UNIVERSITE DE BLIDA 1

Faculté de Technologie

Département d’Electronique

THESE DE DOCTORAT

en Automatique

Contribution to intelligent control

Par

Mohamed BENRABAH

Devant le jury composé de :

M. BOUNEKHLA
D.E. KHODJA
A. GUESSOUM
R. BRADAI

N. CHEGAGA

K. KARA

Professeur, U. de Blida 1
Professeur, U. de M’Sila
Professeur, U. de Blida 1
MC A, U. de Blida 1
MC A, U. de Blida 1

Professeur, U. de Blida 1

U. Blida 1, 13 Juillet 2021

Président

Examinateur
Examinateur
Examinateur
Examinatrice

Rapporteur

Remerciements

Tous mes remerciements vont a Dieu qui m'a guidé et m'a donné la patience et le

courage pour finaliser ce projet.

Je tiens ensuite a remercier mes parents pour leur amour, leur soutien et leurs
encouragements qui m'ont toujours donné confiance et motivation pour aller de I'avant,
ainsi qu’a mes fréres et mes sceurs, sans oublier de remercier mes amis pour leur présence

et leur amitié sincere.

Je tien a exprimer ma sincére gratitude a mon directeur de thése professeur KARA
Kamel, directeur du laboratoire des systemes électriques et télécommande, pour m’avoir
au sein du laboratoire. Je le remercie pour son aide, son soutien, ses conseils précieuses

tout au long de ce projet de recherche.

Je souhaite également remercie I'ensemble du membre du juré pour leurs

instructions et conseils riches qu’ils mon partagés.

Enfin, permettez-moi d'espérer que ce travail soit une étape vers un long

cheminement plein de sens et de réussite dans la recherche scientifique.

uadla

Sy Cunay 4y 68 g Ay (Allad S Cllae)l 93 o shai 58 Jandl 138 (e st) (2 2l
45 yall aSatll Culas 5 elol a5 Sl eS3 Ahadl) ye Aalail) e S aae e ik
Jia e liaca¥) ol il gol aladiuly @l o aiil SSaill g PID ASail s3ag 5 il
meta) (heuristic 48l 4LSILY) Cpuatll Gk (ol Ghidl dpasll GISA
Aiall Cpail) 48 jla paay A8 6al) AALESILY) awadll (3 5k Al jd G optimization
o3 Canans callll 8 dn elal 2w Jludll il 8 WSl clinlal b Lgalaid (Say S
teaching) (learning based alxill e Aaial Cppaal) da)5l 520 a7 8L Wl 4l Al
Gilae)l A (e waall #) yBlL o) o) &3 (eA Al Jarll s I3 e 3 e optimization
ALl 3) PID aSaill as y chanl) AKAl 13 AASH PID SSad s3a g A 5 caSal
Al il A o a3l amad) 3 paill 53 il Al e o ALl g g3 (e Appaaal
R

Al yin)) 581 a3 calail) o AalE) el dga)5l 53 o8 e (et Jal (1

dmem(muw\mm\ s JS a0 e 13l el #1551 lial dlesd sa0a

AAILS 485 pall JLAAY) J) 5 (e ol Jleatiad JOIA (e s Al dpe)) sA) BeUS 5 o Ll
ol e il aSatl) et Al Jal 4) A oda

5adxie Ay A0l ol o ¢ A yiial) Lyuaal) AN D A K3 PID oSaill sas 5 b

aladiuly COllaall Jaaa% dsa)) 53 ghal &3 2ol PID aSad o 5 GBlalas asd sl Cilylall

Al o) Sl a5 (pa Bdall aa Lei L g Aa yidall aSaill 3o g Jilad o3| uSal) HLISY) 4G Hla
Al Al A sulal) slSladll P& (e

& 55 (e Apnnanll 4030 I3 10K PID aSail) s 5 e 306N da jiall aSadll aa
sl AN a3l Al 4aa) aailiad s Aagll 4 1500 (Janll 1380 8 4y)8 Al
ph da jitall oSl 3as 5 Adlad andil PID aSaill saa g G llae Jasial 4y 68 Alili g 68 (e
O aadl iy A5 lae o)) s 4y all Gl 0 830 93 Cagas g1 50 (A Sl) (9 kil
pSadll Gl)l sa

alasinly gl juaiall e 3585 9a g hall el aSail U o jitall UGN Jaall lay

dgpac A0l aladial ol o2 aSaill san g b aladll e AEl Cppeail) 43 jla 5 duanl) IS0

alasinly i) 2Saill) A5 Ja a5 callaill Al cila Al suill il saseie

idlad @Sy (ETLBO, ITLBO, TLBO) aleill (o Al Cppuntl) dpas) fuY 3,k bae

(e IS8 &y jaiisn Jelin igal 4 aSaill) 3 kil a5 da jital) aSaill cilie) 55
pSadll Gl)l sa Bae aladiuly 45 jle ol jal &g ey jall Glia)3 3 Cigas N g)3 zasais

RSAJBJA} cﬂjﬁm&mh&\waﬁcé&ﬁédé&%&m‘&m\
(A5 (S35 PID

ABSTRACT

The main purpose of this work is to develop efficient, simple, and robust control
algorithms for a large class of nonlinear systems. The idea is to improve the performance of
the well known and popular controllers, namely the PID controller and the predictive control,
using artificial intelligence tools, such as neural networks, fuzzy logic and meta heuristic
optimization methods. The study of meta heuristic optimization methods has allowed to
determine the appropriate optimization method that can be used in real time control
applications and give good performance. In fact, this study has also allowed proposing an
improvement to the teaching learning based optimization algorithm. Furthermore, the carried
out research work has allowed proposing several control algorithms, namely the adaptive
neural network PID controller, the adaptive Fourier series neural network PID controller,
and the neural network model predictive control using the teaching learning based
optimization method.

In order to improve the convergence rate of the teaching learning based optimization
algorithm, a new strategy to the selecting process of the students’ pairs, based on the grade
of each student during the optimization process, is proposed. The convergence rate and the
efficiency of the modified algorithm are assessed by considering several well-known
benchmark functions. This algorithm is used to solve the optimization problem of nonlinear
predictive control.

In the proposed adaptive neural network PID controller, a multilayer percepron
neural network is used to online determine the gain values of the conventional PID
controller. The adaptation algorithm is developed using the back propagation method. The
proposed controller is analyzed and compared with several different controllers through
computer simulation and experimental study.

The second proposed controller is called adaptive Fourier series neural networks PID
controller. In this work, due to its simple architecture and very attractive proprieties, the
Fourier series neural network is used to online adjust the parameters of the PID controller.
To assess the effectiveness of the proposed controller, the control of a 3-DOF robot arm
manipulator is considered and a comparative study, using several control algorithms, is
carried out.

The third work concerns the constrained nonlinear predictive control using neural
networks and teaching learning based optimization. In this work, a feed forward multilayer
neural network is used to predict the future outputs of the system, and the optimization
problem of predictive control is resolved using different versions of the teaching learning
based optimization strategy; namely the TLBO algorithm, the Improved TLBO (ITLBO) and
the enhanced TLBO (ETLBO). To demonstrate the effectiveness of the proposed control
algorithms, the control of the model of the continuous stirred tank rector, and the 2-DOF
manipulator robot model, is considered and a comparative study, using several control
algorithms, is carried out.

Keywords: intelligent control, artificial neural network, Fourier series, PID controller,
predictive control, TLBO, meta-heuristic.

RESUME

L'objectif principal de ce travail est de développer des algorithmes de contrdle
efficaces, simples et robustes et qui peuvent s'appliquer sur une large classe de systémes non
linéaires. L'idée est d'améliorer les performances des méthodes de commande bien connues
et populaires, a savoir le régulateur PID et la commande prédictive, en utilisant les outils de
I'intelligence artificielle, tels que les réseaux de neurones, la logique floue et les méthodes
d'optimisation méta heuristique. L'étude des méthodes d'optimisation méta heuristique a
permis de déterminer la méthode d'optimisation appropriée qui peut étre utilisée dans les
applications de commande en temps réel et donner de bonnes performances. En fait, cette
étude a également permis de proposer une amélioration de l'algorithme d'optimisation base
sur I'apprentissage par enseignement (teaching learning based optimization). De plus, les
travaux de recherche menés ont permis de proposer plusieurs algorithmes de commande, a
savoir le régulateur adaptatif PID en utilisant un réseau neuronal, le régulateur adaptatif PID
en utilisant un réseau neuronal de type série de Fourier et la commande prédictive a modéle
neuronal en utilisant la méthode d'optimisation basée sur I'apprentissage par I'enseignement.

Afin d’améliorer le taux de convergence de I’algorithme d’optimisation basé sur
I’apprentissage par 1’enseignement, une nouvelle stratégie de sélection des paires
d’étudiants, basée sur la note de chaque étudiant au cours du processus d’optimisation, est
proposée. Le taux de convergence et I'efficacité de I'algorithme modifié sont évalués en
considérant plusieurs fonctions de test couramment utilisées. Cet algorithme est utilisé pour
résoudre le probleme d'optimisation de la commande prédictive non linéaire.

Dans la commande PID adaptative en utilisant les réseaux de neurones, un réseau de
neurones multicouche est utilisé pour déterminer en ligne les valeurs des gains d'un
régulateur PID conventionnel. L'algorithme d'adaptation est développé en utilisant la
méthode de rétro-propagation. Le régulateur proposé est analysé et comparé, par simulation
et expérimentalement, avec plusieurs régulateurs.

Le deuxiéme algorithme de commande propose, est la commande PID adaptative en
utilisant un réseau de neurones de type série de Fourier. Dans ce travail, en raison de son
architecture simple et de ses propriétés intéressantes, un réseau neuronal de type série de
Fourier est utilisé pour ajuster en ligne les paramétres du régulateur PID. Pour évaluer
I'efficacité de l'algorithme de commande proposé, la commande d'un bras manipulateur a 3
degrés de liberté est envisagée et une étude comparative, en utilisant plusieurs algorithmes
de commande, est réalisée.

Le troisiéme travail est consacré a la commande prédictive non linéaire avec
contraintes a modéle neuronal et en utilisant plusieurs versions de I'algorithme d'optimisation
basée sur l'apprentissage par enseignement. Dans cet algorithme, un réseau neuronal
multicouche est utilisé pour prédire les sorties futures du systéeme, et le probleme
d'optimisation associé est résolu en utilisant plusieurs version de la méthode d'optimisation
basée sur l'apprentissage par enseignement; a savoir l'algorithme TLBO, le TLBO amélioré
(ITLBO) et le ETLBO. Pour démontrer l'efficacité des algorithmes de commande proposés,
la commande du modéle du réacteur continu parfaitement agité, et du modéle d'un bras
manipulateur a 2 degrés de liberté, sont considérés et une étude comparative, en utilisant
plusieurs algorithmes de commande, est réalisée.

Mots clés : contrdle intelligent non linéaire, réseau de neurones artificiels, série de Fourier,
controleur PID, contr6le prédictif, TLBO, méta-heuristique.

Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.

1:
2.
3:
4
5:

controller.

Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.
Figure 1.

Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

6:
7:
8:
9:

ua b WN -

OO NOOULLDE WN -

LIST OF FIGURES

Inputs and outputs of the neural network controllers.
Inputs and outputs of the emulator.

Neural network as a model reference.

Direct control using the inverse dynamic model.

Vi

00 00 N

Supervised Control strategy: (a) training the controller, (b) substitution of the existing

Direct control using the inverse dynamic model (specialized learning).

Model reference adaptive control.

Other Neural Network Controllers.

Typical fuzzy logic system structure.

: Direct control using fuzzy inverse dynamic model.

: Control block diagram of the model free fuzzy controller.
: Fuzzy PID controller.

: Fuzzy control using feed-forward compensation.

: Architecture of adaptive neuro fuzzy inference system.

: Fuzzy neural system architecture.

: Neuro fuzzy Control architecture.

: Flow chart of the PSO algorithm.

: Flow chart of the TLBO algorithm.
: Convergence speed (D=2 for Rosenbrock function and D=5 for other functions).

: Convergence speed (D=3 for Rosenbrock function and D=10 for other functions).

: Convergence speed (D=10 for Rosenbrock function and D=25 for other functions).

: Adaptive neural network PID controller in closed loop.
: Structure of the used neural network.

: Fourier series neural network architecture.

: MIMO FSNN.

: AFSNNPID controller in closed loop.

: Feedback control system.

: Continuous stirred tank reactor.

: Test results of the obtained NN model.

: Test results of the obtained FSNN model.

: Control loop of the CSTR model using the ANNPID controller.
: Control loop of the CSTR model using the AFSNNPID controller.

: Control loop of the CSTR model using the PSO-based PID controller.

: Control results for the case of multistep reference trajectory.
: Control results for the case of sinusoidal reference trajectory.
: Control results in the presence of an input disturbance.

: Control results in the presence of an output disturbance.

: 3-DOF robot arm manipulator experimental setup.

: 3-DOF robot arm manipulator diagram.

: 3-DOF robot arm manipulator diagram.

: Test results of the obtained 3-DOF manipulator NN model.

: Test results of the obtained 3-DOF manipulator FSNN model.

: Control results of the free load robot arm.

9
10
11
13
13
14
15
17
17
19
20
21

44
44
47
48
50
52
59
60
61
62
62
63
63
64
65
66
67
68
68
70
71
73

Figure 3.

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

23

OCooONOOTULL A WN PR

: Control results of the robot with different loads.

: Control block diagram of the NNMPC.

: Flow chart of the proposed NNMPC-ETLBO algorithm.

: Planar robot arm manipulator.

: Test results of the obtained models.

: Control block diagram of the considered robot arm manipulator.

: Control performance using the considered controllers with a multistep trajectory.
: Control performance using the considered controllers with a sinusoidal trajectory.
: Control performance using the considered controllers with output constraints.

: Average values of MCV corresponding to each controller.

: Iterations number needed to reach the termination criterion for each controller.
: Experimental set up.

: The induction motor control block diagram.

: Test results of the induction motor model.

Vil

74

82
90
91
92
93
94
95
96
97
98
98
99
99

: Control performance in case of the multistep trajectory for the induction motor. 100
: Control performance in case of the sinusoidal trajectory for the induction motor. 101
: Control performance of the induction motor in the presence of output constraints. 102

Vil

LIST OF TABLES

Table 1. 1 : Inference matrix for a system with direct response to the control signal. 16
Table 1. 2 : Inference matrix for a system with inverse response to the control signal. 16
Table 2. 1 : Optimization results. 39
Table 3. 1 : CSTR constants values. 59
Table 3. 2 : RMSE and R2 for both models. 60
Table 3. 3 : Parameters values of the PSO algorithm. 62
Table 3. 4 : MSE, MAE and RMSE in the case of multistep reference trajectory. 64
Table 3.5 : MSE, MAE and RMSE in the case of sinusoidal reference trajectory. 64
Table 3. 6 : MSE, MAE and RMSE in the presence of an input disturbance. 65
Table 3. 7 : MSE, MAE and RMSE in the presence of an output disturbance. 66
Table 3. 8 : Parameters values of the considered manipulator. 67
Table 3.9 : RMSE and R2 for both 3-DOF manipulator models. 70
Table 3. 10 : Parameters values of the three FSNN used to compute the three AFSNNPID
controllers. 71
Table 3. 11 : Computing time, MSE, MAE and RMSE values for each controller. 72
Table 3. 12 : Weight values and locations of the used loads. 72
Table 3. 13 : Computing time, MSE, MAE and RMSE values in case of different loads for each
controller. 72
Table 3. 14 : Computing time, MSE, MAE and RMSE values when the model parameters are
changed. 75
Table 3. 15 : Computing time, MSE, MAE and RMSE values when the model parameters are not
changed. 75
Table 4. 1 : Parameters values of the considered manipulator. 91
Table 4. 2 : MPC design parameters values. 93
Table 4. 3 : Average values of MSE, MAE and RMSE in the case of multistep reference trajectory.
94
Table 4. 4 : Average values of MSE, MAE and RMSE in the case of sinusoidal reference trajectory.
95
Table 4. 5 : Average values of MSE, MAE and RMSE in the case of output constraints. 96
Table 4. 6 : Values of the design parameter. 100
Table 4. 7 : Values of MSE, MAE and RMSE in the case of a multistep trajectory for the induction
motor control. 101
Table 4. 8 : Values of MSE, MAE and RMSE in the case of a sinusoidal trajectory for the induction
motor control. 101
Table 4.9 : Values of MSE, MAE and RMSE in the presence of output constraints for the induction

motor control. 102

Remerciements

uaﬂA
ABSTRACT
RESUME

LIST OF FIGURES
LIST OF TABLES

CONTENT

INTRODUCTION

CONTENT

1. AI-BASED CONTROL ALGORITHMS

1. Introduction

2. Neural network control

2.1.

2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.

Neural control structures

Direct control using the inverse dynamic model (general learning)
Supervised control

Direct control using the inverse dynamic model (specialized learning)
Model reference adaptive control

Other approaches

3. Fuzzy Logic Control

3.1.
3.1.1.
3.1.2.
3.1.2.1.
3.1.2.2.
3.1.3.
3.1.4.
3.1.5.

Fuzzy Logic Controllers

Fuzzy inverse model control

Model free fuzzy control
Normalization and Denormalization
Fuzzy rules design

Adaptive fuzzy control

Fuzzy PID controller

Feed-forward compensation based on fuzzy logic controller

4. Fuzzy neural network control

4.1.
4.2.
4.3.

Adaptive neuro fuzzy inference system
Fuzzy neural system

NEuro Fuzzy CONtrol (NEFCON)

5. Al-based Nonlinear Model Predictive Control (AI-NMPC)

6. Conclusion

2. META-HEURISTIC OPTIMIZATION ALGORITHMS

1. Introduction

2. Basics of meta-heuristic optimization algorithms

O VW 00 o o O

11
12
12
14
14
15
15
15
16
16
17
18
18
19
20
21
22

23
23

2.1. Classification

2.1.1. Local search and global search

2.1.2. Single solution and population based

2.1.3. Memory usage and memory less algorithms
2.1.4. Hybridization and mimetic algorithms
2.1.5. Deterministic and stochastic algorithms
2.1.6. Iterative and greedy algorithms

2.1.7. Nature-inspired and non-nature-inspired algorithms
2.2. Population based meta-heuristic algorithms
2.2.1. Initial population

2.2.2. Population size

2.2.3. Exploration and exploitation

2.2.4. Stopping criteria

3. Solving an optimization problem using meta-heuristic algorithms

3.1. Formulating of the optimization problem and basic algorithm

3.2. Constraints handling

4. Variants of meta-heuristic algorithms

4.1. Particle swarm optimization algorithm

4.1.1. Original PSO algorithm

4.1.2. Some variants of the PSO algorithm

4.2. Teaching Learning Based Optimization algorithm
4.2.1. Teacher phase

4.2.2. Learners phase

4.2.3. Initialization step

4.3. Improved teaching-learning-based optimization algorithm

4.4, The proposed Enhanced Teaching Learning Based Optimization (ETLBO)

4.4.1. Students pairs selecting process
5. Experimental study using several benchmark functions
5.1. Benchmark functions description
5.2. Numerical Results
6. Conclusion
3. ARTIFICIAL INTELLIGENT BASED PID CONTROLLERS
1. Introduction
2. Adaptive neural network PID controller
3. Adaptive Fourier series neural network PID controller
3.1. Fourier series neural network
3.2. AFSNNPID controller structure
3.3. Stability analysis

23
23
24
24
24
24
24
24
25
25
25
26
26
26
26
28
28
29
29
31
32
32
32
33
33
36
36
36
36
38
41

42
43
47
47
49
52

Xl

3.4. Control algorithm 54
4. Particle Swarm Optimization based PID controller 55
4.1. Offline optimization of the PSO based PID controller 55
4.2. Online optimization of the PSO based PID controller 57
5. Control of the CSTR model 58
5.1. System description 58
5.2. CSTR Modeling 59
5.3. Controllers implementation 61
5.3.1. ANNPID 61
5.3.2. AFSNNPID 61
5.3.3. PSO-based PID 62
5.4. Simulation Results 63
6. Control of a 3-DOF robot arm manipulator 66
6.1. Experimental Setup 66
6.2. Robot arm manipulator modeling 69
6.3. Experimental results 71
7. Conclusion 75
4. NEURAL NETWORK MODEL PREDICTIVE CONTROL BASED ON META HEURISTIC OPTIMIZATION
1. Introduction 77
2. Neural Network based model predictive control 77
2.1. Model predictive control principle 77
2.1.1. Cost function 77
2.1.2. Constraints 78
2.1.3. Prediction model 79
2.2. Nonlinear model predictive control 80
2.3. Neural network based model predictive control 81
2.4. Solving the NNMPC optimization problem 82
2.4.1. Constraint handling 82
2.4.1.1. Output constraints 82
2.4.1.2. Input constraints 83
3. Proposed control algorithms 84
3.1. TLBO based NNMPC algorithm 84
3.2. |-TLBO based NNMPC algorithm 86
3.3. ETLBO based NNMPC Algorithm 89
4. Control of the 2-DOF robot arm manipulator 89
4.1. System presentation 89
4.2. Neural network modeling of the robot arm manipulator 91

4.3. Controllers implementation 93

4.4. Simulation Results
5. Experimental study
5.1. Modeling of the induction motor
5.2. Controllers implementation
6. Conclusion
CONCLUSION
LIST OF ABBREVIATIONS
REFERENCES

Wl

93
97
99
100
103
104
106
108

INTRODUCTION

Control theory is a field of applied mathematics that aims to control the behavior of
dynamical systems. The objective is to develop a control algorithm (controller), which can
drive the controlled system to a desired state by manipulating its inputs, while minimizing a
given cost function and ensuring a certain level of stability. This function contains different
criteria, such as: a delay, an overshoot and a steady state error. The control system can be
implemented in an open or a closed loop. To generate the control signals, open-loop
controllers only require the desired reference trajectories, while the closed loop controllers
(feedback controllers) require, in addition to the desired reference trajectories, at least one
feedback signal from the controlled system. Each control type has its advantages and is best
suitable to particular types of control. However, the control action in closed loop control
systems is based on the outputs; these controllers have the ability to self-correct, while an
open loop controller has not this ability and the outputs have no effect on the control action.

Control theory has been introduced for the first time in 1868, by the physicist James
Maxwell [1], where, a centrifugal governor (controller) was used to control a windmill
velocity, and the impact of the self-oscillation phenomenon on the system stability has been
analyzed. After that, Edward John Routh used Maxwell’s results to advance the control
theory [2-4]. In 1895, using differential equations, Adolf Hurwitz introduced the Routh-
Hurwitz theorem [5,6], which analyzes the stability of linear systems without solving them.
In December 1903, the Wright brothers made their first successful controlled flight as they
installed a mechanical controller at the back of their plane to control its trajectory. In 1922,
the famous Proportional Integrate Derivative (PID) controller has been introduced by
Nicolas Minorsky [7]. Beside the PID regulator, several linear controllers have been
developed. Such as: the Full State Feedback (FSF) or pole placement [8], the Linear
Quadratic Regulator (LQR) [9], the Linear Quadratic Gaussian (LQG) [10,11], the Model
Algorithmic Control (MAC) [12], the Dynamic Matrix Control (DMC) [13], ... etc.

Linear controllers can be used to control nonlinear systems, by approximating their
dynamic behavior around the operating conditions with linear models. Indeed, linear
controllers have been found to give satisfactory performance in many practical applications
[14-21]. However, a severe degradation in the control performance of industrial systems,
which have become more complex and highly nonlinear, can occur when using linear
controllers. In fact, this degradation can be observed when the operating conditions deviate
from the steady states around which the model has been linearized. Hence, to improve the
control performance of nonlinear systems, nonlinear control methods should be investigated.
Indeed, a lot of attention was given to nonlinear control systems, and several algorithms,
such as the nonlinear PID controller [22—25], the sliding mode control [26-28], the bang-
bang control [29,30], the Nonlinear Model Predictive Control (NMPC) [31,32], the
Nonlinear Generalized Predictive Control (NGPC) [33,34], were proposed. However,
designing a nonlinear controller that ensures the stability of the closed-loop system is often
a difficult, a complex and a time consuming task. Contrary to the theory of linear systems,
there is no general control method that can be used with a large class of nonlinear systems,
and most of the developed techniques are limited to very particular classes of these systems.

One of the solutions that were investigated to get around the complexity of
controlling nonlinear systems is to develop intelligent control techniques having the ability
of learning, adaptation and decision-making. Indeed, biological systems and, in particular,

humans provide an example. Thus, an imitation, even partial, of their capacities provides an
important contribution to the theory of systems. This imitation can be done by analyzing and
understanding the structural and functional aspects of these natural systems. Then, using
graphical representations and mathematics, model the identified components of intelligence.
Previous work in this context has led to the advent of powerful tools such as Neural Networks
(NN), Fuzzy Logic (FL) and meta-heuristic optimization algorithms. The modeling and
control methods using Artificial Intelligence (Al) tools, such as neural networks, fuzzy logic,
machine learning and meta-heuristic optimization, are grouped under the name intelligent
control. Since the introduction of the concept of neural networks and fuzzy set theory, several
methods of nonlinear systems modeling and control using neural networks and fuzzy logic
have been proposed. Hybrid control methods that combine neural networks and fuzzy logic,
neural networks and meta-heuristic optimization, fuzzy logic and meta-heuristic
optimization, and conventional linear control methods with artificial intelligence have also
been considered by several researchers.

Several structures of Neural Network Controllers (NNCs) have been proposed. In
1988, Hiroyuki et al. proposed an architecture based on the feedback error learning neural
network to control the angular positions of a robot manipulator [35]. In this architecture, two
neural networks were used; the first one simulates the dynamics of the manipulator, and the
second one calculates the torque signal that reduces the error between the desired and the
real angular positions of the manipulator. In the same year, another feedback NNC have been
proposed [36], where a novel approach to emulate the system using neural networks was
developed. One year later, a novel NNC method that control unknown dynamic systems was
presented [37]. This NNC is an adaptive controller for nonlinear time-invariant systems.
Unlike the NNCs presented before, this NNC requires only one neural network. Except the
system order, the dynamics of the system are considered unknown. After that several
applications and strategies based on this NNC method, such as the Gaussian networks for
direct adaptive control [38], the Adaptive control of nonlinear systems using neural networks
[39] and the nonlinear self-tuning adaptive control [40], were considered. A dynamic
manipulator controller, where a back-propagation NN is used to predict the torque of each
joint based on the values of the desired angles position, was proposed [41]. The NN was
implemented in parallel with a Proportional Derivative (PD) controller. It has been shown,
through various simulations on the PUMA 560 robot, that this NNC has fast convergence
rate. Nineteen ninety was the year in which the NNC methodology captured the most
attention of researchers [42]. Miller et al. [43] have developed a new architecture, called
Cerebellar Model Arithmetic Computer (CMAC), which was implemented to control a robot
manipulator. The CMAS architecture is based on the Least Mean Square (LMS) training
process; it has plenty of advantages, such as fast computation, incremental training, output
superposition and simple hardware realization. A comparative study between the CMAS, the
self-tuning regulator and the Lyapunov based model reference adaptive controller, was given
in [44]. The obtained results showed the superiority of the CMAS against linear and
nonlinear systems with and without noise. A novel NNC approach, that uses a new
unsupervised learning algorithm was developed [45]. It has been shown that this NNC can
give good performance against complex nonlinear systems. In the same year, an adaptive
model-based NNC for robot manipulator, was proposed to control the PUMA 560 robot
[46]. This method uses two NN for payload estimation, during high-speed motion, and for
error compensator. After that, a similar controller called Robust Model-Based NNC, that is
based on the pseudo continuous-time analog quantitative feedback theory, was developed
[47]. Several other NNCs architectures, such as the Nonlinear NNC for dynamic system
[48], the NN compensator for uncertainties of robotic manipulators [49], the NN for self-
learning control systems [50], the adaptive control using NNs [51], were developed in 1990.

In 1992, using neural network, K.S. Narendra et al. have proposed a control strategy to deal
with structural failures of the system [52]. After that, the same authors proposed a globally
stable adaptive controller for a restricted class of nonlinear systems in the presence of
uncertainties [53]. In the year 2000, Zhang et al. presented a new NNC architecture [54]. In
this work a smooth and singularity-free adaptive controller for first order systems, for which
the stability of the closed-loop system is guaranteed, was designed. Two different back
stepping NNC strategies for a class of nonlinear systems were proposed in [55]. Using the
dynamic surface control, Wang and Huang have proposed an NNC that guarantees the
closed-loop stability and gives a small tracking error [56]. In 2008, a generalized HIB
(Hamilton Jaccobi Bellman) formulation based on NNC for Nonlinear Discrete-Time
Systems (NDTS) was proposed [57]. In the same year, an adaptive NNC for a class of pure-
feedback NDTS was presented [58]. In the last decade, several NNC strategies, such as the
adaptive NNC for output feedback nonlinear systems using a barrier Lyapunov function [59],
the adaptive NN decentralized back stepping output-feedback control for nonlinear large
scale systems with time delays [60], the adaptive control with high-order NN [61], the NN
based adaptive control for a class of uncertain nonlinear stochastic systems [62], the dynamic
surface control using NN [63], the adaptive NNC of an uncertain robot with full state
constraints [64], the NNC based adaptive learning design for nonlinear systems With full
state constraints [65], the adaptive NN finite time output feedback control of quantized
nonlinear systems [66], the improved radial basis function NNC strategy [67], and the NNC
of robot manipulators and nonlinear systems [68], have been developed.

Due to the success achieved using NNC against nonlinear systems, several hybrid
controllers, based on NN, have been proposed. Among these controllers, the neuro-fuzzy
controllers have received a lot of attention due to its high performance against nonlinear
systems. Until 1991, there was no systematic procedure for designing an FLC, at the time,
the approach was to define the membership functions and the rules by studying an already
existing human system or controller. However, Lin et al. proposed the Integrated Neural
Network based Fuzzy Logic Control (INNFLC), where an NN was organized to mimic the
FLC by integrating the learning capability of the NN with the FLC system [69]. The resulting
controller is a Multi Layer Perceptron (MLP) that has three hidden layers. Where, the nodes
of the first layer and the third layer represent the membership functions of the FLC. The
second layer integrates the rule engine into the network. After that, similar architectures were
proposed, such as the fuzzy modeling using generalized neural networks and Kalman filter
algorithm [70] and the rule extraction using generalized neural networks [71]. In 1993, the
famous Adaptive Network based Fuzzy Inference System (ANFIS) was presented [72]. The
ANFIS is based on human knowledge and stipulated input-output data pairs. Several
application of the ANFIS in system control have been considered [73-77]. Other ANFIS
variants can be found in the literature [78-80].

Model Predictive Control (MPC) is one of the most important control strategies, it is
a modern and successful technique that is characterized by its ability to control constrained
multivariable system. Several predictive control algorithms, based on linear models, were
developed [12,13,81-86]. The success of the MPC strategy is related to its capability of
handling different types of constraints, and its ability to handle multivariable systems,
systems with no-minimum phase behavior and systems with variable or unknown time
delays. Although, linear MPC techniques give satisfactory performance in many practical
applications [87-89], in the case of highly nonlinear process, severe degradation in the
control performance can be observed. To ensure higher performance, MPC methods that use
a nonlinear prediction model must be investigated. In fact, a lot of attention was given to
Nonlinear MPC (NMPC), and several control techniques were proposed [90-92]. The main

difficulties in designing NMPC are obtaining an adequate nonlinear model for the system to
be controlled, and online solving the nonlinear and the non-convex optimization problem.
Obviously, the efficiency and the computational requirement of the controller depend
extremely on the accuracy and the simplicity of the used model. Among the various
nonlinear models developed and used in predictive control, we can find Volterra series [93—
95], Fuzzy models [91,96-98], and NN models [90,99,100].

Solving the non-convex optimization problem of nonlinear constrained predictive
control is difficult and time-consuming task. Since an analytical solution cannot be obtained,
several suboptimal methods were used to deal with the optimization problem [101-103].
These suboptimal methods can be classified into three categories: the linearization of the
nonlinear model, the use of a particular structured model that gives a free response and a
forced response, and the use of numerical approaches that are nonlinear optimization
techniques. Numerical approaches can be classified into two classes: the first class join the
deterministic numerical approaches such the sequential quadratic programing and nonlinear
interior point method. These methods handle the optimization problem by solving series of
linear sub-problems. However, they are known for their sensitivity to initial conditions and
cannot be used with models where the details of the derivatives are unknown. The second
class gathers stochastic numerical approaches such as meta-heuristic optimization
algorithms. Meta-heuristic algorithms could mitigate the non-convex and nonlinear
optimization problem of predictive control. Indeed, Meta-heuristic algorithms are easy to
implement, have good performance, and could locate adequate solutions in a reasonable
time. Different meta-heuristic algorithms, such as Genetic Algorithms (GA) [104,105],
Particle Swarm Optimization (PSO) [90,106,107], Artificial Bee Colony (ABC) [96,97],
Evolutionary Algorithm (EA) [108], and Teaching Learning Based Optimization (TLBO)
[109,110], can be found in the literature. In fact, a lot of researches have been conducted on
solving the NMPC optimization problem using meta-heuristic algorithms
[90,96,97,105,107].

The basic objective of this doctoral thesis is to develop control algorithms for
nonlinear systems using the tools of artificial intelligence. The aim is to design control
methods that are:

e Simple to guarantee their implementation in real time.

e Efficient and give good control performance with a large class of nonlinear systems.
e Adaptive to compensate parameters variation and external disturbances.

e Robust against modeling errors and external disturbances.

This interest is justified by the fact that the physical systems are, in a very large
majority, nonlinear subject to modeling errors and parametric uncertainties, as well as to
external disturbances. The ability of neural networks to approximate uniformly continuous
functions has been proven in several papers. Neural networks, with the ability to approximate
a large class of nonlinear functions, provide a canonical and feasible structure for the
representation of non-dynamic systems. Meta-heuristic algorithms are easy to implement,
have good performance, and could converge to global solutions in a reasonable time.

The research directions explored in this thesis are:

o Artificial intelligence based adaptive nonlinear PID controller: the aim is to use
different architectures of neural networks to online obtain the PID gains,

e Teaching learning based optimization: develop an improved version of the TLBO
algorithm that can be used to online solve the optimization problem of predictive
control,

e Neural network based constrained nonlinear predictive control: the objective is to
develop an efficient constrained nonlinear predictive control algorithm using a
multilayer feed forward neural network and the teaching learning based optimization.

Single-input single-output and multi-input multi-output nonlinear systems are
considered in this thesis. To highlight the performance of the proposed control algorithms, a
comparative study, using simulation and experimental setup, is carried out and the control
of the following systems is considered:

e The model of the continuous stirred tank reactor,
e The induction machine,
e The three degrees robot manipulator.

The thesis is organized as follows:

In the first chapter, some of the Al based control algorithms are presented and
discussed. NN controllers and fuzzy logic control algorithms are given. Furthermore, some
hybrid neural network fuzzy logic controllers are presented and the Al based MPC
techniques are also described.

In the second chapter, a general description of meta-heuristic algorithms is given,
then a detailed description of three meta-heuristic algorithms, namely the particle swarm
optimization, the teaching learning based optimization and the Improved TLBO (I-TLBO)
is introduced. The proposed enhanced TLBO (ETLBO) algorithm is presented and compared
to several meta-heuristic algorithms using some well-known benchmark functions.

In the third chapter, three versions of the Al based PID controller are given. The
Adaptive NNPID (ANNPID), the proposed Adaptive Fourier Series Neural Network PID
(AFSNNPID) and the PSO based PID are given. To assess the effectiveness of the ANNPID,
the AFSNNPID and the PSO based PID controller, the control of the Continuous Stirred
Tank Reactor (CSTR) and the 3-DOF robot arm manipulator, through simulation and
experimental study, are considered.

In the fourth chapter, three proposed Al based NMPC controllers are presented and
evaluated by considering the control of the MIMO robot arm manipulator.

The thesis finishes with concluding remarks and some prospects for the future works.

CHAPTER 1
AI-BASED CONTROL ALGORITHMS

1. Introduction

This chapter introduces a review of some Al based control methods, such as the Neural
Network Control (NNC), the Fuzzy Logic Control (FLC), the Fuzzy Neural Network Control
(FNNC) and the Al-based Nonlinear Model Predictive Control (AI-NMPC).

2. Neural network control

Due to their learning and generalization capabilities and their parallelism, neural
networks have achieved a great success in many areas. They have been successfully used in
many applications, such as classification, noise filtering, system modeling and control ...
etc. One of the fields where neural networks have received increasing interest is that of
systems modeling and control. Indeed, significant research in this field has been carried out
and several control applications based on neural networks have been developed. Most neural
control methods, that were proposed, can be classified in two main categories:

e Direct control: in this class, the controller is a neural network that delivers the control
signals.

e Indirect control: in this class, the design of the control law is based on the use of a
neural model of the system to be controlled.

In the rest of this section, some of the common neural control structures are presented.

2.1. Neural control structures

Generally, a neural control structure contains one or more neural networks. Each neural
network is used to perform one of the following specified tasks:

Generation of control signals: the neural network is used to compute the control
signals that minimize the control error given by the difference between the
system outputs and the reference trajectories. The inputs of this neural network
can be the actual and the past values of the reference trajectories and the actual
and the past values of the system outputs or the actual and the past values of the
control error (figure 1.1 (a) and (b)).

System emulation: In this case, the neural network is trained and used as an
emulator of the dynamics of the controlled system. Any of the common neural
network architectures, such as feed forward neural networks or recurrent neural
networks, can be used. In general, the inputs to this neural network are the actual
values of the control signals and the system outputs and their delayed values
(figure 1.2).

Reference model: the neural network is used to modify the desired reference
trajectories for the purpose of improving the control performance. This neural
network receives the actual and the past values of all or some reference
trajectories as inputs and generates a modified reference trajectory (figure 1.3).

Ri(k) 7 N\ / \
: e, (k)
. _..

Ri(k — ag,)

: ey (k —a,,)

R, (K) =

— :
uy (k)

Rn(k = aRn) ;b ul(k)
¥, (k) Neural u, (k) Neural u, (k)
— Network — Nevwiork '

k — (;) : en(k) :

Y _HZ um(k) _’ ”m(k)
ﬂ en (k ol aen)

yn(k - a_vn)

[——

(a)

—

(b)
Figure 1.1

Figure 1. 1 : Inputs and outputs of the neural network controllers.

u, (k)

uy(k — ay,)

'ﬁ

Uy ()
—

Um (k - au'm)

=
=
p—

Yn (k - dyn)

s

|

N

\

Yi(k +1)

|

Neural 9,(k + 1)

Network

|

In(k +1)

|

/

Figure 1. 2 : Inputs and outputs of the emulator.

Several architectures of NNC can be built according to the number of the used NNs
in the control block diagram and the task given to each NN. Hence, some types of the NNC
are presented in the following subsections.

R, (k) i k
——
: RY" (k)
R,(k — a,
1k~ an) ——
: Neural
R, (k) Network
.—
: Ry (k)
R-n (k - arn) —
—_—

N .

Figure 1. 3 : Neural network as a model reference.

2.1.1. Direct control using the inverse dynamic model (general learning)

Direct control using the inverse dynamic model [111-114] is also known with the general
learning architecture. It is built in two successive stages. First, using a neural network, the
inverse dynamic model of the controlled system is constructed (figure 1.4.a). The neural
network is trained using the backpropagation algorithm in order to produce an output as
close as possible to the control signal. In a second step, the trained neural network is
implemented for the purpose of controlling the system in an open-loop configuration (figure
1.4.b). Several variants of this control strategy can be found in the control literature. The
main difference between these variants is the architecture of the used neural network.

Often, it is not easy to obtain an inverse model to all dynamic systems. Even if the inverse
dynamics has been successfully modeled, a small disturbance leads to poor control
performance. To deal with this problem, a new neural network is added to the control scheme
to online update the weights of the inverse model controller (figure 1.4.c).

uk)(Nrk) R(k) U(k) Y (k)
" System]-‘ NNC System
NNC
. \ 7
(a) (b)
AN
R(k)) Y(k)
NNC System
L J
—\
N
NN —
. J
X

(c)
Figure 1. 4 : Direct control using the inverse dynamic model.

2.1.2. Supervised control

The neural network based supervised control strategy (figure 1.5) aims to emulate and
substitute an already existing controller (for example a human operator) using a neural
network [115,116].

This method is useful in many cases, such as:

e The original controller, which was used to train the neural network, can be
complex and hard to implement.

e The computation process of the original controller includes high level operators
(e.g. integral) that requires an important computing time.

e The original controller can be a human operator who cannot be permanently
assigned to the control task.

R(k Uk k
()> Controller “ System r&)
= +
NN -

(a)

R(k) U(k) Y (k)
NNC System

(b)

Figure 1. 5 : Supervised Control strategy: (a) training the controller, (b) substitution of the
existing controller.

2.1.3. Direct control using the inverse dynamic model (specialized learning)

The control block diagram of this strategy is given in figure 1.6, where the neural
network drives directly the controlled system [117]. The error signal between the system
output and the desired reference trajectory is used to adjust the weights of the neural network
controller.

Using this strategy, most of the drawbacks of the general learning strategy are omitted.
The offline adaptation can be ignored, the controller is online adapted and the control
objective is directly handled. However, this strategy requires a priori knowledge of the

10

controlled system to train and adapt the weights of the neural network controller. In this
control strategy, a neural network that emulates the system dynamic is used in the neural
network controller training process.

a4 Y

U(k) Y(k)

o System —1—'
\ J +

4 B _?
% NN Emulator

\ J

s
(a)

R(k) []U(k)
—t NNC -

J |\

o NN Emulator =

rd

*I NN Emulator

P

(c)
Figure 1. 6 : Direct control using the inverse dynamic model (specialized learning).

The specialized learning control approach can be achieved in two successive phases: an
identification phase for the neural network emulator (figure 1.6.a), followed by the neural
network controller learning phase (figure 1.6.b). In fact, both phases can be merged into one
step as it is indicated in (figure 1.6.c).

11

2.1.4. Model reference adaptive control

In this strategy, a reference model is used to specify the desired behavior of the controlled
system, and the neural network controller is used to force the output of the system to follow
that of the reference model [118,119]. Based on this principle, two control structures have
been proposed; the direct (figure 1.7 (a)) and the indirect methods (figure 1.7 (b)).

V.. (k
—[Reference Model] i)+

R(k) / =

k
NNC]ﬂl[System]1(—’()

(a) Direct method

Yin (k)
4[Reference ModeIJ N
, — ¥
L, K
R(k_)F[NNC i(—)-[System]Y(k)

NN Emulator

<]

(b) Indirect method

Figure 1. 7 : Model reference adaptive control.

In the direct Model Reference Adaptive Control (MRAC) strategy, the weights of the
neural network controller are directly adjusted to reduce the error between the system output
and the reference model output. Once the learning phase is completed, the neural network
controller generates the control signal so that the output of the system follows that of the
reference model. Since the system is placed between the neural network controller and the
output error, using the back-propagation algorithm, the system Jacobian is required to directly
adapt the weights of the neural network controller. To avoid this problem, the indirect MRAC
structure has been developed.

The indirect MRAC structure uses a first neural network to identify the direct dynamics of
the controlled system (emulator) and a second one to derive the control signal (neural network
controller). The weights of the emulator can be adapted online to continuously follow the

12

dynamic behavior of the system and those of the neural network controller are adapted by
back propagating the control error throw the emulator.

2.1.5. Other approaches

Several other neural network controllers, which are modified versions of the previous
approaches, were developed and used in many control applications. Among the most
interesting techniques, we mention the following three strategies:

The first one (figure 1.8.(a)) is the neural network controller proposed in [120,121].
In this control method, a neural network is used to generate a modified reference trajectory
and a classical controller, such as the PID controller, or other advanced controller is used to
drive the system.

In the control structure given by figure 1.8 (b), an optimal linear controller is
combined with a neural network controller [122]. This strategy is based on the principle of
compensating the uncertainties that are not considered during the design of the linear
controller by using two neural networks. The first one is placed in parallel with the controlled
system to model the nonlinearities of the system, and the second one is placed in parallel
with the linear controller to compensate the effect of the uncertainties by adding a variation
AU (k) to the linear control signal U (k).

The control strategy presented in figure 1.8 (c) uses a neural network to optimize the
parameters of a classic controller [123,124]. The neural network receives the control errors
and the control signals as inputs and generates the parameters of the classical controller as
outputs.

3. Fuzzy Logic Control

Fuzzy Logic Control (FLC) is a relatively recent approach that easily integrates
knowledge and key elements of human thought into the design of nonlinear controllers.
Qualitative and heuristic knowledge, which cannot be addressed by conventional control
theory, can be used for control purposes in a systematic way, using fuzzy logic concepts.
The main advantages of fuzzy logic control are that it does not require an accurate
mathematical model, can handle imprecise inputs and nonlinearity, and is less sensitive to
external disturbances than the most nonlinear controllers. The design of fuzzy logic
controllers is based on fuzzy sets theory and can be achieved according to the following
steps (figure 1.9):

The first step is to define the inputs and outputs of the controller. There are no general
rules to select the controller inputs; however, the states of the system to be controlled, their
errors and variation errors are often used. The use of rules that are expressed using linguistic
terms implies the fuzzification step to map the crisp values of inputs to suitable linguistic
values. After that, using an inference engine, the rules are evaluated to obtain the fuzzy
control action. A defuzzification step is then required to obtain a crisp value for the control
action.

Most of fuzzy logic controllers are designed based on knowledge about the controlled
system. The universes of discourse of inputs and outputs and the membership functions
cannot be chosen without having some available information about the system dynamics.
However, after choosing the membership functions and establishing the rules base, the
control action can be easily computed. Therefore, to implement a fuzzy logic controller, a
high-end processor is not required, unlike most other complex nonlinear controllers.

13

R(k) mlKle~. E(k) Wincroesy Yk}
e (k: Controll uk) Syste _(_..
Z NN B
7
a
@) = X
71 |4 Emulator \-
Z' AU(k) || 72) +
| NNC A L
A Y(k)
R(k) E(k) M= o &)
Controller -
\? U o
(b)
71 by \ K;(k)
’ K, (k)
»l 1 4+
7_. NN
7' M —
7] --0\ {
R(K) e -
- Controller (l-l System | k) -
E(k) l

X1 —>

X iy

Xmn—p

Crisp inputs

(c)

Figure 1. 8 : Other Neural Network Controllers.

Fuzzification

| Fuzzy Rules

U

Fuzzy
inference

engine

Crisp outputs

Figure 1. 9 : Typical fuzzy logic system structure.

14

3.1. Fuzzy Logic Controllers

Fuzzy logic controllers are used with great success in various applications. Some of these
applications include controlling temperature room, anti-braking system used in vehicles,
washing machines and almost all the consumer products. Over the last few decades,
numerous interesting design techniques of fuzzy logic controllers were introduced and many
efficient methods that deal with the robustness, the stability, and the time delay of these
controllers were developed. In the following subsections, some of the well known fuzzy
control methods are presented.

3.1.1. Fuzzy inverse model control

In this control strategy, a fuzzy inverse dynamic model of the controlled system is
designed using the available knowledge about the system [125]. The obtained inverse model
is used to control the system; it receives the reference signals as inputs and generates the
control signals as outputs (figure 1.10.a). In most fuzzy inverse model controllers, in addition
to the reference signals, the state vector of the controlled system is used as input of the
controller (figure 1.10.b).

Constructing a fuzzy inverse model is difficult and not possible for all dynamic systems.
Even if the inverse dynamics have been successfully modeled, a small disturbance leads to
poor control performance. In several applications that use a fuzzy inverse model controller,
an adaptation process is used to compensate the effect of the external disturbances.

R(k) (™ N\ wk) 7 \x 5
—_— > .,’1
R uz (k) v, (k)

: FLC System —
Rn(K) U () Y)

. Y, /
(a)

Rl(k); \

=)
Rn(k); o u, (k) v, (k)
X1(£). System —’

Uy (K) Yn(K)
x5 (k) S

e

J

(b)

Figure 1. 10 : Direct control using fuzzy inverse dynamic model.

15

The main drawbacks of this control strategy are:

e The number and the complexity of rules increase with the complexity of the
controlled system.

e A good knowledge of the system dynamics is required.

e Sensitivity to external disturbances.

3.1.2. Model free fuzzy control

Due to its simplicity, ease of implementation and ability to handle a large class of
nonlinear systems, the model free fuzzy control [126] is used in various real-time
applications. The control bloc diagram of this approach is given in figure 1.11, where the
controller, usually having as inputs the error and its variations, is a fuzzy system.

R(k)

AU(k) e~ U(k) Y (k)
2 System g

+

Z-l

Figure 1. 11 : Control block diagram of the model free fuzzy controller.
The design steps for such controllers are summarized as follows:

3.1.2.1. Normalization and Denormalization

In this step, the universe of discourse of the inputs of the fuzzy controller is restricted
to a given interval. In general, the normalized universe is identical to the real operating
ranges of inputs/outputs variables, but in most applications is restricted to the interval
[—11]. The outputs of the fuzzy controller are denormalized in order to transform the
normalized values of the control signals into values belonging to their respective physical
domain.

3.1.2.2. Fuzzy rules design

Constructing a fuzzy rules base has a critical role in fuzzy logic controller design and
has been extensively considered. In most cases, fuzzy rules can be generated using
knowledge on the system operating and by understanding of its dynamics. If each of the two
input variables E and AE of the controller is partitioned to five fuzzy sets(BN, N, Z, P, BP),
then a total of 25 rules is required to generate a fuzzy output. For example, when the output
AU is quantized to nine fuzzy sets (BBGN, BGN, BN, N, Z, P, BP, BGP, BBGP), the inference
matrix can be given by table 1.1 if the system's output follows the same direction of variation
of the control signal, otherwise it can be given by table 1.2.

16

AE
BN N Z P BP
BN | BBGN | BGN | BN | N Z
N | BGN | BN | N Z P
E| Z BN N Z P BP
P N Z P | BP | BGP
BP Z P | BP | BGP | BBGP

Table 1. 1 : Inference matrix for a system with direct response to the control signal.

AE
BN N | Z P BP
BN | BBGP | BGP | BP | P Z
N | BGP | BP | P Z N
E| Z BP p Z N BN
P P Z N | BN | BGN
BP Z N | BN | BGN | BBGN

Table 1. 2 : Inference matrix for a system with inverse response to the control signal.

3.1.3. Adaptive fuzzy control

Adaptive control is based on the use of an adaptation mechanism to control partially
known systems and to compensate the effects of different disturbances. Adaptive control of
linear systems and some special classes of nonlinear systems has been well developed in the
literature. However, developing a good adaptive controller for the majority of nonlinear
systems is a challenging task.

Adaptive fuzzy control [127-129] approximates the unknown nonlinearities of the
controlled system and apply the well-developed techniques of adaptive control. Adaptive
fuzzy controllers can be divided into two classes:

e Direct adaptive fuzzy controllers [128]: the parameters of these controllers are
tuned online in order to minimize the error between the reference model and the
controlled system.

e Indirect adaptive fuzzy controllers [129]: in this case, the parameters of the
controlled system are estimated using a fuzzy model and the control signal is
generated based on these parameters.

3.1.4. Fuzzy PID controller

The main difficulty in designing a PID controller lies in obtaining the PID gains that
give the best control performance, especially in case of high order and nonlinear systems.
Obtaining the PID controller gains becomes more difficult when the system is subject to
external disturbances or to variation of its parameters.

To compensate the effect of external disturbances and variation of the system
parameters, several techniques using fuzzy logic have been proposed to obtain and online
adjust the gains of the conventional PID controller [130,131]. Figure 1.12 (a and b) illustrates
the structure of two well known fuzzy PID controllers. In order to enhance the control

17

performance, an adaptive fuzzy system is added to the control loop. In figure 1.12.b an
emulator is used to approximate the system Jacobian.

R(k
(k) e(k) PID u(k) System y (k)
+

\ K

K;
Fuzzy
Inference Ko
System
Y
(a)

R(k
() e(k) PID u(k) System y(k)
+

k "5[eo(k)

X, Hz1 + 25"
Fuzzy s y
k
Inference Ko zh Emulator e
System —Z 4
T

(b)

Figure 1. 12 : Fuzzy PID controller.

3.1.5. Feed-forward compensation based on fuzzy logic controller

In this architecture [132], the FLC is used in parallel with another controller (in
general, a conventional controller) to improve the control performance (figure 1.13). The
resulting control algorithm is a hybrid between the FLC and the conventional controller.

Z’ il U(k)
- Conventional
71 Controller
)
E(k)
+
FLc |AU(O) £
-1 |
z el)
)

System

Figure 1. 13 : Fuzzy control using feed-forward compensation.

Y (k)

18

4. Fuzzy neural network control

A Fuzzy Neural Network Controller (FNNC) is a hybrid intelligent algorithm that
combines the simplicity and the human based reasoning of the fuzzy logic and the learning
ability and connectionist architecture of the neural networks. Other denominations of this
approach, such as the neuro-fuzzy control and the neural network fuzzy logic control are
used. The fuzzy neural network controllers have the following properties:

A FNNC is based on the FLC, which is trained using a learning algorithm derived
from neural networks.

The FNNC architecture can be organized into three layered neural network. Each
layer represents the input variables, the fuzzy rules, and the output variables.
However, the FNNC architecture can be viewed as a five-layered neural network,
where the two additional layers represent the fuzzy subsets.

A FNNC is always interpreted as a process of fuzzy rules before and after
learning.

A FNNC approximates an n-dimensional function, which is partially defined by
a training database.

A FNNC can be created using the training database. The FNNC parameters can
be initialized using prior knowledge about the dynamics of the controlled system.

Fuzzy neural network controllers combine the advantages of the fuzzy logic controllers
and the neural network controllers in one control algorithm. The main advantages of Fuzzy
neural network control algorithms are given as follows:

Fuzzy neural network systems are universal approximators, hence the fuzzy
neural network controllers are universal controllers with the ability of
interpreting fuzzy rules.

Fuzzy neural network controllers can be initialized with or without prior
knowledge about the controlled system dynamics.

Due to the fuzzy neural network controller architecture that resembles a neural
network, a learning algorithm is used to adapt the controller parameters. Hence,
the fuzzy neural network controllers are adaptive, which make them robust
controllers with good control performances.

The FNNC can be a Mamdani or a Sugeno type. However, nowadays Sugeno-type
fuzzy neural network controllers are the most used; due to the simplicity and the precision
offered by the Sugeno architecture. Several Evolving Fuzzy Logic approaches can be found
in [133,134]. The modern fuzzy neural network controller architectures are usually presented
as a special multilayer perceptron, such as:

The Adaptive Neuro Fuzzy Inference System (ANFIS) [72].

Fuzzy Neural system (FuNe-1) [135].

Fuzzy RuleNet [136].

Generalized Approximate Reasoning-based Intelligent Control (GARIC) [137].
NEuro Fuzzy CONtrol (NEFCON) [138].

4.1. Adaptive neuro fuzzy inference system

Adaptive neuro fuzzy inference system, developed in 1993 by JSR Jang [72], it is an
artificial neural network based on the Sugeno-type fuzzy logic system. Its operating principle

19

is based on a set of fuzzy IF-THEN rules that have learning capability and can approximate
nonlinear functions. The architecture of an ANFIS is a five-layered network; it is given by
figure 1.14.

Figure 1. 14 : Architecture of adaptive neuro fuzzy inference system.

The first layer, called the fuzzification layer, takes the input values and generates the
membership degrees of each input. Hence, the activation functions of the first layer’ neurons
are the membership functions associated to the inputs. The second layer, called the rule layer,
generates the result of the premise of each rule. The product is used to calculate the AND
operator. The results of the rules premises are normalized in the third layer. In the fourth
layer, for each rule, the product between the normalized premise result and the rule
conclusion result is calculated. Finally, in the fifth layer, the sum of the fourth layer outputs
is calculated.

Generally, when using an ANFIS as a controller, the inputs are chosen as the error e(k)
between the desired reference trajectory and the system output, and its variation Ae(k). The
output is the increment of the control signal Au(k). When using the ANFIS as a controller,
the system jacobian is added to the learning algorithm. Many applications of the ANFIS
controller can be found in [73,74,139-141].

4.2. Fuzzy neural system

FuNe-1 is a special MLP that was used to mimic a fuzzy system (figure 1.15) [135].
FuNe-I’s fuzzy rules could be extracted using an input/output database and a supervised
learning algorithm. This structure is used to identify the rules without a prior knowledge.
Therefore, FuNe-I controllers are ideally suited for controlling systems with unknown
dynamics. Furthermore, an optimization process can be implemented by tuning the
parameters of the membership functions. Hence, FuNe-I controllers are adaptive and robust.
Although, expert knowledge of the system dynamics is not required to create a FuNe-I
controller, this knowledge can be included in the process of creating the FuNe-I control
algorithm. Several control applications using FuNe-I can be found in the literature [142,143].

The gradient descent method is used to train the FuNe-I parameters, it is detailed in [135].
The structure of FuNe-1 is based on positive type (if) rules and negative type (if not) rules.

20

Each rule is weighted by a negative or positive real number; these weights are optimized
using the learning algorithm. The i*"* FuNe-I output (y;) is generated by calculating the
sigmoid of the sum of the “r” rules weighted results (W;;K;) as follows:

s
Vi = sigmoid(E Winj) (1.2)

j=1

7/
L

glelcleletel

/\

J \\ Y

N

.

RO

L I 1
Fuzzification Rule generation Defuzzification

Figure 1. 15 : Fuzzy neural system architecture.

In figure 1.15, the blue connection lines are adjustable weights, the others are fixed
weights. The empty black circles are neurons with sigmoid activation functions, and the
other empty circles are neurons with linear activation functions. The neurons with (U) and
(N) calculate the soft max and the soft min, respectively.

4.3. NEuro Fuzzy CONtrol (NEFCON)

NEFCON is a Neuro Fuzzy controller developed by Nauck et al. [138]. Its architecture
is based on the generic fuzzy perceptron, which is an MLP with one hidden layer. The inputs
of the NEFCON are the state variables of the controlled system and the outputs are the
control signals. The neurons of the hidden layer represent the fuzzy rules. The weights in the
NEFCON architecture are fuzzy subsets instead of real numbers. Therefore, the weights
between the input layer and the hidden layer are the fuzzy subsets associated to the inputs,
and the weights between the hidden layer and the output layer are the fuzzy subsets

21

associated to the outputs (figure 1.16). The NEFCON algorithm is based on the Mamdani
type fuzzy system.

u"l

Figure 1. 16 : Neuro fuzzy Control architecture.

The NEFCON learning algorithm is based on the reinforcement learning, which does not
require any supervision. Due to the nature of the network weights (fuzzy subsets), the
learning algorithm uses a fuzzy error instead of crisp error in order to learn and optimize the
fuzzy rule base. The NEFCON learning algorithm is detailed in [144].

5. Al-based Nonlinear Model Predictive Control (AlI-NMPC)

Al-based NMPC algorithms are nonlinear model predictive controllers were at least one
Al tool was used to design the control algorithm. Three major approaches of AI-NMPC can
be distinguished and are given as follows:

e NMPC based on Al prediction models: in this approach, the used model to predict
the future behavior of the controlled system is based on an Al method. Several
Al- based prediction models can be found in the literature, such as:

» Neural Network Based NMPC (NNMPC) [58,99-103,145,146].
» Fuzzy model Based NMPC (FMPC) [96,97,147].
» Fuzzy Neural Network based NMPC (FNNMPC) [148-150].

e NMPC based on Al optimization algorithms to solve the optimization problem:
in this approach, a meta-heuristic algorithm is used to solve the optimization
problem of the NMPC. Several NMPC using meta-heuristic algorithms exists,
some of them are given as follows:

» NMPC based on Genetic algorithm [104,105].

» NMPC based on Particle Swarm Optimization algorithm [90,106,107].
» NMPC based on Artificial Bee Colony [96,97].

» NMPC based on Evolutionary Algorithm [108].

e NMPC based on Al optimization algorithms to determine the optimal values of
the design parameters of the predictive controller: Some variants of this strategy
are:

22

» NMPC using Imperialist Competitive algorithm to find optimal control
parameters [151].

» NMPC based on sequential parameter optimization to find optimal
control parameters [152].

Other AI-NMPC strategies can be found in the literature, which are generally hybrid
versions of the above-mentioned strategies.

6. Conclusion

In this chapter, four Al-based control techniques were introduced; namely the neural
network control strategy, the fuzzy logic control technique, the adaptive neuro-fuzzy
inference system and the Al-based nonlinear model predictive control.

The use of artificial intelligence tools has allowed developing powerful, efficient, robust
and adaptive control algorithms. These algorithms can be used to control a large class of
nonlinear systems. The development of powerful processors allows the implementation of
these algorithms, even complex ones, for real-time control applications.

23

CHAPTER 2
META-HEURISTIC OPTIMIZATION ALGORITHMS

1. Introduction

In this chapter, the fundamental concepts of meta-heuristic optimization algorithms and
the formulation of the corresponding optimization problem are introduced. Some well-
known meta-heuristic algorithms, namely the Particle Swarm Optimization (PSO), the
Teaching Learning Based Optimization (TLBO) and some of their variants, are given. A
proposed version of the TLBO algorithm, called the Enhanced TLBO (ETLBO), is presented
in the last section of this chapter.

2. Basics of meta-heuristic optimization algorithms

Find an optimal solution for optimization problems is often a complex and a time-
consuming task. Since, it is not possible to find an analytical solution to all optimization
problems; several numerical methods have been developed. Besides most of these methods
require the calculation of the cost function derivative, they suffer from the problem of
convergence towards local minima. In fact, meta-heuristic algorithms have been proposed
to deal with these problems and find good solutions at a reasonable computational cost. The
concept of meta-heuristic has been introduced in 1945 [153] and has known, since then, wide
dissemination among the research community. This interest has led to the emergence of
several meta-heuristic algorithms that try to solve complex optimization problems.

The composed term “meta-heuristic”, in which the suffix “meta” is a Greek word that
means “upper level methodology”, has been introduced by Glover in 1986 [154]. In
mathematical optimization and computer science fields, meta-heuristic refers to a more
efficient, higher level and general purpose optimization algorithms that may give a good
solution to an optimization problem, especially with incomplete information or limited
computation capacity. Meta-heuristic algorithms are iterative generation processes, which
explore and exploit the search space to find efficient near-optimal solutions using learning
strategies. They are based on the classical heuristic algorithms, the biological evolutions, the
neural systems, and the statistical process [155].

2.1. Classification
Meta-heuristic algorithms can be classified according to several criteria:

2.1.1. Local search and global search

Meta-heuristic algorithms can be classified according to the used search strategy.
Local search methods, such as the simulated annealing algorithm [156], the Tabu-search
strategy [154], the variable neighborhood search algorithm [157] and the Greedy
Randomized Adaptive Search Procedure (GRASP) [158] are used to find the local optimum.
The Second class of meta-heuristic algorithms uses global searching methods, such as: Ant
Colony Optimization (ACO) algorithm [159], particle swarm optimization (PSO) algorithm
[160], Artificial Bee Colony (ABC) algorithm [161] and teaching learning based
optimization algorithm [109,110].

24

2.1.2. Single solution and population based

Another classification is based on the number of candidate solutions. In fact, there
are some algorithms that use a single candidate solution and other algorithms that use
population of candidate solutions, to solve the optimization problem. Among the algorithms
of the first class we can mention: the simulated annealing and the variable neighborhood
search. These types of algorithms allow a deep search of local regions compared to
algorithms based on population search. The population based search algorithms aim to solve
the optimization problem using a group of candidate solutions called population. As
examples of population based algorithms we can mention: the genetic algorithm, the ant
colony optimization, the particle swarm optimization, the artificial bee colony, the teaching
learning based optimization, etc. The single candidate solution based algorithms allow a
deep search of local regions while the population based algorithms allow more efficient
exploration of the search space.

2.1.3. Memory usage and memory less algorithms

This classification is based on the state of existence of memory units. Some meta-
heuristic algorithms do not require information that is already collected, on the search space
(for example the simulated annealing algorithm). However, other meta-heuristic algorithms
require the previous extracted information to generate a new one, such as the PSO algorithm.

2.1.4. Hybridization and mimetic algorithms

Hybrid meta-heuristic algorithms combine a meta-heuristic method with other
optimization techniques. Among these algorithms we find: the mathematical programming
methods [162] and the constraint logic programming [163]. The components of a hybrid
meta-heuristic algorithm can simultaneously operate and exchange information to solve the
optimization problem. On the other hand, mimetic algorithms use only a meta-heuristic
method to solve the optimization problem.

2.1.5. Deterministic and stochastic algorithms

Another classification is based on the state of existence of random operations. A
stochastic meta-heuristic algorithm uses random parameters or distributions during the
search. On the other hand, a deterministic meta-heuristic algorithm uses only deterministic
decisions.

2.1.6. lterative and greedy algorithms

Iterative meta-heuristic algorithms start with an initial solution and, using some
search operators, iteratively adjust this solution until some criteria are verified. In greedy
meta-heuristic algorithms, starting from an empty solution and assigning a single variable of
the optimization problem in each step, the solution is built step by step.

2.1.7. Nature-inspired and non-nature-inspired algorithms

Another classification of meta-heuristic algorithms is based on whether they are
inspired from the nature or not. Some of them, such as the ABC and the PSO are inspired
from swarm intelligence; while others such as the simulated annealing is inspired from
physics.

In this thesis, only stochastic iterative population-based meta-heuristic algorithms
are used.

25

2.2. Population based meta-heuristic algorithms

Starting from an initial population of candidate solutions, the population based meta-
heuristic algorithms iteratively manipulate the current population, using some search
operators, to obtain better solutions. A part (or all) of the current population is replaced from
the new generated population. This process of generation and replacement is continued until
a stopping criterion is verified.

The main difference between all based meta-heuristic algorithms lies in the used
generation/replacement strategy. Below are given the common steps of such algorithms.

Algorithm 2.1
Step O: initialization

e Seti=0
e Set the initial population (X;—o)

Step 1: generation/replacement

e Fori = 1: maximum number of iterations
o Generate the new population (newX;)
o Update some or all of the old population (X;) using the new generated one
(newX;)
o If the stopping criterion is satisfied, go to step 2.
e End

Step2: output the best solution

2.2.1. Initial population

Regardless of the used meta-heuristic algorithm, a special attention must be given to
the step of generating the initial population. An inappropriate choice of this population could
greatly affect the efficiency of a given meta-heuristic algorithm; if the search space is not
well covered, the optimization algorithm could converge towards a local optimum, or take a
long time to find the appropriate solution. Despite the importance of this step in the
implementation of any meta-heuristic optimization algorithm, there is only few published
works that addresses the problem of how to generate a good initial population [164-166].

According to [167], the following four approaches to generate an initial population
can be considered:

e Random generation

e Sequential diversification
o Parallel diversification

e Heuristic initialization

2.2.2. Population size

The population size is one of the most critical parameters of any population-based
meta-heuristic algorithm; a large size could gives good solutions of the optimization
problem, but at the expense of increasing the computational time, while a small one could
generate poor solutions. In real-time applications, a balance has to be found between the

26

computational time and the accuracy of solutions. There is no general strategy to determine
the optimal size of the population according to the considered optimization problem.
However, some particular strategies, which depend on the used meta-heuristic algorithm and
the optimization problem dimension, have been proposed [167-169]. Instead of using a
population with a fixed size, some works have suggested dynamically increasing and
decreasing the population size during the optimization process [170]. In most applications,
the population size is chosen according to the dimension of the optimization problem [171].

2.2.3. Exploration and exploitation

Population based meta-heuristic algorithms are characterized by their ability to
explore the search space looking for regions of interest, and exploit these regions to find the
optimum, or the near optimum, solution. These proprieties are somewhat exclusive and a
tradeoff between the exploration and the exploitation should be established to have an
efficient optimization algorithm. Meta-heuristic algorithms use several mechanisms to make
this balance. If the exploration has not been thorough, one or more regions of interest could
be missed and consequently the global optimum or even a solution in its vicinity cannot be
found; the algorithm will be trapped in local optimum causing its premature convergence.
The convergence speed could also be affected by an inappropriate exploration; the algorithm
will take more time to search the regions of interest. On the other hand, if the exploitation
process is prematurely stopped, the algorithm may miss a good, or even, an optimum
solution. So, it is important to give sufficient time for the exploitation operation. It is obvious
that an excessive exploitation slows down the convergence speed of the algorithm.

2.2.4. Stopping criteria

According to the nature of the optimization problem, several strategies to stop the
optimization process can be used [167]. Some of them are given as follows:

e Static strategy: in this case, the end of the optimization process is known a priori.
Several criteria for this strategy can be used, such as the maximum number of
iterations and the fixed number of objective function evaluations. This strategy is
used in real time applications, where the maximum time for the optimization process
is limited.

e Adaptive strategy: in this case, the end of the optimization process cannot be known
a priori. Several criteria for this strategy can be used, such as the maximum number
of non-improving iterations and the error tolerance that indicates a satisfactory
solution is reached.

3. Solving an optimization problem using meta-heuristic algorithms

3.1. Formulating of the optimization problem and basic algorithm

The standard form of any optimization (in this case minimization) problem is given as
follows:

miny F(X) (2.1)
Subject to:

GX)=0

HX) <0 (2.2)

27

where: X € R™ are the variables to be optimized, n is the number of optimized variables,
F(X) is the cost function and G (X) and H(X) are the constraints functions.

Assuming that S ¢ R™is the subset of admissible solutions that satisfy the
constraints given by equation (2.2) and n,, is the chosen population size. Using a population
based meta-heuristic algorithm, the basic steps needed to solve the above optimization
problem are summarized as follows:

Algorithm 2.2
Step O: initialization

e Seti=0
e Forj=1n,

o Choose the initial solution (X/) from S, such as X € S.
e End

Step 1: cost function evaluation

e Forj=1n,
o Using the candidate solution (Xij), evaluate the cost function given by equation
(2.2).
e End

Step 2: generation/replacement

e Forj=1n,
o Generate a new candidate solution (neinj)
o Apply an updating strategy.
o If the replacement is necessary
> Xij = nele.j
o Endif
e End

Step 3: finding the best solution

° leest — Xil
e Forj=2n,
o If F(X])<F(xPest)
> xpest =x]
o Endif
e End

Step 4:

e |f stopping criteria is satisfied
o Report XP¢st as the solution
o Exit the optimization process
o Else

28

o i=i+1
o Gotostep 1.
e Endif

As each algorithm has its own particularities, algorithm 2.2 does not accurately describe
all existing population based algorithms.

3.2. Constraints handling

In order to solve the optimization problem given by equations (2.1) and (2.2), algorithm
2.2 has been given under the assumption that the subset S of all admissible solutions is
known a priori. However, it is very hard and sometimes impossible to create the subset S.
Indeed, even if this subset is known a priori, several difficulties could appear while
generating the new candidate solutions. There are several approaches that can be used to
handle constraints, they can be grouped into the following categories [167]:

e Reject strategy: it also called the death penalty approach. It is based on the rejection
of all unfeasible candidate solutions (solutions that do not satisfy the constraints
given by equation (2.2)). This approach can only be used if the majority of the search
space is feasible. The unfeasible solutions are not used to gather information about
global solutions that can be either on the boundary between feasible and infeasible
solutions, or on another independent feasible region, if the admissible set contains
discontinuous regions. This approach is unsuccessful with most of the optimization
problems.

e Penalizing strategy: this approach is the most popular and used method to handle the
imposed constraints. In this method, both feasible and unfeasible solutions could be
considered, and the original cost function is modified to include new terms that will
heavily penalize infeasible solutions.

e Repairing strategy: this approach deals with unfeasible solutions by transforming
them into feasible solutions using custom build heuristic algorithms. Therefore, the
optimization performance is highly depending on the efficiency of the custom
algorithms. Due to the added step of repairing unfeasible solutions, this approach
takes more computing time than other approaches, making it impractical for fast real-
time applications.

e Preserving strategy: in this approach, using some specific knowledge about the
handled problem, the optimization algorithm is modified to ensure that all generated
candidate solutions are feasible. Clearly, the modified optimization algorithm cannot
be used for a different optimization problem. In addition, the initial solutions must
also be feasible.

4. Variants of meta-heuristic algorithms

In the aim of designing efficient optimization algorithms, several meta-heuristic
optimizers have been developed and compared. It has observed that each meta-heuristic
optimizer outperforms the others on some other cost functions. Based on the “no free lunch
theorem”, Wolpert and Macready have stated that all meta-heuristic algorithms perform
exactly the same, according to any performance measure, when averaged over all possible
cost functions [172,173]. However, in practical situations, the number of interesting cost
functions is quite small and the goal is to determine the best optimization meta-heuristic
algorithm against these functions.

29

4.1. Particle swarm optimization algorithm

4.1.1. Original PSO algorithm

Particle Swarm Optimization is an iterative, stochastic, population-based meta-
heuristic algorithm that have developed by Kennedy J. and Eberhart R. [160,174] to solve a
continuous single-objective problem. PSO mimics the behavior of swarms when
collaboratively searching for food sources, such as: swarm of insects, flocks of birds, herds
of animals and schools of fish. Each member of the swarm, called particle, tries to find the
best food source by learning from his or her personal experience and the global swarms’
experience. This phenomenon has been mathematically modeled in the form of an
optimization algorithm.

In the PSO algorithm, a randomly distributed population (called a swarm) of
candidate solutions (called particles) is generated. These particles are moved around in the
search space and their suitability is evaluated using an appropriate fitness function. The best
position, founded by the whole swarm, represents the global optimum of the considered
optimization problem. The particles change their positions in the search space to improve
their fitness' values and provide more accurate solutions. This change is based on the best
position of each particle in the search space, the entire swarm's best position and some
random behavior. The discovered improved positions will guide the swarm's movements in
the next iteration. This process is iteratively repeated until a satisfactory solution is found.

The first step of the PSO algorithm is to generate a random initial population using
the following equation:

X! =rand! (X} 0 — X2) + X2 (2.3)

min in

suchas i =[1,2,..,n,] andj = [1,2,...,D].
The function randij generates a random number in the range [0, 1], D is the
dimension of the optimization problem, n,is the number of particles (the population size),

and X/ __and X/ are the upper limit and the lower limit of the j** dimension’ search

max min

space, respectively.

The second step is to evaluate the fitness of each particle (F(X;)), where X; =
[X}, XZ, ..., XP], determine the personal best solution of every particle (P; = [P}, P?, ..., PP])
and find the global best solution (G = [G1,G?,...,GP]). This step is performed for all
particles in the swarm (i = 1,2, ...,n,) and the entire dimension of the optimization problem
(G =12,..,D).

The third step is to update the velocity (V; = [V}, V2, ..., V]) and the position (X; =
[x{,x?, ..., x{]) of each particle (i = 1,2, ...,n,) in the entire dimension of the search space
(j = 1,2, ..., D), according to the following equations:

Vl.j(k +1) = Vij(k) + clrandlf(ljij — Xl.j) + czrandZ{(Gj — Xl.j) (2.4)

X) (e +1) =X/ (k) + vV (k + 1) (2.5)
Where:

30

rand1}, rand2! are random numbers in the range [0, 1], and c;, c, are acceleration
constants. It is up to the user to determine these parameters according to the handled
optimization problem.

The complete steps of the PSO algorithm are summarized by the flowchart given in figure
2.1.

(e)

Set the initial velocity (Vij =0)

enerate a random initial population using equation (2.3).

Initialize the Algorithm specific parameters (cy, ¢,).

Setk = 0.

- J

Evaluate the fitness of each
particle (F (X;)).

Yes
Pi = XL
k=k+1
NO r 3
No
' i=i+1
s L 3
Yes
G=Pp Update the position and velocity
St of each particle using equations

(2.4) and (2.5).

Yes

Yes

End

Figure 2. 1 : Flow chart of the PSO algorithm.

31

4.1.2. Some variants of the PSO algorithm

The original PSO algorithm has a problem of balance between the exploration of the
search space and the exploitation of prominent regions [175,176]. It can be trapped in local
optimums, especially in the case of multimodal, rugged, and non-separable optimization
problems. To deal with this problem, several variants of the PSO algorithm have been
proposed. The main changes in three variants of the PSO algorithm are summarized as
follows:

e A modified particle swarm optimizer using a fixed inertia weight [177]: in this
version, a new parameter, called inertia weight, has been added to the velocity
updating equation of the original PSO algorithm. This equation becomes:

V/(k+1) = w-V/ (k) + c;rand1) (P! — X!) + crand2! (67 - x]) (26)

Exploration and exploitation abilities have been balanced using the inertia weight
(w), where, a small value of w gives more importance to exploitation than to
exploration (local search) and a large number of w gives more importance to
exploration than to exploitation (global search).

e Adaptive particle swarm optimization [177,178]: this method has the same velocity
updating equation as the modified particle swarm optimizer using a fixed inertia
weight. However, instead of using the fixed inertia weight during the optimization
process, a dynamic w is used. Several methods for changing the value of w have been
proposed. The most common is the linearly decreasing technique [177], it is given
by the following equation:

wk+1)=w, wlk) 2.7)

where: w, is a constant belongs to [0, 1].
Other methods, such as the fuzzy adaptive particle swarm optimization [178], can be
found in the literature.

e Comprehensive learning particle swarm optimizer [179]: this strategy is based on the
comprehensive learning strategy. The velocity updating equation is given as follows:

VI(k+1)=w V() +c-rand! (P!, - X)) (2.8)

i)
where: f; = [f;(1), f;(2), ..., f;(D)] defines which particle’ personal best (Pl.j) that

the particle (Xij) should follow.

In the original PSO algorithm, each particle follows its own personal best and the
global best. However, in this variant, each particle can follow the personal best of
any particle of the swarm, including its own. This process is randomly performed
according to the following equation:

f:(j) = rand] (2.9)

If £;(j) > Pc]: the particle (X/) will learn from its own personal best (P/).
If f;(j) < Pcij : the particle (Xl.j) will learn from another particle’ personal best (Pij)
using the tournament selection procedure as explained in [179].

rand{ is a random number in the range [0 1], Pc is the learning probability, which
can take different values for different particles.

32

4.2. Teaching Learning Based Optimization algorithm

The TLBO is a teaching-learning process inspired algorithm that was proposed by Rao
et al. [109,110]. TLBO is a meta-heuristic algorithm that uses a group of individuals
(population) to search for the global solution. Its population is considered as a group of
students. The TLBO working principle is divided into two phases, teacher and learners
phases. In the teacher phase, students learn from their teacher, the teacher gives the best
performance in the population. In the learners phase, students learn by randomly interacting
between themselves. The cost function variables are the taught subjects, and the fitness value
of the optimization problem is considered as the students’ results.

4.2.1. Teacher phase

The TLBO algorithm begins with the teacher phase where students learn from their
teacher. Assuming that the optimization problem is formulated as follows:
m variables (subjects to be taught) exist with n students (population size), at any iteration i,
this phase is decomposed into the following steps:
e A teacher is selected from the population by choosing the student who gives the best
fitness Xj,, (G =1,...m, k=1, ...',n). |
e Calculate the students mean result M; and the difference mean d;, for each subject

as follows:
n Xl
Mi=Zk=1Tk (2.10)
. j . n .
e = T (X kpoee = TFM;) (2.11)

where r is a random number between 0 and 1, the Teaching Factor Ty is a random
integer number between 1 and 2.
e Updating each existing solution as follows:

e A greedy selection is applied between the old and the new solution (Xj"k,
Xnewjik) in order to keep the best solution.

4.2.2. Learners phase

In this phase, students try to improve themselves by interacting with each other. The
student X, choose randomly to interact with the student X5 and learn from him. This phase
is decomposed into the following steps:

e Choose randomly q pairs of solutions such that : F # F%, where Ffand F} are the
fitness values of X, and X5 , respectively.
e In case of minimization problem, and for each pair, update the solutions using the
following equations:
Xnew/, = Xi,+1(X/4—X/5), if Fi<FL (2.13)
Xnew/, = X[, +7(Xfs —X[,), if Fj<Fj (2.14)
e A greedy selection is applied between the old and the new solution to keep the best
solution.

33

4.2.3. Initialization step

Before starting the TLBO algorithm, the following parameters must be initialized:

e the dimension "m" of the optimization problem (m = number of optimized variables).

e the population size "n". The choice of the population size has a large impact on the
meta-heuristic algorithms performance. So choosing the population size depend on
several factors, two of them are the converging speed and the solution accuracy
[180,181].

e the maximum number of iterations k,,,4,. The choice of the value of this parameter
depends on the chosen sampling time.

e the admissible maximum and minimum values for each variable Xj and Xj

e the initial solutions X]-lk are randomly chosen using the following equation:

lek = rand(0,1) * (Xj

e the termination criterion .

(2.15)

—Xj ,)+ i
max min min

To illustrate the different steps of the TLBO method, its flow chart is given in figure (2.2).

4.3. Improved teaching-learning-based optimization algorithm

In order to enhance the optimization performance of the original TLBO algorithm,
Rao and Patel proposed an Improved TLBO (I-TLBO) to solve unconstrained optimization
problems [182]. In this variant, the exploration and the exploitation capabilities were
enhanced by introducing the concept of multi-teachers, an adaptive teaching factor, tutorial
training and self-motivated learning. Using several unconstrained benchmark functions, it
has been proven that the improved TLBO algorithm gives better optimization performance
than the original TLBO, the ABC algorithm, the modified ABC algorithm, several versions
of the PSO and other optimization algorithms [182].

The modifications to the basic TLBO algorithm are given as follows:

e Number of teachers: in the original TLBO algorithm, only one teacher is chosen to
teach the entire population. However, in the I-TLBO algorithm, several teachers are
selected. Assuming that the chosen number of teachers is equal to "T,", the best
candidate solution is selected as the first teacher (X;eqcher)1 SUCh S Fix,,, 10y =
Fpyese, Where Fy, . is the first teacher’ fitness value and Fj; is the fitness value
of the best candidate solution. The remaining (T,, — 1) teachers are selected as
follows:

F(Xteacher)s = F(Xteacher)l - rand* (216)

where: s = 2,3,...,T,, and rand*is a random number in the range [0, (Fpqx —
Frin)]. Fnax and Fy, are the maximum fitness and the minimum fitness of all
learners, respectively.

If the equality is not satisfied, select (X;eacner)s @S the element that gives the closest
value to Fix,,.....). calculated above. After that, assign a group of learners to each
teacher as follows:

Fork=1:(n—T,)

34

© If F(Xteacher)l 2 F(X)k > F(Xteacher)z
> Assign the learner (X); to the teacher (X;eacher)1
© Else’ If F(Xteacher)z 2 F(X)k > F(Xteacher)S

> Assign the learner (X); to the teacher (Xteqcher)2

o ElIse, If Fix,uoneryry-r = Foor > Fixeacherrn

> Assign the learner (X), to the teacher (X¢eqcner)t,—1
o Else

> Assign the learner (X), to the teacher (X;eqcner)T,

End

e Adaptive teaching factor (Tr): the second change is related to the teaching factor.
Such as, in the basic TLBO algorithm the teaching factor is chosen randomly and it
can be either one or two. Although, in the I-TLBO algorithm, for each teacher, the
teaching factor is calculated as follows
If F(Xteacher)k * 0

F(X)rand

(Tr)k = (2.17)
& teacher)k

where:k = 1: T, Fix,,.....). IS the fitness value of the k" teacher, and Fxy _,: is
the fitness value of a random learner who is assigned to the k" teacher.

e Learning through tutorial: the third modification is based on the fact that, during
tutorial hours, learners can learn by interacting with themselves or with their
teachers. Therefore, equation (2.12) becomes:

(Xnewj,)s = (Xfy + dfi)s +rand - (Xjpn = Xji), if Foop > Fuo, (2.18)

where:

i: is the current iteration, j = 1, ...,m, k = 1, ...,n, m is the number of variables, n
is the population size, s = 1, ..., T,,, and X; ,, is a random learner.

e Self-motivated learning: in the original TLBO algorithm, learners can improve their
grades (fitness) by learning from their teacher or by interacting with themselves. In
the I-TLBO algorithm, the student can also improve their grades by self-learning.
Hence, equations (2.13) and (2.14) become:

XnewjiA = inA + rand(inA - XJ-iB) + rand((Xteacher)1 — EFX]-iA), if Fi<F. (2.20)

XnewjiA = inA + rand(XJ-iB - inA) + rand((Xteacher)1 — EFX]-iA), if Fi<F} (2.21)

o)

v

Initialization step:
Determine:"n","m", "kmax",

g 5K ",initialsolutions"lek","e".
min max

i=0.
y

— i=i+1.

No

i < Kmax

Yes

q[Select the teacher and calculate the learners mean result for each subject using equation (2.10).]l

Calculate the difference mean for every
subject using equation (2.11).

Update the existing solutions ka by adding the difference-

mean to each solution becoming Xnewj"k using equation (2.12).

Is Xnew; , give better

fitness than X; , ?

solution and keenp it. and keep the old one.

y

Choose randomly ‘q’ pairs of solutions (X}, X%), ([= 1, ...,q).

|[Accept the new Reject the new solution]

Update the existing solution Update the existing solution
X}, using equations (2.13). X/ using equations (2.14).
L T

Is Xnewfk give better fitness than X]-ik?

[Accept the new] Reject the new solution
solution and keep it. and keep the old one.
L J
Yes Yy
A Is the termination criterion satisfied? | Report the solution
v
End

Figure 2. 2 : Flow chart of the TLBO algorithm.

35

36

4.4. The proposed Enhanced Teaching Learning Based Optimization (ETLBO)

In order to improve the performance of the TLBO algorithm, mainly the convergence
rate, the selecting process of the students’ pairs of the original algorithm is modified as
follows.

4.4.1. Students pairs selecting process

The learners' phase of the original TLBO algorithm is based on three steps: randomly
selecting of q pairs of solutions, updating these solutions according to equations (2.13) and
(2.14), and Appling a greedy selection to the new obtained solutions.

The choice of the students’ pairs in the learners' phase of the ETLBO algorithm is a
critical task. Instead of using a random approach to choose these pairs, a more selectable
approach, based on each student grade during the optimization process, is applied. It would
be more interesting if students interact with their pairs having a good grade. This idea can
be performed by introducing a new factor, named student grade “SG”, it is given by:

(max(F') — F})

: (2.22)
(max(F!) + €)

SGL = 100

Such as:
F'=[FLFL, .. ,Fl, . ,E, i =1, .. kpmax » kK = 1, ., 1, kg i the maximum number of
iterations, n is the population size and ¢ is a positive small number.

The pairs of students are chosen according to the following steps:
e Rank the students, from best to worst, according to their SGL values. The biggest SGL
value indicates the best student and the lowest indicates the worst student.
e Randomly choose a percentage (I € [30%, 50%]) to split the population into two
groups, good and bad students, according to theirs grades, such as:
I I
Gs

_ e _(q_tr 223
100 ™ Bs (1 100)*n (2:23)

where:
G, is the number of good students and B is the number of bad students.
e Choose q pairs of solutions X, and Xz. X, and X are randomly chosen from the
whole population and the group of good students, respectively.

5. Experimental study using several benchmark functions

In this section, using eight benchmark functions with different dimensions and search
spaces, the quality of the proposed ETLBO algorithm is investigated. The obtained results
using the ETLBO algorithm are compared with the results of the original TLBO algorithm,
the I-TLBO algorithm for (T;, = 1 and T,, = 2), and the modified PSO algorithm (w-PSO).
Using multiple tests, the parameters of w-PSO are chosen as follow:

w(0) =1, wg =099, Ve =10, ¢; =2, c; =2,and [VZ] = Vo for [VE] > Vs

5.1. Benchmark functions description

The following eight well-known benchmark functions are used:
e Sphere function:

D

AX) = sz —100 < x; < 100
i=1
f1(X) is a separable and multimodal function.
o Rosenbrock function

£ = Z 100(x;1 — x2)% + (x; — 1)2, —2.048 < x; < 2.048

f2(X) is anon- separable and unimodal function
e Ackley function:

D
%Z cos(ani)>

i=1

f3(X) =20 + exp(1) — 20 exp \—0.2

such as —32.768 < x; < 32.768
f3(X) is a non-separable and multimodal benchmark function.
e Griewank function:

fr(X) =1 +W(Z(xl —100)?) (1_[cos (%))

such as — 600 < x; < 600
f2(X) is a non-separable and multimodal function.
e Weierstrass function:

D /20 20
f:(X) = < 0.5% 2m3%(x; + 0.5))— D » [0.5% cos(3%m)]
5 z Z[cos(w3 (x; +)] kZO cos(3*m

i=1 \k=0
suchas —05<x; <05
f5(X) is a separable and multimodal function.
e Rastrigin function

fe(X) = Z(x — 10 cos(2mx;) + 10), —512<x; <5.12

fe(X)isa separable and multimodal benchmark function.
e NCrastrigin function:

f(X) = Z(yl — 10 cos(2my;) + 10),

X, lf |x;] < 0.5

- = round (2x; suchas —5.12 < x; <5.12
Vi —2(D if =05 l

f7(X) is a separable and multimodal benchmark function.

e Schwefel function:
D

fe(X) = —Z (xi sin(Ixil))) — 500 < x; <500

Where:

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

37

X = [x1, X5, ..., xp], D denote the dimension of all benchmark functions mentioned above.

fg(X)is a separable and multimodal function.

38

The global minimum of all these benchmark functions is equal to zero at X = [0,0, ..., 0],
except in the case of the Rosenbrock function X = [1,1, ..., 1].

5.2. Numerical Results

For all considered algorithms the population size is equal to 40 and the maximum
number of iterations k,,,, iS equal to 1000. Using the same software and hardware
configuration, the optimization process of all considered benchmark functions is repeated
500 times. If the value of the evaluated function drops below 2.22e-16, it is reported as 0.

The obtained results are presented in table 2.1, where Mean and SD denote the mean
value and the standard deviation of each benchmark function. In each row, the minimum
mean value is indicated using a bold font. If the obtained mean value is equal to zero for
more than one algorithm, the reported best result is that of the algorithm which requires less
iterations to achieve the objective.

ETLBO =====TLBO =weeeem ITLBO(NT=1) = = =|TLBO(NT=2) sswesmesss PSO
@ 5000 Sphere function 5 Rosenbrock function
©
>
c
©
w -
E i 3 : "
5 10 15 20 2 6 10
Q
=
©
>
c
(5]
(]
S
20
Rastrigin function
v 50 —L
2 .
>
c
s ol——r===
20 40 60 80 100
v 15 Schwefel function
©
S
i
()]
20 40 60 80 100
Iterations Iterations

Figure 2. 3 : Convergence speed (D=2 for Rosenbrock function and D=5 for other
functions).

39

D ETLBO TLBO I-TLBO (T,, = 1) I-TLBO (T;, = 2) w-PSO
Mean SD Mean SD Mean SD Mean SD Mean SD
fil5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1.22e-14 2.2e-13
25 0 0 0 0 0 0 0 0 8.76e-4 3.29%e-3
fo |2 0 0 0 0 0 0 0 0 0 0
3 1.89¢e-9 6.15e-9 5.85e-9 6.06e-8 3.12e-7 2.26e-6 2.90e-7 2.75e-6 2.67e-3 3.09e-3
10 6.81e0 0.35e0 3.016e0 1.129e0 2.86e0 7.76e-1 2.60e0 7.14e-1 4.52e0 1.51e0
f315 1.71e-15 1.49e-15 9.02e-16 | 2.24e-16 8.88e-16 0 8.88e-16 0 2.20e-15 1.72e-15
10 4.17e-15 9.65e-16 | 4.31e-15 | 6.62e-16 2.45e-15 1.76e-15 2.57e-15 1.77e-15 3.29e-3 7.36e-2
25 4.43e-15 1.59%-16 | 4.45e-15 | 1.59e-16 4.44e-15 0 4.44e-15 4.44e-15 3.05e-1 5.65e-1
fa |5 2.70e-4 2.1e-3 1.96e-2 1.19e-2 1.41e-2 2.03e-2 1.69e-2 2.13e-2 1.08e-1 8.52e-2
10 1.70e-4 1.8e-3 1.21e-2 1.62e-2 4.91e-3 1.66e-2 8.97e-3 2.81e-2 1.98e-1 1.53e-1
25 0 0 1.38e-4 2.13e-3 0 0 0 0 1.15e0 6.31e-1
fs | 5 6.16e-4 7e-3 1.30e-13 | 2.90e-12 2.67e-2 1.23e-1 4.58e-3 3.0le-2 2.42e-3 1.95e-2
10 2.00e-4 3.3e-3 5.65e-4 6.09e-3 1.74e-3 1.94e-2 3.71e-3 3.70e-3 1.05e-1 1.96e-1
25 0 0 0 0 0 0 0 0 2.69e0 1.56e0
fe |5 6.52e-3 1.45e-1 7.28e-2 2.63e-1 9.95e-3 2.22¢e-1 0 0 5.51e-1 6.92e-1
10 0 0 2.81e0 1.68e0 9.91e-1 2.60e0 1.29e0 2.90e0 5.14e0 2.48e0
25 0 0 11.02e0 4.85e0 4.73e0 9.11e0 8.67¢e0 16.28e0 33.16 11.20
f7 15 7.34e-2 3.82e-1 2.29%¢-1 4.32e-1 0 0 0 0 7.28e-1 7.06e-1
10 1.25e0 3.13e0 5.22e0 1.07e0 4.37e0 3.04e0 6.12e0 2.84e0 3.63e0 1.57e0
25 10.78 25.49 17.53 5.95 24.75 21.11 45.09 28.98 42.68 14.26
fs |5 9.89%¢e-14 2.02e-12 8.43e-3 8.02e-3 3.84e-2 7.24e-2 2.87e-2 3.93e-2 1.91e-4 6.51e-4
10 9.83e-11 1.99e-9 1.37e-2 1.35e-2 8.33e-2 1.77e-1 4.71e-2 5.37e-2 6.17e-4 2.21e-3
25 1.14e-5 2.55e-4 2.53e-2 2.62e-2 1.24e-1 1.53e-1 6.08e-2 5.87e-2 1.27e-3 5.87e-3

Table 2. 1 : Optimization results.

According to table (2.1), it can be seen that the proposed ETLBO algorithm
outperforms the other considered algorithms in 18 cases, while the I-TLBO (T;, = 2), I-
TLBO (T,, = 1) and the original TLBO algorithms give better performances than the
proposed ETLBO algorithm in 3 cases, 2cases, and one case, respectively.

Figures (2.3), (2.4) and (2.5) show the convergence speed of each algorithm. It is
clear that the proposed ETLBO algorithm has a better convergence speed than the other
considered meta-heuristic algorithms, in all considered cases of the dimensions of the
optimization problem.

=———ETLBQ =e=e= TLBO seeeeeeee ITLBO(NT=1) = = =[TLBO(NT=2) ssseseee PSO
0 10000 Sphere function 30 Rosenbrock function
[: 20F
e 5000 [\
© 10 ¢
(]
2 0 . b 0
5 10 15 20 25 30 5 10 15 20
o 20 Ackley function . Griewank function
=]
T
>
c
@ ~,
[J] e
20 30 40 50
" Rastrigin function
=]
T; 100
c
8 Al M""'"-n-.
S 0 B
20 40 60 80 100 100 200 300 400
o NCRastrigin function
=]
® 100
>
c
o 50 e
2 0
100 200 300 400
Iterations Iterations

Figure 2. 4 : Convergence speed (D=3 for Rosenbrock function and D=10 for other
functions).

41

ETLBO =====TLBO =weeen ITLBO(NT=1) = = =|[TLBO(NT=2) swsmessen PSO
4 " .

g 5 ?\<10 Sphere function 500 Rosenbrolfl:kfunctlon

© K \

> \

c \

0 N

2 : 0 B S

20 30 20 40 60 80 100

0 Griewank function

- *~,

T>° .

z 200

® M

v ..'"%...,.

E {) 0 : il | [-
10 20 30 40 50 10 20 30 40 50

g Weierstrass function 200 Rastrigin function

I

>

=

©

Q

S .
20 40 60 80 100 100 200 300 400

& NCRastrigin function 15 Schwefel function

| L T

©

>

c

©

Q

=

100 200 300 400
Iterations Iterations

Figure 2. 5 : Convergence speed (D=10 for Rosenbrock function and D=25 for other
functions).

6. Conclusion

In this chapter, an enhanced variant of the TLBO algorithm has been proposed. In
this algorithm, the random selecting process of learners’ pairs was replaced by a more
efficient approach based on each student’s grade during the optimization process, such that
the students only interact with their pairs having a good grade. This modification allows
improving the convergence rate and the exploitation quality of the algorithm.

The convergence rate and the efficiency of the proposed algorithm were assessed by
considering eight well-known benchmark functions. The obtained results have showed that
the proposed ETLBO algorithm outperforms the other considered algorithms; namely the
original TLBO, the I-TLBO with one and two teachers, and the w-PSO algorithm.

42

CHAPTER 3
ARTIFICIAL INTELLIGENT BASED PID CONTROLLERS

1. Introduction

Due to its popularity, simple design procedure, ease of implementation and good control
performances, Proportional Integral Derivative (PID) controller is still widely used and the
most popular in many industrial applications [183-186]. However, in case of complex highly
nonlinear systems, satisfactory control performance cannot be achieved using the
conventional linear methods to tune the PID’ parameters. Moreover, all linear tuning
methods, such as Ziegler-Nicholas technique, gain-phase margin, root locus, minimum
variance and gain scheduling, are based on the linearization of the controlled system around
the operating point.

In order to achieve good control performance of the conventional PID controller, several
methods, which online tune the PID gains to compensate the effect of the modelling
uncertainties and the system parameters variation, have been proposed [183,187-189].
These techniques include linear self-tuning methods, non-linear structures of PID
controllers, and other methods.

Different types of PID controllers have been proposed to improve the control
performance [25,190,191]. Among these types we can find the fractional PID controller
[189,192,193], the nonlinear neural network based PID controller [124,194-197], the fuzzy
PID controller [198-202], the nonlinear PID controller that uses special nonlinear functions
[203], etc.

In the fractional PID controller (PI*D*), the gains, the integral and the derivative actions
are obtained using non-integer integration and differentiation orders [188,189]. The
fractional PID controller contains more parameters than the conventional PID. Therefore, by
tuning these parameters, good control performance could be achieved. However, computing
the fractional integral and derivative is a time consuming and a complex process, especially
in real-time applications. Indeed, several methods, to compute the fractional integral and the
fractional derivative, such as the Grunwald-Letnikov [204], the Riemann-Liouville and
Caputo [205,206] and others [207], have been proposed.

Several other versions of the PID controller, were proposed and used in many real-time
applications [208-211]. In fact, these PID versions can be classified according to the
technique used to tune the PID gains. Some of them are given as follows:

e Neural Network based PID controller (NNPID) [124,194-196,210,212]: two
different architectures of the NNPID can be distinguished. In the first architecture,
the connections and the activation functions of the neural network are chosen to
mimic the PID. The output of the neural network is exactly the same as the control
law of the PID. Therefore, the PID gains are the weights of the neural network and
they are optimized using, in most cases, the back propagation algorithm. In the
second architecture, the neural network has three outputs; each one calculates one of
the PID gains.

43

e Fuzzy PID controller (FPID) [200,211,213,214]: usually, the control block diagram
of the FPID contains three essential blocks; the controlled system, the conventional
PID and the fuzzy logic system. The gains of the conventional PID are computed
using the fuzzy logic system. Due to its simplicity, the Sugeno type FPID controller
is more popular than the Mamdani type.

e Meta-heuristic based PID controller [208,215-223]: using a meta-heuristic
algorithm, the parameters of the PID are directly optimized. However, in case of an
online optimization process and due to the working principle of meta-heuristic-
algorithms, an emulator of the controlled system is required. Several meta-heuristic
based PID controllers, such as the PSO based PID controller [198,215,217], the Gray
Wolf Optimizer (GWO) based PID controller [218,219], the TLBO based PID
controller [220,221], the Artificial Bee Colony (ABC) based PID controller
[222,223], have been proposed.

Hybrid versions of PID controllers, that combine neural networks, fuzzy logic systems,
and meta-heuristic algorithms, have also been proposed [194,215,224-227].

In this chapter, the adaptive neural network PID (ANNPID) controller, the adaptive
Fourier series neural network PID (AFSNNPID) controller and the PSO based PID controller
are presented and detailed. To assess the effectiveness of the ANNPID, the AFSNNPID and
the PSO based PID controllers, the control of the continuous stirred tank reactor (CSTR) and
the 3-DOF robot arm manipulator, through simulation and experimental studies, is
considered. In addition, a comparative study is carried out.

2. Adaptive neural network PID controller

The conventional PID control law is given by:

t de(t)
u(t) = Kpe(t) + Kif e(t)ydt + K, Tt
0

where e(t) represents the tracking error and (K, K;, K;) are the controller gains.

3.1

The discrete version of this control law, using the trapezoid method and the sampling
period Ty, is given as follows:

u(k) =ulk —1) + (Kp + Ka + KiT"‘) e(k) +

T, ' 2
(3.2)
<KiTS 2 Ka K) (k 1)+Kd k—2
2 T, ?)¢ T, ¢k =2)

To compensate the effect of the modeling uncertainties and the system parameters
variation and get more satisfactory performance a neural network is used, as it is shown in
figure 3.1, to tune the PID gains [124].

The used neural network (figure 3.2) is a feed forward network with three outputs
(Ky, Ki, Kq), four inputs (e(k), e(k — 1), u(k — 1),u(k — 2)) and one hidden layer.

44

em (k)
Emulator =
u

(k) y ()

RCkY, €k System

- PID
7, \ Ki'

: Neural

Network | Kp

-1
e

Figure 3. 1 : Adaptive neural network PID controller in closed loop.

e(k)

Inputs layer Hidden layer Outputs layer
Figure 3. 2 : Structure of the used neural network.

The output of each node of the hidden layer is given by:
hy = £(5)

n+1

_ 1 .
Sj = Z WX, j=1,..,n,
i=1

where: (n = 4) is the number of inputs, ny, is the number of nodes in the hidden layer, f(S;)
is the sigmoid activation function, Win is the connection weight between the i neuron of the
input layer and the j™ neuron of the hidden layer and w,’mj is the bias of the j™ neuron of
the hidden layer and x; are the inputs of the neural network.

(3.3)

The input vector, at the sampling time k, is given as follows:

X(k) = [xl (k), X2 (k), X3 (k), X4 (k), Xs (k)] = [e(k)i e(k - 1)’ u(k)r u(k - 1): 1]
The outputs of the neural network are given by:

Nh+1

Oj = Z W[]lhl)] = 1, -, Ny (34)
i=1

where: (n, = 3) is the number of outputs, w[]‘- is the connection weight between the i neuron

45

of the hidden layer and the j™ neuron of the output layer and w,’;hﬂ ; s the bias of the " output
neuron.

The neural network outputs represent the gains of the PID controller (k, = o4, k; =

0,,K; = 03). The weights values of the neural network are adjusted so that the objective
function given by equation (3.5) is minimized.

N
E=) E) (3.9)
Such as:
E(k) = %e(k)z = %(R(k) — y(k))? (3.6)

where: R (k) is the reference trajectory and y (k) is the actual system output.

The connections weights of the neural network are adapted, using the back propagation
method, according to the following rule:

(k+1)=w;;(k) — OE (k) 3.7
Wl] le rl. a U(k) (.)
where: n € [0 1] is the learning rate.
For the output layer, the term o h(()) can be computed as follows:
0E(k) _ 0E(k) de(k) dy(k) du(k) do; 28
Wihj(k) de(k) ay(k) ouk) do; awh (38)
owh(k) 77 awh 39)
Such as:
dy(k) ou(k)
oi(k) = (k)(') W o, J=1,..,n, (3.10)
(ou(k)) K1
601 =e e()
ou(k) T
_s _ 3.11
4 5o, = 2 (e(k) + e(k — 1)) (3.11)
0ull) _ 1 o) = 2e(k—1) +e(k —2
(90, T (e e e()
an . .
_an.hj =h;, i=1,..,n,+1, j=1,..,n,, hnh+1 =1 (3.12)

Finally, the adaptation equation can be written as follows:

46

wii(k +1) = wh(k) + né;;(kh(k), i=1,..,nmy+1, j=1,.,n, (3.13)

For the hidden layer, the gradient of the objective function is obtained as follows:
0E(k) OE(k) oh;(k) 0S;(k)
dwl;(k) — 0h; (k) 3S; (k) aw; (k) ’

=1,..,m+1 j=1l.n (3.14)

The different terms of equation (3.14) can be computed as follows:

E(k) dy(k) x> du(k)
ohi(k)) £ 90, (k) w1 (k) (3.15)
oh;(k)
3 Sj(k)a S—(f:)(k)(l — hi(K)) (3.16)
j = .
ol Gy~ i) (3.17)
Equation (3.14) becomes:
OE (k) <
oo Z 8,(W (k) by () (1 — By () :(K) (3189)

where: 6;(k) (L = 1, ...,n,) is given by equation (3.10).
Finally, the adaptation rule is given by:
Wl-Ij(k +1) = Wilj(k) + ng; (k)x;(k), i=1,..,n,+1, j=1,..,n, (3.19)

Such as:
No
50 = 1y () (1= 1y (D) Y 80w, j =1,y (3:20)
=1
The term 2% is obtained using an emulator for the system. This emulator is a feed

ou(k)
forward multilayer neural network with one input, one hidden layer and one output. The neural
network is trained, using the input-output data of the system and the back propagation
algorithm, to approximate the system output.

The output y (k) of the emulator is given by:

m+1

90 = > kol (k) (321)

where: m is the number of nodes in the hidden layer, w!* are the connections weights
between the hidden nodes and the output node, w/ . ; is the bias of the output node and o* are
the outputs of the hidden nodes, they are given by:

of'(k) = f(s'(k))
s/'(k) = wj(uk),j=1,..,m (3.22)

o
Om+1 =1

47

where: Wj’ are the connections weights between the input node and the hidden nodes,
u(k) is the input of the system and the emulator, and £ (.) is the activation function.

oy (k)

The term 3500 of equation (3.8) and (3.15) is approximated as follows:
0y(k) _09CK) _ N nn 1o o "
qu(l) ~ ouk) Z wit (lwi (ko' (k) (1 — 07" (k) (3.23)

3. Adaptive Fourier series neural network PID controller

3.1. Fourier series neural network

The FSNN is a Multi Inputs Single Output (MISO) network with one hidden layer, its
architecture (figure 3.3) is based on the topological structure of the multidimensional Fourier
series. The input layer of the FSNN contains m input nodes receiving the network inputs x; (i =
1,2, ...,m). Each input x; is scaled to the range [0 T;] and connected through a fixed frequency

weight w; = %to N; harmonic neurons in the hidden layer. In addition to the harmonic
l
neurons, there are [= 2™ product nodes in the hidden layer. Each of these nodes implements

the product of m outputs of the harmonic neurons. The single linear neuron of the output layer
implements the weighted sum of the product nodes outputs. The connections weights

anl'__'nm G=1,..,1. n; =1,...,N;) between the hidden layer and the output layer are
adapted using an appropriate learning rule.

— 1 = w1
nputxs ~_ _——*(Sin(.)

Figure 3. 3 : Fourier series neural network architecture.

48

The network output is given by:
Nm

Ny
y=W,+ z Z Wi n. cos(nywixy) ... coS(Myy Wy Xom)
ni=1 np=1
+ W2, c0s(Mywixq) ... SIN(Mpp Wy X)) + -+
+ Wit sin(nywyxy) ... coS(My Wi X))
+ Wi

(3.24)

sin(nyw;x;) ... sin(nma)mxm)]

WNin
where: m is the number of the network inputs, (X = [x4, ..., x;,]) is the vector of the network
inputs, (w; = ZT—”z = 1,2, ...,m) are the frequency weights, T; is the range of the input x;

(x; € [0 T;]), (I = 2™) is the number of product nodes, anl,.-.,nm is the connections weights

(state weights) between the hidden and the output layers, W, is the network bias and N; is
the series length.

The number of the weights (anl__._’nm) is given as follows:
m
N, =1 nNi (3.25)
i=1

Equation (3.24) could be rewritten as follows:

F=Wot) .. Y i[w,{wanj] (3.26)

Such as:
H; = cos(nyw;x1) cos(nywyx5) ... cOS(Myy—1 Win—1Xm—1) COS(Myp Wi X)),

H, = cos(nyw;x;) cos(n,w,x,) ... coOS(Myy—1 Wim—1Xm—1) SINS(Mpy, W1 X)),

H;_; = sin(n;w,x;) sin(nyw4,x5) ... Sin(Myy— 1 Wm—1%m—1) €0S(Mpy W Xm),
H; = sin(n;w,x;) sin(nyw,x5) ... Sin(Myy— 1 W —1%m—1) SIN(Mypy Wy X) -

A Multiple Inputs Multiple Outputs (MIMO) FSNN can be created using a set of
Multiple Inputs Single Output (MISO) FSNN as shown in figure 3.4.

X —4— MISOFSNN — ¥,

L. MISOFSNN —— 73,

Figure 3. 4 : MIMO FSNN.

49

The connections weights between the hidden and the output layers are adapted using
the Delta rule (gradient descent method) so that a given cost function E is minimized. Let
assume that a MIMO system will be modeled using a FSNN strategy. The cost function E is
defined as follows:

n
E = Z E, (3.27)
h=1

Where, n is the number of the system outputs.
At each sampling time k:

1 1 2
Ey(k) = Eeh(k)z =3 CAGESAQ)) (3.28)

Such as:
vy, is the system outputs and ¥, is the model outputs.
The weights are adjusted according to the following rules:

Wo(k) = Wy (k — 1) + AW, (k) (3.29)
Wm0 = W, (= 1)+ AW, o () (3:30)
where:
0E (k)
=—N— 3.31
AW, () = = — 332
MM U] W njlnm) (3.32)
j=12,..,1. n; =1,2,..,N; and n € [0,1] is the learning rate.
The term % can be computed as follows:
W (K)
For each output y;,:
0E(k) _ O0E(k) dep(k) 0yn(k) 333
ow . () e s W), (k) (3:33)
Using equations (3.26, 3.27, 3.28), equation (3.33) becomes:
o8 (k)H; (k)
. =-"¢ j 3.34
Wl (439
Using equations (3.34), the adaption rules are given by:
Wy (K) = W, (e = 1) + nen (k) H; (k) (335)
Wo (k) = Wy(k — 1) +nep(k) (3.36)

3.2. AESNNPID controller structure

Two FSNN are used to implement the controller according to the control diagram of figure
3.5 [228]. The FSNN on the right is the emulator FSNN, it is a MISO FSNN that allows

50

emulating the dynamic behavior of the system.

R(k)
= e (k) " PID u(k) System y (k)=

] |
- Z—l—b Kl' Z_l >
PR Kp| |—z-b}5| FSNN

FSNN
7-ach Hz-a Emulator
i'z T Hz-1—
‘ /

Figure 3. 5 : AFSNNPID controller in closed loop.

The input vector X, = [x4, x5, ..., X,] Of the emulator FSNN is defined as follows:
Xe = [u(k),u(k = 1),...,u(k —b,),y(k —1),y(k — 2),...,y(k — a,)]
Where, m, = 1+ b, + a, is the number of the FSNN emulator inputs.

The output of the emulator FSNN ¥ is given by equation (3.26) and its connections weights
are adapted using equations (3.35) and (3.36).

The FSNN on the left is a MIMO FSNN with three outputs (o4, 05, 03). It gives the PID
Controller gains such that 0, = K,, 0, = K; and o3 = K. The input vector of this network is
given by:

X.=le(k),e(k—1),..,e(k—b,),ulk —1),u(k —2),...,u(k —a,)]
where m,. = 1 + b, + a. is the number of the inputs.
The outputs of the FSNN are given by:

N,

on =W+ Z > Z Wit H, h=1:3 (3.37)

ny{=1 nmc—lj

Such as:

H; = cos(nyw;x;) €os(nywyx3) ... c0S(Mypy 1 Wiy -1 X —1) €OS(My Wi Xim,)

H, = cos(n,w,x;) cos(n,w,x,) ... COS(nmC—1wmc—1me—1) sin(nmcwmcxmc)

H;_; = sin(nyw,x,) sin(nyw,x,) ... sin(nmc_lwmc_lxmc_l) cos(nmcwmcxmc)

H; = sin(n;w,x;) sin(nyws,x,) ... sin(nmc_lwmc_lxmc_l) sin(nmcwmcxmc)

51

where: Wn’;f_‘_,nmc and W{' are the connections weights and the bias of the h™ MISO FSNN,
respectively.

The FSNN connections weights, giving the PID controller gains, are adapted so that the
following objective function is minimized.

1
E(k) = Ee(k)2 (3.38)
where
e(k) = R(k) — y(k) (3.39)
The adaption rules are derived, using the Delta rule, as follow:
0E (k)
Wek) = Wik — 1) = ——— (3.40)
0 () 0 () n aVVOk(k)
0E (k)
jh jh -1 — 7
Wi () = Wo o, (R =1) =71 W njl,, o ® (3.41)
The term a E(k) can be computed as follows:
"1 2Mme
JE(k) ~ 0E(k)de(k) dy(k) du(k) 0o, (k)
oW, () 0600 ay(k) 9uli0) 2o (k) oW, (i (3:42)
Using equations (3.37 to 3.39), equation (3.42) becomes:
0E (k) dy(k) ou(k)
P = —e(k) () 300 Y (3.43)
WL e (K u(k) dop (k)
ou ((k) is given by equation (3.11).
The term ay E) that represents the system Jacobian at time k, is estimated using the

FSNN model. To obtaln fast convergence and good control performance of the control
algorithm, the FSNN model must have a sufficient precision. Of course, a large estimation
error could leads to slow convergence or divergence of the control algorithm.

The Jacobian system is obtained as follows:

N,
dy(k) _ a9(k) Z Z z oH; (k) (3.44)
) - (’)u(k) . N1 Mimeg au(k) .
Npe=1j=
Where:
0H, (k) :
6u1(k) = —nyw;Sin(nyw;x;) cos(nw,x3) ... Cos(nme—lwme_lxme_l) COS(Tlmea)mexme)
dH, (k) . i
6u2(k) = —nyw;sin(nyw;x;) cos(n,wzx;) ... COS(nme_1wme—1xme—1) Sm(nmewmexm"’)
0H;_1(k)
aL(lk) = N1w;008(Ny w1X;) Sin(Nyw,x;5) .. sm(nm —lwme—lxme‘l) cos(nm (Umexme)
oH;(k)

Fuln = nyw,cos(nyw,x,) sin(n,w,x,) ... sin(nme_la)me_lxme_l) sin(nmewmexme)

52

Finally, the adaptation equations can be written as follows:
dy(k) ou(k)

WG =Wk = 1)+ e oD A0 (3.45)
Wi () = W (= 1)+ e(k) 2202 24O (3.46)

du(k) dop (k) "’
3.3. Stability analysis

In this section, the stability of the AFSNNPID controller is studied using the small gain
theorem. The control system, given in figure 3.5, can be described by the block diagram of
figure 3.6, where u,(k) = R(k),e;(k) =e(k),y,(k) = Au(k), e, (k) = u(k),y,(k) =
y(k) and G, and G, represent the AFSNNPID controller and the system under control,
respectively.

Figure 3. 6 : Feedback control system.

Let suppose that G; and G, are both stable. According to the small gain theorem, the
closed loop system is BIBO stable if ||G,]| - |G, || < 1.

Assuming that the system is modelled using the FSNN model given by equation (3.26),
according to equation (3.44), the gain ||G,|| is given by:

N

6.1l = Z D Z[. %’f((:))] (347)

ni{=1 nme—lj—

OH (k)

From equation (3.44), we obtain 3005 < Nyw1, SO:
|Gl < A (3.48)
where:
Nrm,

D) Z[nlwIWm]

n=1 np,=1 j=

Using equation (3.2) and (3.37), the controller gain [|G,|| is given as follows:

Ny Nme 1
_ n OH)]
16,1l = (e(k) — e(k = 1)) - Z ZZ [Wri,...,nmc S | h=
oH; (k)
163l = = (e) + el — 1))- Z n Z[o (k)] B2 (3.49)
N,

oH, (k
||G1||——(e(k)—Ze(k—1)+e(k 2))- Z Z Z[n (’)e((k))] .

= nm—ljl

53

Such as:

9H, (k) .
#(k) = —nyw;Sin(ny w;x;) cOS(NyW3%X,) ... €0 (M1 W~ 1Xm 1) €OS(Mp, W X,)

OHa (k) . _
aez(k) = —1y w;Sin(ny w1 ;) C0S(MyW,X7) ... c0S(Mp,— 1 W —1 % 1) SIN(TM, W X,)

OH;—41 (k)

e = n,w,cos(nyw;x;) sin(n,w,x,) .. sm(nm —1Wm 1 X,) cos(nm wmcxmc)

0H (k)

e = N1w;1€08(Ny W1 %7) SIN(Nyw,X,) .. SIN(Ny 1 W —1 %1) SNy Wy X,)

H (k)
de(k)

It is clear that < n,w, hence we can write:

Nimne

16,1l = (e(k) — e(k — 1)) - Z Z anwl " | =1

n1—1 Npm=1j=1
Nop,.

162l = = (k) + ek — 1)) Z > Z moWit o, Jh=2 (350)

ny=1 nmc—lj

N,

||G1||——(e(k)—Ze(k—1)+e(k 2))2 Z anwl " | =3

ni=1 nmc—lj

Using equation (3.48) and (3.50), the term ||G, || - ||G, || becomes:

Nm,

1611l - 162l < Ae(k) — ek — 1)) - Z > Z[nlwl I | h= 1

nm=1j=
ch

1G, 1 11651l < A2 = (e () + e(k = 1) Z > Z[nlwl I e | =2 (3.51)

nmc—l j=
ch

1621162l < 7 (00 = 2e(k = 1) + e = 2)) Z > Z[nlan L e | =3

=1 j=

In order to ensure the stability of the closed loop system, two conditions must be fulfilled
according to the small gain theorem.

The first condition concerns the state weights initialization of the AFSNNPID controller,
which is illustrated in equation (3.52).

The second condition is to ensure that the small gain theorem is respected when adapting
the controller in real time. Using the Delta rule principle (W,{l’,'f_,nmc(k) = Wn’l"'f_'nmc (k —

1) — UAan{.f.l...nmc) and equation (3.51), the second condition is given by equation (3.53).

54

N, l

Z Z Z mw: W, 'nmc] < A(e(k) —1e(k — 1))’h N

n1 1 Tlmc—lj =1
N l

2
SN > ot | < et s

ni=1 nmc_1] 1

N,

Z Z Z [nla)l ..,n]<A s h
me (e(k) —2e(k—1) +e(k—2))

ny{=1 Tlm—lj

-1
A(e(k) —e(k - 1))

ABM
—2

AT s(e(k) +e(k— 1))

_TABh
A(e(k) —2e(k — 1) +e(k—2))
ABM

+ Bh

,h=1

+ B"

(3.53)

,h =2

+ B"

,h =3

where:
ch l

Ny
B" = Z Z Z nywi W, ..,nmc]

n1 1 nmc—11=
N, l

ABM = Z Z Z o AW

ny{=1 nmc—l j=1

3.4. Control algorithm

Assuming that the FSNN emulator has been trained and the AFSNNPID parameters
(m¢, Ny, Ny, ..., N, and w;, i = 1,2,...m.) have been chosen, the proposed AFSNNPID
algorithm can be described by the following steps:

Step 0:
e Choose the initial values of the connections weights and the bias of the FSNN giving
the PID controller gains such that the conditions (3.52) are satisfied.

Step 1:
e Calculate the error between the reference and the system output using equation
(3.39).
Step 2:
o Calculate the approximation of the system Jacobian ay Ek) using equation (3.44).
Step 3:
e Forh=1:3

o Determine the value of n which satisfy the condition given by equation (3.53).
o Update the bias W of the control FSNN using equation (3.45).

55

o Fori=1:m,
» Forn; = 1:N;
v Forj=1:l
= Update the connections weights W,{'l‘f_‘._nmc using equation (3.46).
v End j
» End n;
o Endi
e Endh
Step 4: FSNN emulator adaptation.
e Calculate the error between the system and the FSNN emulator outputs.
e Update the FSNN model bias W, using equation (3.36).
e Forn; =1:N;
o Fori=1:m,
» Forj=1:1
v Update the connections weights Wnll,",nm of the FSNN emulator using
equation (3.35).
» Endj
o Endi
e Endn;
Step 5:
e Calculate the value of the control law using equations (3.2, 3.37).
e Apply the obtained control value on the system.
e Wait for the next sampling time, and then go back to step 1.
4. Particle Swarm Optimization based PID controller

In this subsection, the Particle Swarm Optimization based PID (PSO-PID) control
algorithm is given. Using the PSO algorithm given in chapter (2), section (4.1) and the control
law of the discrete PID controller given by equation (3.2), the gains (K, K;, K,) of the PID are
optimized in order to obtain the best control performance. In fact, these parameters can be
optimized offline or during the control process (online) or both.

In general, the offline optimization is sufficient and gives good control performance.
However, in the case of severe degradations of the parameters of the controlled system or
important external disturbances, the control performance is greatly decreased and in some cases
the control loop becomes unstable. This problem is solved using the online optimization, where
the PID parameters are optimized during the control process.

4.1. Offline optimization of the PSO based PID controller

Assuming that, the length of the chosen reference trajectory is given by (samples), in most
cases, the cost function is chosen as the mean squared error between the desired reference
trajectory (R (k)) and the output of the system (y(k)), it is given by:

samples

min, FOO = > (R0 = y(k))” (354)
k=1

The optimization algorithm of the PID controller, using the PSO, is given as follows:
Step 0: initialization

56

e Thereference trajectory (R) is chosen by randomly selecting some reference trajectories
with random lengths to cover the entire workspace of the controlled system, as follows:
o k=1
o Fori=1:N,
> r=rand - Vmax = Ymin) + Ymin
» Forj=1:(rand - Lyqy)

v R(k)=r
vV k=k+1
» End

o End

Where, Ymax and y,,in, are the upper limit and the lower limit of the controlled system
output, N, is the number of the reference trajectories and L, is the maximum length
of each reference trajectory.

e Randomly generate the initial population (X;) of the PSO algorithm, using equation
(2.3).
e Set the initial velocity (V; = 0), and choose the values of ¢; and c,.

Step 1: evaluating the entire population

e Evaluate the fitness (F;) for each particle (X;), as follows:
o Fori=1in,

» F;=0

» Use X; as the PID gains

» Forj = 1:samples
v' Calculate the control effort using equation (3.2).
v Apply the control effort to the system input.
v’ Calculate the error (e) between the system output (y) and the desired

reference trajectory (R).

v’ Evaluate the cost function as follows: F; = F; + (R(j) - y(j))z.
» End
o End

Step 2: personal best and global best updating

e Update the values of personal best position (P;) of each particle and the global best (G)
of the entire population, as follows:
o Fori=1:n,
> IfFX) < F(P)
v P =X
v IfF(P) < F;(G).
= G = Pi'
v Endif.
> Endif.
o End

Step 3: positions updating

e Update the position (X;) and the velocity (V;) of each particle personal, as follows:

57

o Fori=1in,
» Calculate the velocity (V;) using equation (2.4).
» Calculate the position (X;) using equation (2.5).
o End

Step 4: termination criteria

o IfF,(G) < eork,y,,, isreached
o Report the global best solution (G).
o Exit.
o else
o k=k+1.
o Gotostepl.
e End

4.2. Online optimization of the PSO based PID controller

In the case of the online optimization, a model for the controlled system is required to
evaluate the cost function at each sampling time. Several techniques, such as neural network,
fuzzy logic, neural fuzzy system ... etc, can be used to model the system. The used model must
also be adapted online, which complicates the control process and requires a significant
computational effort.

In general, at each sampling time (k), the used cost function in the online optimization is
given as follows:

min, F(X) = (R(k) — y(K))° (3.55)
The control algorithm is given as follows:
Step 0: initialization

e Select the global best position (G), calculated offline, as the initial population (X;) of
the PSO algorithm. If the offline phase has been neglected, randomly generate the initial
population (X;), using equation (2.3).

e Set the initial velocity (V; = 0), and choose the values of ¢; and c,.

Step 1: reference reading
e Read the current reference point (R (k)).
Step 2: optimization

e Using the system model, evaluate the fitness (F;) for each particle (X;), as follows:
o Fori=1in,
Use X; as the PID gains.
Calculate the control effort using equation (3.2).
Apply the control effort to the model input.
Calculate the error (e(k)) between the model output (y(k)) and the current
reference point (R (k)).
> Evaluate the cost function as follows: F; = (R(k) — y(k))?
o End
e Update the values of each particle personal best position (P;) and the global best (G) of
the entire population, as follows:

VV VY

58

o Fori=1in,
> IfFX) < Fi(P)
v P, =X
v IfF(P) < F(G).
= G=P,.
v Endif.
» Endif.
o End
e Update the position (X;) and the velocity (V;) of each particle personal, as follows:
o Fori=1in,
» Calculate the velocity (V;) using equation (2.4).
» Calculate the position (X;) using equation (2.5).
o End
e IfF(G) < ¢eor kg, isreached
o Report the global best solution (G).
o Exit.
o celse
o Gotostepl.
o k=k+1.
e End

Step 3: system control

e Use the global best solution (G) as the PID gains.

e Calculate the control effort using equation (3.2).

e Apply the control effort to the system input.

e Calculate the error between the system output and the current reference point.

Step 4: model adaptation

e Apply the control effort that was calculated in step 3, to the model input.

e Calculate the error between the system output and the model output.

e Update the model in order to reduce the error between the system output and the model
output.

Step 5: waiting for the next sampling time

e Wait for the next sampling time
e Go back to step 1.

5. Control of the CSTR model

In this Section, the effectiveness of the ANNPID, the AFSNNPID and the PSO based
PID controllers are evaluated. The control of a highly nonlinear system, called the
Continuous Stirred Tank Reactor (CSTR), is considered.

5.1. System description

The CSTR (figure 3.7) is a highly nonlinear chemical system, where a product A is
converted to another product B via an exothermic chemical reaction. The volume v of the
reactor is constant, the mixture is considered perfect with a temperature T that is supposed
uniform. The reactor operates continuously, its output (the mixture concentration C,)

59

changes nonlinearly according to the mixture temperature 7, and the temperature changes
according to the system input coolant flow q..

Supply orifice

Cao, To,
{Ca; To:) Coolant liquid

output

—

Jacket

Product A /

V G
CO Product B
L. CSTR
Coolant liquid g
input

Figure 3. 7 : Continuous stirred tank reactor.

The CSTR is described by the following equation:

60 = 1 (Cao = € (0) = k() O
E ks (3.56)
T(t) = %(TO - T(t)) + klca(t)e_W(t) + kyq.(t) (1 — e %® (Tco _ T(t)))

Where,
AHk, B cCoc hg

pC, " TP pCy T T peCye

1=

T, is the initial mixture temperature, T,, is the initial jacket temperature, T, is the jacket
temperature and T'(t) is the mixture temperature, all temperatures values are expressed in
Kelvin. C,, is the initial mixture concentration expressed in mol\l, v is the reactor volume
expressed in liter, q.(t) is the coolant flow expressed in [\min and C,(t) is the mixture
concentration expressed in mol\l.

The constants values are given in table 3.1.

constant | value | constant | value
q 100 p 1000
v 100 Pc 1000
ko 7.2e10 Cp 1
E 10000 Cpe 1
To 350 h, 700000
T.o 350 Cao 1

Table 3. 1 : CSTR constants values.
5.2. CSTR Modeling

The first step in designing the ANNPID, the AFSNNPID and the PSO based PID
controllers, is to obtain a model for the system to be controlled. In the case of the ANNPID and
the AFSNNPID controllers, the obtained model is used to estimate the value of the system

60

Jacobian. In the case of the PSO based PID controller, the obtained model is used to implement
the online adaptation of the controller.

Using the CSTR state equations given by (3.56), two different datasets, which cover all
possible system working regimes, have been generated. The first one is used to train two
different models and the second one is used to test the trained models.

The first model is a static MLP with the following configuration:

e The input layer contains four inputs: [q.(k), q.(k — 1), C,(k — 1), C,(k — 2)].

e One hidden layer containing 10 neurons with a sigmoid activation function.

e The output layer, which contains a single neuron with a linear activation function,
gives the estimated output (C, (k)).

This model is implemented with the ANNPID and the PSO-based PID.
The second model is a MISO FSNN with the following configuration:

e The input layer contains two inputs: [q.(k), C,(k — 1)].

e The hidden layer contains 10 nodes such as: (N; = 5, N, = 5).

e The output layer, which contains a single neuron with a linear activation function,
gives the estimated output (C, (k)).

This model is implemented with the AFSNNPID controller.

Figure 3.8 and 3.9 show the responses of the obtained models and the system using the
second dataset. Table 3.2 gives the values of the Root Mean Square of the modeling Error
(RMSE) and the correlation coefficient (R?), for both models.

NN model FSNN model
RMSE 6.909e-5 1.549123e-04
R? 0.99999943 0.99999367

Table 3. 2 : RMSE and R? for both models.

0 1?\ stem outpu?(continuouslline) and NN'modeI outptllt(dashed line)

o
=
T
1

0.05 1 1 1 1

Mixture concentration (mol/l) Mixture concentration (mol/l)

0 20 40 60 80 100
Time(min)
10 X 10'4 E'rror betweerll system and]model outpt{t
5F i
0
_5 1 1 1 1
0 20 40 60 80 100
Time(min)

Figure 3. 8 : Test results of the obtained NN model.

61

%0 poystem output(continuous line) and FSNN model output(dashed line)

E . 1 1 1 L]

c

.8

-

o

-

S 0.1r -

(8]

[=

o

(8]

g

E 0 05 1 L 1 L

x U.

'g 0 20 40 60 80 100
Time(min)

% 9 X 1073 Frror betweerlr system and lmodel outpu'f

E

{=

2

)

(1]

]

c

(]

(&)

c

o

(&

o

3 _2 1 1 1 1

-§ 0 20 40 60 80 100

Time(min)

Figure 3. 9 : Test results of the obtained FSNN model.

From figure (3.8) and (3.9), it can be seen that the models output and the system
output are superposed, and the modeling error is quite small for both models. According to
table (3.2), it can be concluded that the obtained models are quite accurate. Therefore, both
models are validated.

5.3. Controllers implementation

In this subsection, the architecture of the ANNPID, the AFSNNPID and the PSO-based
PID, are described and given.

5.3.1. ANNPID

In this architecture, one MLP neural network is used to determine the gains K, K;, K,
of the PID controller as shown in figure (3.10). The architecture of the neural network has the
following configuration:

e The input layer contains four inputs: [e(k),e(k — 1), q.(k — 1), q.(k — 2)].

e One hidden layer containing 10 neurons with a sigmoid activation function.

e The output layer, which contains three neurons with a linear activation function, gives
the values of the PID gains (K, K;, Ky).

The weights of this NN are trained and adapted online using equations (3.13) and (3.19).
The CSTR neural model, obtained in the previous section, is used to estimate the system
Jacobian required to implement the control algorithm, according to equation (3.23).

5.3.2. AESNNPID

Three FSNN having the same input e(k) (the error between the reference trajectory and
the system output), with a range of T = 0.3, are used to determine the gains K,,, K;, K, of the

62

PID controller as shown in figure (3.11). The three networks have the same number of hidden
nodes (N = 5). The weights of these three FSNN are trained and adapted online using equations
(3.45) and (3.46). The system Jacobian is estimated using the CSTR FSNN model obtained in
the previous section according to equation (3.44).

RUS €K op 19U egrr 1 C®
+@ | .

SN i =

_1—> o
= K £l NN e,
Z Neura Kb Z__l-' Model (X
7—1L{ Network VAR

BEL —— N e
71 ’
Figure 3. 10 : Control loop of the CSTR model using the ANNPID controller.
R(k
(k) e(k)] PID q.(k) CSTR Ca(k)=
+
k K
4 SISO FSNN
K; 1 MISO
i SISO FSNN p ESNN
1 SISO FSNN Emulator
SIMO FSNN
\ /

Figure 3. 11 : Control loop of the CSTR model using the AFSNNPID controller.
5.3.3. PSO-based PID

The control law of the used PID controller is given by equation (3.2), where the PSO
algorithm is implemented to optimize offline and online the PID gains according to the
algorithms given in subsection (4.1) and (4.2), respectively. The cost function is given by
equation (3.55). The control block diagram is given by figure (3.12). The chosen parameters of
the PSO algorithm that were used to offline and online optimize the PID gains are given by
table 3.3.

Cy C, Konax 3 Wgq
Offline optimization | 2 2 100000 | le-5 0.99
Online optimization | 2 2 10 le-7 0.99

Table 3. 3 : Parameters values of the PSO algorithm.

63

R(k k Ca(k
(+) e(k) oo 1 40 e (k)
: KI
P s
_/\ Z ' NN &)
PSO/NN [g — | Model | +¢~
' e.(k

Figure 3. 12 : Control loop of the CSTR model using the PSO-based PID controller.
5.4. Simulation Results

To highlight the control performance of the ANNPID, the AFSNNPID and the PSO-based
PID controllers, a comparative study of the abovementioned controllers, considering various
operating conditions, is carried out. In the first simulation, we have used a reference trajectory
composed of three steps having duration of 4 min and amplitudes of 0.08, 0.1 and 0.12 mol/1,
respectively. Figure (3.13) shows the obtained control results. Table 3.4 gives the MSE, MAE
and RMSE values computed over the time interval of the simulation.

Reference trajectory and system output

__ 014 |
S
© 0.12 Reference
£ —-=-= AFSNNPID
E 0.1 S ";" ANNPID
Um .4~:.' PSO-PID
1 é’ 1 1 1]
0.08
2 4 6 8 10 12
Time(min)
0.04 Error between reference trajectory and system output
£ ~-=-= AFSNNPID
2 0.02 : e e ANNPID
= ﬁ_\ . S e PSO-PID
g T, %\ ,' ..“‘
E 0 ::!:::':,“‘?-"—' Naotes] Seu
Um E,/'
_0'02 L L 1 1 L
0 2 4 6 8 10 12
Time(min)
110 . . Controll signal . .
£ £ |
€ 105 £/ | =-=-—AFSNNPID
E P /'-"/"j’/ S [ANNPID
= 100 [e P R PSO-PID
o Weaya. L
o
95 L 1 1 1 L
0 2 4 6 8 10 12
Time(min)

Figure 3. 13 : Control results for the case of multistep reference trajectory.

AFSNNPID ANNPID PSO-PID
MSE (- 1075) 1.0605 1.3137 2.5413
MAE (- 1073) 0.7637 1.0616 1.9207
RMSE(- 1073) 3.2566 3.6245 5.0411

Table 3. 4 : MSE, MAE and RMSE in the case of multistep reference trajectory.

64

From figure (3.13) and table (3.4), it can be seen that a good tracking accuracy of the
reference trajectory is obtained for all implemented controllers. However, the proposed
AFSNNPID controller has better control performance, in terms of the tracking accuracy and
the settling time, than the other controllers.

The aim of the second simulation is to assess the control performance when using a
sinusoidal reference trajectory with a magnitude of 0.02 (mol/l), a bias of 0.1 (mol/l) and a
frequency of 1/120 (Hz). Figure (3.14) shows the obtained control results. Table 3.5 gives the
MSE, MAE and RMSE values computed over the time interval of the simulation.

Reference trajectory and system outp-+

—~ 0.14 Reference
% ————— AFSNNPID
g 012 ANNPID
= 0.1 e

(4]
o #

0.08

6
Time(min)

0.02 Error between reference trajectory and system outnut
= o~ [] T, | ~==-— AFSNNPID
> £ T g Y Sl ANNPID
o /&~‘:"\~.‘\‘ &‘f N\:".‘\‘-‘ ‘/ \‘<‘;. - PSO-PID
E 0 & S, {3.'. N3 \ '.";’ b
= Nl A Nl A o
:— .\a‘?:—-':‘.o ‘:. ‘.;:._ 1:" 9 K ‘-{:.: ''''' &

Um ; .t 1 .o ‘..’-
_.0.02 L 1 1 L 1
0 1 2 3 4 5 6
Time(min)
_ 110 . . Controll signal . .
.E tﬁr-;:..z-...%. ?/..’-"‘::.:s.,\ t‘/‘,r-'-:'},..:.\
E 105 B ét{: = ‘.\"\.“ > /;,{' ...I ‘%(.;. ’\"‘ 3 /:'../" /'... %“Q'. .’-,\ -
= Vo, ™ . R £ i
— 100} 3 \‘\. {{: il \:».”. e :,.{';_. i AFSNNPID
t'—u \\'-.-9;" \‘{';w"r ANNPID
o 95 i H { " [— PSO-PID
0 1 2 3 4 5 6
Time(min)
Figure 3. 14 : Control results for the case of sinusoidal reference trajectory.
AFSNNPID ANNPID PSO-PID
MSE (- 107°) 3.4897 6.1121 16.3442
MAE (- 1073) 5.2729 6.9953 11.4289
RMSE(-1073) 5.9073 7.8180 12.7845

Table 3. 5: MSE, MAE and RMSE in the case of sinusoidal reference trajectory.

65

According to figure (3.14) and table (3.5), it can be seen that a good tracking accuracy of
the sinusoidal reference trajectory is obtained for both AFSNNPID and ANNPID controllers.
However, in the case of the PSO based PID controller, degradation in the control performance
Is observed, in particular in terms of the settling time. Also, in this simulation, the proposed
AFSNNPID controller was found to have better control performance, in terms of tracking
accuracy and stabilization time, than the other controllers.

In order to evaluate the robustness of these controllers against external disturbances in the
input, in the third simulation, a step reference trajectory with a duration of 10 min and an
amplitude of 0.11 (mol /1), was used. During the control process, a leak in the coolant flow q.
(CSTR input) with an amplitude of 5 (I\min) in the time interval [4min 7min], is added.
The obtained control results are given in figure (3.15). The MSE, MAE and RMSE values
are computed over the time interval of the simulation and given in table (3.6).

Reference trajectory and system output

E Reference
> 0.14f ’E ~---— AFSNNPID
E B ’ _\ ANNP'D
; o-oli é,::,» \ ,f‘ﬂ:-"' ’ E:...\ PSO'PID
T ¥
0.08 1 1 1 1
0 2 4 6 8 10
Time(min)
0.02 Error bf.'tween referfnce traiectorlv and svstemloutput
= N N
° 0 [Cortiny RN !\ \ess
E i/ |~ AFSNNPID
= -0.02}] e ANNPID
u‘“ PSO-PID
-0.04 1 L . X T
0 2 4 6 8 10
Time(min)
115 : IControl signalI
= s AFSNNPID
= wm o . ANNPID
~ i !." \! “.“. PSO-PID
= 105 e]
O'u -
100 1 1 1 1
0 2 4 6 8 10
Time(min)
Figure 3. 15 : Control results in the presence of an input disturbance.
AFSNNPID ANNPID PSO-PID
MSE (- 10‘5) 1.6211 1.7068 2.7426
MAE (- 10‘3) 0. 8690 0. 9945 1.7972
RMSE(- 10‘3) 4.0263 41314 5.2369

Table 3. 6 : MSE, MAE and RMSE in the presence of an input disturbance.

From figure (3.15) and table (3.6), it can be concluded that the three controllers can
compensate very quickly the input leakage and a good tracking accuracy of the reference
trajectory is obtained, even during the perturbation. Hence, it can be concluded that these
controllers are robust against input disturbances. However, in the case of the AFSNNPID, the
response time needed to compensate the input disturbance is smaller than that obtained using
the ANNPID and the PSO based PID controllers.

66

In the last simulation, the robustness of the considered controllers against output
disturbances is evaluated. The chosen reference trajectory is exactly the same as that used in
the third simulation. Although, in this simulation, during the control process, a leak in the
mixture concentration C, with an amplitude of 0.011 (mol\l) in the time interval [3min
7min], is added. The obtained control results are given by figure (3.16). The MSE, MAE and
RMSE values are computed over the time interval of the simulation and given by table (3.7).

Reference trajectory and system output

. 0.14
= Reference
S 0.a12f k. |~ —AFSNNPID
E — Vita I‘(:-‘",. e ANNPID
E 0.1 o ‘v-*" wwseene PSO-PID
U 0-08 1 1 1 1
0 2 4 6 8 10
Time(min)
0.02 Error bgtween refergnce trajector:v and system output
=% —-=-— AFSNNPID
=) {;._"' F._. wreeeees ANNPID
é 0 |~ AN \(5‘\‘?__ woresees PSO-PID
o 4
_0.02 1 1 L 1
0 2 4 6 8 10
Time(min)
110 . IControl signall .
.E IS : N
E g ‘».\~
S~ AT v
i 105 'F i oo AFSNNPID
CN i I (R (R L ANNPID
% oo , , , --wersre- PSO-PID
0 2 4 6 8 10
Time(min)
Figure 3. 16 : Control results in the presence of an output disturbance.
AFSNNPID ANNPID PSO-PID
MSE (- 1079) 3.9231 45205 8.7088
MAE (- 10_3) 0. 4475 0.5944 1.0777
RMSE(- 10‘3) 1.9807 2.1261 2.9511

Table 3. 7 : MSE, MAE and RMSE in the presence of an output disturbance.

From figure (3.16) and table (3.7), it can be seen that the output disturbance is compensated
for all considered controllers. We notice that the AFSNNPID required a smaller time to
compensate the output disturbance than the ANNPID and the PSO based PID controllers.

6. Control of a 3-DOF robot arm manipulator

6.1. Experimental Setup

To demonstrate the effectiveness of the AFSNNPID, the ANNPID and the PSO based
PID controllers, the control of the three degrees of freedom (3-DOF) robot arm manipulator,
shown in the experimental setup of figure (3.17), is considered. Two 24V 12RPM DC motors
are used to generate the rotational movements of joint 1 and joint 2 of this manipulator, and
the 12V 170RPM DC motor is used to vertically move its electromagnet end effector. The
structure of the considered 3-DOF robot arm manipulator is shown in figure (3.18), the
parameters values of the considered manipulator are gathered in table (3.8). In this
experimental setup, three H-bridges DC motor drivers, the electromagnet MOSFET-based

67

switch and the DC power supply are carried out and used. The control algorithm is
implemented using the DSP board TMS320F28335.

parameter value parameter value
my 2.3 (kg) Iy 0.138 (m)
m, 0.6 (kg) [, 0.1965 (m)
ms 2.36 (kg) l5 0.34 (m)
dy 0.175 (m) d, 0.165(m) |

Table 3. 8 : Parameters values of the considered manipulator.

In order to calculate the joint coordinates for a given set of end effector coordinates,
the inverse kinematics model, given by the following equations, is used:

(x* +y%) — (L1 + L3)
2% Ly*L,

0, = acos(
(3.57)

0, = atan2(y,x) — atan2(L, * sin(6,),L; + L, * cos(6,))

where: x,y are the end effector coordinates (expressed in meter), 6,,6, are the joints
coordinates (expressed in rad), and L, and L, are the first link length and the second link
length (expressed in meter), respectively.

The control block diagram is given in figure 3.19, where: 6, and 8, are the angles of
joint 1 and joint 2 respectively, z is the end effector altitude, u,, u,, u; are the calculated
control voltages, u,,, is the applied voltage on the electromagnet end effector, Ky Ki; and

Kq; for j = 1,2,3 are the gains of the PID controllers, Rg , Rg, and R, are the reference
trajectories for 6,, 6, and z respectively.

Figure 3. 17 : 3-DOF robot arm manipulator experimental setup.

68

6,
A _>x2 \
m;
Zl v
d, K Zo ms l3
4 —>X3VL
A — X1
m
01 1 Z3
dy
Z0
v :xo
Figure 3. 18 : 3-DOF robot arm manipulator diagram.
Rem (k) Kem ue‘"l (k)
6, (k)
Ry, (k e, (k u, (k Ly
0, (K) 149) PID; 1(K) Robot Arm 6, (k)
+ ——Q;b
. K u, (k) | Manipulator
P1 2
L. 2k)
Optimizer; Kp, ug(k)‘
Y
R, (K} &:(k) |
= b
sz ‘
K,
Optimizer; Ky
< 2
RZ(k) eB(k) PID;
+_
sz
i3
Optimizerz Ky
N

Figure 3. 19 : 3-DOF robot arm manipulator diagram.

69

The block, named optimizer, can be an FSNN, a NN or a PSO algorithm depending on
the implemented controller (AFSNNPID, ANNPID or PSO-PID).

6.2. Robot arm manipulator modeling

As stated earlier, the first step in designing the ANNPID, the AFSNNPID and the PSO
based PID controllers, is obtaining a model for the 3-DOF robot manipulator. In the case of
the ANNPID and the AFSNNPID controllers, the obtained model is used to estimate the value
of the system Jacobian. In the case of the PSO based PID controller, the obtained model is used
to implement the online adaptation of the controller. By applying random voltages to the inputs
of the manipulator (uq,u,, us;) and measuring the corresponding outputs (8, 6,,z), two
different datasets, which cover all possible system working regimes, have been generated.
The first is used to train the FSNN model and the NN model, the second is used to test the
trained models.

The NN model is a set of three MISO MLPs, (6; — NN,0de1, @2 — NNmodet» Z — NNpodet)-
e The (6; — NN,,,4.1) has the following architecture:
o The input layer contains four inputs: [u, (k), u,(k — 1),6,(k — 1), 6, (k — 2)].
o One hidden layer containing 8 neurons with a sigmoid activation function.
o The output layer, which contains a single neuron with a linear activation function,
gives the estimated output (8, (k)).
e The (6, — NN,,,q4¢1) has the following architecture:
o The input layer contains four inputs: [u,(k), u,(k — 1), 6,(k — 1), 0,(k — 2)].
o One hidden layer containing 8 neurons with a sigmoid activation function.
o The output layer, which contains a single neuron with a linear activation function,
gives the estimated output (8, (k)).
e The (z — NNp,yqe:) has the following architecture:
o The input layer contains four inputs: [us;(k), us(k — 1),z(k — 1), z(k — 2)].
o One hidden layer containing 4 neurons with a sigmoid activation function.
o The output layer, which contains a single neuron with a linear activation function,
gives the estimated output (Z(k)).

The FSNN model is a set of three MISO FSNN, (6; — FSN Ny,0de1, 82 — FSN Npoder, Z —
FSNNmodel)-
e The (6; — FSNN,,,q4¢;) has the following architecture:
o The input layer contains two inputs: [u, (k), 6, (k — 1)].
o The hidden layer contains 10 nodes such as: (N; =5, N, = 5).
o The output layer, which contains a single node with a linear activation function,
gives the estimated output (8, (k)).
e The (6, — FSNN,,,4¢:) has the following architecture:
o The input layer contains two inputs: [u,(k),8,(k — 1)].
o The hidden layer contains 10 nodes such as: (N; =5, N, = 5).
o The output layer, which contains a single node with a linear activation function,
gives the estimated output (8, (k)).
e The (z — FSNNy,,qe:) has the following architecture:
o The input layer contains two inputs: [uz(k),z(k — 1)].
o The hidden layer contains 6 nodes such as: (N; = 3, N, = 3).
o The output layer, which contains a single node with a linear activation function,
gives the estimated output (Z(k)).

70

Figure (3.20) and (3.21) show the responses of the obtained models and the system using
the second dataset. Table (3.9) gives the values of the RMSE and the correlation coefficient

(R?), for both models.

RMSE R?
0, — FSNNpogel 0.00706022581570082 0.999999979345815
0, — FSNN,,04e1 0.222668777573781 0.999983536274307
Z —FSNN,,,de1 0.00521404903853009 0.999998065136512
0, — NNyyoger 0.00838143327553178 0.999999970889062
0, — NN, oder 0.721650679061039 0.999827751814977
Z — NN, odel 0.0432449726288857 0.999866805079681
Table 3. 9 : RMSE and R? for both 3-DOF manipulator models.
6; and 6, error between 6; and 6,
80 \/\/ \/
(o1} L
)
2 L
c 0
m 3
0 20 40 60 0 20 40 60

6, and 92 error between 6, and ég
: " : :
@ 50 | 0.6
2 0 04}
= 0.2
S -50 /\ 0 Heavemrtisnsan
0 20 40 60 0 20 40 60
7 and 7 error between Z and 7
€10} 21N o6}
£, L = 0.4}
% S 0.2}
0
™ 0 H H A i H
0 20 40 60 0 20 40 60
time(s) time(s)

Figure 3. 20 : Test results of the obtained 3-DOF manipulator NN model.

71

#; and él error between #; and él
W -
T40 j\/ \ /_A/ \ 1
() ! .
- 0
1) 1
] e T i b
0 20 40 60 0 20 40 60
0, and ég error between 6, and éz

angle (deg)

-
507
0
-50 | /\
0 2l0 4.0

0 20 40 60

7 and Z error between Z and 7
T Z T T T
10} 5
=S T == Z 0.05
= O 0
©
N
0 i 1 -0.05 t i i i
0 20 40 60 0 20 40 60
time(s) time(s)

Figure 3. 21 : Test results of the obtained 3-DOF manipulator FSNN model.

From figure (3.20) and (3.21), it can be seen that the models output and the system
output are superposed, and the modeling error is quite small for all obtained models.
According to table (3.9), it can be concluded that the obtained models are quite accurate.

6.3. Experimental results

The ANNPID, the POS based PID and the AFSNNPID controllers are coded and
implemented on the TMS320F28335 DSP board using a sampling period T, = 10ms, the
FSNN and NN models previously obtained. The PWM (Pulse Width Modulation) signals
required to drive the H-bridges are generated using this board, with the appropriate duty
cycle value given by the implemented controllers. The DSP board is also used to measure
the joints angles and the end effector z-position of the robot arm manipulator. The parameters
values of the three FSNN used to compute the three AFSNNPID controllers are given in

Table 3.10.

T, w1 Ny
First FSNN 720 0.0087 5
Second FSNN 720 0.0087 5
Third FSNN 800 0.00785 3

Table 3. 10 : Parameters values of the three FSNN used to compute the three AFSNNPID
controllers.

72

To highlight the control performance of the implemented controllers, a comparative
study of these controllers, considering various operating conditions, is carried out. In the
first experiment, sinusoidal reference trajectories are used and the robot arm manipulator is
free of load. Disturbances with amplitudes equal to [30?; 30°; 30 mm] are added to 8, and
6, and Z — amplitude respectively, at the time interval [10s; 20s]. The obtained results are
given in figure (3.22). For each controller and for the same initial conditions, the values of
the MSE, the MAE and the RMSE are computed over the considered control interval and
gathered in table (3.11). The execution time of the control algorithm is very important
parameter to evaluate its computing efficiency and real time applicability. Starting the
considered control algorithms from the same initial conditions, the required time to obtain a
value of the control signal, using the TMS320F28335 DSP, is evaluated for each control and
given in table (3.11).

AFSNNPID ANNPID PSO-based PID
MSE 174.3711 181.6585 188.8117
MAE 8.5154 9.8597 9.1733
RMSE 13.2050 13.4781 13.7409
Computing time(ms) 0.7232 0.8023 3.5263

Table 3. 11 : Computing time, MSE, MAE and RMSE values for each controller.

It can be seen that a good tracking accuracy of the reference trajectories is achieved
and the disturbances effect is compensated in case of the three controllers; however the
AFSNNPID controller gives better control performance, than the other ones. It is clear from
table (3.11) that none of the controllers exceeds the sampling time (T; = 10ms), however,
the AFSNNPID has the smallest computing time.

In the second experiment, the control objective is to force the robot arm to pick and
drop three different loads from a given initial location to a given final location. Table (3.12)
gives the weight value, the initial location and the final location of each load. The
corresponding reference trajectories are generated from the cinematic model of the
manipulator. Figure (3.23) shows the control performance of each controller and table (3.13)
gives the corresponding MSE, MAE, RMSE and the computing time values.

weight Initial location (x, y) Final location (x, y)
Load 1 0.3Kg (0.2m, —0.1m) (0.2m, 0.1m)
Load 2 04Kg (0.2m,—0.2m) (0.2m, 0.2m)
Load 3 1.4Kg (0.1m,—0.15m) (0.1m, 0.15m)

Table 3. 12 : Weight values and locations of the used loads.

AFSNNPID ANNPID PSO-based PID
MSE 1095.8 1125.4 1086.5
MAE 19.9691 20.6884 19.8710
RMSE 33.1022 33.5466 32.9617
Computing time(ms) 0.7276 0.7947 4.5856

Table 3. 13 : Computing time, MSE, MAE and RMSE values in case of different loads for
each controller.

— Ry, and 6, error between Ry, and
%5 40 - 7 1 20
27 / ; / . 0
= J -
2 40l _ N/ 1 -20t r -
(1°]

(0] 10 20 30 (0] 10 20 30
— Ry, and 0> error between Ry, and
& 40F 1 1 ’ 20}
L I i/)
2 a0l | [/. 1 -20} :
2 (o) 10 20 30 (0] 10 20 30
= Rz; and Z error between R; and
£ a0f P,] 20f
S
% 0 |// 20} -
S o 10 30 0 10 20 30
© tlme(s)(a) AFSNNPID time(s)
. Rg, and 01 error between Ry, and
%o 40 !
k) / 20 \
[=Ye]
£-a0l -20 | -
= (0) 10 20 30
- Rgz and 92 error between Ry, and
%0 40 [
k) / 20 \
@ O /—‘ 0 F—%—
=y -20 | :
= .
2 400 (0) 10 20 30
= R and Z error between F; and
£ a0} T 1 20f ’
T 20¢ i f 1 (o)
=1 = [
%_ o) for 20]
s (o) 1(t)' (2)0 30 (0) 1(t)° (2)0 30

ime(s ime(s
® (b) ANNPID
Ry, and 6, error between Ry, and

(0] 10 20
Ry, and 6- error between Ry,

40 } / 20 | \ 1
(0] -I/ /—' 0 F—
20 (0] 10 20 30

30
and

 AVAVAVE I S

amplitude(mm) angle(deg) angle(deg)

Figure 3. 22 : Control results of the free load robot arm.

(0] 10 20 30
R; and Z error between FR; and
a0 | o 1 20}
20 A 5
0 _1// 20}]
(0] 10 (%0 30 (0] 10 (%0 30
time(s time(s
(c) PSOPID

73

01

01

02

01

amplitude(mm) angle(deg) angle(deg)

angle(deg)

amplitude(mm) angle(deg)

amplitude(mm) angle(deg) angle(deg)

100
50

100 |
50 ¢

-50 |
-100 |

100 |

Ry, and 6, error between R()l and
. ' ,' 1] 100F
\ i [0)
I ! -100 | -
0 50 100 150 0 50 100 150
Ry, and 0> error between Ry, and
L D] §
’ \ -50 |
-100 t i i i
100 150 (o) 50 100 150
RZ and Z ggror between R; and
TN—J“’_‘V—J/ |
50}]
(1)00 0 (o) 50 (1)00 150
tlme s time(s
() AFSNNPID
Ry, and error between Rol and
' ,' 1 7 100F \
[! -100 | y
() 50 100 150 0 50 100 150
Rp, and 6> error between Ry, and
]
I 1D 5 - =
/ \ -50 |
-100 t i i 1
100 150 0 50 100 150
RZ and Z tsegror between R; and
-50 | -
(1500 O (0] 50 (]).00 150
tlme s time(s
(b) ANNPID
Ry, and 64 error between Ry, and
7 ’] 100 F
‘ 11 o .
‘- -100 | -
(0) 50 100 150 (0] 50 100 150
Ry, and 65 error between Ry, and
el 1§ — T
' \, -50 | -
| i -100 L = =
(0) 50 100 150 (o) 50 100 150
Rz; and Z (;(Iiror between R; and
3 // \\ o
;,“,-—J_"IJ/ AL ol |
’ \\ -50 " 1
(0) 50 (]jOO 150 (o) 50 (1)00 150
time(s time(s
(c) PSOPID

Figure 3. 23 : Control results of the robot with different loads.

74

01

0

01

75

From figure (3.23) and table (3.13), it can be seen that a good tracking accuracy of
the corresponding reference trajectories is obtained for different load weights in case of the
three controllers. Comparing the MSE, the MAE and the RMSE values, given in table (3.23),
we note that the PSO based PID controller is more efficient in this experiment than the
AFSNNPID and the ANNPID controllers. However, it can be seen that the AFSNNPID
controller has the smallest computing time value.

In the third experiment, in order to create a gap between the system and the model
outputs, the model parameters values are changed to have a gap of 5° for both 6, and 6,,and
a gap of 5mm for the Z — amplitude. We have used a reference trajectory composed of
four steps having a duration of 10 second and an amplitude of [40,0,—40, 0] degrees, for
6, and 6,, and [40,0,—40,0] mm for Z — amplitude.

The computing time, the MSE, the MAE, and the RMSE values computed over the
control interval, when the model parameters values are changed, are given in table (3.14)
and in table (3.15) when the model parameters values are not changed. It can be seen that
the AFSNNPID controller presents the smallest values of the computing time.

From table (3.14) and (3.15), it can be observed that the difference between the
values of the MSE, the MAE and the RMSE, in both cases, is small and the AFSNNPID
controller gives better performance than the other controllers.

AFSNNPID ANNPID PSO-based PID
MSE 609.7726 609.7847 615.3655
MAE 22.8006 22.8559 23.2492
RMSE 24.6936 24.6938 24.8066
Computing time(ms) 0.7119 0.7990 8.1327

Table 3. 14 : Computing time, MSE, MAE and RMSE values when the model parameters
are changed.

AFSNNPID ANNPID PSO-based PID
MSE 607.8042 608.6521 614.5759
MAE 22.7684 22.7794 23.1389
RMSE 24.6537 24.6709 24.7906
Computing time(ms) 0.7094 0.7915 6.6315

Table 3. 15 : Computing time, MSE, MAE and RMSE values when the model parameters
are not changed.

7. Conclusion

In this chapter, three Al-based PID controllers, namely the ANNPID, the AFSNNPID
and the PSO-based PID, have been considered. The AFSNNPID controller uses the Fourier
series neural network to compute and online adjust the gains of the conventional PID
controller. In fact, the Fourier series neural networks have a simple architecture and can be
easily trained using the simple Delta rule. The implementation procedure of the proposed
controller is simple and requires only designing two FSNN; the first one allows estimating
the system Jacobian and the second is used to obtain the PID controller gains. The stability
of the proposed controller has been proved using the small gain theorem and its effectiveness
in controlling highly nonlinear systems has been experimentally assessed.

To assess the effectiveness of the ANNPID, the AFSNNPID and the PSO-based PID
controllers, the control of the continuous stirred tank reactor and the 3-DOF robot arm
manipulator, through simulation and experimental studies, has been investigated. The

76

simulation and the experimental results have shown that these controllers give good control
performance in terms of the tracking accuracy and the robustness against external
disturbances and dynamic system variation. However, the proposed AFSNNPID controller
do not require a large computing time, which allows it to be used in several real time
applications. Indeed, the AFSNNPID controller has a simple design procedure and can be
used to control any nonlinear system.

77

CHAPTER 4

NEURAL NETWORK MODEL PREDICTIVE CONTROL BASED ON META
HEURISTIC OPTIMIZATION

1. Introduction

In this chapter, after formulating the problem of model predictive control and using
neural networks and the meta heuristic optimization algorithms (TLBO, I-TLBO and
ETLBO) given in the second chapter, three nonlinear model predictive control strategies are
developed. The design and implementation procedure of the proposed controllers is given
and their efficiency is evaluated both in simulation and experimentally.

2. Neural Network based model predictive control

2.1. Model predictive control principle

Any Model Predictive Control (MPC) strategy is based on the use of an explicit model
to predict the future behavior (§(k + ilk), (i =1,...,N,)) of the controlled system over a
finite prediction horizon N,,, then a cost function is optimized over a finite control horizon
N,, to obtain a control sequence (u(k + ilk), (i = 0,N, — 1)).

y(k + i|k) is the predicted value of the system output at the sampling time (k + i) which
is calculated at the sampling time k, and w(k + i|k) is the control signal value at the
sampling time (k + i) which is calculated at the sampling time k. Usually, the control
horizon is smaller than the prediction horizon (N, < N,), so the control signal is taken

constant beyond the control horizon (u(k + ilk) = u(k + N,, — 1]k) For N, < i < N,).

After calculating the sequence of the control signal, only the first element is applied to
the controlled system. The MPC strategy can be summarized by the following steps:

e Using the system model, the future values of the system outputs are calculated
over the prediction horizon N,,.

e A desired reference trajectory must be specified at least over the prediction
horizon N,,.

e A control sequence that minimizes a given cost function is computed. Only the
first element of this sequence is applied to the controlled system.

These steps are repeated at each sampling time.

To simplify the notation, we use y(k + i) instead of y(k + i|k) to denote the output future
values obtained at the sampling time k, and wu(k + i) instead of u(k + i|k) to denote the
control future values computed at the sampling time k.

2.1.1. Cost function

The cost function includes all the desired control objectives over the prediction and
the control horizons. The common used cost function is given by following quadratic form:

78

e The error between the desired reference trajectories and the predicted system
outputs ¥ (k).
e The control signal increment (Au(k)).

N3
J(@u(), 900, c0) = Y [0k +i/8) = el + D) Q90 + i/k) = c(e +)]
o (4.1)

Ny
+Z[Au(k +i— 1R Aulk +i—1)]
i=1
where, C (k) is the desired reference trajectory, Au(k) = u(k) —u(k — 1) is the control
increment, and N; and N, are the lower and the upper limits of the prediction horizon (N, =

N, — N; + 1), respectively. The weight matrices Q and R are semi positive defined and
positive defined matrices, respectively.

Generally, the value of N; is chosen according to the delay time of the controlled
system and the control horizon N,, must not exceed N, (1 < N,, < N,). In some cases, to
reduce the complexity of the optimization problem, the weight matrix R is chosen to be a
NULL matrix, and the weight matrix Q is chosen to be an identity matrix. Therefore, the
optimization problem, given by equation (4.1), become:

N3
J(au(k), 9(K), c(k)) = Z 19k + i/k) = el + D) 4.2)

i=N1
2.1.2. Constraints

One of the most important strengths of the MPC technique is its constraints handling
capabilities. In fact, the majority of physical systems have some limitations imposed on their
variables, which have to be included in the optimization problem in the form of different
constraints. Most of these constraints can be characterized as follows:

e Constraints on the inputs:

Umin < Uk + 1) < Upax i=01,..,N,—1 (4.3)

e Constraints on the inputs increments:

Ay < Au(k +10) < Auypgy i=01,..,N,1 (4.9)

e Constraints on the outputs:
Ymin < Yk +1) < Ymax [=Ny...,N, (4.5)

Other types of constraints could be considered, such as: constraints on the outputs
increments, constraints on the state variables of the controlled system, constraints on the
increments of the state variables ... etc.

By considering the source of their origin, the constraints can be classified in two
categories:

e Hard constraints: they are imposed by physical limitations of the controlled
system. Therefore, they cannot be exceeded. In case of violation of any of these

79

constraints, a physical damage in the controlled system is occurred immediately.
Inputs constraints are usually considered as hard constraints, the origins of these
constraints are the working limit ranges of the actuators.

e Soft constraints: these constraints are imposed by technological nature, safety,
economic and environmental objectives. Hence, they can be physically exceeded.
However, this violation must be temporary and under special conditions. Outputs
constraints are usually considered as soft constraints.

By tacking in account the imposed constraints, the optimization problem of MPC is
given as follows:

N3

J(du(k), (), c(k)) = z [+i/k) = etk + D) @ (9Ck + i/k) = ek +)]
l;::ll
+ Y [Autk+i—DTRAu(k +i—1)]
2

(4.6)
Subject to:

Au(k+i—1)=0fori > N,
ymin < j\l(k + l) < ymax fOI‘ = Nl' ...,N2
Umin < Uk +1) < Upg, for i =0,1,...,N, — 1
Aupin < Au(k + i) < Aupgy fori =0,1,...,N, — 1

2.1.3. Prediction model

As mentioned above, the future outputs of the controlled system are predicted using
a suitable model of the system. Therefore, the first step in designing any MPC algorithm is
obtaining a model that have the ability to mimic the dynamics of the controlled system with
negligible error. Three different approaches that can be used to design the prediction model
are presented as follows:

e The black box approach: The input/output database is required to build such
models. The prior knowledge about the system dynamics are not required.

e The white box approach: The input/output database is not needed; however, the
system’s balance equations must be known to build this model. The white box
model gives better performance than the black box model; however, it is difficult
to build such models.

e The gray box approach: this approach is a hybrid between the black box and the
white box approaches, it requires some of the system balance equations and an
input/output database. This approach gives good modeling performance and it is
less complex than the white box approach.

Several models can be used to predict the future behavior of the controlled system.
However, the chosen prediction model should be the simplest one that can give sufficiently
precise predictions. In case of a linear prediction model, and no imposed constraints, the
optimization problem becomes a quadratic function, which has a unique global minimum;
therefore, an analytical solution can be obtained. However, the most physical systems are
nonlinear and subjected to different inputs and outputs constraints. To obtain acceptable

80

performance, nonlinear models should be used and the different constraints must be
incorporated in the optimization problem. In this case, analytical solutions, to the non-
convex and nonlinear optimization problem, do not exist and numerical optimization
methods should be used.

2.2. Nonlinear model predictive control

Although, linear MPC techniques give good control performance in many practical
applications [87-89] , in the case of highly nonlinear systems, severe degradations in the
control performance can be observed. Therefore, to ensure good control performance,
nonlinear MPC (NMPC) methods that use a nonlinear prediction model should be
investigated. In fact, a lot of attention was given to the NMPC techniques, and several control
algorithms were proposed [90-92,140]. The main difficulties in designing any NMPC
algorithm are obtaining an adequate nonlinear model for the system to be controlled and
online solving the non-convex and nonlinear optimization problem. Obviously, the
efficiency and computational requirement of the controller depend extremely on the
accuracy and simplicity of the used model. Actually, there is no clearly suitable modeling
approach to represent general nonlinear systems. Hence, several nonlinear models were
developed and used in predictive control, such as: Volterra series [93-95], neural network
models [88,90,100], fuzzy logic models [91,97,98], fuzzy neural network models [148-
150].... etc.

Using a nonlinear prediction model implies a non-convex and nonlinear optimization
problem, which requires a complex and time-consuming optimization algorithm to find a
solution for the optimization problem. The objective of most NMPC techniques is to find a
suboptimal solution that satisfies the desired control performance.

To solve the predictive control problem, the following approaches can be envisaged:

e NMPC using successive linearization: the goal of this method is to use a
prediction model that gives better performance than that of a linear model and
maintain the quadratic form of the optimization problem. Therefore, at each
sampling time, the prediction model is linearized around the current operating
conditions. After that, the linearized model is used with any linear MPC strategy
[81,83,84,229,230]. Due to the approximation of the prediction model with a
linear one, this strategy is considered as a suboptimal approach. The NMPC with
successive linearization gives good control performance if the controlled system
have slow dynamics, in this case, it is not required to perform the linearization at
each sampling time, but rather after a given number of samples, this number
depend on the dynamics rate of the controlled system. It is clear that, in the case
of systems with fast dynamics, such approach could be insufficient.

e NMPC using nonlinear predictions and linearization: obviously, the previous
approach is limited especially when it comes to control nonlinear systems with
fast dynamics. Hence, to enhance the control performance, in this approach, the
superposition principle is used, where the system response is decomposed into
free and forced responses. The aim of this decomposition is to facilitate solving
the optimization problem. Therefore, a nonlinear prediction model is used to
evaluate the free response while a linearized one is used to evaluate the forced
response. The resulting optimization problem is quadratic and convex as in the
precedent approach. But, due to using a nonlinear model to calculate the free

81

response, this approach gives better control performance than the precedent
approach.

e NMPC using nonlinear optimization method: in this approach, a nonlinear
prediction model is used to generate the response of the controlled system, and
the associated optimization problem is nonlinear and non convex. The
optimization methods that can be used in this case can be classified into the
following two main families:

» Deterministic numerical methods: these methods gives a numerical The
following methods can be used to solve the optimal control problem:

v Hamilton-Jacobi-Bellman partial differential equation [231,232].
v' Euler-Lagrange differential equation [233,234].
v" Direct methods [235].

» Stochastic numerical methods: the aim of these methods is to solve the
non-quadratic and nonlinear optimization problem using stochastic meta-
heuristic algorithms. These algorithms are based on fundamental
elements that produce evolutionary intelligent behavior in natural
systems. Meta heuristic algorithms are known of their ability to handle
the most optimization problem; they have good performance, and could
locate adequate solutions in a reasonable time. In fact, many research
works have used meta heuristic optimization methods to solve the NMPC
optimization problem. Particularly, the following methods have been
used:

v Genetic algorithm [104,105].

v' Particle swarm optimization algorithm [90,106,107].
v’ Artificial bee colony [96,97].

v" Evolutionary algorithm [108].

2.3. Neural network based model predictive control

Neural networks are capable of approximating any given function with arbitrary
precision [236]; they are universal approximators. Due to their simple structure and good
precision, neural networks are very suitable for NMPC. Several architectures of neural
networks can be found in the literature. Such as: the feed forward neural networks, the
recurrent neural networks, the radial basis neural networks and the EIman network. Each one
of these architectures has its own properties and can be used to build the prediction model
used in NNMPC. To obtain such models, a training step of the network weights is required.
Several training algorithms have been proposed, such as: the quasi-Newton method [237],
the Levenberg-Marquardt algorithm [238] and the famous back propagation algorithm [239].
In the present thesis, the Multi-Layer Perceptron (MLP) with one hidden layer and the back
propagation algorithm are used.

Assuming that, the controlled system is a MIMO process which has m inputs and n
outputs, and a MLP NN is used as the prediction model, the control block diagram is given
by figure (4.1).

82

c(k+ Ny),...,.c(k+N>)

& N Uk)
—*| Cost function optimization ;f y(k)
using a meta-heuristic System —
> algorithm P

Uk+1),..,U(k+N,—1)

¥(k + N4), .., ¥(k+ N3)

Neural Network

A A AA

Model
\. J
y(k) a0

= -

»

Figure 4. 1 : Control block diagram of the NNMPC.
2.4. Solving the NNMPC optimization problem

The NNMPC optimization problem, generally defined by equation (4.6), must be solved
to obtain the desired control action.

2.4.1. Constraint handling

One of the interesting advantages of predictive control is its ability to efficiently and
directly handle the constraints by incorporating theme in the formulation of the optimization
problem. In the present work, the input constraints are considered as hard constraints. They
are directly handled by bounding the search space using a preserving strategy. The output
constraints are considered as soft constraints; they are handled using the penalizing
approach.

2.4.1.1. Output constraints

As cited above, the penalizing approach is used to handle the output constraint. In this
approach, to heavily penalize any constraints violation, new variables, called slack variables,
are added to the cost function. Using this approach, the optimization problem given by
equation (4.6) is reformulated to have the following expression:

N>

J(@u(), 960, c(0) = Y |Gk +i/6) = el + D) Ty (9K +i/k) = ek +D)]
i=N1
Ny,

+) [k +i = DR Bu(k +i = 1)]

i=1

4.7)
Subjected to:

Au(k+i—1)=0fori > N,
Umin < Uk + 1) < Upgy for i =0,1,,...,N, — 1
Ay < Au(k +10) < Auyg, fori=0,1,,...,N, — 1

83

where, the output-dependent weight function I}, (y) is chosen to replace the imposed output
constraint and has the following expression:

Ty, (1) 0 0 \
noy=| o U T (48)
0 0 Iy, (yq)/
such as:
A Iy, (0) Y ming = Vi =Y nax,
G590 = Iy,(0) [1 + Ciy] otherwise

where, i = 1,...,q (g is the number of outputs) and Ci,, is used to define the degree of
penalization: Ciy = 0 indicates no constraint, while Cl-y = oo indicates hard constraint.

24.1.2. Input constraints

In population-based algorithms the input constraints can be systematically handled by
bounding the search space to the inputs admissible values. The inputs constraints to be
handled are:

e Constraints on the input increment.
Aupin < Au(k) < Ay
e Constraints on the input magnitude.
Umin < U(k) < Upmax
These constraints can be combined into one single constraint as follows:

Apin < Au(k) < Aty
= Aupin +ulk — 1) < Au(k) + u(k — 1) < Aupygy +u(k — 1) (4.9
- Aupin +ulk — 1) < u(k) < Auypg, + u(k — 1)

According to the constraint on the input magnitude and equation (4.9), the upper and
the lower bounds of the input magnitude will be given by:

Lmin(k) < u(k) < Lmax(k) (410)
where:

Ly (k) = {“min if Umin > Abin +u(k — 1)
- Atmin +u(k —1) otherwise

I (k) — {umax if Umax < Aumax + u(k - 1)
max AUy +ulk —1) otherwise

84

Equation (4.10) gives the upper and lower limits of the search space. Finally the NMPC
optimization problem becomes:

N>

J(Bu(k), 9(k), c(k)) = Z [k +i/k) = el + D) Ty (9K + 1/k) = ek + D)
i=N,
Ny

+Z[AuT(k +i— DRAu(k +i—1)]
2, (4.11)

Subjected to:

Au(k+i—1)=0fori > N,
Lmin(k) < u(k) < Lmax(k)

3. Proposed control algorithms

Assuming that the neural network prediction model is obtained and the parameters of the
NNMPC (N, Ny, N,, ¢, Ciy) are chosen, the proposed control algorithms are detailed in the

following subsections.

3.1. TLBO based NNMPC algorithm

In this algorithm, the basic teaching learning based optimization algorithm is used to
solve the constrained nonlinear optimization problem given by equation (4.11). Assuming
that the TLBO parameters (m, n and k,,,,,.) are established, the steps of this control strategy
(NNMPC-TLBO) are given as follows:

Step 1: Initialization
e Let us take the control inputs at the sampling time k for the i*" iteration as X]-ik (=
1, ... ,m), where m denotes the number of control inputs.
e Forj=1:m
o Fork=1:n
» Choose the initial solution X, using equation (2.15).
o End
e End
o =1
Step 2: Reference trajectory
e Specify the reference trajectory between k + N; and k + N,.
Step 3: Teacher phase
e Step 3_1: Determination of the teacher
o Fork=l:n
» Calculate the predicted values of the system outputs using the prediction
model.
> Evaluate the objective function F{ using equation (4.11).
End
Fkbest = Fll
For k=2:n
> If Fi<F,

85

v Fkbest = F’é'
V' Xjkvest = Xji
» End if
o End
Step 3_2: Mean result calculation
o Forj=l:m
» Calculate the mean result Mji using equation (2.10).
o End
Step 3_3: difference mean calculation
o Forj=l:m
» Fork=1:n
v’ Calculate the difference mean (d]‘f x) Using equation (2.11).
» End
o End
Step 3_4: Solution updating
o Forj=l:m
» Fork=1l:n
v’ Calculate the new solutions Xnewjikusing equation (2.12).
» End
o End
Step 3_5: Greedy selection
o Fork=1:n
» Using Xnewji « » calculate the predicted values of the system outputs using
the prediction model.
> Evaluate the objective function new_F{ using equation (4.11).
> Ifnew_F} <F}
v Fp = new i
v Ff, = Xnew},
» Endif
> If Fi<F,, .,
v Fkbest = Fli
V' Xikvest = Xj i
» Endif
o End

Step 4: Learner phase

Step 4_1: choosing the pairs to interact

o Choose randomly g pairs of solutions such that F} = F: where F} and F% are the
objective function values of X, and X5 respectively.

Step 4 _2: Solutions updating

o Forh=1l:q
> Update the solution Xnew/ using equations (2.13) and (2.14).

o End

Step 4_3: evaluating the new solutions

86

o Fork=1:n
» Using Xnewji «» calculate the predicted values of the system outputs using the
prediction model.
> Evaluate the objective function new_F{ using equation (4.11).
o End
o Fork=1:n
> If new_F} <F}
v Fi=new_F}
v X} = Xnewj,
> Endif
> If Fi<F,,.,
v Fkbest = Flé
V' Xjkpest = Xjk
» Endif
o End
Step 5: iterative process
o ifF, <€ ori>knpgy
o =1
o Goto step 6.
e Else
o i=i+1.
o Go back to step 3.
e End
Step 6:
e Apply the obtained control value (the first element of X; ;p.s:) 0N the system.
e Wait for the next sampling time, and then go back to step 2.

3.2. I-TLBO based NNMPC algorithm

In this algorithm, the improved teaching learning based optimization algorithm is used
to solve the constrained nonlinear optimization problem given by equation (4.11). Assuming
that the I-TLBO parameters (T,,, m, n and k,,,,) are established, the basic steps of the
NNMPC-ITLBO are given as follows:

Step 1: Initialization
e Let us take the control inputs at the sampling time k for the i*"* iteration as X}k ,(j =
1, ... ,m), where m denotes the number of control inputs.
e Forj=1:m

o Fork=l:n
» Choose the initial solution X]-lk using equation (2.15).
o End
e End
o i=1.

Step 2: Reference trajectory
e Specify the reference trajectory between k + N; andk + N,.
Step 3: Determination of the first teacher

87

For k=1:n
o Calculate the predicted values of the system outputs using the prediction model.

o Evaluate the objective function F} using equation (4.11).
End

F(Xteacher)l = Fl

i

For k=2:n
o If Fli<F(Xteache1‘)1

> F(Xteacher)l = F’é
> (Xteacher)1 = lek

o Endif

End

Step 4: Determination of the other (T,, — 1) teachers
Select the other teachers using equation (2.16)

Step 5: assigning groups to the teachers
Fork=1:(n—T,)

(@]

If F(Xteacher)l 2 Flé > F()_(teacher)z
» Assign the learner X}, to the teacher (X;eqcher)1
Else’ If F(Xteacher)z = F’é > F(Xteacher)3

> Assign the learner X. to the teacher (X;eqcher)2

Else, If Fixpaenerirys = Fk > Fixveacner)ry,

» Assign the learner X ,‘(to the teacher (X;eqcher)t,-1
Else

> Assign the learner X}, to the teacher (X;eqcher)t,

End

Step 6: Mean result calculation for each group
Fori=1:T,

o

o

For j=1:m
» Calculate the mean result Mji for each group using equation (2.10).
End

End

Step 7: Adaptive teaching factor and difference mean calculation
Fori=1:T,

@)
©)

©)

Calculate the Adaptive teaching factor using equation (2.17).
Forj=1:m
» Fork=1:n

v’ Calculate the difference mean (d}') for each group.
» End
End

End

88

Step 8: Learning through tutorial hours

o Fori=1:T,
o Forj=l:m
» Fork=1l:n
v’ Calculate the new solutions Xnew}kusing equations (2.18) and (2.19).
» End
o End
e End
Step 9: Greedy selection
e Fork=1:n

o Using Xnewjik , calculate the predicted values of the system outputs using the
prediction model.
Evaluate the objective function new_F{ using equation (4.11).
If new_F} < F}
> Fi = newi
> F}ik = Xnewjik
End if
If F’£<Fkbest
> Fy,.. =Fi
> Xikvest = Xj i
o Endif
e End

Step 10: choosing the pairs to interact
e Choose randomly q pairs of solutions such that F} # F} where F} and F} are the
objective function values of X, and X respectively.
Step 11: Self-motivated learning
e Forh=l.q
o Update the solution Xnewjik using equations (2.20) and (2.21).
e End
Step 12: evaluating the new solutions
o Fork=1:n
o Using Xnewji x» calculate the predicted values of the system outputs using the
prediction model.
o Evaluate the objective function new_F} using equation (4.11).
e End
o Fork=1:n
o Ifnew_F.<F]
> F! =new_F}
> ink = Xnewjik
o Endif
If F/i<Fkbest

> Fkbest = F’é

89

> Xj kbest = lek
o Endif
e End
Step 13: iterative process
o ifF, < € ori>knpgy

o =1
o Go to step 14.
e Else
o i=i+1.
o Go back to step 3.
e End
Step 14:

e Apply the obtained control value (the first element of (X;.qcner)1) ON the system.
e Wait for the next sampling time, and then go back to step 2.
3.3. ETLBO based NNMPC Algorithm

In this algorithm, the proposed enhanced teaching learning based optimization
algorithm is used to solve the constrained nonlinear optimization problem given by equation
(4.11). Assuming that the ETLBO parameters (m, n and k,,,,,) are established, the proposed
NNMPC-ETLBO algorithm is described by the flow chart given in figure (4.2).

4. Control of the 2-DOF robot arm manipulator

4.1. System presentation

To evaluate the performance of the proposed controller, the control of the model of
the 2-DOF robot arm manipulator, presented in [240], is considered. This planar robotic
manipulator is given by figure (4.3). The dynamic model of the manipulator is expressed as

follows:)
(G o) (B) e (b (1) + (=) @

Tr. . Tf,, are the control torques for joints 1 and 2, respectively,
Q11 =L + I, + myl2, + myl3 + myl%, + 2mylyl5c050, + mas (12 + 15 + 214 1,c056,).

le = Q21 = 12 + mzlcz-z + mzlllczcosez + m33(l% + l1l2C0592).

where:

Q22 = I + mylg, + my3l3.

Pll = —l1(291 + 92)9251'7192(1621112 + lzm33).

P21 = lllczéfSinez(mz + m33).

fi= b1q91- f2= b2qé2-

91q = Myle1g9cosB; + myg(le; cos(6; + 6;) + 1icos0;) + m33g9(l; cos(0; + 6,) +
l,cos6,).

92q = (Mg + mz3)gle; cos(6y + 0;).

The values of the different constants are given in table (4.1).

90

Start

\ 4

At the sampling time k, let us take the control inputs as X}k ,where: i = [1,...,n],
j = [1, ..., m]. Choose the initial solution using equation (2.15)

A 4

iteration = 1.
Specify the reference trajectory between k + N; and k + N,.

v

/Calculate the predicted values of the system outputs using the neural network model.\
Evaluate the cost function F} using equation (4.11).
Select the best solution as the teacher.
Calculate the difference mean for each control input using equation (2.11).
Using equation (2.12), update every solution X} , which become Xnew/,. 'lw
Using the new solutions Xnewj"k, calculate the predicted values of the system ‘
outputs using the neural network model

K Evaluate the cost function Fnewl. using equation (4.11). / ‘

Reject the new solution
and keep the old one.

Accept the new
solution and keep it.

Calculate the student grade SG; using equation (2.22).

Rank the students, from best to worst, according to the SG,‘; values.
Randomly select I (I € [30,50]%) to split the population into good and bad students.
Choose g pairs of solutions X4 and Xz. Where, X, is randomly chosen from the whole
population, and X is randomly chosen from the group of good students.

v

Using equation (2.13) and (2.14), update every solution X]-ik , which become Xnewl-ik.
Using the new solutions Xnewj‘k, calculate the predicted values of the system outputs
using the neural network model

Evaluate the cost function Fnew,‘; using equation (4.11).

= No
v
Accept the new Reject the new solution
solution and keenp it. s and keep the old one.

[iteration = iteration + 1] ‘

Apply the obtained control value, the first
element of the best solution, on the system.
Wait for the next sampling time.

min(F) < ? No |
Or, iteration > k4

Figure 4. 2 : Flow chart of the proposed NNMPC-ETLBO algorithm.

91

» <

.
Figure 4. 3 : Planar robot arm manipulator.
parameter value parameter value
my 0.392924 (kg) I 0.104648 (m)
m, 0.094403 (kg) Iy 0.081788 (m)
Msg 0.2 (kg) I 0.0011411 (kg - m?)
g 9.81 (m/s?) I, 0.0020247 (kg - m?)
Iy 0.2032 (m) biq 0.141231 (N)
[, 0.1524 (m) b, 0.3530776 (N)

Table 4. 1 : Parameters values of the considered manipulator.

4.2. Neural network modeling of the robot arm manipulator

The prediction model consists of two MLP neural networks with the following
architecture:

e For both MLPs, the inputs layer contains 8 neurons, and the inputs vector is defined
by:
[Tfm1 (k) 75, (k= 1), 7p, (), T, (K — 1),0,(k),0,(k — 1),0,(k),0,(k — 1]

e For both MLPs, one hidden layer containing 20 neurons with a sigmoid activation
functions, is used.

e The output layer contains one neuron with a linear activation function for each MLP.
The output of the first MLP gives the estimated value 8, (k) of 6,, and the output of
the second MLP gives the estimated value 8, (k) of 6,.

Using the state model, given by equation (4.12), a dataset is generated using random
values of the system inputs (s, ,7f, ,). The generated dataset is divided into two subsets

92

to train and test the neural network models. Figure (4.4) shows a part of the test results of
the obtained models; it can be seen that the modelling error is quite small. The values of the
RMSE, and the R?, for the model of 6; and the model of 6, are: 0.00200654,
0.99999950718, 0.00211524 and 0.99999277711, respectively. The values of R? are close
to 1 and the RMSE values are close to 0, hence the obtained models have good accuracy.

0, (blue continuous line) and @, (red dashed line)
6 T T

angle(rad)

1 1

0 5 10 15

error between #; and 6,
0.02 T T

0.01F -

angle (rad)

-0.01 7

-0.02 ; ;
0 5 10 15

0 (blue continuous line) and @, (red dashed line)
3 T T

angle(rad)
o

_3 | |

0 5 10 15
error between #, and 92

0.02 T T

0.01

angle (rad)
o

-0.01 7

-0.02 ! -
0 5 10 15

time(s)
Figure 4. 4 : Test results of the obtained models.

4.3. Controllers implementation

93

The proposed controllers (NNMPC-TLBO, NNMPC-ITLBO with one teacher,
NNMPC-ITLBO with two teachers, and NNMPC-ETLBO) are implemented to control the
angular position 6, and 8, of the considered manipulator.

All above-mentioned controllers use the same prediction model, the same control block
diagram (figure 4.5) and the same values of the MPC design parameters (table 4.2).

parameter value parameter value
Nu 1 kmax 5
N, 1 n 20
N, 3 m 2
R 0 Sampling time 0.01s
Tfinl min -50 Tfinz min -50
Tfinl max 50 Tfinz max 50

Table 4. 2 : MPC design parameters values.

The Mean Cost Value (MCV) is used to compare the performance of the four
considered algorithms, it is given by:

(4.13)

6, (k)

0, (k)

samples
MCV = — z U(k
samples](())
k=1
Joint,
éz(k + 1), .. ;éz(k +N;)| NN Model
. ®
M Tpi K+ 1)y, Tpy, (K + Ny — 1)
ref,(k + 1), C t
e 0S e (k) Robot
refik+Nl function o
refi(k A T . T, (k Manipulator
PR D minimization iy (0 N
ref,(k + N,) ‘r,m(k * 1) Tfina (K + Ny — 1)
Ll il ®
- - Joint,
6,(k+1),..,0,(k+N;)
NN Model

Figure 4. 5 : Control block diagram of the considered robot arm manipulator.

4.4. Simulation Results

To highlight the control performance of the NNMPC-TLBO, the NNMPC-ITLBO and the
NNMPC-ETLBO algorithms, a comparative study of the abovementioned controllers,

94

considering various operating conditions, is carried out. In the first simulation, no output
constraints are imposed and two different reference trajectories are used. The obtained
results are shown in figure (4.6) for the multistep trajectory and figure (4.7) for the sinusoidal
trajectory. Tables (4.3) and (4.4) give the computed average values of the MSE, the MAE and
the RMSE over a thousand randomly initialized runs for all considered controllers, for the
multistep trajectory and for the sinusoidal trajectory, respectively.

NNMPC- NNMPC- NNMPC- NNMPC-
TLBO ETLBO ITLBO(T, = 1) | ITLBO(T,, = 2)
MSE 0.17485 0.16569 0.20023 0.17015
MAE 0.31346 0.28133 0.34842 0.30756
RMSE 0.41816 0.40705 0.44747 0.41249
Table 4. 3 : Average values of MSE, MAE and RMSE in the case of multistep reference
trajectory.
e ETLBO ——-=- g 1 1 - { o JEe—— |TLBO(Tn=1) —— — ITLBO(T =2)
n
.Refl a?1d 01 , .Refz a.nd 02 |
= 4 = ;
p E 4
— 2 —
NN N1
0 i i 0 s "
0 0.2 04 0.6 0 0.2 04 0.6
Time (s) Time (s)
Error between Ref1 and 6 1 Error between Ref2 and 02
|

02 (rad)

0.2

04 0.6
Time (s)

Control signal Ty

0.2

0.4 0.6
Time (s)

0 0.2

04 0.6

Time (s)

Control signal Ty
|

0 0.2

04 0.6

Time (s)

Figure 4. 6 : Control performance using the considered controllers with a multistep

trajectory.

95

NNMPC- NNMPC- NNMPC- NNMPC-
TLBO ETLBO ITLBO(T,, = 1) | ITLBO(T, = 2)

MSE 0.02509 0.015511 0.029960 0.020262

MAE 0.19696 0.149291 0.217468 0.179638

RMSE 0.15840 0.124543 0.173090 0.142345
Table 4. 4 : Average values of MSE, MAE and RMSE in the case of sinusoidal reference

trajectory.
e - ETLBO ——--- 11 2|« [e— |TLBO(Tn=1) —— — ITLBO(T =2)
n
Ref1 and 01 Ref'2 and 02

2 4
Time (s)
Error between Ref2 and 02

Time (s)

Time (s)

Figure 4. 7 : Control performance using the considered controllers with a sinusoidal
trajectory.

From figures (4.6) and (4.7), it can be seen that a good tracking accuracy of the reference
trajectories is obtained for all implemented controllers. However, the tracking error for the
ETLBO-NNMPC controller is slightly smaller than that of the other considered controllers.
From tables (4.3) and (4.4), it is clear that the ETLBO-NNMPC has better tracking accuracy
than the other considered controllers.

The aim of the second simulation is to assess the control performance when output
constraints limiting the overshoot to no more than 1% are imposed. Step reference trajectories

96

are used and the output-dependent weight function I,(y) has the following parameters:
¢;, =100, G, = 100. The design parameters given in table (4.2) are used for all

implemented controllers.

Figure (4.8) gives the obtained control performance and table (4.5) gives the MSE
average values over 100 randomly initialized runs. From figure (4.8) and table (4.5) it can
be seen that all considered controllers handle the imposed constraint well. However, the
ETLBO based controller gives better control performance than the other considered

controllers.

wememeres paif ETLBO ——--- TLBO oo |TLBO(Tn=1) —— — ITLBO(T =2)
n
Ker 1Vanq (1"“" nsrzw‘a@ 7_2
=
o
%ﬂ
0 0.2 04 0 0.2 0.4
Time (s) Time (s)
Error between Ref1 and 01 Error between Ref2 and 02
5
o
%H
0 0.2 0.4 0 0.2 0.4
Time (s) Time (s)
Control signal Ty Control signal T
. . 30 y
g 0 E 20
 -20 N 10
-40 . . 0 !]
0 0.2 0.4 0 0.2 0.4
Time (s) Time (s)
Figure 4. 8 : Control performance using the considered controllers with output constraints.
NNMPC- NNMPC- NNMPC- NNMPC-
TLBO ETLBO ITLBO(T, = 1) | ITLBO(T, = 2)
MSE 0.34440 0.33527 0.34757 0.35682
MAE 0.37612 0.35214 0.40320 0.39112
RMSE 0.58685 0.57903 0.58955 0.59734

Table 4. 5 : Average values of MSE, MAE and RMSE in the case of output constraints.

In the third simulation, to evaluate the control performance of these controllers
against different parameters of the optimization algorithm (n, k,,,,), the MCV is evaluated
for several values of the population size n and the maximum number of iterations k,,,,,. The

chosen reference trajectories Ry, and Ry, for 6, and 6, are Ry, = [O,E,n, 37"] and Ry, =

97

[O%z?"n] respectively. Each control algorithm is executed 10 times, the average values

of MCV are depicted in figure (4.9). It can be seen that the NNMPC-ETLBO gives better
control performance than the other considered controllers.

MCYV corresponding to each controller
T T T

0.5 T T T T
i ETLBO
4 —====TLBO
045 |‘ lTLBO(NT:1) .
\ - = = ITLBO(NT=2)
\
04+ 1\ i
\'
\\
© \‘
5 035 \]
© \
> '\‘
2 03 }
O 4
& \
@ ‘\
S0256 F 1 1
A
ek
0.2 * -
0.15]

0.1

L | | 1 L 1 1

N) o N wn o i

5 X & X g X s s 2
wn (Tp] r = —

Population Size x Iterations
Figure 4. 9 : Average values of MCV corresponding to each controller.

In the final simulation, the maximum number if iterations is fixed (k,,4, = 50), and
a termination criterion (¢ = 0.1) is added to the above mentioned algorithms to stop the
optimization process if the minimum cost reach a value less than the termination criterion.
The number of iterations, needed to reach the termination criterion, is evaluated for several
values of the population size. The same reference trajectories are used. Each control
algorithm is executed 10 times, the average values of the iteration number are shown in
figure (4.10). It can be seen that the ETLBO-NNMPC algorithm requires few iterations to
reach the termination criterion than the other controllers. Therefore, we conclude that the
ETLBO-NNMPC algorithm is faster than the other considered controllers.

5. Experimental study

To demonstrate further the effectiveness of the proposed controllers the experimental
setup shown in figure 4.11 is used to control the speed of an induction motor. In addition to
the three-phase squirrel-cage induction motor, this experimental setup contains the following
elements : a three-phase generator, a three-phase voltage source inverter, a microcontroller
18f4331 and a single computer board RASPBERRY PI 3B+. The control algorithm is
implemented in the single computer board RASPBERRY and the microcontroller is used to
generate the six required Pulse Width Modulated (PWM) and measure the motor speed. The
control block diagram is given by figure 4.12.

98

. Average iterations values
T T T I I

——ETLBO
=sws=TLBO

égpp——— — ———— L [|"me ITLBO(NT=1)| |

% - - =ITLBO(NT=2)

2]

=

o

=

£

=

1

30 35

il 1

40

4
10 15 20 25
Population size

controller.

Figure 4. 10 : Iterations number needed to reach the termination criterion for each

L RS
R—— —_—— i

Figure 4. 11 : Experimental set up.

——
L
..
" aw
..
n
.. A
)
® -

A L\

99

w(k)

ref(k +1),..,ref(k + N,)
—_— v3 (k) X
sk + D 0 (3 Nypg— 1) !
Cost v, (k) | Induction
function pa(k+1),...,v,(k + N, — 1) Motor
minimization vy (k)
v, (k + 1),...,v,(k+ N, — 1)

NN Model

o(k+1),..,0(k+N,)

Figure 4. 12 : The induction motor control block diagram.

5.1. Modeling of the induction motor

A neural network model, for the considered induction motor is derived using the
experimental collected data. This model is a simple static MLP with an input layer containing
four inputs [v,(k), v,(k), v3(k), w(k — 1)], a hidden layer of four neurons with sigmoid
activation function and an output layer that contains one linear neuron representing the
estimated angular speed @ (k). v, (k), v, (k) and v5 (k) are the applied voltages on the motor
at the sampling time k and w(k — 1) is the measured angular speed of the motor. The
response of the obtained model to the input test is given by figure 4.13, where it can be seen
the modeling error is quite small. The RMSE and the R? values of the obtained model are:
11.19669 and 0.99976, respectively. Since the amplitude of the system output ranges
between -1500tr/min and 1500tr/min, the RMSE value is acceptable. The R? value is close
to one, which indicates that the model has good accuracy.

= system output(contmuous line) and NN model output(dashed line)
-SSR R 11 R |
; f"' f] '.-.r1;|v_jl‘"’|‘| n ﬂ
g LU/ f '.f \ '\'U‘\P A% e (|
, \ ' l | Vi |
A LY/ |
3 f 4 |
87-1000 L L -LJ ! L s I 1 ll"' »1 1 ' i
c
o 0 10 20 30 40 50 60 70 80 90
tim

= error between systen(1 and model output

g 50_ T T

=1

o

&

2 50t

g) | I

i 10 20 30 40 50 60 70 80 90

time(s)

Figure 4. 13 : Test results of the induction motor model.

5.2. Controllers implementation

100

The NNMPC-TLBO, the NNMPC-ITLBO (T,, = 2) and the NNMPC-ETLBO algorithms
are implemented using the values of the design parameters given in table (4.6) and the
obtained neural network model. The control objective is to force the motor speed to track
two different reference trajectories; the sinusoidal and the multistep trajectories. The results
are given in figure (4.14) and (4.15). Table (4.7) and (4.8) give the values of the MSE, MAE
and RMSE using all considered controller in both cases (multistep and sinusoidal

trajectories).

step reference traiectorv and system output
|

< I N I
E 1000 - = / w I\
~
s ref
s 500 |f e TLBO
o - - - ETLBO
9 L L ' [— ITLBO2T
0 15 20 25 30 35
1200
=1000
g 800
S 600 -
& 400 _
200 -
0 1 1 1 1
error between reference and system output
£ 800 ' ! |- TLBO
- - - ETLBO
E e " | I ITLBO2T
s 0 A —— L 3 - SO . Yo
2 C i{f’ iy 7
o ¥ l 1 E 1
0 15 20 25 30 35
time(s) Zoom
800 T T T T I_
_. 600 L
£
£ 400 L]
3 =,
£ 200 = -8 .
= & r X I \\ l \{\
& 0 < \\.__——'-"‘"] Jw“; S ’,,_,-—J \¥_~’__ 13 = et R NS
-200 T -
%
1 1 1 |
- x1073 Computing time(s)
b T T T T
=3 I [TLBO
s .L - - - ETLBO
s 11 v 0 A A | e ITLBO2T
5 2+ v T : =
=% : O R S SR T AT e . % +]
E o 1 I I] 1
o 0 15 20 25 30 35

time(s)

Figure 4. 14 : Control performance in case of the multistep trajectory for the induction

Table 4. 6 : Values of the design parameter.

motor.
parameter value parameter value
N, 1 k_max 10
N, 1 n 10
N, 3 m 3
R 10 Sampling time 0.01s

From figures (4.14) and (4.15), it can be seen that a good tracking accuracy of the
reference trajectories is obtained for all implemented controllers. However, the tracking error

101

for the ETLBO-NNMPC controller is slightly smaller than that of the other considered
controllers. From tables (4.7) and (4.8), it is clear that the ETLBO-NNMPC has better tracking
accuracy than the other considered controllers.

In the case of all considered controllers, the maximal value for the overshoot does
not exceed 4% for both (step and sinusoidal) reference trajectories, the maximum values of
the computing time are : 7.225ms and 6.402ms successively, which indicates that the
proposed controllers can be implemented in real time to control systems with fast dynamics.

= T S T o i
.E 1000 - ‘r ? //_\/ \\q/‘/’/ \
E i ref
) Ly e e T e TBO ||
s 500 p\/ - - - ETLBO
2 i | L | |) - [TLBO2T
20 30 40 50 60 70
time(s) Z oom

I ‘ e S

W g Ty ez,]

i 1] — | | | —

.—E-moo— % ' ! — = |
g 2 \ -_----_---:-F'ITLLBB(;)ZT i
g o v i i S
20 30
iz |
il
% : Computiqg_lgi_me(s) I l I
8 1 S e TLBO
w4 ---€EmnBo []
:EL =i e e
E o e e T T ———
< 0 10 20 30 40 50 60 70
time(s)
Figure 4. 15 : Control performance in case of the sinusoidal trajectory for the induction
motor.
NNMPC- NNMPC- NNMPC-
TLBO ETLBO ITLBO(T,, = 2)

MSE 10414 7697.4 8625.1

MAE 29.6762 24.8852 26.9914

RMSE 102.0485 87.7348 92.8716

Table 4. 7 : Values of MSE, MAE and RMSE in the case of a multistep trajectory for the
induction motor control.

NNMPC- NNMPC- NNMPC-
TLBO ETLBO | ITLBO(T, = 2)
MSE 11038 5445.2 8173.4
MAE 38.5634 24.1720 33.1700
RMSE 105.0597 73.7919 90.4066

Table 4. 8 : Values of MSE, MAE and RMSE in the case of a sinusoidal trajectory for the
induction motor control.

102

step reference trajectory and system output

=] t § X ! !
T {
= - i ref
E 500 5 D TLBO
€ ; 1 ! I ! I I — ~ —ETLBO
0 5 10 15 20 25 30 35 A Tieozt,
T
1200 .
71000 -
£ 800
< 600 -
s
& 400 il
200 |+ -
oL L
error between reference and system output
S 800 ly T T T T T I =
E - | == TLBO |+
E 400 — v!‘ X Y - - -ETLBO |+
= - | i S ITLBO2T |
E 0 .2 ‘1\; { 5 F bbbbbbb o — ___1 o l‘ Syt 7 =
o« B | 1 p 1 | ? 1 a]
0 5 10 15 20 25 30 35 40
el Zoom
N I I I [[I I I_
800k
— 600 | 13 7
c i
=)
£ Wy " - I
200 3 oy) =
5 e R | 2N N N
Q - . L b A e o e, B
4 0 I e o5 \\—ﬂ p— 5 '/,,‘v‘ 1 ,’;f’.
-200 - Lot 07 i .
bl ~ 47 e
| IF .7 | | | Sl | | |
- %103 Computing time(s)
1 6 I I I 1 I I [=
E 1 1 0 4 A |- TLBO
T afF - - -ETLBO |-
= e N ITLBO2T
5 2r — N
o A e iy o e e g e PP SR L R R §
£ 0 1 | | | | | |
S o 5 10 15 20 25 30 35 40
time(s)
Figure 4. 16 : Control performance of the induction motor in the presence of output

constraints.

In a second experiment, to further reduce the observed overshoot, a constraint on the
output, limiting the overshoot to no more than 2%, is included. A multistep reference
trajectory and the parameter C,, = 100 of the output-dependent weight function I, (y) are
used in this experiment. The obtained control results are given by figure (4.16), where it can
be seen that the overshoot value does not exceed 2%, and the maximum value of the
computing time is : 5.839ms for all considered controllers.

NNMPC- NNMPC- NNMPC-

TLBO ETLBO | ITLBO(T, = 2)
MSE 10684 5304.3 7721.8
MAE 35.6002 24.8474 30.3787
RMSE 103.3654 72.8303 87.8739

Table 4. 9 : Values of MSE, MAE and RMSE in the presence of output constraints for the
induction motor control.

103

Table (4.9) gives the values of the MSE, the MAE and the RMSE for the released
experiments. From this table, we can conclude that all proposed controllers give good control
performances and the imposed constraints are respected. However, the NNMPC-ETLBO
algorithm gives the best control performance.

6. Conclusion

Within this chapter, the formulation of the constrained neural network predictive control
based on the meta-heuristic algorithms has been given along with three proposed control
algorithms. It has been shown, through several simulation studies, that the proposed
controllers can be successfully used to control highly constrained nonlinear systems. Indeed,
the control of a coupled multivariable mechanical system was considered. The obtained
results have shown that the proposed controllers give good performance in terms of the
tracking accuracy, the overshoot amplitude and the settling time. In addition, it has been
shown, using experimental studies, that the proposed controllers give good control
performance. The proposed algorithms can be successfully used to control different classes
of nonlinear systems. Indeed, the control of a coupled multivariable mechanical system, and
an electrical machine, were considered.

104

CONCLUSION

Using artificial intelligence tools, such as neural networks and meta-heuristic
optimization methods, the aim of this thesis was to develop efficient, simple, and robust
control algorithms that can give satisfactory performance with a large class of nonlinear
systems. In fact, neural networks have been used extensively in the field of identification
and control of nonlinear systems. The extensive research carried out in this field has proven
the feasibility and the efficiency of control systems based on neural networks. The secret to
the success of neural networks lies in the fact that any nonlinear system can be modeled,
with a given precision, using a simple neural network with learning and generalization
capabilities. On the other hand, the emergence of several meta heuristic optimization
methods has allowed to consider more complex optimization problems for which numerical
methods cannot give acceptable solutions. The numerical approach can quickly reach its
limits when the system to be controlled or the constraints to be respected become complex,
or when the optimization of the system operating is required. Recently, the meta heuristic
approach was successfully used in many control applications.

In this thesis work, we started by studying several meta heuristic optimization
methods, such as genetic algorithms, particle swarm optimization and several versions of the
teaching learning based optimization method. This study allowed us to examine the limits
and advantages of each algorithm and to propose an improvement for the teaching learning
based optimization method. Dues to its attractive proprieties the TLBO, a meta heuristic
method, has been used in many engineering applications and given satisfactory results. In
fact, except the common control parameters (population size and number of generations) the
TLBO algorithm, unlike to other meta heuristic algorithms, does not require any algorithm
specific-parameters. Obviously, improper tuning of algorithm-specific parameters either
increases the computational effort or yields a local optimal solution. The improvement made
to the TLBO algorithm consisted in replacing the random selecting process of the students’
pairs in the learners' phase by a new strategy based on the grade of each student obtained
during the optimization process. This modification has allowed improving the convergence
rate and the exploitation quality of the algorithm without altering its complexity. The
convergence rate and the efficiency of the modified algorithm (ETLBO) have been assessed
by considering eight well-known benchmark functions. The obtained results have showed
that the proposed ETLBO algorithm outperforms the other considered algorithms; namely
the original TLBO, the ITLBO with one and two teachers, and the w-PSO algorithm.

Furthermore, the study carried out on neural networks and their application to the
identification and the control of nonlinear systems has allowed discovering a type of these
networks with a simple architecture and a simple learning algorithm. This neural network,
called Fourier series neural network, is not widely used in the field of the identification and
control of nonlinear systems. The main raison for which the use of this kind of neural
networks could be very useful is the simplicity of their training algorithm. Indeed, Fourier
series neural networks can be trained using the simple Delta rule algorithm. Therefore, it
can be easily incorporated in adaptive control systems.

The research work done throughout this thesis has allowed developing several
control algorithms; namely the adaptive neural network PID controller, the adaptive Fourier
series neural network PID controller, the neural network predictive control using the TLBO
algorithm, the neural network predictive control using the Improved TLBO and the neural
network predictive control using the ETLBO.

105

In addition to the proposed adaptive neural network PID and the adaptive Fourier
series neural network PID controllers, the PSO based adaptive PID controller, where the
PSO algorithm was used to online optimize the PID controller gains, has been considered.
In the adaptive neural network PID, the PID controller parameters are obtained from a
multilayer perceptron (MLP) neural network and their values are online tuned using the back
propagation method. The adaptive Fourier series neural network PID controller uses two
FSNN; the first one allows estimating the system Jacobian and the second is used to obtain
and online adjust the PID controller gains. The stability of the adaptive Fourier series neural
network PID controller has been proved using the small gain theorem. To assess the
effectiveness of the ANNPID, the AFSNNPID and the PSO-based PID controllers in
controlling highly nonlinear systems, the control of the continuous stirred tank reactor and
the 3-DOF robot arm manipulator, through simulation and experimental studies, has been
investigated. The simulation and the experimental results have shown that these controllers
give good control performance in terms of the tracking accuracy and the robustness against
external disturbances and dynamic system variation. However, the proposed AFSNNPID
controller do not require a large computing time, which allows it to be used in several real
time applications. Indeed, the AFSNNPID controller has a simple design procedure and can
be used to control any nonlinear system.

Model predictive control is a sophisticated control technique that is widely used in
industrial applications and still continues to raise interest of several researchers. In this
thesis, the formulation of the constrained neural network predictive control based on the
meta-heuristic algorithms has been given along with three proposed control algorithms;
namely the TLBO based NNMPC, the ITLBO based and the ETLBO based NNMPC. It has
been shown, through several simulation studies and experimental study, that the proposed
controllers can be successfully used to control in real time highly nonlinear systems. Indeed,
the control of a coupled multivariable mechanical system (the robot arm manipulator) and
an electrical machine (the induction motor) were considered. The obtained results have
shown that the proposed controllers give good performance in terms of the tracking
accuracy, the overshoot amplitude and the settling time.

Throughout this thesis, several artificial intelligent based control algorithms have
been discussed and analyzed. The future possible research works are:

e Instead of analyzing the stability of the proposed adaptive Fourier series neural
network PID controller using the small gain theorem, the Lyapunov approach should
be used. The small gain theorem proves the BIBO stability and assumes that the
system and the controller are stable in an open loop architecture. However, Lyapunov
approach proves the asymptotic stability without any assumptions.

e Improving the proposed version of the TLBO algorithm by using the concept of
multi-teachers instead of using a single one in the teacher phase.

e To improve the tracking accuracy of the MPC, the Fourier series neural network
could be used as a prediction model.

Incorporating the stability analysis in the formulation of the proposed nonlinear model
predictive control using the enhanced teaching learning based optimization algorithm.

ABC
ACO
AFSNNPID
Al
ANFIS
ANNPID
CMAC
CSTR
DMC
EA
ETLBO
FL

FLC
FMPC
FNNC
FNNMPC
FPID
FSF
FuNe
GA

GARIC

GRASP
GWO
INNFLC
ITLBO
LMS
LQG
LQR
MAC
MAE
MCV
MIMO
MISO
MLP
MPC
MRAC
MSE
NDTS
NEFCON
NGPC

LIST OF ABBREVIATIONS

Acrtificial Bee Colony

Ant Colony Optimization

Adaptive Fourier Series Neural Network PID
Artificial Intelligence

Adaptive Network based Fuzzy Inference System
Adaptive Neural Network based PID

Cerebellar Model Arithmetic Computer
Continuous Stirred Tank Reactor

Dynamic Matrix Control

Evolutionary Algorithm

Enhanced Teaching Learning Based Optimization
Fuzzy Logic

Fuzzy Logic Control

Fuzzy model Based NMPC

Fuzzy Neural Network Control

Fuzzy Neural Network based NMPC

Fuzzy PID

Full State Feedback

Fuzzy Neural system

Genetic Algorithms

Generalized Approximate Reasoning-based Intelligent

Control
Greedy Randomized Adaptive Search Procedure
Gray Wolf Optimizer

Integrated Neural Network based Fuzzy Logic Control

Improved Teaching Learning Based Optimization
Least Mean Square

Linear Quadratic Gaussian

Linear Quadratic Regulator

Model Algorithmic Control

Mean Absolute Error

Mean Cost Value

Multiple Inputs Multiple Outputs

Multi Inputs Single Output

Multi Layer Perceptron

Model Predictive Control

Model Reference Adaptive Control

Mean Squared Error

Nonlinear Discrete-Time Systems

NEuro Fuzzy CONtrol

Nonlinear Generalized Predictive Control

106

NMPC
NN
NNC
NNMPC
NNPID
PD

PID
PSO
PWM
RMSE
TLBO

Nonlinear Model Predictive Control
Neural Networks

Neural Network Control

Neural Network Based NMPC

Neural Network based PID
Proportional Derivative

Proportional Integrate Derivative
Particle Swarm Optimization

Pulse Width Modulated

Root Mean Square of the modeling Error
Teaching Learning Based Optimization

107

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

108

REFERENCES

Maxwell, J.C., "I. On governors", Proceedings of the Royal Society of london,
London, (1868), 270-83.

Routh, E.J., "On Laplace’s three particles, with a supplement on the stability of steady
motion", Proceedings of the London Mathematical Society, London, (1874), 86-97.

Routh, E.J., "Stability of a dynamical system with two independent motions”,
Proceedings of the London Mathematical Society, London, (1873), 97-9.

Routh, E.J., "A Treatise on the Stability of Motion", Macmillima, London (1877).

Hurwitz, A., "Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit
negativen reellen Theilen besitzt", Mathematische Annalen, V.46, n°2, (1895), 273—
284.

Hurwitz, A., "On the conditions under which an equation has only roots with negative
real parts"”. Selected papers on mathematical trends in Control Theory, V. 65, (1964),
273-284.

Minorsky, N., "Directional stability of automatically steered bodies", Journal of the
American Society for Naval Engineers, V. 34, n° 2, (1922), 280-3009.

Sontag, E.D., "Mathematical control theory: deterministic finite dimensional
systems", Springer Science & Business Media, (2013).

Kwakernaak, H. and Sivan, R., "Linear optimal control systems", Wiley-interscience,
New York, (1972).

Astrom, K.J., "Introduction to Stochastic Control Theory", Courier Corporation,
(1970).

Astrom, K.J., "Introduction to stochastic control theory". Courier Corporation,
(2012).

Richalet, J. Rault, A. Testud, J.L.and Papon, J., "Model predictive heuristic control™,
Applications to industrial processes, Automatica, V. 14, n° 5, (1978), 413-428.

Cutler, C.R. and Ramaker, B.L., "Dynamic Matrix Control - a Computer Control
Algorithm™. Joint Automatic Control Conference, V. 17, (1980), 72-82.

Hamid, N.H.A. Kamal, M.M. and Yahaya, F.H., "Application of PID controller in
controlling refrigerator temperature”, International Colloquium on Signal Processing
& Its Applications. IEEE, (2009), 378-84.

Aguilar, R. Poznyak, A. Martinez-Guerra, R. and Maya-Yescas, R., "Temperature
control in catalytic cracking reactors via a robust PID controller”, Journal of Process
Control, V. 12, n° 6, (2002), 695-705.

Wang, Y. Geng, Y. Yan, Y. Wang, J. and Fang, Z., "Robust model predictive control
of a micro machine tool for tracking a periodic force signal”, Optimal Control
Applications and Methods, V. 41, n° 6, (2020), 2037-2047.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

109

Pinheiro, T.C.F. and Silveira, A.S., "Constrained discrete model predictive control of
an arm-manipulator using Laguerre function”. Optimal Control Applications and
Methods, V. 42, n° 1, (2021), 160-179.

Rehman, O.U. Fidan, B. and Petersen, L.R., "Uncertainty modeling and robust
minimax LQR control of multivariable nonlinear systems with application to
hypersonic flight", Asian Journal of Control, V. 14, n° 5, (2012), 1180-1193.

Lee, J. Kim, J.S. and Shim, H., "Disc margins of the discrete-time LQR and its
application to consensus problem”, International Journal of Systems Science, V. 43,
n° 10, (2012); 1891-1900.

Grimble, M.J., "Two and a half degrees of freedom LQG controller and application
to wind turbines”, IEEE transactions on automatic control, V. 39, n° 1, (1994), 122—
127.

Gawronski, W.K. Racho, C.S. and Mellstrom, J.A., "Application of the LQG and
feedforward controllers to the deep space network antennas”. IEEE Transactions on
Control Systems Technology, V. 3, n° 4, (1995), 417-421.

Jingging, H., "Nonlinear PID controller", Acta Automatica Sinica, V. 20, n° 4, (1994),
487-490.

Seraji, H., "A new class of nonlinear PID controllers with robotic applications",
Journal of Robotic Systems, V. 15, n° 3, (1998), 161-181.

Prakash, J. and Srinivasan, K., "Design of nonlinear PID controller and nonlinear
model predictive controller for a continuous stirred tank reactor”, ISA transactions,
V. 48, n° 3, (2009), 273-282.

Atherton, D.P. Benouartes, M. and Nanka-Bruce, O., "Design of nonlinear PID
controllers for nonlinear plants”, IFAC Proceedings Volumes, V. 26, n° 2, (1993),
125-128.

Drakunov, S. V. and Utkin, V.I., "Sliding mode control in dynamic systems",
International Journal of Control, V. 55, n° 4, (1992), 1029-1037.

Shtessel, Y. Edwards, C. Fridman, L. and Levant, A., "Sliding mode control and
observation", Springer, New York, (2014).

Young, K.D. Utkin, V.I. and Ozguner, U., "A control engineer’s guide to sliding mode
control”, IEEE transactions on control systems technology, V. 7, n° 3, (1999), 328-
342.

Bellman, R. Glicksberg, I. and Gross, O., "On the “bang-bang” control problem",
Quarterly of Applied Mathematics, V. 14, n° 1, (1956), 11-18.

Wonham, W.M. and Johnson, C.D., "Optimal bang-bang control with quadratic
performance”, index, (1964), 107-115.

Ké&pernick, B. and Graichen, K., "Nonlinear model predictive control based on
constraint transformation”, Optimal Control Applications and Methods, V. 37, n° 4,
(2016), 807-828.

Conceicao, A.S. Moreira, A.P. and Costa, P.J., "A nonlinear model predictive control
strategy for trajectory tracking of a four-wheeled omnidirectional mobile robot™,
Optimal Control Applications and Methods, V. 29, n° 5, (2008), 335-352.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

110

Chen, W.H. Balance, D.J. and Gawthrop, P.J., "Nonlinear generalised predictive
control and optimal dynamical inversion control”, IFAC Proceedings VVolumes, V. 32,
n° 2, (1999), 2540-2545.

Feng, X. Yu, T. and Wang, J., "Nonlinear GPC with In-place Trained RLS-SVM
Model for DOC Control in a Fed-batch Bioreactor”, Chinese Journal of Chemical
Engineering, V. 20, n°5, (2012), 988-994.

Miyamoto, H. Kawato, M. Setoyama, T. and Suzuki, R. "Feedback-error-learning
neural network for trajectory control of a robotic manipulator”, Neural Networks, V.
1, n° 3, (1988), 251-265.

Mumme, D.C. and Chick, D.R., "Design of a neural-network control system", EG and
G ldaho, Idaho Falls, USA, (1988).

Li, W. and Slotine, J.E., "Neural Network Control of Unknown Nonlinear Systems",
American Control Conference, (1989), 1136-1141.

Sanner, R.M. and Slotine, J.E., "Gaussian networks for direct adaptive control”,
American control conference, (1991), 2153-2159.

Chen, F.C. and Khalil, H.K., "Adaptive control of nonlinear systems using neural
networks", International journal of control, V. 55, n° 6, (1992), 1299-1317.

Chen, F.C., "Back-propagation neural networks for nonlinear self-tuning adaptive
control”, IEEE control systems Magazine, V. 10, n° 3, (1990), 44-48.

Ryu, Y.S. and Oh, S.Y., "A neural network architecture for dynamic control of robot
manipulators”, Control Robot System Society: Conference Papers, (1989), 1113—
1119.

Antsaklis, P.J., "Neural networks for control systems”, IEEE Transactions on Neural
Networks, V. 1, n° 2, (1990), 242-244.

Miller, W.T. Glanz, F.H. and Kraft, L.G., "Cmas: An associative neural network
alternative to backpropagation”, Proceedings of the IEEE, V. 78, n° 10, (1990), 1561
1567.

Kraft, L.G. and Campagna, D.P., "A comparison between CMAC neural network
control and two traditional adaptive control systems”, IEEE Control Systems
Magazine, V. 10, n° 3, (1990), 36-43.

Wang, G.J. and Miu, D.K., "Unsupervising adaption neural-network control",
International Joint Conference on Neural Networks, (1990), 421-428.

Johnson, M.A. and Leahy, M.B., "Adaptive model-based neural network control”,
IEEE International Conference on Robotics and Automation, (1990), 1704-1709.

Mb, L. Johnson, M.A. Bossert, D.E. and Lamont, G.B., "Robust model-based neural
network control”, IEEE International Conference on Systems Engineering, (1990),
343-346.

Yamada, T. and Yabuta, T., "Nonlinear neural network controller for dynamic
system”, Annual Conference of IEEE Industrial Electronics Society, (1990), 1244—
1249.

Okuma, S. Ishiguro, A. Furuhashi, T. and Uchikawa, Y., "A neural network

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

111

compensator for uncertainties of robotic manipulators”, IEEE Transactions on
Industrial Electronics, V. 39, n° 6, (1990), 3303-3307.

Nguyen, D.H. and Widrow, B., "Neural networks for self-learning control systems”,
IEEE Control systems magazine, V. 10, n° 3, (1990), 18-23.

Narendra, K.S., "Adaptive control using neural networks"”, Neural networks for
control, V. 3, (1990), 1-13.

Narendra, K.S. and Mukhopadhyay, S., "Intelligent control using neural networks",
IEEE Control systems magazine, V. 12, n° 2, (1992), 11-18.

Narendra, K.S. and Mukhopadhyay, S., "Neural networks in control systems"”, IEEE
Conference on Decision and Control, (1992), 1-6.

Zhang, T. Ge, S.S. and Hang, C.C., "Adaptive neural network control for strict-
feedback nonlinear systems using backstepping design”, Automatica, V. 36, n° 12,
(2000), 1835-1846.

Li, Y. Qiang, S. Zhuang, X. and Kaynak, O., "Robust and adaptive backstepping
control for nonlinear systems using RBF neural networks"”, IEEE Trans Neural
Networks, (2004), 693-701.

Wang, D. and Huang, J., "Neural network-based adaptive dynamic surface control for
a class of uncertain nonlinear systems in strict-feedback form", IEEE transactions on
neural networks, V. 16, n° 1, (2005), 195-202.

Chen, Z. and Jagannathan, S., "Generalized Hamilton—Jacobi—Bellman Formulation -
Based Neural Network Control of Affine Nonlinear Discrete-Time Systems”, IEEE
Transactions on Neural Networks, V. 19, n° 1, (2008), 90-106.

Ge, S.S. Yang, C. and Lee, T.H., "Adaptive Predictive Control Using Neural Network
for a Class of Pure-Feedback Systems in Discrete Time", IEEE Transactions on
Neural Networks, V. 19, n° 9, (2008), 1599-1614.

Ren, B. Ge, S.S. Tee, K.P. and Lee, T.H., "Adaptive Neural Control for Output
Feedback Nonlinear Systems Using a Barrier Lyapunov Function”, IEEE
Transactions on Neural Networks, V. 21, n° 8, (2010), 1339-1345.

Tong, S.C. Li, Y.M. and Zhang, H., "Adaptive Neural Network Decentralized
Backstepping Output-Feedback Control for Nonlinear Large-Scale Systems With
Time Delays”, IEEE Transactions on Neural Networks, V. 22, n° 7, (2011), 1073—
1086.

Rovithakis, G.A. and Christodoulou, M.A., "Adaptive control with recurrent high-
order neural networks: theory and industrial applications”, Springer Science &
Business Media, (2012).

Chen, C.L.P. Liu, Y. and Wen, G., "Fuzzy Neural Network-Based Adaptive Control
for a Class of Uncertain Nonlinear Stochastic Systems", IEEE Transactions on
Cybernetics , V. 44, n° 5, (2014), 583-93.

Chen, M. Tao, G. and Jiang, B., "Dynamic Surface Control Using Neural Networks
for a Class of Uncertain Nonlinear Systems With Input Saturation™, IEEE transactions
on neural networks and learning systems, V. 26, n° 9, (2015), 2086—2097.

He, W. Chen, Y. and Yin, Z., "Adaptive Neural Network Control of an Uncertain

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

112

Robot With Full-State Constraints”, IEEE transactions on cybernetics, V. 46, n° 3,
(2016), 620-629.

Liu, Y. Li, J. Tong, S. and Chen, C.L.P., "Neural Network Control-Based Adaptive
Learning Design for Nonlinear Systems With Full-State Constraints”, IEEE
transactions on neural networks and learning systems, V. 27, n° 7, (2016), 1562-1571.

Wang, F. Chen, B. Lin, C. Zhang, J. and Meng, X., "Adaptive Neural Network Finite-
Time Output Feedback Control of Quantized Nonlinear Systems", IEEE Transactions
on Cybernetics, V. 48, n° 6, (2018), 1839-1848.

Sitharthan, R. Parthasarathy, T. Sheeba, R.S. and Ramya, K.C., "An improved radial
basis function neural network control strategy-based maximum power point tracking
controller for wind power generation system”, Transactions of the Institute of
Measurement and Control , V. 41, n° 11, (2019), 3158-3170.

Lewis, F.W. Jagannathan, S. and Yesildirak, A., "Neural network control of robot
manipulators and non-linear systems"”, CRC press, (2020).

Lin, C.T. and Lee, C.S.G., "Neural-network-based fuzzy logic control and decision
system", IEEE Transactions on computers, V. 40, n° 12, (1991), 1320-1336.

Jang, J.S., "Fuzzy modeling using generalized neural networks and kalman filter
algorithm™, Association for the Advancement of Artificial Intelligence, V. 91, (1991),
p. 762-767.

Jang, J.S. "Rule extraction using generalized neural networks"”, 4th IFSA World
Congr, (1991), 82-86.

Jang, J.S. "ANFIS: adaptive-network-based fuzzy inference system", IEEE
transactions on systems, man, and cybernetics, V. 23, n° 3, (1993), 665-685.

Khuntia, S.R. and Panda, S., "Simulation study for automatic generation control of a
multi-area power system by ANFIS approach”, Applied soft computing, V. 12, n°® 1,
(2012), 333-341.

Garcia, P. Garcia, C.A. Fernandez, L.M. Llorens, F. and Jurado, F., "ANFIS-based
control of a grid-connected hybrid system integrating renewable energies”, IEEE
Transactions on industrial informatics, V. 10, n° 2, (2013), 1107-1117.

Tatikonda, R.C. Battula, V.P. and Kumar, V., "Control of inverted pendulum using
adaptive neuro fuzzy inference structure (ANFIS)", IEEE International Symposium
on Circuits and Systems, (2010), 1348-1351.

Syahputra, R. and Soesanti, 1., "DFIG Control Scheme of Wind Power Using ANFIS
Method in Electrical Power Grid System”, International Journal of Applied
Engineering Research, V. 11, n° 7, (2016), 5256-5262.

Kusagur, A. Kodad, S.F. and Ram, B.V.S., "Modeling, design & simulation of an
adaptive neuro-fuzzy inference system (ANFIS) for speed control of induction
motor”, Journal of Computer Applications, V, 6, n° 12, (2010), 29-44.

Rezakazemi, M. Dashti, A. Asghari, M. and Shirazian, S., "H2-selective mixed matrix
membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS", International Journal
of Hydrogen Energy, V. 42, n° 22, (2017), 15211-15225.

Buragohain, M. and Mahanta, C., "A novel approach for ANFIS modelling based on

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

113

full factorial design™, Applied soft computing, V. 8, n° 1, (2008), 609-625.

Karaboga, D. and Kaya, E., "Adaptive network based fuzzy inference system
(ANFIS) training approaches: a comprehensive survey"”, Artificial Intelligence
Review, V. 52, n° 4, (2019), 2263-2293.

Ydstie, B.E., "Extended Horizon Adaptive Control", Proceedings Volumes, V. 17, n°
2, (1985), 911-915.

Keyser, R.M.C. and Van, C.AR., "Extended Prediction Self-Adaptive Control",
IFAC Proceedings Volumes, V. 18, n° 5, (1985), 1255-1260.

Clarke, D.W. Mohtadi, C. and Tuffs, P.S., "Generalized predictive control-Part I. The
basic algorithm”, Automatica, V. 23, n° 2, (1987), 137-148.

Clarke, D.W. Mohtadi, C. and Tuffs, P.S. "Generalized Predictive Control-Part Il
Extensions and interpretations”, Automatica, V. 23, n° 2, (1987), 149-160.

Kansha, Y. and Chiu, M.S., "Adaptive generalized predictive control based on JITL
technique”, Journal of Process Control, V. 19, n° 7, (2009), 1067-1072.

Li, Z. and Wang, G., "Generalized predictive control of linear time-varying systems",
Journal of the Franklin Institute, V. 354, n° 4, (2017), 1819-1832.

Lucia, S. Tatulea-Codrean, A. Schoppmeyer, C. and Engell, S., "An environment for
the efficient testing and implementation of robust NMPC", IEEE Conference on
Control Applications (2014), 1843-1848.

Han, H. and Qiao, J., "Nonlinear model-predictive control for industrial processes:
An application to wastewater treatment process”, IEEE Transactions on Industrial
Electronics, V. 61, n° 4, (2014), 1970-1982.

Subramanian, S. Nazari, S. Alvi, M.A. and Engell, S., "Robust NMPC Schemes for
the Control of Mobile Robots in the Presence of Dynamic Obstacles”, International
Conference on Methods & Models in Automation & Robotics, (2018), 768-773.

Mazinan, A.H., "A new algorithm to Al-based predictive control scheme for a
distillation column system”, The International Journal of Advanced Manufacturing
Technology, V. 66, n° 9, (2013), 1379-1388.

Lu, Q. Shi, P. Lam, H.K. and Zhao, Y., "Interval Type-2 Fuzzy Model Predictive
Control of Nonlinear Networked Control Systems”, IEEE Transactions on Fuzzy
systems, V. 23, n° 6, (2015), 2317-2328.

Thangavel, S. Lucia, S. Paulen, R. and Engell, S., "Dual robust nonlinear model
predictive control: A multi-stage approach”, Journal of Process Control, V. 72,
(2018), 39-51.

Maner, B.R. Doyle, F.J. Ogunnaike, B.A. and Pearson, R.K. "Nonlinear model
predictive control scheme using second order volterra models"”, American Control
Conference, (1994), 3253-3257.

Gruber, J.K. Ramirez, D.R. Alamo, T. and Bordons, C., "Nonlinear min-max model
predictive control based on volterra models application to a pilot plant”, European
Control Conference, (2009), 1112-1117.

Diaz-Mendoza, R. and Budman, H., "Robust nonlinear model predictive control using

114

volterra models and the structured singular value (u)", IFAC Proceedings Volumes,
V. 42,n° 11, (2009), 375-380.

[96] Ait-Sahed, O. Kara, K. and Benyoucef, A., "Atrtificial bee colony-based predictive
control for non-linear systems"”, Transactions of the Institute of Measurement and
Control, V. 37, n° 6, (2015), 780-792.

[97] Ait-Sahed, O. Kara, K. Benyoucef, A. and Hadjili, M.L., "An efficient artificial bee
colony algorithm with application to nonlinear predictive control”, International
Journal of General Systems, V. 45, n° 4, (2016), 393-417.

[98] Huang, Y.L. Lou, H.H. Gong, J.P. and Edgar, T.F., "Fuzzy model predictive control”,
IEEE Transactions on Fuzzy Systems, V. 8, n° 6, (2000), 665-678.

[99] Han, H.G. Wu, X.L. and Qiao, J.F., "Real-time model predictive control using a self-
organizing neural network", IEEE transactions on neural networks and learning
systems, V. 24, n° 9, (2013), 1425-36.

[100] Patan, K., "Two stage neural network modelling for robust model predictive control”,
ISA transactions, V. 72, (2018), 56-65.

[101] Soloway, D. and Haley, P.J., "Neural generalized predictive control a Newton-
Raphson implementation”, IEEE International Symposium on Intelligent Control,
(1996), 277-282.

[102] Liu, G.P. Kadirkamanathan, V. and Billings, S.A., "Predictive control for non-linear
systems using neural networks", International Journal of Control, V. 71, n° 6, (1998),
1119-1132.

[103] Botto, M.A. Van Den Boom, T.J.J. Krijgsman, A. and Da Costa, J.S., "Predictive
control based on neural network models with 1/O feedback linearization",
International Journal of Control, V. 72, n° 17, (1999), 1538-1554.

[104] Sarimveis, H. and Bafas, G., "Fuzzy model predictive control of non-linear processes
using genetic algorithms”, Fuzzy sets and systems, V. 139, n° 1, (2003),59-80.

[105] Li, Y. Shen, J. Lee, K.Y. and Liu X., "Offset-free fuzzy model predictive control of a
boiler-turbine system based on genetic algorithm", Simulation modelling practice and
theory, V. 26, (2012), 77-95.

[106] Coelho, J.P. De Moura Oliveira, P.B. and Boaventura Cunha, J., "Greenhouse air
temperature control using the particle swarm optimisation algorithm”, IFAC
Proceedings Volumes, V. 35, n° 1, (2002), 43-47.

[107] Zhixiang, H. Hui, C. and Heqing, L., "Neural networks predictive control using
AEPSQO", Chinese Control Conference, (2008), 180-183.

[108] Zimmer, A. Schmidt, A, Ostfeld, A. and Minsker, B., "Evolutionary algorithm
enhancement for model predictive control and real-time decision support.
Environmental Modelling & Software, V. 69, (2015), 330-341.

[109] Rao, R.V. Savsani, V.J. and Vakharia, D.P., "Teaching-learning-based optimization:
A novel method for constrained mechanical design optimization problems”,
Computer-Aided Design, V. 43, n° 3, (2011), 303-315.

[110] Rao, R.V. Savsani, V.J. and Vakharia, D.P., "Teaching-Learning-Based
Optimization: An optimization method for continuous non-linear large scale

115

problems”, Information sciences, V. 183, n° 1, (2012), 1-15.

[111] Levin, E. Gewirtzman, R. and Inbar, G.F., "Neural network architecture for adaptive
system modeling and control™. Neural Networks, V. 4, n° 2, (1991), 185-191.

[112] Kuperstein, M., "Neural model of adaptive hand-eye coordination for single
postures”, Science, V. 239, (1988), 1308-1311.

[113] Daosud, W. Thitiyasook, P. and Arpornwichanop, A. and Kittisupakorn, P. and
Hussain, M.A., "Neural network inverse model-based controller for the control of a
steel pickling process”, Computers & Chemical Engineering, V. 29, n° 10, (2005),
2110-2119.

[114] Plett, G.L., "Adaptive inverse control of linear and nonlinear systems using dynamic
neural networks", IEEE transactions on neural networks, V. 14, n° 2, (2003), 360-
376.

[115] Gupta, M.M., "Neuro-control systems: theory and applications”, IEEE press, (1994).

[116] Lee, C.S.G. and Lin, C.T., "Supervised and unsupervised learning with fuzzy
similarity for neural-network-based fuzzy logic control systems", IEEE International
Conference on Systems, Man, and Cybernetics, (1992), 688—693.

[117] Nergard, P.M. Ravn, O. Poulsen, N.K. and Hansen, L.K., "Neural networks for
modelling and control of dynamic systems-A practitioner’s handbook", (2000).

[118] Kumpati, S.N. and Kannan, P., "Identification and control of dynamical systems using
neural networks", IEEE Transactions on neural networks, V. 1, n° 1, (1990), 4-27.

[119] Narendra, K.S. "Adaptive control using neural networks", Neural Networks Control,
V. 3, (1991).

[120] Velagic, J. Osmic, N. and Lacevic, B., "Design of neural network mobile robot motion
controller”, New Trends in Technologies. IntechOpen, (2010).

[121] Ch, S.B. kumar, S.V. and Dr, D.V.A. "Neural Network Controller for Enhancement
of Uninterruptible Power Supply Inverter”. International Journal of Recent
Technology, V. 1, (2012), 10-6.

[122] liguni, Y. Sakai, H. and Tokumaru, H., "A nonlinear regulator design in the presence
of system uncertainties using multilayered neural network”, IEEE transactions on
neural networks, V. 2, n° 4, (1991), 410-417.

[123] Badr, A.Z., "Neural Network Based Adaptive PID Controller", IFAC Proceedings
Volumes, V. 30, n° 6, (1997), 251-257.

[124] Benrabah, M. Kara, K. AitSahed, O. and Hadjili, L., "Adaptive Neural Network PID
Controller”, International Conference on Environment and Electrical Engineering,
(2019), 1-6.

[125] Togai, M., "Application of fuzzy inverse relations to synthesis of a fuzzy controller
for dynamic systems”, IEEE Conference on Decision and Control, (1984), 904-905.

[126] Lee, C.C., "Fuzzy logic in control systems: fuzzy logic controller”, IEEE Transactions
on systems, V. 20, n° 2, (1990), 404-418.

[127] Wang, L.X., "Stable adaptive fuzzy control of nonlinear systems", IEEE Transactions

116

on fuzzy systems, V. 1, n°® 2, (1993), 146-155.

[128] Chen, B. Liu, X. Liu, K. and Lin, C., "Direct adaptive fuzzy control of nonlinear strict-
feedback systems". Automatica, V. 45, n° 6, (2009), 1530-1535.

[129] Moore, C.G. and Harris, C.J., "Indirect adaptive fuzzy control”, International Journal
of Control, V. 56, n° 2, (1992), 441-468.

[130] Carvajal, J. Chen, G. and Ogmen, H., "Fuzzy PID controller: Design, performance
evaluation, and stability analysis"”, Information sciences, V. 123, n° 3, (2000), 249-
270.

[131] Tang, K.S. Man, K.F. Chen, G. and Kwong, S., "An optimal fuzzy PID controller".
IEEE transactions on industrial electronics, V. 48, n° 4, (2001), 757—765.

[132] Kim, J.H. Park, J.H. Lee, S.W. and Chong, E.K.P., "A two-layered fuzzy logic
controller for systems with deadzones”, IEEE Transactions on Industrial Electronics,
V. 41, n° 2, (1994), 155-162.

[133] Lughofer, E., "Evolving fuzzy systems-methodologies, advanced concepts and
applications”, Springer, Berlin, (2011).

[134] Kasabov, N.K., "Evolving connectionist systems: the knowledge engineering
approach”, Springer Science & Business Media, (2007).

[135] Halgamuge, S.K. and Glesner, M., "Neural networks in designing fuzzy systems for
real world applications", Fuzzy sets and systems, V. 65, n° 1, (1994), 1-12.

[136] Tschichold-Girman, N., "RuleNet-a new knowledge-based artificial neural network
model with application examples in robotics", ETH Zirich, PhD Thesis, (1996).

[137] Berenji, H.R. and Khedkar, P., "Learning and tuning fuzzy logic controllers through
reinforcements”, IEEE Transactions on neural networks, V. 3, n° 5, (1992), 724-740.

[138] Nauck, D. Klawonn, F. and Kruse, R., "Foundations of neuro-fuzzy systems", John
Wiley & Sons, (1997).

[139] Singh M, Chandra A. Real-time implementation of ANFIS control for renewable
interfacing inverter in 3P4W distribution network. IEEE Trans Ind Electron
2012;60:121-8.

[140] Denai, M.A. Palis, F. and Zeghbib, A., "ANFIS based modelling and control of non-
linear systems: a tutorial”, IEEE International Conference on Systems, Man and
Cybernetics, (2004), 3433-3438.

[141] Abu-Rub, H. Igbal, A. Ahmed, S.M. Peng, F.Z. Li, Y. and Baoming, G., "Quasi-Z-
source inverter-based photovoltaic generation system with maximum power tracking
control using ANFIS", IEEE Transactions on Sustainable Energy, V. 4, n° 1, (2012),
11-20.

[142] Chang, B.C.H. and Halgamuge, S., "Model free online adaptive feedback control with
FuNe | AFC neuro-fuzzy system"”, International Conference on Fuzzy Systems ,
(2000), 997-1000.

[143] Chang, B. and Halgamuge, S., "Rule Based Reinforcement Learning Algorithm for
Weight Update in FuNe | Adaptive Feedback Controller”, (2005).

117

[144] Nornberger, A. Nauck, D. and Kruse, R., "Neuro-fuzzy control based on the
NEFCON-model: recent developments”, Soft Computing, V. 2, n° 4, (1999), 168—
182.

[145] Song, Y. Chen, Z. and Yuan, Z., "New chaotic PSO-based neural network predictive
control for nonlinear process”, IEEE transactions on neural networks, V. 18, n° 2,
(2007), 595-600.

[146] Wysocki, A. and Lawrynczuk, M., "Elman neural network for modeling and
predictive control of delayed dynamic systems™, Archives of Control Sciences, V. 26,
(2016).

[147] Espinosa, O. Jose, J. Vandewalle, J. and Wertz, V., "Fuzzy Logic, Identification, and
Predictive Control”, Springer, London, (2005).

[148] Han, H.G. Liu, Z. and Qiao, J.F., "Fuzzy neural network-based model predictive
control for dissolved oxygen concentration of WWTPs", International Journal of
Fuzzy Systems, V. 21, n° 5, (2019), 1497-1510.

[149] Lu, C.H. and Tsai, C.C., "Generalized predictive control using recurrent fuzzy neural
networks for industrial processes™, Journal of process control, V. 17, n° 1, (2007), 83—
92.

[150] Lu, C.H., "Wavelet fuzzy neural networks for identification and predictive control of
dynamic systems", IEEE Transactions on Industrial Electronics, V. 58, n° 7, (2010),
3046-3058.

[151] Abedi, M. Yaghoobi, M. and Raesian, N., "Optimization of model predictive
controller parameters based on Imperialist Competitive algorithm”, Iranian
Conference on Electrical Engineering, (2013), 1-5.

[152] Davtyan, A. Hoffmann, S. and Scheuring, R., "Optimization of model predictive
control by means of sequential parameter optimization™, Computational Intelligence
in Control and Automation, (2011), 11-16.

[153] Polya, G., "How to solve it ", Princeton University, New Jersey, (1945).

[154] Glover, F., "Future paths for integer programming and links to artificial intelligence™,
Computers & operations research, V. 13, n° 5, (1986), 533-549.

[155] Osman, I.H. and Kelly, J.P., "Meta-heuristics: an overview", Meta-Heuristics, V. 1,
n° 21, (1996), 1-21.

[156] Kirkpatrick, S. Gelatt, C.D. and Vecchi, M.P., "Optimization by simulated annealing"
Science, V. 220, (1983), 671-680.

[157] Mladenovi¢, N. and Hansen, P., "Variable neighborhood search”, Computers &
operations research, V. 24, n° 11, (1997), 1097-1100.

[158] Feo, T.A. and Resende, M.G.C., "A probabilistic heuristic for a computationally
difficult set covering problem”, Operations research letters, V. 8, n° 2, (1989), 67-71.

[159] Dorigo, M. and Di Caro, G., "Ant colony optimization: a new meta-heuristic",
Proceedings of the 1999 congress on evolutionary computation, (1999), 1470-1477.

[160] Kennedy, J. and Eberhart, R., "Particle swarm optimization"”, international conference
on neural networks, (1995), 1942-1948.

118

[161] Karaboga, D., "An idea based on honey bee swarm for numerical optimization”,
Technical report-tr06, (2005).

[162] Vajda, S., "Mathematical programming”, Courier Corporation, (2009).

[163] Jaffar, J. and Lassez, J.L., "Constraint logic programming", symposium on Principles
of programming languages, (1987), 111-1109.

[164] Maaranen, H. Miettinen, K. and Penttinen, A., "On initial populations of a genetic
algorithm for continuous optimization problems”, Journal of Global Optimization, V.
37, n° 3, (2007), 405.

[165] Maaranen, H. Miettinen, K. and Mékel&, M.M., "Quasi-random initial population for
genetic algorithms”, Computers & Mathematics with Applications, V. 47, n° 12,
(2004), 1885-1895.

[166] Sacco, W.F. and Rios-Coelho, A.C.. "On initial populations of differential evolution
for practical optimization problems”, Computational Intelligence, Optimization and
Inverse Problems with Applications in Engineering, Springer, (2019), 53-62.

[167] Talbi, E.G., "Metaheuristics: from design to implementation”, John Wiley & Sons,
(2009).

[168] Clerc, M., "Particle swarm optimization". John Wiley & Sons, (2010).

[169] Storn, R. and Price, K., "Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces”, Journal of global optimization, V. 11,
n° 4, (1997), 341-359.

[170] Michalewicz, Z., "Genetic algorithms+ data structures= evolution programs”,
Springer Science & Business Media, (2013).

[171] Iba, H. and Aranha, C.C., "Practical Applications of Evolutionary Computation to
Financial Engineering”, Springer, (2012).

[172] Wolpert, D.H. and Macready, W.G., "No free lunch theorems for search”, Technical
Report, Santa Fe Institute, (1995).

[173] Wolpert, D.H. and Macready, W.G., "No free lunch theorems for optimization"”, IEEE
transactions on evolutionary computation, V. 1, n° 1, (1997), 67-82.

[174] Eberhart, R. and Kennedy, J., "A new optimizer using particle swarm theory",
International Symposium on Micro Machine and Human Science, (1995), 39-43.

[175] Xinchao, Z. "A perturbed particle swarm algorithm for numerical optimization”,
Applied Soft Computing, V. 10, n° 1, (2010), 119-24.

[176] Arani, B.O. Mirzabeygi, P. and Panahi, M.S., "An improved PSO algorithm with a
territorial diversity-preserving scheme and enhanced exploration—exploitation
balance", Swarm and Evolutionary Computation, V. 11, (2013), 1-15.

[177] Shi, Y. and Eberhart, R., "A modified particle swarm optimizer", IEEE international
conference on evolutionary computation proceedings, (1998), 69-73.

[178] Shi, Y. and Eberhart, R.C., "Fuzzy adaptive particle swarm optimization".
Proceedings of the 2001 congress on evolutionary computation, (2001), 101-106.

[179] Liang, J.J. Qin, A.K. Suganthan, P.N. and Baskar, S., "Comprehensive learning

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

119

particle swarm optimizer for global optimization of multimodal functions”, IEEE
transactions on evolutionary computation, V. 10, n° 3, (2006), 281-295.

Chen, S. Montgomery, J. and Bolufé-Rohler, A., "Measuring the curse of
dimensionality and its effects on particle swarm optimization and differential
evolution”, Applied Intelligence, V. 42, n° 3, (2015), 514-26.

Bolufé-Rohler, A. and Chen, S., "Minimum population search-lessons from building
a heuristic technique with two population members", IEEE Congress on Evolutionary
Computation, (2013), 2061-2068.

Rao, R.V. and Patel, V., "An improved teaching-learning-based optimization
algorithm for solving unconstrained optimization problems", Scientia Iranica , V. 20,
n° 3, (2013), 710-720.

Astrom, K.j. and Hagglund, T., "PID controllers: theory, design, and tuning",
Research Triangle Park, NC: Instrument society of America, (1995).

Yu, W., "PID Control with Intelligent Compensation for Exoskeleton Robots",
Academic Press, (2018).

Garrido, R. and Trujano, M.A., "Stability analysis of a visual pid controller applied
to a planar parallel robot”, International Journal of Control, Automation and Systems
, V. 17, n° 6, (2019), 1589-1598.

Duong, P.L.T. and Lee, M., "Design of robust PID controller for processes with
stochastic uncertainties”, Computer Aided Chemical Engineering, V. 29, (2011),
512-516.

Memon, F. and Shao, C., "An optimal approach to online tuning method for PID type
iterative learning control™, Journal of Control, Automation and Systems (2020), 1-10.

Tepljakov, A. Alagoz, B.B. Yeroglu, C. Gonzalez, E. HosseinNia, H.S. and
Petlenkov, E., "FOPID Controllers and Their Industrial Applications: A Survey of
Recent Results". IFAC-PapersOnLine, V. 51, n° 4, (2018), 25-30.

Shah, P. Agashe, S., "Review of fractional PID controller”, Mechatronics, V. 38,
(2016), 29-41.

Su, Y.X. Sun, D. and Duan, B.Y., "Design of an enhanced nonlinear PID controller",
Mechatronics, V. 15, n° 8, (2005), 1005-1024.

Chen, W.H. Balance, D.J. Gawthrop, P.J. Gribble. J.J. and O’Reilly, J., "Nonlinear
PID predictive controller”, IEE Proceedings-Control Theory and Applications, V.
146, n° 6, (1999), 603-611.

Girgis, M.E. Fahmy, R.A. and Badr, R.1., "Optimal fractional-order PID control for
plasma shape, position, and current in Tokamaks", Fusion Engineering and Design,
V. 150, (2020), 1-7.

Pradhan, R. Majhi, S.K. Pradhan, J.K. and Pati, B.B., "Optimal fractional order PID
controller design using Ant Lion Optimizer"”, Ain Shams Engineering Journal, V. 11,
n° 2, (2019), 1-11.

Kang, J. Meng, W. Abraham, A. and Liu, H., "An adaptive PID neural network for
complex nonlinear system control*, Neurocomputing, V. 135, (2014), 79-85.

120

[195] Huailin, S., "Analysis of PID neural network multivariable control systems"”, Acta
Automatica Sinica, V. 25, n° 1, (1999), 105-11.

[196] Yongquan, Y. Ying, H. and Bi, Z., "A PID neural network controller”, International
Joint Conference on Neural Networks, (2003), 1933-1938.

[197] Zribi, A. Chtourou, M. and Djemel, M., "A new PID neural network controller design
for nonlinear processes”, Journal of Circuits, Systems and Computers, V. 27, n° 4,
(2018), 1850065.

[198] Asgharnia, A. Shahnazi, R. and Jamali, A., "Performance and robustness of optimal
fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic
optimization algorithms™ ISA Transactions, V. 79, (2018), 27-44.

[199] Somwanshi, D. Bundele, M. Kumar, G. and Parashar, G., "Comparison of Fuzzy-PID
and PID Controller for Speed Control of DC Motor using LabVIEW". Procedia
Computer Science, V. 152, (2019), 252-260.

[200] Raj, R. et Mohan, B.M., "Takagi-Sugeno fuzzy PID controllers: mathematical models
and stability analysis with multiple fuzzy sets", International Journal of Fuzzy
Computation and Modelling, V. 3, n° 1, (2020), 33-60.

[201] Kudinov, Y.I., Kolesnikov, V.A., Pashchenko, F.F., Pashchenko, A.F. and Papic, L.,
"Optimization of Fuzzy PID Controller’s Parameters”, Procedia Computer Science,
V. 103, (2017), 618-620.

[202] Kumar, A. and Kumar, V., "A novel interval type-2 fractional order fuzzy PID
controller: Design, performance evaluation, and its optimal time domain tuning”, ISA
transactions, V. 68, (2017), 251-275.

[203] Rugh, W.J., "Design of nonlinear PID controllers”, AIChE Journal, V. 33, n° 10,
(1987), 1738-1742

[204] Scherer, R., Kalla, S.L., Tang, Y. and Huang, J., "The Grunwald-Letnikov method
for fractional differential equations”, Computers & Mathematics with Applications,
V. 62, n° 3, (2011), 902-917.

[205] Lund, M.R., "Intégrales de Riemann—Liouville et potentiels”, Acta Litt Ac Sci
Regiae Univ Hungaricae Fr AM Kir Ferencz Jézsef-Tudomanyegyetem Tudomanyos
Kdzlemanyei Math Tudomanyok Sect Sci Math, (1938), 9-1.

[206] Abdeljawad, T., "On Riemann and Caputo fractional differences”. Computers &
Mathematics with Applications, V. 62, n° 3, (2011), 1602-1611.

[207] Garrappa, R., Kaslik, E., and Popolizio, M., "Evaluation of fractional integrals and
derivatives of elementary functions: Overview and tutorial”, Mathematics, V. 7, n° 5,
(2019), 407.

[208] Fang, H., Chen, L. and Shen, Z., "Application of an improved PSO algorithm to
optimal tuning of PID gains for water turbine governor", Energy Conversion and
Management, V. 52, n°4, (2011), 1763-1770.

[209] Wang, J., An, D. and Lou, C., "Application of fuzzy-PID controller in heating
ventilating and air-conditioning system", International Conference on Mechatronics
and Automation, (2006), 2217-2222.

[210] Yu, W. and Rosen, J., "Neural PID control of robot manipulators with application to

121

an upper limb exoskeleton”, IEEE Transactions on cybernetics, V 43, n° 2, (2013),
673-684.

[211] Qi, Y. and Meng, Q., "The application of fuzzy PID control in pitch wind turbine”,
Energy Procedia, V. 16, (2012), 1635-1641.

[212] Shu, H. and Pi, Y., "PID neural networks for time-delay systems", Computers &
Chemical Engineering, V. 24, n° 2, (2000), 859-862.

[213] krishna, S. and Vau, S., "Fuzzy PID based adaptive control on industrial robot
system". Materials Today: Proceedings, V. 5, n° 5, (2018), 13055-13060.

[214] Ulpiani, G., Borgognoni, M., Romagnoli, A. and Perna, C.Di., "Comparing the
performance of on/off, PID and fuzzy controllers applied to the heating system of an
energy-efficient building”, Energy and Buildings, V. 116, (2016), 1-17.

[215] Chiou, J-S., Tsai, S-H. and Liu, M-T., "A PSO-based adaptive fuzzy PID-controllers”,
Simulation Modelling Practice and Theory, V. 26, (2012), 49-59.

[216] Valluru, S.K. and Singh, M., "Performance investigations of APSO tuned linear and
nonlinear PID controllers for a nonlinear dynamical system”, Journal of Electrical
Systems and Information Technology, V. 5, n° 3, (2018), 442-452.

[217] Solihin, M.1., Tack, L.F. and Kean M.L., "Tuning of PID controller using particle
swarm optimization (PSO)", Proceeding of the International Conference on Advanced
Science, Engineering and Information Technology, V. 1, (2011), 458-461.

[218] Das, K.R., Das, D. and Das, J., "Optimal tuning of PID controller using GWO
algorithm for speed control in DC motor”, International Conference on Soft
Computing Techniques and Implementations (ICSCTI), (2015), 108-112.

[219] Mishra, A.K,, Das, S.R., Ray, P.K., Mallick, R.K., Mohanty, A. and Mishra, D,K.,
"PSO-GWO Optimized Fractional Order PID Based Hybrid Shunt Active Power
Filter for Power Quality Improvements”, IEEE Access, V. 8, (2020), 74497-74512.

[220] Sahu, R.K., Panda, S., Rout, U.K. and Sahoo, D.K., "Teaching learning based
optimization algorithm for automatic generation control of power system using 2-
DOF PID controller”, International Journal of Electrical Power & Energy Systems,
V. 77, (2016), 287-301.

[221] Chatterjee, S. and Mukherjee, V., "PID controller for automatic voltage regulator
using teaching—learning based optimization technique"”, International Journal of
Electrical Power & Energy Systems, V. 77, (2016), 418-429.

[222] Senberber, H. and Bagis, A., "Fractional PID controller design for fractional order
systems using ABC algorithm™, Electronics IEEE, (2007), 1-7.

[223] Kaliappan, V. and Thathan, M., "Enhanced ABC based PID controller for nonlinear
control systems”, Indian Journal of Science and Technology, V. 8, (2015), 48.

[224] Ko, C-N. and Wu, C-J., "A PSO-tuning method for design of fuzzy PID controllers™
Journal of Vibration and Control, V. 14, n° 3, (2008), 375-395.

[225] Chavoshian, M., Taghizadeh, M. and Mazare, M., "Hybrid dynamic neural network
and PID control of pneumatic artificial muscle using the PSO algorithm”,
International Journal of Automation and Computing, V. 17, n° 3, (2020), 428-438

122

[226] Dong, X., Zhang, Z. and Chen, C., "Applying genetic algorithm to on-line updated
PID neural network controllers for ball and plate system". Fourth International
Conference on Innovative Computing, Information and Control (ICICIC), (2009),
751-755.

[227] Jones, A.H., "Genetic tuning of neural non-linear PID controllers. Artif. Neural Nets
Genetic Algorithms", Springer, (1995), 412-415.

[228] Benrabah, M., Kara, K., AitSahed, O. and Hadjili, M.L., "Adaptive Fourier Series
Neural Network PID Controller”, International Journal Control Automation System,
(2021).

[229] Li, C., Lili, T., Hui, C., Qi, R. and Feng, Q., "Multivariable generalized predictive
control based on receding feedback correction in binary distillation process”,
Proceedings of the 10th World Congress on Intelligent Control and Automation,
(2012), 1098-1102.

[230] Pugh, G.A,. "Synthetic neural networks for process control”, Computers & industrial
engineering, V. 17, n° 1, (1989), 24-26.

[231] Karlin, S., "The structure of dynamic programing models"”, Naval Research Logistics
Quarterly, V. 2, n° 4, (1955), 285-294.

[232] Song, Z., Hofmann, H., Li, J., Han, X. and Ouyang, M., "Optimization for a hybrid
energy storage system in electric vehicles using dynamic programing approach™,
Applied Energy, V. 139, (2015), 151-162.

[233] Crampin, M., "On the differential geometry of the Euler-Lagrange equations, and the
inverse problem of Lagrangian dynamics", Journal of Physics A: Mathematical and
General, V. 14, n° 10, (1981), 2567.

[234] Park, J. and Chung, W.K., "Analytic nonlinear H/sub/spl infin//inverse-optimal
control for Euler-Lagrange system™, IEEE Transactions on Robotics and Automation,
V. 16, n° 6, (2000), 847-854

[235] Betts, J.T., "Survey of numerical methods for trajectory optimization"”, Journal of
guidance, control, and dynamics, V. 21, n° 2, (1998), 193-207.

[236] Levin, A.U. and Narendra, K.S., "Identification of nonlinear dynamical systems using
neural networks", Neural systems for control. Academic Press, (1997), 129-160.

[237] Setiono, R. and Hui, L.C.K., "Use of a quasi-Newton method in a feedforward neural
network construction algorithm", IEEE Transactions on Neural Networks, V. 6, n° 1,
(1995), 273-277.

[238] Moré, J.J., "The Levenberg-Marquardt algorithm: implementation and theory",
Numerical analysis. Springer, Berlin, Heidelberg, (1978), 105-116.

[239] Leung, H. and Haykin, S., "The complex backpropagation algorithm”, IEEE
Transactions on signal processing, V. 139, n° 9, (1991), 2101-2104.

[240] Lin, F., "Robust Control Design: An Optimal Control Approach”, John Wiley & Sons,
(2007).

