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Abstract

The focus of this study is to analyze the effects of earthquake parameters on the ground motion
characteristics and structural behavior. The intensity measures of the ground motion investigated
are the peak ground acceleration, significant duration, and the mean period. These measures were
strategically selected to take into account the main features of the ground motion, such as the
amplitude of the motion, cumulative effect, and frequency content. As for the engineering demand
measures investigated, the inelastic response spectra and hysteretic energy demand spectra are
selected to evaluate the nonlinear behavior of structures. For each of the parameters considered, a
predictive model is developed, tested, and finally used to perform a sensitivity analysis.

The strong motion database developed in this study includes 1104 records, collected from the
Kiban Kyoshin Network (KiK-Net) from 10 events. The selected events have a depth less than
13km, a magnitude between 4.8 and 7.3 and an epicentral distance ranging between 15 to 200 km.
The Artificial Neural Network ANN technique is used as an alternative to regression methods.

Compared to the existing attenuation models, in addition to the earthquake independent
parameters used for attenuation relationships, a new aspect is considered in this dissertation called
directionality. An analysis of the effect of directionality on the Peak Ground Acceleration (PGA)
was performed, and it was found that their effect could cause an increase in the PGA that may reach
up to 35%. Therefore, a radial angle parameter has been included in the input of the predictive
model. The performance criteria used indicate that the predicted values of the intensity measures by
the neural network are in good accordance with the observed ones. Finally, a sensitivity analysis
for the earthquake parameters was performed in order to quantify the influence of each parameter
on the intensity measures and structural behavior using the synaptic weights of the validated ANN.

The ANN model with only one hidden layer and a limited number of neurons, makes it easy
to implement it in a spreadsheet or a simple computer program using the synaptic matrices and the
bias vector, so that it can be routinely integrated in engineering applications and for Seismic Hazard

Analysis studies.

Keywords: Seismological parameters, earthquake ground motion, Artificial Neural

Networks, KiK-net network, Intensity Measures.
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Résumé

Ce travail a pour objet d'analyser les effets des parameétres sismologiques sur les
caractéristiques de mouvement du sol et le comportement structurel des batiments. Les mesures
d'intensité du mouvement du sol étudié sont 1'accélération maximale du sol, la durée significative et
la période moyenne. Ces mesures ont été sélectionnées pour prendre en compte les principales
caractéristiques du mouvement du sol, telles que 1'amplitude du mouvement, I'effet cumulatif et le
contenu fréquentiel. En ce qui concerne la réponse structurelle, les spectres de réponse inélastique
et les spectres d'énergie hystérétique ont été sélectionnés pour évaluer le comportement non linéaire
des structures. Pour chacun des parameétres considérés, un modele prédictif est développé, testé et
finalement utilisé pour réaliser une analyse de sensibilité.

La base de données de mouvement fort développée dans cette étude comprend 1104
enregistrements, collectés a partir du réseau Kiban Kyoshin (KiK-Net) a partir de 10 événements
sismiques. Les séismes sé¢lectionnés ont une profondeur inférieure a 13 km, une magnitude comprise
entre 4,8 et 7,3 et une distance épicentrale comprise entre 15 et 200 km. La méthode basée sur les
réseaux de neurones artificiels est utilisée comme alternative aux méthodes de régression
statistiques.

Par rapport aux modeles d'atténuation existants, en plus des parameétres indépendants du
séisme utilisés dans les équations d'atténuation, un nouvel aspect est considéré dans cette thése
appelé directionnalité. Une analyse de I'effet de la directionnalité sur le PGA a été réalisée, et il a
¢été constaté que leur effet pouvait entrainer une augmentation du PGA pouvant atteindre 35%. Par
conséquent, un nouveau parametre nomme « angle radial » a été introduit dans 1'entrée du modele
prédictif. Les critéres de performance utilisés indiquent que les valeurs des mesures d'intensité
prédites par le réseau neuronal sont en bon accord avec celles observées. Une analyse de sensibilité
des parameétres sismiques a ¢été réalisée afin de quantifier l'influence de chaque parametre sur les
mesures d'intensité et le comportement structurel a I'aide des poids synaptiques de I'ANN validé.

Le modéle ANN avec une seule couche cachée et un nombre limité de neurones, facilite sa
mise en ceuvre dans un tableur Excel ou un simple programme informatique en utilisant les matrices
synaptiques et le vecteur de biais, de sorte qu'il puisse étre systématiquement intégré dans les

applications d'ingénierie et pour études des risques sismiques.

Mots clés: parameétres sismologiques, mouvement du sol, réseaux de neurones artificiels,

réseau KiK-Net, mesures d'intensité.
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Chapter 1. INTRODUCTION

I.1. Background

One of the popular methodologies used to characterize the seismic behavior of civil
structures is called Performance-Based Earthquake Engineering (PBEE). It is considered the most
common approach used for evaluating seismic risk decision-making. The first step in this process
is to analyze and evaluate the seismic hazard to obtain a good estimate of the earthquake's force.
The complexity of the earthquake phenomena poses a challenge to identify, assess and control the
seismic hazard level.

The ground motions recorded from previous earthquake are the basis of all forms of seismic
loading. From a practical perspective the earthquake accelerogram is a key component that links the
seismological parameters to the structural response (figure I.1). The scalar parameters characterizing
the ground motion are called intensity measures (IMs), which are usually used in assessing the
seismic demand for a given location. As the ground motion is complex and transiency excitation, a
complete description of earthquake ground motion requires consideration of various features.
Therefore, multiple parameters have been proposed in the literature to describe the ground motion
records. The intensity measures can be categorized into three groups:

(1) Peak ground motion parameters, which are used to determine the peak amplitude of
different measures such as the acceleration (PGA), the velocity (PGV), and the displacement (PGD).
These parameters primarily influence the response of structural systems.

(2) Duration and cumulative parameters, these measures are used to assess the cumulative
effects of ground motion, which correlate well with the energy imparted to structures. Well-known
parameters such as the Intensity Arias (IA) and Significant Duration (SD) are widely used to take
into account the cumulative effect.

(3) Frequency content, it is well known that the frequency of earthquake loading has a great
impact on the seismic response of engineering systems. Several parameters derived from the Fourier
Amplitude Spectrum (FAS) are proposed to characterize this last, such as the mean period (Tm), the
average spectral period (Tavg), the smoothed spectral predominant period (To), and the predominant

spectral period (Tp).



Investigating the relationship between the intensity measures and seismological independent
parameters is increasingly becoming a vital factor in seismic hazard and risk analysis. The
relationship form expressing a single intensity measure (e.g., PGA, PGV, etc.) in terms of
seismological parameters (e.g., magnitude, source-to-site distance, and site condition, etc.) is called
the Ground Motion Prediction Equation (GMPE) or attenuation relationship.

The attenuation equation not only helps to capture the effects of seismological parameters
on the properties of ground motion, but it can also predict the hazard level for a given site so that
earthquake-resistant buildings can be appropriately designed.

Most of the GMPEs developed in the literature relate the intensity measures of ground
motion (e.g., Peak Ground Acceleration, PGA, significant duration, SD) to a set of explanatory
variables describing earthquake source, path, and site condition. Douglas (2019) summarized 440
models published between 1964 and 2019 for the PGA. Compared to PGA, a limited number of
predictive models have been published on the duration and frequency content. Kempton et Al.
(2006) expressed the significant duration of earthquake ground motion as a function of magnitude,
closest site-source distance, shear wave velocity, basin depth, and near-fault parameters [1]. Several
recent studies have proposed Ground Motion Prediction Equations (GMPEs) expressing various
duration definitions as a function of source, path, and site parameters [2-4]. Despite the fact that the
frequency content of ground motion is an important aspect in earthquake engineering, the number
of existing attenuation models for frequency content is limited. To date only a few empirical models
have been developed. The generally used model is that of Rathje et al. (2004), which was an update
of the previously developed model by Rathje et al. (1998) [5, 6]. Other models have been proposed
for specific regions to predict the frequency content as a function of earthquake parameters, such as
the United States, and Iran [7, §].

On the other hand, there has been an increasing interest in developing GMPEs for
engineering demand parameters with the purpose of capturing the influence of earthquake
parameters on structural response measures (e.g., inelastic response spectra). In earthquake
engineering, The inelastic response spectra have played a significant role [9]. The concept is
especially convenient in modal analysis of structural systems, where the maximum response of a
Multi Degree Of Freedom (MDOF) system can be efficiently approximated by a modal combination
of the maximum responses of a series of Single Degree Of Freedom (SDOF) modal systems.
Therefore, expressing the response spectra for a given site in terms of seismological parameters and
structural properties has received increasing interest; a number of studies have been conducted to
develop prediction models, which express the inelastic response spectra in terms of seismological

parameters in the form of attenuation relationships [10].



Due to the ground motion complexity and the uncertainty related to earthquake parameters,
the number of GMPEs continues to increase from year to year. Nonetheless, to date, there still a
need to: (1) Incorporate new seismological parameters and examine their effects on the intensity
measures of ground motion; (2) Use new data modelling tools (such as nonlinear regression, Fuzzy
logic methods, Neural network methods) to capture and express the relationship between the
earthquake parameters and the intensity measures of ground motion; (3) Extend and use new ground
motion databases collected from different sources.

The seismograph network installed on the surface captures the ground motion during an
earthquake; each station provides three components of the accelerogram (two in the main horizontal
direction, EW and NS and one in the vertical direction). The ground motions vary in intensity as a
function of the orientation of interest. Most of GMPEs predict the geometric mean of the intensity
measures of two horizontal components of ground motion. In some cases, it may be of greater
interest to know the maximum value, over all possible directions, of the intensity measures.
Although a large number of prediction equations for intensity measures, the ground-motion
directionality effect is rarely addressed. This study presents a simplified approach, which considers
the directionality aspect in GMPE development by introducing new parameters called the radial

angle epicenter-station as an explanatory variable.

1.2. Objectives and scope

The present dissertation, in the framework of PBEE methodologies, focuses on the interface
between hazard analysis and structural responses and aims to analyze the effects of the seismological
parameters on Intensity Measures and Engineering Demand Parameters by developing new Ground
Motion Prediction Equations (GMPEs) expressing the Intensity Measures and Engineering Demand
Parameters in terms of seismological parameters.

Compared to the existing attenuation models, in addition to the earthquake independent
parameters used for attenuation relationships, a new aspect is considered in this dissertation called
directionality. An analysis of the effect of directionality on the PGA was performed, and it was
found that their effect could cause an increase in the PGA that may reach up to 35%.

In this work, a new approach is proposed to take into account the directionality effect by
introducing a new parameter called radial angle as an explanatory variable.

A ground motion database collected from the Kiban Kyoshin seismograph network (KiK-
NET) is compiled and prepared, including all the metadata such as event name, station, time, place,

time step, etc. The intensity measures that characterize the main features of ground motion



(amplitude motion, duration, and frequency content) were selected and investigated. Consequently,
Ground Motion Prediction Equations (attenuation relationships) have been developed and used to
analyze the effects of seismological parameters based on sensitivity analysis. In the second stage,
the engineering demand parameters that characterize structural response is addressed. For this
purpose, a dataset is constructed based on dynamic time history analysis of SDOFs systems
subjected to a series of ground motion records carefully selected. The dataset was then used to
develop predictive models. These latter were used to investigate the effects of intensity measures

and seismological parameters on the engineering demand parameters.
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Figure 1-1 Process of investigation

1.3. Thesis organization

This dissertation is organized into six chapters. The first chapter presents the background and
motivation factors and sets the present study in its framework. An explanation of the role and the
importance of the characterization of ground motions to understand the effects of the seismological
parameters on structural responses is given. The second chapter presents a description of the
seismological parameters and provides an overview of the intensity measures and engineering
demand parameters and their corresponding empirical prediction relationships proposed in the
literature. The third chapter is dedicated to the methodology adopted. A brief description of the

database developed is given and a summary of the knowledge required to develop a prediction



model using the Artificial Neural Network is provided. Chapter 4 covers data modeling analysis for
the intensity measures, including the formulating of the neural models using the Feed-Forward-
Back-Propagation algorithm. This chapter consists of three sections, each of which concerns a single
intensity measure. Chapter 5 covers data modeling analysis. This chapter concerns the Engineering
Demand Parameters and has the same structure as chapter four. Chapter 6 offers a summary of the

results and findings of this study.



Chapter II. Ground Motion prediction equations or

« Attenuation models »

11.1. Introduction

During an earthquake, the ground shaking can cause severe damage to the structural and non-
structural members, the seismic excitation applied in the low part of the structure produce force and
displacement, which may exceed the structural capacity. One of the most popular approaches for
characterizing seismic behavior of civil structures is called Performance-Based Earthquake
Engineering. It is considered the modern approach to earthquake-resistant design currently being
applied in seismic design and evaluation on various buildings and bridges. The PBEE goal is to
design buildings that sustain a given level of seismic demand while maintaining the desired level of
performance. The performance levels are classified as fully operational, operational, life safety, and

near collapse, while hazard levels are classified as frequent, occasional, rare, and very rare events.
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Figure II-1 Vision 2000 recommended seismic performance. Reproduced from Krawinkler (2005) [11]

As illustrated in Figure II-2, The Performance-based design can be summarized into four
following main steps: hazard analysis, structural analysis, damage analysis, and loss analysis. The

PBEE methodology begins with the estimation of one (or more) ground motion Intensity Measures



(IMs) that should capture the important characteristics of earthquake ground motion that influence
the response of the structural and nonstructural components and building contents. The end result
of hazard analysis is the Hazard Curve, which describes the variation of the selected IM versus its
Mean Annual Frequency (MAF) of exceedance parameter using the attenuation relationship for a
specific location of the building and its mechanical characteristics (e.g., first and second mode
periods).

The second step is to define the Engineering Demand Parameters that characterize the building
behavior. This step is accomplished by structural response simulations using the IMs and
corresponding earthquake motions from step one. The EDPs are used along with component fragility
functions to determine Damage Measures (DMs) specific to facility components. Lastly, given
these DM, a set of variables including operability, repair costs/duration and potential for casualties
can be evaluated. Such performance measures are referred to as decision variables (DVs) since they

serve to inform stakeholder decisions regarding future performance.
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Figure II-2 Overview of PEER-PBEE methodology. Reproduced from Krawinkler (2005)[11].

Determining the level of hazard for the facility site is regarded as a critical component in
PBEE methodologies. Forecasting a probable seismic demand for a given site is not an easy task

since it combines multiple types of uncertainties related to the earthquake source, path, and site



conditions. A well-known approach called Probabilistic Seismic Hazard Analysis “PSHA” has been
developed and widely used to quantify these uncertainties and combine them to estimate the
probability of the parameters related to the ground shaking that may occur at a particular site over a
given return period.

The outcomes of the Probabilistic Seismic Hazard Analysis (PSHA) process is used for a wide
range of applications such as (1) Site-specific seismic demand analysis and design of earthquake-
resistant structures and facilities; (2) Development of official seismic hazard maps which provide
important information to help mitigate disasters; and (3) social and financial loss estimation. As
shown in Figure II-3 the Probabilistic Seismic Hazard Analysis is composed of five following steps
[12]:

1. Identification and characterization of all earthquake sources.

2. Characterization of the recurrence rate of various earthquake magnitudes expected to occur.

3. Description of the distribution of source-to-site distances corresponding to potential
earthquakes.

4. Use the attenuation relationship to predict the resulting distribution of ground-motion

intensity measures as a function of earthquake magnitude, distance, etc.

5. Combine uncertainties in earthquake size, location, and ground motion intensity based on
the probability computations to determine the hazard curves.

The end results of probabilistic seismic hazard analysis are the seismic hazard curves, which
show the mean annual rate of exceedance of a particular intensity measures of ground motion. The
probabilistic seismic hazard analysis has been widely used for almost 50 years by governments and
industry applications. Many types of research have been conducted to investigate each step. In this
dissertation, the steps 4 of PSHA methodology regarding predicting the intensity measures of
ground motion for a given earthquake parameters is addressed.

The attenuation relationships (GMPE's) are key components of PSHA methodology, which
represents a tool commonly used to: give a prediction of the level of ground motion at a given site;
evaluate the influence of seismological parameters on ground motion characteristics. By definition,
the GMPE or “Attenuation model” is an equation typically developed from statistical analysis of
earthquake motions to estimate the level of ground motion as a function of various variables
characterizing the earthquake proprieties.

Up-to-date the availability of the ground motion database and the evolution of robust
regression techniques have made dramatic progress in developing and updating the Empirical
predictive relationships. In literature, many researchers have proposed GMPEs and investigated

their performances. The attenuation relationship can be classified into two main categories



depending on the nature of the parameter to be addressed; the first group concerns the Intensity
measures (IMs), which are parameters that describe quantitatively different features of ground
motion records. The second group relates to the Earthquake Demand Parameters (EDP), which are
structural response measures that can be used to assess seismic damage.

The present chapter includes an overview of the IMs and EDPs investigated in this study and

provides a literature review of the prediction models.
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Figure 11-3 Main steps of PSHA



11.2. The independent seismological parameters used

For practical purposes, earthquake information needs to be expressed in the form of specific

parameters were divided into three categories:

physical parameters called seismological parameters or earthquake parameters. These parameters
serve as an important tool for generalists and synthesizers in seismology since they are used as an

initial starting basis to build practical theories. As illustrated in Figure II-4, the seismological

e Source parameters (e.g., moment magnitude, mechanism of faulting);

e Path parameters (e.g., site-to-site distance, site-to-site orientation)

e Site parameters (e.g., shear-wave-velocity and site frequency).

The parameters used in this study are presented briefly in the following paragraphs.

Seismological
parameters

Source parameters

Path parameters

Site parameters

. Source -to site Shear-wave
Magnitude : )
distnace velocity
Source-to-site Resonance site
Fault 5 s
orientation frequency
Depth

Figure 11-4 Groups of seismological parameters
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I1.3. Source Parameters

Source parameters, which characterize the effects of earthquake size and characteristics of rupture,
these parameters are constant for a given earthquake event, the fundamental source parameters used in

this study are earthquake magnitude (M), the depth to the top of the fault rupture (d).

11.3.1. Moment Magnitude

In this study, the moment magnitude (Mw) was adopted as the magnitude measure. The moment
magnitude has several advantages over other magnitude scales including that it ties the magnitude
directly to earthquake source processes, it does not saturate for magnitudes greater than 6, and it is
directly proportional to the area of the fault plane that ruptured times the average displacement along
the rupture plane. The moment magnitude has been adopted by engineers and engineering seismologists
worldwide as a unifying reliable magnitude measure [13, 14]. This measure is primarily linked to the
characteristics of the fault rupture and the energy released during the earthquake. Katsumata (1996)
proved that the average difference between Mima (Japan Meteorological A) and moment magnitude Mw

is not significant, especially in the magnitude range from 5 to 7 [15].
I1.3.2. Depth
The depth of focus from the epicenter, referred to as “Focal Depth”, is an important parameter
in determining the damage potential of an earthquake. Most of the damaging earthquakes have

shallow focus with focal depths less than about 70km.

11.4. Path Parameters

The path parameters are used to characterize the propagation and attenuation of the seismic
energy from the earthquake source to the site of interest. Two parameters are used in this study:

Source to site distance and source to site orientation.

11.4.1. Source-to-site distance

Source-to-site distance is a primary input parameter for evaluating the intensity measure
parameters in risk and hazard analysis [16]. The distance measure is the basis for the assessment of
the attenuation effect in seismic excitation. Multiple definitions of distance measures have been
proposed in the literature. Douglas (2003) provides an extensive review of these definitions [17].
As illustrated in Figure II-5, various definitions of source-to-site distance are available in the
literature. Typical distance measures employed in attenuation relationship investigations are based
on either a point-source representation or an extended-source representation (fault plane). The
epicentral distance (Repi) and hypocentral distance (Rhypo) are the point source-based measures,

while the Joyner-Boore distance (Rjb, the shortest distance to the surface projection of a fault plane)
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and rupture distance (Rrup, shortest distance to a fault plane) are the extended source-based
measures.
This study uses the epicentral distance (Repi) defined as the horizontal distance between the

surface projection of the hypocenter and the site.
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Figure II-5 Source-to-site distance definition

11.4.2. Source-to-site orientation

Source-to-site orientation is the angle formed between the orientation of the epicenter-station
path and the direction of the component (see Figure I1-7). This parameter is considered in this study
following an analysis of the directionality effect which was found significant. The details of this
analysis are presented in Chapter 4 section 2. Therefore, the source-to-site angle parameter is
introduced as an input to take into account the directionality effect.

It should be noted that the metadata associated with ground motion records includes the

coordinates (latitude/longitude) for each record and the seismic source, as presented in Figure I1-6.
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Figure 11-6 Radial angle 0 for two components of AKTHO2 station during 26-07-2003 earthquake M=6.2.

I1.5. Site Parameters

The geotechnical parameters are practically measured locally and used to investigate the
influence of the local site condition on the intensity measures of ground motion. The Kyoshin
database provides geotechnical information on the site of each KiK-Net station. This information
includes a description of the lithology and the velocity profile for both S and P waves.

Local site effect is one of the most important aspects in earthquake engineering design and is
often characterized by a set of simplified parameters, such as the site predominant period [18], the
geological and geotechnical description of soil layers, and site period [19].

In the present study, two parameters were used to consider the site condition, the shear wave

velocity (Vs30), and resonant site frequency (fs00).

I1.5.1. Shear wave velocity

The average soil shear-wave velocity down to a depth of 30m (Vs30) is successfully used by
many recent ground motion prediction equations (GMPE) to introduce the site effects [20-22]. The

Vs30 is calculated using the following equation:
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Vszo0 = h; (1)

e h;: thickness of i layer

e vi: shear wave velocity
In this dissertation, the distribution of the site classes is performed according to NEHRP

classification (see Table II-1) which is based on the shear wave velocity Vsso [23].

Table 11-1 NEHRP Site Classification (BSSC, 2003)

Site Class Vs30 (m/s) General Description

Sa >1500 Hard rock

Ss 760-1500 Rock with moderate weathering
Sc 360-760 Very dense soil and soft rock
Sp 180-360 Stiff soil

SE <1800 Soft clay soil

11.5.2. The resonant frequency

Besides Vs3o0, the resonant frequency fsoo is also considered as a governing parameter to
characterize the site effect on the intensity measures of the strong ground motion. The fsoo for each

site is calculated using the following equation:

b/
D) @

fsoo =

e h: the thickness of the 1" layer

lth

e Vi : the shear velocity of the 1" layer.

e Zso0o: the depth down to a velocity 800 m/s (reference site)
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Figure 11-7 Site seismic parameters.

11.6. Predictive models for Intensity measures (IMs)

The intensity measure of ground motion are parameters that describe quantitatively various
aspects of the earthquake ground motion records. The characterization of earthquake strong motion
is essential in risk assessment and earthquake-resistant design methodologies. It is considered as a
link between seismic hazard analysis and seismic demand analysis. In earthquake engineering
practice, various definitions of IMs were proposed and used with the aim of evaluating the potential
damage of an earthquake motion.

As presented in Figure II-8, the intensity measures can be categorized into three groups:

(1) Peak ground motion parameters, which are used to determine the peak amplitude of
different measures such as the acceleration (PGA), the velocity (PGV), and the displacement (PGD).
These parameters primarily influence the response of structural systems.

(2) Duration and cumulative parameters, these measures are used to assess the cumulative

effects of the ground motion which correlate well with the energy imparted to structures, well-
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known parameters such as Intensity Arias (IA) and significant duration (SD) are widely used to take
into account the cumulative effect.

(3) Frequency content, it is well known that the frequency of earthquake loading has a great
impact on the seismic response of the engineering systems.

The intensity measures are intended to characterize the three aspects of ground motion,
namely, the amplitude of motion, duration, and frequency content. In this dissertation, for each of
the ground motion features, one parameter is investigated namely, respectively, PGA, Significant

duration, and Mean period.

Ground motion
records

Intensity
measures (IMs)

Amplitude of Duration strong Frequency
motion motion content
Peak Ground Sionificant
Acceleration d% e Mean period
(PGA)
Peak ground Bracketed Average
Velocity (PGV) duration spectral period
Peak ground Predominant
displacement :
(PGD) period

Figure 11-8 Classification of Intensity measures parameters

11.6.1. GMPEs for the Peak ground acceleration (PGA)

Peak ground motion parameters influence the response of the structures and correlate well

with the structural response during seismic excitation. The most commonly used parameter is the
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Peak Ground Acceleration, which is equal to the maximum ground acceleration recorded on an
accelerogram at a given site.

Until now, the GMPE has attracted considerable interest. Most of attenuation relationships
developed are addressed to the PGA parameters, which are frequently presented as functions of
seismological parameters. The early models were based on two parameters, source-to-site distance
and the magnitude. Presently, advanced attenuation models are mainly considered the source to site
distance, earthquake magnitude, geotechnical site condition, and faulting mechanism and stress
drop, rupture propagation, directivity.[22, 24, 25]

The attenuation relationship for the PGA has undergone a revolutionary development,
especially with the availability of data records and computational tools. for example, a brief
comparison between the first attenuation model proposed by Esteva and Rosenblueth (1964) [26]
and Abrahamson et al. (2014) [27]. The GMPE of Esteva and Rosenblueth (1964) was based on
only 46 records and its three coefficients were estimated via standard least-squares regression. In
contrast, the model of Abrahamson et al. (2014) is based on over 15 000 records from more than
300 earthquakes, and its roughly 40 coefficients were determined based on random-effects
regression. As is common for early GMPEs, Esteva and Rosenblueth (1964) do not report the
standard deviation (o) of their equation, whereas Abrahamson et al. (2014) concentrate much of
their effort on deriving a complex ¢ that models the different components of ground-motion
variability.

Attenuation models for the PGA are currently published at the rate of more than one per month
and, at the last count, A number of reviews of GMPEs have been made in the past, Douglas
performed an extensive analysis of earlier empirical models and summarized 400 empirical
equations for the prediction of PGA published between 1964 and 2019. Table II-2 summarizes some
of the attenuation models proposed in the literature. Basically, the proposed attenuation models are
strongly depend on the data records used which varied greatly with geographical regions [28]. Due
to the increasing development of the GMPEs, Bommer suggested criteria to select the GMPE [29].

The typical forms of the attenuation models are expressed as follow:

108(Y) = frource (M) + faen (R M) + fe(Vs30) +e0 (3)

While:

Y is the measure of ground-motion (PSA, PSV, or PGA, PGV, etc.).

fsource is a function that appropriately scales ground-motion with magnitude,
fpath is a function accounting for attenuation, and fsite is a function that accounts for local effects

(e.g., amplification) at the recording site.



Table I1-2 Typical attenuation relationships for PGA

Data
source

Relationships

Reference

1970

PGA = 1.254 ¢%8M /(R + 25)2

Esteva 1963 [30]

1994

InPG = —3.512 + 0.904M

—1.3281n/R? + [ 0.149 ¢0-647M]2

+ +[1.125 - 0.1121InR — 0.0957M|F

+[0.440 — 0.171InR]S,, + [0.405
— 0.222InR]Sy,
F=0 for strike-slip and normal fault eathquake and 1 for
reverse, reverse-oblique, and thrust fault earthquakes.
Ssr=1 for soft rocka nd 0 for hard rock and alluvium

Shr=1 for hard rock and 0 for soft rock and alluvium

Campbell and
Bozoegnia[31]

1981

logPGA = —1.02 + 0.249M — log R? + 7.32

—0.00255y/R?% + 7.32

Joyner and Boore

[32]

1997

InPGA = b+ 0.527(M — 6.0)

—0.7781In+/R? + (5.570)2 — 0.3711n

-where b=-0.313 for strike-slip earthquakes
=-0.117 for reverse-slip eathquakes

=-0.242 if mechanism is not specified

Vs

1396

Boore [33]

11.6.2. GMPEs for Significant Duration of ground motion
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In literature, more than 10 definitions characterize the seismic duration were proposed. Two

classes can be distinguished: significant and bracketed duration.

11.6.2.1. Bracketed duration

Bracketed duration is defined as the time interval between the first and last exceedance of

ground acceleration above or below a specified threshold value. [34]

The bracketed duration was initially used by Ambraseys and Sarma 1967 [35]. They selected

a threshold of 0.03g. Page et al. (1972) [36] had slightly changed the initial definition by using a
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threshold equal to 0.05g. The term “brackted duration” was first introduced by bolt 1973, he used
the interval between the first and last excursion greater than or equal to 0.05 or 0.1g. [37]

Mcguire and Barhad [38] suggested bracketed duration based on various threshold values
(e.g. 0.1g, 0.15g, and 0.2g). Figure I1-9 illustrates as an example the calculation of the bracketed
duration for a threshold acceleration of 0.05g.

The bracketed duration depends strongly on the absolute values of the acceleration, if the
records are scaled to different levels of peak ground acceleration the duration value substantially
changed. To overcome this shortcoming and eliminate the acceleration amplitude dependence. A
new concept called fractional duration was proposed and used, which defines the threshold as a
proportional of the peak acceleration. Since then, this concept has been used by several studies and
is known as the normalized bracketed duration [39].

The main advantage of bracketed duration is the simplicity, while their disadvantage lies in

the sensitivity to a small change in the threshold level.
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Figure 11-9 Bracketed duration for The Northridge (USA) earthquake of January 17, 1994 record
Source: PEER Strong Motion Database
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11.6.2.2.  Significant duration

The “Significant Duration” refers to all definitions of ground motion duration that uses the
energy content of an earthquake.

Most of the definitions of significant duration in the literature use Arias intensity, which is a
measure of the energy content of the acceleration time history, by definition, the intensity of Arias
equal to the integral of the square of the acceleration time history divided on (2xpi) value. Various
approaches have been suggested to calculate the significant duration. Kempton and Stewart [1] have
proposed a definition based on the square of the velocity time history while Trifunac and Brady [40]
have used the squares of both the velocity and the displacement time history (2006, 1975,
respectively).

The Arias intensity measure is a good representative parameter to evaluate the potential
destructiveness of an earthquake [41]. Since it takes into account the characteristics of amplitude,
frequency content, and duration of ground motion. Arias intensity appears to correlate well with
several commonly used demand measures of structural performance and liquefaction [42, 43].

The total Arias intensity la is expressed as follow:
1 tmax
= omg ), a*(t)dt )
Where:
e a(t) : ground motion time history
e tmax: duration time of accelerogram
e g : gravitational acceleration
Husid (1969) [44] defines the duration of strong shaking of an earthquake record as the time
interval from 0% to 95 % of Arias intensity, whereas Trifunac (Trifunac and Brady 1975) used the
time interval (SD595) between 5% and 95% of the Arias intensity which was more suitable.
Similarly, (Somerville et al. 1997) [45] defined the significant duration as the time interval (SD575)
between 5% and 75%. The last two significant duration definitions are investigated in the present
study. The Trifunac and Brady definition of duration is illustrated in the Husid plot in Figure I1.10.
In the present dissertation, the adopted significant duration is the one given by Trifunac and
Brady (1975) which has been successfully used in previous researches. It represents the time interval

tmax needed to reach a specific percentage of the total Arias intensity la.
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Kempton and Stewart (2006) proposed an attenuation relationship that expresses the

significant duration of earthquake ground motion as a function of magnitude, closest site-source

distance, near-surface, shear wave velocity, basin depth, and near-fault parameters. Their ground
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motion database used is collected from the worldwide strong ground motion records database, which
records refer to the active tectonic regions such as USA (California) and Japan.

Lee and Green (2014) used the nonlinear-mixed effects regression technique to develop an
empirical predictive relationship for a significant duration of horizontal strong ground motions in
stable continental regions. Boore and Thompson (2014) [47] suggested an equation for path
duration that can be used in the stochastic method.

Additionally, simple functional forms employing predictor seismological variables have been
proposed by (Afshari and Stewart 2016; Du and Wang 2016) using Next Generation Attenuation-
West2 (NGA-West2) database to predict the significant duration.

Nolasco et al. (2014) [48] used neural networks to determine the strong motion duration for
the Mexican cities, even though based on a limited database.

Table II-3 summarizes some of the recent GMPEs for significant duration including the
functional form. It can clearly be seen from this table that Abrahamson and Silva (1996) [49]and

Kempton and Stewart (2006) [1] used a very similar functional form.

Table 11-3 Empirical Models for Significant Duration

Investigators Function form Year
Triffunac and Brady
SD = a + ne‘™ 1975
[40]
Dobry et al.[50] SD = 10@M=b) 1978
In(SD)
Abrahamson and ) 1696
Silval49 _ _g (€XP(D1 + b2(M — M %)\ 3
[49] = In(6.38 * 10 (( 10(1.5M+16.05) )
In(SD)
Kempton and . 2006
Stewart[ 1 _ _g (€Xp(b1 + b2(M — M %)\ 3
1] = In(6.38 * 10 (< 10(1.5M+16.05) )

Bommer et al. [2] In(SD) = Cy + C; My, 2009
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11.6.4. GMPEs for Frequency content

The frequency content of an earthquake ground motion is one of the key information to assess
the severity of seismic action and is still often used as a parameter to describe strong ground motion.
When the frequency content of an earthquake ground motion closely matches the natural period of
geotechnical or structural systems (e.g., Soil deposit, Dam, Building, Bridge), the dynamic response
is enhanced, larger force is exerted on the system, and significantly damage may occur.

A scalar representation of frequency is an essential parameter to compare the frequency
content of different strong ground motions quickly and easily. A scalar frequency content parameter
can be compared with the natural period of a dynamic system to evaluate the possibility of resonance
conditions or an enhanced dynamic response. The existing parameters of frequency content are
based on Fourier amplitude spectrum (FAS) which is a conversion of the motion from a time domain
to a frequency domain through a Fourier transform. Figure II-11 illustrates an example of a typical
Fourier amplitude spectrum for the SOOE component of El Centro, the Imperial Valley earthquake
of May 18, 1940. Four parameters have been proposed in the literature to characterize the frequency
content of strong ground motions, which are (1) the mean period (Tm), (2) the average spectral
period (Tavg), (3) the smoothed spectral predominant period (To), and (4) the predominant spectral
period (Tp).
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Figure II-11 Representation of Northridge record in frequency domain using Fourier
amplitude spectrum (FAS)
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In this dissertation, the adopted parameter is the mean period (Tm) which has been used and
recommended in a number of past studies [6]. Several models have been proposed in literature to
predict the frequency content; a predictive model is an empirical relationship that expresses the
frequency content as a function of earthquake parameters.

The mean period (Tm) is a stable and reliable indicator of frequency content because it is
based on all frequencies of engineering interest included in time history .The definition of the mean

period initially proposed by Rathje et al is used, expressed mathematically as:

Y CEx )

1
Ty = Ji

Y ¢’
For 0.25 Hz <fi<20 Hz
fi : Discrete fast Fourier transform (FFT) rang 0.25-0.25Hz
Ci : Fourier Amplitude corresponding to the frequency fi

Although the mean period (Tm) is an important and widely used frequency content parameter
in earthquake engineering, the number of attenuation relationships for Tm is limited. Only a few
empirical models have been proposed to estimate the Tm.

The widely applicable model was proposed by Rathje et al (2004), which is updated to their
previous own model developed in 1998. Rathje et al. (1998). [5] A limited number of research has
proposed predictive models based on data from different regions, such as the western and central-
east US [7] and Iran [8]. Table II-4 summarizes the existing prediction equation for Tm and the
predictor variables used to predict the Tm. Noted that: Mw: moment magnitude; Rrup: closest
distance from site to the rupture plane (km); Sc, Sd and Ss: indicators of site types; FD and Idir:
indicators of the directivity effect; Vs30: time-average shear wave velocity of the upper 30 m (m/s);

Z1: depth to the 1.0 km/s shear wave isosurface (km); Ztor: depth to the top of rupture (km).

Table 11-4 Summary of the existing prediction equation forTm

Authors Year Predictor Variables Range of application
Rathje et al [5] 1998 Mw, Rrup 5.2<Mw<7.3, R<200km
Rathje et at [6] 2004 Mw,Rrup,Sc,Sd,FD 4.9<Mw<7.6, R<200km
Lee [7] 2009 Mw,Rrup,Sa 4.5<Mw<7.6, R<200km
Yaghmari-Sabegh [8] | 2015 Mw,Rtup,Sc,Sd 3.7<Mw<7.7, R<293km
Wenqui Du [51] 2019 Mw,Rrup,Vs30,Z1,Ztor,Idir | 3.05<Mw<7.9, R<499.5km
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11.6.5. Predictive models for Engineering Demand Parameters (EDP)

The reliable determination of engineering demand parameters (EDP) takes special
consideration in current earthquake design and evaluation methodologies [52]. Although such
engineering demand parameters can be calculated by means of sophisticated non-linear response
history analyses, their application in the field of seismic assessment and evaluation of existing
structures is still hindered by the considerable time, cost, and expertise required. Therefore, there is
a need for simplified yet reliable methods for the estimation of structural seismic demands.
Moreover, although in many cases structures do not behave as single-degree-of-freedom (SDOF)
systems, various studies have shown that equivalent SDOF models can provide the basis for the
estimation of global demands on building structures [53];

Equivalent single-degree-of-freedom (ESDOF) systems have made a significant contribution
to many types of research in the field of earthquake and structural engineering [54-57]. The response
of the multi-degree-of-freedom (MDOF) structure, including regular RC buildings, can be related
to the response of an equivalent SDOF system, if the response is controlled by a single-mode,
determined from a high enough modal participation factor. Different methods also make use of
equivalent SDOF systems to predict damage in structures. Furthermore, recent recommendations
are proposed to evaluate the maximum deformation in buildings based on such SDOF representation

[58].
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Figure II-12 Process of idealization of MDOF to Equivalent SDOF

Several studies agree with the application of a simplified nonlinear analysis procedure to base-
isolated buildings [59-61]. The simplified nonlinear analysis procedure, which combines the

nonlinear static (pushover) analysis of a Multi-Degree-Of-Freedom (MDOF) model with the
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response spectrum analysis of an equivalent single-degree-of-freedom (SDOF) model, is widely
applied to the traditional earthquake-resistant structures.

Numerous studies have used SDOF models to develop predictive relationships in terms of
earthquake parameters and structural proprieties [62-65]. Some of these studies have focused on the
estimation of strength ratios for systems of known ductility, distinguishing between stiff and soft
soils and providing relationships that can be useful in the design of new structures to attain specified
target ductility levels [64]. On the other hand, other studies have evaluated peak displacement
demands for strength-defined structures and have provided relationships, which are useful for the
seismic assessment of existing buildings. More recently, Bozorgnia et al. [65] performed a detailed
investigation on inelastic deformations in SDOF systems based on predictive equations formulated
on the basis of a large database including 3122 records. The attenuation relationship for EDP can
be used to produce hazard curve and uniform hazard spectra.

The second part of this dissertation focuses on two engineering demand measures: Inelastic
Displacement and Hysteretic Energy. Which are usually combined to evaluate the seismic

damage.

II.7. Response spectrum

The structural damage can be related to seismic displacement demand and in particular to
interstory drift ratios. Well-known methods such as the Capacity Spectrum Method (CSM) are based
on superimposing the seismic capacity over the corresponding seismic demand for a given hazard
level to determine the expected response of the structure. The capacity curve relies on the use of
nonlinear static analysis (pushover method) while the seismic demand is a representation of the
earthquake ground motion, generally it is obtained directly by time-history analyses of inelastic
SDOF systems, or indirectly from elastic spectra [66].

Expressing the response spectra for a given site in terms of seismological parameters and
structural properties has received much interest; a large number of studies have been conducted to
develop the Ground Motion Prediction Equation (GMPE), which express the response spectra in
terms of seismological parameters in the form of attenuation relationships [9, 10]. Two approaches
have been proposed to estimate the inelastic seismic demand. In the first approach, the inelastic
response is derived from the elastic one through a reduction coefficient, which has been criticized
and many researchers contend that these reduction factors used in seismic code are highly
simplified, and have shown that they depend on the natural period, local site condition, Magnitude

and source to site distance [67]. To overcome this shortcoming, a second approach was proposed
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which consists of developing Ground Motion Prediction Equations (GMPEs) of inelastic response

spectra, without the need to resort first to elastic spectra.

11.8. Energy spectrum

The earthquake input energy imparted into structural systems can be classified into two
groups, namely recoverable and irrecoverable (Figure II-13). Specifically, the elastic strain (Es) and
kinetic energies (Ek) are stored components that vanish when the vibration of the system ceases,
whereas the damping (Ed) and hysteretic energy (Emn) are dissipated throughout damping and

inelastic deformations.

Input energy (E,)
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I I
Recoverable energy Irrecoverable energy
(Elastic response) (Plastic response)

Elastic Sg:jii)n Energy Damping energy (E,)
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Kinetic Energy (E,) (E)
h

Figure 11-13 Energy component

The dissipated energies are essential in the evaluation and design of the structures. From a
practical perspective, several damage indices have been proposed to quantify the local and global
structural damage of buildings, the most commonly used is called the Park-Ang index, which relies
on two aspects, the maximum ductility and hysteretic energy dissipation demand imposed by the
earthquake [68]. The hysteretic energy term is investigated in this dissertation, which is considered
as the most important energy component contributing to structural damage.

In current practice, both conventional Force-Based Design (FBD) and Displacement-Based
Design (DBD) can not appropriately consider the cumulative damage from numerous inelastic
cycles [69, 70]. The Energy-based design (EBD) is attracting an increasing interest due to its ability

to take into account both strength and displacement characteristics as well as hysteretic behavior of
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the structure. Hounser [71] initially discussed the energy-based concept during the First Word
Conference Engineering (1956). He reached the conclusion that safe design could be achieved if the
cumulative elastic energy (energy supply) is greater than or equal to total input energy (energy
demand). Akiyama (1985) has traced the evolution of the energy-based method in his
groundbreaking study where he has concluded that the total input energy is generally controlled by
the fundamental period and the total mass of the structure [72]. Since then, various studies have
introduced the energy concept to design and seismic assessment [69, 73] Several researchers have
agreed that the next generation building code would consider the energy principle . For instance, a
proposal has been carried out to introduce the energy-based spectrum load into the Japanese building
code [74]. Which was followed in other countries by various discussions on the same issue.

Donaire-Avila [75] has summarized the energy-based design process in four main issues:

(1) The input energy into the structure during earthquake ground motion;

(2) The distribution of the input energy throughout the structure;

(3) The energy absorption capacity of structural members;

(4) The relationship between the cumulative plastic strain energy and the maximum inelastic
displacement, that is, the equivalent number cycle.

It has been clearly specified that each of the following issues required further investigation.
As part of this dissertation, the first issue related to the evaluation of the input energy demand is
addressed. The prediction of the seismic demand in terms of energy spectrum has received an
increasing interest. In Seismic Hazard Analysis (SHA), probabilistic models are used to determine
the intensity measure of the ground motions for a given hazard level. Compared to the amount of
research performed on the parameters characterizing the strong ground motion, there are few works
on energy-based parameters, in literature, a limited number of attenuation models have been
proposed for elastic input energy by analyzing ground motion records collected from different
regions [76-78]. Alici and Haluk (2016) [79] proposed two approaches for predicting input energy
spectra, in the first approach; an attenuation model has been developed through nonlinear regression
analysis while the second approach utilizes probabilistic seismic hazard maps. The seismic
hysteretic energy spectra is proposed in the form of an attenuation relationship by Gong et al. (2012)
[80], in which the hysteretic energy is expressed as a function of earthquake parameters such as
earthquake magnitude, source-to-site distance, and site class. Alreja et al. (2015) [81] proposed a
prediction model to estimate the hysteretic energy demand in steel moment-resisting frames, using
Multivariate Adaptive Regression Spline (MARS) and Least Squares Support Vector Machines
(LSSVMs). These models are used to establish a relation between the hysteretic energy demand and

several effective parameters such as earthquake intensity, number of stories, soil type, period,
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strength index. Zhai, Ji et al. (2018) [82] proposed a hysteretic energy prediction equation as a
function of the vibration period, ductility value, and damping ratio.

Most of the prediction models of energy demand available in the literature are developed in
form of attenuation relationship i.e. the energy input is expressed in terms of earthquake parameters
such as magnitude and distance (see Figure II-14-a). Dindar [83] has attempted to incorporate the
intensity measure parameter such as the PGA in addition to the structural proprieties, site condition,
and target structural ductility as an input to predict energy demand spectra (see Figure 11-14-b). In
this dissertation, the hysteretic energy demand spectra are predicted by considering as inputs the
Intensity measures (IMs) which characterize the main features of ground motion rather than
expressing it in terms of earthquake parameters (see Figure II-14-c). The new approach is proposed

in an attempt to reduce the uncertainties related to earthquake and seismological parameters.
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a. Approach commonly used in literature
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Figure 11-14 Flowchart of procedures used in literature to predicting energy
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11.9. Conclusion

A brief state of the art of the existing attenuation models for the intensity measures of ground
motion has been presented. The intensity measure are parameters that describe quantitatively the
main features of the earthquake ground motion namely, the amplitude, the cumulative effect and the
frequency content. The earthquake parameters used to develop the ground motion prediction
equation can be classified into three groups: 1) Source characteristics, 2) Path characteristics 3) Site
characteristics.

In earthquake engineering, there is still a need to consider the directionality of ground motion
effects. Various empirical relationships have been suggested in the literature in order to estimate
the intensity measures of the ground motion; few researchers have addressed the directionality
aspect of ground motion.

Researchers have chosen their techniques based on the available data from past earthquake,
which varies greatly with geographical region. However, there is still a need to include more

independent parameters into the attenuation models.



31

Chapter III. METHODOLOGY

II1.1. Introduction

The characteristics of ground motion and Engineering demand measures of SDOF are
investigated in this dissertation. The methodology can be summarized in three steps: (a) Data
collection (b) Data modeling using artificial neural network (c) interpretation of results. The
information collected from strong motion records is the basic input for Seismic Hazard Analysis
(SHA) and earthquake-resistant structure design and rehabilitation. There is a large number of
seismogram networks installed around the world, which provide valuable information and ground
motion database. Various sources of the strong motion database are freely available to the research
community, such as Pacific Earthquake Engineering Research (PEER), Consortium of
Organizations for Strong-Motion Observation Systems (COSMOS), and National Research Institute
for Earth (NIED).

For a given earthquake event, the strong motion database comprises:

(1) The strong motion file accelerogram records for each station.

(2) The metadata parameters such as magnitude, station location, epicenter location, and site
condition parameters.

The ground motion database used in this dissertation is collected from the KiK-Net network.
One of the major advantages of the KiK-Net database is that the borehole data set is available for
each station, which is useful information to evaluate the site effects.

The Artificial neural network is used to analyze the data, which is highly recommended in
such complex phenomena due to its ability to take into consideration the nonlinear relationships
between the independent and the dependent parameters. An overview on the Artificial Neural

Networks presented in this chapter

111.2. Ground Motion Data Set

II1.2.1. Data acquisition

K-NET (Kyoshin Network) is a nation-wide strong-motion seismograph network, which
consists of more than 1,000 observation stations distributed every 20 km uniformly covering Japan

(see Figure I1I-1). KiK-Net has been operated by the National Research Institute for Earth Science
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and Disaster Resilience (NIED) since June, 1996. At each K-NET station, a seismograph is installed
on the ground surface with standardized observation facilities.

KiK-Net (Kiban Kyoshin Network) is a strong-motion seismograph network, which consists
of pairs of seismographs installed in a borehole together with high sensitivity seismographs (Hi-net)
as well as on the ground surface, deployed at approximately 700 locations nationwide. NIED
constructed KiK-Net under the plan 'Fundamental Survey and Observation for Earthquake Research'’
directed by 'the Headquarters for Earthquake Research Promotion'.

The strong-motion data recorded by K-Net and KiK-Net are immediately transmitted to the
data management center of NIED in Tsukuba. The observed strong-motion data are widely available
to the public through the internet from the official web site. The soil condition data explored at K-
NET stations and the geological and geophysical data derived from drilling boreholes at KiK-net

stations are also available. [84]

4 41 .

a1y s ] . ’ r
Figure 111-1 K-NET & KIK-Net observation stations covering JAPAN
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111.2.2. Statistics of strong Ground Motion Data Set

The strong motion database, collected for this study, includes 1 104 accelerograms from 10
earthquake events which magnitudes vary between M= 4.8 to 7.3, taken place in Japan during the
period 2000-2016 (see

Table III-1). The earthquake ground motions were thoroughly selected from the KiK-Net
database. The records distribution versus magnitude and Peak Ground Acceleration (PGA) are
presented in chapter IV. The adequate selection of samples or data may significantly improve the
performance of the predictive models. A complete list of the strong motion records selected for use
in this study is included in Appendix.

A total set of 1,104 values is divided into three sets, [85, 86]

e The training dataset, used to train the model, represents 70% of the complete data.

e The validation dataset, used to avoid overtraining and monitor the training process,
represents 15% of the complete data.

e And the testing dataset, used to judge the performance of the trained model,

represents the remaining 15% of the complete data

Table I11-1 Summury of the events collected for the ANN development (training and validation) freely available at:
http://www.kyoshin.bosai.go.jp/

Earthquake name or epicenter Rupture

Origin Time Latitude |Longitude |Depth |Magnitude .
region process

2011/03/11-14:46 |38.10N | 142.86E | 024km | M9.0 The 2011 off the Pacific coastof | .
e Tohoku Earthquake —

The Iwate-Miyagi Nairiku

2008/06/14-08:43 |39.03N | 140.88E | 008km |M7.2 R Link
2007/07/16-10:13 |37.56N | 138.61E | 017km |M6.8 The Niigataken Chuetsu-old Link
—_— Earthquake in 2007 —
2007/03/25-09:42 |3722N | 136.69E | 011km | M6.9 ggg;\]om Hanto Farthquakein |y,
2005/03/20-10:53 |33.74N | 130.18SE | 009km | M7.0 West off Fukuoka Link
2004/10/23-17:56 |37.29N | 138.87E  |013km |M6.8 The Mid Niigata prefecture Link

Earthquake in 2004

The Western Tottori prefecture
earthquake in 2000

2000/10/06-13:30 |35.28N 133.35E 011km |M7.3

2016/04/16-07:23 | 32.79N 130.77E 012 km | M4.8

2016/04/16-07:11 |33.27N 131.40E 006 km | M5.4

1998/04/22-20:32 | 35.17N 136.56E 010 km | M5.4




34

2016/04/18-20:42 | 33.00N 131.20E 009 km | M5.8

2011/03/23-07:12 | 37.08N 140.79E 008 km | M6.0

2003/07/26-07:13 | 38.40N 141.17E 012 km | M6.2 Northern Miyagi prefecture

2016/10/21-14:07 | 35.38N 133.85E 011 km | M6.6

111.3. Data-modeling analysis: Artificial Neural Network (ANN)

I11.3.1. Background and Basic concept

Artificial intelligence (Al) is the study and science of making intelligent systems, that are
capable of receiving inputs from the environment, perceiving, thinking, learning, and adapting their
behavior, to achieve a particular goal or objective over a period of time. Artificial intelligence
techniques have proved their efficiency in almost all fields of science and engineering.

Various similar Al techniques were proposed and used, such as Neural networks, Fuzzy
Systems, Genetic Algorithm, and Genetic Programming. These techniques are successfully used as
an alternative to traditional mathematical models because of their faster computational efficiency.
Artificial Neural Network (ANN) is the most popular Al technique that has been applied and proved
its relevance.

The artificial neural network (ANN) is a computational model inspired by the way the human
brain works, consisting of interconnected networks of simple processing units that attempt to
recognize underlying relationships based on a set of data through a process of learning from
experience by adjusting the connections.

The ANN is a very rough imitation of the brain’s structure. The human nervous system is a
complex neural network consisting of connected neurons (see Figure I11-2). The nucleus is the center
of the neuron and it is connected to other nuclei through the dendrites and the axon. This connection
is called a synaptic connection. A typical neuron collects signals from others through a host of fine
structures called dendrites. The neuron sends out spikes of electrical activity through the axon,
which can split into thousands of branches. When a neuron receives enough electric pulses through
its dendrites, it activates and fires pulse through its axon, which is then received by other neurons.
In this way, information can propagate through the neural networks. The synaptic connections
change throughout the lifetime of a neuron and the number of incoming pulses needed to activate a
neuron (the threshold) also change. Learning occurs by changing the effectiveness of the synapses

so that the influence of one neuron on other changes. [48, 87, 88]
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Figure 111-2 A biological neuron

ANNSs have been developed as generalizations of mathematical models of human cognition

or neural biology, based on the assumptions that:

Information processing occurs in many simple elements called neurons.

Signals are passed between neurons over connection links.

Each connection link has an associated weight, which, in a typical neural net,
multiplies the signal transmitted.

Each neuron applies an activation function (usually nonlinear) to its net input (sum

of weighted input signals) to determine its output signal.

As illustrated in Figure I1I-3, a neuron consists of three main parts:

A set of synapses, which connect the input signal xj to the neuron via a set of
weights, wkj ;

An adder uk which sums up the input signals, weighted by the respective synapses
of the neuron;

Activation function @ (.) for limiting the amplitude of the output of the neuron. At

times, a bias by is added to the neuron to increase or decrease the net output of the

neuron.

Mathematically, a neuron K is described as (Haykin, 1994) [89]
n

Up = Z ijx]'
=1

Vi = O(uy + by)
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Figure 111-3 The block diagram of a neuron (Haykin, 1994)

Where X, X,, X;, ..., X, are the input signals; W,,, W, ,, ..., W,, are the weights for the neuron
k; b, is the bias; u, is the adder or the linear combiner; ¢ (.) is the activation function; and y, is the

output signal of the neuron.

The selection of activation function is the most critical step in the development of Artificial-
Neural-Network-based models, which allow capturing nonlinear behavior and dealing with
complex phenomena. By definition, the activation function is a mathematical equation that delivers
an output based on inputs. As shown in Figure I1I-4, several activation functions such as hyperbolic
tangent, sigmoid and linear functions are commonly used in the mapping process. There is no
systematic theory to determine the accurate architecture and define the number of hidden layer
nodes. Thus, trial and error is a fundamental method used to select the optimal configuration of the

neural network models.
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x
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Figure I11-4 some common activation functions
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111.3.2. Areas of application

The development and application of neural networks is an extremely interdisciplinary field.
The Artificial Neural Network has been used in every area of engineering to study and simulate
various phenomena. Over the years, various researches have been conducted to incorporate the
machine-learning concept in all fields of civil engineering such as structural engineering,
geotechnical engineering, earthquake engineering, structural identification and control, transport
infrastructure issues, management and technology in construction and installation issues. Abedi
(1989) initially presented the first paper on the introduction of Neural Network in civil engineering.
His groundbreaking study entitled ““ "Perceptron learning in engineering design", appeared in the
journal “Microcomputers in Civil Engineering”, which proposed an approach to introduce the
machine learning model in engineering design of meal frame based on a concept of internal control
parameters and perceptron [90].

In structural engineering, the neural network was largely used to develop a mechanism model
that included factors that their effects on structural systems are poorly understood. The counter-
propagation neural networks with competition and interpolation layers was presented and applied
to several structural engineering issues such as [91]:

(1) Development of a mapping neural network that defines the relationship between the
ultimate bending moment and the depth of a reinforced concrete beam with a rectangular cross-
section.

(2) The prediction of the locations and magnitudes of maximum moments in a simply
supported rectangular plate subjected to a unit concentrated load somewhere on the plate.

(3) The prediction of elastic critical lateral torsional buckling moments of wide-flange steel
beams (W shapes) subjected to a uniform bending moment.

Other studies have used the NN for reinforced concrete structures, steel structures. Xu (2001)
proposes an adaptive multiplayer perceptron (MLP) technique for the detection of cracks in
anisotropic laminated plates [92]. Su and Ye (2005) developed A guided Lamb wave-based damage
identification scheme monitoring of composite structures “in service”, according to damage
assessment[93]. Ganesh (2006 ) investigated the feasibility of using multilayer feed-forward neural
networks to learn the complicated nonlinear mapping between the input parameters associated with
profiled deck and the output parameters m and k associated with horizontal shear resistance of the
composite deck [94]. Kumar (2008) developed a neural network approach for the identification and
control of a smart composite laminated spherical shell [95]. Tsompanakis (2008) presented

applications of soft computing techniques, involving ANNs, in computationally demanding tasks in
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mechanics. The possibility to use ANNs for the approximation of the inverse structural mapping
was investigated [96]. The identification of the damaged structures can be achieved with neural
networks.

In 1992 Wu, Ghaboussi and Garrett presented a structural damage detection system using a
backpropagation algorithm, the results of case studies indicated that neural networks are capable of
learning about the behavior of undamaged and damaged structures and can identify the damaged
member and the extent of the damage from patterns in the frequency response of the structure [97].
A method of identifying damage to steel moment-frame structures connected by welding subjected
to seismic actions using frequencies and vibration modes is proposed [98]. Adeli (2009) presents a
probabilistic neural network for predicting the magnitude of the largest earthquake in a pre-defined
future time period in a seismic region using eight mathematically computed parameters known as
seismicity indicators [99]. Calabrese (2013) used artificial neural network to implement, in order
to determine the unknown nonlinear seismic and geotechnical input data versus the expected
performance of the structural system [100].

The ANN has been successfully used for deriving fragility curves of the considered structures:
A Soft Computing (SC) based framework for the fragility assessment of 3D buildings is proposed
by Chara et al. (2011) [101]. Wang et al. (2018) proposed a methodology of ANN meta-models for
the computation of fragility curves for nuclear power plant equipment. The ANN meta-model is
utilized to build the statistical relation between the seismic intensity measures and the structural
response [102]. Studies in the Structural identification and control problems area have attracted
strong interest; The ANN is considered a powerful tool for identifying structural nonlinear
dynamical systems. A review of journal articles published on system identification of structures was
presented by Sirca and Adeli (2012) [103]. Facchini et al. (2014) proposed the application of neural
networks for output-only modal identification of structural systems. Four frequency-dependent
indicators, based on specific properties of the spectral tensor of vibration measurements, are defined
and employed to build a likelihood function for the presence of structural resonances [104].

The computation of geotechnical engineering analysis is characterized by uncertainties on
design values of geotechnical indices with significant impact. knowledge and experience are also
the foundation for effective resolution of geotechnical problems. The Artificial Neural Networks
are strongly recommended for modeling complex phenomena in geotechnical engineering (soil
types and their associations in complex stratigraphic profiles), which by their nature, show a wide
variety. The neural networks modeling does not need any assumptions about the fundamental rules
governing the problem. Its capacity to learn from experiences gives neural network modeling

superiority as an alternative to traditional methods.[105]
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The difficulty encountered in geotechnical engineering problems due to the inhomogeneous
soil, Neural Networks can be an optimal solution for modeling many problems in geotechnical
engineering. Consequently, a large number of studies have been conducted to track the soil’s
behaviour and find its characteristics.

The application of ANNSs in geotechnical engineering was initially discussed in the early
1990s by Goh (1994) and Ghaboussi and Sidarta (1998) [106, 107]. Basma (2004) investigated
the feasibility of using neural networks to model the complex relationship between soil parameters,
loading conditions, and the collapse potential using a backpropagation neural network process
[108]. Several studies used various types of neural networks, such as backpropagation, probabilistic
neural networks, and generalized regression, to estimate geotechnical slope stability and geometric
parameters. [109-111]

The ANN has received, in recent years, a growing interest by the scientific community in the
field of earthquake engineering and seismic risk assessment: Prediction of intensity measures of
ground motion [46, 112]; generating artificial earthquakes and response spectra [113]; estimation

of artificial time history and related spectral response [113, 114].

I11.3.3. Type of ANN
ANNs are commonly classified by their network topology, node characteristics, learning, or
training algorithms (Fausett, 1994). Based on the connection pattern (architecture), ANNs can be
grouped into two categories (see Figure I1I-5) [115]

* Feed-forward networks, in which graphs have no loops, and

* Recurrent (or feedback) networks, in which loops occur because of feedback connections.

[116, 117].
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Figure 111-5 A taxonomy of feed-forward and recurrent/feedback network architectures.
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In a feed-forward neural network structure, Feedforward neural networks were the first type
of artificial neural network invented and are simpler than their counterpart, recurrent neural
networks. They are called feedforward because information only travels forward in the network
(no loops), first through the input nodes, then through the hidden nodes (if present), and finally
through the output nodes.

Inputs Outputs

Input layer Output layer

Figure 111-6 A single layer feed-forward neural network

In Figure III-6, a single layer feed-forward neural network (fully connected) is shown.
Including the input layer, there are two layers in this structure. In Figure I1I-7, a multi-layer feed-
forward neural network with one “hidden layer” is depicted. As opposed to a single-layer network,

there is (at least) one layer of “hidden neurons” between the input and output layers.

Outputs
Inputs

Input layer Hidden layer Output layer

Figure I11-7 A multi-layer feed-forward neural network

For recurrent (or feedback) networks, it include any network design in which the activity
must go through the network more than once before the weights (output coefficients) are adjusted
and the output is produced, the inputs of each layer can be affected by the outputs from previous

layers (see Figure I1I-8).
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Figure 111-8 recurrent (or feedback) networks

Another way of classifying ANNs is mode of training applied. Two modes of training are
present in neural training, supervised and unsupervised learning networks (Konar, 1999) [118].

Supervised training: requires an external teacher to control the learning and incorporates
global information. The teacher may be a training set of data or an observer who grades the
performance. Examples of supervised learning algorithms are the least mean square (LMS)
algorithm and its generalization, known as the back propagation algorithm, and radial basis function
network. In supervised learning, the purpose of a neural network is to change its weights according
to the input/output samples [119].

Unsupervised learning: When there is no external teacher, the system must organize itself
by internal criteria and local information designed into the network. It is required in many
recognition problems, where the target pattern is unknown. sometimes referred to as self-organizing
learning, i.e. learning to classify without being taught. In this category, only the input samples are

available and the network classifies the input patterns into different groups.

111.3.4. Backpropagation algorithm

The Feedforward backpropagation (FFBP) is considered as the most utilized forward neural
network which is based on a mechanism updating the weights using gradient descent, It was first
described by Rummelhart and McClelland (1986) [120], FFBP has a structure in which neurons are
organized in successive layers. The first layer is referred to as the input layer, the last layer as the
output layer, and all intermediate layers as the hidden layer. The backpropagation technique is a
process of iteration in order to modify the weights from the output layer to input layer until no
further correction is required (see Figure I1I-9). A simple hidden backpropagation neural network

layer can generally approximate any nonlinear function with arbitrary precision [121, 122]. This
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feature makes FFBP popular for predicting complex nonlinear systems [123, 124]. This type of
ANN has evolved for a diverse range of engineering applications. It has been used and
recommended to solve some of the difficult problems in various fields, including structural
engineering. Various functions that can be used as activation or transfer functions such as hyperbolic
tangent, sigmoid and linear functions. The type of activation function contributes significantly, and
has a key role to introducing the nonlinearity so that it can deal even with complex phenomena. A
systematic theory to determine the number of input nodes and hidden layer nodes is unavailable
[122]. The most common means to determine the appropriate number of inputs and hidden layer is

via experiments or by trial and error based on the performance assessment criteria.

Initializing weight to Compute output of each |
Random value layer for training Input

Update weight for all
n layers
Compute error in output
layer T
Compute weight update

for hidden layers

= |

Compute weight update
g for output layer

Figure 111-9 Back-propagation training algorithm
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111.3.5. Data Normalization

An optimal efficiency of the ANN requests a prior data conditioning, i.e. all the data are
normalized [85, 86, 125]. The data set used in the present dissertation , including inputs and target
outputs are scaled as follows::

(P - L l:'min) -1
(Pmax - l:,min)

T. =2 (T_ I-Tmin) _
" (Tmax - Tmin)

P,=2

(6)
1

Where: P, Py are respectively matrix and scaled matrix of input vectors; T, Tn are respectively
matrix and scaled matrix of output vectors; Pmin, Pmax are respectively minimal and maximal
component value of each input vectors; Tmin, Tmax are respectively minimal and maximal values of
each output vectors; | is the vector unity.

The developed neural network models are trained using the data derived from the scaling

process, whereas the target output becomes:

T=05. (Tn + 1) (Tmax + Tmin) + Tmin (7)

111.4. Conclusion:

The strong motion database, collected for this study, includes 1,104 records from 10 events
ranging in magnitude from M= 4.8 to 7.3, occurred in Japan during the period 2000-2016. A
complete list of the strong motion records selected for use in this study is included in Appendix.
The adequate selection of samples or data may considerably increase the efficiency of prediction
model.

The artificial neural network (ANN) technique is used as an alternative to regression methods.
The ANN with Back-Propagation (BP) learning algorithm is strongly recommended for highly
nonlinear modeling problems. A theoretical framework for the artificial neural network is presented

in this chapter.
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Chapter IV. PREDICTION OF INTENSITY MEASURES

IV.1. Introduction

The characterization of ground motion is a fundamental step in seismic analyses of structures
subjected to earthquake ground motion. The effects of seismological parameters on seismic action
are not explicitly incorporated in current design practice. The prediction of the intensity measures
of the ground motion for a given earthquake parameter is an essential step in hazard and risk seismic
analysis. Three parameters are considered PGA, SD, and Tm. Each of these measures characterize
a feature of ground motion, namely, amplitude, cumulative effect, and frequency content. The
independent seismological parameters used in this study are the magnitude (Mjma), the epicentral
distance (Repi), the shear-wave velocity (Vs30), the resonant frequency (fsoo), the focal depth (d), and
the angle epicenter-station (0). The ANN with Back-Propagation (BP) learning algorithm is used as
an alternative to regression methods, which is strongly recommended for highly nonlinear modeling

problems.

V.2 Directionality effect:

In earthquake engineering, there is still a need to consider the directionality of ground motion
effects. Various empirical relationships have been suggested in the literature to estimate the
intensity measures of the ground motion; few researchers have addressed the directionality aspect
of ground motion.

The component of ground motion corresponding to an azimuth given by an increment of
rotation angle is determined as a function of two ground motion components (EW and NS) as follow:
[46, 126, 127]:

@ror(t,6) = a4 (t) cos(8) — ay(t) sin(6) @®)

0: rotational angle

ai, az: horizontal component acceleration E-W et N-S

arot: horizontal component corresponding to a rotational angle 0

t: time.

According to Eqn.(8), The two ground motion components (EW and NS) are combined into

a single component corresponding to an increment of rotation angle. For each set of two as-recorded
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orthogonal-component time series, the ratio between the maximum value and the recorded value of

the PGA in the EW and NS is determined. The procedure steps are described as follows [128]:

In the orientation set to 0 degree, calculate the target characteristics of ground motion such

as PGA value

Rotate the horizontal component by an increment of 1 degree and calculate the

characteristics
Repeat the steps a and b for 0 range between 0 to 180 degree
Calculate the target intensity measure (PGA value) for all the rotation angles.

Sort the maximum for each of the target intensity measures (PGA value).

306.00

144.00

84.00
46.00
32.00 2500
l B m =
|

0-5% 5-10 % 10-15 % 15-20%  20-25%  25-30%  30-35%

Figure IV-1 PGA variation according to critic direction

As presented in Figure IV-1, the results show the effect of directionality on the PGA values.

The ratio of the maximum to the minimum may reach up to 1.35 (increase of 35%). In an attempt

to consider this effect, new input parameters “angle epicenter-station” that characterize the direction

source-to-site is introduced an earthquake parameter.

The angle epicenter-station parameters is defined as the angle between the orientation of the

epicenter-station path and the direction of the component (see I1.4.2 section). This parameter is used

among other inputs in the ANN model to predict the peak acceleration of the strong ground motion.
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IVv.3. Peak ground acceleration

Peak ground acceleration (PGA) is one of the key measures employed to assess the
importance of seismic action and is still often used as a parameter to describe strong ground motion
and to scale earthquake design spectra. The question that then arises is how to estimate the PGA at
a site where no recording station is installed. The prediction of the PGA in terms of seismological
parameters is developed in this section. As presented in chapter 3 the ground motion database was
obtained from the KiK-Net nationwide strong motion networks, the records used to develop the
prediction model have been carefully selected from the database depending on the type of the
parameter (i.e. IM or EDP). The distributions of ground motion records versus earthquake

magnitude and PGA in Figure [V-2.
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Figure IV-2 Magnitude versus PGA distribution

1V.3.1. Artificial Neural Network Model

The selection of the optimal architecture of an ANN is not an easy task as it is necessary to
test a large number of architectures to achieve the best one. The results show that the configuration
with a hyperbolic tangent function for the hidden layer and for the output layer gives the best
results. (see Table IV-1, Table IV-2)

According to the above provisions, inputs to the network are defined here by the values of
magnitude (Mjma), epicentral distance (Repi), shear-wave velocity (Vs3o), resonant frequency (fsoo),

the focal depth (d) and the angle epicenter-station (6). The output node is represented by peak ground
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acceleration PGA (Figure IV-3). A standardization of all data was performed to improve the

performance of the model.

v

Figure 1V-3 Input /Output of PGA models developed

A total of 1104 values have been divided into three sets:

The training set, which is about 70% of the complete database, has been used to train the
network; the validation set, which is about 15%, has been used for the purpose of monitoring the
training process, and to guard against overtraining; and the testing set, which is about 15%, has been
used to judge the performance of the trained network. The training was stopped when the cross-
validation error began to increase, i.e., when the cross-validation error reached a minimum, the
training should be stopped.

In this dissertation, a large number of architectures were tested using various parameters in
order to obtain the best ANN model.

The performance of the developed neural network models is carried out by comparing the
target PGA and those predicted by the ANN model. Figure IV-4 shows the regression curves for all

data (1104 samples) which reveal a coefficient of correlation R equal to 0.86.



48

Regression: R=0.8567
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Figure IV-4 Linear regression between the target and predicted PGA

Because the predictive model depends on multiple variables (inputs), the plots of residuals against
the main variables are used here to evaluate the accuracy of the model and the correlation of the

variables with the predicted values. In Figure IV-5 the residuals, expressed by:

obsPGAl->

Tt 4
prePGA; @

Where:

obsPGAi and prePGA.i are the recoded and predicted PGA
The residuals plots are plotted against the epicentral distance, the magnitude and the focal depth
(see Figure IV-5) the plots are pretty symmetrically distributed, tending to cluster towards the

middle of the plots showing no bias or trend in the residuals in any of these plots.
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1V.3.2.Results and discussions

1V.3.2.1. Neural network topology optimization

As it was described before, to determine the optimal architecture of an ANN it was necessary
to test a large number of neural topologies. Table IV-1 shows the activation function used for layers
and lists for each configuration the correlation coefficient for each subset: training, validation and
test (Rirain, Rvalia and Riest). The obtained results in this study are presented in Table IV-2.

The accuracy of the prediction is evaluated by comparing the performance criteria; Table IV-
1 shows the performance of the four ANN architectures, along with their respective prediction
accuracy. On one hand it is observed that the best value of correlation coefficient (R) with small
value of Mean Square Error (MSE) is associated with the combinations (tanh-sigmoid — tanh-
sigmoid) as a function activation, on the other hand it has been found that the neuron number
considered of the hidden layer have approximately same prediction accuracy which mean that the
number of neurons used in the hidden layer has no influence on the performance of this particular
models. This table lists the MSE and R for different tests using different combinations. Following
various tests on the different combinations and architectures used, it can be concluded that the PGA
predicted by the ANN with six inputs using the combination of activation function (tanh-sigmoid —

tanh-sigmoid) with ten neurons has been found to be more accurate.

Table 1V-1 Test of different combination of activation function

PGA
Layer 01 Layer 02 Rirain Ryatida Riest MSE
log-sigmoid log-sigmoid <0.1 <0.1 <0.1 >0.5
log-sigmoid linear 0.89 0.88 0.88 0.01
Tanh-sigmoid linear 0.9 0.88 0.85 0.01
Tanh-sigmoid Tanh-sigmoid 0.88 0.84 0.84 0.004

Table 1V-2 Influence of number of neuron activation function (tanh-sigmoid — tanh-sigmoid)

PGA
Neuron Rtrain Rvalid Rtest RAIl MSE
5 0.92 0.82 0.83 0.89 0.005
10 0.88 0.84 0.84 0.86 0.004
15 0.9 0.87 0.89 0.89 0.01

20 0.92 0.86 0.9 0.9 0.008
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1V.3.2.2. Effect of magnitude, epicentral distance and soil velocity on the peak ground

acceleration

The PGA is plotted against epicentral distance on Figure IV-6. It can be noticed that the trend
of the variation of the PGA is more sensitive to the magnitude and is almost decreasing with
distance.

As illustrated in Figure V-6, comparisons are made between the predicted PGA in three types
of site: A site characterized by a shear-wave velocity Vs3o= 200m/s (fsoo=1.67Hz soft soil) and the
other one characterized by a shear-wave velocity Vs3o=800m/s (fsoo= 6.68 Hz Rock site). This figure
shows clearly for both cases that the PGA decreases with the distance. It can be noted that the soft
soil (Vs30=200m/s; fsoo=1.67 Hz) produces more than 50 % greater PGA value than those on the

rock site.
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Figure 1V-6 Predicted PGA for Vs30 of 200m/s and 400m/s, 800m/s and Mw 5-5.5-6-6.5
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1V.3.3. Comparison with existing models

The model proposed in this study is compared with four existing PGA attenuation
relationships: Zhao and al. (2006), Cotton and al. (2008), Kanno and al (2006) and Derras and al
(2010) [18, 124, 129, 130]. The common characteristic of these four existing models is the source
of the database used (K-Net and KiK-Net).

Figure IV-7 compares the predicted value of PGA, for magnitude earthquakes M=6 for site
class (Vs3o= 600 m/s and fsoo=5hz), and those provided by four empirical relationships.

For the sites characterized by epicentral distance (R) lesser than 15 km, the proposed model
predicts PGA value which is 20% smaller than those from the empirical models.

Conversely, for distance range between 15 and 200 km, the proposed ANN provides values
falling between the empirical attenuation relationships predictions. This distance range represents

the validity limits of the developed model.
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Figure IV-7 Comparison of proposed PGA model with existing relationships Mja= 6; Vs30=600 m/s; principal direction.
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1V.3.4.Sensitivity Analysis

A sensitivity analysis for the input variables was performed in order to quantify the influence
of each of the earthquake parameters on the IMs and EDPs considered. In this dissertation,
percentages of synaptic weight, Pi, that correspond to each of the six parameters were computed
using the following equation [131]:

Nh h
p = J2alwi

L7 N YNh |Wh
i=1Zj=1|Wij

)

Where: wij: synaptic weights of the ANN;

For PGA neural model 1 <i<6and1<j<10

Nh: number of hidden neurons Nh=10; N: number of input variables N=6

This analysis was conducted for the models developed and the overall results are summarized
in Figure IV-8. As can be seen on this figure, the inputs parameters have almost the same effects on

the PGA except that the soil frequency parameter fsoo which has less influence.
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Figure V-8 . Input sensitivity analysis for PGA
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vV 4. Significant duration.

The second IM parameter considered in this dissertation is the duration of the strong ground
motion. In the present study, the adopted definition of the significant duration is the one given by
Trifunac and Brady (1975) which is detailed in the chapter II.

In recent years, there has been growing interest in the influence of the duration of ground
motion on the behaviour of structures [132, 133]. Therefore, significant correlations were revealed
between significant duration and potential damage of the earthquake [134-136].

In the present section, the artificial neural network (ANN) is considered as an alternative
option to multiple regression analysis, The objective is to predict the significant duration (fractiles 5%,
75% and 95%: SD595 and SD575) of the ground motions records. It investigates also the influence of
seismological parameters.

The earthquake ground motions were thoroughly selected from the KiK-Net database
prepared as a part of this dissertation. The records distribution versus magnitude and Significant
Duration (SD595) are presented in Figure IV-9. The adequate selection of samples or data may

significantly improve the performance of the trained neural network training.

1V.4.1. Artificial neural network model

As mentioned before, the most common means to determine the appropriate number of inputs
and hidden layers is via experiments or by trial and error based on the performance assessment
criteria. For achieving the best ANN model, several architectures are tested. The results summarized
in Table IV-3 and Table V-4, As illustrated in the tables that the configuration that presents optimal
result is based on hyperbolic tangent sigmoid as an activation function for the hidden layer.
Therefore, as shown in Figure IV-10, the inputs to the network are presented by the magnitude (M;a),
epicentral distance (R), shear wave velocity (Vs30), resonant frequency (fsoo), the focal depth (D)
and the angle epicenter-station (6). Two neural-network models are proposed to predict the
significant duration: SD575 and SD595. Both models are developed with six inputs and one output
(SD575 or SD595). To strengthen the model performance, a prior standardization of all data
(Input/Output) is performed.
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The training process is stopped once the cross-validation reaches its minimum. The
performance of the developed ANN is carried out by comparing the target significant durations and
those predicted by the models. Figure IV-11 and Figure IV-12 shows the regression curves for all
data (1,104 samples) which reveal a correlation coefficient R equal to 0.95 for SD595 and 0.98 for
SD575.
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Since the predictive model depends on multiple variables (inputs), the plots of residuals
against the main variables are drawn in Figure IV-13 and Figure IV-14 to evaluate the accuracy of

the model and the correlation of the variables with the predicted values., the residuals are expressed

by:

ObSSDi
) (10)

¢ = logi (preSDl-

Where: obsSDi and preSDi are the observed (recorded) and predicted significant durations.
The residuals are plotted against the epicentral distance, the magnitude and the focal depth. For both
predictions SD575 and SD595, the plots are pretty symmetrically distributed, tending to cluster

towards the middle of the plots showing no bias or trend in the residuals in any of these plots.
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1V.4.2.Results and discussions

Iv4.2.1.

In order to define the optimal architecture of a neural model, it is necessary to test various
neural typologies. The results are presented in Table IV-3 and Table V-4, which list the Mean
Square Error (MSE) and correlation coefficient (R) for different tests using different combinations.
Following various tests on the different combination and architecture. The findings indicate that the
significant duration measures (SD595 and SD575) predicted by the proposed models with six inputs

using the combination of tangent hyperbolic function (tanh-sigmoid) as an activation function for

Neural network topology optimization

both the hidden layer and output layer, with ten neurons, appears to be the most accurate.

Table 1V-3 Test of different combination of activation function

SD595 SD575

Layer 01 Layer 02 Rirain = Rvalid  Rtest  MSE  Rirain  Rvalid  Rest MSE
log-sigmoid  log-sigmoid <0.1 <0.1 <0.1 >0.5 <0.1 <0.1 <0.1 >0.5
log-sigmoid  linear 0.95 095 095 0.017 098 098 0.97 0.01
Tanh- linear 096 093 091 0.019 098 0.98 0.97 0.007
sigmoid
Tanh- Tanh- 096 095 094 0.018 098 098 0.98 0.007
sigmoid sigmoid

Table 1V-4 Influence of number of neuron activation function (tanh-sigmoid — tanh-sigmoid)

SD595 SD575

Neuron Rirain~ Rvalid  Riest Ran MSE  Ruain  Rvalid  Rest Ran MSE

5 0.93 0.93 0.94 0.94 0.024 098 097 098 0.97 0.007

10 0.96 0.95 0.94 0.95 0.018 098 098 098 0.98 0.007

15 096 094 092 095 002 09 095 097 097 °0I

20 097 094 085 096 0017 099 093 097 097 016
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1V.4.2.2. Effect of magnitude, epicentral distance and soil velocity on the significant

duration

The significant durations SD595 and SD575 are plotted against epicentral distance, see Figure
IV-15 and Figure IV-16. It can be noticed that the variation trend of the SD575 is less sensitive to
the magnitude and is almost linearly increasing with distance. However, the SD595 is more sensitive
to magnitude in far field, which means that the weakest part of the motion tends to last longer with
higher magnitudes and longer distances. It is also noticed that soft soil tends to expand more the
SD595, according with distance for low amplitudes.

Figure IV-17 and Figure IV-18 shows the variation of the significant duration with respect to
distance from the source, for soft and rock soil types, at three levels of magnitude M=5, 5.5 and 6.

The soft soil is characterized by a shear wave velocity Vsio=200m/s (fsoo=1.67 Hz), the rock
soil (reference site) has a shear wave velocity Vs3o= 800m/s (fsoo= 6.68 Hz). It is clearly shown that,
in both cases, the significant duration increases with the distance and the site effect is more important
on SD595 duration compared to SD575. The soft soil produces more than 60% elongation of the
significant duration, in the case of rock site at low magnitudes. Figure [V-17 compares the trend in
the variation of the two significant duration measures SD575 and SD595 with respect to the distance
from the source. It shows that the significant duration D575 has better stability than the D595,

especially for greater amplitudes.
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1V.4.1. Comparison with existing models

The model proposed in this study is compared with two existing significant duration
relationships: Abrahamson and Silva (1996) and Afshari and Stewart (2016). Figure 1V-20
compares the predicted value of both significant duration definitions (SD595 and SDS575), for
magnitude earthquakes equal to 5.5 for site class D (Vs3o= 200 m/s), and those provided by three
empirical relationships: the one proposed in this study and those proposed by Abrahamson and
Silva (1996) and Afshari and Stewart (2016). These two laters (empirical attenuation relationships)
use an additive site effect term (rock or soil parameter for Abrahamson and Vs3o for Afshari and
Stewart 2016). [3, 49]

For the sites characterized by epicentral distance (R) greater than 100 km, the proposed model
predicts significant duration value which is 30% greater than those from the two empirical
relationships. Conversely, for distance range between 0.0 and 100 km, the proposed ANN provides

values falling between the two empirical attenuation relationships predictions.
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IV.4.2. Sensitivity analysis
A sensitivity analysis investigates how the different inputs affect the significant duration

models. the overall results are summarized in Figure IV-21 and Figure IV-22, which shows that the

inputs parameters have almost the same effects on the significant duration, whereas the depth

parameter is dominant and the radial angle has less influence.
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IV.5. Frequency content

The mean period parameter (Tm) of a ground shaking is considered as a simplified parameter
to describe the frequency content. This parameter is preferred due to its ability to distinguish
between various spectral shapes of ground motion, and its relationship with seismological
parameters.

The objective of this section is to predict the mean period (Tm) of the strong ground motions and
analyze the effects of seismological parameters using feed forward artificial neural network (ANN) with
a gradient back-propagation rule for the training. The inputs are the magnitude, the focal depth, the
epicentral distance, the shear wave velocity and the radial angle epicenter-station while the target outputs
are represented by the mean period (Tm). Then, a sensitivity analysis is carried out in an attempt to

capture the influence of the seismological parameters on the mean period of the ground motion.

1V.5.1. Artificial Neural Network Model

The results show that the configuration with a hyperbolic tangent function for the hidden
layer and linear function for the output layer gives the best results.

According to the above provisions, inputs to the network are defined here by the values of
magnitude (Mjma), epicentral distance (Repi), shear-wave velocity (Vs30), resonant frequency (fzoo),
the focal depth (d) and the angle epicenter-station (6). The output node is represented by mean
period (Tm) (Figure V-26). A standardization of all data was performed to improve the performance

of the model.

fs00

ANN model Tm

A\ 4

W

Figure 1V-23 Input /Output of models developed
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In this section, a large number of architectures were tested using various parameters in order

to obtain the best ANN model.
The performance of the developed neural network models is carried out by comparing the
target Tm and those predicted by the models. Figure IV-24 shows the regression curves for all data

(1104 samples) which reveal a coefficient of correlation R equal to 0.8.

25| e R e e A |

Output~=0,65"Target+0,18

Figure IV-24 Linear regression between the target and predicted Tm

1V.5.2.Results And Discussions

As it was described before, to determine the optimal architecture of an ANN it was necessary to
test a large number of architectures. To train and test the ANN models, a computer program was
developed that includes routines for MATLAB Neural Network Tool Box. All architecture used and
the results obtained in this study are presented in Table IV-5 and Table IV-6.

The accuracy of the prediction is evaluated by comparing the performance criteria; Table IV-5
shows the performance of all the three ANN architectures, along with their respective prediction
accuracy. On one hand it is observed that the best value of R with small value MSE associated with
the combinations (tanh-sigmoid —linear) as function activation, on the other hand it has been found

that the neuron number considered of the hidden layer have approximately same prediction accuracy
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which mean that the number of neurons used in the hidden layer has no influence on the performance
of this particular models. This table lists the MSE and R for different tests using different
combinations, Summing up the results it can be concluded that the Tm (Mean period) predicted by
the ANN with ten neurons for the activation function using the combination of activation function

(tanh-sigmoid —linear) has been found to be more accurate.

Table IV-5 Test of different combination of activation function

Layer 01 Layer 02 Rirain | Rvalid | Reest | Ran | MSE
log-sigmoid log-sigmoid | <0.1 | <0.1 | <0.1 | <0.1 | >0.5
log-sigmoid linear 0.78 | 0.71 | 0.76 | 0.76 | 0.032

Tanh-sigmoid linear 0.81 ] 0.8 | 0.77 | 0.8 |0.027
Tanh-sigmoid | Tanh-sigmoid | 0.84 | 0.73 | 0.76 | 0.81 | 0.038
Table IV-6 Influence of number of neuron activation function (tanh-sigmoid —linear)

Neurone nbr | Rtrain Rvalid Rtest RAII MSE

5 0.75 0.77 0.7 0.75 0.025

10 0.806 0.8 0.77 0.8 0.019

15 0.8 0.67 0.8 0.78 0.024

20 0.82 0.72 0.81 0.8 0.027

1V.5.3. Sensitivity Analysis:

This analysis was conducted for the models developed and the overall results are summarized
in Figure IV-25. As can be seen on this figure, the shear-wave velocity down to a depth of 30m
(Vs30) and the resonant frequency fsoo are the most influent parameters, followed by the magnitude

and focal depth. Nevertheless, the distance and the orientation of path turned out to be less

influential.

24.61%

FO

Figure IV-25 Input sensitivity analysis for Tm

21.67%

18.56% 18.14%

Magn

10.91%

Distance(km)

6.11%

B

Od

Depht Vs30



72

Iv.6. The functional form

The functional form for each of the developed model is expressed in Equation (11), for any
given set of input data, the first step is the normalization preprocessing according to Equation (6),
to get Pn.. The output of the model is then obtained through the ANN according to Equation:

T, = Tanh({b,} + [w,] x Tanh({b;} + [wi] X {B,})) (11)

where :

wl: is the (Nh, N) matrix of synaptic weights between the input parameters and the hidden
layer;

w2: is a vector of size Nh that contains the synaptic weights between the hidden layer and the
single-output parameter;

{bl} and {b2}: are the bias vectors of the hidden layer and output layer, respectively. The
values of the synaptic weight matrices and bias vectors for each of the ANN models developed are
included in the appendix. The scaled output Tn is then unscaled, using Equation (7).

The Tanh dependency is related to the selection of the Tanh-sigmoid activation function.

For each of the earthquake parameters considered as an input the validation limits are

summurized in Table IV-7.
Table IV-7 Validation limits

f800 V30 Muw R Depth
min 0.12 144 4.8 15 16
max 20 1500 7.3 205 13
IV.7. Conclusion

The prediction of the intensity measures of ground motion for a given site is of paramount
importance in many practical applications of earthquake engineering. In this chapter of the
dissertation, a neural network based method has been used to predict the intensity measures for a
given set of seismological parameters.

The elaborated models have six input factors: the magnitude (Mjma), the epicentral distance
(Repi), the shear-wave velocity (Vs30), the resonant frequency (fsoo), the focal depth (d) and the angle
of the epicenter-station (0).

A large number of ground motions extracted from the KiK-Net strong motion database were

used to train the ANN. Performance criteria such as mean square error (MSR) and correlation
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coefficient are used to evaluate accuracy. It is found that the predicted values of the intensity
measures by the neural network correlate well with the observed ones.

Moreover, in previous models, the intensity measure variation due to different orientations
was not explicitly incorporated and it was based on the geometric mean or the maximum of the two
orthogonal components. The ANN models proposed take into account both components of the
ground motions, and consider the directionality effect through the radial angle as an input parameter.

For the PGA model, the results show that the configuration with a hyperbolic tangent function
for both the hidden layer and output layer gives the best PGA, which converges to the recorded
value with the highest level of correlation coefficient, equal to 0.86.

The PGA increases with magnitude and decreases with increasing distance and V3o (stiffer
sites). These observations are consistent with those shown in previous studies. On the basis of a
sensitivity analysis, it can be concluded that all input parameters are comparably influencing the
PGA, including the newly introduced parameter 6.

For the Significant Duration (SD) model, the results confirm previous studies outcomes, i.e.
Abrahamson and Silva (1996), Afshari and Stewart (2016). They are all in good accordance as long
as distance is less than 100km. However, the ANN model provides a slightly higher duration at
distance greater than 100km. The discrepancies, at distances greater than 100km, are attributed to
the significantly enriched far field content (site at distance greater than 100km) of the collected
database.

A sensitivity analysis concludes that the magnitude and the focal depth are first order
parameters influencing the significant duration, in comparison to the epicenter distance and shear
wave velocity down to 30 m, which have a small impact. The additional parameter "0" defined as
the angle formed between the orientation of the path epicenter-station and the direction of a
component (EW or NS) improves further the performance of the models despite its small effect on
the models compared to others inputs.

For the mean period, the sensitivity analysis shows that the shear wave velocity and the
resonant frequency are, first order parameters influencing the mean period compared to the

magnitude and the depth, which have a small impact.
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Chapter V.  PREDICTION OF ENGINEERING DEMAND
PARAMETERS (EDPS)

V.1.Introduction

Engineering Demand Parameters (EDPs ) are structural response measures that can be used
to evaluate the damage to different components structural and non-structural. Various EDPs
parameters are proposed in literature to quantify the response of structures such as inter-story drift
or floor acceleration. As a part of probabilistic based seismic design, Estimate the EDPs for a given
hazard level is an essential step, which are often used to assess the amount of damage (structural,
non-structural and content), The EDPs used in this study are based on equivalent SDOF. As
illustrated in Figure V-1 the selected EDPs are the inelastic response and the hysteretic energy,
which correlate well with the potential damage of the earthquake. The objective of this chapter is to
propose predictive models for EDPs and analyze the effect of seismological parameters and intensity

measures.

Engineering demand
measures for SDOF

Ductility Cumulative response
Inelastic response Hysteretic Energy
spectrum Spectrum

Figure V-1 EDPs considered in this dissertation
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V.2.Inelastic Response Spectra

V.2.1. Computation of inelastic response spectrum

Equivalent single-degree-of-freedom (ESDOF) systems are commonly used in the field of
earthquake and structural engineering [54, 55] to approximate the response of multi-degree-of-
freedom (MDOF) structures, including regular RC buildings, when the response is dominated by a
single mode with a high modal participation factor. Different methods also make use of equivalent

SDOF systems to predict damage in structures. [56, 137]

Most of the Ground Motion Prediction Equations for elastic and inelastic response spectra
proposed in literature are based on the response of constant-ductility systems and are developed for
design purpose [9]. Furthermore, the seismic assessment and design verification are based on the
evaluation of the ductility demand of structures with given strength, stiffness and restoring force
characteristics. This investigation is predicated on the constant-strength approach. Consequently,

five-yield strength reduction factors (q) equal to 1,2,3,4 and 5 are considered.

A set of 21 SDOF systems are considered to cover periods of vibration ranging from 0.1 sec to 4
sec (step 0.2 sec). Yielding strength values (fy) are computed dividing the elastic strength (Fe),
corresponding to the period of interest, by a yield strength reduction factor (q). A total number of
21 000 nonlinear time history analyses were carried out. As illustrated in Figure V-2, an Elastic-

Perfectly-Plastic (EPP) model is used.

For an inelastic damped SDOF system subjected to ground acceleration, the differential equation

of motion can be expressed as follows:

mi(t) + cx(t) + f(x,x) = —m Xq(t) (12)

Where: m, ¢ and f represent the mass, damping and resisting force of the inelastic system,

respectively; X4(t) denotes the ground acceleration; X, X, x represent respectively the acceleration,

velocity and deformation of a SDOF.

In this investigation, Bouc-Wen model is selected for its simplicity, stability and it can simulate
any extended plastic deformation [138]. Runge-Kutta method is adopted to solve the model
differential equation numerically [139]. According to Bouc-Wen, the resisting force f(t) is defined

as the sum of the linear part and the hysteretic part, and depends on history of deformation.

f(®) = kpx(t) +Q z(t) (13)
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Where: k,, is the post-yield stiffness; Q is the yield strength (ordinate at origin of creeping
part) whereas f, represents the yielding force; and the adimensional variable z(t) which

characterizes the Bouc-Wen hysteresis model :

_ x(0)
===

(14)

z(t) [A — |z|* (B.sign(xz) + ﬁ)]

y
Where: z(t) depends on the yield displacement fy, as well as A, B, A and B that are the
parameters that control the shape of the hysteresis loop. The adopted values are:

A=1, B=0.1,2=0.9, =6 and k,, = 0 for bilinear elastic-perfectly plastic system

X, f
fb"' o
m I
fy
oA ko
erall | |
kel | |

Figure V-2 Elastic-Perfectly-Plastic relationship of inelastic single-degree-of-freedom

V.2.2. Artificial neural network

There are several functions such as hyperbolic tangent, sigmoid and linear functions that can be
used as activation or transfer function. The type of activation function plays an important role, and
allows the introduction of nonlinearity so that it can deal even with complex phenomena. The
concept of the ANN in estimating the inelastic response spectra is illustrated in Figure V-5 together

with a schematic representation of the input and output parameters.
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Figure V-3 Process of estimating the inelastic response spectra (Sd)

Figure V-3 and Figure V-4 shows the flowchart for the process of computation of the inelastic
response spectra. The constant-strength inelastic response is calculated by reducing the elastic
strength of SDOF system from the corresponding reduction factor. A global flowchart of the
procedure used in this study is shown in Figure V-4. The selected ground motions from the KiK-
Net database are first used to construct the ANN database using the constant-strength approach and

then introduced to train, test and validate the ANN model.
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V.2.3. Results and discussion

V.2.3.1. Neural network topology optimization

Various neural typologies were tested to define the optimal architecture of a neural model. The
results are presented in Table V-1, which list the Mean Square Error (MSE) and correlation
coefficient (R) for different tests using different combinations. Following various tests on the
different combination and architecture. It turned out that the inelastic response spectra predicted by
the proposed models with five inputs using the combination of tangent hyperbolic function (tanh-
sigmoid) as an activation function for the hidden layer and linear function (lin) for the output layer,

with ten neurons, appears to be the most accurate (Figure V-5). [140]

Inelastic Response Spectra

S (T1) Sp(T2) Sp(T3) Sp(T4) Sn(T21) Output layer
21 values of inelastic

response

Hidden layer
10 nodes

Input parameters
5 nodes

M 7 d Ws30 q

Figure V-5 Structure of ANN model
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Figure V-6 shows the regression curve, which plots the values of the inelastic response estimated

by the proposed model against the calculated values. The correlation coefficient (R) shows that the

values predicted by the neural model are in good agreement with the target values (R=0.93).
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Figure V-6 Linear regression between the target and predicted Sd
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To evaluate the statistical behavior of the developed model the residuals are plotted against the

M, the R and the Vs30 for predicted inelastic response spectra. As illustrated in Figure 8, generally

there is no bias of trend in the residuals. However, It should be noted that in small magnitude events

(M=4.5) and in the large distance (R>150km; Far field) significant bias values were observed with

respect to Magnitude and distance. The bias in the model is attributed to insignificant response

amplitudes due to the attenuation of the ground motion with Magnitude and Distance.
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Figure V-7 Intra-event residuals as function of distance R, magnitude and Vs30.
Table V-1 Test of different combination of activation function
ACTIVATION FUNCTION PERFORMANCE CRITERIA
Layer 01 Layer 02 Rirain Ryatid Riest Rail MSE
log-sigmoid log-sigmoid <0.1 <0.1 <0.1 <0.1 >0.5
log-sigmoid linear 0.95 0.92 0.91 0.93 0.008
Tanh-sigmoid linear 0.94 0.92 0.92 0.93 0.007
Tanh-sigmoid Tanh-sigmoid | 0.86 0.83 0.87 086 0.018

81
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V.2.3.2. Effect of intensity measures on Inelastic response spectra

This section presents the effect of the chosen vector-valued seismological parameters on the
inelastic response spectra predicted by the ANN model. Figure V-8 shows the variation of the Sq
amplitudes with natural periods for three values of magnitude (M 5.5,6 and 6.5) while keeping the
same values of: source-to-site distance (R 50km), Depth (d 10km) and Shear wave velocity (Vs30
180m/s). The trend of variation for all magnitudes is similar and tends to increase the inelastic

displacement demand further in the long-period region (2s<T<3.5s).

0.035 ! ! , . . , ,

0.03

0.025
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0.015
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0.005

Figure V-8 Predicted inelastic response spectra for M in (5.5, 6, 6.5).

Source-to-site distance-dependent inelastic response spectra are shown in Figure V-9 for two
scenario: Near field (R 20km) and Far Field (R 70km) with the same M, d and Vs30. The results
indicate clearly that the inelastic deformation demand is still more pronounced in the long-period
region with the same trend for both the near and far field scenario. Logical trend is observed, there

is systematic increase in the Sd spectra with a decrease in the source-to-site distance.
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Figure V-9 Predicted inelastic response spectra for R in (20km, 70km).
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To highlight the influence of the site condition on the inelastic response spectra, the curves

corresponding to the spectra predicted by the ANN model are plotted in Figure V-10 for three
values of Vs30 (180m/s, 270m/s and 360m/s). It shows that the effect of the Vs30 is similar to the

previous parameters and small values of Vs30 (soft soil) produce larger response than site with high

values of Vs30.

0.025

0.005

Figure V-10 Predicted inelastic response spectra for Vs30 in (180m/s, 270m/s,

| ——Vs30=180m/s
| —=—Vs30=270m/s

{ —=—Vs30=360m/s

360m/s).

The reduction factor is used to reduce the yielding strength obtained from a linear analysis in

order to take into account the non-linear structural capacities. Figure V-11 elucidate further the
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influence of reduction factor on the inelastic response spectra where each increment of g-factor leads

to decreasing nonlinear response.

Based on the results illustrated in Figures 7, 8, 9 and 10, the relation between the inelastic
response spectra and seismological parameters present a similar trend and all the parameters

considered as inputs are more effective in the large-period region.

The
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Figure V-11 Predicted inelastic response spectra for Q-factor in (1,2,5).

dependence of the inelastic response spectra on seismological parameters, such as magnitude,
distance, and soil condition, was investigated. The obtained results are well substantiated by the
physical meaning of the magnitude as an increase in the magnitude values leads to consistent
increase of inelastic response demand. It is well known that strong ground motions attenuate
with distance, this was clearly reflected in Figure V-9 where significant reduction in the inelastic
response spectra is observed in the far fields. On the other hand, as expected, structures on soft soil

foundations are exposed to higher ductility demands than those on stiff soil foundations.

V.2.4. Sensitivity analysis

A sensitivity analysis of the seismological input parameters is performed, in order to gauge the
individual influence of each parameter on the Sd spectra. Percentages of synaptic weight Pi that
corresponds to each of the four parameters are computed using the following equation :

Nh |,,,h

_ 2wl
T YN YyNh |,k
Yiz1 Zj=1|Wij

wij: synaptic weights of the ANN where i€ [1..N] and je [1..Nn], with N=10 and Nr=4.

p;

(15)
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The overall results are summarized in Figure V-12, which shows that the seismological

parameters have almost the same effects on the Sd spectra, whereas the depth has less influence.

26%

25%
I 23%

Magnitude (Mjma) Distance (R ) Depth (d) Vs30

26%

Percentages of synaptic weight (%)

Input parameters

Figure V-12 Input sensitivity analysis

V.3.Hysteretic energy demand spectra

The different types of seismic energy component imparted to structures are presented in
chapter II. In this section, we investigated the hysteretic energy component. This objective is to
predict the hysteretic energy demand spectra by considering as inputs the Intensity measures (IMs)
which characterize the main features of ground motion rather than expressing it in terms of
earthquake parameters (see Figure V-13). The proposed approach is intended to reduce the
uncertainties related to earthquake and seismological parameters using feed forward Artificial
Neural Network (ANN) with gradient back-propagation rule for the training. For this purpose, a
database of hysteretic energy response spectra is constituted using 5% damped Single-Degree-Of-
Freedom (SDOF) systems subjected to 570 strong ground motion components judiciously extracted

from the KiK-Net strong-motion network.
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Figure V-13 the approach used to predict the hysteretic energy demand

The earthquake ground motions were attentively selected from the KiK-Net database prepared
initially, the distributions of the records in terms of intensity measures are presented in Fig. V-14,
V-15 and V-16. The intensity measures (IMs) considered in this study are strategically selected to
take into consideration the three essential features of the ground motion; the Peak Ground
Acceleration (PGA) for the amplification, the Significant Duration (SD) for the duration, and the
mean period (Tm) for the frequency content.

As illustrated in Fig. V-14, More than 70% (414 records) of the ground motion records used
in this study to train the neural network, have a PGA range between 50 to 250 gal.
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Figure V-14 PGA distribution

More than 50% (280 records) of the ground motion records used in this study to train the

neural network, have a significant duration range between 5 to 25 s (Fig. V-15).

280

100 98
57
33
2 B

<5 5-25 25-50 50-75 75-100 >100
Significant Duration (s)
Figure V-15 Significant duration distribution
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Figure V-16 Mean period distribution

A computer algorithm was developed to compute the energy response time-histories of SDOF
systems under the selected earthquake ground motions. Consequently, a dataset of hysteretic energy
demand spectra was constructed and used in the learning process. To this end, a range of SDOF
systems is considered. Each SDOF system is characterized by a natural period (T), a critical
damping ratio ({) and a mass-normalized yield strength (Cy), which is defined as:

y
(y -

Where, Fy is the yield force of the system. The force-deformation relation of the system is
elastic-perfectly-plastic and damping ratio is taken 5% of critical damping. The interval of variation
of the natural period is composed of 14 values ranging from 0.1 sec to 2.5 sec.

Most of the Ground Motion Prediction Equations for energy demand spectra proposed in
literature are based on the response of constant-ductility systems and are developed for design
purpose [83]. Furthermore, the seismic assessment and design verification are based on the
evaluation of the ductility demand of structures with given strength, stiffness and restoring force
characteristics. As illustrated in Figure V-17, this investigation is predicated on five levels of mass-
normalized yield strength (Cy) equal to 10,5,2,1 and 0.5 m/s?. A total number of 39 900 nonlinear
time history analyses were computed. For an inelastic damped Single-Degree-of-Freedom (SDOF)

system subjected to ground acceleration.
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Figure V-17 levels of normalized yield strengths

V.3.1. Artificial neural network

There are several functions such as hyperbolic tangent, sigmoid and linear functions that can

be used as activation or transfer function. The type of activation function plays an important role,

and allows to deal even with complex phenomena. A systematic theory to determine the number of

input nodes and hidden layer nodes is unavailable.

Hysteratic energy specira
ERETLY ERATIZS ERLTIZS  ERATLAY ERiT s
Output layer
@ T @@@ T @ 14 values of hysterstic

cnergy

DDDDD DDDD  itientor

Input parameters
4 nodes
FGA sD " Cy

Figure V-18 Structure of ANN model
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Therefore, the selection of an architecture of the neural network is determined by trial and
error [141]. In this paper, a large number of architectures are tested by using various parameters in
order to obtain the best ANN model. The model is developed with four inputs and 14 output neurons

and a 20 nodes hidden layer as illustrated in Figure V-18.

Various neural typologies were tested to define the optimal architecture of a neural model.
The results are presented in Table V-2, which list the Mean Square Error (MSE) and correlation
coefficient (R) for different tests using different combinations. After several trials on the different
combination and architecture, it turned out that the hysteretic energy spectra predicted by the
proposed models with four inputs using the combination of tangent hyperbolic function (tanh-
sigmoid) as an activation function for the hidden layer and the linear function for the output layer,

with twenty neurons, is the most accurate.

Regression: R=0.85

L : H
< Data : : o : Do
Fit |- B e e e F SRR B

QOutput~=0.89"Target+1.0056

Figure V-19 Linear regression between the target and predicted Sd
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Table V-2 Test of different combination of activation function

Activation Function Performance Criteria
Layer 01 Layer 02 Rtrain Rvalid Rtest Rall MSE
log-sigmoid  log-sigmoid  <0.1 <0.1 <0.1 <0.1 >0.5
log-sigmoid  linear 0.88 0.73 0.89 0.85 0.005
Tanh-

_ linear 0.86 0.83 0.86 0.85 0.004
sigmoid
Tanh- Tanh-

0.85 0.73 0.70 0.80 0.006

sigmoid sigmoid

V.3.2. Results and discussion

V.3.2.1. Neural network topology optimization

Figure V-19 shows the regression results which compare the value of the hysteretic energy
estimated by the proposed model and the calculated values. The correlation coefficient (R=0.85)
indicates that the values estimated by neural model are in agreement with the calculated target
values.

To evaluate the statistical behavior of the developed model, the residuals are plotted against
the PGA, the SD and the Tm for predicted hysteretic energy spectra. As illustrated in Figure V-20,
the plots are fairly symmetric and tend to cluster towards the middle showing no bias or trend in

the residuals.



92

Residus as function of reduction factor PGA
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Figure V-20 Intra-event residuals as function of PGA, SD and Tm

V.3.2.2. Effect of intensity measures on the hysteretic spectra

The effect of the intensity measures on the predicted hysteretic energy spectra is presented in
this section. Figure V-21 shows Five curves of the predicted hysteretic energy demand spectra
corresponding to increasing values of PGA (PGA 0.2g, 0.4g, 0.6g, 0.8g and 1.0g) while keeping
the same values of the significant duration (SD 15s), the mean period (Tm 0.4s) and the normalized
yield strength (Cy=1 m%/s?).

The effect of PGA is mostly felt in the short-period region (T<0.7s). The hysteretic energy
demand depends strongly on the PGA, an increase in the PGA leads to consistent increase of

hysteretic energy demand.
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Figure V-21 Predicted Eh spectra for PGA in {0.2g, 0.4g, 0.6, 0.8g and 1.0g}

Duration-dependent hysteretic energy spectra obtained for three scenarios (SD 5 s), (SD 20 s)
and (SD 40 s) with the same PGA and Tm (PGA 0.5g and Tm 0.4s) are depicted in Figure V-22. It
is clearly shown that, for T<0.8s the long duration (SD 40s) procures more than 75% growth of the
hysteretic energy compared to the short duration (SD 5s). The results indicate clearly that the effect
of significant duration attenuate as we increase the naturel period value. Therefore, the duration
effect is more pronounced in the short-period region (T<0.7s) while the large-period region is less
sensitive to the duration of the strong motion. In the other hand, there is significant increase in the
hysteretic energy demand with an increase in the duration. This lends support to previous finding in

literature. [142]
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Figure V-22Predicted Eh spectra for SD in {5s, 20s and 40s}
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To highlight the influence of the frequency content on the hysteretic energy. The latter is
predicted for short period ground motion (Tm 0.2 s) and long period ground motion (Tm 0.8 s). and
plotted in Figure V-23.

The spectral shape of hysteretic energy spectra depends on the mean period (Tm). The short
period ground motion affects more the system in short period region (0.2s<T<0.5s) while the
systems in period greater than 0.5s, the hysteretic energy demand are consistently smaller.
Compared to the short period ground motion (Tm 0.2s), the long period ground motion (Tm 0.8)

produces more than 200% increase of the hysteretic energy demand in period greater than 0.5s.
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Figure V-23 Predicted Eh spectra for Tm in {0.2s and 0.8s}

The proposed model is based on the response of constant-strength oscillators which is useful
for seismic evaluation of existing structures. Figure V-24 clarify further the influence of mass
normalized yield strength (Cy) on the hysteretic energy demand spectra. As expected an increase of
Cy leads to an extended elastic phase, which consequently is reflected by a consistent decrease in

the amplification shape of the hysteretic energy demand spectra.
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Figure V-24 Predicted Eh spectra for Cy in {1,5 and 10}

V.3.3. Numerical comparison with existing models

The model proposed in this study is compared with two existing empirical relationships:
Decanini and Mollaioli (2001) and Dindar et al. (2015) [83, 143].
Figure V-25 compares the hysteretic energy spectrum computed on the basis of the intensity

measures values corresponding to Kobe record and the parameters given in Table V-3.

Table V-3 Input parameters used to construct hysteretic energy spectra

PGA (g) SD (s) Tm (s) v Site class & (%)

0.8 40 0.5 4 Stiff soil 5

Note that the existing models are based on the response of a constant-ductility ratio, while the
proposed model is developed for a constant-strength ductility. To conduct the comparison the mass
normalized yield strength is calculated for each period.

Figure V-25 shows that the overall trends of the spectra of the proposed model and those of
Decanini and Mollaioli (2001) and Dindar et al. (2015) are similar.
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Figure V-25 Comparison with existing models

V.3.4. Sensitivity analysis

A sensitivity analysis for the input variables is performed in order to quantify the individual
influence of each parameter on the hysteretic energy demand spectra.

The results of the sensitivity analysis are plotted in Figure V-26, which shows that the IMs
parameters have almost the same effects on the hysteretic energy demand spectra, whereas the Cy

has less influence.
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Figure V-26 Input sensitivity analysis
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V.4.Conclusion

In this chapter, a neural network based method is developed, in order to predict the inelastic
displacement and the hysteretic energy spectra, for a given set of structural proprieties and intensity
measures of ground motion.

The proposed hysteretic energy model adopts four input parameters: the peak ground
acceleration (PGA), the significant duration (SD), the mean period (Tm) and the mass-normalized
yield strength (Cy). The database is constructed using nonlinear time history analysis (NLTHA) of
SDOF systems subjected to ground motion records that has been selected from the KiK-Net
network. The test phase shows that the predicted values of the hysteretic energy demand spectra by
the neural network are reasonably close to the target values and show also a similar trend with
existing empirical formulations. A parametric study shows the hysteretic energy demand spectra
increase with peak ground acceleration and significant duration in short-period region. In large
period range, the hysteretic energy spectrum is less sensitive to the characteristics of the ground
motion. Similarly, the short-period ground motion influences more the SDOF systems in the short
period region while the long-period ground motion influence covers a wide range of period. The
resulting synaptic weights of the trained NN reveal that the intensity measures represented by: PGA,
SD and Tm are first order parameters influencing the hysteretic energy demand spectra, in
comparison to the Cy, which have a lesser impact.

As for the inelastic response spectra, Unlike most of previous studies based on the constant-
ductility approach, this investigation adopt the constant-strength approach in the development of
GMPE, which is useful for evaluating the seismic performance of the existing structures. Based on
performance criteria such as mean square error (MSR) and correlation coefficient (R), the proposed
ANN model predicts the inelastic response spectra with an acceptable precision compared to the
real spectra. The result of residual analysis corroborate the model reliability with some bias and
poor performance in the small magnitude and far field, this weakness can be justified by the
insignificant response amplitudes due to the attenuation of the ground motion with Magnitude and
Distance. The use of this GMPE is recommended for events with larger magnitude (M>5.5) in the
near fields ( R<150 km). A sensitivity analysis concludes that the seismological parameters have
almost the same influence on the inelastic response spectra as predicted by the ANN model except

the depth parameter which has a reduced impact.
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Chapter VI.  CONCLUSION

This dissertation investigated the effects of the seismological parameters on the structural
response on two stages. Firstly, we interested on the ground motion characteristics and how it is
affected by the seismological parameters. Afterward, the structural aspects is addressed, the
influence of the earthquake parameters on the nonlinear behavior of structures is investigated.

The methodology can be summarized in three steps: (a) Data collection (b) Data analysis using
artificial neural network (c) interpretation of results. The ground motion database developed in this
dissertation is obtained from the nation-wide strong-motion seismograph network KiK-NET (Kyoshin
Network), which consists of more than 1,000 observation stations distributed every 20 km uniformly
covering Japan

The Artificial neural network is used to analyze the data, which the artificial neural network
(ANN) is considered as an alternative option to multiple regression analysis, the ANN with back-
propagation (BP) is an efficient way of solving nonlinear modelling problems.

In the chapter 4, the intensity measures (IMs) considered in this study are strategically
selected to take into consideration the three essential features of the ground motion; the Peak Ground
Acceleration (PGA) for the amplification, the Significant Duration (SD) for the duration, and the
mean period (Tm) for the frequency content.

Neural models are developed to predict the intensity measures (IMs). The models are then
used to investigate also the influence of seismological parameters.

The governing input parameters are the magnitude, the focal depth, the epicentral distance,
the shear wave velocity, the resonant frequency and the radial angle epicenter-station. The target
outputs correspond to intensity measures (IMs). Compared to the existing attenuation models, in
addition to the earthquake independent parameters used for attenuation relationships, a new aspect
is considered in this dissertation called directionality.

An analysis of the effect of directionality on the PGA was performed; the findings of this
analysis highlight the effects of directionality on the amplitude of ground motion. the ratio
(max/min) may reach up to 1.35 (increase of 35%). Therefore, a radial angle parameter has been
included in the input of the predictive model.

The database used in most recent Ground Motion Prediction Equations (GMPEs) is based on
one record at each station derived from the combination of two horizontal components EW and NS

(usually the geometric mean). Compared to previous research works, one of the most important
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advantage in introducing the angle epicenter-station (8) as an input model parameter is that both
components E-W and N-S are considered apart in the database.

Performance criteria such as mean square error (MSR) and correlation coefficient are used to
evaluate the accuracy. It is shown that the predicted values of the intensity measures (IMs) by the
neural network are in good accordance with the observed ones.

A sensitivity analysis investigates how the different inputs affect the significant duration
models, it has been found that:

e For the significant duration, the inputs parameters have almost the same effects on the
significant duration, whereas the depth parameter is dominant and the radial angle has
less influence. The additional parameter “0” defined as the angle formed between the
orientation of the path epicenter-station and the direction of a component (EW or NS)
improves further the performance of the models despite its small effect on the models
compared to others inputs.

e For the PGA, The inputs parameters have almost the same effects on the PGA except
that the soil frequency parameter fso0, which has less influence.

e For the mean period, the shear-wave velocity down to a depth of 30m (Vs30) and the
resonant frequency fsoo are the most influent parameters, followed by the magnitude
and focal depth. Nevertheless, the distance and the orientation of path turned out to be
less influential.

The structural behavior is addressed in chapter 5, the ductility and dissipated energy, which
correlate well with the structural damage during an earthquake are investigated. Equivalent SDOF
systems are considered with a set of 21 periods of vibration ranging from 0.1 sec to 4 sec (step 0.2
sec). Based on the response time history of SDOF systems subjected to ground motion records
selected attentively from the database, two engineering demand measures are considered: (1) the
inelastic displacement response spectra. (2) Hysteretic energy demand spectra.

A Ground Motion Prediction Equations (GMPEs) is developed to predict the inelastic
response spectra without the need to resort first to elastic spectra. The inelastic response is expressed
in terms of seismological parameters and structural proprieties using feed forward artificial neural
network (ANN) with a gradient back-propagation rule.

The use of this GMPE is recommended for events with larger magnitude (M > 5.5) in the near
fields (R <150 km). A sensitivity analysis concludes that the seismological parameters have almost
the same influence on the inelastic response spectra as predicted by the ANN model except the depth

parameter that has a reduced impact.
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The energy concept is addressed in the second section of chapter 5 by considering the
hysteretic energy demand spectra. A neural model is developed by considering as inputs the
Intensity measures (IMs) which characterize the main features of ground motion rather than
expressing it in terms of earthquake parameters. The proposed approach is intended to reduce the
uncertainties related to earthquake and seismological parameters using feed forward Artificial
Neural Network (ANN) with gradient back-propagation rule for the training.

A parametric study shows the hysteretic energy demand spectra increase with peak ground
acceleration and significant duration in short-period region. In large period range, the hysteretic
energy spectrum is less sensitive to the characteristics of the ground motion. Similarly, the short-
period ground motion influences more the SDOF systems in the short period region while the long-
period ground motion influence covers a wide range of period.

The resulting synaptic weights of the trained NN reveal that the intensity measures represented
by: PGA, SD and Tm are first order parameters influencing the hysteretic energy demand spectra,
in comparison to the Cy, which has a lesser impact. For the engineering demand measure considered
in this dissertation, the performance of the developed model reveals a good match between the
computed and predicted values of hysteretic energy demand spectra.

The results of this study were compared to those of the previous study on significant duration
and hysteretic energy spectra. The proposed models are in good accordance with the existing
models.

From a practical perspective, the ANN model with only one hidden layer and a limited number
of neurons has been implemented in a simple computer program (see appendix). Therefore, the
developed models can be routinely integrated into engineering applications and for probabilistic

seismic hazard analysis (PSHA) studies.
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Synaptic weight matrices and bias vectors for the ANN model.
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wi: the matrix of synaptic weights, its dimensions are NhxN the input parameters and the hidden layer.

wz: the vector of size Nh that contains the synaptic weights.

b, ba: The bias vectors of the hidden layer and output layer.

PGA Model:
Wi
1.1483 -1.6031 0.91218
0.10273 0.42777 -0.36178
-1.727 0.38588 2.0824
1.3525 -0.67121 0.92101
-0.59759 0.19538 1.0443
-1.206 -1.1835 1.5556
-0.42559 -0.35528 0.24135
-0.37471 0.92767 -1.6935
0.90866 0.21944 -0.8056
0.40843 0.74955 -1.2999
b=
[-1.9878;
-0.53903;
2.3438;
-0.37136;
-0.99748;
0.58767,
-0.59632;
1.2691;
1.4337;
2.3942]
W=
[-0.38069 2.3815 -0.58706 -0.41775
by=

[-0.79503]

0.048856

0.057407

-0.486

-1.5773

0.097137

-0.70775

0.83902

-0.82764

1.6722

-0.54665

-0.30508

-0.56716

-0.12529

0.1813

-0.016869

0.085263

-0.67736

0.2252

0.61669

0.45942

0.74894

0.4202

-0.64599
-0.27508
-0.48307
-1.4048
-1.6796
0.68444
1.67
-0.98461
0.4847

-0.74042

-0.61476

-0.32847

0.0023957 -0.38659]
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wl bl w2 b2
1.388 1.095 1.206 -1.032 1.766 -0.003 -1.589 1.032 -0.185
0.174 0.424 0.180 0.591 -1.251 0.183 0.555 -1.111
1.374 0.513 0.851 -0.181 0.878 0.065 -0.966 -1.322
1.291 -0.889  -0.200 0.929 -1.412 0.181 -1.236 1.078
0.213 -1.364 -0.872 0.595 -0.216 0.149 0.206 -0.968
5.937 1.249 0.391 0.319 -0.347 0.042 2.370 -1.970
-0.406  -0.994  -0.533 -1.534  -0.493 0.172 1.034 -0.274
0.957 0.651 -1.495 0.145 -0.965 -0.049 -0.292 -0.355
3.639 0.475 -0.155 1.102 -1.129 0.170 2.254 1.902
-1.179 0.669 -1.326 0.669 1.653 -0.437 -2.649 -0.954
Synaptic weight matrices and bias vectors SD 575 Model
wl bl w2 b2
2.100 0.982 0.823 -0.798 1.507 0.037 -1.294 0.887 -0.821
-0.365 0.211 -0.898 0.459 -0.991 0.270 1.458 -1.188
2.343 0.346 0.821 -0.269 0.562 0.079 -1.585 -1.321
1.688 -0.876 -0.347 0.637 -0.783 0.226 -1.076 1.132
0.732 -0.895 -0.868 0.514 -0.395 0.193 -0.697 -1.136
7.317 0.887 0.318 0.226 -0.108 0.035 3.379 -2.938
-0.290 -1.302 -0.276 -1.053 -0.377 0.545 1.067 -0.038
1.509 0.754 -1.277 -0.248 -0.604 0.136 -1.354 -0.239
5.991 2.154 0.700 1.726 -1.326 0.253 3.807 2.886
-1.119 0.857 -1.286 0.668 1.896 -0.508 -2.492 -0.632




Synaptic weight matrices and bias vectors for Inelastic response spectra model
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wl

-0.08273 7.784 6.06 0.93696 -6.2642

1.0767 0.11994 -0.31878 -2.5242 1.4537

0.075649 3.3268 4.7762 -5.396 -4.4799

-0.18466 -1.3965 11.6736 5.5936 7.0363

-0.23223 -7.6644 3.1154 1.5976 -4.143

0.042267 -2.9187 -6.8243 -9.4885 -6.0351

0.18276 -9.8872 -2.7308 -4.0899 0.86523

0.1035 -0.68123 -2.533 1.9296 4.5337

0.07839 -6.5307 -4.9244 -0.73972 6.7169

-0.42446 -1.1956 0.62353 -5.9804 1.7597

w2

-0.69497 1.2582  0.77342  0.0016248 -0.021422  0.00055935  0.0021854 -0.024154 -0.70027 -0.0022681
-0.69733  0.86513 1.2403 0.013469 -0.034106 0.012143  0.0031869 -0.042941 -0.69197 0.36583
-1.1977  0.91281 1.9885 0.023394 -0.043577 0.019466  0.0026424 -0.069414 -1.205 1.2067
-0.65189  0.45265 1.5371  0.0068614  -0.02991 0.0071722 -0.0014466 -0.069488 -0.647 1.2645
-0.7509  0.47741 1.2508 0.022784  -0.03719 0.023451  -0.021925 -0.062693 -0.72151 1.4402
-0.83841  0.26151 1.03 0.027707 -0.037612 0.031124 -0.03018 -0.062018 -0.80181 1.2971
-1.196  0.49005 1.4481 0.046532  -0.064452 0.053732  -0.044039  -0.12464 -1.136 1.5988
-1.0729  0.44047  0.89061 0.040776  -0.05067 0.044849  -0.035713 -0.083898  -1.0314 1.3869
-1.0936  0.26073  0.89589 0.039891 -0.045606 0.041438  -0.038445 -0.065939  -1.0535 1.6196
-1.3234  0.10961  0.97688 0.0541 -0.052664 0.059982  -0.052983 -0.069108  -1.2701 1.3794
-2.1844  0.39598 1.4031 0.083151 -0.076635 0.090104  -0.084084 -0.080215 -2.1072 1.3263
-2.2963  0.42051 1.2458 0.080693 -0.074154 0.084892  -0.086642 -0.067814  -2.2203 1.2239
-2.3437  0.31557 1.4189 0.094641 -0.088948 0.10172  -0.094376 -0.085297  -2.2537 1.3538
-2.4175  0.29894 1.3752 0.10258 -0.096166 0.10959  -0.097868  -0.10066 -2.321 1.2246
-2.2956 0.2035 1.0627 0.09809 -0.090498 0.10089  -0.087067 -0.098918  -2.2064 1.0843
-1.9691  0.25242  0.91327 0.091751 -0.090386 0.093216  -0.071693  -0.11333  -1.8898 1.0263
-1.8086 0.36762 0.8936 0.098733 -0.1023 0.10258  -0.070494  -0.14054  -1.7232 1.0054
-1.6493  0.57106  0.96845 0.10515  -0.10868 0.11292  -0.076605 -0.16067  -1.5543 0.9258
-1.3447  0.59052 0.8688 0.091351  -0.096803 0.098173 -0.06524  -0.14393  -1.2605 0.86493
-1.5417 0.72015 0.87311 0.10132  -0.10887 0.10759  -0.071355  -0.14891  -1.4501 0.97755
-1.5049 0.5505  0.82062 0.096973  -0.10752 0.10309  -0.070286  -0.13399  -1.4173 1.0786




bl

-11.53

-4.2793
-14.0707
0.27949
3.3898
-3.8287
6.1461
4.8577
10.0282

-7.856

b2

-11.53

-4.2793
-14.0707
0.27949
3.3898
-3.8287
6.1461
4.8577
10.0282

-7.856
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Appendix B. Graphical user interfaces (GUIs) for attenuation relationship:

To make the use of the attenuation models more user-friendly a Graphical User Interface (GUI)
MATLAB is developed for the proposed model. The input values of the models are as follow {0, Vs30,

Mw, R, d, and Radial angle.

untitled - *

Attenuation madel for PGA
Propozed as part of PhD diszertation
HAMMAL Sofisns

Contact: hmlzofiane@aomail.com 160
140
— Inpt parameters
120
FGA

a0 = S Hz (cm2iz) |00
WE3l = 600 miz 30
iy = 6 60

Depth = 5 km
40

Radial 0

20

1
0 20 40 60 80 100 120 140 160 180 200
Distane (km)

. Plot curve
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Appendix. C Ground Motion records list
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Earthquake parameters

Intensity measures

o = s | < ® o o -
Records name % o°§ § S & § g %
- g ]
£ z >

AICH049804222032.EW2 10| 54| 52.09| 0.36| 241.15]| 30.41 27.985 14.334 | 0.401
AICH049804222032.NS2 10 | 5.4 | 52.09| 0.36 | 241.15| 59.59 22.140 | 19.705 | 0.281
AICHO79804222032.EW2 10| 54| 76.51| 3.63 | 42810 | 4.36 20.700 7.988 | 0.227
AICHO79804222032.NS2 10| 54| 76.51| 3.63 | 428.10 | 85.64 19.370 | 10.085 | 0.231
AICH089804222032.EW2 10 | 54| 7252 | 4.60| 448.53 | 22.43 18.075 7.869 | 0.240
AICH089804222032.NS2 10 | 5.4 | 7252 | 4.60| 448.53 | 67.57 17.215 | 11.232 | 0.209
AICH099804222032.EW2 10 | 5.4 | 94.00| 0.50| 274.03 | 36.50 28.405 7.828 | 0.984
AICH099804222032.NS2 10| 54| 94.00| 0.50| 274.03 | 53.50 32.690 7.029 | 0.739
AICH119804222032.EW2 10 | 5.4 | 47.25| 3.14| 382.20 | 18.79 17.635 | 10.758 | 0.165
AICH119804222032.NS2 10 | 5.4 | 47.25| 3.14| 382.20| 71.21 16.870 | 12.058 | 0.171
AKTH010307260713.EW2 12| 6.2 |164.83 | 2.01| 475.09 | 72.17 29.870 8.803 | 1.167
AKTH010307260713.NS2 12| 6.2 |164.83 | 2.01| 475.09| 17.83 30.150 | 10.324 | 1.075
AKTH020307260713.EW2 12 | 6.2 | 149.14 | 3.35| 620.40 | 69.93 39.780 8.345 | 0.625
AKTH020307260713.NS2 12 | 6.2 | 149.14 | 3.35| 620.40 | 20.07 39.725 9.050 | 0.524
AKTHO050307260713.EW2 12 | 6.2 | 104.64 | 7.42 | 829.46 | 45.38 39.990 9.251 | 0.278
AKTH050307260713.NS2 12 | 6.2 | 104.64 | 7.42 | 829.46 | 44.62 38.965 8.697 | 0.283
AKTH120307260713.EW2 12| 6.2 | 186.78 | 2.03 | 389.24 | 64.35 40.900 8.763 | 0.863
AKTH120307260713.NS2 12 | 6.2 | 186.78 | 2.03 | 389.24 | 25.65 49.280 10.096 | 0.874
AKTH130307260713.EW2 12 | 6.2 | 187.25 | 5.08 | 535.72 | 69.69 10.795 39.847 | 0.245
AKTH130307260713.NS2 12 | 6.2 | 187.25| 5.08 | 535.72 | 20.31 8.970 | 31.596 | 0.247
AKTH150307260713.EW2 12 | 6.2 | 157.16 | 4.64 | 498.05 | 65.47 37.385 4.678 | 0.424
AKTH150307260713.NS2 12 | 6.2 | 157.16 | 4.64 | 498.05 | 24.53 36.270 5.618 | 0.562
CHBH040410231756.EW2 13 | 6.8 | 195,52 | 2.93 | 369.11 | 57.85 66.820 | 19.897 | 0.874
CHBH040410231756.NS2 13 | 6.8 | 195.52 | 2.93 | 369.11 | 32.15 51.445 | 19.310 | 0.807
CHBH041103230712.EW2 8 6| 158.61 | 2.93 | 369.11 | 64.16 95.380 6.876 | 0.314
CHBH041103230712.NS2 8 6| 158.61 | 293 | 369.11 | 25.84 96.170 8.302 | 0.333
CHBH141103230712.EW2 8 6 | 150.01 | 0.91 | 200.74 | 88.76 97.610 1.946 | 0.410
CHBH141103230712.NS2 8 6 | 150.01 | 091 | 200.74 1.24 94.340 2.490 | 0.397
EHMH011604182042.EW2 91|58 126.66 | 7.15| 743.40 3.07 24.210 3.275 | 0.124
EHMHO011604182042.NS2 91|58 126.66 | 7.15| 743.40 | 86.93 23.490 3.858 | 0.126
EHMHO030010061330.EW2 11| 7.3 |154.05| 5.46 | 500.58 | 79.48 20.990 | 21.990 | 0.520
EHMHO030010061330.NS2 11| 7.3 | 154.05| 5.46 | 500.58 | 10.52 24.035 20.094 | 0.429
EHMH031610211407.EW2 11 | 6.6 | 16393 | 5.46 | 500.58 | 83.36 19.460 7.256 | 0.362
EHMH031610211407.NS2 11 | 6.6 | 16393 | 5.46 | 500.58 6.64 25.590 6.368 | 0.304
EHMHO050010061330.EW2 11| 7.3 |181.15| 298| 362.14 | 73.94 35.925 8.077 | 0.565
EHMHO050010061330.NS2 11| 7.3 |181.15| 298 | 362.14 | 16.06 38.515 10.540 | 0.477
EHMH051604160711.EW2 6|54 13949 | 298 | 362.14 | 20.98 26.440 0.372 | 0.195
EHMHO051604160711.NS2 6|54 |13949 | 298| 362.14 | 69.02 23.930 1.084 | 0.219
EHMHO051604182042.EW?2 91]58|168.65| 298| 362.14 | 28.32 31.150 1.227 | 0.190






