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Abstract 

Authorship verification (AV) is one of various topics parts of authorship analysis field that deals 

with the problem of determine whether two texts were written by the same author or not. A 

combination of a similarity-based methods and relevant linguistic features are used to achieve 

high accuracy authorship verification. To address this problem, we proposed a new approach 

using the Autoencoder deep learning method. Challenges in the context of Authorship 

verification have greatly increased in recent years, as the challenge of PAN (series of scientific 

events) for three last years from 2020 to 2022. To experiment our approach, we used the data 

provided by PAN 2021 AV task. 

Keywords: Authorship verification, PAN, Autoencoder, deep learning, similarity. 

 

 

 

 

 

 

 

 

 



Résumé 

La vérification de l'auteur est une thématique faisant partie du domaine de l'analyse de l'auteur, 

qui aborde le problème de déterminer si deux textes ont été écrits par le même auteur ou non. 

Une collection de méthodes de remplacement sur la similitude et de traits linguistiques 

pertinentes sont utilisées pour obtenir une vérification d’auteur de haute précision. Pour 

résoudre ce problème, nous avons proposé une nouvelle approche utilisant la méthode 

d'apprentissage en profondeur Autoencoder. Les défis dans le contexte de la vérification de 

l'auteur ont augmenté ces dernières années, comme le défi du PAN à travers les trois dernières 

années de 2020 à 2022. Pour expérimenter notre approche, nous avons utilisé les données 

fournies par la tâche PAN 2021 AV. 

Mots Clé: Vérification de l'auteur, PAN, Autoencoder, Apprentissage en profondeur, la 

similitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ملخص

. ما نفس المؤلفنصان قد كتبه تحديد ما إذا كانمشكلة  والذي يعالجمن مجال تحليل التأليف،  التحقق من التأليف هو جزء

قة عالية. لحل هذه ق التشابه البديلة والسمات اللغوية ذات الصلة لتحقيق التحقق من التأليف بديتم استخدام مجموعة من طر

بشكل لتحديات زادت ا في السنوات الأخيرة .Autoencoderالمشكلة، اقترحنا طريقة جديدة باستخدام طريقة التعلم العميق 

، قتناطري. لتجربة 2022إلى  2020ة من ث الماضيالسنوات الثلا في PAN، كتحدي كبير في سياق التحقق من التأليف

  .PAN 2021. AVاستخدمنا البيانات المقدمة من مهمة 

 .التشابه ، التعلم العميق،PAN، Autoencoder التحقق من التأليف، الكلمات المفتاحية:
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General Introduction 

The world has changed over the past few years, «the Internet is growing exponentially with a 

vast amount of data every day. Such a high growth rate brings problems like fraudulent, stolen, 

or unidentified data. These problems can be very dangerous in places like the government 

sector, public websites, forensics, and schools. Because of these risks, we must do detection of 

truth for which it is necessary to analyze the authorship of a text»[1], to reduce the occurrence 

of these problems. Authorship Analysis is one such technique, which is used to find the 

authorship of a text. 

Authorship Analysis is categorized as three classes. One of these three types is the authorship 

verification. It analyses two or more text to determine whether they were written by the same 

author or not. It has a wide range of applications in fraud and plagiarism detection problems. 

As known examples of authorship verification problems, we review fraud emails and unknown 

data. where authorship verification may help us to reduce these risks[2]. The question that we 

ask is how can we verify the authorship of text?        

In this field of authorship verification, there are a lot of research that have been carried out 

using the artificial intelligence methods as machine learning and deep learning. This field has 

become a huge challenge recently specially in PAN from 2020 to 2022 at CLEF (Conference 

and Labs of the Evaluation Forum). PAN2021 provided the same dataset of the last year 

PAN2020, which consists of pairs of (snippets from) different fanfics, the goal of the task is to 

find new approaches in the authorship verification.  

We propose a new approach to solve the problem of authorship verification using the 

Autoencoder deep learning method, which achieved good results. We start our approach by 

extract the features of our dataset in two steps. The first is preprocessing and the second is the 

vectorization using Word2vec method. After that, we start the text classification using our 

Autoencoder method, we have to split the dataset into three-part “training” and “validation” 

and “test”. 

We used the dataset provided by PAN 2020 in our experimentation 

The structure of this document is organized as follows: 
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Chapter 01: We start by presenting the artificial intelligence and machine learning and we go 

directly to present the deep learning and its basics, then we move on to the different deep 

learning techniques used in the text classification. 

Chapter 02: The second chapter is the state of the art presenting the works related to the 

authorship verification problem.  

Chapter 03: In the third chapter, we will present our new model and we dive deep explaining 

each of its parts that we used to build it. 

Chapter 04: In the last chapter, we will present the different tools used to build our model. At 

the end, we share the results we have achieved and compare them to other works. 
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Introduction 

In the last years, artificial intelligence (AI) has been a trend in all fields. Artificial intelligence 

(has many subfields and machine learning is one of them, the evolution of machine learning 

has led to significant advancements and improvements in the way we interact with our world. 

One of these exciting advancements is Deep Learning, which is driving today’s AI explosion. 

Therefore, in this chapter we will introduce the deep learning part. Then we will discuss the 

different famous methods and techniques of deep learning. 

1. Artificial intelligence 

There is no consensus about the definition of AI. In broad terms, Ryan Calo [3] conceptualizes 

it as “a set of techniques aimed at approximating some aspect of human or animal cognition 

using machines”. In colloquial terms, AI applications intend to automate human tasks through 

the use of machines, in a faster, more accurate, and safe manner than when the tasks performed 

by humans. AI applications even go as far as performing tasks that are not possible for humans 

to do, due to our biological limitations. AI systems range from ordinary applications (e.g., cell 

phone voice assistants) to very sophisticated systems capable of driving cars, performing 

medical diagnostics, profiling people, or even controlling entire sectors in a given industry. In 

fact, the term AI encompasses a wide range of techniques in many scientific areas, especially 

computer sciences. There are various subfields such as robotics, machine learning, neural 

networks, computer vision, facial and speech recognition.  

Furthermore, artificial Intelligence is a field in computer science that is concerned with the 

automation of intelligence and the enablement of machines imitate  humans behaviors and 

actions and to achieve complex tasks in complex environments[4]. 

2. Machine learning 

The term “machine learning” was coined by Arthur Samuel in 1959 [5], an American pioneer 

in the field of computer gaming and artificial intelligence, and stated “it gives computers the 

ability to learn without being explicitly programmed.” 

So let us start to answer a few good questions: what is machine learning? In addition, what 

is the difference between traditional programming and machine learning? It is easy to get 

the difference between them as follows: 
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 Traditional programming: In traditional programming, we have a box that has two 

inputs (Input, Rule) and the traditional model generates the output based on the rule 

that we add. Figure 1 shows the model of a traditional programming diagram.  

 

 

Figure 1: Traditional programming diagram[5]. 

 Machine learning: In machine learning, we have a box that has two inputs (Input, 

Output) and the machine-learning model trains to get the rule that generates the 

output from input.  

Figure 2 present the machine learning programming model that shows how it differs 

from traditional programming [5]. 

 

 

Figure 2: The machine-learning diagram [5]. 

3. Machine learning methods 

Machine learning is classified into four categories based on the kind of dataset experience. A 

model is allowed as follows [6]: supervised learning (SL), unsupervised learning (UL), semi-
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supervised learning (SSL), and reinforcement learning (RL). We briefly discuss each of these 

machine-learning paradigms. 

3.1 Supervised learning 

Supervised machine learning is the major category of machine learning that drives a lot of 

applications and value for businesses. In this type of learning, the model trained on the data for 

which we already have the correct labels or outputs. In short, we try to map the relationship 

between input data and output data in such a way that it can generalize well on unseen data as 

well, as shown in Figure 3. The training of the model takes place by comparing the actual output 

with the predicted output and then optimizing the function to reduce the total error between the 

actual and predicted [7]. 

 

Figure 3: Supervised Learning training model [7]. 

3.2 Unsupervised Learning 

Unsupervised Learning is a class of machine learning techniques to find the patterns in data. 

The data given to unsupervised algorithms are not labeled, which means only the input variables 

are given with no corresponding output variables. In unsupervised learning, the algorithms are 

left to themselves to discover interesting structures in the data, where we have only input data 

and no corresponding output variables. The easy definition is that in unsupervised learning we 

wish to learn the inherent structure of our data without using explicitly provided labels. 
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However, why do they call it unsupervised learning? They called it unsupervised learning 

because unlike supervised learning, there are no given correct answers and the machine itself 

finds the answers. In Figure 4, we give a representation of unsupervised learning. 

 

Figure 4: How an unsupervised learning algorithm clusters data into groups or zonesSemi supervised 

Learning. 

When we have a problem with a large amount of input data and only some of the data labeled, 

this is called a semi-supervised learning problem. These problems sit in between supervised 

and unsupervised learning. 

How does it work? We can use unsupervised learning techniques to discover and learn the 

structure in the input variables, then we use just a few labeled data as supervised learning 

technic to make the model get good predictions for the unlabeled data, feed that labeled data as 

training data. After that we test the model unknown data and make predictions[5]. 

In table 1, we present the difference between the three approaches of Machine Learning. 

Supervised learning Unsupervised Learning Semi supervised Learning 

The data labeled and the 

algorithms learn to predict 

the output from the input 

data. 

The data is unlabeled and 

the algorithms learn the 

inherent structure from the 

input data. 

Just Some data labeled but 

most of it is unlabeled, 

and a mixture of 

supervised and 

unsupervised techniques 

can be used. 

Table 1 :The difference between the three Approaches of Machine Learning [5]. 
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3.3 Reinforcement Learning 

The reinforcement learning is a type of machine learning methods, it is a bit different from 

conventional supervised or unsupervised method. First, in reinforcement learning there is an 

agent that we want to train over a period to interact with a specific environment and improve 

its performance with regard to the type of actions it performs on the environment. Moreover, 

for interacting with the specific environment the agent starts with a set of strategies or policies. 

On observe the current state of the environment, it takes a particular action based on a specific 

rule. Based on the action, the agent gets a reward that could be beneficial or detrimental. The 

iterative process continues until it learns enough about its environment, and It updates its 

current policies and strategies if needed[8]. 

A suitable reinforcement learning methodology has been described in Figure 5. 

 

Figure 5: Reinforcement learning training a robot to play chess [8]. 

 

4. Deep learning 

4.1 From Machine Learning to Deep Learning 

We now know and understand that machine learning is a subset of artificial intelligence, and 

deep learning is a subset of machine learning. Therefore, every machine-learning program is 

under the category of AI programs but not vice versa. The question then is if the approaches of 

machine learning and AI are the same. The answer is yes, because every machine-learning 

problem is an AI problem and deep learning is a subset of machine learning. We should keep 

in mind that deep learning is nothing more than methods that enhance machine learning 

algorithms to be more accurate and make some stages easy, like feature extractions, etc. The 
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easiest takeaway for understanding the difference between machine learning and deep learning 

is to remember that deep learning is a subset of machine learning [5]. 

 

 

Figure 6: Relationship between AI, machine learning, and deep learning [9]. 

4.2 What is deep learning? 

The term “deep learning” is somewhat ambiguous. In many circles, deep learning is a re-

branding term for neural networks or is used to refer to neural networks with many consecutive 

(deep) layers. Moreover, it is a system learned via neural networks without being guided by 

humans [10].  

This type of system allows for processing huge amounts of data (big data) to get relationships 

and patterns that humans are often unable to detect or to observe [11].  The word “deep” refers 

to the number of hidden layers in the neural network. Furthermore, a deep learning architecture 

is a multilayer stack of simple modules with nonlinear input–output mappings, which are 

subject to learning. Each module in the stack transforms its input to increase both the selectivity 

and the invariance of the representation. Deep neural networks are multilayer networks with 

many hidden layers [12] (see Figure 7). 
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Figure 7:  Neural network with two hidden layers [10]. 

4.3 Deep learning Technics 

4.3.1 Perceptron 

A Perceptron is the smallest layer in the neural network. It is a linear classifier (binary), and it 

is used in supervised learning. It helps to classify the given input data to get the output value. 

Since the inputs are fed directly to the output via the weights, the perceptron can be considered 

the simplest kind of feedforward network [13]. 

4.3.2 Convolutional Neural Networks 

A convolutional neural network (convent or CNN for short) is a type of neural network that is 

particularly good at analyzing images (although they can be applied to audio and text data). The 

neurons in the layers of a convolutional neural network are arranged in three dimensions: 

height, width, and depth. CNNs use convolutional layers to learn local patterns in its input 

feature space (images) such as textures and edges. In contrast, fully connected (dense) layers 

learn global patterns. The neurons in a convolutional layer are only connected to a small region 

of the layer preceding it instead of all of the neurons, as is the case with dense layers. A dense 

layer’s fully connected structure can lead to an extremely large number of parameters that are 

inefficient and could quickly lead to overfitting. 

4.3.2.1 Convolutional Neural Network Architecture   

Convolutional neural networks consist of several layers, each trying to identify and learn 

various features. The main types of layers are convolutional layer, pooling layer, and fully 

connected layer. The layers can be classified into two main categories: feature detection layers 

and classification layers. Figure 8 display what a typical CNN architecture looks like [9]. 
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Figure 8: A CNN architecture for classifying animal images [9]. 

A. Feature Detection Layers 

 Convolutional Layer 

The convolutional layer is the primary building block of a convolutional neural network. The 

convolutional layer runs the input images or texts through a series of convolutional kernels or 

filters that activate certain features from the input images or texts. A convolution is a 

mathematical operation that performs element-wise multiplication at each location where the 

input element and the kernel element overlap as the kernel slides (or strides) across the input 

feature map. 

 Rectified Linear Unit (ReLU) Activation Function 

It is common practice to include an activation layer after each convolutional layer. The 

activation function can be also specified through the activation argument supported by all 

forward layers. Activation functions convert an input of a node to an output signal that is used 

as input to the next layer. Activation functions make neural networks more powerful by 

allowing it to learn more complex data such as images, audio, and text and introducing 

nonlinear properties to the neural network. 

 Pooling Layer 

Pooling layers reduce computational complexity and the parameter count by shrinking the 

dimension of the input image or texts. By reducing dimensionality, pooling layers also help 

control overfitting. It is also common to insert a pooling layer after every convolution layer. 
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There are two main kinds of pooling: average pooling and max pooling. Average pooling uses 

the average of all values from each pooling region while max pooling uses the maximum value. 

B. Classification Layers 

 Flatten Layer 

The flatten layer converts a two-dimensional matrix into a one-dimensional vector before the 

data is fed into the fully connected dense layer. 

 Fully Connected (Dense) Layer 

The fully connected layer, also known as the dense layer, receives the data from the flatten layer 

and outputs a vector containing the probabilities for each class. 

 Dropout Layer 

A dropout layer randomly deactivated some of the neurons in the network during training. 

Dropout is a form of regularization that helps reduce model complexity and prevents overfitting. 

 Softmax and Sigmoid Functions 

The final dense layer provides the classification output. It uses either a softmax function for 

multiclass classification tasks or a sigmoid function for binary classification task [9]. 

4.3.3 Activation Functions 

The activation functions are the main parts in the artificial neural networks layers, we use it in 

two steps for the hidden layers and for the output layer. In the hidden layers to control how well 

the network architecture learns the training dataset, and in the output layer to define the type of 

prediction results1. 

There is four activation functions types we will define them as follow: 

4.3.3.1 Sigmoid 

The sigmoid function is a useful activation for a variety of reasons. This function acts as a 

continuous squashing function those bounds its output in the range (0, 1). It is similar to the 

                                                           
1 https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/ 
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step function but has a smooth, continuous derivative ideal for gradient descent methods. The 

sigmoid function is defined as: 

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 

It is also zero-centered, creating a simple decision boundary for binary classification tasks, and 

the derivative of the sigmoid function is mathematically convenient: 

𝜎′ =  𝜎(𝑥)(1 − 𝜎(𝑥)) 

 

Figure 9: Sigmoid activation function and its derivative [10]. 

4.3.3.2 Tanh 

The tanh function is very similar to the sigmoid function. The only difference is that it is 

symmetric around the origin. The range of output values in this case is(−1,1). Therefore, the 

inputs to the next layers will not always be of the same sign2. The tanh function is defined as: 

𝑡𝑎𝑛ℎ(𝑥) = 2 ∗ 𝜎(2𝑥) − 1 

In addition, neural networks with tanh functions converge faster than sigmoid functions. 

Moreover, the neural networks with tanh activation functions have lower classification error 

than those with sigmoid activation functions. 

                                                           
2 https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-
use-them/ 
 

https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
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Figure 10: Tanh activation function and its derivative. 

However, the calculation of the derivatives of hyperbolic tangent functions, listed as follows, 

is more complicated than the sigmoid function. Moreover, it has the same soft saturation as 

sigmoid function, which also has the vanishing gradient problem [14]. 

4.3.3.3 ReLU 

ReLU stands for rectified linear unit and is a non-linear activation function, which is widely 

used in neural networks. The upper hand of using ReLU function is that not all the neurons are 

activated at the same time. This implies that a neuron will be deactivated only when the output 

of linear transformation is zero. It can be defined mathematically as: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

 

Figure 11: ReLU activation function plot. 

ReLU is more efficient than other functions, because not all the neurons are activated at the 

same time, rather a certain number of neurons are activated at a time. In some cases, the value 

of gradient is zero, due to which the weights and biases are not updated during backpropagation 

step in neural network training [15]. 
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4.3.3.4 SoftMax 

The squashing concept of the sigmoid function extends to multiple classes by way of the 

softmax function. The softmax function allows us to output a categorical probability 

distribution over 𝐾 classes. 

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

 

We can use the softmax function to produce a vector of probabilities according to the output of 

that neuron. In the case of a classification problem, that has 𝐾  =  3 classes, the final layer of 

our network will be a fully connected layer with an output of three neurons. If we apply the 

softmax function to the output of the last layer, we get a probability for each class by assigning 

a class to each neuron. The softmax computation is shown in Figure 12. 

 

Figure 12: The softmax computation. 

The softmax probabilities can become very small, especially when there are many classes and 

the predictions become more confident. Most of the time a log-based softmax function is used 

to avoid underflow errors. The softmax function is a particular case for activation functions. It 

is rarely seen as an activation that occurs between layers. 

Therefore, the softmax is often treated as the last layer of a network for multiclass classification 

rather than an activation function [10].  

4.3.4 Recurrent Neural Networks (RNNs) 

RNNs are used in deep learning and in the development of models that simulate the activity of 

neurons in the human brain. They are especially powerful when it is critical to predict an 

outcome and are distinct from other types of artificial neural networks because they use 

feedback loops to process a sequence of data that informs the final output, which can also be a 
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sequence of data. These feedback loops allow information to persist; the effect is often 

described as memory. The logic behind a RNN is to consider the sequence of the input [16]. 

 

Figure 13: Recurrent neural network [16]. 

4.3.5 Long short-term memory (LSTM) 

Long short-term memory (LSTM) is a neural network architecture, it is a type of recurrent 

neural network (RNN) deep learning, it is for the management of long sequential data, and 

LSTM has feedback connections. LSTM use an efficient, gradient-based algorithm, can make 

it learn a bridge time intervals in excess of 1000 steps, without loss the possibility of short time 

lag. [17]. 

4.3.6 Auto-Encoder (AE) 

Auto-encoder is a type of artificial neural network, which can be used to learn a compressed 

representation of data. Simplest form of an auto-encoder comprises an input, an output and one 

or more hidden layers connected to them. Since, it does not use labels so this process is an 

unsupervised learning. An auto-encoder learns the hypothesis (prediction) function   

𝒉𝑾, 𝒃(𝒙) = 𝒙  with unlabeled data, where 𝑾 and 𝒃 are weight matrices and bias vectors of the 

network respectively. Given unlabeled training samples, the cost (error) function for an auto-

encoder formulated as below: 

 

Figure 14: The cost (error) function for an auto-encoder. 
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In the Equation that mentioned in Figure 14, 𝑲𝑳 is the Kullback-Leibler divergence function.   

𝝀  Is regularization parameter used to minimize the problem of overfitting,   𝝆 is sparsity 

parameter used to put restriction on hidden units, which minimize the dependency between 

features.  𝜷  is a parameter that controls sparsity penalty term. The parameter   𝝆^𝒋  is the 

average activation of hidden unit 𝒋 and the activation function of a hidden unit implicitly 

depends on 𝑾 and b. The aim is to minimize the cost function  𝑱 (𝑾, 𝒃) with respect to W and 

b to train our network. The back propagation (BP) algorithm is mainly used for computing the 

gradients by using batch gradient descent optimization for learning the weights of the network. 

The intuition for using back propagation is that for given training sample(𝒙, 𝒚), we first run the 

forward propagation to compute the activation function of every node in all the layers of the 

complete network. Then, for every node 𝒊 in layer l, compute the error   𝝈𝒊
(𝒍)

  that shows how 

much corresponding units (nodes) is responsible for errors at output of every layer in the 

network[18]. The training of stacked auto-encoder using back propagation is describing in the 

Figure below: 

 

Figure 15:  Training of stacked auto-Encoder Algorithm [18]. 
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Moreover, the architecture of AutoEncoder shows in the figure below. 

 

Figure 16: Architecture of Autoencoder[19] 

 

Conclusion 

In conclusion, deep learning has been and is used in many areas, including authorship, it has 

achieved a revolution and best performance to our area of the authorship verification. In the 

next chapter, we will see and discuss some works that have been done related to authorship 

verification using deep learning techniques. 
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Introduction  

The Internet has being so wide with the huge of data generated every day. Such a high growth 

of data rate brings some problems like fraudulent or unidentified data. These problems can be 

dangerous. Because of these risks, the authorship analysis came to solve these problems. 

Authorship analysis has three basic types: authorship attribution, authorship profiling and 

authorship verification. In this chapter, we will define what it means authorship analysis and 

focus on authorship verification as a main task, and we will see some works related to the field 

of authorship verification that used different approaches to solve authorship problems. 

1. Authorship Analysis Key Concepts 

Authorship analysis is the operation of examining the features of a document or text like stories 

and scientific articles, in order to extract the conclusion on its authorship, to reduce scientific 

theft and the plagiarism. The origin of Authorship analysis return to the linguistic research field 

that name is stylometry, which indicate to statistical analysis of the  writing literary style[20].  

Authorship Analysis is a science of distinguishably between writing styles of authors by specify 

the features of the personality of the writers or authors and examining document and texts 

authored by them. Therefore, its goal is to determine biographic features of individuals and 

authors like age, gender, native language and  based on the information that available to do the 

study of that individual or author[21]. The figure bellow shows that Authorship Analysis is the 

intersection between artificial intelligence, psychology and linguistics. 

 

Figure 17: Authorship Analysis is a combination of Artificial Intelligence, Linguistics and 

Cognitive Psychology [21]. 
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2. Types of Authorship Analysis Tasks 

The three primary types involved in Authorship Analysis are Authorship Attribution, 

Authorship Verification and Authorship Profiling. These types are summarized as follows: 

2.1 Authorship Attribution 

Authorship attribution is a text classification technique used to infer the authorship of a 

document. By identifying features of writing style in a document and comparing it to features 

from other documents, a computer gets a higher performance than a human in analysis of 

characteristics of text, it can make a determination of stylistic similarity and thus of the 

plausibility of authorship by any specific person. There are many applications, including 

education (plagiarism detection), forensic science (identifying the author of a piece of evidence 

such as a threatening letter), history (resolving questions of disputed works), and journalism 

(identifying the true authors behind pen names) [22]. 

In addition, the goal of authorship attribution or authorship identification in the context of 

online documents is to identify the true author of a disputed anonymous document. In forensic 

science, his /her fingerprint can uniquely identify an individual. Likewise, in cyber forensics, 

an investigator seeks to identify specific writing styles, called Wordprint or Writeprint, of 

potential suspects, and then use them to develop a model. The Writeprint of a suspect extracted 

from her previously written documents. The model applied to the disputed document to identify 

its true author among the suspects. In forensic analysis, the investigator is required to support 

her findings by convincing arguments in a court of law [23]. 

2.2 Authorship Profiling 

Authorship profiling is becoming increasingly important in the current technological 

development around the world. Authorship profiling is the analysis of a given set of texts in an 

attempt to reveal the various characteristics of an author based on both stylistic and content-

based features. The characteristics analyzed generally include age and gender, although recent 

studies have looked at other characteristics such as personality traits and occupation [24]. 

The applications of authorship profiling abound in forensics, security, and commercial settings. 

For example, authorship profiling can assist police in identifying a perpetrator of a crime when 

there are too few (or too many) specific suspects to consider [25]. Authorship profiling 
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distinguishes between categories of authors by studying their social aspect, how language is 

involved or how the author can be distinguished from a psychological point of view. This 

information helps to determine aspects of profiling such as gender, age, native language, or 

personality type. Authorship profiling is an increasingly important problem, for applications in 

forensics, security, and marketing. From a forensic linguistics perspective, for example, one 

would like to learn about the linguistic profile of the author of a harassing text message (the 

language used by a certain type of people) and identify certain characteristics (language as 

evidence). From a marketing point of view, companies may be interested in learning about the 

demographics of people who love or hate their products, looking at blogs and online product 

reviews as a source of analysis [26]. 

2.3 Authorship verification 

Authorship verification (AV) is an active research area of computational linguistics that can be 

expressed as a fundamental question of stylometry to decide if the same person wrote two texts 

or not. It has a wide range of applications in forensic linguistics and fraud and plagiarism 

detection. Among notable examples, we can name blackmail messages, false insurance claims 

or online reviews and opinion statements, where authorship verification may help us to reduce 

these risks [2]. 

Studies consider the problem of authorship verification as a similarity detection problem: to 

determine whether two texts were written by the same person or not without knowing the real 

author of the document [20]. Linguists who aim to uncover the authorship of anonymously 

written texts by inferring author-specific characteristics from the texts traditionally perform 

AV. So-called linguistic features represent such characteristics. They are derived from an 

analysis of errors (e.g. spelling mistakes), textual idiosyncrasies (e.g. grammatical 

inconsistencies) and stylistic patterns [27]. 
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Figure 18: Authorship verification problem [1]. 

3. Related work 

In this section, we will review some related works in the field of authorship verification using 

deep learning. 

In PAN 2020, Ordoñez et al.,[28] proposed a neural network for learning discriminative features 

from the texts as well as the fandom from which the text derives. Their system uses the 

Longformer, a variant of transformer models that pre-trained on large amounts of text. This 

model combines global self-attention and local self-attention to enable efficient processing of 

long text inputs. Moreover, they augment the pre-trained Longformer model with additional 

fully connected layers and fine-tune it to learn features that are useful for author verification. 

Their model incorporates fandom information via the use of a multi-task loss function that 

optimizes for both authorship verification and topic correspondence. They used both of datasets 

small and large provided by PAN. They have compared their model with (CN2) that used a 

convolutional stack followed by a recursive self-attention stack simultaneously. But, their 

Longformer-based system won and attained a 0.963 overall verification score, on a held-out 

subset of the PAN-provided “large training” set, but on the official PAN test set, attained a 

0.685 overall score. 

In the study[29], the author has proposed a simple model to solve the authorship verification 

problem based on a Labbé similarity. It is a simple text similarity technique used when facing 

with pairs of snippets. She proposed to select features by ranking them according to their 
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frequency of occurrence in each text and taking only the most frequent ones (from 100 to 500) 

but including the most frequent ones in the underlying language. Such a representation strategy 

based on words used frequently by a given author; she used the dataset provided by PAN2020. 

It have shown a good performance with the small dataset of F1= 0.705 and AUC = 0.840.  

Halvaniand et al.,[30] proposed in the context of the AV shared task at the PAN 2020 workshop 

an alternative approach, which considers only topic-agnostic features in its classification 

decision. They used as authorship verification the TAVeer approach, which was inspired by the 

methodology of biometric recognition systems. They aim to recognize individuals, based on a 

variety of physiological characteristics and behavioral features obtained from the hand, vein, 

fingerprint, face, eye, ear or voice. TAVeer employs an ensemble of distance-based classifiers, 

where each one aims to accept or reject the questioned authorship. Each classifier is provided 

with a category of stylistic features extracted from an individual linguistic layer (in each 

document). In this context, the Equal Error Rate (EER) algorithm serves as a thresholding 

mechanism. They used the small dataset, they have split the training data set into a training and 

validation set, where for the former only 5,000 verification cases were used (in other words, 

less than 10% of the entire data set). On the official test set, their approach ranked third out of 

all submitted approaches, attained a 0.825 overall score.  

In the study [2], the author has proposed a data compression method based on the widespread 

Prediction by Partial Matching (PPM) algorithm extended with Context-free Grammar 

character preprocessing. He had chosen a Data compression algorithm CBC for his method 

drawing on the research by Halvani et al [31]. He used a context-free grammar preprocessing 

for PPM to reduce the overall length of a text and simplify the distribution of characters. He 

had used the EER algorithm on n text pairs with the equal number of positive (𝑌) and negative 

(𝑁) authorship cases, to find a decision thresholdƟ, for which his data compression 

dissimilarity measure M gives us the score 𝑠𝑝 =  𝑀 ( 𝑇𝑥 , 𝑇𝑦). He had used the small data set 

that was proposed in PAN2020 in his experimentation. He used 2000 text pairs. His approach 

yielded better results, but could not break a “glass ceiling” of around 0.8 overall score.  

In [32], the author has proposed to adapt Higher Criticism (HC) statistics for the problem of 

authorship verification as an unsupervised untrained discriminator of two documents. His 

method takes word-by-word p-values based on a binomial allocation model of words between 

the documents and combines these P-values to a single test statistic using HC. This method has 
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two steps: in the first step, he performed many exact binomial tests: one test for each word in a 

prescribed dictionary, the result of each test is a P-value according to a binomial allocation 

model between the two documents. In the second step, he took the P-values resulting from the 

first step and combined them to a single score using the HC statistic. The performance of his 

method in the PAN2020 Authorship Verification shows that it serves as an effective authorship 

discriminator that requires very little tuning.  

In their work[27], the authors have presented a hierarchical fusion of two well-known 

approaches into a single end-to-end learning procedure. The first is the ADHOMINEM system 

(Siamese network for representation learning).[33] It is used as a deep metric learning 

framework to measure the similarity between two text samples, to learn a pseudo-metric that 

maps a document of variable length onto a fixed-sized feature vector. In addition, at the top, 

they incorporate the second approach that is a probabilistic linear discriminant analysis (PLDA) 

layer[34], which functions as a pairwise discriminator to perform Bayes factor scoring in the 

learned metric space. They used the small and the large dataset provided by PAN. The small 

dataset model achieves only 0.897 overall score and the large one 0.935 overall score. Their 

approach ranked first out of all submitted approaches.  

In PAN 2020, Araujo-Pino et al.,[35] have presented a deep learning Siamese network 

approach. Their neural architecture approach receives character n-grams as inputs. So in order 

to train their network, the first step is to transform the texts dataset into character n-grams (with 

n varying from 1 to 3) frequency vectors (the dimensions of the vectors correspond to the 

frequency of each n-gram) as input and learns to identify if these documents are written by the 

same author. They used the Scikit Learn Python module to extract all the n-grams. They used 

two datasets: large and small that were provided by The PAN 2020 authorship verification 

organization. They trained two models, one with the small dataset and the other with the large 

One, they only used the first 10000 (ten thousand) characters from each document to speed up 

the n-gram extraction process. Both datasets split on two training with 70 and validation with 

30 percent of samples respectively. They used the parameters that achieved the best 

classification Performance in terms of AUC on 30% of both large and small training datasets. 

They achieved a good result that the AUC score is 1.0 when the Training and Validation sets 

come from the same dataset. On the other hand, the small dataset model achieves only 0.823 

AUC on the validation set that comes from the large training set.  
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In the work [36], the author has proposed an approach to solve the problem of authorship 

verification of short messages. This approach is based on the deep sequence-to-sequence CNN 

model. She evaluated her approach on the Enron email dataset using the CNN classifier on a 

two-class training data, composed of positive (written by the "target" user) and negative (written 

by "someone else"). She trained her model to 52 remaining users. For each user, 1000 verified 

email messages were sampled, CNN model was trained for each user. 90% of this data used for 

training and 10% for testing. She achieved good results. The average overall accuracy is 97% 

for 52 users, which is significantly better than what most of the previously published works 

reported on the Enron dataset.  

Weerasinghe et al.,[37] have proposed an approach to solve the problem of authorship 

verification for the PAN 2020 task. In their approach, they created two models (trained on the 

smaller and larger datasets). They used a Linear Regression classier for the smaller dataset and 

a Neural Network for the larger dataset. They extracted stylometric features from the documents 

and used the absolute difference between the feature vectors as input to their classier. These 

models achieved AUCs of 0.939 and 0.953 on the small and large datasets. Making them the 

second-best models on both datasets submitted to the shared task. 

4. Comparison table 

This table is presenting the main parts of all the previous work that are explained above based 

on:  

 The dataset used in their work. 

 The method used in the paper  

 The results for the evaluation metrics used AUC, F1, c@1, F0.5u and the accuracy. 

 Evaluation metrics3: The evaluation metrics that have been used in the comparison 

results define as follow: 

 AUC (Area under the Curve): Is the conventional area-under-the-curve score, 

it is an evaluation metric provided by scikit-learn library in Python language. 

AUC use to evaluate the deep learning models performance. 

                                                           
3 https://pan.webis.de/clef21/pan21-web/author-identification.html 
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 F1: The F1-score, also called the F-score, is a measure of a model’s accuracy on 

a dataset. It is used to evaluate binary classification systems, which classify 

examples into ‘positive’ or ‘negative’4. 

 c@1: Is a variant of the conventional F1-score introduced by Peñas and Rodrigo 

(2011)[38]. It is well suited for evaluating Reading Comprehension tests, which 

able to reward systems that maintain correct answers and at the same time 

decrease the number of incorrect ones. 

 F0.5u: Is a new proposed measure introduced by Bevendorff et al.,[39] which 

puts more emphasis on deciding same-author cases correctly. It want a balance 

between precision and recall, with more weight on precision. 

The table is as follow: 

Citation Dataset Methods Metrics 

AUC c@1 F0.5u F1 Accuracy 

[28] PAN 

large 

dataset 

Longformer 

model 

0.696 0.640 0.655 0.748 / 

[32] PAN 

small 

dataset 

 

Higher 

Criticism 

(HC) statistics 

0.866 0.801 0.815 0.809 / 

[29] The Labbé 

similarity 

0.840 0.545 0.599 0.705 / 

[30] TAVeer (topic 

-agnostic 

feature) 

0.878 0.796 0.819 0.807 / 

[2] Prediction by 

Partial 

Matching 

0.786 0.786 0.809 0.800 / 

                                                           
4 https://deepai.org/machine-learning-glossary-and-terms/f-score 
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(PPM) 

algorithm 

[27] PAN 

Large 

dataset 

 

- Siamese 

network for 

representation 

learning. 

- Probabilistic 

linear 

discriminant 

analysis 

(PLDA) 

0.969 0.928 0.907 0.936 / 

 

 PAN 

small 

dataset 

 

0.940 0.889 0.853 0.906 

        

[35] 

 

 

 

 

 

 

 

 

PAN 

Large 

dataset 

deep learning 

Siamese 

network for 

both dataset 

0.859 

 

0.751 0.745 0.800 / 

 

 

 

 
PAN 

small 

dataset 

0.874 0.770 0.762 0.811 

[37] PAN 

Large 

dataset 

Neural 

Network for 

the larger 

dataset. 

0.953 0.880 0.882 0.891 / 
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PAN 

small 

dataset 

 

Linear 

Regression 

classifier for 

the smaller 

dataset. 

0.939 0.833 0.817 0.860  

 

 

[36] Enron 

dataset 

application of 

CNN to NLP 

/ / / / 0.97 

 

Table 2: Classification of some related works in the field of AV. 

5. Discussion 

From the table above we will discuss all the differences between all the methods and results 

of related works. 

We have processed these works [28], [32], [29], [30], [2], [27], [35], [37], in the field of 

authorship verification, the first eight works realized in the last years in PAN 20 at CLEF 

(Conference and Labs of the Evaluation Forum). All of the works used the dataset provided 

by PAN 20, some works used both of dataset the smaller and the larger, and the others used 

just the smaller dataset. 

We review that all the works used the machine learning methods and the artificial neural 

network algorithms for its models with the PAN Dataset, and got a good and acceptable 

results. Where this work [27], ranked the first in PAN20 challenge with the large dataset: 

AUC=0.969, F1_score = 0.928, c@1= 0.907, F.05=0.936, and the third with the small dataset: 

AUC=0.940, F1_score =0.889, c@1= 0.853, F.05=0.906. 

However, it is not enough because machine learning is not effective for the massive data. 

Moreover, we have processed this work [36], but it is independent about the others works, it 

realized with Enron dataset using the Convolutional Neural Network (CNN) deep learning 

method. It achieved good results with 0.97 accuracy, it ranked the first in all the work that 

used the Enron dataset in the field of authorship verification. This work inspired us to used 

deep learning to build a new model and get the best results between all the other works that 
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used the PAN Dataset, for this reason we will propose a new method use the deep learning 

technic because in the last years, it has achieved a best results for the processing of massive 

data.  

Moreover, the deep learning has the possibility to process a huge and complex data, these 

capabilities make it very powerful when treat with unstructured data. In other hand, deep 

learning has a starvation for data, for this reason it need a huge of unstructured data to be 

effective. For this purpose, it will help us process the data provided by PAN20 and achieved 

best results.   

Conclusion 

In this chapter, we have started by introducing the authorship analysis and focused on 

authorship verification as a type of it. After that, we have been presented the most relevant 

works related to our research in order to propose a new approach that will give better results in 

the field of authorship verification. 

The next chapter describes our proposed model and the process we followed to design it, in 

detail. 
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Introduction 

After reviewing the related work in this field, in this chapter we present the architecture of our 

model for authorship verification from text. Our model focuses on two main parts. In the first 

part, we extract the features of the texts in two steps: we start with the preprocessing of data 

after that we used word2vec for the vectorization of the text. In the second part, we split our 

dataset in three "train dataset", "validation dataset" and "test dataset". After that, we used the 

Autoencoder for the text classification part, with the "training dataset" to build our model.  

1. Architecture of our model 

This is the two main parts, each part with two steps. We will detail each part bellow. 

 Part 1: Features Extraction. 

 Step 1: Preprocessing.  

 Step 2: Vectorization. 

 Part 2: Text classification using Autoencoder. 

In the previous works, researchers used many different methods of deep learning and machine 

learning like CNN to solve this problem of authorship verification. However, according to our 

research, we have worked in a method that used an Autoencoder for the authorship verification. 

In the figure below (Figure 19), we present all the parts and steps of our model of authorship 

verification.  
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Figure 19: Architecture of our model of authorship verification. 

2. Features Extraction 

In this part, we want to extract all the features of the pair of text of dataset. This step present in 

two phases:  

 Preprocessing   

 Vectorization 

2.1 Preprocessing 

The main goal of this step is to reduce the text and cleaning it to simple words, and standardize 

it in order to make it easier to use. It can represent the words as keys that we can take it to give 

us the possibility to recognize and process the text.  

There are some different tools and methods, which we used for the preprocessing of dataset, 

including: 

 Remove the numbers and punctuation 
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 Remove capital letters 

 Tokenization 

 Remove the Stopwords 

 Lemmatization 

The techniques we used in this phase are as follows: 

 Remove Punctuation 

Punctuation has no effect on the text analysis so it is removed, that they offer no useful 

information for classification. It includes symbols words such as “/” and “@”. 

 Remove the numbers 

The goal of removing numbers is to make words simple for processing.  

 

Figure 20:  An example of remove the digits and punctuation. 

 Remove capital letters 

We convert all uppercase characters to lowercase. 

 

Figure 21: An example of removing the capital letters. 
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 Tokenization 

Tokenization is a method of transforming text to a very simple, a piece of data stocked in a 

named list. Tokenization can be used to secure sensitive data by replacing the original data with 

an unrelated value of the same length and format. 

 

Figure 22: An example of tokenization of a text. 

 Remove StopWords (meaningless words) 

Stopwords is words that occur so frequently in language, they not offer useful information for 

classification. Contrary it is harmful for the text classification, and are generally very common 

and present in most posts. It is includes words such as “the” and “are”. 

 

Figure 23: An example of removing the StopWords 
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 Lemmatization 

The goal of lemmatization is to remove inflections and map a word to its root form. The only 

difference is that, lemmatization tries to do it the proper way. It does not just chop things off, it 

actually transforms words to the actual root. For example, the word “better” would map to 

“good”. It may use a dictionary such as WordNet for mappings or some special rule-based 

approaches. Here is an example of lemmatization: 

 

Figure 24: An example of lemmatization of text. 

2.2 Vectorization 

This is the second important step of features extraction part. Its goal is to transform words to 

vectors to finish the features extraction part and get ready to entre it into the Autoencoder model. 

In this step, we used the word embedding as a method of Vectorization. 

2.1.1 Word Embedding 

It is a method of learning a representation of words in a document by real numbers, it used 

especially in automatic language processing. Moreover, it is a word representation type that 

allows machine learning algorithms to understand words with similar meanings. This technique 

allows each word in our fandom pair text in the dataset to be represented by a vector of real 

numbers. To do Word Embedding, we used Word2Vec algorithm. 

2.1.1.1 Word2Vec 

Word2vec is a word-embedding algorithm. It is a popular sequence embedding method that 

transforms natural language into distributed vector representations. It can capture contextual 

word-to-word relationships in a multidimensional space and has been widely used as a 
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preliminary step for predictive models in semantic and information retrieval tasks. We used it 

in our case to transform all the pair text to vectors and we can extract the similarity between 

words. Word2vec is based on a two-layer neural network, it has two neural architectures called 

CBOW and Skip-Gram [40]. 

 CBOW (Continuous Bag of Words) Model 

The model is fed by the context, and predicts the target word. The result of the hidden 

layer is the new representation of the word5. 

Figure 25 describes the Word2vec Continuous Bag of Words (CBOW) model process. 

 

 Skip-Gram Model 

The model is fed by the target word, and predicts the words of the context. The result 

of the hidden layer is the new representation of the word6. 

Figure 25 describes the Word2vec skip-gram model process. 

 

Figure 25: Word2vec model (Continuous Bag of Words (CBOW) and Skip-Ngram)[40]. 

                                                           
5 https://datascientest.com/nlp-word-embedding-word2vec 
6 https://datascientest.com/nlp-word-embedding-word2vec 
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3. Text classification 

In this section, we will present our method we used to do the classification of the pairs fandoms 

texts. We used an Autoencoder to learn a compressed representation of the input features for a 

text classification predictive modeling problem. 

We will used a binary (2-class) classification task with two dimension (pair of texts) and we 

take 2000 as number of inputs features for the two pairs (2, 2000), and we take 37,872 samples 

for training.  

The model will take the input, then output the same input values. It will learn to recreate the 

input pattern correctly. 

The encoder learns how to interpret the input and compress it to build a compressed 

representation we call it the latent layer. The decoder takes the output of the encoder (the latent 

layer) and attempts to recreate the same input. Before fitting the model, we will split our dataset 

into "training", "validation" and "testing", and scale the input data by normalizing the values to 

the range [0:1], a good practice with MLPs. 

We will define the encoder as having 10 hidden layers, the first with the number of inputs (2, 

2000) and the second with less number of inputs and so on.  Finally, the last encoded hidden 

layer gives us the latent layer with fewer inputs than the previous layers (60). The decoder will 

be defined with a similar structure, it get the latent as input and extract the features to obtain 

the output data, it is the same data that we have been input it in the encoded layers. 

The table below shown the tokens size that we used in each layers and the activation function 

we used. 

 

layer Tokens size Activation function 

Input (2, 2000) X 

Encoded 1800 Relu 

Encoded 1600 Relu 

Encoded 1400 Relu 
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Encoded 1200 Relu 

Encoded 1000 Relu 

Encoded 800 Relu 

Encoded 600 Relu 

Encoded 200 Relu 

Encoded 100 Relu 

Encoded 60 Relu 

Decoded 100 Relu 

Decoded 200 Relu 

Decoded 600 Relu 

Decoded 800 Relu 

Decoded 1000 Relu 

Decoded 1200 Relu 

Decoded 1400 Relu 

Decoded 1600 Relu 

Decoded 1800 Relu 

Decoded 2000 Sigmoid 

 

Table 3: All layers with its tokens size and activation function. 

The output layer will have the same number of nodes as the input data and will use a linear 

activation function to output numeric values like RELU activation function. 

After that, the model will be fit using the efficient 𝒎𝒆𝒂𝒏_𝒔𝒒𝒖𝒂𝒓𝒆𝒅_𝒆𝒓𝒓𝒐𝒓 version of 

stochastic gradient descent and minimizes the mean squared error, given that reconstruction is 

a type of multi-output regression problem.  

At the end, we can train the model to reproduce the input easier. After training, we can plot the 

learning curves for the training and testing to evaluate the model learned the reconstruction 

problem well. Finally, we can save the Autoencoder model. 
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Conclusion 

Finally, we have walked through the different phases and layers of our new model. More importantly, 

we dived deep into each part to give a better understanding of the basics of all the methods used, that 

way everything be clear. 

In the next chapter, we will describe all the tools from hardware and the software languages that we 

used to build our model.  Moreover, we present the results that we got it from our new model. 
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Introduction 

To achieve our research and build our authorship verification model, we used a set of tools of software 

and materials. 

We will present in this chapter the set of materials used. Then, we will discuss different evaluation 

metrics that will demonstrate the effectiveness of our proposed approach. At last, we will discuss the 

results obtained. 

1. Hardware 

The hardware is the most important stuff that play a very important role in our research and 

all research activity. This domain deal with a huge data that need a powerful hardware to 

achieve good results.  

This project was limited by time, in order to speed up the training of our Autoencoder we took 

the initiative to run in three different machines.  

The first is an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz x64 processor with 4 GB 

RAM.  

The second is an Intel (R) Core (™) i3-2310M CPU @ 2.10GHz x64 processor with 6 GB 

RAM. 

However, these machines did not allow us to finish our training because they are weak and 

not gave us the performance that we need with the huge dataset we used. So we asked for a 

powerful machine and we got the third machine. 

The third is an AMD Ryzen 5 3400G with Radeon Vega Graphics 3.70GHz x64 processor 

with 16 GB RAM. 

Due to the difficulty imposed by this challenge, we just used just the small dataset and we had 

difficulties to manipulate it, for successfully complete this project. 
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2. Software 

First, to build our model we had been work with different software. We started with integrated 

development environment (IDE) PyCharm Community Edition 2020.2.3, but it was difficult 

for us. 

For this reason, we change it to used Jupyter that help us because it was simple and easy to 

use.  

Moreover, we used also Google Colab platform provided by Google Company as cloud 

service. It is very helpful because all the libraries have been installed in, you just need to put 

your code and run it and got the result. However, it is not free, Google Colab give you just a 

one-month free with a less performance, to push you to pay and get all the performance that 

you want. 

In addition, we used Python 3.8 as the programming language. We have deduced from 

previous work that this is the most appropriate language for a number of reasons: 

 It is an interpreted language, which means that Python directly executes the code line 

by line. 

 A high-level programming language has English-like syntax. It easier to read and 

understand the code. 

 It is a very wide language, it is used for all domains.  

 It has diverse and rich libraries, those dedicated to deep learning and those used for the 

management of other data structures and others.  

 Its simplicity, it allows expressing complex equations and formulas and it is easy, 

which consumes less time for the whole development process. 

3. Library 

In this part, we will present all libraries used during to build our deep learning model. 

 TensorFlow7: Is an open source platform and Python library, Created by researchers 

of the Google Brain team for the field of machine learning and deep learning technics 

                                                           
7 https://www.tensorflow.org/ 
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and methods. It has a flexible architecture of tools make the deployment so easy on 

various platforms like GPU, CPU and TPU. 

 Keras8: Is an open source free Python library, used for deep learning and machine 

learning models, and it acts as an API of tensorflow library. Keras helps to run 

experiments easily and faster and a same code can be run on CPU or on GPU, 

seamlessly. 

 Genism9: Is an open source library provided by Python language, it used for the 

machine learning and deep learning technics, and for the unsupervised topics and NLP, 

It has provided a several algorithms like the Word2vec algorithm for the vectorization 

step in the features extraction part. 

 Scikit-learn10: is an open source free Python library, it has created by several of 

researchers for the field of machine learning and deep learning, and it is commercial 

usable. It allows the movement to efficient versions of numerous of current algorithms.   

 NumPy11: Is one of many open source library of python, it is for the Numeric arrays. 

It has created especially for scientific computing, in particular matrix computing, while 

offering multiple functions allowing the creation and manipulation of matrices and 

vectors. 

4. Dataset 

In this section, we will discuss the dataset used in our research.  

PAN202012, provide two datasets small and large. For our experiments, we used the smaller 

dataset. The datasets focuses over a collection of fanfiction texts. Fanfiction is a fan-written 

extension of a storyline in which a so-called fandom topic describes the principal subject of the 

document. The dataset consists of pairs of two different fanfics text that were obtained drawn 

from fanfiction.net. Each pair was assigned a unique identifier and they distinguish between 

same-author pairs and different-authors pairs. Additionally, PAN offer metadata on the fandom 

(i.e. thematic category) for each text in the pair (note that fanfic "crossovers" were not included 

and only single-fandom texts were considered). The fandom distribution in these dataset 

                                                           
8 https://keras.io/ 
9 https://pypi.org/project/gensim/ 
10 https://scikit-learn.org/stable/ 
11 https://numpy.org/doc/stable/user/whatisnumpy.html 
12 https://pan.webis.de/data.html#pan20-authorship-verification 
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maximally approximates the distribution of the fandoms in the original dataset. The test datasets 

is structured in the exact same way, but participants should expect a significant shift in the 

relation between authors and fandoms. The dataset have a collection of 52601 pair of text 

(105202 text) each pair with its id. 

Both the small and the large datasets come with two newline delimited JSON files (.jsonl).  

The first file is training-small.jsonl, contains pairs of texts (each pair has a unique ID) and 

their fandom labels: 

 

Figure 26: The structure of the training Small file. 

The second file is truth.jsonl, contains the ground truth for all pairs. The ground truth is 

composed of a boolean flag indicating if texts in a pair are from the same author and the 

numeric author IDs: 

 

 

Figure 27: The structure of the Truth file. 

The table 4 bellow represents the statistics of the small dataset we used for our experiments. 

 

Table 4: The statistics of the small dataset. 

Number 

of Pairs 

Number of 

Fandom 

texts 

Number 

of 

Positive 

Number 

of 

Negative 

Number of the 

training pairs 

Number of the 

validation pairs 

Number of the 

test pairs 

52601 105202 27834 24767 37873 4208 10520 
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5. Implementation 

In this section, we will start the main work to build our model using the Autoencoder.  After 

the extraction of the features (preprocessing and vectorization) of the dataset, we used the truth 

dataset also, it has two classes positive writing by the same author (same = true), and negative 

writing by different author (same = false).  

The size of each text is 2000 tokens all their value between[0 ;  1]. If the size is greater than 

2000 tokens, automatically remove the remainder; else add 0 to the text whose size is less than 

2000 to fill it. 

We will split the data into three parts “training”, “validation” and “testing”. 

For the training, we took 80% of the data, and for the testing, we took 20% of data. Moreover, 

for the validation we took 10% from the training data. It is mean we took 72% for training and 

8% for validation from the main data.  

In addition, it will help us in reducing the chances of overfitting, as we will be validating our 

model on data it would not have seen in training phase. 

At last, we got 42081 samples for training, and 10520 for testing. Moreover, we took 10% from 

the testing for the validation so the last statistics is:  

Training: 37873 samples. 

Validation: 4208 samples. 

Test: 10520 samples. 

5.1 Training and validation 

After the model is created, we have to compile it using the optimizer function name is  

𝑹𝑴𝑺𝒑𝒓𝒐𝒑() . Moreover, we must to specify the loss type via the argument 𝒍𝒐𝒔𝒔, its name 

is 𝒎𝒆𝒂𝒏_𝒔𝒒𝒖𝒂𝒓𝒆𝒅_𝒆𝒓𝒓𝒐𝒓, since the loss after every batch will be computed between the 

batch of predicted output and the ground truth using mean squared error. 

After that, we went to start train the model using the 𝒇𝒊𝒕() Keras function. We have train our 

model for 50 epochs. The 𝒇𝒊𝒕() function return a history object, by stored the result of this 

function in a variable, and we can use it later to plot the loss function plot between training and 

validation, which will help us to analyze our model's performance visually. 

At last, we save our model using this function 𝒔𝒂𝒗𝒆_𝒘𝒆𝒊𝒈𝒉𝒕𝒔() to use it in part of testing.   
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5.2 Testing 

In this case, we use a graphical interface to do the test data predicting and classification of our 

model. The figure below shows the description of the graphical interface that we build it to 

testing our model. 

 

Figure 28: The description of the graphical interface 

After that, we show those predictions that we get. The results are printed in a new file JSONL 

and we display these results in the display area. 
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The figure below shows the predictions results.  

 

Figure 29: The display of the printed results. 
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5.3 Source code 

Now, we explain some of our source code that we used to build our model. 

The figure below shows the source code of the data download data and the import packages 

used in our work. 

 

Figure 30: The download data and the import packages. 

Figure 31 presents the source code of the preprocessing function we created and some 

initialization of variable. 

 

Figure 31: The preprocessing function we created and some initialization of variable. 
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In the figure below, we present the source code of the features extraction of our dataset using 

Word2vec for the vectorization step in our model. 

 

Figure 32: The features extraction of our dataset using Word2vec for the vectorization step. 

The figure below shows the source code of the management of texts and the loading of the 

truth data classes that we used in the classification part. 

 

Figure 33: The process of the truth data. 
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Figure 34 shows the source code of the initialization of the two classes that we used in the 

classification part. 

 

Figure 34: The initialization of the two classes of the classification. 

 

The figure below illustrates the source code of the split of our dataset. 

 

Figure 35: The split of our dataset. 

 

 

 

 

 



Chapter 04: Experimentation and results 

 
52 

 

The figure 36 shows the source code of the Autoencoder features extraction for classification 

and the encoded and decoded layers with their characteristics. 

 

Figure 36: The Autoencoder features extraction for classification. 

 

The figure below represent the source code of the compiling the Autoencoder model and how 

to save it and the process of the prediction loss. 

 

Figure 37: The compiling of the Autoencoder model. 
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6. Evaluation metrics 

In this section, we will present the evaluation metrics that we used to evaluate our new model 

in the field of authorship verification. We evaluate the results of the predictions using the 

evaluation metrics like F1-score and Accuracy, and calculate the predictions loss using the loss 

function. 

 Recall13: Recall (R) is defined as the number of true positives (Tp) over the number of 

true positives plus the number of false negatives (Fn) as follows: 

𝑹 =  
𝑻𝒑

𝑻𝒑 +  𝑭𝒏
 

 

 Precision14: Precision (P) is defined as the number of true positives (Tp) over the 

number of true positives plus the number of false positives (Fp) as follows: 

𝑷 =  
𝑻𝒑

𝑻𝒑 +  𝑭𝒑
 

 Accuracy15: Accuracy is used for evaluating classification models. 

Informally, accuracy is the fraction of predictions of our model got right. Formally, 

accuracy has the following definition: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
 

In addition, for binary classification, accuracy can be calculated in terms of positives 

and negatives as follows: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False 

Negatives. 

                                                           
13 https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html 
14 https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html 
15 https://developers.google.com/machine-learning/crash-course/classification/accuracy 
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 F1-score: The F1-score, also called the F-score, is a measure of a model’s accuracy 

on a dataset. It is used to evaluate binary classification systems, which classify examples 

into ‘positive’ or ‘negative’16. 

The F1 score can be interpreted as a weighted average of the precision and recall, where 

an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of 

precision and recall to the F1 score are equal. The formula for the F1 score is17:  

𝑭𝟏 =  𝟐 ∗  (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗  𝒓𝒆𝒄𝒂𝒍𝒍) / (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝒓𝒆𝒄𝒂𝒍𝒍) 

 Loss18: Loss is the penalty for a bad prediction. That is, loss is a number indicating 

how bad the model's prediction was on a single example. If the model's prediction is 

perfect, the loss is zero; otherwise, the loss is greater. The goal of training a model is to 

find a set of weights and biases that have low loss, on average, across all examples. 

7. Results 

Finally, this is the last section in our research; we will present our results after the evaluation. 

We achieved good result using the Autoencoder deep learning method. We are got a 0.98 for 

the accuracy and F1-score metrics. Table 5 shows the accuracy and F1-score evaluation results 

that we got it. In addition, the precision we are got 0.98 in the two classes 0 for the two texts 

that are writing by different authors, and class 1 for the two texts that are writing by the same 

author. Moreover, in the recall, we got 0.97 in the class 0 and we got 0.99 in the class 1. Table 

6 shows the precision and recall evaluation results that we got it. 

accuracy F1-score 

0.98 0.98 

 

Table 5: The results of our model. 

 

                                                           
16 https://deepai.org/machine-learning-glossary-and-terms/f-score 
17 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html 
18 https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss 
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 Precision Recall 

Class 0 0.98 0.97 

Class 1 0.98 0.99 

 

Table 6: The results of the recall and precision. 

The figure below shows the results of the evaluation of our model using the accuracy metric.  

 

Figure 38: The training and validation accuracy. 
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Moreover, we present how much we get the loss using the loss function to calculate the penalty 

of the bad prediction, that we got it during the evaluation of our model. The figure bellow shows 

how much is the loss. 

 

Figure 39: The loss volume of our model. 

Finally, we will compare our results with the others previous works in the field of authorship 

verification. As raison, we evaluated our model just with F1-score because we did not 

participate at the competition of PAN 2021 due to time constraints. The table below shows the 

difference between all the works results that used the small dataset.  

The work F1-score 

Our model 0.98 

boenninghoff20-small [27] 0.906 

weerasinghe20-small [37] 0.860 

araujo20-small [35] 0.811 

kipnis20-small [32] 0.809 

halvani20b-small [30] 0.807 
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gagala20-small [2] 0.800 

Ordoñez20-small[28] 0.748 

Ikae20-small [29] 0.705 

 

Table 7: The F1-score of all the works that used the small dataset provided by PAN. 

 

The figure below shows a histogram that represents the comparison of our results with related works 

using F1-score. 

 

Figure 40: A histogram of our results with the other works using F1-score. 

 

Our model achieved the best results for the F1-score metric. 
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Conclusion 

Finally, this experimentation chapter was the most interesting part of our research study, 

because we presented the different tools used, and the results obtained from our new model. 

Moreover, we even went so far as to measure the performance of our model with the challenge 

of last year. So now, we move on to the general conclusion. 
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General Conclusion 

 Finally, we presented a new type of authorship verification (AV) system that focuses in 

the Autoencoder deep learning method to solve the authorship verification problem, where the 

task was to determine for a pair of texts if both texts were written by the same author or not. 

Our approach is unsupervised method in which we use neural networks for the mission of 

compressed learning, it is composed of two main layers the encoded layer and the decoded 

layer, who complement each other. Before we start using the Autoencoder, we prepare the 

dataset provided by PAN 2020 at CLEF. The dataset focuses over a collection of fanfiction 

texts. First, we extract the features of our dataset in two steps the first is preprocessing and the 

second is the vectorization using Word2vec method. After that, we start the text classification 

using our proposed method, we have to split the dataset into tree part “training”, “validation” 

and “test”. For the training, we took 80% of the data, and for the testing, we took 20% of data. 

Moreover, for the validation we took 10% from the training data. It is mean we took 72% for 

training and 8% for validation from the main data.  

The proposed method achieved excellent overall performance scores, outperforming all other 

models that participated in the last year in the PAN 2020 Authorship Verification Task for the 

small dataset challenge.  

Nevertheless, our AV method leaves room for further improvements. As future work, we would 

like to optimize our model for the test or the evaluation metrics. We believe it is possible to 

optimize our model and run it with powerful computer that have a good performance to make 

our optimization easier when we use more encoded and decoded layers to get good results and 

doesn't take more time. In addition, we would also like to perform the features analysis of our 

model to see which features become important in determining if two documents are written by 

the same person. Moreover, we would like to make our new model of authorship verification 

as an online service to detect the plagiarism and use it for detection of fraudulent, stolen, or 

unidentified data. 



 

 
60 

 

References 

1. Kumar, S., et al., A New Approach for Authorship Verification Using Information Retrieval 

Features, in Innovations in Computer Science and Engineering. 2019, Springer. p. 23-29. 

2. Gagała, Ł.J.W.N.o.C., Authorship verification with prediction by partial matching and 

context-free grammar. 2020. 

3. Parentoni, L., Artificial Intelligence, in Encyclopedia of the Philosophy of Law and Social 

Philosophy, M. Sellers and S. Kirste, Editors. 2020, Springer Netherlands: Dordrecht. p. 1-4. 

4. Batarseh, F.A., Artificial Intelligence, in Encyclopedia of Big Data, L.A. Schintler and C.L. 

McNeely, Editors. 2018, Springer International Publishing: Cham. p. 1-3. 

5. El-Amir, H. and M. Hamdy, A Gentle Introduction, in Deep Learning Pipeline: Building a 

Deep Learning Model with TensorFlow. 2020, Apress: Berkeley, CA. p. 3-36. 

6. Bhalley, R., Machine Learning Basics, in Deep Learning with Swift for TensorFlow: 

Differentiable Programming with Swift. 2021, Apress: Berkeley, CA. p. 1-35. 

7. Singh, P., Introduction to Machine Learning, in Deploy Machine Learning Models to 

Production: With Flask, Streamlit, Docker, and Kubernetes on Google Cloud Platform. 2021, 

Apress: Berkeley, CA. p. 1-54. 

8. Sarkar, D., R. Bali, and T. Sharma, Machine Learning Basics, in Practical Machine Learning 

with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems. 2018, 

Apress: Berkeley, CA. p. 3-65. 

9. Quinto, B., Deep Learning, in Next-Generation Machine Learning with Spark: Covers 

XGBoost, LightGBM, Spark NLP, Distributed Deep Learning with Keras, and More. 2020, 

Apress: Berkeley, CA. p. 289-348. 

10. Kamath, U., J. Liu, and J. Whitaker, Basics of Deep Learning, in Deep Learning for NLP and 

Speech Recognition. 2019, Springer International Publishing: Cham. p. 141-201. 

11. Taulli, T., Deep Learning, in Artificial Intelligence Basics: A Non-Technical Introduction. 

2019, Apress: Berkeley, CA. p. 69-90. 

12. Du, K.-L. and M.N.S. Swamy, Deep Learning, in Neural Networks and Statistical Learning. 

2019, Springer London: London. p. 717-736. 

13. El-Amir, H. and M. Hamdy, Deep Learning Fundamentals, in Deep Learning Pipeline: 

Building a Deep Learning Model with TensorFlow. 2020, Apress: Berkeley, CA. p. 279-343. 

14. Ding, B., H. Qian, and J. Zhou. Activation functions and their characteristics in deep neural 

networks. in 2018 Chinese Control And Decision Conference (CCDC). 2018. 

15. Sharma, S. and S.J.T.D.S. Sharma, Activation functions in neural networks. 2017. 6(12): p. 

310-316. 

16. Silaparasetty, V., Neural Network Collection, in Deep Learning Projects Using TensorFlow 2: 

Neural Network Development with Python and Keras. 2020, Apress: Berkeley, CA. p. 249-

347. 

17. Hochreiter, S. and J. Schmidhuber, Long Short-Term Memory. Neural Computation, 1997. 

9(8): p. 1735-1780. 

18. Singh, V. and N.K. Verma, Deep Learning Architecture for High-Level Feature Generation 

Using Stacked Auto Encoder for Business Intelligence, in Complex Systems: Solutions and 

Challenges in Economics, Management and Engineering: Dedicated to Professor Jaime Gil 

Aluja, C. Berger-Vachon, et al., Editors. 2018, Springer International Publishing: Cham. p. 

269-283. 

19. Bohra, A. and N.C. Barwar. Deep Learning Architectures, Methods, and Frameworks: A 

Review. 2021. Singapore: Springer Singapore. 

20. El, S.E.M. and I.J.I.J.o.C.A. Kassou, Authorship analysis studies: A survey. 2014. 86(12). 

21. Job, I., Authorship Analysis as a Text Classification or Clustering Problem. 

22. Juola, P., Authorship Analysis and Attribution, in Encyclopedia of Big Data, L.A. Schintler 

and C.L. McNeely, Editors. 2020, Springer International Publishing: Cham. p. 1-3. 



 

 
61 

 

23. Iqbal, F., M. Debbabi, and B.C.M. Fung, Authorship Analysis Approaches, in Machine 

Learning for Authorship Attribution and Cyber Forensics. 2020, Springer International 

Publishing: Cham. p. 45-56. 

24. Wiegmann, M., B. Stein, and M. Potthast. Overview of the Celebrity Profiling Task at PAN 

2019. in CLEF (Working Notes). 2019. 

25. Argamon, S., et al., Automatically profiling the author of an anonymous text. 2009. 52(2): p. 

119-123. 

26. Rangel, F., et al. Overview of the 3rd Author Profiling Task at PAN 2015. in CLEF. 2015. sn. 

27. Boenninghoff, B., et al., Deep bayes factor scoring for authorship verification. 2020. 

28. Ordoñez, J., R.R. Soto, and B.Y.J.W.N.o.C. Chen, Will longformers PAN out for authorship 

verification. 2020. 

29. Ikae, C.J.W.N.o.C., UniNE at PAN-CLEF 2020: Author verification. 2020. 

30. Halvani, O., L. Graner, and R.J.W.N.o.C. Regev, Cross-domain authorship verification based 

on topic agnostic features. 2020. 

31. Halvani, O., C. Winter, and L. Graner. On the usefulness of compression models for 

authorship verification. in Proceedings of the 12th international conference on availability, 

reliability and security. 2017. 

32. Kipnis, A.J.W.N.o.C., Higher criticism as an unsupervised authorship discriminator. 2020. 

33. Boenninghoff, B., et al. Explainable authorship verification in social media via attention-

based similarity learning. in 2019 IEEE International Conference on Big Data (Big Data). 

2019. IEEE. 

34. Cumani, S., et al., Pairwise Discriminative Speaker Verification in the ${\rm I} $-Vector 

Space. 2013. 21(6): p. 1217-1227. 

35. Araujo-Pino, E., H. Gómez-Adorno, and G.J.W.N.o.C. Fuentes-Pineda, Siamese network 

applied to authorship verification. 2020. 

36. Litvak, M. Deep dive into authorship verification of email messages with convolutional neural 

network. in Annual International Symposium on Information Management and Big Data. 

2018. Springer. 

37. Weerasinghe, J. and R. Greenstadt. Feature Vector Difference based Neural Network and 

Logistic Regression Models for Authorship Verification. in Working Notes of CLEF 2020-

Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 22-25, 2020. 

2020. CEUR-WS. org. 

38. Peñas, A. and A. Rodrigo, A simple measure to assess non-response. 2011. 

39. Bevendorff, J., et al. Generalizing unmasking for short texts. in Proceedings of the 2019 

Conference of the North American Chapter of the Association for Computational Linguistics: 

Human Language Technologies, Volume 1 (Long and Short Papers). 2019. 

40. Jang, B., et al., Bi-LSTM model to increase accuracy in text classification: Combining 

Word2vec CNN and attention mechanism. 2020. 10(17): p. 5841. 

 

 

 


