -0.965 -0.049  -0.292  -0.355   

3.639 0.475 -0.155 1.102 -1.129 0.170  2.254  1.902   

-1.179 0.669 -1.326 0.669 1.653 -0.437  -2.649  -0.954   

w1   b1  w2  b2 

2.100 0.982 0.823 -0.798 1.507 0.037  -1.294  0.887  
-0.821 

 
-0.365 0.211 -0.898 0.459 -0.991 0.270  1.458  -1.188   

2.343 0.346 0.821 -0.269 0.562 0.079  -1.585  -1.321   

1.688 -0.876 -0.347 0.637 -0.783 0.226  -1.076  1.132   

0.732 -0.895 -0.868 0.514 -0.395 0.193  -0.697  -1.136   

7.317 0.887 0.318 0.226 -0.108 0.035  3.379  -2.938   

-0.290 -1.302 -0.276 -1.053 -0.377 0.545  1.067  -0.038   

1.509 0.754 -1.277 -0.248 -0.604 0.136  -1.354  -0.239   

5.991 2.154 0.700 1.726 -1.326 0.253  3.807  2.886   

-1.119 0.857 -1.286 0.668 1.896 -0.508  -2.492  -0.632   
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Synaptic weight matrices and bias vectors for Inelastic response spectra model 
w1 

-0.08273 7.784 6.06 0.93696 -6.2642 

1.0767 0.11994 -0.31878 -2.5242 1.4537 

0.075649 3.3268 4.7762 -5.396 -4.4799 

-0.18466 -1.3965 11.6736 5.5936 7.0363 

-0.23223 -7.6644 3.1154 1.5976 -4.143 

0.042267 -2.9187 -6.8243 -9.4885 -6.0351 

0.18276 -9.8872 -2.7308 -4.0899 0.86523 

0.1035 -0.68123 -2.533 1.9296 4.5337 

0.07839 -6.5307 -4.9244 -0.73972 6.7169 

-0.42446 -1.1956 0.62353 -5.9804 1.7597 

 

w2 

-0.69497 1.2582 0.77342 0.0016248 -0.021422 0.00055935 0.0021854 -0.024154 -0.70027 -0.0022681 

-0.69733 0.86513 1.2403 0.013469 -0.034106 0.012143 0.0031869 -0.042941 -0.69197 0.36583 

-1.1977 0.91281 1.9885 0.023394 -0.043577 0.019466 0.0026424 -0.069414 -1.205 1.2067 

-0.65189 0.45265 1.5371 0.0068614 -0.02991 0.0071722 -0.0014466 -0.069488 -0.647 1.2645 

-0.7509 0.47741 1.2508 0.022784 -0.03719 0.023451 -0.021925 -0.062693 -0.72151 1.4402 

-0.83841 0.26151 1.03 0.027707 -0.037612 0.031124 -0.03018 -0.062018 -0.80181 1.2971 

-1.196 0.49005 1.4481 0.046532 -0.064452 0.053732 -0.044039 -0.12464 -1.136 1.5988 

-1.0729 0.44047 0.89061 0.040776 -0.05067 0.044849 -0.035713 -0.083898 -1.0314 1.3869 

-1.0936 0.26073 0.89589 0.039891 -0.045606 0.041438 -0.038445 -0.065939 -1.0535 1.6196 

-1.3234 0.10961 0.97688 0.0541 -0.052664 0.059982 -0.052983 -0.069108 -1.2701 1.3794 

-2.1844 0.39598 1.4031 0.083151 -0.076635 0.090104 -0.084084 -0.080215 -2.1072 1.3263 

-2.2963 0.42051 1.2458 0.080693 -0.074154 0.084892 -0.086642 -0.067814 -2.2203 1.2239 

-2.3437 0.31557 1.4189 0.094641 -0.088948 0.10172 -0.094376 -0.085297 -2.2537 1.3538 

-2.4175 0.29894 1.3752 0.10258 -0.096166 0.10959 -0.097868 -0.10066 -2.321 1.2246 

-2.2956 0.2035 1.0627 0.09809 -0.090498 0.10089 -0.087067 -0.098918 -2.2064 1.0843 

-1.9691 0.25242 0.91327 0.091751 -0.090386 0.093216 -0.071693 -0.11333 -1.8898 1.0263 

-1.8086 0.36762 0.8936 0.098733 -0.1023 0.10258 -0.070494 -0.14054 -1.7232 1.0054 

-1.6493 0.57106 0.96845 0.10515 -0.10868 0.11292 -0.076605 -0.16067 -1.5543 0.9258 

-1.3447 0.59052 0.8688 0.091351 -0.096803 0.098173 -0.06524 -0.14393 -1.2605 0.86493 

-1.5417 0.72015 0.87311 0.10132 -0.10887 0.10759 -0.071355 -0.14891 -1.4501 0.97755 

-1.5049 0.5505 0.82062 0.096973 -0.10752 0.10309 -0.070286 -0.13399 -1.4173 1.0786 
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b1 

-11.53 

-4.2793 

-14.0707 

0.27949 

3.3898 

-3.8287 

6.1461 

4.8577 

10.0282 

-7.856 

  

 

b2 

-11.53 

-4.2793 

-14.0707 

0.27949 

3.3898 

-3.8287 

6.1461 

4.8577 

10.0282 

-7.856 
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Appendix B.   Graphical user interfaces (GUIs) for attenuation relationship: 

 

To make the use of the attenuation models more user-friendly a Graphical User Interface (GUI) 

MATLAB is developed for the proposed model. The input values of the models are as follow f0, Vs30, 

Mw, R, d, and Radial angle. 
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Appendix. C  Ground Motion records list 
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Records name 

Earthquake parameters Intensity measures 

D
epht 

M
agn 

R
(km

) 

f800 

V
s30 (m

//s) 

ɵ D
uration(s) 

PG
A

(cm
2/s) 

Tm
(s) 

AICH049804222032.EW2 10 5.4 52.09 0.36 241.15 30.41 27.985 14.334 0.401 
AICH049804222032.NS2 10 5.4 52.09 0.36 241.15 59.59 22.140 19.705 0.281 
AICH079804222032.EW2 10 5.4 76.51 3.63 428.10 4.36 20.700 7.988 0.227 
AICH079804222032.NS2 10 5.4 76.51 3.63 428.10 85.64 19.370 10.085 0.231 
AICH089804222032.EW2 10 5.4 72.52 4.60 448.53 22.43 18.075 7.869 0.240 
AICH089804222032.NS2 10 5.4 72.52 4.60 448.53 67.57 17.215 11.232 0.209 
AICH099804222032.EW2 10 5.4 94.00 0.50 274.03 36.50 28.405 7.828 0.984 
AICH099804222032.NS2 10 5.4 94.00 0.50 274.03 53.50 32.690 7.029 0.739 
AICH119804222032.EW2 10 5.4 47.25 3.14 382.20 18.79 17.635 10.758 0.165 
AICH119804222032.NS2 10 5.4 47.25 3.14 382.20 71.21 16.870 12.058 0.171 
AKTH010307260713.EW2 12 6.2 164.83 2.01 475.09 72.17 29.870 8.803 1.167 
AKTH010307260713.NS2 12 6.2 164.83 2.01 475.09 17.83 30.150 10.324 1.075 
AKTH020307260713.EW2 12 6.2 149.14 3.35 620.40 69.93 39.780 8.345 0.625 
AKTH020307260713.NS2 12 6.2 149.14 3.35 620.40 20.07 39.725 9.050 0.524 
AKTH050307260713.EW2 12 6.2 104.64 7.42 829.46 45.38 39.990 9.251 0.278 
AKTH050307260713.NS2 12 6.2 104.64 7.42 829.46 44.62 38.965 8.697 0.283 
AKTH120307260713.EW2 12 6.2 186.78 2.03 389.24 64.35 40.900 8.763 0.863 
AKTH120307260713.NS2 12 6.2 186.78 2.03 389.24 25.65 49.280 10.096 0.874 
AKTH130307260713.EW2 12 6.2 187.25 5.08 535.72 69.69 10.795 39.847 0.245 
AKTH130307260713.NS2 12 6.2 187.25 5.08 535.72 20.31 8.970 31.596 0.247 
AKTH150307260713.EW2 12 6.2 157.16 4.64 498.05 65.47 37.385 4.678 0.424 
AKTH150307260713.NS2 12 6.2 157.16 4.64 498.05 24.53 36.270 5.618 0.562 
CHBH040410231756.EW2 13 6.8 195.52 2.93 369.11 57.85 66.820 19.897 0.874 
CHBH040410231756.NS2 13 6.8 195.52 2.93 369.11 32.15 51.445 19.310 0.807 
CHBH041103230712.EW2 8 6 158.61 2.93 369.11 64.16 95.380 6.876 0.314 
CHBH041103230712.NS2 8 6 158.61 2.93 369.11 25.84 96.170 8.302 0.333 
CHBH141103230712.EW2 8 6 150.01 0.91 200.74 88.76 97.610 1.946 0.410 
CHBH141103230712.NS2 8 6 150.01 0.91 200.74 1.24 94.340 2.490 0.397 
EHMH011604182042.EW2 9 5.8 126.66 7.15 743.40 3.07 24.210 3.275 0.124 
EHMH011604182042.NS2 9 5.8 126.66 7.15 743.40 86.93 23.490 3.858 0.126 
EHMH030010061330.EW2 11 7.3 154.05 5.46 500.58 79.48 20.990 21.990 0.520 
EHMH030010061330.NS2 11 7.3 154.05 5.46 500.58 10.52 24.035 20.094 0.429 
EHMH031610211407.EW2 11 6.6 163.93 5.46 500.58 83.36 19.460 7.256 0.362 
EHMH031610211407.NS2 11 6.6 163.93 5.46 500.58 6.64 25.590 6.368 0.304 
EHMH050010061330.EW2 11 7.3 181.15 2.98 362.14 73.94 35.925 8.077 0.565 
EHMH050010061330.NS2 11 7.3 181.15 2.98 362.14 16.06 38.515 10.540 0.477 
EHMH051604160711.EW2 6 5.4 139.49 2.98 362.14 20.98 26.440 0.372 0.195 
EHMH051604160711.NS2 6 5.4 139.49 2.98 362.14 69.02 23.930 1.084 0.219 
EHMH051604182042.EW2 9 5.8 168.65 2.98 362.14 28.32 31.150 1.227 0.190 




