
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education and Scientific Research

SAAD DAHLEB BLIDA UNIVERSITY

FACULTY OF SCIENCES

COMPUTER SCIENCE DEPARTMENT

End of studies project with a view to obtaining the

Master's degree in Computer systems and networks

Theme

Presented by:

 Mahi Abdelkrim

 Menouer Ramzi

Supervisor:

 Dr. Amina Madani

Co-Supervisor:

 Dr. Fatima Boumahdi

The jury:

 Dr. Mahfoud Bala

 Dr. Khaddija Midoun

Year: 2020-2021

Authorship Verification From Text

Acknowledgments

First of all, we would like to express our gratitude to my first supervisor Doctor Madani Amina

whose expertise, understanding, patience and motivation enriched considerably in our

graduating experience. For giving us precious advice and trusting our capabilities from the

beginning. Her insightful comments and constructive criticism were always thought provoking

and useful at the different stages of our academic attendance. We thank Doctor Boumahdi

Fatima also for all her support, patience and help throughout the research. Without their

guidance, this research project would never have materialized.

 Furthermore, we ought to extend our gratitude to Saad Dahleb University of Blida for the

support it has provided through the duration of our academic career. Our fellow students also

deserve special mention for all these exchanges of knowledge and skills between us.

Moreover, we would like to express our thankfulness to our family for their unconditional

support and full trust that makes it possible for us to strive for our own dreams.

Abstract

Authorship verification (AV) is one of various topics parts of authorship analysis field that deals

with the problem of determine whether two texts were written by the same author or not. A

combination of a similarity-based methods and relevant linguistic features are used to achieve

high accuracy authorship verification. To address this problem, we proposed a new approach

using the Autoencoder deep learning method. Challenges in the context of Authorship

verification have greatly increased in recent years, as the challenge of PAN (series of scientific

events) for three last years from 2020 to 2022. To experiment our approach, we used the data

provided by PAN 2021 AV task.

Keywords: Authorship verification, PAN, Autoencoder, deep learning, similarity.

Résumé

La vérification de l'auteur est une thématique faisant partie du domaine de l'analyse de l'auteur,

qui aborde le problème de déterminer si deux textes ont été écrits par le même auteur ou non.

Une collection de méthodes de remplacement sur la similitude et de traits linguistiques

pertinentes sont utilisées pour obtenir une vérification d’auteur de haute précision. Pour

résoudre ce problème, nous avons proposé une nouvelle approche utilisant la méthode

d'apprentissage en profondeur Autoencoder. Les défis dans le contexte de la vérification de

l'auteur ont augmenté ces dernières années, comme le défi du PAN à travers les trois dernières

années de 2020 à 2022. Pour expérimenter notre approche, nous avons utilisé les données

fournies par la tâche PAN 2021 AV.

Mots Clé: Vérification de l'auteur, PAN, Autoencoder, Apprentissage en profondeur, la

similitude.

 ملخص

. ما نفس المؤلفنصان قد كتبه تحديد ما إذا كانمشكلة والذي يعالجمن مجال تحليل التأليف، التحقق من التأليف هو جزء

قة عالية. لحل هذه ق التشابه البديلة والسمات اللغوية ذات الصلة لتحقيق التحقق من التأليف بديتم استخدام مجموعة من طر

بشكل لتحديات زادت ا في السنوات الأخيرة .Autoencoderالمشكلة، اقترحنا طريقة جديدة باستخدام طريقة التعلم العميق

، قتناطري. لتجربة 2022إلى 2020ة من ث الماضيالسنوات الثلا في PAN، كتحدي كبير في سياق التحقق من التأليف

 .PAN 2021. AVاستخدمنا البيانات المقدمة من مهمة

 .التشابه ، التعلم العميق،PAN، Autoencoder التحقق من التأليف، الكلمات المفتاحية:

Contents

General Introduction ... 1

Chapter 01: Deep Learning.. 1

Introduction ... 4

1. Artificial intelligence ... 4

2. Machine learning ... 4

3. Machine learning methods .. 5

3.1 Supervised learning .. 6

3.2 Unsupervised Learning .. 6

3.3 Reinforcement Learning ... 8

4. Deep learning ... 8

4.1 From Machine Learning to Deep Learning .. 8

4.2 What is deep learning? ... 9

4.3 Deep learning Technics .. 10

4.3.1 Perceptron ... 10

4.3.2 Convolutional Neural Networks ... 10

4.3.2.1 Convolutional Neural Network Architecture .. 10

A. Feature Detection Layers .. 11

B. Classification Layers ... 12

4.3.3 Activation Functions ... 12

4.3.3.1 Sigmoid ... 12

4.3.3.2 Tanh ... 13

4.3.3.3 ReLU ... 14

4.3.3.4 SoftMax ... 15

4.3.4 Recurrent Neural Networks (RNNs) ... 15

4.3.5 Long short-term memory (LSTM) .. 16

4.3.6 Auto-Encoder (AE) ... 16

Conclusion .. 18

Chapter 02: Authorship Verification: State of the art ... 19

Introduction ... 20

1. Authorship Analysis Key Concepts ... 20

2. Types of Authorship Analysis Tasks ... 21

2.1 Authorship Attribution ... 21

2.2 Authorship Profiling ... 21

2.3 Authorship verification .. 22

3. Related work .. 23

4. Comparison table ... 26

5. Discussion .. 29

Conclusion .. 30

Chapter 03: Conception of a new Authorship Verification model ... 31

Introduction ... 32

1. Architecture of our model ... 32

2. Features Extraction .. 33

2.1 Preprocessing ... 33

2.2 Vectorization .. 36

2.1.1 Word Embedding .. 36

2.1.1.1 Word2Vec ... 36

3. Text classification .. 38

Conclusion .. 40

Chapter 04: Experimentation and results.. 41

Introduction ... 42

1. Hardware ... 42

2. Software ... 43

3. Library ... 43

4. Dataset ... 44

5. Implementation .. 46

5.1 Training and validation .. 46

5.2 Testing .. 47

5.3 Source code .. 49

6. Evaluation metrics ... 53

7. Results ... 54

Conclusion .. 58

General Conclusion .. 59

References .. 60

List of Figures

Figure 1: Traditional programming diagram[5]. .. 5

Figure 2: The machine-learning diagram [5]. ... 5

Figure 3: Supervised Learning training model [7]. .. 6

Figure 4: How an unsupervised learning algorithm clusters data into groups or zonesSemi

supervised Learning. ... 7

Figure 5: Reinforcement learning training a robot to play chess [8]. ... 8

Figure 6: Relationship between AI, machine learning, and deep learning [9]. 9

Figure 7: Neural network with two hidden layers [10]. .. 10

Figure 8: A CNN architecture for classifying animal images [9]... 11

Figure 9: Sigmoid activation function and its derivative [10]. ... 13

Figure 10: Tanh activation function and its derivative. .. 14

Figure 11: ReLU activation function plot. ... 14

Figure 12: The softmax computation. .. 15

Figure 13: Recurrent neural network [16]. ... 16

Figure 14: The cost (error) function for an auto-encoder. .. 16

Figure 15: Training of stacked auto-Encoder Algorithm [18]. .. 17

Figure 16: Architecture of Autoencoder[19] .. 18

Figure 17: Authorship Analysis is a combination of Artificial Intelligence, Linguistics and

Cognitive Psychology [21]. .. 20

Figure 18: Authorship verification problem [1]. .. 23

Figure 19: Architecture of our model of authorship verification. .. 33

Figure 20: An example of remove the digits and punctuation. ... 34

Figure 21: An example of removing the capital letters. ... 34

Figure 22: An example of tokenization of a text. ... 35

Figure 23: An example of removing the StopWords .. 35

Figure 24: An example of lemmatization of text. ... 36

Figure 25: Word2vec model (Continuous Bag of Words (CBOW) and Skip-Ngram)[38]...... 37

Figure 26: The structure of the training Small file. .. 45

Figure 27: The structure of the Truth file. .. 45

Figure 28: The description of the graphical interface .. 47

Figure 29: The display of the printed results. ... 48

Figure 30: The download data and the import packages. ... 49

Figure 31: The preprocessing function we created and some initialization of variable. 49

Figure 32: The features extraction of our dataset using Word2vec for the vectorization step. 50

Figure 33: The process of the truth data. .. 50

Figure 34: The initialization of the two classes of the classification.. 51

Figure 35: The split of our dataset. ... 51

Figure 36: The Autoencoder features extraction for classification. ... 52

Figure 37: The compiling of the Autoencoder model. ... 52

Figure 38: The training and validation accuracy. ... 55

Figure 39: The loss volume of our model. ... 56

Figure 40: A histogram of our results with the other works using F1-score. 57

List of Tables

Table 1 :The difference between the three Approaches of Machine Learning [5]. 7

Table 2: Classification of some related works in the field of AV. ... 29

Table 3: All layers with its tokens size and activation function. .. 39

Table 4: The statistics of the small dataset. .. 45

Table 5: The results of our model. .. 54

Table 6: The results of the recall and precision. ... 55

Table 7: The F1-score of all the works that used the small dataset provided by PAN............. 57

1

General Introduction

The world has changed over the past few years, «the Internet is growing exponentially with a

vast amount of data every day. Such a high growth rate brings problems like fraudulent, stolen,

or unidentified data. These problems can be very dangerous in places like the government

sector, public websites, forensics, and schools. Because of these risks, we must do detection of

truth for which it is necessary to analyze the authorship of a text»[1], to reduce the occurrence

of these problems. Authorship Analysis is one such technique, which is used to find the

authorship of a text.

Authorship Analysis is categorized as three classes. One of these three types is the authorship

verification. It analyses two or more text to determine whether they were written by the same

author or not. It has a wide range of applications in fraud and plagiarism detection problems.

As known examples of authorship verification problems, we review fraud emails and unknown

data. where authorship verification may help us to reduce these risks[2]. The question that we

ask is how can we verify the authorship of text?

In this field of authorship verification, there are a lot of research that have been carried out

using the artificial intelligence methods as machine learning and deep learning. This field has

become a huge challenge recently specially in PAN from 2020 to 2022 at CLEF (Conference

and Labs of the Evaluation Forum). PAN2021 provided the same dataset of the last year

PAN2020, which consists of pairs of (snippets from) different fanfics, the goal of the task is to

find new approaches in the authorship verification.

We propose a new approach to solve the problem of authorship verification using the

Autoencoder deep learning method, which achieved good results. We start our approach by

extract the features of our dataset in two steps. The first is preprocessing and the second is the

vectorization using Word2vec method. After that, we start the text classification using our

Autoencoder method, we have to split the dataset into three-part “training” and “validation”

and “test”.

We used the dataset provided by PAN 2020 in our experimentation

The structure of this document is organized as follows:

2

Chapter 01: We start by presenting the artificial intelligence and machine learning and we go

directly to present the deep learning and its basics, then we move on to the different deep

learning techniques used in the text classification.

Chapter 02: The second chapter is the state of the art presenting the works related to the

authorship verification problem.

Chapter 03: In the third chapter, we will present our new model and we dive deep explaining

each of its parts that we used to build it.

Chapter 04: In the last chapter, we will present the different tools used to build our model. At

the end, we share the results we have achieved and compare them to other works.

Chapter 01: Deep

Learning

Chapter 01: Deep Learning

4

Introduction

In the last years, artificial intelligence (AI) has been a trend in all fields. Artificial intelligence

(has many subfields and machine learning is one of them, the evolution of machine learning

has led to significant advancements and improvements in the way we interact with our world.

One of these exciting advancements is Deep Learning, which is driving today’s AI explosion.

Therefore, in this chapter we will introduce the deep learning part. Then we will discuss the

different famous methods and techniques of deep learning.

1. Artificial intelligence

There is no consensus about the definition of AI. In broad terms, Ryan Calo [3] conceptualizes

it as “a set of techniques aimed at approximating some aspect of human or animal cognition

using machines”. In colloquial terms, AI applications intend to automate human tasks through

the use of machines, in a faster, more accurate, and safe manner than when the tasks performed

by humans. AI applications even go as far as performing tasks that are not possible for humans

to do, due to our biological limitations. AI systems range from ordinary applications (e.g., cell

phone voice assistants) to very sophisticated systems capable of driving cars, performing

medical diagnostics, profiling people, or even controlling entire sectors in a given industry. In

fact, the term AI encompasses a wide range of techniques in many scientific areas, especially

computer sciences. There are various subfields such as robotics, machine learning, neural

networks, computer vision, facial and speech recognition.

Furthermore, artificial Intelligence is a field in computer science that is concerned with the

automation of intelligence and the enablement of machines imitate humans behaviors and

actions and to achieve complex tasks in complex environments[4].

2. Machine learning

The term “machine learning” was coined by Arthur Samuel in 1959 [5], an American pioneer

in the field of computer gaming and artificial intelligence, and stated “it gives computers the

ability to learn without being explicitly programmed.”

So let us start to answer a few good questions: what is machine learning? In addition, what

is the difference between traditional programming and machine learning? It is easy to get

the difference between them as follows:

Chapter 01: Deep Learning

5

 Traditional programming: In traditional programming, we have a box that has two

inputs (Input, Rule) and the traditional model generates the output based on the rule

that we add. Figure 1 shows the model of a traditional programming diagram.

Figure 1: Traditional programming diagram[5].

 Machine learning: In machine learning, we have a box that has two inputs (Input,

Output) and the machine-learning model trains to get the rule that generates the

output from input.

Figure 2 present the machine learning programming model that shows how it differs

from traditional programming [5].

Figure 2: The machine-learning diagram [5].

3. Machine learning methods

Machine learning is classified into four categories based on the kind of dataset experience. A

model is allowed as follows [6]: supervised learning (SL), unsupervised learning (UL), semi-

Chapter 01: Deep Learning

6

supervised learning (SSL), and reinforcement learning (RL). We briefly discuss each of these

machine-learning paradigms.

3.1 Supervised learning

Supervised machine learning is the major category of machine learning that drives a lot of

applications and value for businesses. In this type of learning, the model trained on the data for

which we already have the correct labels or outputs. In short, we try to map the relationship

between input data and output data in such a way that it can generalize well on unseen data as

well, as shown in Figure 3. The training of the model takes place by comparing the actual output

with the predicted output and then optimizing the function to reduce the total error between the

actual and predicted [7].

Figure 3: Supervised Learning training model [7].

3.2 Unsupervised Learning

Unsupervised Learning is a class of machine learning techniques to find the patterns in data.

The data given to unsupervised algorithms are not labeled, which means only the input variables

are given with no corresponding output variables. In unsupervised learning, the algorithms are

left to themselves to discover interesting structures in the data, where we have only input data

and no corresponding output variables. The easy definition is that in unsupervised learning we

wish to learn the inherent structure of our data without using explicitly provided labels.

Chapter 01: Deep Learning

7

However, why do they call it unsupervised learning? They called it unsupervised learning

because unlike supervised learning, there are no given correct answers and the machine itself

finds the answers. In Figure 4, we give a representation of unsupervised learning.

Figure 4: How an unsupervised learning algorithm clusters data into groups or zonesSemi supervised

Learning.

When we have a problem with a large amount of input data and only some of the data labeled,

this is called a semi-supervised learning problem. These problems sit in between supervised

and unsupervised learning.

How does it work? We can use unsupervised learning techniques to discover and learn the

structure in the input variables, then we use just a few labeled data as supervised learning

technic to make the model get good predictions for the unlabeled data, feed that labeled data as

training data. After that we test the model unknown data and make predictions[5].

In table 1, we present the difference between the three approaches of Machine Learning.

Supervised learning Unsupervised Learning Semi supervised Learning

The data labeled and the

algorithms learn to predict

the output from the input

data.

The data is unlabeled and

the algorithms learn the

inherent structure from the

input data.

Just Some data labeled but

most of it is unlabeled,

and a mixture of

supervised and

unsupervised techniques

can be used.

Table 1 :The difference between the three Approaches of Machine Learning [5].

Chapter 01: Deep Learning

8

3.3 Reinforcement Learning

The reinforcement learning is a type of machine learning methods, it is a bit different from

conventional supervised or unsupervised method. First, in reinforcement learning there is an

agent that we want to train over a period to interact with a specific environment and improve

its performance with regard to the type of actions it performs on the environment. Moreover,

for interacting with the specific environment the agent starts with a set of strategies or policies.

On observe the current state of the environment, it takes a particular action based on a specific

rule. Based on the action, the agent gets a reward that could be beneficial or detrimental. The

iterative process continues until it learns enough about its environment, and It updates its

current policies and strategies if needed[8].

A suitable reinforcement learning methodology has been described in Figure 5.

Figure 5: Reinforcement learning training a robot to play chess [8].

4. Deep learning

4.1 From Machine Learning to Deep Learning

We now know and understand that machine learning is a subset of artificial intelligence, and

deep learning is a subset of machine learning. Therefore, every machine-learning program is

under the category of AI programs but not vice versa. The question then is if the approaches of

machine learning and AI are the same. The answer is yes, because every machine-learning

problem is an AI problem and deep learning is a subset of machine learning. We should keep

in mind that deep learning is nothing more than methods that enhance machine learning

algorithms to be more accurate and make some stages easy, like feature extractions, etc. The

Chapter 01: Deep Learning

9

easiest takeaway for understanding the difference between machine learning and deep learning

is to remember that deep learning is a subset of machine learning [5].

Figure 6: Relationship between AI, machine learning, and deep learning [9].

4.2 What is deep learning?

The term “deep learning” is somewhat ambiguous. In many circles, deep learning is a re-

branding term for neural networks or is used to refer to neural networks with many consecutive

(deep) layers. Moreover, it is a system learned via neural networks without being guided by

humans [10].

This type of system allows for processing huge amounts of data (big data) to get relationships

and patterns that humans are often unable to detect or to observe [11]. The word “deep” refers

to the number of hidden layers in the neural network. Furthermore, a deep learning architecture

is a multilayer stack of simple modules with nonlinear input–output mappings, which are

subject to learning. Each module in the stack transforms its input to increase both the selectivity

and the invariance of the representation. Deep neural networks are multilayer networks with

many hidden layers [12] (see Figure 7).

Chapter 01: Deep Learning

10

Figure 7: Neural network with two hidden layers [10].

4.3 Deep learning Technics

4.3.1 Perceptron

A Perceptron is the smallest layer in the neural network. It is a linear classifier (binary), and it

is used in supervised learning. It helps to classify the given input data to get the output value.

Since the inputs are fed directly to the output via the weights, the perceptron can be considered

the simplest kind of feedforward network [13].

4.3.2 Convolutional Neural Networks

A convolutional neural network (convent or CNN for short) is a type of neural network that is

particularly good at analyzing images (although they can be applied to audio and text data). The

neurons in the layers of a convolutional neural network are arranged in three dimensions:

height, width, and depth. CNNs use convolutional layers to learn local patterns in its input

feature space (images) such as textures and edges. In contrast, fully connected (dense) layers

learn global patterns. The neurons in a convolutional layer are only connected to a small region

of the layer preceding it instead of all of the neurons, as is the case with dense layers. A dense

layer’s fully connected structure can lead to an extremely large number of parameters that are

inefficient and could quickly lead to overfitting.

4.3.2.1 Convolutional Neural Network Architecture

Convolutional neural networks consist of several layers, each trying to identify and learn

various features. The main types of layers are convolutional layer, pooling layer, and fully

connected layer. The layers can be classified into two main categories: feature detection layers

and classification layers. Figure 8 display what a typical CNN architecture looks like [9].

Chapter 01: Deep Learning

11

Figure 8: A CNN architecture for classifying animal images [9].

A. Feature Detection Layers

 Convolutional Layer

The convolutional layer is the primary building block of a convolutional neural network. The

convolutional layer runs the input images or texts through a series of convolutional kernels or

filters that activate certain features from the input images or texts. A convolution is a

mathematical operation that performs element-wise multiplication at each location where the

input element and the kernel element overlap as the kernel slides (or strides) across the input

feature map.

 Rectified Linear Unit (ReLU) Activation Function

It is common practice to include an activation layer after each convolutional layer. The

activation function can be also specified through the activation argument supported by all

forward layers. Activation functions convert an input of a node to an output signal that is used

as input to the next layer. Activation functions make neural networks more powerful by

allowing it to learn more complex data such as images, audio, and text and introducing

nonlinear properties to the neural network.

 Pooling Layer

Pooling layers reduce computational complexity and the parameter count by shrinking the

dimension of the input image or texts. By reducing dimensionality, pooling layers also help

control overfitting. It is also common to insert a pooling layer after every convolution layer.

Chapter 01: Deep Learning

12

There are two main kinds of pooling: average pooling and max pooling. Average pooling uses

the average of all values from each pooling region while max pooling uses the maximum value.

B. Classification Layers

 Flatten Layer

The flatten layer converts a two-dimensional matrix into a one-dimensional vector before the

data is fed into the fully connected dense layer.

 Fully Connected (Dense) Layer

The fully connected layer, also known as the dense layer, receives the data from the flatten layer

and outputs a vector containing the probabilities for each class.

 Dropout Layer

A dropout layer randomly deactivated some of the neurons in the network during training.

Dropout is a form of regularization that helps reduce model complexity and prevents overfitting.

 Softmax and Sigmoid Functions

The final dense layer provides the classification output. It uses either a softmax function for

multiclass classification tasks or a sigmoid function for binary classification task [9].

4.3.3 Activation Functions

The activation functions are the main parts in the artificial neural networks layers, we use it in

two steps for the hidden layers and for the output layer. In the hidden layers to control how well

the network architecture learns the training dataset, and in the output layer to define the type of

prediction results1.

There is four activation functions types we will define them as follow:

4.3.3.1 Sigmoid

The sigmoid function is a useful activation for a variety of reasons. This function acts as a

continuous squashing function those bounds its output in the range (0, 1). It is similar to the

1 https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/

Chapter 01: Deep Learning

13

step function but has a smooth, continuous derivative ideal for gradient descent methods. The

sigmoid function is defined as:

𝜎(𝑥) =
1

1 + 𝑒−𝑥

It is also zero-centered, creating a simple decision boundary for binary classification tasks, and

the derivative of the sigmoid function is mathematically convenient:

𝜎′ = 𝜎(𝑥)(1 − 𝜎(𝑥))

Figure 9: Sigmoid activation function and its derivative [10].

4.3.3.2 Tanh

The tanh function is very similar to the sigmoid function. The only difference is that it is

symmetric around the origin. The range of output values in this case is(−1,1). Therefore, the

inputs to the next layers will not always be of the same sign2. The tanh function is defined as:

𝑡𝑎𝑛ℎ(𝑥) = 2 ∗ 𝜎(2𝑥) − 1

In addition, neural networks with tanh functions converge faster than sigmoid functions.

Moreover, the neural networks with tanh activation functions have lower classification error

than those with sigmoid activation functions.

2 https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-
use-them/

https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/

Chapter 01: Deep Learning

14

Figure 10: Tanh activation function and its derivative.

However, the calculation of the derivatives of hyperbolic tangent functions, listed as follows,

is more complicated than the sigmoid function. Moreover, it has the same soft saturation as

sigmoid function, which also has the vanishing gradient problem [14].

4.3.3.3 ReLU

ReLU stands for rectified linear unit and is a non-linear activation function, which is widely

used in neural networks. The upper hand of using ReLU function is that not all the neurons are

activated at the same time. This implies that a neuron will be deactivated only when the output

of linear transformation is zero. It can be defined mathematically as:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

Figure 11: ReLU activation function plot.

ReLU is more efficient than other functions, because not all the neurons are activated at the

same time, rather a certain number of neurons are activated at a time. In some cases, the value

of gradient is zero, due to which the weights and biases are not updated during backpropagation

step in neural network training [15].

Chapter 01: Deep Learning

15

4.3.3.4 SoftMax

The squashing concept of the sigmoid function extends to multiple classes by way of the

softmax function. The softmax function allows us to output a categorical probability

distribution over 𝐾 classes.

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

We can use the softmax function to produce a vector of probabilities according to the output of

that neuron. In the case of a classification problem, that has 𝐾  =  3 classes, the final layer of

our network will be a fully connected layer with an output of three neurons. If we apply the

softmax function to the output of the last layer, we get a probability for each class by assigning

a class to each neuron. The softmax computation is shown in Figure 12.

Figure 12: The softmax computation.

The softmax probabilities can become very small, especially when there are many classes and

the predictions become more confident. Most of the time a log-based softmax function is used

to avoid underflow errors. The softmax function is a particular case for activation functions. It

is rarely seen as an activation that occurs between layers.

Therefore, the softmax is often treated as the last layer of a network for multiclass classification

rather than an activation function [10].

4.3.4 Recurrent Neural Networks (RNNs)

RNNs are used in deep learning and in the development of models that simulate the activity of

neurons in the human brain. They are especially powerful when it is critical to predict an

outcome and are distinct from other types of artificial neural networks because they use

feedback loops to process a sequence of data that informs the final output, which can also be a

Chapter 01: Deep Learning

16

sequence of data. These feedback loops allow information to persist; the effect is often

described as memory. The logic behind a RNN is to consider the sequence of the input [16].

Figure 13: Recurrent neural network [16].

4.3.5 Long short-term memory (LSTM)

Long short-term memory (LSTM) is a neural network architecture, it is a type of recurrent

neural network (RNN) deep learning, it is for the management of long sequential data, and

LSTM has feedback connections. LSTM use an efficient, gradient-based algorithm, can make

it learn a bridge time intervals in excess of 1000 steps, without loss the possibility of short time

lag. [17].

4.3.6 Auto-Encoder (AE)

Auto-encoder is a type of artificial neural network, which can be used to learn a compressed

representation of data. Simplest form of an auto-encoder comprises an input, an output and one

or more hidden layers connected to them. Since, it does not use labels so this process is an

unsupervised learning. An auto-encoder learns the hypothesis (prediction) function

𝒉𝑾, 𝒃(𝒙) = 𝒙 with unlabeled data, where 𝑾 and 𝒃 are weight matrices and bias vectors of the

network respectively. Given unlabeled training samples, the cost (error) function for an auto-

encoder formulated as below:

Figure 14: The cost (error) function for an auto-encoder.

Chapter 01: Deep Learning

17

In the Equation that mentioned in Figure 14, 𝑲𝑳 is the Kullback-Leibler divergence function.

𝝀 Is regularization parameter used to minimize the problem of overfitting, 𝝆 is sparsity

parameter used to put restriction on hidden units, which minimize the dependency between

features. 𝜷 is a parameter that controls sparsity penalty term. The parameter 𝝆^𝒋 is the

average activation of hidden unit 𝒋 and the activation function of a hidden unit implicitly

depends on 𝑾 and b. The aim is to minimize the cost function 𝑱 (𝑾, 𝒃) with respect to W and

b to train our network. The back propagation (BP) algorithm is mainly used for computing the

gradients by using batch gradient descent optimization for learning the weights of the network.

The intuition for using back propagation is that for given training sample(𝒙, 𝒚), we first run the

forward propagation to compute the activation function of every node in all the layers of the

complete network. Then, for every node 𝒊 in layer l, compute the error 𝝈𝒊
(𝒍)

 that shows how

much corresponding units (nodes) is responsible for errors at output of every layer in the

network[18]. The training of stacked auto-encoder using back propagation is describing in the

Figure below:

Figure 15: Training of stacked auto-Encoder Algorithm [18].

Chapter 01: Deep Learning

18

Moreover, the architecture of AutoEncoder shows in the figure below.

Figure 16: Architecture of Autoencoder[19]

Conclusion

In conclusion, deep learning has been and is used in many areas, including authorship, it has

achieved a revolution and best performance to our area of the authorship verification. In the

next chapter, we will see and discuss some works that have been done related to authorship

verification using deep learning techniques.

Chapter 02: Authorship

Verification: State of the

art

Chapter 02: Authorship Verification: State of the art

20

Introduction

The Internet has being so wide with the huge of data generated every day. Such a high growth

of data rate brings some problems like fraudulent or unidentified data. These problems can be

dangerous. Because of these risks, the authorship analysis came to solve these problems.

Authorship analysis has three basic types: authorship attribution, authorship profiling and

authorship verification. In this chapter, we will define what it means authorship analysis and

focus on authorship verification as a main task, and we will see some works related to the field

of authorship verification that used different approaches to solve authorship problems.

1. Authorship Analysis Key Concepts

Authorship analysis is the operation of examining the features of a document or text like stories

and scientific articles, in order to extract the conclusion on its authorship, to reduce scientific

theft and the plagiarism. The origin of Authorship analysis return to the linguistic research field

that name is stylometry, which indicate to statistical analysis of the writing literary style[20].

Authorship Analysis is a science of distinguishably between writing styles of authors by specify

the features of the personality of the writers or authors and examining document and texts

authored by them. Therefore, its goal is to determine biographic features of individuals and

authors like age, gender, native language and based on the information that available to do the

study of that individual or author[21]. The figure bellow shows that Authorship Analysis is the

intersection between artificial intelligence, psychology and linguistics.

Figure 17: Authorship Analysis is a combination of Artificial Intelligence, Linguistics and

Cognitive Psychology [21].

Chapter 02: Authorship Verification: State of the art

21

2. Types of Authorship Analysis Tasks

The three primary types involved in Authorship Analysis are Authorship Attribution,

Authorship Verification and Authorship Profiling. These types are summarized as follows:

2.1 Authorship Attribution

Authorship attribution is a text classification technique used to infer the authorship of a

document. By identifying features of writing style in a document and comparing it to features

from other documents, a computer gets a higher performance than a human in analysis of

characteristics of text, it can make a determination of stylistic similarity and thus of the

plausibility of authorship by any specific person. There are many applications, including

education (plagiarism detection), forensic science (identifying the author of a piece of evidence

such as a threatening letter), history (resolving questions of disputed works), and journalism

(identifying the true authors behind pen names) [22].

In addition, the goal of authorship attribution or authorship identification in the context of

online documents is to identify the true author of a disputed anonymous document. In forensic

science, his /her fingerprint can uniquely identify an individual. Likewise, in cyber forensics,

an investigator seeks to identify specific writing styles, called Wordprint or Writeprint, of

potential suspects, and then use them to develop a model. The Writeprint of a suspect extracted

from her previously written documents. The model applied to the disputed document to identify

its true author among the suspects. In forensic analysis, the investigator is required to support

her findings by convincing arguments in a court of law [23].

2.2 Authorship Profiling

Authorship profiling is becoming increasingly important in the current technological

development around the world. Authorship profiling is the analysis of a given set of texts in an

attempt to reveal the various characteristics of an author based on both stylistic and content-

based features. The characteristics analyzed generally include age and gender, although recent

studies have looked at other characteristics such as personality traits and occupation [24].

The applications of authorship profiling abound in forensics, security, and commercial settings.

For example, authorship profiling can assist police in identifying a perpetrator of a crime when

there are too few (or too many) specific suspects to consider [25]. Authorship profiling

Chapter 02: Authorship Verification: State of the art

22

distinguishes between categories of authors by studying their social aspect, how language is

involved or how the author can be distinguished from a psychological point of view. This

information helps to determine aspects of profiling such as gender, age, native language, or

personality type. Authorship profiling is an increasingly important problem, for applications in

forensics, security, and marketing. From a forensic linguistics perspective, for example, one

would like to learn about the linguistic profile of the author of a harassing text message (the

language used by a certain type of people) and identify certain characteristics (language as

evidence). From a marketing point of view, companies may be interested in learning about the

demographics of people who love or hate their products, looking at blogs and online product

reviews as a source of analysis [26].

2.3 Authorship verification

Authorship verification (AV) is an active research area of computational linguistics that can be

expressed as a fundamental question of stylometry to decide if the same person wrote two texts

or not. It has a wide range of applications in forensic linguistics and fraud and plagiarism

detection. Among notable examples, we can name blackmail messages, false insurance claims

or online reviews and opinion statements, where authorship verification may help us to reduce

these risks [2].

Studies consider the problem of authorship verification as a similarity detection problem: to

determine whether two texts were written by the same person or not without knowing the real

author of the document [20]. Linguists who aim to uncover the authorship of anonymously

written texts by inferring author-specific characteristics from the texts traditionally perform

AV. So-called linguistic features represent such characteristics. They are derived from an

analysis of errors (e.g. spelling mistakes), textual idiosyncrasies (e.g. grammatical

inconsistencies) and stylistic patterns [27].

Chapter 02: Authorship Verification: State of the art

23

Figure 18: Authorship verification problem [1].

3. Related work

In this section, we will review some related works in the field of authorship verification using

deep learning.

In PAN 2020, Ordoñez et al.,[28] proposed a neural network for learning discriminative features

from the texts as well as the fandom from which the text derives. Their system uses the

Longformer, a variant of transformer models that pre-trained on large amounts of text. This

model combines global self-attention and local self-attention to enable efficient processing of

long text inputs. Moreover, they augment the pre-trained Longformer model with additional

fully connected layers and fine-tune it to learn features that are useful for author verification.

Their model incorporates fandom information via the use of a multi-task loss function that

optimizes for both authorship verification and topic correspondence. They used both of datasets

small and large provided by PAN. They have compared their model with (CN2) that used a

convolutional stack followed by a recursive self-attention stack simultaneously. But, their

Longformer-based system won and attained a 0.963 overall verification score, on a held-out

subset of the PAN-provided “large training” set, but on the official PAN test set, attained a

0.685 overall score.

In the study[29], the author has proposed a simple model to solve the authorship verification

problem based on a Labbé similarity. It is a simple text similarity technique used when facing

with pairs of snippets. She proposed to select features by ranking them according to their

Chapter 02: Authorship Verification: State of the art

24

frequency of occurrence in each text and taking only the most frequent ones (from 100 to 500)

but including the most frequent ones in the underlying language. Such a representation strategy

based on words used frequently by a given author; she used the dataset provided by PAN2020.

It have shown a good performance with the small dataset of F1= 0.705 and AUC = 0.840.

Halvaniand et al.,[30] proposed in the context of the AV shared task at the PAN 2020 workshop

an alternative approach, which considers only topic-agnostic features in its classification

decision. They used as authorship verification the TAVeer approach, which was inspired by the

methodology of biometric recognition systems. They aim to recognize individuals, based on a

variety of physiological characteristics and behavioral features obtained from the hand, vein,

fingerprint, face, eye, ear or voice. TAVeer employs an ensemble of distance-based classifiers,

where each one aims to accept or reject the questioned authorship. Each classifier is provided

with a category of stylistic features extracted from an individual linguistic layer (in each

document). In this context, the Equal Error Rate (EER) algorithm serves as a thresholding

mechanism. They used the small dataset, they have split the training data set into a training and

validation set, where for the former only 5,000 verification cases were used (in other words,

less than 10% of the entire data set). On the official test set, their approach ranked third out of

all submitted approaches, attained a 0.825 overall score.

In the study [2], the author has proposed a data compression method based on the widespread

Prediction by Partial Matching (PPM) algorithm extended with Context-free Grammar

character preprocessing. He had chosen a Data compression algorithm CBC for his method

drawing on the research by Halvani et al [31]. He used a context-free grammar preprocessing

for PPM to reduce the overall length of a text and simplify the distribution of characters. He

had used the EER algorithm on n text pairs with the equal number of positive (𝑌) and negative

(𝑁) authorship cases, to find a decision thresholdƟ, for which his data compression

dissimilarity measure M gives us the score 𝑠𝑝 = 𝑀 (𝑇𝑥 , 𝑇𝑦). He had used the small data set

that was proposed in PAN2020 in his experimentation. He used 2000 text pairs. His approach

yielded better results, but could not break a “glass ceiling” of around 0.8 overall score.

In [32], the author has proposed to adapt Higher Criticism (HC) statistics for the problem of

authorship verification as an unsupervised untrained discriminator of two documents. His

method takes word-by-word p-values based on a binomial allocation model of words between

the documents and combines these P-values to a single test statistic using HC. This method has

Chapter 02: Authorship Verification: State of the art

25

two steps: in the first step, he performed many exact binomial tests: one test for each word in a

prescribed dictionary, the result of each test is a P-value according to a binomial allocation

model between the two documents. In the second step, he took the P-values resulting from the

first step and combined them to a single score using the HC statistic. The performance of his

method in the PAN2020 Authorship Verification shows that it serves as an effective authorship

discriminator that requires very little tuning.

In their work[27], the authors have presented a hierarchical fusion of two well-known

approaches into a single end-to-end learning procedure. The first is the ADHOMINEM system

(Siamese network for representation learning).[33] It is used as a deep metric learning

framework to measure the similarity between two text samples, to learn a pseudo-metric that

maps a document of variable length onto a fixed-sized feature vector. In addition, at the top,

they incorporate the second approach that is a probabilistic linear discriminant analysis (PLDA)

layer[34], which functions as a pairwise discriminator to perform Bayes factor scoring in the

learned metric space. They used the small and the large dataset provided by PAN. The small

dataset model achieves only 0.897 overall score and the large one 0.935 overall score. Their

approach ranked first out of all submitted approaches.

In PAN 2020, Araujo-Pino et al.,[35] have presented a deep learning Siamese network

approach. Their neural architecture approach receives character n-grams as inputs. So in order

to train their network, the first step is to transform the texts dataset into character n-grams (with

n varying from 1 to 3) frequency vectors (the dimensions of the vectors correspond to the

frequency of each n-gram) as input and learns to identify if these documents are written by the

same author. They used the Scikit Learn Python module to extract all the n-grams. They used

two datasets: large and small that were provided by The PAN 2020 authorship verification

organization. They trained two models, one with the small dataset and the other with the large

One, they only used the first 10000 (ten thousand) characters from each document to speed up

the n-gram extraction process. Both datasets split on two training with 70 and validation with

30 percent of samples respectively. They used the parameters that achieved the best

classification Performance in terms of AUC on 30% of both large and small training datasets.

They achieved a good result that the AUC score is 1.0 when the Training and Validation sets

come from the same dataset. On the other hand, the small dataset model achieves only 0.823

AUC on the validation set that comes from the large training set.

Chapter 02: Authorship Verification: State of the art

26

In the work [36], the author has proposed an approach to solve the problem of authorship

verification of short messages. This approach is based on the deep sequence-to-sequence CNN

model. She evaluated her approach on the Enron email dataset using the CNN classifier on a

two-class training data, composed of positive (written by the "target" user) and negative (written

by "someone else"). She trained her model to 52 remaining users. For each user, 1000 verified

email messages were sampled, CNN model was trained for each user. 90% of this data used for

training and 10% for testing. She achieved good results. The average overall accuracy is 97%

for 52 users, which is significantly better than what most of the previously published works

reported on the Enron dataset.

Weerasinghe et al.,[37] have proposed an approach to solve the problem of authorship

verification for the PAN 2020 task. In their approach, they created two models (trained on the

smaller and larger datasets). They used a Linear Regression classier for the smaller dataset and

a Neural Network for the larger dataset. They extracted stylometric features from the documents

and used the absolute difference between the feature vectors as input to their classier. These

models achieved AUCs of 0.939 and 0.953 on the small and large datasets. Making them the

second-best models on both datasets submitted to the shared task.

4. Comparison table

This table is presenting the main parts of all the previous work that are explained above based

on:

 The dataset used in their work.

 The method used in the paper

 The results for the evaluation metrics used AUC, F1, c@1, F0.5u and the accuracy.

 Evaluation metrics3: The evaluation metrics that have been used in the comparison

results define as follow:

 AUC (Area under the Curve): Is the conventional area-under-the-curve score,

it is an evaluation metric provided by scikit-learn library in Python language.

AUC use to evaluate the deep learning models performance.

3 https://pan.webis.de/clef21/pan21-web/author-identification.html

Chapter 02: Authorship Verification: State of the art

27

 F1: The F1-score, also called the F-score, is a measure of a model’s accuracy on

a dataset. It is used to evaluate binary classification systems, which classify

examples into ‘positive’ or ‘negative’4.

 c@1: Is a variant of the conventional F1-score introduced by Peñas and Rodrigo

(2011)[38]. It is well suited for evaluating Reading Comprehension tests, which

able to reward systems that maintain correct answers and at the same time

decrease the number of incorrect ones.

 F0.5u: Is a new proposed measure introduced by Bevendorff et al.,[39] which

puts more emphasis on deciding same-author cases correctly. It want a balance

between precision and recall, with more weight on precision.

The table is as follow:

Citation Dataset Methods Metrics

AUC c@1 F0.5u F1 Accuracy

[28] PAN

large

dataset

Longformer

model

0.696 0.640 0.655 0.748 /

[32] PAN

small

dataset

Higher

Criticism

(HC) statistics

0.866 0.801 0.815 0.809 /

[29] The Labbé

similarity

0.840 0.545 0.599 0.705 /

[30] TAVeer (topic

-agnostic

feature)

0.878 0.796 0.819 0.807 /

[2] Prediction by

Partial

Matching

0.786 0.786 0.809 0.800 /

4 https://deepai.org/machine-learning-glossary-and-terms/f-score

Chapter 02: Authorship Verification: State of the art

28

(PPM)

algorithm

[27] PAN

Large

dataset

- Siamese

network for

representation

learning.

- Probabilistic

linear

discriminant

analysis

(PLDA)

0.969 0.928 0.907 0.936 /

 PAN

small

dataset

0.940 0.889 0.853 0.906

[35]

PAN

Large

dataset

deep learning

Siamese

network for

both dataset

0.859

0.751 0.745 0.800 /

PAN

small

dataset

0.874 0.770 0.762 0.811

[37] PAN

Large

dataset

Neural

Network for

the larger

dataset.

0.953 0.880 0.882 0.891 /

Chapter 02: Authorship Verification: State of the art

29

PAN

small

dataset

Linear

Regression

classifier for

the smaller

dataset.

0.939 0.833 0.817 0.860

[36] Enron

dataset

application of

CNN to NLP

/ / / / 0.97

Table 2: Classification of some related works in the field of AV.

5. Discussion

From the table above we will discuss all the differences between all the methods and results

of related works.

We have processed these works [28], [32], [29], [30], [2], [27], [35], [37], in the field of

authorship verification, the first eight works realized in the last years in PAN 20 at CLEF

(Conference and Labs of the Evaluation Forum). All of the works used the dataset provided

by PAN 20, some works used both of dataset the smaller and the larger, and the others used

just the smaller dataset.

We review that all the works used the machine learning methods and the artificial neural

network algorithms for its models with the PAN Dataset, and got a good and acceptable

results. Where this work [27], ranked the first in PAN20 challenge with the large dataset:

AUC=0.969, F1_score = 0.928, c@1= 0.907, F.05=0.936, and the third with the small dataset:

AUC=0.940, F1_score =0.889, c@1= 0.853, F.05=0.906.

However, it is not enough because machine learning is not effective for the massive data.

Moreover, we have processed this work [36], but it is independent about the others works, it

realized with Enron dataset using the Convolutional Neural Network (CNN) deep learning

method. It achieved good results with 0.97 accuracy, it ranked the first in all the work that

used the Enron dataset in the field of authorship verification. This work inspired us to used

deep learning to build a new model and get the best results between all the other works that

Chapter 02: Authorship Verification: State of the art

30

used the PAN Dataset, for this reason we will propose a new method use the deep learning

technic because in the last years, it has achieved a best results for the processing of massive

data.

Moreover, the deep learning has the possibility to process a huge and complex data, these

capabilities make it very powerful when treat with unstructured data. In other hand, deep

learning has a starvation for data, for this reason it need a huge of unstructured data to be

effective. For this purpose, it will help us process the data provided by PAN20 and achieved

best results.

Conclusion

In this chapter, we have started by introducing the authorship analysis and focused on

authorship verification as a type of it. After that, we have been presented the most relevant

works related to our research in order to propose a new approach that will give better results in

the field of authorship verification.

The next chapter describes our proposed model and the process we followed to design it, in

detail.

Chapter 03: Conception of a

new Authorship

Verification model

Chapter 03: Conception of a new Authorship verification model

32

Introduction

After reviewing the related work in this field, in this chapter we present the architecture of our

model for authorship verification from text. Our model focuses on two main parts. In the first

part, we extract the features of the texts in two steps: we start with the preprocessing of data

after that we used word2vec for the vectorization of the text. In the second part, we split our

dataset in three "train dataset", "validation dataset" and "test dataset". After that, we used the

Autoencoder for the text classification part, with the "training dataset" to build our model.

1. Architecture of our model

This is the two main parts, each part with two steps. We will detail each part bellow.

 Part 1: Features Extraction.

 Step 1: Preprocessing.

 Step 2: Vectorization.

 Part 2: Text classification using Autoencoder.

In the previous works, researchers used many different methods of deep learning and machine

learning like CNN to solve this problem of authorship verification. However, according to our

research, we have worked in a method that used an Autoencoder for the authorship verification.

In the figure below (Figure 19), we present all the parts and steps of our model of authorship

verification.

Chapter 03: Conception of a new Authorship verification model

33

Figure 19: Architecture of our model of authorship verification.

2. Features Extraction

In this part, we want to extract all the features of the pair of text of dataset. This step present in

two phases:

 Preprocessing

 Vectorization

2.1 Preprocessing

The main goal of this step is to reduce the text and cleaning it to simple words, and standardize

it in order to make it easier to use. It can represent the words as keys that we can take it to give

us the possibility to recognize and process the text.

There are some different tools and methods, which we used for the preprocessing of dataset,

including:

 Remove the numbers and punctuation

Chapter 03: Conception of a new Authorship verification model

34

 Remove capital letters

 Tokenization

 Remove the Stopwords

 Lemmatization

The techniques we used in this phase are as follows:

 Remove Punctuation

Punctuation has no effect on the text analysis so it is removed, that they offer no useful

information for classification. It includes symbols words such as “/” and “@”.

 Remove the numbers

The goal of removing numbers is to make words simple for processing.

Figure 20: An example of remove the digits and punctuation.

 Remove capital letters

We convert all uppercase characters to lowercase.

Figure 21: An example of removing the capital letters.

Chapter 03: Conception of a new Authorship verification model

35

 Tokenization

Tokenization is a method of transforming text to a very simple, a piece of data stocked in a

named list. Tokenization can be used to secure sensitive data by replacing the original data with

an unrelated value of the same length and format.

Figure 22: An example of tokenization of a text.

 Remove StopWords (meaningless words)

Stopwords is words that occur so frequently in language, they not offer useful information for

classification. Contrary it is harmful for the text classification, and are generally very common

and present in most posts. It is includes words such as “the” and “are”.

Figure 23: An example of removing the StopWords

Chapter 03: Conception of a new Authorship verification model

36

 Lemmatization

The goal of lemmatization is to remove inflections and map a word to its root form. The only

difference is that, lemmatization tries to do it the proper way. It does not just chop things off, it

actually transforms words to the actual root. For example, the word “better” would map to

“good”. It may use a dictionary such as WordNet for mappings or some special rule-based

approaches. Here is an example of lemmatization:

Figure 24: An example of lemmatization of text.

2.2 Vectorization

This is the second important step of features extraction part. Its goal is to transform words to

vectors to finish the features extraction part and get ready to entre it into the Autoencoder model.

In this step, we used the word embedding as a method of Vectorization.

2.1.1 Word Embedding

It is a method of learning a representation of words in a document by real numbers, it used

especially in automatic language processing. Moreover, it is a word representation type that

allows machine learning algorithms to understand words with similar meanings. This technique

allows each word in our fandom pair text in the dataset to be represented by a vector of real

numbers. To do Word Embedding, we used Word2Vec algorithm.

2.1.1.1 Word2Vec

Word2vec is a word-embedding algorithm. It is a popular sequence embedding method that

transforms natural language into distributed vector representations. It can capture contextual

word-to-word relationships in a multidimensional space and has been widely used as a

Chapter 03: Conception of a new Authorship verification model

37

preliminary step for predictive models in semantic and information retrieval tasks. We used it

in our case to transform all the pair text to vectors and we can extract the similarity between

words. Word2vec is based on a two-layer neural network, it has two neural architectures called

CBOW and Skip-Gram [40].

 CBOW (Continuous Bag of Words) Model

The model is fed by the context, and predicts the target word. The result of the hidden

layer is the new representation of the word5.

Figure 25 describes the Word2vec Continuous Bag of Words (CBOW) model process.

 Skip-Gram Model

The model is fed by the target word, and predicts the words of the context. The result

of the hidden layer is the new representation of the word6.

Figure 25 describes the Word2vec skip-gram model process.

Figure 25: Word2vec model (Continuous Bag of Words (CBOW) and Skip-Ngram)[40].

5 https://datascientest.com/nlp-word-embedding-word2vec
6 https://datascientest.com/nlp-word-embedding-word2vec

Chapter 03: Conception of a new Authorship verification model

38

3. Text classification

In this section, we will present our method we used to do the classification of the pairs fandoms

texts. We used an Autoencoder to learn a compressed representation of the input features for a

text classification predictive modeling problem.

We will used a binary (2-class) classification task with two dimension (pair of texts) and we

take 2000 as number of inputs features for the two pairs (2, 2000), and we take 37,872 samples

for training.

The model will take the input, then output the same input values. It will learn to recreate the

input pattern correctly.

The encoder learns how to interpret the input and compress it to build a compressed

representation we call it the latent layer. The decoder takes the output of the encoder (the latent

layer) and attempts to recreate the same input. Before fitting the model, we will split our dataset

into "training", "validation" and "testing", and scale the input data by normalizing the values to

the range [0:1], a good practice with MLPs.

We will define the encoder as having 10 hidden layers, the first with the number of inputs (2,

2000) and the second with less number of inputs and so on. Finally, the last encoded hidden

layer gives us the latent layer with fewer inputs than the previous layers (60). The decoder will

be defined with a similar structure, it get the latent as input and extract the features to obtain

the output data, it is the same data that we have been input it in the encoded layers.

The table below shown the tokens size that we used in each layers and the activation function

we used.

layer Tokens size Activation function

Input (2, 2000) X

Encoded 1800 Relu

Encoded 1600 Relu

Encoded 1400 Relu

Chapter 03: Conception of a new Authorship verification model

39

Encoded 1200 Relu

Encoded 1000 Relu

Encoded 800 Relu

Encoded 600 Relu

Encoded 200 Relu

Encoded 100 Relu

Encoded 60 Relu

Decoded 100 Relu

Decoded 200 Relu

Decoded 600 Relu

Decoded 800 Relu

Decoded 1000 Relu

Decoded 1200 Relu

Decoded 1400 Relu

Decoded 1600 Relu

Decoded 1800 Relu

Decoded 2000 Sigmoid

Table 3: All layers with its tokens size and activation function.

The output layer will have the same number of nodes as the input data and will use a linear

activation function to output numeric values like RELU activation function.

After that, the model will be fit using the efficient 𝒎𝒆𝒂𝒏_𝒔𝒒𝒖𝒂𝒓𝒆𝒅_𝒆𝒓𝒓𝒐𝒓 version of

stochastic gradient descent and minimizes the mean squared error, given that reconstruction is

a type of multi-output regression problem.

At the end, we can train the model to reproduce the input easier. After training, we can plot the

learning curves for the training and testing to evaluate the model learned the reconstruction

problem well. Finally, we can save the Autoencoder model.

Chapter 03: Conception of a new Authorship verification model

40

Conclusion

Finally, we have walked through the different phases and layers of our new model. More importantly,

we dived deep into each part to give a better understanding of the basics of all the methods used, that

way everything be clear.

In the next chapter, we will describe all the tools from hardware and the software languages that we

used to build our model. Moreover, we present the results that we got it from our new model.

Chapter 04:

Experimentation and

results

Chapter 04: Experimentation and results

42

Introduction

To achieve our research and build our authorship verification model, we used a set of tools of software

and materials.

We will present in this chapter the set of materials used. Then, we will discuss different evaluation

metrics that will demonstrate the effectiveness of our proposed approach. At last, we will discuss the

results obtained.

1. Hardware

The hardware is the most important stuff that play a very important role in our research and

all research activity. This domain deal with a huge data that need a powerful hardware to

achieve good results.

This project was limited by time, in order to speed up the training of our Autoencoder we took

the initiative to run in three different machines.

The first is an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz x64 processor with 4 GB

RAM.

The second is an Intel (R) Core (™) i3-2310M CPU @ 2.10GHz x64 processor with 6 GB

RAM.

However, these machines did not allow us to finish our training because they are weak and

not gave us the performance that we need with the huge dataset we used. So we asked for a

powerful machine and we got the third machine.

The third is an AMD Ryzen 5 3400G with Radeon Vega Graphics 3.70GHz x64 processor

with 16 GB RAM.

Due to the difficulty imposed by this challenge, we just used just the small dataset and we had

difficulties to manipulate it, for successfully complete this project.

Chapter 04: Experimentation and results

43

2. Software

First, to build our model we had been work with different software. We started with integrated

development environment (IDE) PyCharm Community Edition 2020.2.3, but it was difficult

for us.

For this reason, we change it to used Jupyter that help us because it was simple and easy to

use.

Moreover, we used also Google Colab platform provided by Google Company as cloud

service. It is very helpful because all the libraries have been installed in, you just need to put

your code and run it and got the result. However, it is not free, Google Colab give you just a

one-month free with a less performance, to push you to pay and get all the performance that

you want.

In addition, we used Python 3.8 as the programming language. We have deduced from

previous work that this is the most appropriate language for a number of reasons:

 It is an interpreted language, which means that Python directly executes the code line

by line.

 A high-level programming language has English-like syntax. It easier to read and

understand the code.

 It is a very wide language, it is used for all domains.

 It has diverse and rich libraries, those dedicated to deep learning and those used for the

management of other data structures and others.

 Its simplicity, it allows expressing complex equations and formulas and it is easy,

which consumes less time for the whole development process.

3. Library

In this part, we will present all libraries used during to build our deep learning model.

 TensorFlow7: Is an open source platform and Python library, Created by researchers

of the Google Brain team for the field of machine learning and deep learning technics

7 https://www.tensorflow.org/

Chapter 04: Experimentation and results

44

and methods. It has a flexible architecture of tools make the deployment so easy on

various platforms like GPU, CPU and TPU.

 Keras8: Is an open source free Python library, used for deep learning and machine

learning models, and it acts as an API of tensorflow library. Keras helps to run

experiments easily and faster and a same code can be run on CPU or on GPU,

seamlessly.

 Genism9: Is an open source library provided by Python language, it used for the

machine learning and deep learning technics, and for the unsupervised topics and NLP,

It has provided a several algorithms like the Word2vec algorithm for the vectorization

step in the features extraction part.

 Scikit-learn10: is an open source free Python library, it has created by several of

researchers for the field of machine learning and deep learning, and it is commercial

usable. It allows the movement to efficient versions of numerous of current algorithms.

 NumPy11: Is one of many open source library of python, it is for the Numeric arrays.

It has created especially for scientific computing, in particular matrix computing, while

offering multiple functions allowing the creation and manipulation of matrices and

vectors.

4. Dataset

In this section, we will discuss the dataset used in our research.

PAN202012, provide two datasets small and large. For our experiments, we used the smaller

dataset. The datasets focuses over a collection of fanfiction texts. Fanfiction is a fan-written

extension of a storyline in which a so-called fandom topic describes the principal subject of the

document. The dataset consists of pairs of two different fanfics text that were obtained drawn

from fanfiction.net. Each pair was assigned a unique identifier and they distinguish between

same-author pairs and different-authors pairs. Additionally, PAN offer metadata on the fandom

(i.e. thematic category) for each text in the pair (note that fanfic "crossovers" were not included

and only single-fandom texts were considered). The fandom distribution in these dataset

8 https://keras.io/
9 https://pypi.org/project/gensim/
10 https://scikit-learn.org/stable/
11 https://numpy.org/doc/stable/user/whatisnumpy.html
12 https://pan.webis.de/data.html#pan20-authorship-verification

Chapter 04: Experimentation and results

45

maximally approximates the distribution of the fandoms in the original dataset. The test datasets

is structured in the exact same way, but participants should expect a significant shift in the

relation between authors and fandoms. The dataset have a collection of 52601 pair of text

(105202 text) each pair with its id.

Both the small and the large datasets come with two newline delimited JSON files (.jsonl).

The first file is training-small.jsonl, contains pairs of texts (each pair has a unique ID) and

their fandom labels:

Figure 26: The structure of the training Small file.

The second file is truth.jsonl, contains the ground truth for all pairs. The ground truth is

composed of a boolean flag indicating if texts in a pair are from the same author and the

numeric author IDs:

Figure 27: The structure of the Truth file.

The table 4 bellow represents the statistics of the small dataset we used for our experiments.

Table 4: The statistics of the small dataset.

Number

of Pairs

Number of

Fandom

texts

Number

of

Positive

Number

of

Negative

Number of the

training pairs

Number of the

validation pairs

Number of the

test pairs

52601 105202 27834 24767 37873 4208 10520

Chapter 04: Experimentation and results

46

5. Implementation

In this section, we will start the main work to build our model using the Autoencoder. After

the extraction of the features (preprocessing and vectorization) of the dataset, we used the truth

dataset also, it has two classes positive writing by the same author (same = true), and negative

writing by different author (same = false).

The size of each text is 2000 tokens all their value between[0 ; 1]. If the size is greater than

2000 tokens, automatically remove the remainder; else add 0 to the text whose size is less than

2000 to fill it.

We will split the data into three parts “training”, “validation” and “testing”.

For the training, we took 80% of the data, and for the testing, we took 20% of data. Moreover,

for the validation we took 10% from the training data. It is mean we took 72% for training and

8% for validation from the main data.

In addition, it will help us in reducing the chances of overfitting, as we will be validating our

model on data it would not have seen in training phase.

At last, we got 42081 samples for training, and 10520 for testing. Moreover, we took 10% from

the testing for the validation so the last statistics is:

Training: 37873 samples.

Validation: 4208 samples.

Test: 10520 samples.

5.1 Training and validation

After the model is created, we have to compile it using the optimizer function name is

𝑹𝑴𝑺𝒑𝒓𝒐𝒑() . Moreover, we must to specify the loss type via the argument 𝒍𝒐𝒔𝒔, its name

is 𝒎𝒆𝒂𝒏_𝒔𝒒𝒖𝒂𝒓𝒆𝒅_𝒆𝒓𝒓𝒐𝒓, since the loss after every batch will be computed between the

batch of predicted output and the ground truth using mean squared error.

After that, we went to start train the model using the 𝒇𝒊𝒕() Keras function. We have train our

model for 50 epochs. The 𝒇𝒊𝒕() function return a history object, by stored the result of this

function in a variable, and we can use it later to plot the loss function plot between training and

validation, which will help us to analyze our model's performance visually.

At last, we save our model using this function 𝒔𝒂𝒗𝒆_𝒘𝒆𝒊𝒈𝒉𝒕𝒔() to use it in part of testing.

Chapter 04: Experimentation and results

47

5.2 Testing

In this case, we use a graphical interface to do the test data predicting and classification of our

model. The figure below shows the description of the graphical interface that we build it to

testing our model.

Figure 28: The description of the graphical interface

After that, we show those predictions that we get. The results are printed in a new file JSONL

and we display these results in the display area.

Chapter 04: Experimentation and results

48

The figure below shows the predictions results.

Figure 29: The display of the printed results.

Chapter 04: Experimentation and results

49

5.3 Source code

Now, we explain some of our source code that we used to build our model.

The figure below shows the source code of the data download data and the import packages

used in our work.

Figure 30: The download data and the import packages.

Figure 31 presents the source code of the preprocessing function we created and some

initialization of variable.

Figure 31: The preprocessing function we created and some initialization of variable.

Chapter 04: Experimentation and results

50

In the figure below, we present the source code of the features extraction of our dataset using

Word2vec for the vectorization step in our model.

Figure 32: The features extraction of our dataset using Word2vec for the vectorization step.

The figure below shows the source code of the management of texts and the loading of the

truth data classes that we used in the classification part.

Figure 33: The process of the truth data.

Chapter 04: Experimentation and results

51

Figure 34 shows the source code of the initialization of the two classes that we used in the

classification part.

Figure 34: The initialization of the two classes of the classification.

The figure below illustrates the source code of the split of our dataset.

Figure 35: The split of our dataset.

Chapter 04: Experimentation and results

52

The figure 36 shows the source code of the Autoencoder features extraction for classification

and the encoded and decoded layers with their characteristics.

Figure 36: The Autoencoder features extraction for classification.

The figure below represent the source code of the compiling the Autoencoder model and how

to save it and the process of the prediction loss.

Figure 37: The compiling of the Autoencoder model.

Chapter 04: Experimentation and results

53

6. Evaluation metrics

In this section, we will present the evaluation metrics that we used to evaluate our new model

in the field of authorship verification. We evaluate the results of the predictions using the

evaluation metrics like F1-score and Accuracy, and calculate the predictions loss using the loss

function.

 Recall13: Recall (R) is defined as the number of true positives (Tp) over the number of

true positives plus the number of false negatives (Fn) as follows:

𝑹 =
𝑻𝒑

𝑻𝒑 + 𝑭𝒏

 Precision14: Precision (P) is defined as the number of true positives (Tp) over the

number of true positives plus the number of false positives (Fp) as follows:

𝑷 =
𝑻𝒑

𝑻𝒑 + 𝑭𝒑

 Accuracy15: Accuracy is used for evaluating classification models.

Informally, accuracy is the fraction of predictions of our model got right. Formally,

accuracy has the following definition:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

In addition, for binary classification, accuracy can be calculated in terms of positives

and negatives as follows:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False

Negatives.

13 https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
14 https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
15 https://developers.google.com/machine-learning/crash-course/classification/accuracy

Chapter 04: Experimentation and results

54

 F1-score: The F1-score, also called the F-score, is a measure of a model’s accuracy

on a dataset. It is used to evaluate binary classification systems, which classify examples

into ‘positive’ or ‘negative’16.

The F1 score can be interpreted as a weighted average of the precision and recall, where

an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of

precision and recall to the F1 score are equal. The formula for the F1 score is17:

𝑭𝟏 = 𝟐 ∗ (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝒓𝒆𝒄𝒂𝒍𝒍) / (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍)

 Loss18: Loss is the penalty for a bad prediction. That is, loss is a number indicating

how bad the model's prediction was on a single example. If the model's prediction is

perfect, the loss is zero; otherwise, the loss is greater. The goal of training a model is to

find a set of weights and biases that have low loss, on average, across all examples.

7. Results

Finally, this is the last section in our research; we will present our results after the evaluation.

We achieved good result using the Autoencoder deep learning method. We are got a 0.98 for

the accuracy and F1-score metrics. Table 5 shows the accuracy and F1-score evaluation results

that we got it. In addition, the precision we are got 0.98 in the two classes 0 for the two texts

that are writing by different authors, and class 1 for the two texts that are writing by the same

author. Moreover, in the recall, we got 0.97 in the class 0 and we got 0.99 in the class 1. Table

6 shows the precision and recall evaluation results that we got it.

accuracy F1-score

0.98 0.98

Table 5: The results of our model.

16 https://deepai.org/machine-learning-glossary-and-terms/f-score
17 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
18 https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss

Chapter 04: Experimentation and results

55

 Precision Recall

Class 0 0.98 0.97

Class 1 0.98 0.99

Table 6: The results of the recall and precision.

The figure below shows the results of the evaluation of our model using the accuracy metric.

Figure 38: The training and validation accuracy.

Chapter 04: Experimentation and results

56

Moreover, we present how much we get the loss using the loss function to calculate the penalty

of the bad prediction, that we got it during the evaluation of our model. The figure bellow shows

how much is the loss.

Figure 39: The loss volume of our model.

Finally, we will compare our results with the others previous works in the field of authorship

verification. As raison, we evaluated our model just with F1-score because we did not

participate at the competition of PAN 2021 due to time constraints. The table below shows the

difference between all the works results that used the small dataset.

The work F1-score

Our model 0.98

boenninghoff20-small [27] 0.906

weerasinghe20-small [37] 0.860

araujo20-small [35] 0.811

kipnis20-small [32] 0.809

halvani20b-small [30] 0.807

Chapter 04: Experimentation and results

57

gagala20-small [2] 0.800

Ordoñez20-small[28] 0.748

Ikae20-small [29] 0.705

Table 7: The F1-score of all the works that used the small dataset provided by PAN.

The figure below shows a histogram that represents the comparison of our results with related works

using F1-score.

Figure 40: A histogram of our results with the other works using F1-score.

Our model achieved the best results for the F1-score metric.

0,98
0,906

0,86
0,811 0,809 0,807 0,8

0,705

0

0,2

0,4

0,6

0,8

1

1,2

F1-score

Chapter 04: Experimentation and results

58

Conclusion

Finally, this experimentation chapter was the most interesting part of our research study,

because we presented the different tools used, and the results obtained from our new model.

Moreover, we even went so far as to measure the performance of our model with the challenge

of last year. So now, we move on to the general conclusion.

59

General Conclusion

 Finally, we presented a new type of authorship verification (AV) system that focuses in

the Autoencoder deep learning method to solve the authorship verification problem, where the

task was to determine for a pair of texts if both texts were written by the same author or not.

Our approach is unsupervised method in which we use neural networks for the mission of

compressed learning, it is composed of two main layers the encoded layer and the decoded

layer, who complement each other. Before we start using the Autoencoder, we prepare the

dataset provided by PAN 2020 at CLEF. The dataset focuses over a collection of fanfiction

texts. First, we extract the features of our dataset in two steps the first is preprocessing and the

second is the vectorization using Word2vec method. After that, we start the text classification

using our proposed method, we have to split the dataset into tree part “training”, “validation”

and “test”. For the training, we took 80% of the data, and for the testing, we took 20% of data.

Moreover, for the validation we took 10% from the training data. It is mean we took 72% for

training and 8% for validation from the main data.

The proposed method achieved excellent overall performance scores, outperforming all other

models that participated in the last year in the PAN 2020 Authorship Verification Task for the

small dataset challenge.

Nevertheless, our AV method leaves room for further improvements. As future work, we would

like to optimize our model for the test or the evaluation metrics. We believe it is possible to

optimize our model and run it with powerful computer that have a good performance to make

our optimization easier when we use more encoded and decoded layers to get good results and

doesn't take more time. In addition, we would also like to perform the features analysis of our

model to see which features become important in determining if two documents are written by

the same person. Moreover, we would like to make our new model of authorship verification

as an online service to detect the plagiarism and use it for detection of fraudulent, stolen, or

unidentified data.

60

References

1. Kumar, S., et al., A New Approach for Authorship Verification Using Information Retrieval

Features, in Innovations in Computer Science and Engineering. 2019, Springer. p. 23-29.

2. Gagała, Ł.J.W.N.o.C., Authorship verification with prediction by partial matching and

context-free grammar. 2020.

3. Parentoni, L., Artificial Intelligence, in Encyclopedia of the Philosophy of Law and Social

Philosophy, M. Sellers and S. Kirste, Editors. 2020, Springer Netherlands: Dordrecht. p. 1-4.

4. Batarseh, F.A., Artificial Intelligence, in Encyclopedia of Big Data, L.A. Schintler and C.L.

McNeely, Editors. 2018, Springer International Publishing: Cham. p. 1-3.

5. El-Amir, H. and M. Hamdy, A Gentle Introduction, in Deep Learning Pipeline: Building a

Deep Learning Model with TensorFlow. 2020, Apress: Berkeley, CA. p. 3-36.

6. Bhalley, R., Machine Learning Basics, in Deep Learning with Swift for TensorFlow:

Differentiable Programming with Swift. 2021, Apress: Berkeley, CA. p. 1-35.

7. Singh, P., Introduction to Machine Learning, in Deploy Machine Learning Models to

Production: With Flask, Streamlit, Docker, and Kubernetes on Google Cloud Platform. 2021,

Apress: Berkeley, CA. p. 1-54.

8. Sarkar, D., R. Bali, and T. Sharma, Machine Learning Basics, in Practical Machine Learning

with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems. 2018,

Apress: Berkeley, CA. p. 3-65.

9. Quinto, B., Deep Learning, in Next-Generation Machine Learning with Spark: Covers

XGBoost, LightGBM, Spark NLP, Distributed Deep Learning with Keras, and More. 2020,

Apress: Berkeley, CA. p. 289-348.

10. Kamath, U., J. Liu, and J. Whitaker, Basics of Deep Learning, in Deep Learning for NLP and

Speech Recognition. 2019, Springer International Publishing: Cham. p. 141-201.

11. Taulli, T., Deep Learning, in Artificial Intelligence Basics: A Non-Technical Introduction.

2019, Apress: Berkeley, CA. p. 69-90.

12. Du, K.-L. and M.N.S. Swamy, Deep Learning, in Neural Networks and Statistical Learning.

2019, Springer London: London. p. 717-736.

13. El-Amir, H. and M. Hamdy, Deep Learning Fundamentals, in Deep Learning Pipeline:

Building a Deep Learning Model with TensorFlow. 2020, Apress: Berkeley, CA. p. 279-343.

14. Ding, B., H. Qian, and J. Zhou. Activation functions and their characteristics in deep neural

networks. in 2018 Chinese Control And Decision Conference (CCDC). 2018.

15. Sharma, S. and S.J.T.D.S. Sharma, Activation functions in neural networks. 2017. 6(12): p.

310-316.

16. Silaparasetty, V., Neural Network Collection, in Deep Learning Projects Using TensorFlow 2:

Neural Network Development with Python and Keras. 2020, Apress: Berkeley, CA. p. 249-

347.

17. Hochreiter, S. and J. Schmidhuber, Long Short-Term Memory. Neural Computation, 1997.

9(8): p. 1735-1780.

18. Singh, V. and N.K. Verma, Deep Learning Architecture for High-Level Feature Generation

Using Stacked Auto Encoder for Business Intelligence, in Complex Systems: Solutions and

Challenges in Economics, Management and Engineering: Dedicated to Professor Jaime Gil

Aluja, C. Berger-Vachon, et al., Editors. 2018, Springer International Publishing: Cham. p.

269-283.

19. Bohra, A. and N.C. Barwar. Deep Learning Architectures, Methods, and Frameworks: A

Review. 2021. Singapore: Springer Singapore.

20. El, S.E.M. and I.J.I.J.o.C.A. Kassou, Authorship analysis studies: A survey. 2014. 86(12).

21. Job, I., Authorship Analysis as a Text Classification or Clustering Problem.

22. Juola, P., Authorship Analysis and Attribution, in Encyclopedia of Big Data, L.A. Schintler

and C.L. McNeely, Editors. 2020, Springer International Publishing: Cham. p. 1-3.

61

23. Iqbal, F., M. Debbabi, and B.C.M. Fung, Authorship Analysis Approaches, in Machine

Learning for Authorship Attribution and Cyber Forensics. 2020, Springer International

Publishing: Cham. p. 45-56.

24. Wiegmann, M., B. Stein, and M. Potthast. Overview of the Celebrity Profiling Task at PAN

2019. in CLEF (Working Notes). 2019.

25. Argamon, S., et al., Automatically profiling the author of an anonymous text. 2009. 52(2): p.

119-123.

26. Rangel, F., et al. Overview of the 3rd Author Profiling Task at PAN 2015. in CLEF. 2015. sn.

27. Boenninghoff, B., et al., Deep bayes factor scoring for authorship verification. 2020.

28. Ordoñez, J., R.R. Soto, and B.Y.J.W.N.o.C. Chen, Will longformers PAN out for authorship

verification. 2020.

29. Ikae, C.J.W.N.o.C., UniNE at PAN-CLEF 2020: Author verification. 2020.

30. Halvani, O., L. Graner, and R.J.W.N.o.C. Regev, Cross-domain authorship verification based

on topic agnostic features. 2020.

31. Halvani, O., C. Winter, and L. Graner. On the usefulness of compression models for

authorship verification. in Proceedings of the 12th international conference on availability,

reliability and security. 2017.

32. Kipnis, A.J.W.N.o.C., Higher criticism as an unsupervised authorship discriminator. 2020.

33. Boenninghoff, B., et al. Explainable authorship verification in social media via attention-

based similarity learning. in 2019 IEEE International Conference on Big Data (Big Data).

2019. IEEE.

34. Cumani, S., et al., Pairwise Discriminative Speaker Verification in the ${\rm I} $-Vector

Space. 2013. 21(6): p. 1217-1227.

35. Araujo-Pino, E., H. Gómez-Adorno, and G.J.W.N.o.C. Fuentes-Pineda, Siamese network

applied to authorship verification. 2020.

36. Litvak, M. Deep dive into authorship verification of email messages with convolutional neural

network. in Annual International Symposium on Information Management and Big Data.

2018. Springer.

37. Weerasinghe, J. and R. Greenstadt. Feature Vector Difference based Neural Network and

Logistic Regression Models for Authorship Verification. in Working Notes of CLEF 2020-

Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 22-25, 2020.

2020. CEUR-WS. org.

38. Peñas, A. and A. Rodrigo, A simple measure to assess non-response. 2011.

39. Bevendorff, J., et al. Generalizing unmasking for short texts. in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers). 2019.

40. Jang, B., et al., Bi-LSTM model to increase accuracy in text classification: Combining

Word2vec CNN and attention mechanism. 2020. 10(17): p. 5841.

