
BLIDA 1 UNIVERSITY

Sciences engineering Faculty

Computer science Department

DOCTORATE THESIS

Specialty: Computer Systems Engineering

TOWARDS A SOFTWARE PRODUCT LINE FOR E-GOVERNMENT

By

Amina GUENDOUZ

In front of the jury composed of:

H. Abed Professor U. Blida 1 President

N. Benblidia Professor U. Blida 1 Examiner

N. Boustia Professor U. Blida 1 Examiner

W. Hidouci Professor ESI Examiner

D. Bennouar Professor U. Bouira Supervisor

Blida, February 2021

ۮ ˧˲ Ǫ̤�ȅ˧ࠇ Ȑ˲̤Ǫ�߷ �̩ ˸ ˉ

۸ ̧ Ǫ�Ȁ˲˷ ݾ Ǧࠄ� �̊ȄҠ ˸ Ǫ̤�ȇ�ǭҠ ˾ Ǫ̤�ȇ

ملخص

على ةیفعالب الردمنتمكنجدیدةوأدواتطرق، مناھجتطویرمن أجلستمرم تطورفي البرمجیاتھندسةمجال

لوصولا.البشریةالحیاةقطاعاتمختلف في البرمجیاتانتشاربسببجداً دینامیكیةالوالمعقدة، الجدیدةلاحتیاجاتا

. منخفضةجدُّ بتكلفةو جدًاقصیروقت في ممكنًاالجودةعالیةبرامجإنتاجفیھایكون حالة إلىالانتقالیتطلبھذا إلى

الاحتیاجاتتلاءمأنیمكنیث بح للتكیف قابلة برامجإنشاءبإمكانیةالإنتاجعملیات تسمح أنیجب،ذلكومع

نھج:مشتركبشكلالأھدافھذهلتحقیقللغایةواعدانرئیسییننھجینھناكأنیبدو،الحاليالوقت في. الفردیة

البرمجیاتإنتاجوطوخطالمركبة البرمجیات

قطع تركیب على الإنتاجیعتمدحیثالصناعیةالإنتاجخطوطمنمستوحاةالبرمجیاتإنتاجخطوطأنحین في

التقلیدیةالبرامجمناھج على تعتمدأنھانجد،الحالیةالبرمجیاتإنتاجخطوطبتحلیل قمنا إذا،المعتمدةالبرمجیات

و المشكلة،لھذهواعدًاحلاً تمثلقدالمركبة البرمجیاتأنعتقدن. الإنتاجلخطوطالأساسیةالمبادئ مع تتناسب لا التي

نواةبالبرمجیات خطوطتزوید إمكانیةاستكشافھوالبحثيالعملھذاھيمعالجتھاتمتالتيالأولىالقضیةفإنمنھ

المشكلةھيالإلكترونیةالحكومة.الإلكترونیةالحكومةسیاق في التقییموإجراءالمركبة البرمجیاتإلىأساسًاتستند

أوالإلكترونیةالحكومةتطبیقاتاشتقاقإمكانیةندرسالأطروحةھذه في. العملھذایعالجھاالتيالثانیةالرئیسیة

التكنولوجیةالأسسوضعھوإذن،العمل،ھذامنالھدف.اً مكونأواً كانبسیطإنتاجخطمنمنھاجدًامھمجزء

معتمد علىتصمیملمنھجوفقًاالإلكترونیةالحكومةلتطبیقاتالسریعللإنتاجبرمجیات خطلتطویروالمنھجیة

.المركبةالبرمجیات

المركبة البرمجیات على القائمةالبرمجیات خطوطتطویرإلىیھدفنھجتأسیسنحوأولىخطوةالمقترحالحلمثلی

إلىنقترحھالذيالنھجیھدف.الإلكترونیةالحكومةمثلوالمنتشرةالمعقدةالمجالات فيالبرمجیات خطوطوإدارة

الإنتاجخطنفسضمنالتطبیقاتبین:التجریدمنمستویین علىالبرمجیات خطوطداخلالاستخدامإعادةإدارة

،البرمجیاتخطوطضمنالفعالةالاستخدامإعادةإدارةأجلمن.المجالنفسإلى تنتمي التيالإنتاجخطوطوعبر

،البرمجیاتخطوطبینالاستخدامإعادةلإدارةبینما".المركبة البرمجیات على القائمالإنتاجخط"نھجستحدثن

المنتجاتخطوطلإدارةجدیدنھجھوالأخیرھذا.الجانبیةالعناصر على ةالقائمالمتعددةالمنتجاتخطوطنھجنقترح

 صحة منالتحققتم.المنفصلةالإنتاجخطوطعبرالاستخدامإعادةتنظیمإلىأساسيبشكلیھدفوالذيالمتعددة

.الإلكترونیةالحكومةمجالسیاق في المقترحالنھج

الاشتقاق،التباین،الجانب،الإلكترونیةالحكومة،البرمجیاتإنتاجخط،المركبة البرمجیات:الكلمات المصنفة

.الجزئي

ABSTRACT

Software engineering field evolves constantly to develop new approaches,

methods, models and tools that enable the effective management of new and

complex needs very dynamic due to the pervasiveness of software solutions in

various human life sectors. Reaching that requires the transition to a situation

where the production of quality software should be possible in a very short time at

very low cost. Nevertheless, production processes must allow the possibility to

create adaptable software which can fit the individual needs. Currently two main

approaches seem to be very promising to jointly meet these objectives: the

Software Architecture and the Software Product Line approaches.

While software product lines are inspired by industrial product lines where the

production activity relies on assembling certified components, if we analyze actual

software product lines we find that they relies on traditional modular and object

software approaches which are not suitable to the basic principles of product lines.

Believing that software architecture might represent a promising solution to this

problematic, the first issue addressed is this research work is to explore the

possibility of providing software product lines by a core based fundamentally on

software architecture and to perform evaluation in the e-Government context. E-

Government is the second major problem addressed by this work. In this thesis we

study the possibility of deriving e-Government applications or very important part

of them from a product line been simple or composed. The aim of this work is,

then, to set up the technological and methodological bases to the development of

a product line for the fast production of e-Government applications according to a

component-oriented design approach.

The proposed solution presents a first step towards the foundation of an approach

intended to the development of Component-Based Software product lines and the

management of product lines in complex and pervasive fields like e-Government.

The approach that we propose intends the management of reuse within software

product lines at two abstraction levels: between the applications included in the

same product line, and across product lines belonging to the same field. For the

effective reuse management within software product lines, we introduce the

“Component Based Product Line” approach. While, for managing reuse among

product lines we suggest Aspect Multiple Product Line approach. The latter is a

new multi product line management approach which aims mainly to systematize

reuse across separated product lines. The proposed approach is validated in the

context of e-Government field.

Key words: Software Architecture, Software Product Line, e-Government, Aspect,

Variability, partial derivation.

RÉSUMÉ

Le champ du génie logiciel est en évolution sans cesse croissante pour mettre sur

pied de nouvelles approches, méthodes, modèles et outils qui permettraient la

prise en charge efficace des nouveaux besoins complexes et très dynamiques dus

à l’omniprésence des solutions logicielles dans les divers secteurs de la vie

humaine. La prise en charge efficace des ces besoins impose le passage à une

situation ou la production d’un logiciel de qualité doit être possible dans des

délais très courts à des coûts très réduit. Actuellement deux grandes approches

semblent être très prometteuses pour répondre conjointement à ces objectifs:

l’approche de conception de système logiciel par assemblage de composants,

plus connus sous le nom d’architecture logicielle et l’approche de Ligne De

Produits. Malgré que les lignes de produits logiciels sont inspirées des lignes de

produits industrielles où l'activité de production repose sur l'assemblage de

composants certifiés, si nous analysons les lignes de produits logiciels existantes,

nous constatons qu'elles reposent sur des approches logicielles modulaires et

objets traditionnelles qui ne sont pas adaptées aux principes de base des lignes

de produits. Estimant que l'architecture logicielle pourrait représenter une solution

prometteuse à cette problématique, la première problématique de ce travail de

recherche est d'explorer la possibilité de fournir des lignes de produits logiciels par

un noyau basé fondamentalement sur l'architecture logicielle et d'effectuer des

évaluations dans le contexte de l'e-gouvernement. L'e-gouvernement est le

deuxième problème majeur abordé par ce travail. Dans cette thèse, nous étudions

la possibilité de dériver les applications d'e-gouvernement ou une partie très

importante d'entre elles à partir d'une ligne de produits simple ou composée.

La solution proposée présente une première étape vers la fondation d'une

approche destinée au développement de lignes de produits logiciels à base de

composants et à la gestion de lignes de produits dans des domaines complexes et

omniprésents comme l'e-gouvernement. L'approche que nous proposons vise la

gestion de la réutilisation au sein des lignes de produits logiciels à deux niveaux

d'abstraction: entre les applications incluses dans une même ligne de produits, et

entre les lignes de produits appartenant au même domaine. Pour une gestion

efficace de la réutilisation au sein des lignes de produits logiciels, nous

introduisons l'approche «Component Based Product Line». Alors que, pour gérer

la réutilisation entre les lignes de produits, nous suggérons l’approche Aspect

Multiple Product Line. L'approche proposée est validée dans le contexte du

domaine de l'e-gouvernement.

Mots clés : Ligne de produit, Architecture Logicielle, e-Gouvernement, Aspect,

variabilité, dérivation partielle.

ACKNOWLEDGMENT

I first thank Allah for giving me the strength to complete this humble work.

I would like to thank Mr. Bennouar for offering me the research subject treated in

this thesis and also for their advices, support and patience.

My sincere thanks go also to the jury Members who agreed to read and evaluate

the work presented in this thesis.

I express my deep gratitude to Madame Boumahdi as well as to the teachers of

the computer science department and the members of the computerized systems

research and development laboratory (LRDSI) for their advices, their suggestions

and for the help they provided me.

Finally, but definitely not the least, I express my gratitude to my family for believing

in me long after I'd lost belief in myself, and for sharing my wish to reach the goal

of completing this task.

CONTENT

ABSTRACT . 3

ACKNOWLEDGMENT . 5

CONTENT . 6

LIST OF ILLUSTRATIONS AND TABLES .7

INTRODUCTION 8

CHAPTER 1: SOFTWARE PRODUCT LINES 19

1.1. Introduction 19
1.2. Core concepts of SPL 20

1.2.1. SPL definition, advantages and challenges 20
1.2.2. Managing Variability in SPLs 22
1.2.3. Feature models 24

1.3. SPL engineering 25
1.3.1. Domain engineering 27
1.3.2. Application engineering 28

1.4 Variability modeling techniques 28
1.4.1. Representing variability in separated models 29
1.4.2. Representing variability in artefacts 33
1.4.3. Discussion 36

1.5. Multiple Product Lines (MPLs) 37
1.5.1. MPLs meaning, benefits and issues 37
1.5.2. Overview of approaches related to MPLs 40

1.6 Conclusion 43

CHAPTER 2: SOFTWARE ARCHITECTURE and SOFTWARE PRODUCT
LINES 45

2.1. Introduction 45
2.2. Core concepts of Software Architecture 46

2.2.1. Definition and advantages 46
2.2.2. Components 48
2.2.3. Connectors 50
2.2.4. Configuration 50
2.2.5. Component based development process 51
2.2.6. The ADLs 52

2.3. The IASA approach 53
2.3.1. The IASA component model 54
2.3.2. The IASA connector model 55
2.3.3. The IASA access points 56
2.3.4. The IASA ports 57
2.3.5. The SEAL action language 57

2.4. Component based product lines 58
2.4.1. State of the art 59
2.4.2. Discussion 64

2.5. Conclusion and recommendations 67

CHAPTER 3: COMPONENT BASED SPLS (CBPL) 69

3.1. Introduction 69
3.2. Composition oriented FM 70
3.3. Component Based Product Line Engineering 72

3.3.1. CBPL domain engineering 73
3.3.2. CBPL application engineering 73

3.4. Variability Modeling In CBPLs 75
3.4.1. Architecture design with IASA 75
3.4.2. Variability modeling extension for IASA 76
3.4.3. Mapping features to the architecture 78

3.5. Case study: e-meeting CBPL 79
3.5.1. Domain analysis 79
3.5.2. Product-line architecture design 81

3.6. Conclusion 83

CHAPTER 4: ASPECT MULTI PRODUCT LINES (AMPL) 84

4.1. Introduction 84
4.2. Crosscutting Reuse within MPLs: e-Government example 85

4.2.1. E-Admin SPL 86
4.2.2. E-Education SPL 89
4.2.3. Comparison and results 90

4.3. Aspect Multiple Product Lines (AMPL) 93
4.3.1. Separation of concerns in MPLs 93
4.3.2. Aspect SPLs 94
4.3.3. Partial derivation 95

4.4. AMPL Engineering 96
4.4.1. ASPLs engineering 97
4.4.2. Sub-SPLs Engineering 98

4.5. Discussion 102
4.6. Conclusion 104

CHAPTER 5: PARTIAL DERIVATION AND COMPOSITION 106

5.1. Introduction 106
5.2. Partial derivation 107

5.2.1. Restriction Techniques 108
5.2.2. Expansion Techniques 109

5.3. Partial derivation of the Feature Model 110
5.3.1. Restricting a Feature Model 110
5.3.2. Expanding a Feature Model 112

5.4. Partial derivation of the Architecture Model 114
5.4.1. Restricting the configuration choices of architecture Model 114

5.4.1.3. Removing an architecture element 115
5.4.2. Expanding the configuration choices of architecture Model 116

5.5. SPLs merging 116
5.5.1. Feature Models merging 117
5.5.2. Architecture models merging 117

5.6. Case study: 119
5.6.1. The e-Evaluation ASPL 119
5.6.2. The composition model 123

5.7. Conclusion 124

CHAPTER 6: EVALUATION OF THE APPROACH: E-GOVERNMENT CASE
STUDY 125

6.1. Introduction 125
6.2. Background and Motivation 127

6.2.1. E-Government and SPLE 127
6.2.2. Crosscutting reuse among e-Gov SPLs 128

6.3. E-Government AMPL Engineering 129
6.3.1. E-Gov ASPLs engineering 129
6.3.2. E-Government sub-SPLs engineering 135

6.4. Discussion and evaluation 142
6.5. Conclusion 146

CONCLUSION 150

REFERENCES 154

LIST OF ILLUSTRATIONS AND TABLES

Figure 1. 1: Example of a FM (part of the evaluation component

FM from the e-Learning SPL). 25

Figure 1. 2: SPL engineering process [4]. 27

Figure 1. 3: Classification of variability modeling techniques. 29

Figure 1. 4: Multiple Product Lines. 38

Figure 2.1: Sample graphical representation of components

and connectors. 49

Figure 2. 2: Component Based Development process [69]. 51

Figure 2. 3: Clauses in a component's textual description. 58

Figure 2. 4: Koala component model. 61

Figure 3. 1: Component-Based Product Line engineering [93]. 74

Figure 3. 2: The basic IASA notations. 75

Figure 3. 3: Interfaces variability notation. 76

Figure 3. 4: Choice variability notations. 77

Figure 3. 5: Business feature diagram for e-Meeting product line. 79

Figure 3. 6: Technical feature diagram for e-Meeting product line. 80

Figure 3. 7: Reference architecture of e-Meeting product line. 82

Figure 3. 8: Variability model for “Meeting_Configuration” component. 83

Figure 4. 1: Business feature diagram for e-Administration product line 87

Figure 4. 2: Technical feature diagram for e-Administration product line 88

Figure 4. 3: Implementation feature diagram for e-Administration product line 89

Figure 4. 4: Business feature diagram for e-Education product line 90

Figure 4. 5: ASPLs life cycle within AMPL engineering [96]. 96

Figure 5. 1: Restriction operations on FMs. 112

Figure 5. 2: Expansion operations on FMs. 114

Figure 5. 3: Feature models merging 118

Figure 5. 4: The evaluation ASPL FM. 119

Figure 5. 5: The reference architecture of the evaluation ASPL. 120

Figure 5. 6: The internal structure of the component 'test'. 120

Figure 5.7: Partially derived test component for e-Primary SPL. 121

Figure 5. 8: Partially derived evaluation ASPL FM for e-Math SPL. 122

Figure 5. 9: Partially derived test component for e-Math SPL. 122

Figure 5. 10: The reference architecture of e-University SPL. 123

Figure 6.1: Citizen as the central entity of e-Government. 129

Figure 6. 2: E-Government before and after applying AMPL approach. 130

Figure 6. 3: The e-APC sub- SPL FM. 136

Figure 6. 4: The e-APC sub- SPL reference architecture. 137

Figure 6. 5: Partially derived e-Meeting FM for e-APC sub-SPL. 138

Figure 6.6: Partially derived “Meeting_management_Cmp” for e-APC sub-SPL.138

Figure 6.7: FMs merging of the e-Meeting ASPL and e-APC sub-SPL. 139

Figure 6. 8: The e-University sub- SPL FM. 140

Figure 6. 9: Partially derived e-Meeting FM for e-University sub-SPL. 141

Figure 6.10: Partially derived e-Meeting reference architecture

for e-University sub-SPL. 141

Figure 6. 11: FMs merging of the e-Meeting ASPL and e-University sub-SPL. 142

Table 2. 1: CBPL approaches evaluation. 65

Table 3. 1: Mapping features to the architecture 78

Table 4. 1: Comparing e-Admin and e-Education SPLs features 91

Table 5. 1: Restriction operations of an FM 111

Table 5. 2: Expansion operations of an FM. 113

Table 6. 1: Comparing our approach to related work. 145

8

INTRODUCTION

1. Introduction

Software engineering field is constantly evolving in the aim of developing new

approaches, methods, models and tools that enable the effective management of

the growing new needs. Been pervasive in the various human life sectors, these

needs became continuously dynamic and complex to be handled. The effective

management of these needs requires the transition to a situation where the

production of quality software should be possible in a very short time and at very

low costs. Nevertheless, production processes must allow the possibility to create

adaptable software which can fit the individual needs. Currently, two main

approaches seem to be very promising to meet jointly these objectives: the

software design approach by assembling components, better known under the

name of Software Architecture and the Software Product Line approach.

Software Architecture approach, which is an emerging discipline in software

engineering, allows the production of systems in short development time by

assembling certified components. The Software Architectures field deals with the

complexity issue by defining a software system from an abstract view point.

Breaking a problem into smaller parts makes it easier to be analyzed by moving

from a complex system to separate entities and relationships between them. The

architecture of a software system defines the overall structure in terms of

components and interactions among them. A component, or a module, can be

identified as a well defined unit that performs some function. An example of a

component is a database or an object. Interactions among components occur

through connectors such as a procedure call, or a protocol. In addition, properties

of a component specify how connection with other components can be made via

connector.

9

Software architecture is an abstraction of a complex system [1]. This abstraction

provides a number of benefits: - it allows predicting the system properties before

its actual existence in the form of a software product [2]. This ability, to verify if a

future software system fulfills its stakeholders' needs without actually having to

build it, represents substantial cost-saving and risk reduction. - It provides a basis

for reusing elements and decisions [2][1]: software architecture patterns, strategies

and decisions, can be reused across multiple systems whose stakeholders require

similar quality attributes or functionality, and this help in saving design costs and

reducing the design mistakes risk. - It supports early design decisions that impact

a system's development, deployment, and maintenance [1]. - It facilitates

communication with stakeholders [1]: Architecture gives the ability to communicate

the design decisions with stakeholders before the system is implemented, when it

is relatively easy to adapt it to better fulfill their needs.

Software architecture deals with the design of the overall software system

structure. It firstly identifies the high level system components called the

subsystems and how those components are connected to each other (connections

or interfaces). The structure is defined in a way that minimizes the coupling

between the different subsystems and increases the internal cohesion of each of

them. Each subsystem must be: cohesive, performs a major service, contain

highly connected components or classes with respect to the subsystem and

relatively independent of other subsystems, and finally it can be decomposed

further into smaller subsystems. These design steps must be documented in order

to facilitate communication between stakeholders, capture early decisions about

the high-level design, and allow reusing components between projects.

In the last decade, software architecture continues to prevail in the academic

world. A very large number of research activities have been undertaken on the

various software architecture aspects, such as the structural, behavioral and

aspect-oriented specification of an architecture, behavior validation, interactions

validation, modeling interaction ports, dynamics in software architecture, prediction

of non-functional properties, hot component replacement, etc. Although the

software architecture was initially based on coarse grained components, today the

process of refinement can reach very fine aspects. As an example, an arithmetic

operator can be seen as a component in some software architecture approaches

10

which base on the principle that everything must be component in a software

development process. Today, a very large number of models, methods and tools

have been proposed and produced.

Software Product Lines are emerging as a viable and important development

paradigm allowing companies to realize major improvements in time to market,

cost, productivity, quality, and other business drivers. Software product line

engineering can also enable rapid market entry and flexible response, and provide

a capability for mass customization. Software product line approach aims to

systematize the reuse throughout all the software development process: from

requirements engineering to the final code and test plans. The purpose is to

reduce the time and cost of production and to increase the software quality by

reusing elements which have been already tested and secured.

Software Product Line approach intends to adapt to the software development,

the principles that we find in the automotive industry, aeronautics and electronics.

Production in these industries is organized into ranges with similar parts and

offering a number of options [3]. For example, in automotive industry, various car

models come out the same assembling chains using the same chassis, the same

engines and the same test plans. The aim is to improve productivity, decrease

time to market, and reduce production, maintenance and test costs. The idea is to

transpose the manufacturing principles of these industries in software

development, to benefit from the before-mentioned advantages.

A Software Product Line (SPL) is a set of systems sharing a set of common

features, satisfying the specific needs for particular field and developed in a

controlled way from a common set of reusable elements [3]. Ultimately, different

software applications are grouped into a software product line in which we

differentiate [4]:

1. Commonalities: software elements that are common to all the members of

the product line.

2. Variabilities: software elements that vary from a member to another

member of the product line (may be common to some products but not

all).

11

3. Product-specifics: software elements that may be part of only one product

at least. Such specialties are often not required by the market per se, but

are due to the concerns of individual customers.

4. Constraints existing between software elements. These constraints will be

respected when these elements are assembled. They originate mainly

from business rules.

During the life-cycle of the product line, a specific variability may change in type.

For example, a product-specific characteristic may become variability. On the

other hand, a commonality may become a variability as well.

SPL engineering seeks to systematize reuse throughout the development

process. This latter is separated in two complementary phases [3] [4]: domain

engineering and application engineering. Figure 1 shows the main activities

conducted during an SPL engineering process.

In domain engineering the commonality and the variability for a set of

envisioned product line applications are identified, documented, and produced [4].

Domain engineering or “development for reuse” involves domain analysis, domain

design and domain implementation processes. The principal outputs of this

process are: the identification of the product line members, the extraction of the

similarity and variability between them, the construction of core assets, in addition

to the production of effective means that help in using these core assets to build a

new product within a product line. A core asset is a reusable artifact or resource

that is used in the production of more than one product in a software product line.

A core asset may be an architecture, a software component, a domain model, a

requirements statement or specification, a document, a plan, a test case, a

process description, or any other useful element of a software production process

[5].

Application engineering or “development with reuse” aims to derive a software

product line application by reusing as many domain artefacts as possible. This is

achieved by exploiting the commonality and the variability of the product line

established in domain engineering [4]. This process is repeated for each new

12

application, it is quite similar to traditional software development process; unless

that each step is facilitated by reusing outputs of the first process.

In fact, in addition to these two major activities, there is also a coordination

activity between the two processes. This activity focuses on synchronization

between the two stages. If, in a natural way, decisions during the second process

(application derivation) are essentially impacted by the first process (domain

engineering), it is also possible that the derivation can contribute to the SPL core

assets enrichment.

Reuse is essential to ensure an efficient support of customer's needs while

decreasing time and cost of development. However, SPL developers must

improve reuse while maintain diversity between products. This could be done by

“Variability management”. Variability management is a key activity that usually

affects the degree to which a SPL is successful [6]. Variability refers to the ability

of an artefact to be configured, customized, extended, or changed for use in a

specific context [7]. This variability must be defined, represented, exploited,

implemented, evolved, etc. – in one word managed – throughout software product

line engineering. SPL community has spent huge amount of resources on

developing various approaches to dealing with variability related challenges over

the last decade. The well management and documentation of variability is a crucial

factor to build successful SPLs.

2. Problem Statement

In this research topic we deal with two major issues closely linked in the context

of this work. The first problem lies in the context of software architecture. The

second one lies in product line and the field that it should cover, in our case it is

the e-Government.

If we refer to the literature, the number of product lines actually implemented

can be counted on fingertips. Sometimes they address very limited areas located

themselves in a particular area of technology. This is the case for some SPLs in

the field of telephony or the automotive industry. In other cases, highly

configurable software is considered as an SPL for a very restricted domain (online

meeting for example).To our knowledge, we have not yet met an SPL developed

for large-scale applications domain or covering a high important scope as e-

13

Government. This may comes back to the broadness and complexity of this field

or even to the financial risk of a possible failure when establishing an SPL for an

important domain.

In addition, when analyzing the current product lines in depth, we noticed that

these product lines are based on approaches and models that do not fit actually

with the basic SPLs concepts. In fact, although the SPL basic concepts are

inspired by the product lines in electronics and mechanical industry, where the

production activity is an assembly activity of certified components, the current

SPLs are based on traditional software engineering concepts such as: modular

and object design concepts. Since these models do not support the concepts of

assembly and component certification, this makes the SPLs derivation hard to be

fully automated.

We believe that in light of the latest advances in Software Architecture and

considering the promising benefits that bring Software Architecture and

components-based approaches for the production of high quality software at a

reduced cost, it would be more interesting for SPLs to be based on design

approaches, production approaches and models that match perfectly with their

basic principles.

 Hence, the first issue to be addressed is to explore the possibility of providing

SPLs with core assets based fundamentally on the software architecture and to

perform the evaluations about the contribution of the software architecture to

product line in the e-Government context.

The scope of a product line must be clearly limited, indicating which kinds of

applications are part of the product line and which are not. According to product

line researchers, a wide field could have dramatic consequences on the

complexity aspect, and a very limited scope could not justify the SPL investment.

What seems, on the other hand, not being well exploited is that an SPL could

be itself seen as a composition of simpler SPLs. As a result, we can think of

building a product line covering a broad scope and that is composed of several

elementary product lines. This perception may also be explored for a medium

scope (not very large) in the reason of simplifying the development processes and

getting higher quality.

14

In this research work, we consider the e-Government domain as the scope to

be covered by the product line on which are performed the various research

activities. E-Government is defined by the European Community (2004) as “the

use of Information and Communication Technologies (ICT) in public

administrations combined with organizational change and new skills in order to

improve public services and democratic processes”. Clearly, e-Government is not

only to bring the benefits of existing service on the Internet. It is not the traditional

government to which we have added the Internet but a fundamental change in the

way that government do business with stakeholders of its information and services

[8]. E-Government provides citizens, enterprises and governments as well by

exciting benefits, namely: improving the quality and availability of public services;

improving information, communication, and cooperation between the different

actors; reducing administrative costs; allowing citizens to a better participation in

different democratic processes kinds; and so on.

On the one hand, the major factor that raises similarity between e-Government

applications is the fact that they are intended mainly to citizens. Citizen represents

the central point of all e-Government services. Those latter are designed to fulfill

daily citizens’ needs in the different life aspects (birth, education, wedding, health,

employment …). Whatever is the application’s domain there is some key features

related to citizens that are common to all of those applications, namely:

authentication, user management, privacy, protection of personal data,

collaboration… Since e-Government applications handle personal data,

communicate, and transact with users they must be highly protected. Thus,

security functionalities represent another common point. E-Government

applications need to communicate, to share and exchange data in order to provide

efficient services to citizens. Communication is also a major feature that must be

considered when developing e-Government applications. Furthermore, there are

other characteristics that may be included in any e-Government application, such

as: e-Meeting, statistics, poll, research, and so on.

On the other hand, in the context of citizen centered services, computing

becomes pervasive. The number of applications that focus on the citizen's

concerns will depend on the citizen's requirements, behavior and, of course, on

government services (local, regional and central). As a result, the number of

15

applications will increase, the lifetime of these applications may be short and new

required applications must be rapidly produced.

E-Government includes several sub-fields: eServices supplied by public

administrations such as: vital records, passports, identity card, voting, poll, justice,

etc; in addition to other services that could be provided by private or public

institutions such as: education, health, assurance, transport, retirement, services

for disabled people and so on.

 E-Government is the second major problem of this research work. It is

necessary to determine whether these applications or very important parts of

them could be derived from a product line, whether been simple or composite

SPL.

The objective of the work is to set up the methodological and technological

bases for the establishment of a product line for the rapid production of

government applications according to a component-oriented design approach.

3. Overview of the Proposed Solution

The work presented in this thesis presents a first step towards the foundation of

an approach intended to the development of Component-Based Software product

lines and the management of product lines in complex and pervasive fields like e-

Government.

The approach that we propose intends the management of reuse within SPLs at

two abstraction levels: between the applications included in the same SPL, and

across SPLs that belong to the same field.

In order to manage reuse within SPLs, we propose “Component Based Product

Line” (CBPL) approach. The approach presented in this chapter aims to reach a

high level of reuse that can be obtained through the integration of two approaches:

Software product lines and Component-based development. Each of these

approaches promotes reuse at different granularity levels. Component-based

development supplies technologies for reuse in the small, while Software product

line approach intends reuse in the large. Putting them together allows us to reach

large scale reuse and flexibility at the same time. Moreover, Component-based

16

development can overcome the lack of maturity in SPL engineering by providing

efficient development technologies.

For managing reuse among SPLs we propose Aspect Multiple Product Line

(AMPL) approach. AMPL approach is a new MPL management approach that aim

mainly to systematize reuse across separated SPLs within an MPL. AMPL could

be efficiently applied in a software field if this latter produces applications for

several subfields or market segments, such as those fields are characterized by

significant commonalities which could be encapsulated in specialized SPLs

(ASPLs). Reuse within each MPL subfield is managed through sub-SPLs while the

commonalities among them will be managed thanks to ASPLs. The AMPL

engineering process is based on two main activities: the separation of concerns

and the partial derivation. Separation of concerns deals with decomposition of an

MPL into two SPL types: sub-SPLs and Aspect SPLs. While, partial derivation

intends the integration of these two SPL types early in the development process.

We note that both of separation of concerns and partial derivation are autonomous

from each other, i.e. each of them can be used independently. For instance,

separation of concerns can be used in a MPL environment for structuring the MPL

model. It can also be adapted for decomposing a large SPL into a set of sub-SPLs

and thus moving from single SPL to MPL approach. On the other side, partial

derivation can be adopted for the merging of two (or more) interdependent SPLs

aiming inter-reuse even if they do not belong necessarily to the same MPL.

The proposed approach is validated in the context of e-Government field. Our

first perception when developing e-Gov SPLs is that reuse within each e-Gov

subfield is systematized through SPLE techniques; while when inter-SPL reuse is

needed no techniques are available to manage it. Consequently, systematic reuse

is lost at SPLs level. We suggest, thus, benefiting from SPLE advantages not only

within each MPL subfield but also across separated and interdependent MPL

subfields. This way, reuse is effectively managed at two levels: between products

within each SPL and between SPLs of an MPL. Our approach, avoids all of those

challenges by planning for reuse from the early development stages. This planning

is ensured by the introduction of ASPLs that are responsible for the production of

common components through the MPL. Thus a crucial outcome of our work is the

systematization of reuse between SPLs of an MPL. The ASPLs are, after that,

17

partially derived in order to ease their integration with their reusing SPLs. The

partial derivation represents an important technique for merging separated SPLs.

It helps integrating the SPLs early in the development process to avoid the

distributed derivation challenges thereafter. Thus, partial derivation and early

integration represent other crucial outcomes of our work.

4. Dissertation Structure

The thesis is organized into two parts, the first one presents the state of the art

of the studied research fields while the second one presents the proposed

approach and its validation.

In the first part, chapter 1 presents the main concepts of SPL approach in order

to well introduce the studied field and clarify the crucial concepts that will be

addressed along this dissertation. A classification for the variability modeling

techniques within SPLs is, also, proposed and discussed. In addition, we introduce

the new SPLE orientation which is MPLs. For this latter, we present their

challenges and state of the art.

Chapter 2 presents an overview on the basic Component-Based Development

(CBD) concepts (or more generally: the software architecture) and we study their

integration with SPLE. We conclude this study by specifying the main aspects that

should be covered when defining a new approach that integrates SPLE and CBD

approaches.

Chapter 3 presents an approach that integrates SPL engineering and

component-based engineering, aiming to unify the power of these two

approaches. Firstly, we present a new FM notation that is better relevant to

Component Based Development. Then, we present the development process of

component-based SPL (CBPL). After that, we show the extension of a component-

based approach in order to allow the modeling of variability in CBPL. Finally, the

proposed approach is supported by a case study.

In Chapter 4 we propose a new approach, called AMPL (Aspect MPL). We start

by presenting the background of our proposal. Then we discuss the foundations of

our approach and we explain the AMPL engineering process. After that, we

describe a case study to validate our proposal and we discuss the obtained

18

results. The chapter is finished by comments on related work and comparison to

ours.

In Chapter 5 we present the partial derivation transformation techniques for two

SPL models: the FM and the Architecture. Than we explain how the sub-SPL

model is integrated with the set of partially derived ASPLs. The presented

techniques are illustrated by a case study.

In Chapter 6, we review the e-Gov domain, we reports on its main challenges

and we suggest the use of the approach proposed in this thesis to solve the

problems encountered in this domain.

19

CHAPTER 1

SOFTWARE PRODUCT LINES

1.1. Introduction

Software development processes know various problems at different stages of

their life cycle. Firstly, in specific domains, it seems like the same work is done for

the development of each new product: the same functionalities are developed at

different places and the same changes are repeated at different places. Secondly,

once the product is delivered it may not fit the customers’ need. Indeed, producers

want to maximize their benefits and, thus, to minimize their production’s costs and

time to market. In opposition, customers ask for better quality and for software

tailored to their individual needs. Thirdly, complexity and size of software products

are rapidly increasing due to the market’s evolution. Moreover, the higher the

products’ diversity is, the bigger the complexity and challenges for an organization

are.

The Software Product Line (SPL) approach proposes solutions to cope with

those problems. Hence, setting up such an approach is not a trivial task.

Organizations need to learn how to manage a product line or how to improve their

way of managing it. New ways for modeling, implementing and managing software

production must be introduced in order to carry out a successful product line.

In this chapter, we start by introducing the core concepts of SPL approach in

section 2. Then, we present the main steps of the SPL development process in

section 3. After that, we report on a review of existing variability modeling

techniques in section 4. Next, we give an overview on the new SPL paradigm

20

which is Multiple Product Lines (MPL) in the section 5 and we discuss the

approaches related to MPLs engineering. Finally, section 6 concludes the chapter.

1.2. Core concepts of SPL

1.2.1. SPL definition, advantages and challenges

SPLs are emerging as a viable and important development paradigm allowing

companies to realize order-of-magnitude improvements in time to market, cost,

productivity, quality, and other business drivers. A SPL is “A set of software-

intensive systems sharing a common, managed set of features1 that satisfy the

specific needs of a particular market segment or mission and that are developed

from a common set of core assets2 in a prescribed way” [5]. SPL approach aims to

systematize the reuse throughout all the software development process: from

requirements engineering to the final code and test plans. The purpose is to

reduce the time and cost of production and to increase the software quality by

reusing software elements which have been already tested and secured. These

objectives are realized by putting in common the development of various SPL

artefacts such as: requirement documents, design diagrams, architectures, codes

(reusable components), procedures of test and maintenance, etc.

The crucial aim of introducing product line approach in software engineering is

to improve reuse. SPL differs from traditional reusing approaches in two ways: the

first one is that SPL approach systematizes reuse throughout all the software

development process: from requirements engineering to the final code and test

plans, in contrast of traditional software reuse approaches which exploit reuse only

at design and coding phases [3]. The second one is that, SPL improves reuse

while maintaining diversity between products. In most cases, software components

intended for reuse must be adapted to meet specific customers’ requirements. If

flexibility is not considered since the early development process phases, as in

traditional software reuse approaches, developers will meet lot of difficulties at

1 A feature is an end-user visible characteristic of a system [4].

2 A reusable artifact or resource that is used in the production of more than one product in a SPL. A core asset may be an
architecture, a software component, a domain model, a requirements statement or specification, a document, a plan, a test
case, a process description, or any other useful element of a software production process [5].

21

components adaptation step, which may lead them to leave those components

even if they will have to start from scratch. SPL simplifies the adaptation phase by

involving “Variability management” activity along all the software development

process.

An SPL, when it is well introduced within an organization, can bring several

benefits. From a software viewpoint, SPL approach enable reusing all software

artefacts kinds (including requirements models, design models, components code,

production tools, test procedures and any useful output of the SPL development

process) unlike traditional reuse which base on reusing only code source lines or

modules. SPLs provide techniques for better variability management and thus

producing a variety of products basing on the same reusable elements base.

Moreover, reuse allows significant reduction of time and effort of development and

maintenance. From a business viewpoint, the SPL artefacts base once

constructed allows the fast production of final applications. Time to market is then

decreased in addition to the reduction of production, maintenance and test costs.

However, this reduction does not come by itself, since the launch investment of

such an approach is relatively large, and the return on investment is not immediate

[9]. The cost of the first software developed from the SPL will be even higher than

in the conventional situation and breakeven3 point cannot be reached until the

development of a number of software. From another side, the information amount

to be collected in order to establish a new product line is often significant. New

techniques should be devoted to collect and manage this information as well as

important organizational changes should be done. Furthermore, particular

attention should be paid on the evolution and management of change in SPLs.

Managing evolution of single software is complex. Managing the evolution of a

software collection is extremely complex since their consistency must be

preserved. Finally, in spite of the increasing adoption of SPL approach in various

software fields, engineering methodologies and techniques are still immature and

research work is further required in this area.

3
At this point, the costs are the same for developing the system separately as for developing them by product line engineering [4].

22

1.2.2. Managing Variability in SPLs

Variability, generally, refers to the ability to change or customize a system [10]

[11]. In product line context, variability means the ability of a core asset to adapt to

be used in different product contexts which fall within the scope of a SPL [7] [12].

Unlike conventional software development, variations in the SPL context are

preplanned. A good definition of variability helps us to answer three main

questions: what does vary? Why does it vary? and how does it vary? [4] .The

answer to “what does vary?” is a variable element or a variable property of this

element, also called: variability subject. Answering “why does it vary?” question

implies specifying the reason for which an element varies. The cause of the

variability may be: customer’s needs, technical reasons, legal reasons,

commercial reasons, variation of other elements in the case of dependency

between them, and so on. The question “how does it vary?” is answered by

describing the different forms a variability subject can take, also called: variability

object.

Those concepts must be clearly described in all SPL artifacts. Variability subject

is represented by denoting an element as variable, or linking it to a Variation Point4

(VP). Variability object is represented by denoting elements as Variants. However,

the reason of variation is generally not represented unless when it is due to a

dependency between elements in a SPL. In this case, it is, widely, represented

implicitly by dependency constraints. Even don’t considered, the documentation of

this question is important. For example, when the reason for which the variability

existed became obsolete, the VP must be removed and this will decrease the

number of VPs and so the complexity of the system (simplifying variability

management eventually). On the other side, if the reason of introducing a VP was

not retained, we may lose important information for variability management and

SPL evolution. Another question that we can add to describe variability is: when

does it vary? It means when the decision on a VP should be taken? The answer to

this question is commonly known as the VP binding time [14]. The information

about variability resolution or binding time is most of the time represented by an

attribute related to the VP.

4
A VP represents a delayed design decision. [16]

23

Variability must be identified, represented, exploited, implemented, evolved, etc.

– in one word managed – throughout SPL Engineering (SPLE) [15]. Unlike

traditional software development which deals only with variation over time,

variation management in SPLE is multi-dimensional [16]. In addition to variation

over time, SPLE handles also variation in space. This latter refers to managing

differences among SPL members at any fixed point in time. When managing

variability in a SPL, three main types are distinguishable [15]:

1. Commonality: common software elements to all members of the SPL.

2. Variability: software elements that vary from a member of the SPL to

another one.

3. Product-specific: software elements that may be part of only one product of

the SPL.

During the SPL life-cycle, a variability type may change. For example, a

product-specific characteristic may become variability. On the other hand, a

commonality may become a variability as well.

The first step in managing variability is to identify it. This corresponds to

answering the question “what does vary?”, in other words, “what is the variability

subject?” The answer leads us to denote the particular places in a software

system where choices are made as to which variant to use. We refer to these

places as VPs. Variability objects or variants are the different shapes of a

variability subject. The variability points and the related variants must be identified

in all kinds of development artefacts, i.e. requirements, architecture, design, code,

and tests. After being identified, variability must be represented; approaches that

allow representing variability are shown in section 4. The third step in managing

variability is to implement it. In this step developers have to select the appropriate

variability realization technique for each VP [17], it means, to choose the way in

which the variability will be implemented within the software system. In fact, this

task is not trivial because there are several factors that influence the choice of

implementation techniques, such as: which variant or set of variants will be used? ,

by which software entities the variant will be implemented? , and how and when

the variant will be bound to the related VP? In addition, due to the lack of guides

that assist developers in selecting the most suitable variability realization

24

technique, ad-hoc solutions are usually proposed and used. Bosh and al [17] [10]

present a taxonomy of variability realization techniques. This taxonomy presents

the intent, motivation, solution, lifecycle, and consequences for each realization

techniques presented. Finally, the artefacts obtained from all SPL development

sub-processes must be maintained and evolved to fit new requirements. New

variability could be added; others could be changed or even removed at all from

the SPL.

1.2.3. Feature models

The Feature Model (FM) is the first language dedicated to the variability

modeling [18]; it was first introduced in the Feature-Oriented Domain Analysis

(FODA) method [19]. It has known a broad use in the field of SPLE, since it is a

simple and easy to use language in comparison with other more complex

modeling languages such as: Unified Modeling Language (UML) and Business

Process Model and Notation (BPMN) [3].

Each product belonging to a SPL determines a particular context. Each product

consists of a set of software elements represented by features [3]. Features at a

particular abstraction level are successively decomposed into sub-features in the

lower levels until obtaining terminal features [10]. Ideally, each feature is

associated with a terminal reusable software component (component, service...)

implementing the requirements determined by the corresponding feature. Since

features could be added, changed or even removed from product to product, a

SPL must support variability for those features. According to Klaus et al. [4] there

are three types of features:

1. Mandatory features: represent common features between all the members of

a SPL.

2. Optional features: are features which can be selected or left out a SPL

member.

3. Alternative features: allows the choice of one feature out of a given set of

features.

The FM is a description of the commonalities and differences between

members of a SPL. It is generally described by a hierarchy of the set of a system’s

25

features or what is called feature tree [9]. Figure 1.1 shows a sample feature

diagram for Evaluation component extracted from the e-Learning SPL5. The figure

summarizes the main notations of basic FMs. The Evaluation component must

offer at least the “Online Test” feature therefore this feature in denoted as

mandatory in the diagram. However, other features can be added according to the

customers’ needs such as: Scoring, report card, and certification. Thus those

features are represented as optional in the feature tree. From another side, only

one feature from an Alternative features set could be included in a final product as

it is the case for “Math qst” feature. Dependency constraints must be respected

when software elements are assembled. They represent dependencies that could

not be expressed only using hierarchical relationships provided by the feature tree.

For instance, requires dependency between Report card and Scoring features

means: when Report card feature is included in an e-Learning application, scoring

feature must be included necessarily.

Figure 1. 1: Example of a FM (part of the evaluation component FM from the
e-Learning SPL).

1.3. SPL engineering

SPL approach intends to adapt to the software development, the principles that

we find in the automotive industry, aeronautics and electronics. Production in

these industries is organized into ranges with similar parts and offering a number

of options. For example, in automotive industry, various car models come out the

same assembling chains using the same chassis, the same engines and the same

5 The e-Learning SPL is presented in Chapter 5.

test plans. The aim is to improve productivity, decrease time to market, and reduce

production, maintenance and test costs.

manufacturing of these industries in

before-mentioned adv

So instead of developing a s

an applications-set belonging to the same domain and characterized by a set of

common software elements. The purpose is to

maintenance and test

reduce production and maintenance costs; reduce production time and improve

quality. Therefore, SPLE

for reuse and development with reuse

Domain engineering or “development for reuse” is the SPLE sub

to define and realize the commonality and variability of the SPL.

engineering or “development with reuse”

automatically the final software from the reusable elements realized during domain

engineering.

. The aim is to improve productivity, decrease time to market, and reduce

production, maintenance and test costs. The idea is to transpose

of these industries in software development, to benefit from the

mentioned advantages.

So instead of developing a single application at a time, SPLE

set belonging to the same domain and characterized by a set of

common software elements. The purpose is to pool the development

maintenance and test activities of those common software elements

reduce production and maintenance costs; reduce production time and improve

SPLE relies on a fundamental distinction between

development with reuse [4] [9] as depicted by

Domain engineering or “development for reuse” is the SPLE sub

to define and realize the commonality and variability of the SPL.

engineering or “development with reuse” aims to derive automatically or semi

automatically the final software from the reusable elements realized during domain

Figure 1. 2: SPL engineering process [4].

26

. The aim is to improve productivity, decrease time to market, and reduce

is to transpose the principles of

software development, to benefit from the

SPLE allows developing

set belonging to the same domain and characterized by a set of

pool the development,

common software elements in order to

reduce production and maintenance costs; reduce production time and improve

between development

as depicted by the Figure 1.2.

Domain engineering or “development for reuse” is the SPLE sub-process that aims

to define and realize the commonality and variability of the SPL. Application

automatically or semi-

automatically the final software from the reusable elements realized during domain

SPL engineering process [4].

27

1.3.1. Domain engineering

Domain engineering consists in developing the reusable elements (core assets)

for the SPL through domain analysis, domain design and domain implementation.

The main outputs of this process are: the identification of the SPL members

(scope), and the extraction of similarity and variability between them.

1.3.1.1. Product management (scoping): the crucial aim of product management is

to define the scope of the SPL i.e. which products belong to the SPL and which do

not. Its output is a product roadmap that determines the major common and

variable features of foreseeable products. Delimiting the SPL scope is a key

activity in SPLE since a too broad scope tends to increase the SPL complexity and

a too narrow scope does not justify the investment made for adopting a SPL

approach.

1.3.1.2. Domain requirements engineering: the main activities of this sub-process

are the elicitation, documentation and management of common and variable SPL

requirements. Its input consists of the product roadmap. The resulted reference

requirements encompass reusable requirements specification (textual and model

based) in addition to variability models.

1.3.1.3. Domain design: this sub-process takes as input the reference

requirements and elaborates the reference architecture of the SPL. The reference

architecture provides a common, high-level structure for all SPL applications [4].

1.3.1.4. Domain realization: during this sub-process reusable SPL assets are

planned, designed, and implemented for reuse in the different SPL applications. Its

inputs are reference architecture and a list of reusable software artefacts. It results

in the detailed design and implementation of software artefacts.

1.3.1.5. Domain Testing: it includes activities of verification and validation of

reusable software assets. Tests are performed against the SPL specification

artefacts and result in reusable test artefacts.

28

1.3.2. Application engineering

Application engineering consists in developing the final products, using the core

assets and the specific requirements expressed by the customers. This process is

similar to traditional development process; however, each step is facilitated by

reusing the outputs of the previous process (domain engineering). It intends to

achieve the widest possible reuse of core assets by exploiting commonality and

variability of the SPL.

1.3.2.1. Application requirements engineering: during this step, reference

requirements are reused in order to allow selecting the variability and also to focus

on the new software’s specific needs.

1.3.2.2. Application design: designing the software architecture involves

configuring the reference architecture according to the selected variability and

eventually adapts it according to software specific needs.

1.3.2.3. Application realization: since reusable components are developed, this

step is limited mainly to develop new components or extend the reusable

components to take into account the specific needs. Reusable and application-

specific components are assembled to construct a final application ready to be

run.

1.3.2.4. Application Testing: as reusable components are tested during domain

engineering; the main objective of this step is to ensure that interactions between

reusable components and specific application components do not generate an

unexpected behavior.

1.4 Variability modeling techniques

Variability management is a key activity that usually affects the degree to which

a SPL is successful [20]. As mentioned in section 2.2, the second step in

managing variability is to model it in all software artefacts. Modeling variability is a

technique used to document variability and to reason about it. Its main objectives

are: to make the variability explicit in the early stages of the project, and to reduce

the complexity related to variability management throughout the development

process [3]. The first language dedicated

introduced in the FODA

numerous methods and techniques for representing

defined [20]. As shown in

categories: representing variability in separated models and representing

variability in artefacts. This section gives an overview of some techniques

belongings to these two categories and organizes them in more detailed

classification.

Figure 1.

1.4.1. Representing variability in separated models

In separated variability

diagrams (structural and dynamic), and

separate textual or graphical models. In this class

modeling kinds: feature modeling

modeling (VP-based modeling). These subclasses are differentiated by several

properties, mainly:

- Feature modeling is used to model variability and

modeling and VP-based modeling focus on variability modeling. However, each

of them provide derivation support;

- Mapping to artefact is an essential concept in decision modeling and VP

modeling, while it is optional in

- Although decision modeling and VP

they are differentiated by the fact that decision modeling model variability

The first language dedicated for modeling variability was first

FODA method by Kang in 1990 [19]. During the last decade,

methods and techniques for representing SPL variability

. As shown in the Figure 1.3, we classify these techniques

categories: representing variability in separated models and representing

variability in artefacts. This section gives an overview of some techniques

belongings to these two categories and organizes them in more detailed

Figure 1. 3: Classification of variability modeling techniques

Representing variability in separated models

variability models, variations are isolated from other modeling

diagrams (structural and dynamic), and expressed in an explicit way using

separate textual or graphical models. In this class we can distinguish three

feature modeling, decision modeling, and Variation Point based

based modeling). These subclasses are differentiated by several

modeling is used to model variability and commonality while decision

based modeling focus on variability modeling. However, each

of them provide derivation support;

apping to artefact is an essential concept in decision modeling and VP

modeling, while it is optional in feature modeling;

lthough decision modeling and VP-based modeling have similar properties

they are differentiated by the fact that decision modeling model variability

29

modeling variability was first

During the last decade,

variability have been

these techniques in two main

categories: representing variability in separated models and representing

variability in artefacts. This section gives an overview of some techniques

belongings to these two categories and organizes them in more detailed

Classification of variability modeling techniques.

variations are isolated from other modeling

expressed in an explicit way using

we can distinguish three

Variation Point based

based modeling). These subclasses are differentiated by several

commonality while decision

based modeling focus on variability modeling. However, each

apping to artefact is an essential concept in decision modeling and VP-based

based modeling have similar properties

they are differentiated by the fact that decision modeling model variability –in

30

general textually in terms of decisions while VP-based modeling model it

graphically as VPs.

Next subsections define each one of these subclasses and report on some

approaches that they include.

1.4.1.1. Feature modeling

Feature modeling is the activity of identifying externally visible characteristics of

products in a domain and organizing them into a model called FM [21]. A FM is a

description of the commonalities and differences between members of a product

line. It is generally described by a hierarchy of system features or what is called

feature tree [22]. Feature modeling has known broad usage in SPLE due to the

concept of feature which can effectively supports communication between various

stakeholders of a SPL. Feature models represent an intuitive and natural way of

representing commonalities and differences in a domain [14]. In addition to the

feature tree, a FM may contain some additional information such as: descriptions

of each feature, stakeholders and client programs interested in each feature,

examples of systems with a given feature, constraints, and so on [23].

Furthermore, modeling the semantic content of features usually requires some

additional modeling formalism, e.g. object diagrams, interaction diagrams, state

diagrams, synchronization constraints, etc. Thus, FMs are usually just one out of

many other kinds of models describing a piece of reusable software.

As stated previously in this chapter, feature modeling was first introduced in the

FODA method [19]. Afterward, it has been widely adopted by the SPL community

and a number of extensions have been proposed. According to Lianping et al [20]

FODA has the largest number of approaches that based on it. The first one was

Feature-Oriented Reuse Method (FORM) [24]. FODA introduces the concept of

using a feature model for requirements engineering, while FORM extends it to the

software design and implementation phases, and prescribes how the feature

model is used to develop domain architectures and components for reuse. After

that several extensions or new feature modeling approaches have been proposed.

For instance, FeatuRSEB [25] is a combination between the FODA method and

the Reuse-Driven Software Engineering Business (RSEB) method. RSEB uses

features informally as use cases or parts of use cases. In this work; the FODA

31

feature diagram is changed in a tree or a network of features which are linked

together by UML dependencies or refinements and the VPs are explicitly

represented. This FM is used as a "roadmap" for other RSEB models, guiding the

product line engineers. Feature models have been also extended by adding

cardinality concept, as in the work of Riebisch et al. [26] and Czarnecki et al. [27]

[28]. Cardinality-based FMs associate to each feature a feature cardinality. A

feature cardinality is an interval of the form [m..n]. The interval denotes how many

occurrences of the feature (with its entire sub-tree) can be included in a concrete

configuration. Cardinality-based FMs aims to enhance the FM for representing

more features variation cases.

1.4.1.2. Decision modeling

Unlike feature modeling that was designed at first to model the commonalities

and variations within a domain, decision modeling was initially conceived to ease

the derivation of products from a SPL base. According to Czarnecki et al [29], the

earliest decision modeling approach is found in the Synthesis method [30]. This

latter define a decision model as a set of decisions that are adequate to distinguish

among the members of an application engineering product family and to guide

adaptation of application engineering work products [30]. Decision modeling

captures variability in terms of decisions and their possible (potential) resolutions.

A decision model is generally represented by a table. Rows represent decisions

and columns represent properties of decisions (Identifier, Question, VP,

Resolution set, Effect or constraint) [31].

KobrA approach [32] captures variability using a textual decision model related

to each product line artifact. Each variability is related to at least one decision in

the decision model. Each decision provides a set of possible resolutions and lists

for each resolution, which diagrams must be tailored in what way to represent the

specified member of the system family. Representing decisions using tabular or

textual models makes decision models hard to exploit or maintain especially for

large SPLs. Forster et al [31] propose a graphical notations to model several views

on decision models in order to manage complexity related to the large variability.

32

1.4.1.3. VP-based modeling

Seeing existing techniques which represent variability in separated models,

some techniques do not belong neither to feature modeling nor to decision

modeling. They represent variability graphically in terms of VPs, variants and

dependencies between them. The resulting VP-based models are, then, related to

other artefacts in order to specify the variability they contain. VP-based modeling

aim to ease variability management throughout all the phases of SPL development

by keeping trace of variability along all the process. According to Gomaa [33], the

VP-based modeling builds on Jacobson’s original concept of VPs [34], such as A

VP identifies one or more locations at which the variation will occur. This concept

has been evolved after that, and constructed the base of several new approaches.

Two main approaches have been proposed in this area: Orthogonal Variability

Model (OVM) [4] and COVAMOF method [35].

OVM is a model that defines the variability of a SPL. It relates the variability

defined to other software development models such as feature models, use case

models, design models, component models, and test models [4]. The basic

elements of an OVM are: VP and Variant (V). A VP is defined as the

representation of a variability subject within domain artefacts enriched by

contextual information. A VP offers a certain variant that represents a variability

object within domain artefacts. VP and V are associated by means of variability

dependencies. The method defines three kind of this latter: Optional, Mandatory

and alternative choice. Restrictions between different VP and V are represented

by constraints dependencies. Those relationships may link a V to V, V to VP, or

VP to VP, and have two types: requires and exclude. Finally, variability defined in

the OVM must be related to other artefact models by means of traceability links.

COVAMOF method [35] provides the CVV (COVAMOF Variability View) to

model variability for all Product line artefacts. It defines two views of variability: VP

view which represent VPs and Vs, and dependency view which represent

dependencies between VPs. However, COVAMOF do not show how traceability

between product line artefacts and CVV is maintained.

33

1.4.2. Representing variability in artefacts

Representing variability in separated models involves creating new models for

variability in addition to the existing specification models (artefacts) used to model

a system at various abstraction levels. Variability models have to be well managed

and their dependencies to the artefacts must be maintained along all the

development process, which is not a trivial task. Representing variability in

artefacts approaches aim to simplify the task of managing variability by integrating

it in the existing artefacts. The variability information is represented by standard

concepts, by adding new concepts to the used language, or by considering it when

conceiving a new language. So, we can distinguish three subclasses of this class:

variability in standard languages, variability by enhancing languages, and domain-

specific languages. Next sub-sections give an overview of each of them.

1.4.2.1. Variability in standard languages

In this kind of approaches, available mechanisms in a given language are used

to represent variability without extensions. Kakola et al. show an example of that

[36]. They demonstrate how UML 2.0 could be used in order to express variability.

They focus on three types of UML 2.0 mechanisms which support the expression

of variability:

 Templates parameters, used to assign a type of variation to classes and

packages.

 Plug-ins used in Component-Based Approach, such as, the variations are

isolated in components which are external to the stable parts of the system

(framework), with well-defined interfaces that apply to all variant components.

The components are fitted into the framework through interfaces.

 Specialization-Redefinition: VPs and variants are represented by abstract

classes and their subclasses.

According to them, the same concepts could be applied to other graphical or

textual languages, such as Java or Specification and Description Language (SDL)

[36], to support the expression of variability.

34

1.4.2.2. Variability by enhancing languages

Actually, standard languages have not been developed to capture all variability

types consistently and explicitly. So they have been enhanced to meet the needs

of SPL engineering. Variability by enhancing languages has been introduced in

various models kinds, mainly: UML profiles, and Architecture Description

Languages (ADL).

UML profiles define UML extensions in order to express commonalities and

variations in models that describe SPLs. Several UML profiles have been

proposed. Matthias Clauss [37], [38] suggested a UML profile to model variability

of a SPL; the resulted model is called “Generic Model”. This latter will be

instantiated to get specific models for every members of the SPL. Extensions are

performed using stereotypes and tagged values as follow:

 To express a VP and their variants, he applies the stereotypes «Variation-

point» and «Variant» to all of: classes, components, packages, collaborations

and associations.

 Uses stereotypes «requires», «mutex» and «evolution» to express

respectively requires, mutual exclusion and evolution dependencies. The

stereotype «evolution» is then separated to three types: « replaces », «

decomposition », and « extends ».

 Uses tagged values to determine binding time, multiplicity, and to specify to

which VP a V is assigned.

Matthias proposes also an extension to FM (add the feature type « external6»),

however, his work focus on variability modeling of the structural aspects of SPLs.

Ziadi and al. [39] [40] [41] propose an extension to structural and dynamic views

of a system, and show how the product line model will be derived to get a model

for each product. They try to add more semantic to their models using, for

example, the stereotype «optional» which describes that a given element may or

may not be present in a product derived from the SPL. Ziadi and al. suggest also

the use of two types of SPL constraints: the generic constraints that apply to all the

6
a feature realized by the underlying platform, not by the system itself.

35

SPL and specific constraints that concern a specific SPL. These constraints guide

the derivation7 process.

Other works interest to represent variability in architectural model using UML

profiles. In [42], Paula and Paulo proposed representing variability in component

model based on UML extensions. Mechanisms used to define variability between

components are inheritance and interfaces. In [43], Maryam and Ramtin present a

UML profile to model variability in Component and Connector view (C&C) of the

architecture8. Variation in components is represented by stereotypes «alt_vp» for

alternative VPs, «opt_vp» for optional VPs in addition to «variant». The same

extensions are used to represent variation in interfaces and connectors. If a

connector introduce a variation it is modeled by a UML class noted by variation

stereotype. Maryam and Ramtin introduce also some derivation rules. In ADLs, we

can find Koalish ADL [44]. Koalish is based on the Koala ADL [45] a component

model which aim to support flexible instantiation and late binding of components.

Koalish extend Koala to model variability in SPLs.

1.4.2.3. Domain-Specific Languages

Domain-Specific Languages (DSL) suggest that the variation within SPL should

be managed with a well focused modeling language specifically tailored to the

product domain in contrast to the traditional modeling languages that try to be as

general as possible [36]. While general modeling languages represent domain

concepts by means of classes and components, domain-specific languages

express these as language constructs, so we do not have to add any annotation in

order to represent variability.

However, only few works have been done in this type of approaches. We find,

for example, the DSL presented in [36]. The authors show an example on a watch

SPL. The concepts used for describing the variability in this SPL are the concepts

7 A product derivation consists in generating from Product Line models the specific models of each product.

8 There are two perspectives to model software architecture. Either as a single dimensional concept that is modeled

precisely in an ADL, or defined as a complex entity that is represented in multiple views. C&C view of architecture could

be considered as the intersection of the ADL and multiple view perspectives [46].

36

related to the watch, it means: Displays, Buttons, Alarms, Time units, Icons and so

on. For instance, if we consider that the number of icons may vary from a watch to

another, this variability point is directly presented in the modeling language using

the concept “Icon”, and the instances (variants) are, for example, Timer or

Stopwatch icon. Another DSL is proposed by Voelter and Visser in [46]. They

suggest the use of DSLs in SPLE to fill the expressive gap between FMs and

programming languages. Their choice is illustrated by real world examples.

Nevertheless, they propose to combine DSLs and FMs to get better variability

management and gain the benefits of both approaches.

1.4.3. Discussion

Instead of the important number of variability modeling approaches proposed in

literature, there is lack in different aspects:

Feature modeling focus on the feature view of the system. Yet, features are not

sufficient for describing all the relevant aspects of SPL and they should be

supported by other modeling languages. In addition, modeling variability in a FM

may lead to misinterpretations. There is no single, commonly accepted definition

for the feature concept [47]. It could be interpreted as an end user visible

characteristic of a system, a distinguishable characteristic of a concept (e.g.,

system, component, and so on) or logical unit of functional or non- functional

behavior…Therefore, its interpretation is ambiguous and depend on the reasoning

of the developer what may bring disagreements among SPL development teams.

Moreover, the feature tree lacks a grouping mechanism that would allow arbitrary

features to be assigned to some variants [4].

Decision modeling provides an important mean to take decisions on variability

during derivation step. Variability views are related to all SPL artefacts, these

dependencies must be maintained throughout all the development process and

this task is hard to perform. VP-based modeling enhances the expressiveness

capabilities of variability models what leads to clearer variability definitions and

avoids misinterpretations. However, decision modeling and VP-based modeling

requires the combination of conventional specification models with new notations

of variability models. This implies the need for new tools in order to perform and

37

manage the variability models and there dependencies with other specification

models. In fact, all of feature modeling, decision modeling and VP-based modeling

techniques lack standardization of concepts and modeling notations which makes

that various new approaches are proposed continuously.

Variability in standard languages gains from standardization and tool support.

But, since there is no annotations which specifies variation we cannot distinguish

between the SPL models and specific product models. Keeping track of variability

throughout the development process is hard, and lot of difficulties will be

confronted in derivation phase. Variability by enhancing languages proposes

solutions to the shortcomings of the standard languages. The purpose is to be

able to represent variability explicitly in the different SPL artefacts and gain from

tool support at the same time. Nevertheless, most of these approaches model only

some aspects of the SPL.

UML profiles have known a broad utilization in SPLs. Yet, only few works

consider the representation of variability in different views of the SPL model, such

as the work of Ziadi et al. Even when variability is expressed explicitly, derivation

rules must be well introduced to guide the developer in instantiation step, only few

works take this concern into account, as in [41], [43]. Domain-specific languages

can use graphical, textual, or tabular syntax, or any combination of them. Similar

to programming languages, DSLs can be compiled using code generator. DSLs

allow the automation of derivation activity, this latter cannot be achieved without

creating the language and generators that fit with the product line.

1.5. Multiple Product Lines (MPLs)

1.5.1. MPLs meaning, benefits and issues

Single SPLs are no longer sufficient in some environments due to the emerging

of reuse across several interdependent SPLs what is known as MPLs. An MPL is

defined as a set of several self-contained but still interdependent product lines that

together represent a large-scale or ultra-large-scale system [48]. The reuse and

composition of multiple software product lines is also known as Nested Software

Product Lines, Hierarchical Product Lines or Composite Product Lines. MPL

configurator is an assembly entity that is

the SPLs artifacts according to the customers’ needs

final products (see Fig

A crucial reason for introducing MPLs is the need for separating between

several business purposes including different set

large scale systems adopting a single SPL may generate more engineering

challenges instead of resolving t

include several variations which make their design, implementation and

maintenance hard to perform. Thus, a

stronger constraints on variability

splitting their production

subfields and adding new SPLs to cover new requirements when needed without

having to alter the whole existing assets base

risks for the company

9
A scope which is not strictly delimited, it could be extended to

e-Government.

or is an assembly entity that is responsible for con

according to the customers’ needs and producing diversified

(see Figure 1.4).

Figure 1. 4: Multiple Product Lines.

crucial reason for introducing MPLs is the need for separating between

several business purposes including different sets of commonalities and VPs.

large scale systems adopting a single SPL may generate more engineering

challenges instead of resolving them. Software assets will be generic and may

include several variations which make their design, implementation and

maintenance hard to perform. Thus, a more focused SPL scope

stronger constraints on variability [49]. For domains that have a creeping scope

splitting their production activity into several SPLs allows supporting current

subfields and adding new SPLs to cover new requirements when needed without

having to alter the whole existing assets base. MPLs can also

risks for the company [49]. If one SPL is modified by introducing new technologies

A scope which is not strictly delimited, it could be extended to cover new requirements or fields as it is the case of

38

responsible for controlling and reusing

and producing diversified

crucial reason for introducing MPLs is the need for separating between

of commonalities and VPs. In

large scale systems adopting a single SPL may generate more engineering

hem. Software assets will be generic and may

include several variations which make their design, implementation and

more focused SPL scope is needed to allow

have a creeping scope9,

into several SPLs allows supporting current

subfields and adding new SPLs to cover new requirements when needed without

also reduce the overall

f one SPL is modified by introducing new technologies

cover new requirements or fields as it is the case of

39

or altering its infrastructure, the other SPLs included in the MPL will be safe

whatever the results are. Yet, MPLs emergence has given rise to several

challenges for SPLE:

Distinguishing between SPLs within the same field results in losing reuse

information between them. MPLs need, then, to manage reuse across the several

SPLs they include [48] in order to reach larger scale reuse. Two solutions are

conceivable: adopting direct inter-SPLs reuse or developing a broad SPL covering

the MPL scope. If developers choose direct reuse between separate SPLs they

have to adapt components to fit the new requirements. This will draw them back to

the problem of unplanned reuse. In this case, adaptations are limited and make

the developers’ work laborious and error prone what may push them to prefer

developing components from scratch. Otherwise, Developers may choose to

systematize reuse between separated SPLs by developing one SPL covering the

whole MPL domain. This will result in a broad SPL covering several MPL

subfields and thus several business purposes. However, numerous problems can

arise from broadening the SPL scope [50], mainly: decreasing complete

commonality (common components to all products) and in return increasing partial

commonality (components common to a set of products), over-engineered SPL

architecture and hard variability management due to the increased complexity of

the SPL. Consequently, efficient methods are needed to manage inter-SPLs reuse

within MPLs environments.

Current MPLs tends to compose SPLs components at derivation time. So

instead of dealing with a single SPL derivation, developers must choose

components to be reused from other SPLs, adapting them to the current reusing

context and integrating them with the reusing application. This integration way

known as distributed derivation [48] results in several problems. Reused

components that are already developed using particular modeling and

implementation techniques must be adapted to fit the new application

requirements. Components must suit not only to one reusing product but to

various products included in the various reusing SPLs. What multiplies the

adaptation processes and thus delays derivation and increases cost and time of

development. Moreover, choosing the right component from several competing

40

SPLs to reuse is by itself a problem that needs a whole decision process to be

resolved. Furthermore, integration activity may require reviewing the whole reusing

SPL architecture, or imply important adaptations for the reused components,

making thus this process a hard and laborious task to perform.

MPLs are hard to be managed using a single model due to their size and

complexity. Thus MPL model needs to be decomposed into several models that

can be managed efficiently by separate teams. Techniques are then needed to

decompose the MPL model into smaller units more likely to be managed easily.

Yet, dependencies between SPLs models must be considered since they belong

to the same field and represent together a large-scale system. Those

dependencies are involved thereafter to ease the composition of MPL’s SPLs

when needed to get complex systems. Yet, SPLs composition approaches within

MPLs are still immature.

1.5.2. Overview of approaches related to MPLs

Currents approaches intended for resolving MPLs challenges often base on the

MPL model structuring problem, and consider the composition of SPLs instances.

Here we summarize the most important approaches for three MPLs issues which

interest us in our research work and that we have explained in the previous

subsection:

- managing reuse across MPLs;

- structuring MPLs model;

- and the distributed derivation

1.5.2.1. Managing reuse across MPLs

Schröter et al [51] [52] introduce multi-level interfaces to guaranty the correct

collaboration between multiple SPLs. They distinguish between four interfaces:

variability-model interfaces, syntactical product-line interfaces, behavioral product-

line interfaces, and non-functional property interfaces. These interfaces aim to

detach the direct dependency between SPLs and to enable modular analysis of

MPLs correctness. They are defined as follow:

41

- Variability-model interface: is a specialization of the reused SPL’s variability

model.

- Syntactical interface: represents a view of an SPL’s reusable code artefacts

without implementation detail.

- Behavioral interface: is an agreement on the behavior of different methods.

- Non-functional interface: represents non-functional properties of an SPL that

other SPLs use.

Apparently, the introduced interfaces represent views on what could be reused

from each SPL within an MPL. They are defined as collaboration means between

SPLs of an MPL. Nevertheless, authors do not mention how the interfaces are

realized or how one SPL is reused by another one.

Van Ommering [53] [54] proposes creating product population by focusing on

composition over decomposition in order to manage reuse between product

families. He distinguishes between two architecture kinds: global architecture and

regional architectures. The global architecture contains only the necessary

elements for cooperation, and much of the architecture work is shifted to regional

architectures. Global (reference) architecture is defined in terms of concepts,

rules, and a global decomposition of the full functionality of the domain into

subsystems. A subsystem is a large compound component that implements the

functionality of a certain sub-domain. Product architecture is specialization of the

reference architecture. Product families in this work do not much to SPLs which

are usually intended to different business purposes but rather to products including

variations. The work does not present techniques for managing reuse across

separated SPLs but in fact between different products types that they consider as

product families. It suggests components to be context independent in order to

increase their reusability which is a technique already treated by SPLE.

Altintas and Cetin [55] propose “Software Factory Automation” method to

manage reuse across distinct SPLs based on “domain specific kits” and “software

asset meta model”. Their strategy relies on the isolation of family design concerns

in discrete building blocks, and later to compose them by means of a

choreography model. Domain specific kits are responsible for the modeling and

development of Domain Specific Artifacts in isolation and enable their composition

42

via a choreography model. This work consider a product family as a set of product

lines, thus the studied SPLs have the same business purpose. The work is

ambiguous in several aspects: What do represent those kits in fact? Are they

common to all the SPLs of the product family? And on which criteria they must be

isolated from other artefacts? Furthermore, how variation is managed? How reuse

is systemized? And how those kits are integrated within reusing SPLs?

1.5.2.2. Structuring MPLs model

Dhungana et al [56] propose an approach that organizes an SPL into a set of

interrelated model fragments describing the variability of particular parts of the

system. Model fragments help structuring the modeling space and provide support

for evolution. This work is important in terms of structuring modeling space and

merging models. The proposition is actually targeted to single SPLs environment,

yet in MPLs environment decomposing the system into fragments that define

reusable assets is not enough for managing complexity. Moreover, the work does

not alter the variability management across product lines which is a crucial issue in

MPLs.

Rosenmüller et al. [57] have altered the MPLs structuring problem. They

propose to extend the FM with explicit modeling of SPL instances. The matter is to

allow configuring a SPL using multiple instances of another SPL. In another work,

Rosenmüller et al. [58] added the notion of composition model aiming to automate

the configuration of MPLs. A composition model integrates multiple SPLs by

describing for each SPL which instances of other SPLs it uses. The main

shortcoming of this proposition is: delaying the SPLs composition until getting

application level (where it is more likely to have incompatible instances derived

from separate SPLs) complicates the derivation and integration tasks of reusing

products with reused products. Reuse is thus limited since reused components

must be adapted to fit new requirement which do not differ from conventional

reuse techniques. Moreover, large scale systems are known to have complex

FMs, extending FMs by modeling SPLs instances increase this complexity. Large

and complex FMs need solutions for their management whereas their extension by

new concepts makes this task more difficult.

43

Herman and Tim [59] propose to combine the FM with context variability model

to model MPLs supporting several dimensions in context space. They use staged

configuration to generate specialized FMs. The Context Variability model captures

the commonality and variability of the context. The context is the environment in

which a product resides. The Context Variability Model is combined with a

conventional FM to create an MPL-Feature model. This work is useful for

structuring MPLs models when those latter support several context dimensions.

However, it would be more interesting to clarify the way these contexts are

separated. This will help in splitting the MPL into several SPLs. Moreover, contexts

are in continuous change and evolution, considering them at derivation time would

be better than defining them in early development stages in order to take into

account current requirements of the field.

1.5.2.3. Distributed derivation

In conventional SPLs environments, the derivation of a final application implies

usually a single user working on the derivation of a single variability model.

Otherwise, MPLs environments include several sub-systems and multiple users

are involved to derive the various variability models. Thus, multiple derivation

processes are handled simultaneously for the various MPL sub-SPLs and this

activity is known as distributed derivation. Distributed derivation is supported in the

proposition of Rosenmüller et al. [57] by the extension of the FM and the

composition model. SPLs instances are composed with the reusing SPL at

derivation time to get a final application.

1.6 Conclusion

In this first chapter we have presented the main concepts of SPL approach in

order to well introduce the studied field and clarify the crucial concepts that will be

addressed along this dissertation. We have presented a classification for the

variability modeling techniques within SPLs and we have discussed the properties

of each class. Finally, we have introduced the new orientation of SPLE which is

MPLs. For this latter, we have presented their challenges and state of the art.

The review of the existing approaches for MPLs engineering brings out three

main aspects that must be considered when managing MPLs:

44

 Reuse among the SPLs of an MPL must be systematized i.e. constructed

components must plan for reuse not only within a SPL but also between

separated SPLs and variability should be managed efficiently within MPLs.

 Effective methods have to be developed for structuring the MPL model,

starting from the various SPLs models and getting an MPL model including

dependencies between the various SPLs. Dependencies have to be specified

in order to simplify the MPL derivation thereafter.

 Solutions should be proposed to reduce the distributed derivation challenges

or avoid them completely.

45

CHAPTER 2

SOFTWARE ARCHITECTURE AND

SOFTWARE PRODUCT LINES

2.1. Introduction

SPL approach (chapter 1) intends to adapt to the software development, the

principles that we find in the automotive, aeronautics and electronics industries.

Production in these industries is organized into ranges with similar parts and

offering a number of options. For example, in automotive industry, various car

models come out the same assembling chains using the same chassis, the same

engines and the same test plans. The aim is to improve productivity, decrease

time to market, and reduce production, maintenance and test costs. The idea is to

transpose the manufacturing principles of these industries in software

development, to benefit from the before-mentioned advantages.

Although, the principles of SPLs are inspired by industry where production

activity is based on assembling certified components, most of SPLs today are

based on traditional design concepts of software engineering such as modular

design and object-oriented design. These design concepts are not able to support

the assembly of certified components which makes the derivation and

maintenance processes difficult to perform. Consequently, SPLs remain immature

because they still base on traditional design concepts of software engineering

which are not adequate to the SPLE basic principles.

On another side, CBD provides the necessary means for the development of

applications by assembling (existing reused) certified components. Thus, CBD

matches perfectly to the SPLE principles. Furthermore, both of SPLs and

46

component based development promote reuse; putting them together will bring

significant benefits to the software development.

Proceeding from this, in this chapter, we present an overview on the basic CBD

concepts (or more generally: the software architecture) and we study their

integration with SPLE. We conclude this study by specifying the main aspects that

should be covered when defining a new approach that integrates SPLE and CBD

approaches. Thus, we start by defining the crucial concepts of software

architecture in section 2. In section 3, we focus on the IASA software architecture

approach since it will support our work in the rest of this dissertation. Then, in

section 4, we present a selected set of approaches integrating CBD and SPLE and

we discuss their outcomes. Finally, section 6 concludes the chapter.

2.2. Core concepts of Software Architecture

2.2.1. Definition and advantages

Usually software architecture describes the structure of a software system at a

high abstraction level. The software structure has always been recognized as a

major concern. However, recently software architecture has emerged as an

explicit discipline in the software engineering area. Nevertheless, despite the

maturity of this discipline, there is no universal definition of software architecture

[60]. According to [61] three classes of software architecture definitions can be

distinguished. The first one defines software architecture as a high level

abstraction representing the structure of a software system. The second class

focuses on the concept of components and relationships between them. It defines

software architecture as the structure and externally visible properties of a

software system. The third one emphasizes on the fundamental concepts and

constraints within which the software system is to be designed and developed.

The direction of our research work falls within the second definition class. Thus,

we define software architecture as the structure or structures of the system, which

comprise software elements, the externally visible properties of those elements,

and the relationships among them [62]. The term element is used to designate the

primary building blocks of a software system (components or subsystems).

Software architecture deals with the design of the overall structure of a software

system. It firstly identifies the high level components of the system called the

47

subsystems and how those components are connected to each other (connections

or interfaces). The structure is defined in a way that minimizes the coupling

between the different subsystems and increases the internal cohesion of these

subsystems. Each subsystem must be: cohesive, performs a major service,

contain highly connected components or classes with respect to the subsystem

and relatively independent of other subsystems, and finally it can be decomposed

further into smaller subsystems.

Software architecture often uses defined architectural patterns. An architectural

pattern (or architectural style) is a description of element and relation types

together with a set of constraints on how they may be used [62]. Patterns support

reusing the design expertise by capturing and expressing the static and dynamic

aspects of successful solutions to common design and implementation problems

[63]. They help guiding the design and use of software systems and thus

decreasing development effort and training cost. Each style articulates a set of

subsystems (components); specifies their responsibilities and the relationships

between them (connectors); and defines the guidelines for integrating components

to form a system (constraints). Examples of architectural patterns would be data-

centered architecture, data-flow architectures, layered architectures, object-

oriented architectures, call and return architectures [64].

Software architecture can have a positive impact on several software engineering

aspects [62] [65] [66], namely:

- Understanding: Representing the system at a high abstraction level allows a

better understanding of complex and wide systems. Moreover, this common

abstraction can be used as a basis for mutual understanding and

communication between the system's stakeholders.

- Reuse: Software architecture support reuse at several aspects. Components,

connectors and even frameworks can be reused in other similar contexts to

their developing context. Furthermore, the architectural solutions proposed for

particular problems can be applied to other systems exhibiting similar quality

attribute and functional requirements.

- Evolution: Software architecture manifests the dimensions to a system that is

expected to evolve; this makes it possible to estimate the effects and costs of

the modifications. Furthermore, separating between components and

48

connections that allow them to interact, permit an easier change of connection

mechanisms for handling several evolving concerns.

- Analysis: Software architecture express early design decisions about a system

allowing thus new analysis opportunities namely: checking the system

consistency, conformance to an architectural style, conformance to quality

attributes, etc.

2.2.2. Components

Component represents the key element on which rely all of the design,

implementation, and maintenance of component-based systems. It is the basic

building block of software architecture. However, there is no consensus about its

definition. Among the most cited definitions we find:

1. An independently deliverable piece of functionality providing access to its

services through interfaces [67]

2. A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can

be deployed independently and is subject to third-party composition. (Clemens

Szyperski, Component Software) [68]

3. A component is a non-trivial, nearly independent and replaceable part of a

system that fulfills a clear function in the context of a well-defined architecture

[64].

According to these definitions we can extract the main features of a component:

1. An independent, deliverable and replaceable composition unit of a system;

2. Provides clear functions intended for satisfying some needs;

3. Communicate with other components through its interfaces;

4. It can have features that make it reusable in a particular environment.

A component can be primitive as it can include a set of components; we talk

here about composite components. It can provide simple functionalities as it can

provide a whole complex application functionalities. We distinguish between two

main component parts: the first one is the external component part called the

interface [69]. The interface describes the set of functionalities provided or

required by a component. It includes a set of interaction points usually known as

49

ports. The second part is the component implementation that describes the

internal component functionalities.

The semantic definition of components includes its behavior and non-functional

properties. A component behavior can be seen from two perspectives [70]: the

static behavior that describes the particular “snapshots” during the system’s

execution and the dynamic behavior that provides a continuous view of how a

component arrives at different states throughout its execution.

The component constraints are the properties that must be checked when

instantiating a component [70]. They define the required conditions and limits for

running a component. Constraints may be defined in a separate constraint

language or using the notation of the given ADL and its underlying semantic

model.

A component is a software unit that explicitly describes its provided and

required interfaces and its internal architecture. Components are subject to

instantiation and connection with other components that meet their required

interfaces or need their provided functionalities. Therefore, the key elements that

must appear when documenting a component are: the required and provided

interfaces, the internal architecture (for composite components), the component

behavior and the components relations with other components. The Figure 2.1

shows a sample graphical component representation in a component-connector

architecture view.

Figure 2.1: Sample graphical representation of components and connectors.

50

2.2.3. Connectors

The connectors are the glue for the system design. They represent interactions

among the architecture components. Connectors mediate the communication and

coordination activities among components [71]. A connector may implement

simple interaction forms like: pipes; procedure call and event broadcast, as it may

provide complex interactions such as a client-server protocol or a database access

protocol. In the component-connector view, a simple connector is represented by a

link (simple line) relating two components while a complex connector may be

represented by a connection component that connects two or more components.

The main properties of a connector are: the interface and implementation. The

connector interface describes the involved roles in an interaction. An interface

includes a set of Interaction Points, usually called roles. A role (interaction point)

defines the participant (ports) that can be involved in an interaction. The

implementation defines the interaction protocols. Thus, the connector specification

must describe both of the connector interfaces and implementation.

Finally, constraints on a connector express the conditions and limits that must

be respected when running a connector i.e. the usage limits of the associated

communication protocol.

2.2.4. Configuration

A system configuration represents the way a system is set up, or the

arrangement of the elements that make up the system. It describes the overall

system topology independently from the components and connectors it includes.

Generally, systems are conceived in a hierarchical way, such as components and

connectors may represent subsystems that have their own internal architectures.

A configuration defines the structure and behavior of a system made of

components and connectors. The structural configuration of a system corresponds

to a connected graph of the components and connectors building the system,

while the behavioral configuration specifies the behavior by describing the links

evolution between components and connectors.

51

2.2.5. Component based development process

The main objectives of CBD are: reducing cost and time for building large and

complicated systems and improving the software quality by improving the

component quality. The CBD process encompasses two parallel engineering

activities as depicted in the Figure 2.2: Domain engineering and Component-

based development [64].

Figure 2. 2: Component Based Development process [69].

The first activity “domain engineering” aims to explore a particular application

domain in order to find the possibly reusable components; the selected

components are collected in reuse libraries. This sub-process includes three

activities: analysis, construction, and dissemination.

The second activity “component-based development” produces applications by

reusing as much as possible the existing components. It encompasses the

following activities: eliciting the customers’ requirements, selecting an appropriate

architectural style, selecting potential components for reuse, qualifying the

components to be sure that they properly fit the architecture for the system,

52

adapting components if needed to properly integrate them, and integrating the

components to form the application.

2.2.6. The ADLs

The ADL describes the system structure at an abstraction level that is the

closest to the system designer intuition. An ADL is defined as a language that

provides features for modeling a software system's conceptual architecture,

distinguished from the system's implementation [72]. Mary and David [73] present

the main properties that are required for a good ADL:

- Composition: an ADL should be able to describe a system as a composition of

independent components and connections. Composition techniques allow the

combination of independent architectural elements into a large system.

- Abstraction: the abstraction is used for managing complexity. An ADL must

have a set of abstraction concepts (components, connectors, and configuration)

in order to describe the real word components and their interactions.

- Reusability: reusability allows developing new system by using as much as

possible existing components. In an ADL it should be possible to reuse

components, connectors, and architectural patterns predefined in different

architectural setting.

- Configuration: ADLs should support the description of a system independently

from its elements in addition; they should support the dynamic configuration.

- Heterogeneity: An ideal ADL should have the ability to inter-operate with other

ADLs.

Multiple ADLs have been proposed in the academic as in the industrial

environments. Among the most important ADLs we find:

Darwin ADL: like most ADLs, the main concept of Darwin ADL [74] is the

component. A component is an instance defined by an interface that describes its

provided and required services. Darwin distinguishes between two components

kinds, primitive components that include the software code and composite

components that represent configuration entities describing the connections

between components. Darwin limits the instances number of a component during

its instantiation. The main characteristic of Darwin is its capability for expressing

dynamically changing process.

53

Fractal ADL: the Fractal ADL [75] is known to be an open, extensible and flexible

language. It defines an abstract syntax independent of any programming language

and intended to describe the architecture in terms of interfaces, links, attributes. It

allows integrating new architecture description concepts to its syntax by modifying

the XML descriptor that is loaded by the fractal factory. Fractal ADL aims to allow

the dynamic definition, configuration and reconfiguration of component-based

architecture, as well the separation of functional and non-functional concerns. A

Fractal component consists of a membrane and content. The membrane includes

a set of interfaces which define the required and provided services by the

component and the content consists of a finite set of other components (called

sub-components).

RAPIDE: is an event-based concurrent object-oriented language specifically

designed for prototyping architectures of distributed systems. Its main goal is to

check, by simulation, the validity of a given software architecture. In RAPIDE an

architecture consists of a set of specifications (called interfaces) of modules, a set

of connection rules that define direct communication between the interfaces, and a

set of formal constraints that define legal and/or illegal patterns of communication

[76].

SEAL: SEAL (Simple and Extensible Architecture Aspect and Action Language) is

the ADL of the Integrated Approach to Software Architecture (IASA). It allows the

specification and validation of the structure and behavior in software architecture.

SEAL is provided by a high expression level due to the notion of action context

[77]. It is based on the fundamental action contexts and all IASA types

(components, ports, access point, connectors, exception, etc.). Its main goals are:

to specify the ports behavior, to specify the interactions, to specify the global

behavior of the operative part, and to define the primitive components regardless

the implementation language.

2.3. The IASA approach

The IASA approach [70] was used to realize complex e-Government software

systems, and was proved as a clear and easy specification language to design at

a high level of abstraction using Aspect Oriented approach [78] [79]. IASA aims to

provide the models and tools which have the ability to directly capture the

54

architect’s mental model about a solution in the early step of a software

elaboration process [80]. The IASA approach supports the Aspect Oriented

Software Architecture (AOSA) specification through the distinction between two

components kinds: aspect components and business components [80]. IASA

allows the use of any component as an aspect component and any aspect

component as a business component. Moreover, aspect components are not

limited to represent technical concerns; they may be extended for other concerns

such as Graphical User Interface (GUI).

In IASA, an application is organized in three spaces: the business space, the

control space and the aspect space. The business space handles pure business

logic which represents the solution to functional requirements of the system being

designed. Components belonging to this space are called business components.

The aspect space is mainly concerned with non-functional requirement of a

system like tracing, security and persistence. Components belonging to the aspect

space are called aspect components. The control space handles the specification

of miscellaneous control operations such as the initialization and the evolution

(e.g. the insertion or the removal of structural or behavioral elements) of the two

other spaces. The control space is also the place where are maintained the

information describing the structure and the state of the other spaces.

Next in this section we present briefly the main models of the IASA approach.

The full IASA models description can be found in [70].

2.3.1. The IASA component model

Like most software architecture approaches, the IASA distinguishes between

primitive components and composite components. Developing an application

according to IASA approach consists in producing a composite component. Thus,

excluding connectors, all the architecture elements are components from an

operator to the whole application. The component model defines an organization

for the external view that should be respected by any component in addition to an

organization for the internal view, applicable only to the composite components.

The external view is represented by the envelope concept which encompasses the

ports modeling the component, while the internal view is organized into two main

parts: the Operative part and the Control part.

55

2.3.1.1. The component internal view

The internal view of a composite component is made of two vital parts: the

operative part and the control part. The operative part represents the business

space of the composite and it contains the components instances dealing with the

functional objectives of the composite. Those instances could be static or dynamic.

A static instance is defined at the specification time and cannot be removed from

the operative part, while a dynamic instance can be created or deleted during the

composite-instance life-cycle.

The control part represents the aspect space and it is composed of a controller

and a number of aspect components. It performs the various control operations on

the components of the operative part. Examples of these control operations are:

managing the control flow of the various services (shutdown, sequential or parallel

launch), managing exceptions, exporting the component state, and logs

generation.

2.3.1.2. The component external view (envelope)

The external view of any component consists of an envelope provided by a

ports set. The main goal of the envelope concept is to allow the total insulation of

the component internal view from the external world. The envelope is also used to

specify the deployment map, to enable the specification of connections involving

the port’s structural elements and to manage the injection and deletion of the

advices provided by aspect components. The ports considered in an assembly

operation are the envelope ports. The ports of the internal view are connected to

the envelope ports by the delegation connectors.

2.3.2. The IASA connector model

The IASA connector model is largely inspired from computer network

architecture. The model defines two connector categories: transport connectors

and service connectors. The transport connectors are responsible for the transport

of data and control flows. The transport connectors link only two points that must

be compatible and could be: a complete port, a part of a port represented by one

or more access points or a part of the internal structure of a complex access point.

A service connector is a predefined primitive component that supports the

56

interconnection of more than two points. It provides complex communication

services such as the coordination, distribution and load balancing services.

In IASA two connection points are connected either in a point-to-point topology

or through a communication infrastructure. A basic connectivity is established

between two access points by a connector called an elementary connector, while

a complex connection is performed by the introduction of a communication

infrastructure. Any complex connector (interconnection infrastructure) is specified

by the combination of transport connectors and service connectors. The IASA

approach provides a simple method to build an interconnection infrastructure

inspired from computer network architecture: any interconnection infrastructure,

despite its complexity, is always built by cascading Service Connectors using

Transport Connectors.

2.3.3. The IASA access points

The main purpose of the IASA access point concept is to provide a unified way

to represent component’s interaction points in the specification of a system

architecture using software component and/or hardware components. The access

point is the smallest processed element in architecture. It is the basic element for

defining a port. It exposes the required or provided resources which may be

operations or data. Unlike other architecture models where an access point

correspond to an entire interface, the IASA access point represents the basic

concepts exchanged between two component ports. An access point is

instantiated within a port. It may be linked independently to another access point

which is included in the same or in a different port.

The access point is designed to support two concepts: data transfer and flow

transfer. Therefore, the IASA distinguish between two access point kinds: Data

Oriented Access Point (DOAP) and Action Oriented Access Point (ACTOAP). The

DOAP is used to specify an explicit data transfer. It is provided with an attribute

specifying the data direction (in, out, and inout). It is either a primitive DOAP or a

complex DOAP made of other DOAPs. An ACTOAP represents a service which

may support many distinct actions. An ACTOAP plays one of two basic roles: a

server or a client.

57

2.3.4. The IASA ports

A port is a technique for grouping related access points in the context of a

common goal. The ports model the external view of a component. They reveal the

required and provided resources (services and data) of a component in addition to

its behavioral aspects. The behavior is described using the SEAL action language

(section 3.5). A port is an autonomous entity; it could be added or removed from a

component. Moreover, a port can be modified by adding or deleting an access

point.

The port maintains an abstract view and a concrete view. The abstract view is

represented by: the concept of access point, the actions associated with the

contained access points and the behavior. The concrete view may be any model

provided with a clear way leading to the implementation level (e.g. an interface

based port, a UML port, an ArchJava port). The port’s behavior is represented by a

set of valid rules using the concept of action of the SEAL language. Each rule

shows how the required or provided resource must be used. The concrete view

may be any model, provided with a clear way leading to the implementation level.

2.3.5. The SEAL action language

In IASA, the behavior specification (i.e. interactions and operative part behavior)

is done using the action language SEAL [77]. This language relies on the notion of

Action Context which is inspired by the UML Precise Action Semantic. Among the

basic SEAL elements: the various operators, the primitive data types, the control

structures and all the basic types of IASA: components, ports, access points, roles

and connectors. The SEAL description is defined clearly in the behavior clause

and actioncontext clause of an architecture description. This description is

structured in hierarchy of clauses as depicted in the Figure 2.3. SEAL description

could be also found in the internal clauses of the port clause and in the

connectors’ clauses within the operativepart and controlpart clauses.

Actions are the basic behavioral entities that exchange control flows and data

flows through in and out data points called ActionPins. An action is identified by a

unique name which represents its signature. Three action types are

distinguishable: primitive actions (indecomposable action), abstract actions

(composed of actions belonging to another context instance) and composite

58

actions (defined from the actions of the same context instance). A context

encompasses an actions set that is valid for a particular actions domain. An action

must always be defined in an action context. An action context is a namespace

such as an action’s name is relative to its context. This notion has been introduced

in order to limit the reasoning domain of an architect and provide him with

sufficient tools to express his concepts in specific situations.

Figure 2. 3: Clauses in a component's textual description.

2.4. Component based product lines

Considering that SPLs are inspired by industry where production activity is

based on assembling certified components, and in light of the recent progress in

CBD field, literature shows that integrating these two approaches will bring

significant benefits to software development. In this section, we present the main

propositions in this area then we discuss their out-comings.

59

2.4.1. State of the art

Component Based Product Lines (CBPL) engineering has been introduced to

overcome the lack of maturity in SPLE by unifying the strengths of two

complementary approaches: SPLs and CBD. CBD supplies technologies for reuse

in the small, while SPL approach intends reuse in the large. Putting them together

allows reaching large scale reuse and flexibility at the same time. However, only

few works have been done in this area, in this section we present briefly the main

proposition intended for CBPL engineering and variability modeling in CBPLs:

2.4.1.1. CBPL for Workflow Management Systems

The authors in [81] present a CBPL for Workflow Management Systems

(WfMS). They propose a CBPL process for the development of WfMSs and

extensions for variability representation throughout the process. The proposed

CBPL process consider: - domain analysis based on the generic architecture and

reference models for WfMS - design of the product line architecture and its

components based on Catalysis method [82] - evaluation of the architecture with

Rapide [76] language and tools. The process phases are as follow:

 Requirements analysis: aims to identify the similar aspects and the VPs

amongst the SPL members and represent at a high level the main components

and interfaces of the WfMS. The authors use the use case variability of

Jacobson et al. [83] that suggests the stereotype «extend» to represent VPs in

use cases.

 System specification: this stage specifies the software solution by identifying the

types and the related actions. Types are represented by a class diagram called

the static type model. Variability is shown in the model basing on an extension

for UML. This extension use the variability stereotype «V» to indicate the

variations in the model. This stereotype is related with the concepts of

specialization and aggregation.

 Architectural design: From the static type mode several refinements are made

to reach the components level. The components are represented by the generic

packages encompassing their types and relationships. We note at this stage

that no means are provided for modeling variability at components model, it is

rather explained in a textual way with the components descriptions.

60

2.4.1.2. Adaptable Components for SPLE

This work presents techniques for the implementation of large transparently

adaptable components via composition and parameterization [84]. The proposed

techniques (mainly skeleton object) can be used as implementation framework

within SPLs. The skeleton object is a technique for implementing adaptable

components basing on the higher order function mechanism. A higher order

function is a function which accepts function parameters and a skeleton object is

an object whose constructor is a skeleton (i.e., a higher order function). Since

individual skeleton objects provides components that are too small, the authors

propose to compose skeleton objects in order to form larger components and thus

reaching coarse-grained adaptability.

This work do not present a process for CBPL engineering neither variability

techniques for modeling CBPLs, but rather some useful techniques for

implementing variability within CBPLs.

2.4.1.3. The Koala component model

Koala [85] [86] is a component model based on an architectural description

language Koalish [87] used to build a large diversity of products from a repository

of components. Its aim is to manage the growing complexity and diversity of

software in consumer electronics products. Various concepts are used in the koala

components models [85]: interfaces, connectors, subcomponents and compound

components. Koala allows the modeling of variability related to interfaces (optional

interfaces) and connections between interfaces (switch). Here is a brief

presentation of the Koala model [87]:

 A component is an encapsulated piece of software that is self-contained and

configuration independent to be a reusable asset. It can communicate (provide

and require functionality) with its environment only through interfaces.

 An interface is a small set of semantically related functions. It serves as the unit

of binding. The triangles denote the direction of function calls (Figure 2.4). Each

interface has an instance name and a type (Figure 2.4). Interfaces types are

managed separately from components. An interface is represented by a dashed

square if its existence is optional in the component (Figure 2.4).

61

 Koala distinguishes between three connectors kinds as depicted in Figure 2.4: -

straight connection which couples every function in the tip interface to the

function with the same name in the base interface – glue module allows to

insert code between two connected interfaces - switch is a pseudo dynamic

binding of one interface to a set of other interfaces. The switch setting is

controlled through a diversity interface.

Figure 2. 4: Koala component model.

The koala approach promotes a composition rather than a decomposition

process, such as components are combined in multiple ways into subsystems and

subsystems in multiple ways into systems. Components and interfaces are stored

in a repository that does not reflect the design hierarchy. Products are created by

selecting and combining large compound components. When a large component

does not satisfy the requirements, more basic components are considered.

2.4.1.4. Variability Modeling Language for Architectural models

Loughran et al. [88] present a variability modeling language (VML), which

supports variability representation in architectural models. The language provides

mechanisms for: explicitly reference variation points in multiple architectural views

and support the composition of architectural variants to variation points within

classical architectural views, such as deployment, interaction, and component-

connector models. The VML is comparable to the orthogonal variability modeling

(OVM). OVM describes variability separately without extending architectural

models with new notations. Thus, it considers variability as separate architecture

62

view (variability model). The VML extends the notion of OVM to capture the

referencing and composition of architectural variability.

The main language elements are:

 Concerns are high-level abstractions encapsulating VPs which relate to a

particular feature or any other architectural concern arising at the design

stage.

 A VP has a name and variation kind (optional, alternative and parameter)

 A VP may offer a number of variants. VPs and variants should reference

architectural elements within architectural views.

 A variant uses actions and expressions to invoke compositions of architectural

elements.

 Actions provide the means to activate decisions which will result in

architectural compositions between architectural variants and the common

core elements. The key compositions mechanisms are connect, add, remove,

deploy and merge.

This work entails straightly the configuration step by modeling the actions made

by the system configurator. It ignores the details needed during the architecture

variability modeling step. Several variability concepts are not considered in the

variability modeling. The architecture variability modeling itself is not explained.

2.4.1.5. Feature-oriented Solution with Aspects for CBPLs

This work seeks for deriving the SPL architecture from the FM [89]. The authors

propose a solution which incorporates the aspect concept into the feature

modeling by means of crosscutting features. This model is then used to map base-

level and crosscutting features to base-level and crosscutting architectural

elements. The approach allows thus to represent crosscutting concerns as

crosscutting features and non-crosscutting concerns as base-level features by

means of an aspect-feature view, to map crosscutting features to crosscutting

architectural components and base-level features to base-level architectural

components, and identifies and refines base-level and crosscutting component

interfaces supported by use cases specification with aspects and variability.

However, the main issue when modeling variability within CBPLs is not considered

by this work. After mapping features to the architecture the resulted architecture

63

model contain base and crosscutting aspects of the system but no variability

modeling mechanisms are introduced.

2.4.1.6. The KobrA Approach

The basic goal of KobrA method [90] is to provide a systematic approach to the

development of component-based application frameworks. It interests to the

internal structure of components for which it uses UML models and decision

models for modeling variability. The KobrA process consists in two main stages:

framework engineering activity which aims to create and maintain a generic

framework that embodies all product variants making up the SPL and application

engineering activity which aims to instantiate this framework to create particular

variants in the product family. A framework is the static representation of a

components-set organized in a hierarchical form.

Framework engineering phase encompasses three activities: context

realization, component specification, and component realization.

 Context realization activity determines the environment properties for the SPL

and the framework’s scope.

 Component specification activity describes by means of models the externally

visible properties of a component. It comprises four models: the structural, the

behavioral model and the functional models which constitute the specification

models for a component, in addition to the decision model which contains

about how the models change for the different applications.

 Component realization activity describes by means of models the private

design of a component. Four models are included in this step: the interaction

model, the structural model, the activity model and the decision model.

Application engineering uses the framework built during framework engineering

to produce specific applications through two main activities: application context

realization and framework instantiation. The framework is instantiated according to

the contexts decisions taken by the customer. In addition to the decision models

resolution, customer-specific requirements must be realized and therefore

integrated into the framework.

64

2.4.1.7. UML profile for SPL architecture

The authors present a UML profile for representing variation in the SPL

architecture of middleware services [91]. The profile consists in a set of UML

extension concepts. It relies on three UML extension mechanisms: constraints,

tagged values and stereotypes. The UML profile includes several SPL architecture

views decomposed into two categories: Conceptual views (including: conceptual

structural view, conceptual behavior view, conceptual deployment view) and

Concrete views (including: concrete structural view, concrete behavior view). In

each view, extensions are introduced for modeling variability, for instance in the

conceptual structural view all of: “mandatory”, “optional” and “alternative”

stereotypes are used to describe the variability kind of subsystems.

2.4.2. Discussion

In this section we will evaluate the CBPL approaches presented in the previous

section. The evaluation addresses four aspects that we judge to be important

when coupling CBD and SPL approaches:

1. The CBPL development process: as known SPLE is composed of two

processes (Domain engineering and Application engineering), variability is

introduced and modeled in the first process and it is resolved in the second

one. The proposed CBPL approaches must define a development process that

respects the SPLE methodology and benefits from flexibility and scalability

offered by CBD at the same time.

2. Variability modeling: traditional CBD approach do not provide necessary

concepts for explicitly modeling variability in systems, thus CBPL approaches

should tackle this issue in a clear way.

3. Variability implementation: another aspect that should be considered when

introducing a new CBPL approach is the definition of the underlying variability

implementation techniques.

4. Finally, we consider also if the approach is domain specific or no so it could be

of benefits for larger application environments.

The results obtained from CBPL approaches according to the before-mentioned

aspects are summarized in the next table.

65

The CBPL development process have been defined by three of the discussed

approaches: CBPL for WfMS [81], Koala approach [86] and KobrA approach [90].

Koala approach gives an overview on how systems are produced in their company

and its primary focus is about components, however it does not explain a

systematic method for developing the SPL core assets and deriving them after

that. The CBPL for WfMS approach does not make a clear distinction between the

two SPLE stages (domain and application engineering). This approach also

focuses on the components development than SPLE. The KobrA process fits well

the SPLE process. The two development stages are clearly described and the

various views needed for system specification and variability modeling are defined

and explained for each stage.

Table 2. 1: CBPL approaches evaluation.

CBPL

approaches

Development

process

Variability

modeling

Variability

implementation

Domain

specific

Yes No Basic Advanced Yes No Yes No

1. CBPL for

WfMS

2. Adaptable

components

3. Koala

approach

4. VML for SPL

architecture

5. Feature

aspects

6. KobrA

approach

7. UML profile

The variability modeling have been most of the time considered in a basic way

by defining only few variation types (mainly: mandatory, optional and alternative),

66

moreover those variations were identified only for some architecture elements

(mainly: components and connectors). The only work that gives more emphasis on

variability modeling in components is the Koala approach. Koala provides some

advanced variation mechanisms such as optional interfaces and switches.

Nevertheless, several other variation kinds are not covered by the koala

component model.

Variability implementation techniques assist the developer when realizing the

VPs. Among the discussed approaches only the koala approach completes the

CBPL process until getting the implementation step and proposes an ADL

(Koalish) for that. The adaptable components approach [84] proposes a variability

realization technique that could be of great benefit when implementing SPLs, yet

the authors does not mention for which variation kinds this techniques can be

chosen. Overall, the paper does not consider the CBPL process or the variability

within architecture that are crucial concepts in our study.

Having an approach that deal with the various CBPL engineering activities is

important for software engineering, however, if this approach is targeted for a

specific field this will limit its use elsewhere. This is the case for the Koala

approach. Koala has been proposed to deal with the issues encountered by

Consumer Electronics Company. So its developers have enriched it by the

necessary concepts for its specific application domain. Consequently, even if it

has been enhanced by some advanced variability concepts, several other

concepts related to SPLE and CBD are still needed when exploiting this approach

in other software fields. We mention for instance: the lack of a clear CBPL

development process, lack of support for separation of concerns, lack of several

variation types (mandatory, alternative, grouped features...).

Another major issue in CBPL engineering is the products derivation. This step is

most of the time ignored or tackled implicitly even if it is of great importance. When

the derivation rules and steps are well defined, the exploitation of the core assets

base gets its higher levels and the application engineering step is done in shorter

time and with lower effort and cost. Furthermore, the implicit modeling of

variability makes its derivation a hard task to perform. If variations are not clearly

identified in the domain models, there derivation will encounter several challenges

and won't be able for automation.

67

Finally, the broad use of SPLs results in what is called Multiple Product Lines

(MPLs). Engineers must then provide solutions to manage variability not only

within a single SPL, but also between SPLs of an MPL. This issue has been

addressed by only one of the discussed approaches which is the Koala approach.

Koala develops a components technology that supports the realization of freely

combinable components such as a compound component is the responsible of

any interaction between its sub-components. Though, Koala does not give

attention to the necessity of systematizing inter-SPLs reuse.

To summarize, the main characteristics of the existing CBPL approaches are:

- lack of development methodology;

- limited variability modeling;

- implicit variability modeling;

- no provided guidance for derivation step;

- no support of inter-SPLs reuse;

- lack of advanced CBD techniques;

- slight consideration of variability implementation techniques;

- and specialization for particular application domains.

2.5. Conclusion and recommendations

In this chapter, we have defined in large the main concepts related to the

Software Architecture discipline. We have focused on the IASA approach since it

will be subject of extension when defining our approach. And we have studied the

integration of CBD and SPLE through a set of CBPL approaches. The study we

conducted revealed that the primary aspects that should be covered when defining

a new CBPL approach are:

1. The CBPL process that must base on the SPLE methodology on the one side,

and benefits from the CBD technologies on the other side. Both of SPLE and

CBD provide powerful techniques for supporting reuse but at opposite

granularity spectrum. CBD deals with reuse in the small while SPLE manage

reuse in the large. Therefore, significant benefits are expected from their

integration. The SPLE process lies on the distinction between two development

stages: development for reuse (domain engineering) and development with

reuse (SPL derivation). A set of reusable core assets is constructed during the

68

first stage and intended for reuse in the SPL scope. SPLE provides techniques

for making the adaptations easier and the reuse systematic by managing the

domain variability. CBD represents techniques for implementing variability and

makes the automation of the derivation step possible by producing flexible

components.

2. The proposed approach should support variability management. Variability

must be identified for the various abstraction levels and modeled explicitly in

the different modeling views. In addition, mechanisms must be defined for

modeling the different variations kinds and this for each architecture element.

Thus, variability must be modeled and implemented for the following levels:

system architecture, composite components’ internal structure, primitive

components implementation, interfaces and connectors, and using the

following variation types: mandatory, optional, alternative, AND, OR and XOR

VPs and components groups with cardinality.

3. The proposed methodology should support the reuse systematization not only

within a single SPL but also among separated SPLs included in the same field.

69

CHAPTER 3

COMPONENT BASED SPLS (CBPL)

3.1. Introduction

SPLs are emerging as a viable and important development paradigm allowing

companies to realize major improvements in time to market, cost, productivity,

quality, and other business drivers. Product Line approach intends to adapt to the

software development, the principles that we find in the automotive, aeronautics

and electronics industries. Production in these industries is organized into ranges

with similar parts and offering a number of options. For example, in automotive

industry, various car models come out the same assembling chains using the

same chassis, the same engines and the same test plans. The aim is to improve

productivity, decrease time to market, and reduce production, maintenance and

test costs. The idea is to transpose the principles of manufacturing of these

industries in software development, to benefit from the before-mentioned

advantages.

Although, the principles of SPLs are inspired by industry where production

activity is based on assembling certified components, most of software product

lines today are based on traditional design concepts of software engineering such

as modular design and object-oriented design. These design concepts are not

able to support the assembly of certified components which makes the derivation

and maintenance processes difficult to perform. On the other side, both of SPLs

and CBD promote reuse; putting them together will bring significant benefits to

software development.

SPL improves reuse while maintain diversity between products. In most cases,

software components intended for reuse must be adapted to meet specific

70

requirements of customers. If flexibility is not considered since the early

development process phases, developers will meet lot of difficulties in adaptation

step, which lead them to leave these components even they will have to redevelop

components from scratch. SPL simplify the adaptation phase by involving

“Variability management” activity along all the software development process.

However, traditional component-based approaches do not support variability

management. It becomes necessary to establish new approaches or enhance

existing component-based approaches in order to allow an effective variability

management. In this chapter, we propose an approach that integrates SPL

engineering and CBD engineering, aiming to unify the power of these two

approaches. Firstly, we present a new FM notation that is better relevant to CBD.

Then, we present the development process of component-based SPL (CBPL).

After that, we show the extension of a component-based approach in order to

allow the modeling of variability in CBPL. Finally, the proposed approach is

supported by a case study.

3.2. Composition oriented FM

One of the most common concepts of SPLE is the FM. Feature modeling was

first introduced in the FODA method by Kang in 1990 [19]. Afterward, it has been

widely adopted by SPL community and a number of extensions have been

proposed (Chap 1- section 4). These extensions usually add increasingly new

notations to the FM in order to represent the various variability types that could be

included in a SPL. For instance, the extension proposed by Czarnecki [27]

introduces a lot of new symbols for representing variations within FMs. Cluttering

the FM by new notations makes it complex and hard to be manipulated while it is

supposed to be an easy-to-understand specification model (Chap 1- section 2). On

the other hand, the relationships between features are most of the time

ambiguous, since the type of the links is not specified (father-son relationship, is

property of, specialization/generalization, composition…). This makes the whole

model ambiguous and hampers the mapping between FMs and other SPL models.

In this section, we propose a new notation for FMs that is designed to be

simpler and component oriented [97]. The aim is, to simplify the FM by using more

expressive notations and thus decrease the number of symbols used for modeling

71

variability. In addition, our proposition will relies on the composition and

specialization/generalization relationships between features of an FM in order to

remove the ambiguity of relations and to simplify the transition between FM and

architecture. The resulted model is a composition oriented FM that serves as a

reference when constructing the architecture model and helps in specifying

variability in the next SPLE process steps.

The links that relates the features in our FM are of two main kinds:

specialization/generalization and composition. The composition relationship is

represented by a simple line while specialization/generalization relationship is

represented by a dashed line as depicted in the Table 1. We distinguish between

four variability types: mandatory feature, optional feature, single feature with

cardinality and choice feature-set. All of those types are expressed using

cardinality interval <n, m> where n, m ∈ ℕ and m ≥ n. Cardinality means the

occurrences number for a single feature and choices number that could be

selected for a feature group (a sub-features set related to the same feature and

that represent a choice) such as:

 Mandatory feature is a feature with cardinality: <1, 1>. It can be a single feature

or a grouped feature included in a choice variability.

 Optional feature is a feature with cardinality: <0, 1>. It can also be a single

feature or a grouped feature included in a choice variability.

 A feature that can be included in the system several times is called: solitary

feature with cardinality. The number of its occurrences is denoted by a

cardinality interval <n, m> such as: n ≥ 0 and m >1. In the case that n = 0 then

the feature is optional and if n > 0 then the feature is mandatory.

 Choice relationship is used to represent a feature that is related to a variable

set of sub-features restricted by cardinality. It includes all of AND, OR, XOR

variability types as shown in the Table 1. For us cardinality is sufficient to

represent all kinds of choices.

In addition to the variability notation we add two symbols for representing

reference features and features with attributes. We use similar symbols as in [27].

Reference features allow us to split large feature models into smaller modules and

refer to a sub-tree by a single feature. A feature can have an attribute type,

indicating that an attribute value can be specified during configuration.

72

Table 3.1: Notations used in Composition oriented FM.

Notation Meaning

Composition relationship

Specialization/Generalization relationship

Feature with cardinality <1, 1> : Mandatory feature

Feature with cardinality <0, 1>: Optional feature

Solitary feature with cardinality <n, m>

Choice with cardinality <n, m>, such as:

- If the relation type is AND then n = m

- If the relation type is OR then m ≥ n

- If the relation type is XOR (i.e. alternative) then n

= m = 1

The feature A is a reference to a feature model

Feature A with attribute of type T and value v

3.3. Component Based Product Line Engineering

SPLE relies on a fundamental distinction of development for reuse and

development with reuse (Chap 1 section 3). Development for reuse or “Domain

engineering” consists in developing core assets through the domain analysis,

domain design and domain implementation processes. Development with reuse or

Application engineering consists in developing the final products, using the core

assets and the specific requirements expressed by the customers. Figure 1 shows

the development process of CBPL that we propose [93]. The presented process is

an integration of the development process of SPLs (Chap 1 section 3) and the

CBD process (Chap 2 section 2).

Unlike the traditional SPL engineering, the base of core assets obtained from

CBPL engineering relies mainly on software architecture (reference architecture,

Feature A

<1, 1>

Feature A

<0, 1>

F. 1

<n, m>

F. 2

F. m

Feature A

<n, m>

Feature A

Feature A (T: v)

73

refinement of components and reusable components...). While, its difference

compared to the traditional CBD is the introduction of variability management

activity. Since variability is handled from the early development stages, reusable

components obtained from domain engineering process do not have to be adapted

to the specific needs of final applications, which make the application assembly

step easier and faster.

The CBPL domain engineering consists of three activities that are Domain

analysis, Product-line architecture design and Components implementation

(Figure 1). The purpose of this sub-process is to produce the reusable core assets

and to provide the effective means that help in using these core assets to build

new products within the SPL. The main outputs of this process are: reference

requirements, reference architecture and reusable components.

3.3.1. CBPL domain engineering

Domain analysis: instead of exploring the application domain in order to find the

possibly reusable components, we use the techniques provided by SPLE

(variability management) to systematize the reuse of components. Thus we start

by delimiting the CBPL scope, and then we identify the domain requirements and

the predictable variations. The requirements are documented mainly using the

composition oriented FM.

Product-line architecture design: in this step the common CBPL architecture is

designed basing on the constructed FM in the previous step. The architecture

documentation bases on the IASA extension component model that we present in

the next section. The Product-line architecture serves as reference architecture for

the various CBPL members. It represents an important core asset that will help in

deriving final applications.

Components implementation: in this step components (and all reusable elements)

are refined, implemented, and tested for reuse in the different CBPL applications.

The resulted core assets are collected in a repository and are made available for

reuse at application derivation step.

3.3.2. CBPL application engineering

Application engineering consists in developing the final products, using the core

assets and the specific requirements expressed by customers. This sub-process

consists of three steps:

Application assembling

the previous process. The

to be used.

Application analysis

application requirements i.e.

fit the need of the application under development.

extended by the specific applications functionalities if those latter have not been

considered during the domain engineering.

Architecture design

reference architecture according to the FM configuration obtained from the

previous step to get the application architecture

application architecture

Application assembling

components from the previous step according to the

testing the resulted product.

Figure 3. 1

consists of three steps: Application analysis, Application architecture design

Application assembling. Each step is facilitated by the reuse of the outputs from

the previous process. The result of application engineering is an application ready

Application analysis: in this first step, the variability is selected according to the

application requirements i.e. the FM is derived to get a specific configuration that

f the application under development. The requirement models are

extended by the specific applications functionalities if those latter have not been

considered during the domain engineering.

Architecture design: this activity is responsible for the derivat

reference architecture according to the FM configuration obtained from the

to get the application architecture. The selected components for the

application architecture are also derived according to the application

Application assembling: this activity consists in assembling the resulted

components from the previous step according to the application architecture and

testing the resulted product.

1: Component-Based Product Line engineering

74

Application architecture design and

. Each step is facilitated by the reuse of the outputs from

result of application engineering is an application ready

in this first step, the variability is selected according to the

FM is derived to get a specific configuration that

The requirement models are

extended by the specific applications functionalities if those latter have not been

: this activity is responsible for the derivation of the

reference architecture according to the FM configuration obtained from the

The selected components for the

lication requirements.

in assembling the resulted

application architecture and

Based Product Line engineering [93].

75

3.4. Variability Modeling In CBPLs

CBPL approach is emerging as a promising and viable approach in software

engineering. However, traditional component-based approaches do not support

variability management. It becomes necessary to establish new approaches or

enhance existing component-based approaches in order to allow an effective

variability management. In this section, we propose a new approach that allows

the variability specification within CBPLs [93]. We extend the architecture

specification approach IASA (chapter 2- section 3) by the necessary concepts for

variability modeling. In contrast to the existing work (chapter 2- section 4), our

approach presents an explicit specification of the various variability types related

to the different architecture concepts.

We choose the IASA approach because it allows us a clear description of

components, connectors and interfaces and thus, variability could be clearly

presented in each of them. Furthermore, IASA supports the aspect concept which

is a crucial concept in our approach. The aspect concept provides the necessary

techniques for merging variable concerns with the business ones.

3.4.1. Architecture design with IASA

The design according to IASA approach uses a component-oriented process

which proceeds by successive refinement. An IASA component is seen from the

outside as a black-box that communicates with the external world through Ports,

which define the services it can provide or require. The internal view of a primitive

component is inaccessible, while the structure of a composite component is well

defined, it consists of three parts: Operative Part, Aspect Part, and Control Part

(Chap 2 section 3). The Figure 2 sets out the basic IASA notations.

Figure 3. 2: The basic IASA notations.

76

3.4.2. Variability modeling extension for IASA

Since IASA have not been developed to capture explicitly all variability types,

we propose to extend it in order to meet the SPLE needs. We define three types of

variability in architecture: Mandatory, Optional and choice.

3.4.2.1. Mandatory and Optional elements

Mandatory architecture elements represent those elements that are common to

all the SPL members. While, optional architecture elements are those elements

which can be selected or not to be part of an SPL member. Each element in the

architecture can be mandatory or optional according to the context in which it will

be used. In order to represent explicitly these variation types, Components and

Connectors are annotated by: «Mdr» and «Opt» which means respectively:

Mandatory and Optional.

Considering that interfaces (ports) in the same component can be optional if

they are not needed in some contexts, variability in interfaces is represented as

follow:

Mandatory provided interface

Mandatory required interface

Optional provided interface

Optional required interface

Figure 3. 3: Interfaces variability notation.

3.4.2.2. Choice variations

The choice variability type represents the situations in which several choices

are available at the same time. This accurse when we have several

implementation for the same component or when a variable components set can

be related to another component by the same connector. Thus, we distinguish

between two choices kinds:

77

Figure 3. 4: Choice variability notations.

a. Component choice:

When there are a variety of implementations for the same component, the

variable component is annotated by: «Choice» and related through the same

interface to all its variants as shown in Figure 3. The port of the choice component

that is related to the implementations choices is called choice port. It is

characterized by a natural variable choicesNbr that states the implementations

number related to the port. Each component implementation choice is connected

to an access point from the choice port. The connectors that relate the choice

component to its implementations could be optional or mandatory.

b. Choice connector:

When a component is related to a variable set of components, the relation

between these components becomes a connector annotated by: «Choice». The

choice connector relates from one side a component and on the other side a

variable components-set such as those components have a similar relationship

with the former one. The ports and connectors that connect the choice connector

to the different components can be mandatory or optional. The graphical

specification of this component type is depicted by the Figure 3.

The number of components that can be supported by the connector is

expressed by a cardinality interval [n, m], such as:

 n=m if the type of the relation is AND;

 m>=n if the type of the relation is OR;

 n=m=1 if the type of the relation is XOR or Alternative.

78

The choice connector is in fact a connection component therefore it is created in

the same way as an ordinary component. Nevertheless, the choice connector is

characterized by two natural variables n and m representing its cardinality interval.

Such as n is the minimum components number that could be related at the same

time to the choice connector, while m is the maximum components number that

could be related at the same time to the choice connector.

3.4.3. Mapping features to the architecture

The feature modeling represents a simple way for capturing commonality and

variability in the scope of a SPL. Once constructed, an FM can help widely in the

variability specification for the SPL architecture. The FM we propose is component

oriented in such a way that ease the passage between the two modeling steps

domain analysis and product-line architecture design. Table 2 matches between

the FM notations and their corresponding notations in the architecture.

Table 3. 1: Mapping features to the architecture

Features relationships Corresponding architecture

Composition relationship
The father feature is a composite component of its sub-

features.

Solitary feature with

cardinality
Several implementations of the same component

Mandatory feature Mandatory component

Optional feature Optional component

Choice with cardinality

If it corresponds to a specialization, this results in a

choice component

If it corresponds to a composition, this results in a choice

connector

The FM gives an abstract view of variability in a SPL; a more concrete variability

representation is needed for the products construction. For this, representing

variability in software architecture is the solution for modeling variability at the

different abstraction levels (configuration, components, connectors, ports…) and to

narrow much more the modeling to the code.

79

3.5. Case study: e-meeting CBPL

In this section we apply the CBPL approach explained in this chapter in a

specific domain which is: E-Meeting applications. E-meeting applications exhibit

an excellent solution to overcome the problems that can occur when organizing a

face to face meeting namely: distance, costs and availability. Using online meeting

technologies allows us to simplify the meeting organization processes, save time

and displacement expenses. The meeting concept can be found in various fields.

For instance: meetings for year-end deliberation, meetings of a Scientific Council,

elected members meetings of an APC1, APW2 or APN3, meetings of business

leader, etc. E-meeting applications designed for these various meetings types

share many similarities and are distinguished by some particular aspects. It

becomes very important to take advantage of similarities between these

applications to develop a family of e-meeting applications. This product family

(SPL) once implemented is able to produce for each meeting type, the appropriate

software in a very short time. In this case study we will focus on the component-

based specification of the e-Meeting SPL. Next sub-sections describe the artefacts

obtained from Domain analysis and Product-line architecture design steps.

3.5.1. Domain analysis

Figure 3. 5: Business feature diagram for e-Meeting product line.

1 An APC is the elected assembly which governs a commune (baladiyah).
2 An APW is the elected assembly which governs a wilaya (province).
3 An APN is the national elected assembly.

E-Meeting

Create meeting

Planning

Item

validation

Manage meeting

Manage

permissions

Generate

report

Publication of

results

ArchivingConfiguring

Meeting

type

Meeting

tools

Attendance

management

Schedule

management

Files

management

Participation

management

<0, *>

Item

discussion

Synchronous

discussion

Asynchronous

discussion

<0, 2>

Management of

recurring items

<1, 1><1, 1>

<1, 1>

<1, 1>

<1, 1>

<1, 1>

<1, 1><1, 1>

<1, 1>

<1, 1>

<1, 1>

Request for meeting

Propose an item New item

notification

Agenda

generation

Date and time

Object and

schedule

Venue

Manage

participants

Groups

management Invitation

Registration

<0, 1>

<0, 1>

<0, 1>

<0, 1>
<0, 1>

<0, 1>

<0, 1><0, 1>

<0, 1>

<0, 1>

<0, 1>

<0, 1>

80

The goal of domain analysis is to extract and document the similarities and

variations between the SPL members. To document the common and variable

features of our product line, we have used the FM. Figures 4 and 5 show a part of

the feature model of our e-Meeting CBPL. The notation used is the one presented

in section 2.

The constructed feature model is divided into two diagrams according to the

features type they include: business features and technical features. Features in

the first diagram called Business features (Figure 4), represent the business

functionalities provided by the system. This diagram shows that the main features

of an e-Meeting application are “Create meeting” and “Manage meeting”. Each e-

Meeting application must allow at least the planning of a meeting and the

generation of reports. However, in some cases a prior step can be needed before

performing a meeting which is: the discussion of the meeting item, modeled by

“Request for meeting” in the FM.

“Management of recurring items” feature can be included if the customer is

interested to the history of previously treated items, there results, statistics about

them and so on. “Configuring” a Meeting is an optional feature that consists in

preparing the application by fixing the meeting type (video, audio, chat...), in

addition to the needed tools to run a meeting according to the user’s requirements.

“Meeting tools” might include “Attendance management”, “Participation

management”, “Schedule manage”… the application can eventually be extended

by new tools if required.

Figure 3.6: Technical feature diagram for e-Meeting product line.

<1, 1>
<1, 1> <1, 1> <1, 1>

<1, 1><1, 1>

<0, 1>

<1, 1><0, 1>

<1, 1>

<1, 1><1, 1>

E-Meeting

Files management User

management

Application

configuration

Documents

management

Video/audio

management
Exploring

Online

view

Download

<1, 2>

Format Template

PDF RTF ODF Default Customized

Account

management

Roles

management

Authentication

management

Appearance Language

Arabic

<1, *>

UI

Management

French

English
<1, *> <1, 2>

Notification

Public

Notification

Individual

Notification

<1, 2>
<0, 1>

81

The second diagram Figure 5 represents the technical features; it means

features that do not reflect the business aspect of e-Meeting applications.

Technical features encompass features related to the application (configuration, UI

management), features related to users (Accounts management, Roles

management, Authentication), and features related to files (including: text, video

and audio files). Those features could be found in any e-Meeting application, but

not all of them are mandatory.

3.5.2. Product-line architecture design

The purpose of Product-line architecture design is to establish the generic

software architecture of the product line. Variability identified during domain

analysis must be explicitly specified in the product-line architecture. To design the

reference architecture of our composite SPL we have used the notation presented

in section 4. The reference architecture of the e-Meeting SPL is reported in figure

6. The mandatory components that must be included in each member of the SPL

are annotated by «Mdr» (Meeting_Management,Meeting_Planning,

Roles_Management…), while those which are optional are annotated by «Opt»

(Items_Management, Meeting_Configuration…).

The mapping between FM and architecture is clear when comparing the

models. Mandatory features such as: manage meeting, planning and account

management (in Figures 4 and 5) correspond to mandatory components in the

reference architecture (Figure 6), respectively: Meeting_management_Cmp,

Manage_planning_Cmp and accounts_management_Cmp. Also, optional features

like: Request for meeting, Configuring and UI management (in Figures 4 and 5)

correspond to the following optional components in the reference architecture:

Meeting_Request_Cmp, Meeting_Configuration_Cmp and UI_management_Cmp

respectively.

82

Figure 3. 7: Reference architecture of e-Meeting product line.

The component that corresponds to the “Meeting tools” feature does not appear

in the reference architecture (Figure 6) because it is part of the refinement of the

first level feature “Meeting configuration”. Figure 7 shows the refinement of the

“Meeting_Configuration_Cmp”. As presented in Table 1, in the case of Choice

feature, if the relation between this feature and the sub-set of feature is

composition then it will became a choice connector in the architecture. Thus

“Meeting configuration” maps to the choice connector “Meeting_tools_Cnt” (Figure

7), and each of its sub-features: “Attendance management”, “Participation

management”, “Schedule manage” and “Files management” (Figure 4)

correspond respectively to: Attendance_Cmp, Participation_Cmp, Schedule_Cmp

and FilesManage_Cmp (Figure 7). The choice connector allows us to represent

this variability type.

«Mdr»

:Accounts_Management

Cmp

«Mdr»

:Roles_ManagementC

mp

«Opt»

:Meeting_RequestCmp

«Opt»

:Meeting_Configuration

Cmp

«Mdr»

: Meeting _Planning Cmp

«Mdr»

: Meeting _Management

Cmp

«Mdr»

:Notification

Cmp

«Opt»

:Items_ManagementC

mp

«Opt»

:UI_ManagementCmp

«Opt»

:Archive_Management

Cmp

«Mdr»IAccount

«Mdr»IRole

«Opt»IRequestMeeting

«Opt»IConfigMeeting

«Mdr»IPlanMeeting

«Mdr»IManageMeeting

:Main:Authentication

«Opt»IMeetingItem

«Opt»IConfigUI

«Mdr»IMeetingNote

«Mdr»IPlanNote

«Opt»IConfigNote

«Opt»IRequestNote

«Opt»IArchiveMeeting

«Mdr»IRoleEvent

«Opt»

: Voting _Cmp

«Mdr»IVote

83

Figure 3. 8: Variability model for “Meeting_Configuration” component.

3.6. Conclusion

The approach presented in this chapter aims to reach a high level of reuse that

can be obtained through the integration of two approaches: SPLs and CBD. Each

of these approaches promotes reuse at different granularity levels. CBD supplies

technologies for reuse in the small, while SPL approach intends reuse in the large.

Putting them together allows us to reach large scale reuse and flexibility at the

same time. Moreover, CBD can overcome the lack of maturity in SPL engineering

by providing efficient development technologies. The chapter presents also a case

study for an ambitious field (e-Meeting) aiming to validate the proposed approach.

The designed e-Meeting reference architecture represents a framework for all

foreseeable e-Meeting applications and can be extended to cover specific

requirements if needed. Since, software can be quickly derived from a CBPL by

the simple composition of existing components; the activity of deriving new

members in a CBPL can be greatly automated.

:Main:Authentication

«Opt»

:Meeting_Configuration

Cmp

«Opt»IConfigMeeting

«Mdr»

:Notification_Cmp

«Opt»

:UI_ManagementCmp

«Choice»

:Meeting_tools_Cnt

[0..*]

«Opt»

:FilesManage_Cmp

«Opt»

:Attendance_Cmp

«Opt»

:Participation_Cmp

«Opt»

:Schedule_Cmp

«Opt»IConfigNote

«Opt»IConfigUI

«Opt»IMeetingTools

84

CHAPTER 4

ASPECT MULTI PRODUCT LINES (AMPL)

4.1. Introduction

SPL approach has been successfully applied in various fields containing a

manageable variability set. However, in some large fields (like e-Government),

single SPLs are no longer sufficient to manage variability due to their complexity,

broadness and creeping scope. Those fields are, in fact, composed of several

interdependent subfields each of them has a rather different goal. Consequently,

separated SPLs have been built for each of them, resulting in a set of

interdependent SPLs commonly known as MPLs (Section 5- Chapter 1). Yet, the

emergence of MPLs has given rise to new challenges for SPLE.

SPLs of an MPL even developed separately, still present some commonalities

since they belong to the same field. Those commonalities raise the need for reuse

across an MPL. However, the reuse mechanism the most adopted within MPLs is

the direct reuse of the derived components from some SPLs and their integration

with the reusing SPL in order to get a final application. This reuse way is

opportunistic and mostly limited since it was not planned in advance. In most

cases, this reuse way requires substantial adaptations which make the developer’s

work laborious and error prone. So one of the crucial MPLs development

challenges is systematizing reuse between the various SPLs of an MPL.

Another important challenge is the support for structuring product line models

(Section 5- Chapter 1). It is infeasible to represent a MPL using a single model due

85

to its size and complexity. Thus, models representing the multiple SPLs within an

MPL must be structured and organized in order to facilitate the whole MPL

management. This capability helps coping with variability management in large

and complex systems and manages the MPL scope.

Furthermore, product construction within an MPL requires the derivation of

several distributed SPLs. Some SPLs may require, restrict or even exclude the

inclusion of components from other SPLs. Thus, the dependencies between

distributed SPLs must be considered. This process known as distributed derivation

represents another challenge faced by MPLs.

In this chapter we propose a new approach, called AMPL (Aspect MPL), which

helps dealing with the issues mentioned before. Our approach is based on two

main concepts: the separation of concerns and the partial derivation. Firstly, AMPL

decomposes a large scale domain into a set of subfields, such as for each subfield

an SPL will be constructed. These subfields are analyzed in order to find out the

common functionalities between them in addition to the specific requirements of

each of them. Then, we introduce Aspects SPLs that are specialized SPLs in

producing the defined common components. After that, the Aspects SPLs are

partially derived to ease their integration with the AMPL SPLs early in the

development process. The performance of this last activity allows us to avoid the

distributed derivation challenges later. Finally, the resulted SPLs can be derived to

produce final applications for each subfield included in the AMPL.

The chapter is structured as follows: The next section presents the background

of our proposal. Section 3 discusses the foundations of our approach. Section 4

presents the AMPL engineering process. Section 5 describes a case study to

validate our proposal. Section 6 discusses the obtained results. Finally, section 7

comments on related work and compares it to ours while section 8 summaries the

chapter and outlines our future plans.

4.2. Crosscutting Reuse within MPLs: e-Government example

Our approach has been actually inspired by our experience in developing SPLs

for e-Gov field in context of the project “Towards an SPL for e-Government

applications”. The project aims to set up the technological and methodological

bases to the development of an e-Gov MPL. The objective of this MPL is the fast

86

production of software intended to the different Algerian government institutions

(e-Administration, e-Justice, e-Voting, e-Meeting, e-Health, e-Education, etc.). The

produced software should be compatible to ensure high level interoperability

between the various government institutions. However, building a single SPL for

the whole domain is infeasible due to its broadness and complexity. Therefore, a

set of separated SPLs has been built and each of intends a particular e-Gov

subfield, this results in an e-Government MPL. Nevertheless, those SPLs must

preserve interoperability and reuse information must be kept between them in

order to get faster development processes and lower costs and development

effort. In this chapter we consider a sub-set from e-Gov MPL (e-Administration and

e-Education) in order to illustrate the proposed approach, the complete case study

is presented in Chapter 6.

Firstly, we present the specification of two e-Gov SPLs that helps showing the

reuse orientation within MPLs and motivate our work. The case study will be used

next to validate the presented approach.

4.2.1. E-Admin SPL

The first case study addresses a very important e-Gov sub-field, which consists

of online services offered to citizens by the different governmental institutions1

(known as online administration or e-Admin): APC, Wilaya2, Daïra3, Justice, and

Ministry. Considering that we can create a SPL for each kind of institutions, in this

case study, we focus on services provided by APC institutions. Since these SPLs

share the major part of functionalities, the core assets realized during e-APC

SPL's domain engineering could be reused in the other SPLs (Wilaya, Daïra,

Justice and Ministry). APC is the local Algerian government institution the nearest

to a municipality inhabitants. Its services are involved in the daily life of citizens.

Therefore, requests on these services are intensive and must be fulfilled

effectively. In this section we motivate the introduction of SPL approach in this e-

Government sub-field, and then we present the specification of e-APC SPL.

The e-APC system aims to enable any citizen to access through the internet to

various services of an APC. Most frequently required services by the citizen from

1 We consider her particularly services offered by Algerian e-Government to illustrate our approach basing on practical experience.
2 Algeria is divided into 48 wilaya (province) headed by walis (governors). Each wilaya is further divided into Daïras, themselves
divided in communes (baladiyahs).
3 A Daïra is tasked to deliver passports, driving licenses and national identity cards for citizens residing in its territory.

87

the APC are the production of official documents like birth and wedding

certificates. Inside the APC, the service delivering such official documents is called

the “Civil State Service”. E-APC applications are more and more requested owing

to the benefits they provide to government and citizens as well. It becomes

necessary to find a solution which allows answering quickly to the large number of

requests on these applications all by reducing time and cost of development and

maintenance. The solution that we have adopted is the SPL approach. This latter

allows us to manage variability and gain from the large scale reuse as well. Final

applications are quickly developed by the simple assembling of reusable

components. Quality is improved through reuse, since components are tested in

many contexts, which prove their efficiency in several products kinds.

For this case, the feature model we constructed is divided into three diagrams

according to the type of features it includes: business features, technical features,

and implementation features. Features in the first diagram called business

features (Figure 4.1), encompass the business services provided by e-APC

application. An e-APC application may allow citizens to extract one or more kinds

of vital records. Those latter might be transcribed on registers (certificate of birth,

wedding, etc.) or not transcribed (family record, residence, etc). “Event

declaration” functionality allows citizens to declare birth, wedding, divorce and

death events online. “Documents modification” includes: “Manage mentions” such

as “legal mentions” (mention of birth, wedding ...) and “modification of personal

information”. An e-APC may allow also the electronic validation of provided data in

addition to the download of official documents.

Figure 4. 1: Business feature diagram for e-Administration product line

E-Administration

Request for
document

<1, 2>

Acts transcribed
on registers

Acts not transcribed in
the registers

Download
official Docs

Data Validation

Modify
Personal info

Documents
modification

<1, 2>

Legal
mention

Other
mention

s

Manage
mention

s

Event
declarations

<1, *>

Death

DivorceWedding

Birth

<0, 1> <0, 1> <1, 1> <0, 1> <0, 1>

<0, 1><0, 1>

88

The second diagram shown in Figure 4.2 represents the technical features; it

means features that do not reflect the business aspect of e-APC applications.

Technical features encompass: application configuration, users management,

documents management functionalities. In addition, e-APC applications may need

to communicate with other e-Government applications or between them in the

context of business processes, this functionality is represented in the diagram by

the feature “Communication” that could be horizontal (systems integrated across

different functions) or vertical (local systems linked to higher level systems within

similar functionalities)[92]. An e-APC application (and generally any e-Government

application) may need additional functionalities to complete their tasks, such as:

online meetings, poll and statistics. This is materialized in the feature diagram by a

set of features with cardinality <0, *> that expose the ability for adding other

choices if needed.

Figure 4. 2: Technical feature diagram for e-Administration product line

The third diagram Figure 4.3 represents the implementation features of the

system; it means implementation details at lower and more technical levels. An e-

APC application usually connects to a data base, provide a GUI, and supply

authentication techniques such as: “Password”, “Digital certificates” and so on. It

may also include “online viewer” for different documents kinds, and even enable to

interact with citizens through different collaboration tools.

User
management

Configuration

Authenticate
produced

documents

Check
authenticated

documents

Document
management

e-Administration

Statistic

< 0, *>

Additional Modules

Publishing
document

Poll

Online
Meeting

<0, 2>

Communication

Vertical
communication

Horizontal
Communication

< 0, 1>
< 1, 1><1, 1>

<1, 1>
< 0, 1>

< 1, 1> < 1, 1>

89

Figure 4. 3: Implementation feature diagram for e-Administration product line

4.2.2. E-Education SPL

The second case study tackles another Government subfield which is

Education. E-Education is a broad and ambitious domain which has paid a great

attention recently, due to the prominent advantages it brings to education. E-

Education means the use of ICT in education to improve the teaching-learning

process. Instead of the several proposed e-learning solutions, SPLE present

exciting benefits to this field, more detail about that can be found in our work [94].

E-Learning applications could be implemented in a variety of settings: for schools

and universities to compliment or enhance classroom learning, for corporations to

provide training and certification for their employees, and for organizations to

provide e-learning courses to a larger learners population virtually anywhere in the

world. In this case study, we are more interested in the e-Education systems

supplied by Government to its citizens, which represent an important subfield of e-

Gov. E-Education systems can be supplied by private or public institutions

intended to primary, secondary and higher education. However, all of these

applications share a set of common software elements and differ by some variable

parts. The analyses we have done resulted in the feature diagrams shown in

Figures 4.4, 4.2 and 4.3.

The first diagram reported in Figure 4.4 shows the business features of e-

Education SPL. The main feature of an e-Education application is “Course

management” that includes: the content of courses, enrollment of students in a

course, and may include “Export content” functionality. An e-Education application

may also comprise “Groups management”, “Download of official documents” and

<0, *>

E-Administration

Online
viewer

Spreadsheet
s

Portable file

<0, *>

Document

Authentication
tools

protocoles

Smart card

Password

Digital
certificates

<1, *>

Database

SQLServerMySQL

<1, *>

GUI

Theme Language

Ar EnFr

<1, *>

<0, 1>

Forum
Chat

Collaboration

tools

Synchronous Asynchronous

Email

Video

conferencin

Audio

conferencing

<0, *>

<1, 1>
<0, 1><1, 1><1, 1>

<1, 1><0, 1>
<0, 1> <0, 1>

90

“Evaluation” features. Evaluation allows users to benefit from several exercises

types that could be resolved online (tests) or loaded as reports by students (work

report). The score could be calculated “automatically” or “manually”. “Report

cards” and “Certificates” could also be generated by the application. And finally,

users could have the possibility of downloading official documents (report cards,

certificates…) through the application which must allow in such case the electronic

authentication of those documents.

Figure 4. 4: Business feature diagram for e-Education product line

Technical features include functions related to “User management and

authentication”, “Application configuration”, “Document authentication”,

“Communication between applications”, and “Additional modules”. The resulted

technical feature diagram is the same as the one reported in Figure 42 so we do

not repeat it here.

Implementation features diagram is also similar to e-Admin implementation FM

represented by Figure 4.3. E-applications usually need similar implementation

tools or technologies to implement their various functionalities. Those features

vary according to the capabilities and preferences of developers in addition to the

influence of the current studied field.

4.2.3. Comparison and results

In this subsection we review the two presented case studies, in order to analyze

and compare them according to their specifications. Table 1 lists a set of features

from both of e-Administration and e-Education product lines. Features are divided

into three categories according to the feature diagrams they are extracted from:

business features, technical features, and implementation features. For each

category we list the first level features it includes from each SPL, such as:

<1, 1>

e-Education

Course management Download
official Docs

Enrollment

Online
test

Work
report

Manual Automatic

<0, 2>

<0, 2>

Certification

Report card

Groups
management

Default Standard

SCORM IMS AICC

<0, *>

Evaluation

Content

Online
view

Download

<1, 2>
Scoring

Export content
<1, 1> <1, 1>

<1, 1>

<0, 1> <0, 1>
<0, 1>

<0, 1>

<0, 1>

<0, 1>
<0, 1>

<0, 1>

91

1. Business features: represent the purpose of e-Government applications (Civil

state services for e-Administration, and Course management for e-Education).

2. Technical features: are features that do not reflect the business aspect of

applications. They comprise features related to the application (configuration,

communication), features related to users (user profile management, user

authentication), and features related to documents (documents authentication,

monitoring and validation). Those features could be found in any application,

but not all of them are mandatory.

3. Implementation features: are related to the implementation of the previous two

kinds of features.

Table 4. 1: Comparing e-Admin and e-Education SPLs features

e-Admin SPL e-Education SPL

Business features - Event declarations
- Data validation
- Request for documents
- Document modification
- Download official Docs

- Course management
- Groups management
- Evaluation
- Download official docs

Technical features - User management
- Document management
- Communication
- Configuration
- Additional modules (Poll, Online

Meeting,
Statistics…)

- User management
- Document management
- Communication
- Configuration
- Additional modules (Poll, Online

Meeting,
Statistics…)

Implementation
features

- GUI
- Database
- Online viewer
- Collaboration tools
- Authentication tools

- GUI
- Database
- Online viewer
- Collaboration tools
- Authentication tools

From the table it is obvious that a large part of features from the two SPLs is

common, and the main differences lies in business features. Technical features

are the same, because they comprise technical aspects that are common to all e-

Gov applications. Any e-Gov application needs to manage its users and

manipulated-documents by maintaining data and authenticity. Implementation

features are also identical. Choices of implementation could be available for any

kind of applications. They defer according to the capabilities and preferences of

developers in addition to users’ requirements and the studied-field’s particularities.

The only kind of features that is mostly different is Business features what is

92

expected since each SPL has its different purpose. Nevertheless, commonality

can appear in some business features such as the case of “Download official

Docs” and “additional modules” features.

The large similarity amount between these two e-Gov SPLs evinces the

necessity of systemizing inter-SPLs reuse. If we expand this perception to cover

all the e-Gov subfields (e-Administration, e-Justice, e-Voting, e-Health, e-

Education, etc.) or a large part of them, we find that applications from the other

subfields need similar components for technical and implementation requirements

as well as different components for their business or specific requirements. E-Gov

applications usually require components to manage users and documents, tools

for collaboration and inter-applications communication, additional modules such

as: e-meeting components, search, statistics and so on. Promoting reuse between

several SPLs targeted to the various e-Gov subfields will contribute in decreasing

cost, time and effort of development.

Inter-SPLs reuse can be achieved in two ways:

1. Reusing components derived from one SPL in another SPL after adapting it to

the reusing SPL requirements. This first solution requires adapting the reused

components to fit each new reusing context. This reuse way is opportunistic

and mostly limited since it was not planned in advance. In most cases, this

reuse way requires substantial adaptations which make the developer’s work

laborious and error prone.

2. Or, developing one e-Gov SPL covering the whole e-Gov domain instead of

the set of separated SPLs. This solution will result in a very broad SPL

covering several e-Gov subfields (public Admin, education, health, assurance,

etc.). Considering that each e-Gov subfield SPL contains more than 200

features. The features number of an e-Gov SPL will reach more than a

thousand features. Furthermore, not only the features are numerous but also

the variations will be diversified since several business purposes are included.

Complexity will significantly increase owing to the considerable variability

contained in this e-Gov SPL. Furthermore, e-Gov domain is known to be a

creeping domain (there borders are not well-defined and could expand by

time) so challenges will be faced from the first development step (scoping).

93

Managing variability in such a SPL is not a trivial task and automating the

derivation step will be difficult or even impossible.

In the next section, we propose an approach to overcome the before-mentioned

challenges and benefit from commonalities between separated SPLs by

systematizing inter-SPLs reuse.

4.3. Aspect Multiple Product Lines (AMPL)

The crucial goal of AMPL approach is to set up the bases for a MPLs

engineering methodology. We aim by this methodology to provide MPLs engineers

by the necessary means for organizing the MPL SPLs in order to simplify their

management, systematizing reuse across separated SPLs and integrating

interdependent SPLs.

4.3.1. Separation of concerns in MPLs

Considering the e-Gov MPL that includes several subfields: e-Services supplied

by public administrations such as: vital records, passports, identity card, voting,

poll, justice, etc.; in addition to other services that could be provided by private or

public institutions such as: education, health, assurance, transport, retirement,

services for disabled people and so on. Separated SPLs can be built for each of

those subfields: e-Admin, e-Voting, e-Justice, e-Health SPLs, etc. However, all of

those SPLs still have in common some crucial features such as: security,

Graphical User Interface (GUI), user management, communication and research.

In order to well structure our MPL model, we propose to separate between

features that are common to all (or a set of) MPL SPLs and those that are specific

to each sub-SPL (intended for basic business sub-field functionalities). We see the

common features to all (or a set of) MPL SPLs as crosscutting concerns for the

MPL, since they reply to transversal needs for a set or all MPL SPLs, and we call

them “MPL aspects”. Thus, MPL aspects represent the common features for a set

of SPLs within the same MPL. This acting way is different from the traditional

separation of concerns that have been applied to SPLE [95]. In our approach, we

do not encapsulate features that are scattered across several components (this

could be done for each single SPL) but we operate at a higher level (MPL level)

94

and separate common features that are scattered across several SPLs of the

MPL.

Those aspects may vary from an SPL to another one and their reuse requires

adaptations to fulfill the new needs. Thus, MPL aspects can themselves be

derived from dedicated SPLs. We propose to devote, for each MPL aspect, a SPL

that allows systematizing its reuse throughout the MPL. We call those SPLs:

Aspect SPLs (ASPLs). ASPLs serve as a base to be reused by the various MPL

sub-SPLs; the development process of these latter will focus on business needs

and will benefit from existing similarities between SPLs of the MPL. Thus,

crosscutting reuse within the MPL is preplanned and systematized thanks to

ASPLs.

Separation of concerns at MPL level helps structuring the MPL models. We

distinguish between two kinds of models: MPL sub-SPLs models and ASPLs

models. MPL sub-SPLs are those producing final applications for the various MPL

subfields, while ASPLs produce components to be reused by the MPL sub-SPLs.

The relationship between ASPLs and sub-SPLs is defined at early development

stages and their integration can also be done early. Consequently, distributed

derivation challenges will be avoided.

4.3.2. Aspect SPLs

ASPLs [96] are a set of SPLs devoted for producing components that

materialize the MPL aspects. Those aspects may include: business features

(applications capabilities related to the SPL purpose), technical features (non-

business capabilities as: security, user management, documents management,

application configuration) or implementation features (implementation details at

lower and more technical levels). Taking the case of e-Gov MPL, the key common

features that we can distinguish are:

 Security: e-Gov applications must be highly protected since they handle

personal data, communicate between them, and transact with users. Security

is a common requirement between e-Gov MPL SPLs.

 Communication: e-Gov applications need to communicate, share and

exchange data (in context of business processes) in order to provide efficient

services to citizens.

95

 GUI: Having a unified GUI for the various e-Gov applications is an important

goal that helps promoting and facilitating their usage.

 Furthermore, there are other functionalities that may be included in several e-

Gov applications to complete potentially additional needs, such as: e-Meeting,

statistics, poll, search, publishing documents and so on. Those additional

functionalities represent also aspects for the e-Gov MPL.

Thus, in the e-Gov case, we can develop an ASPL planned for: security, e-

Meeting, statistics, GUI and communication. ASPLs must be designed to fit needs

of each MPL sub-SPL that is intended to reuse them. So instead of adapting

components for each reusing SPL, ASPLs will take into account the variable

contexts of the whole MPL.

Hence ASPLs aim, on the one hand, to systematize reuse throughout the

various MPL SPLs by defining the MPL aspects, and devoting ASPLs for each of

them. On the other hand, SPL development often gives more emphasis to

business functionalities. Ignoring secondary (especially technical) functionalities

decreases systems’ performances, given that a weakness in the SPL design can

cause problems throughout all its members. Improving these functionalities is one

of ASPLs’ advantages. Since ASPLs will be created by specialized developers and

tested in different contexts, they will provide MPLs by high quality components

which will participate in improving the performances of the derived applications in

addition to simplifying the MPL SPLs development processes by reusing core

assets derived from ASPLs.

4.3.3. Partial derivation

Partial derivation4 is a transformation procedure that takes as input the core

assets of an SPL to be reused (ASPL) and generates a partially derived SPL

ready to be integrated with its reusing SPL (MPL sub-SPL) [96] [97]. Partial

derivation consists in modifying a set of Variation Points (VPs) included within the

reusable SPL’s core assets in order to fit the reusing SPLs’ requirements.

Ultimately, the partial derivation can alter a set of VPs or in some cases all the

SPL VPs may be modified to meet the new needs. As we will have a full SPLs

integration (not only the code is composed), all artefacts types to be composed

4 Details about Partial derivation can be found in Chapter 5.

must be partially derived from requirements models to the architecture and

implementation code. The set of partially derived artefacts will be completely

derived thereafter as a part of the reusing SPL.

Partial derivation differs from the traditional derivation process by the fact that:

the partial derivation process does not produce an application ready to be used

(as it is the case in the ‘full’ derivation),

artefacts intended for integration with their reusing SPL and that could be d

completely as part of it.

4.4. AMPL Engineering

The AMPL engineering consists in two stages: ASPLs engineering and Sub

SPLs engineering. Figure

have not detailed the various SPLs development processes since they are similar

to the traditional ones (

subsections we focus on the reuse steps of ASPLs throughout AMPL engineering.

Figure 4.

Before embarking the ASPLs

MPL scope and separate between the MPL sub

throw two activities: MPL requirements engineering and separation of concerns.

1.MPL requirements engineering:

defining which sub

must be partially derived from requirements models to the architecture and

implementation code. The set of partially derived artefacts will be completely

ved thereafter as a part of the reusing SPL.

Partial derivation differs from the traditional derivation process by the fact that:

the partial derivation process does not produce an application ready to be used

(as it is the case in the ‘full’ derivation), but rather a set of partially derived

artefacts intended for integration with their reusing SPL and that could be d

completely as part of it.

AMPL Engineering

The AMPL engineering consists in two stages: ASPLs engineering and Sub

SPLs engineering. Figure 4.5 shows the main AMPL engineering steps

have not detailed the various SPLs development processes since they are similar

to the traditional ones (Chapter 1- Section 3). So, in the Figure

subsections we focus on the reuse steps of ASPLs throughout AMPL engineering.

Figure 4. 5: ASPLs life cycle within AMPL engineering

Before embarking the ASPLs development process, we must first define the

MPL scope and separate between the MPL sub-SPLs and ASPLs. This is done

throw two activities: MPL requirements engineering and separation of concerns.

MPL requirements engineering: consists in defining the MPL boundaries by

defining which sub-fields are included in the MPL scope, eliciting and

96

must be partially derived from requirements models to the architecture and

implementation code. The set of partially derived artefacts will be completely

Partial derivation differs from the traditional derivation process by the fact that:

the partial derivation process does not produce an application ready to be used

but rather a set of partially derived

artefacts intended for integration with their reusing SPL and that could be derived

The AMPL engineering consists in two stages: ASPLs engineering and Sub-

shows the main AMPL engineering steps [96]. We

have not detailed the various SPLs development processes since they are similar

). So, in the Figure 4.5 and next

subsections we focus on the reuse steps of ASPLs throughout AMPL engineering.

ASPLs life cycle within AMPL engineering [96].

development process, we must first define the

SPLs and ASPLs. This is done

throw two activities: MPL requirements engineering and separation of concerns.

consists in defining the MPL boundaries by

fields are included in the MPL scope, eliciting and

97

documenting the common and variable requirements in the various MPL

subfields. This activity takes as input the MPL goals and relays on the sub-

SPLs requirements if they exist, or on existing applications in the MPL field. Its

output is the MPL scope and the documentation of the MPL requirements.

2.Separation of concerns: consist in analyzing the MPL requirements in order to

separate between the MPL sub-SPLs and determine the MPL aspects (the

MPL crosscutting concerns). The MPL sub-SPLs are separated according to

the goal of each MPL sub-fields (for different goals we devote different SPLs).

The MPL aspects are determined after that by specifying the common features

to a set (or all) of MPL sub-SPLs. For each MPL aspect an ASPL is developed

in the next step. The input of this activity is the MPL requirements and goals.

Its output is a planning that defines the MPL sub-SPLs, the ASPLs and which

sub-SPLs reuse components from which ASPLs. In addition to the

documentation of the MPL requirements organized into sub-SPLs and ASPLs.

4.4.1. ASPLs engineering

This first stage includes a set of ASPLs development processes, each one

dedicated to produce an SPL that fulfils the requirements of several MPL subfields

for a specific MPL aspect. Examples on ASPLs for e-Gov case have been

demonstrated in section 3.2. ASPLs development processes are similar to the

traditional SPLs development processes, unless there is no application

engineering step since their aim is not to develop running applications, but to

create core assets that will be reused later. Each ASPL development process

takes as input one MPL aspect’s requirements which are related to a set of MPL

subfields that share this aspect. The aim is to fulfill this aspect’s requirements for

an SPLs set in order to permit crosscutting reuse among them.

The outputs of this stage consist in all the developed artefacts resulting from all

ASPLs development processes, including: reference requirements, reference

architectures, reusable components, and reusable tests artefacts. Those artefacts

are collected in the ASPLs assets repository (Figure 4.5) that will be reused in the

next AMPL engineering stage. Finally, we pay attention that the feedback obtained

when developing final applications is taken into account when maintaining the

ASPLs repository in order to integrate new requirements, developing them, and

making them available to be reused

98

4.4.2. Sub-SPLs Engineering

In the second stage, SPLs are developed for each MPL subfield. A sub-SPL

process is similar to the conventional SPL development process, but it is facilitated

by reusing ASPLs repository. This process will be performed for each MPL

subfield that has been included in the AMPL scope, yet new subfields can be

considered thereafter if needed. It takes as input –more than the MPL subfield

requirements- the outputs of the first phase. Reusing ASPLs core assets will

facilitate this process and make it faster. Developers should not worry about needs

that are already developed during the first stage; they will focus only on the

particular services provided by the sub-SPL. This process results in a set of core

assets including the sub-SPL artefacts merged with the partially derived ASPLs

artefacts. ASPLs reuse occurs in three steps (Fig. 3): extraction, partial derivation,

and integration and verification.

4.4.2.1. Extraction

In this step, the ASPLs repository is browsed in order to extract the relevant

ASPLs to be reused by the sub-SPL under development. For example, in the e-

Gov MPL, if we are about developing a SPL for e-Admin (same for an e-

Education) subfield, all of security, e-Meeting, statistics, GUI and communication

ASPLs are selected to be reused by those sub-SPLs, an e-health SPL may require

an image processing ASPL which allows several image processing algorithms for

example, while an e-Voting SPL does not require e-Meeting ASPL. The input of

this activity is the subfield requirements and the ASPLs repository. The output of

this step is the set of ASPLs core assets needed by the sub-SPL under

development and the annotation of reuse places in the sub-SPL models. The

extraction activity involves three tasks:

1.Define the ASPLs which could be of benefit to the sub-SPL according to the

requirements specified during the subfield analysis and import their core assets

to the SPL development site. The functionalities provided by the selected

ASPLs will not be developed during the sub-SPL engineering because they are

already developed during ASPLs engineering, thus, they will be reused from

the imported ASPLs.

99

2.Determine the places in the sub-SPL where ASPLs need to be reused. We call

those places “reuse-spots”. This is different from the pointcut mechanism in

Aspect Oriented programming [95], since reuse-spots do not represent always

aspects to the final application, they may represent business components.

3.Tag the reuse-spots by special annotations indicating that they will be replaced

by the corresponding partially derived ASPLs. The annotated parts will remain

black boxes until integration step. Noting that the annotations must be

maintained over all the SPL artefacts. For instance in feature models, if a

feature correspond to a point where reusing an ASPL is needed, this feature is

annotated by «reuse spot». As illustrated in Figure 4.6-a, all of: e-meetings,

communication, and statistics features represent reuse-spots for e-Admin FM.

A reuse-spot may reflect a simple functionality that will be derived from an

ASPL (we may reuse the e-mail option from the communication ASPL), as it

may be the root of a sub-system (as it is the case for e-Meeting ASPL).

This activity is performed simultaneously with subfield analysis step in order to

prepare the sub-SPL for all possible ASPLs reuse.

4.4.2.2. Partial derivation

During this step, the previously selected ASPLs are prepared for integration

with the sub-SPL. Partial derivation means that during this step a set of (in some

cases all) VPs which are part of a chosen ASPL will be adjusted according to the

reusing domain’s requirements. The input of this activity is all the ASPLs selected

in the previous step. The output of partial derivation for each ASPL is another SPL

partially derived that includes more or less configuration choices (according to the

transformations applied) than the original ASPL. Nevertheless, the resulted SPL

fulfills particularly the reusing sub-SPL’s requirements and it is ready to be merged

with it.

The partial derivation of a model may result in a model that includes more or

less configuration choices than the former i.e. partial derivation can expand or

restrict the derived model. The choices set described by a partially derived model

may be broader than the ones covered by the source model. This comes back to

the fact that sub-SPLs may include some specific requirements that have not been

covered by the ASPLs, so the ASPLs must be expanded to cover the new needs.

100

Restricting or expanding an ASPL model is decided according to the reusing SPL

requirements. We distinguish between two partial derivation categories: restriction

and expansion techniques. The partial derivation of a model can include

transformations from both categories.

 Restricting a model means altering the model in a way that restricts the

choices set covered by the resulted model. The set of transformations that

can be done in this category are: - reducing a cardinality interval of a choice

VP - changing a VP type from optional to mandatory - restricting an attribute

by assigning a value – omitting a VP or a feature (eventually a component).

 Expanding a model means to modify this model in such a way that expand the

choices covered by the resulted model. The set of transformations included in

this category are: - extending a cardinality interval of a multi-choice VP –

changing a VP type from mandatory to optional – adding a VP or a feature

(eventually a component).

We must note that partial derivation is applied to all ASPL artefacts, not only to

the FM. If a VP is altered in the FM it should be altered in the same way for all next

models that contain it. Finally, partially derived ASPLs’ validity must be checked

against the constraints defined when developing ASPLs and those defined by the

reusing sub-SPL. This will ensure the integrity of the resulted artefacts and avoid

conflicts at integration step.

4.4.2.3. Integration and verification:

Integration means the merging of the various partially-derived ASPLs for a specific

MPL subfield with the SPL of this field. The inputs of this step are all the partially-

derived ASPLs artefacts in addition to the reusing sub-SPLs artifacts. Its output is

a set of complete sub-SPLs which are ready to be derived to produce final

applications for the various MPL subfields. Those sub-SPLs are collected in the

sub-SPLs assets repository.

During integration step the need for a composition model arises. The

composition model is the description of how a complete MPL SPL is composed

from a set of partially-derived ASPLs and their reusing sub-SPL i.e. it describes

dependencies between the sub-SPL and the partially-derived ASPLs. In our

approach, composition is performed for each sub-SPL with its reused ASPLs.

101

Hence, each sub-SPL requires a specific composition model to represent its

dependencies with the ASPLs it is reusing. In fact, we have not to invent a new

model in order to describe composition dependencies since the reference sub-SPL

models (models performed during sub-SPL development as reference requirement

and reference architecture) do the job. As stated before, features (and

components) that will be implemented by reusing ASPLs are annotated in the sub-

SPL models as reuse-spots and their relationships with the rest of the system are

specified by the reference models. Consequently, the sub-SPL model is the

composition model of this SPL with its reused ASPLs.

As explained in extraction step, reuse places of ASPLs are annotated in the

sub-SPLs as «reuse-spots» (particular Features). In this step those black boxes

will be replaced by the relevant partially derived ASPLs. For instance, features

annotated as «reuse-spots» are replaced by the corresponding partially derived

FMs of the reused ASPLs (the next section presents an example). Another way to

integrate FMs is to consider reuse-spots features as references to the ASPLs FMs

in order not to clutter the resulted model. In the case of architecture models, we

must note that components implemented by ASPLs are considered as aspects for

the MPL not for the sub-SPL i.e. they may represent business components. Thus,

components derived from ASPLs can represent either aspect-components or plug-

in components for particular sub-SPL architecture and they will be integrated

accordingly.

An important point to consider during this step is models consistency. Models

consistency must be kept after integration. Therefore, the resulted artifacts’

integrity is checked after each integration step. This is done by checking sub-SPLs

constraints with regard to the merged models.

Models integration is a challenging activity in an complex environment as e-

Gov. For us, we assume that our approach is applied in an homogeneous

environment, such as the same modeling languages and implementation

techniques are used. Using the same modeling and implementation languages will

help widely in the well performance of integration activity moreover it allows

reaching final results in shorter development time and avoid long procedure of

adaptation, transformation into common language, and communication between

stakeholders.

102

4.4.2.4. Application engineering

At the end of the previous stages, we obtain a set of SPLs (that construct an MPL)

each of them specialized in the production of applications specialized in a

particular MPL subfield and at the same time those SPLs share the common

features between them through ASPLs. In short, diversity is ensured by letting the

SPLs separated and the MPL crosscutting reuse is managed using the ASPLs. At

this phase, the various MPL SPLs are ready to produce final applications. This last

activity is responsible for deriving final applications from the sub-SPLs assets

repository. During this step, variability is completely bound according to the final

applications’ needs. This process could be performed according to traditional

methods and it result in a final application ready to be used.

4.5. Discussion

In conventional SPLs environments, the derivation of a final application implies

usually a single user working on the derivation of a single variability model.

Otherwise, MPLs environments include several sub-systems and multiple users

are involved to derive the various variability models. Thus, multiple derivation

processes are handled simultaneously for the various MPL sub-SPLs and this

activity is known as distributed derivation. In such a case communication is

needed between the involved users in order to guarantee awareness about the

decisions made in the deferent sub-SPLs [98]. If final applications should be

integrated in order to produce a complete system, compatibility is needed among

them, otherwise adaptation challenges will be encountered. Furthermore,

competitive SPLs producing similar products may delay derivation processes of

the SPL reusing their outputs. If components needed by an SPL are provided by

several other MPL SPLs, choosing the right component for reuse requires a whole

decision process and results in lengthening the production operation. In our

approach we act differently, instead of waiting the derivation phase of an MPL and

facing up the aforementioned challenges we suggest the early integration of each

MPL sub-SPL with the set of SPLs it needs to reuse. SPLs intended to be reused

by a particular sub-SPL, are partially derived according to the reusing SPL

requirements and are integrated during its domain engineering. The matter is to

103

move from distributed derivation to traditional derivation since at derivation time

reusable components belong already to the reusing SPL.

A key step of our contribution is partial derivation. This activity allows the early and

full integration of SPLs artefacts. A major task to perform would be the automation

of partial derivation. The partial derivation automation relies on two concepts:

transformation rules and traceability. Transformation rules correspond to the

various partial derivation techniques (see chapter 5). Those techniques can be

formalized for each SPL artefact. Moreover, traceability must be kept among

artefacts to automate the passage through the various abstraction levels. Thus,

when mapping features to architecture, the partial derivation of a FM results in a

configuration that can be used for the automatic partial derivation of the

architecture model. Nevertheless, this task cannot be fully automated since there

are some partial derivation activities requiring users’ involvement. These activities

stand mainly in the expansion partial derivation techniques. When adding a new

element to the system, the developer must interfere to define the properties of the

new element and its dependencies with respect to the SPL core assets.

In the presentation of our approach, we have focused on two e-Gov MPL sub-

SPLs in order to illustrate the process and the new concepts. To ensure the

scalability of the approach, the MPL requirements engineering must include the

analysis of all the subfields expected to be part of the MPL scope. After that,

ASPLs are developed taking into account the requirements of those subfields.

Nevertheless, the MPL scope can be broaden by adding new sub-SPLs. When

adding a new sub-SPL, the ASPLs of the MPL have to be revised for including the

new requirements imposed by the new sub-SPL. The ASPLs may be also

expanded by the specific requirements that could be detected during sub-SPL

engineering, if those later are expected to be reused by other sub-SPLs. So the

AMPL engineering process is an iterative process in such a way that keeps the

MPL up-to-date continuously.

Our approach seems spending more time at MPL domain engineering. This is

true because planning for reuse, analyzing MPL field, detecting MPL aspects and

building the set of ASPLs requires more time than it is the case for traditional

MPLs (direct development of MPL sub-SPLs). However, the aim of our approach

is to avoid longer and hard decision and adaptation procedures during application

104

engineering phase. The matter is that the MPL base (ASPLs and sub-SPLs) once

it is built, it will allow the fast production of final applications, while, in the

conventional case, time is wasted for each new application derivation.

AMPL approach is a new MPL management approach that aim mainly to

systematize reuse across separated SPLs within an MPL. AMPL could be

efficiently applied in a software field if this latter produces applications for several

subfields or market segments, such as those fields are characterized by significant

commonalities which could be encapsulated in specialized SPLs (ASPLs). Reuse

within each MPL subfield in managed through sub-SPLs while the commonalities

among them will be managed thanks to ASPLs. Nevertheless, we note that both of

separation of concerns and partial derivation are autonomous from each other, i.e.

each of them can be used independently. For instance, separation of concerns

can be used in a MPL environment for structuring the MPL model. It can also be

adapted for decomposing a large SPL into a set of sub-SPLs and thus moving

from single SPL to MPL approach. On the other side, partial derivation can be

adopted for the merging of two (or more) interdependent SPLs aiming inter-reuse

even if they do not belong necessarily to the same MPL.

4.6. Conclusion

The emergence of MPLs in some large software fields arises several

challenges. In this chapter we propose AMPL approach to tackle them and to

reach a well planned MPLs development. AMPL approach bases on two main

concepts: separation of concerns and partial derivation. Separation of concerns at

MPL level helps systemizing reuse among SPLs by organizing the MPL models

into ASPLs aiming to develop the reusable components within an MPL, and sub-

SPLs targeted to produce the MPL final applications. The partial derivation is used

to prepare ASPLs for integration with their reusing sub-SPLs. The early integration

of MPL SPLs avoids the distributed derivations challenges encountered thereafter.

In this chapter we have explained our methodology for developing MPLs, and

illustrated it for the e-Gov field.

Our first perception when developing e-Gov SPLs is that reuse within each e-

Gov subfield is systematized through SPLE techniques; while when inter-SPL

reuse is needed no techniques are available to manage it. Consequently,

105

systematic reuse is lost at SPLs level. We suggest, thus, benefiting from SPLE

advantages not only within each MPL subfield but also across separated and

interdependent MPL subfields. This way, reuse is effectively managed at two

levels: between products within each SPL and between SPLs of an MPL.

The existing works focus on resolving reuse challenges in the late development

stages i.e. at derivation time. They tend to derive separated SPLs and integrate

their heterogeneous instances. At this level several challenges are encountered

known by the distributed derivation. This reuse way is still opportunistic because it

has not been planned before, and results in long procedures of adaptation and

decision. Our approach, avoids these challenges by planning for reuse from the

early development stages. This planning is ensured by the introduction of ASPLs

that are responsible for the production of common components through the MPL.

Thus a crucial outcome of our work is the systematization of reuse between SPLs

of an MPL. The ASPLs will be, after that, partially derived in order to ease their

integration with their reusing SPLs. The partial derivation represents an important

technique for merging separated SPLs. Moreover, it helps integrating the SPLs

early in the development process to avoid the distributed derivation challenges

thereafter. Thus, partial derivation and early integration represent another crucial

outcome of our work.

106

CHAPTER 5

PARTIAL DERIVATION AND COMPOSITION

5.1. Introduction

Current MPLs tends to integrate components derived from some SPLs in other

reusing SPLs within the same MPL at derivation time. This integration way

(distributed derivation) results in several problems. Reused components that are

already developed using particular modeling and implementation techniques must

be adapted to fit the new application requirements. This became more complicated

if the used modeling and implementation languages are different. Moreover, this

procedure needs to be repeated for each context included in the reusing SPL. It

means at each derivation time of an application that needs reusing a component

from another SPL, this component must be adapted to fit the new application

requirements. If the target application needs reusing several components from

several other SPLs, the whole adaptation and integration process must be

repeated accordingly, what result in delaying derivation and produce several

adaptation and integration challenges.

The AMPL approach (presented in the previous chapter) aims, among others, to

avoid the distributed derivation challenges. It switches the MPL engineering from

distributed derivation to traditional derivation which is easier and less time

consuming. This is done by performing the reuse process during the MPL domain

engineering phase. Instead of reusing SPLs instances, we reuse the whole SPL

that is needed by another SPL. Each MPL sub-SPL is merged with its reused

SPLs in the early development stages resulting in a set of SPLs ready to be

derived using traditional derivation techniques. In order to allow the early

107

integration of SPLs we have introduced a new derivation technique called: Partial

derivation. In this chapter we present the partial derivation transformation

techniques for two SPL models: the FM and the Architecture. Than we explain

how the sub-SPL model is integrated with the set of partially derived ASPLs. The

presented techniques are illustrated by a case study.

5.2. Partial derivation

Partial derivation is a transformation procedure that takes as input the core

assets of an SPL to be reused (ASPL) and generates a partially derived SPL

ready to be integrated with its reusing SPL (MPL sub-SPL). Partial derivation

consists in modifying a set of VPs included within the reusable SPL’s core assets

in order to fit the reusing SPLs’ requirements. Ultimately, the partial derivation can

alter a set of VPs or in some cases all the SPL VPs may be modified to meet the

particular needs. As we will have a full SPLs composition (not only the code is

composed), all artefacts types to be composed must be partially derived from

requirements models to the architecture and implementation code. The set of

partially derived artefacts will be completely derived thereafter as a part of the

reusing SPL.

Partial derivation is comparable to the specialization concept that was

introduced by Czarnecki et al [99] [100]. They define specialization as the

transformation process that takes a feature diagram and yields another feature

diagram, such as the set of configurations denoted by the latter diagram is a true

subset of the configurations denoted by the former diagram. Successive

specialization processes result in a final configuration, this method is called staged

configuration [99]. Specialization defers from partial derivation in two crucial ways.

On the one side, the purpose of introducing specialization is to allow handling

applications derivation through several configuration stages what is needed in the

case of software supply chains. Final applications derivation step is then

decomposed into several specialization stages each one is performed by a

particular actor, whereas partial derivation aims to prepare the reusable SPLs for

integration with the reusing SPLs during the domain engineering phase. On the

other side, specialization is defined to be applied particularly on the feature models

what is clear from its definition, while partial derivation is applied to all the artefacts

108

extracted from the reusable SPLs domain engineering (including requirements

models, architecture and final code).

Unlike specialization, the resulting model from a partial derivation procedure

does not describe necessarily a sub-set of the systems set described by the

original model. In some cases, the partially derived model is extended by adding

new functionalities or VPs to fulfill the particular needs of the reusing field. This is

due to the fact that the resulted model will be integrated with the entire reusing

SPL (with all its covered contexts) not a particular final application. Therefore, new

requirements can be detected for some SPL contexts that have not been

considered when developing the SPL for reuse (ASPL). This latter, should be

extended by the new components needed. We can then distinguish between two

partial derivation categories: Restriction and Expansion techniques. The partial

derivation of a model can include transformations from both categories.

 Restricting a model means altering the model in a way that restricts the choices

set covered by the resulted model. The set of transformations that could be

done in this category are: - to restrict a choice VP - to change a VP type from

optional to mandatory - to restrict an attribute by assigning a value - to omit a

VP or a feature (eventually a component).

 Expanding a model means to modify this model in such a way that expand the

choices set covered by the resulted model. The set of transformations included

in this category are: - to extend a choice VP – to change a VP type from

mandatory to optional – to add a VP or a feature (eventually a component).

Those techniques are applied to all the artefacts types of an SPL. The two main

artefacts in our methodology are: the FM and the Architecture models. Next

sections present the partial derivation transformation rules for both of them

illustrated by some examples.

5.2.1. Restriction Techniques

Restricting a Choice VP

A choice VP allows several configuration possibilities unlike optional and

mandatory VPs that allow only two resolution possibilities. It describes the

variation of a set of related elements and may limit the options by a cardinality

interval. For an FM, a choice VP may correspond to: a solitary feature with

109

cardinality or choice with cardinality, while in the architecture it corresponds to: a

choice connector or a choice component. Restricting a choice VP means reducing

the configuration possibilities enabled by the VP. This can be done by removing an

option or an options-set from the elements described by the VP or by reducing the

related cardinality interval.

Changing a Variability Type from Optional to Mandatory

A variability type may be changed if needed by the reusing SPL. An optional

functionality in the reusable SPL may become mandatory if its inclusion in

applications is obligatory for particular reusing contexts. Consequently, a model

element type can be changed from optional to mandatory. This results in reducing

the configuration choices in the obtained model since optional type allows two

configuration choices (the element can be included or not in the application), while

mandatory imply only one configuration way (the element must be included in the

application).

Removing a Functionality

A restriction operation may be done by removing a functionality completely from

the model if it is not expected to be reused by any context included in the reusing

SPL.

5.2.2. Expansion Techniques

Extending a Choice VP It means increasing the configuration possibilities

enabled by the VP. This can be done by adding an option or an options-set to the

elements described by the VP or by extending the related cardinality interval.

Changing a Variability Type from Mandatory to Optional A mandatory model

element may take the type optional instead of mandatory if its inclusion in the

reusing SPL application is not obligatory in some cases. This results in extending

the configuration possibilities of the model (two possibilities instead of one).

Adding a Functionality In the case of specific new requirements by the reusing

SPL, the reused SPL can be extended by new functionalities. Those later must

have no conflict with the model’s constraints in order to preserving consistency.

110

5.3. Partial derivation of the Feature Model

The partial derivation of a FM encompasses the transformations-set explained

below [97].

5.3.1. Restricting a Feature Model

5.3.1.1. Restricting a Choice VP

In the FMs, this means restricting a solitary feature with cardinality or a choice

with cardinality:

1. We may restrict a choice with cardinality by removing a grouped feature or a

set of grouped features from the choices and modifying the interval

accordingly. If the features group size is s and its cardinality is <n, m> such

as n ≤ s, when removing one grouped feature the new features group size

will be s - 1 and its new cardinality interval will be <n, min(m, s-1)> where

min(x, xʹ) takes the minimum of the two natural numbers x and xʹ. We must

note that when removing a feature all its sub-tree of features is removed

from the FM. Special cases occurs when all the choices are removed or only

one feature remains from the features group. In the case of removing all the

grouped features, this VP disappears from the FM and the parent feature

could be omitted if it is not related to other sub-features than the group.

2. Also, a choice with cardinality interval <n, m> may be restricted by changing

the interval to <nʹ, mʹ>, where nʹ ≥ n and mʹ≤ m. Special cases occur when

getting <1, 1> or <0, 0> intervals. When getting <1, 1> interval and the group

of features includes more than one feature, the choice type is called

Alternative. When we restrict the choice interval to <0, 0>, this implies

removing the set of choices with their descendants (because no choice will

be needed), and removing the parent feature of the choices set if it is not

related to other sub-features than the grouped ones.

3. In the case of solitary feature with cardinality, cardinality interval could be

derived in the same way as choice with cardinality interval (rule 2). Special

cases occur when getting <0, 1>, <0, 0> or <1, 1> intervals. If we obtain <0,

1> interval, the feature type is then optional. If we obtain <1, 1> interval, the

feature type is then mandatory. In the case of <0, 0> interval, the feature is

completely removed from the diagram.

111

5.3.1.2. Changing a Feature Type from Optional to Mandatory

An optional feature may be changed to mandatory type if needed, this imply the

obligatory existence of this feature in final reusing applications. This operation is

done by changing its cardinality from <0, 1> to <1, 1>.

5.3.1.3. Restricting an Attribute by Assigning a Value

A restriction way of an FM may be done by assigning a value to an attribute

what is particular for FMs (have not been mentioned in the previous section). This

operation can be done by initializing an uninitialized attribute, or changing the

initial value.

5.3.1.4. Removing a feature

In FMs, we may omit a feature with all its descendants if it is not needed by the

reusing SPL. Omitting a grouped feature or an occurrence from solitary feature

with cardinality cases correspond to what is described in Section 3.1.1.

Table 5. 1: Restriction operations of an FM

Restriction operation Precondition Effect

Remove_grouped_feature(f,g)

(Section 3.1.1)

f is part of the features

group g with size s and

cardinality <n, m>

s := s-1

refine <n, m> to <n,

min(m, s-1)>

if n==0 and m==0

then remove(g, M)

Restrict_group_cardinality(g,M)

(Section 3.1.1)

g is a features group in the

feature model M with

cardinality <n, m>

Refine <n, m> to <n’, m’>

if n’==0 and m’==0

then remove(g, M)

Restrict_feature_cardinality(f,M)

(Section 3.1.1)

f is a solitary feature with

cardinality <n, m>

Refine <n, m> to <n’, m’>

if n’==0 and m’m==0

then remove(f,M)

Opt_to_Mdr(f,M)

(Section 3.1.2)

f is a feature with

cardinality <0, 1>

Refine f cardinality to <1,

1>

Assign_Attribute(t,f)

(Section 3.1.3)

t is an attribute of the

feature f

t:= v

Remove(f,M)

(Section 3.1.4)

f is a feature in the feature

model M

Refine f cardinality to <0,

0>

112

Figure 5. 1: Restriction operations on FMs.

5.3.2. Expanding a Feature Model

5.3.2.1. Extending a Choice VP

In feature modeling, a choice with cardinality may be extended if features are

added to the feature group (changing the interval is not obligatory) or its cardinality

interval is extended as long as consistency is preserved. A choice with cardinality

interval <n, m> and size s may be extended to <nʹ, mʹ> where nʹ ≤ n and mʹ≥ m

and mʹ ≤ s.

In the case of solitary feature with cardinality, more occurrences can be added

to the feature. This is done by changing its cardinality from <n, m> to <nʹ, mʹ> such

as nʹ ≤ n and mʹ≥ m. Even a feature without cardinality may become with

cardinality if new occurrences are added. If it is related to sub-features, they are

Remove
grouped

F

F1 F2 F3

<1,3>

F

F2 F3

<1, 2>

F

F1 F2 F3

<1,3>

F

F1 F2 F3

<2,3>
Restrict group

cardinality

F

F1

<1, 5>

F

F1

<2,4>

Restrict
feature

F

F1

<0,1>

F

F1

<1,1>

Optional to
mandatory

Assign
attribute

F

F1(int:1)

<1,1>

F

F1(int)

<1, 1>

113

eventually multiplied. Constraints related to the altered features must be reviewed

and modified if needed to keep the models consistent.

5.3.2.2. Changing a feature Type from Mandatory to Optional

A mandatory feature may become optional feature, this is done by changing its

cardinality from <1, 1> to <0, 1> in the FM. This transformation task decreases

the probability of including the concerned feature in final reusing applications but it

results in two configuration choices. Dependencies constraints must be changed

or added accordingly.

5.3.2.3. Adding a feature

An FM can be expanded by adding a new feature (with its descendants), or a

feature choice. Related constraints are changed or added accordingly. The case of

adding a feature to a group, or multiplying a feature occurrences are described in

Section 3.2.1.

Table 5. 2: Expansion operations of an FM.

Expansion operation Precondition Effect

Add_ feature_toGroup(f,g,M)

(Section 3.2.1)

g is a features group in the

feature model M with size s

and cardinality <n, m>

s := s+1

Extend_group_cardinality(g,M)

(Section 3.2.1)

g is a features group in the

feature model M with size s

and cardinality <n, m>

If m’<= s

Refine <n, m> to <n’, m’>

Extend_feature_cardinality(f,M)

(Section 3.2.1)

f is a solitary feature with

cardinality <n, m>

Refine <n, m> to <n’, m’>

Mdr_to_Opt(f,M)

(Section 3.2.2)

f is a feature with cardinality

<1, 1>

Refine f cardinality to <0,

1>

Add(f,M)

(Section 3.2.3)

f is a feature

114

Figure 5. 2: Expansion operations on FMs.

5.4. Partial derivation of the Architecture Model

5.4.1. Restricting the configuration choices of architecture Model

5.4.1.1. Restricting a Choice VP

For the architecture model we distinguish between:

1. Restricting a choice component by removing one or several implementation

possibilities. A special case of this operation is when no implementation

choice is left. As a result, a choice component with no implementation is

completely removed from the architecture.

F

F1 F2 F3

<1, 3>
Add feature to

group

F

F1 F2 F3

<1,4>

F4

F

F1 F2 F3

<2, 3>

F

F1 F2 F3

<1,3>
Extend group

cardinality

F

F1

<2, 3>

F

F1

<1,4>

Extend feature
cardinality

F

F1

<1, 1>

F

F1

<0,1>

Mandatory to
optional feature

115

2. Restricting a choice connector by excluding a component or a set of

components from the choices related to the connector. If the components

group size is s and its cardinality is [n, m] such as n ≤ s, when removing one

grouped component the new components group size will be s - 1 and its new

cardinality interval will be [n, min(m, s-1)] where min(a, aʹ) takes the

minimum of the two natural numbers a and aʹ. Special cases occur when it

remains a single component from the components choices set or when no

component remains. If no component choice remains then the connector is

no longer useful and it must be removed from the architecture. If the

connector is related to a single component and the cardinality interval is [1,

1] the choice connector is replaced by a mandatory connector. In the case of

[0, 1] interval, the relation choice connector is changed into optional

connector.

3. Restricting a choice connector by reducing the choices number described by

the interval. A choice connector with cardinality [n, m] may be reduced to [nʹ,

mʹ] where nʹ ≥ n and mʹ ≤ m. Special cases occur when getting [1, 1] or [0, 0]

intervals. If we obtain [1, 1] interval and the connector is related to more than

one component, the connector type is called Alternative. If we obtain [0, 0]

interval, the connector is completely omitted whatever is the number of

components it is related to.

5.4.1.2. Changing an architecture element variability type from Optional to

Mandatory

In the architecture model, an optional component may be changed to

mandatory type if its existence is obligatory in the final reusing applications. This is

also valid to both of optional interfaces and connectors.

5.4.1.3. Removing an architecture element

In architecture model we may: omit a component with all its interfaces and

connections, omit a particular interface from a component, or omit a connection

between two components. Omitting a component from a component-group and

omitting a set of components cases correspond to what is described section 4.1.1.

116

5.4.2. Expanding the configuration choices of architecture Model

5.4.2.1. Extending a Choice VP

For the architecture model we can distinguish:

1. Adding a new implementation (or a set of implementations) to the

implementations group of a choice component. A component with a single

implementation may turn into a choice component if new implementations

are introduced;

2. Adding a component or more to the components choice group related to a

choice connector;

3. Extending the options number interval described by a choice connector.

The choice connector cardinality interval [n, m] may be extended to [nʹ, mʹ]

where nʹ ≤ n and mʹ ≥ m and consistency is preserved (nʹ ≥ 0 and mʹ ≤ s).

A simple connector may change into choice connector if it must be related to

more than one component.

5.4.2.2. Changing an architecture element Variability Type from Mandatory to

Optional

A mandatory component may become optional and this results in extending the

configuration possibilities of the model. This is valid also for mandatory interfaces

and connectors. The IASA extension architecture style allows dealing with each

variable architecture element separately which allows more complete and explicit

variability representation.

5.4.2.3. Adding a Functionality:

An architecture model can be then, expanded by adding a new component or a

component set. Related interfaces and connectors are changed or added

accordingly. Moreover, new interfaces and connectors may also be added to the

model if needed. The cases of adding new component implementations or

extending connector cardinality are described by extending a choice VP.

5.5. SPLs merging

After been partially derived, the reusable SPLs (ASPLs) are merged with their

reusing SPLs (see Chapter 4-Section 4.2.3). In this section we present in more

detail the integration of the partially derived FMs with the FMs of the reusing SPLs

117

in addition to the composition of an SPL from the set of ASPLs and their reusing

MPL sub-SPL.

5.5.1. Feature Models merging

The reference FM of the SPL intending reuse (MPL sub-SPL) is considered as

its Composition Model. This FM includes some features annotated as «reuse-

spots» which means that those feature are not considered during the development

of the current sub-SPL because they have been already produced by the

specialized ASPLs. Therefore, at this stage the reused ASPLs’ FMs are partially

derived according to the reusing sub-SPL requirements and they have to be

merged with its reference FM. The FMs merging may be done in two ways:

1. In the case of having a reference FM with a manageable size (not very

broad or complex), we replace each feature annotated as «reuse-spot» by

its corresponding feature tree from the partially-derived ASPL, such as the

root of the feature tree represents the reuse-spot feature. Figure 5.3 depicts

the steps of this merging way.

2. In the case of having a broad reference FM which risk being more complex

when merged with the ASPLs FMs. We use the reference feature property to

refer to each reused ASPL’s tree. Consequently, we bind the ASPL’s FM

with the sub-SPL FM without real integration. Features annotated as «reuse-

spot» change into reference features. Figure 5.3 illustrates this operation.

In the two merging ways, constraints of the ASPLs FMs must be checked

against those of the reference FM.

5.5.2. Architecture models merging

In the sub-SPL, the set of components implemented by ASPLs are represented

by black boxes that will be replaced by partially-derived ASPLs thereafter. Those

black boxes are annotated in the reference architecture model by «reuse-spots».

As stated before (Chapter 4- Section 4.2.3) the reference architecture model of

each sub-SPL represents its composition model. During the partial derivation step,

the reuse-spot components are extracted from the ASPLs according to the reusing

sub-SPL requirements. Only needed interfaces and sub-components are kept.

After that, at composition step, the reuse-spot components are replaced by the

partially derived ASPLs components and connections are performed to link the

118

ASPLs components with the reusing SPL reference architecture components. The

reuse-spot components may represent either aspect components or business

components to the reference architecture. However, this does not influence the

composition operation.

Figure 5. 3: Feature models merging

For instance, in the e-Gov MPL, security and GUI ASPLs components will take

the place of aspect components in the reusing sub-SPL, while e-Meeting ASPL

component will represent a business component for the sub-SPL. The integration

is performed by considering each ASPL’s architecture model as a refinement of its

Feature D

F4 …F3

Partially-derived FM of the ASPL ‘D’

Feature A

Feature CFeature B
«reuse-spot»

…

…Feature D
«reuse-spot»

Reference FM of the sub-SPL (before merging)

Feature B

F2 …F1

Partially-derived FM of the ASPL ‘B’

Feature A

Feature CFeature B

…

…Feature D

Reference FM of the sub-SPL (After Merging)

Feature A

Feature C…

…

Feature B

F2
…F1

Feature D

F4 …F3

Reference FM of the sub-SPL (After Merging)

FMs merging using
integration

FMs merging using
reference features

119

corresponding reuse-spot component in the sub-SPL reference architecture.

Constraints on architecture must also be checked in order to avoid

inconsistencies.

5.6. Case study:

5.6.1. The e-Evaluation ASPL

A functionality that is usually needed in e-Learning applications is the evaluation.

Evaluation aims to estimate the learner comprehension of the provided online

courses. Schools and universities can use it to help students reaching better

courses understanding or to perform online exams in special classes, and by the

way getting a faster way to assess students’ answers when using automatic

scoring functionality. Enterprises and corporations may use evaluation tests to

help trainees appreciating their understanding of online training.

An evaluation ASPL allows producing a variety of evaluation components

intended for the various e-Learning sub-fields. It includes several questions types

ranging from basic simple questions (intended for example to primary schools), to

more advanced questions targeted –for example- to specialized e-Learning

applications such as: languages, architecture, computer science or mathematics.

Moreover, evaluation components may comprise other functionalities such as:

homework, score estimation, production of report cards and certificates that vary

from an institution to another. Figure 5.4 depicts the evaluation ASPL feature

model.

Figure 5. 4: The evaluation ASPL FM.

e-Evaluation

Scoring

Manual

Automatic

<1, 2>
Online test

MCQ

<1, *>

SAQ

True/False qst Essay writing

Report card Certification

Order

Words

Pictures

<1, 3>

Letters

Drawing

Curve

Diagram

<1, *>

Table

Math qst

Basic

math

Advanced

math

<1, 1>

Home work

Individual

work

Group

work

<1, 2>

<0, 1>
<0, 1><0, 1>

<0, 1>

<1, 1>

120

The reference architecture of the evaluation ASPL is presented by Figure 5.5 .

The evaluation component provides at least one obligatory interface which is test

interface that allows handling online tests functionality. It may provide other

optional interfaces for homework, report cards and certification functionalities.

Figure 5. 5: The reference architecture of the evaluation ASPL.

Figure 5. 6: The internal structure of the component 'test'.

Figure 5.6 shows the internal structure of the component 'test'. An

OnlineTest_Cmp instance may include one or more questions of various kinds.

The question components themselves may have various implementations

«Mdr»

:OnlineTest_Cmp

« Opt»

:HomeWork_Cmp

«Opt»

:Certifi cation_Cmp

«Opt»

: ReportCard_Cmp

«Opt»

:Scoring_Cmp

«Mdr»ITes t

«Opt»IHomeWork

«Opt»ICertifi cation

«Opt»IReportCard

:Main
«Mdr»

:Log_Cmp

«Opt»IReportCertificat

e

«opt»IScoreCard

«Opt»IWorkScore

«Opt»ITes tScore

«opt»IHomeTes t

:Main
«Mdr»

:Log_Cmp

«Mdr»

:OnlineTest_Cmp
«Opt»IOnlineTest

«Opt»

: Scoring_Cmp

«Choice»

:Test_Questions_Cnt

[1..*]

«Choice»

:MathQst_Cmp

«Opt»ITestScore

«Mdr»ITestQst

:BasicMathQst_Cmp

:AdvancedMathQst_Cmp

«Opt»IMeetingTool

«Opt»IHomeTest

«Opt» :TrueFalseQst_Cmp

«Opt» :OrderQst_Cnt

«Opt» :Drawing_Cmp

«Opt» :SAQ _Cmp

«Opt» :MCQ_Cmp

«Opt» :EssayWri t_Cmp

121

according to the context as in the case of mathQst_Cmp. The model presents a

set of questions components, more questions kinds can be introduced, as we can

go in more detail for each question type. For example, drawing tools may provide

curves and tables tools for mathematic, modeling tools for computer science, and

graphs for statistics and so on.

The partial derivation of the evaluation ASPL architecture to be reused by the e-

Primary SPL results in the same reference architecture as in Figure 5.5. However,

the internal structure of components is altered. For instance, the partial derivation

of the test component for e-Primary SPL results in the model reported by the

Figure 5.7. E-Primary applications usually need some basic questions such as:

Short Answer Questions (SAQ) and Order questions, therefore the corresponding

components takes mandatory type instead of optional. Only basic mathematic

questions are required then the MathQst_cmp component is replaced by

BasicMathQst_cmp component. Furthermore, new components can be added to

the application such as: match the items, fill with the correct word, conjugation

questions and others. Differently, if we derive partially the evaluation SPL to be

reused in e-Coaching SPL the HomeWork_Cmp could be omitted.

Figure 5.7: Partially derived test component for e-Primary SPL.

In the case of partially deriving the evaluation SPL for an e-Math SPL which

produces specialized applications in the provision of mathematic courses, some

:Main
«Mdr»

:Log_Cmp

«Mdr»

:OnlineTes t_Cmp
«Opt»IOnlineTest

«Opt»

: Scoring_Cmp

«Choice»

:Tes t_Questions _Cnt

[1..*]

«Opt»ITestScore

«Mdr»ITestQst

«Mdr» :BasicMa thQst_Cmp

«Opt»IHomeTes t

«Opt» :TrueFalseQs t_Cmp

«Mdr» :OrderQs t_Cnt

«Opt» :Drawing_Cmp

«Mdr» :SAQ _Cmp

«Opt» :MCQ_Cmp

122

features should be omitted and the resulted partially derived FM is demonstrated

by Figure 5.8. for the reference architecture: the resulted partially derived SPL do

not need essayWrite_cmp and order_cmp components, yet it requires choosing

AdvancedMathQst_cmp implementation for MathQst_cmp. The partially derived

test component for e-Math SPL is shown by the Figure 5.9.

Figure 5. 8: Partially derived evaluation ASPL FM for e-Math SPL.

Figure 5. 9: Partially derived test component for e-Math SPL.

e-Evaluation

Scoring

Manual

Automatic

<1, 2>
Online test

MCQ

<1, *>

SAQTrue/False qst

Report card Certification

Drawing

Curve

Diagram

<1, *>

Table

Home work

Individual

work

Group

work

<1, 2>

<0, 1>
<0, 1><0, 1>

<0, 1>

<1, 1>

Advanced

Math

:Main
«Mdr»

:Log_Cmp

«Mdr»

:OnlineTest_Cmp
«Opt»IOnlineTest

«Opt»

: Scoring_Cmp

«Choice»

:Test_Questions_Cnt

[1..*]

«Opt»ITestScore

«Mdr»ITestQst

«Mdr»

:AdvancedMathQst_Cmp

«Opt»IHomeTest

«Opt» :TrueFalseQst_Cmp

«Opt» :Drawing_Cmp

«Mdr» :SAQ _Cmp

«Opt» :MCQ_Cmp

123

5.6.2. The composition model

We consider for this case the e-University sub-SPL from the set of e-Gov AMPL

sub-SPLs. The composition model of e-University SPL with its ASPLs corresponds

to its reference architecture as shown in the Figure 5.10.

Figure 5. 10: The reference architecture of e-University SPL.

All of DownloadOfficialDocs, AddModule, Doc Management, Communication

and Evaluation components are annotated by «reuse spot» and will be replaced

by the relative partially derived ASPLs respectively Official Documents, Additional

Module, Documents Management, Communication and Evaluation ASPLs. Official

Documents SPL provides functionalities for documents authentication, download,

archiving and so on. Additional modules encompasses SPLs producing

components that do not represent the core of e-Learning applications but that can

be added to those applications when needed, such as: research, poll, statistics

SPLs. Communication SPL should provide e-Learning institutions by

124

communication components that fit their different needs such as: supporting

several data formats, communication protocols, and basically to provide efficient

security means. Those ASPLs are partially derived according to the reusing SPL

requirements (in this case e-University SPL) and are composed with the other SPL

components according to the reference architecture.

5.7. Conclusion

In this chapter we have presented in more detail tow crucial activities of AMPL

engineering: ASPLs partial derivation and integration. The partial derivation helps

us to avoid delaying the SPLs composition until getting the application level, where

we are more likely to have incompatible instances derived from separated SPLs.

The early integration of partially derived SPLs avoids this problem, and the

resulted composed SPLs will be derived as ordinary SPLs. In contrast to reusing

instances, the SPLs partial derivation provides better means for reusing SPLs in a

wider way. We have then illustrated these activities in the context of e-Gov AMPL.

125

CHAPTER 6

EVALUATION OF THE APPROACH:

E-GOVERNMENT CASE STUDY

6.1. Introduction

Providing customers with efficient services is today an interest of any

organization. Since Government's services are the most required by citizens, their

availability and effectiveness became necessary. Government today use internet

to improve its services, fulfill the requirements of their citizens, and gain in terms of

time, effort and cost. Over time, citizens’ requirements increase, and instead of

developing one application, Government has to develop several applications for

each sub-domain it includes. These applications must satisfy their users, and

communicate to produce better services as well. However, developing and

maintaining new software are cost; time and effort consuming. It becomes then

necessary to find an efficient solution that allows the fast development of systems

and overcomes the before-mentioned issues.

After the success achieved in the industry field, product line engineering has

known recently a great attention in software development. SPLE aims to improve

productivity and software quality, by maximizing reuse and managing variability in

all software development stages. SPLE promotes large scale reuse within the

scope of a particular field, which helps significantly to reduce time to market as

well as cost and effort of development. Therefore, we strongly believe that

adopting software product line (SPL) approach to develop e-Government

applications can bring important benefits to this domain.

126

E-Government provides a variety of services intended to satisfy customers’

requirements in several fields. Nevertheless, all of those services are

characterized by several common aspects. Using SPL approach allows us to

identify these aspects, and making them flexible to be reused in different contexts.

In addition, applications derived from the same product line will have similar man-

machine interfaces; this will allow citizens and users to be familiar with these

applications, to easily switch between applications from the same product line, and

encourages them to a wider use.

As e-Government is regarded as an evolutionary phenomenon [101], SPLE can

affect positively the e-Government evolution in terms of decreasing time to market

and promoting interoperability. Moreover, e-Government systems are delivered in

a variety of versions and will be installed in several sites. Developing and installing

such systems are time consuming and installed systems risk of being obsolete

since technology is in continuous evolution [102]. E-Government software

engineering must encompass activities that handle the extension and evolution of

the systems it includes according to new requirements. However, separate

evolution of applications will produce the inconsistency between them, which

makes their integration difficult. The proper implementation of e-Government

SPLs will allow the efficient and easier management and monitoring of all systems

(its members) and as result keeping them up-to-date.

SPLE have brought several advantages to e-Gov, however if we look to the

whole e-Gov domain we find that it is composed of a variety of subfields for each

of them an SPL can be introduced for the fast production of applications. This

result in an e-Gov MPL that includes several separated but still interdependent

SPLs. This MPL must be effectively managed in order to reduce complexity and

reach better production quality and time to market. In this chapter, we review the

e-Gov domain, we reports on its main challenges and we suggest the use of our

approach proposed previously in this thesis to solve the problems encountered in

this domain.

127

6.2. Background and Motivation

6.2.1. E-Government and SPLE

E-Government is defined by the European Community (2004) as “the use of

(ICT) Information and Communication Technologies in public administrations

combined with organizational change and new skills in order to improve public

services and democratic processes”. Clearly, e-Government is not only to bring

the benefits of existing service on the Internet. It is not the traditional government

to which we have added the Internet but a process of radical change in the way

the state works and communicates. E-Government provides citizens, enterprises

and governments as well by exciting benefits, namely: improving the quality and

availability of public services; improve information, communication, and

cooperation between the different actors; reduce administrative costs; allow

citizens to a better participation in different kinds of democratic processes; and so

on.

E-Government includes several sub-fields: eServices supplied by public

administrations such as: vital records, passports, identity card, voting, poll, justice,

etc; in addition to other services that could be provided by private or public

institutions such as: education, health, assurance, transport, retirement, services

for disabled people and so on. Applications from each sub-field are characterized

by a set of common features and can be distinguished by some variable aspects.

This perception leads developers to apply SPLE for each e-Government subfield

to benefit from its significant advantages. Using SPL approach allows us to identify

these aspects, and making them flexible to be reused in different contexts.

Consequently, cost, time and effort of development are decreased thanks to the

large scale reuse and services suppliers take advantage from the decreased time

to market and the higher quality of software. Moreover, benefits affect not only

software developers and services suppliers but also citizens as well. Applications

derived from the same SPL provide similar Graphical User Interfaces (GUIs); this

allows citizens and users to be familiar with these applications, to easily switch

between applications from the same product line, and encourages them to a wider

use. As e-Government is regarded as an evolutionary phenomenon, getting

maturity in this field requires much of work and time. Hereafter, developing e-

Government applications according to a SPL approach will allow faster evolution

128

of e-Government, since software will be produced in lower time; and performed

with the goal to be flexible, and easy to maintain. At an advanced e-Government

maturity level, applications need to interact in order to provide better services to

citizens. SPLE can also affect positively this aspect because applications derived

from the same SPL are compatible and more likely to communicate easily.

Seeking for the aforementioned benefits, SPL approach has been adopted in

various e- Government subfields. Thus, Over time, e-Government has taken the

form of a set of sub-SPLs each one intended to a subfield as shown in figure 6.2-

a.

6.2.2. Crosscutting reuse among e-Gov SPLs

If we compare the features of e-Government sub SPLs (figure 2), we find that

an important set of features is common to all of them. Thus, reuse can go beyond

the scope of a sub SPL. A large set of core assets from one sub-SPL can be

reused in other e-Government Sub-field to develop a new SPL (similarity between

two different e-Government sub SPLs is illustrated in section 4). But, from where

comes this similarity?

The major factor that raises similarity between e-Gov sub fields is the fact that

they are intended mainly to citizens. Citizen represents the central point of all e-

Government services. As shown in Figure 5.1, a citizen usually has a profile, can

be a member of an organization and accesses services to satisfy its needs.

Organizations provide services which involves citizens to fulfill a particular role.

Citizen is the main consumer of e-Gov services as a person or a member of an

organization. This property (customer orientation) can be seen as an opportunity

and an advantage at the same time. An opportunity because it increases similarity

between e-Government systems, so it allows the implementation of an e-

Government MPL, and an advantage because it is considered as the major

success factor for e-Government adoption [103].

E-Government services are designed to fulfill daily citizens needs in the

different aspects of life (birth, education, wedding, health, employment …).

Whatever is the application’s domain there is some key features related to citizens

that are common to all of those applications, namely: authentication, user

management, privacy, protection of personal data, collaboration…

Figure 6.

Since e-Government applications handle personal data, communicate, and

transact with users they must be highly protected. Thus, security functionalities

represent another common point. E

communicate, to share and exchange data in order to provide efficient services to

citizens. Communication is also a major feature that must be considered when

developing e-Government applications. Furthermore, there are other

characteristics that may be included in any e

Meeting, statistics, poll, research, and so on.

This description of the e

in this thesis. In the next section we

AMPL and we discuss

6.3. E-Government AMPL

6.3.1. E-Gov ASPLs engineering

6.3.1.1. MPL requirements engineering

As stated before, e

Education, e-Justice, e

figure 2-a). For the validation of our work we have chosen two

which are: e-Admin and e

following SPLs: e-Primary SPL, e

represent specialized SPLs of e

Wilaya SPL that are specialized SPLs of e

we consider one SPL that includes the th

we focus on the services provided by APCs in our models.

Figure 6.1: Citizen as the central entity of e-Government

Government applications handle personal data, communicate, and

transact with users they must be highly protected. Thus, security functionalities

represent another common point. E-Government application

communicate, to share and exchange data in order to provide efficient services to

citizens. Communication is also a major feature that must be considered when

Government applications. Furthermore, there are other

may be included in any e-Government application, such as: e

Meeting, statistics, poll, research, and so on.

This description of the e-Gov domain match perfectly to the approach proposed

in this thesis. In the next section we present the development proces

s the results obtained compared with existing work

Government AMPL Engineering

Gov ASPLs engineering

MPL requirements engineering

As stated before, e-Government MPL may include several subfields

Justice, e-APC, e-Daïra, e-Wilaya, e-Recruitment,

or the validation of our work we have chosen two

Admin and e-Education. Those two subfields include in fact the

Primary SPL, e-secondary SPL, e-University SPL which

represent specialized SPLs of e-Education SPL, and e-APC SPL, e

Wilaya SPL that are specialized SPLs of e-Admin SPL. For the e

we consider one SPL that includes the three specialized SPLs, while for

we focus on the services provided by APCs in our models.

129

Government.

Government applications handle personal data, communicate, and

transact with users they must be highly protected. Thus, security functionalities

Government applications need to

communicate, to share and exchange data in order to provide efficient services to

citizens. Communication is also a major feature that must be considered when

Government applications. Furthermore, there are other

Government application, such as: e-

perfectly to the approach proposed

present the development process of an e-Gov

compared with existing work.

Government MPL may include several subfields such as: e-

Recruitment, e-Health… (See

or the validation of our work we have chosen two e-Gov sub-fields

Those two subfields include in fact the

University SPL which

APC SPL, e-Daïra SPL, e-

For the e-Education case

ree specialized SPLs, while for e-Admin

we focus on the services provided by APCs in our models. Consequently, the

scope of our AMPL includes six SPLs:

APC, e-Daïra and e-Wilaya SPLs. More

future since the separation between MPL sub

scalability of the approach

6.3.1.2. Separation of concerns

The analysis of the e

resulted in a set of commonalities (as stated in the S

services are designed to fulfill the daily needs of citizens in the different aspects of

life (birth, education, wedding, health, employment …). Whatever is the

application’s domain there is some k

common to all of them, namely: authentication, user management, privacy,

protection of personal data, collaboration

statistics, poll, research, publishing documents and so on.

concerns at MPL level result

Meeting SPL, Communication SPL

this correspond to the subfields chosen in the previous step)

secondary, e-University, e

illustrate the organization of the e

approach.

Figure 6. 2: E-

Some ASPLs that can be constructed in the context of e

this section.

scope of our AMPL includes six SPLs: e-Primary, e-secondary, e

Wilaya SPLs. More SPLs can be added to the MP

future since the separation between MPL sub-SPLs and ASPLs ensure the

scalability of the approach (Chapter 4- Section 5).

Separation of concerns

The analysis of the e-Gov domain in order to determine its MPL aspects

ommonalities (as stated in the Section 2.2.)

services are designed to fulfill the daily needs of citizens in the different aspects of

life (birth, education, wedding, health, employment …). Whatever is the

application’s domain there is some key features related to citizens that are

common to all of them, namely: authentication, user management, privacy,

protection of personal data, collaboration, security, communication e

statistics, poll, research, publishing documents and so on.

concerns at MPL level results in a set of ASPLs: GUI SPL, Security SPL, e

, Communication SPL, in addition to a set of sub

this correspond to the subfields chosen in the previous step)

University, e-APC, e-Daïra and e-Wilaya sub

organization of the e-Gov MPL before and after applying our

-Government before and after applying AMPL approach

can be constructed in the context of e-Gov

130

secondary, e-University, e-

SPLs can be added to the MPL in the

SPLs and ASPLs ensure the

determine its MPL aspects

ection 2.2.). E-Government

services are designed to fulfill the daily needs of citizens in the different aspects of

life (birth, education, wedding, health, employment …). Whatever is the

ey features related to citizens that are

common to all of them, namely: authentication, user management, privacy,

ommunication e-Meeting,

statistics, poll, research, publishing documents and so on. The separation of

PL, Security SPL, e-

, in addition to a set of sub-SPLs (in our MPL

this correspond to the subfields chosen in the previous step): e-Primary, e-

Wilaya sub-SPLs. Figure 2

Gov MPL before and after applying our

MPL approach.

Gov MPL are shown in

131

- GUI ASPL

GUI has an important impact on e-Government applications. Huang et al [104]

assert that user-friendliness is required for e-Government to improve users'

performance as well as their satisfaction with e-government. Developing an ASPL

for such purpose will bring e-Government applications by similar GUIs, and thus

allow citizens and users to be familiar with these applications. Users - either

citizens or government agents- can easily switch between applications with GUIs

coming from the same SPL, this can encourage them to wider use. Devoting SPLs

for GUI development have known increased attention recently. For instance,

Müller [105] propose a research plan to automate the GUIs construction for SPLs

based on constraint-based techniques. In his paper he highlights the benefits of

having an automatic GUI generator for software developers, and presents a

survey on GUI generation for SPL.

- Security ASPL

As personal data are processed and stored, and financial transactions must be

performed, considering security when developing e-Government applications is a

crucial issue. Citizens are afraid from using web applications that handle their

personal data (such as name, date of birth, picture, ID number, and credit card

details...). Using online services may expose their personal information to be

misused or even destroyed. Hence, e-Government applications must be highly

secured to ensure services continuity and to build citizen confidence.

Due to the complexity and the extensive nature of SPLs, developers usually

focus on the business requirements of the field, and pay less attention to technical

issues such as security. However, such a vital requirement must not be ignored in

a critical domain as e-Government. Mellado et al have tackled this problem [106]

[107] [108] and have proposed an approach to manage security requirements in

SPL development. The proposed approach called Security Requirements

Engineering Process for Software Product Lines (SREPPLine) aims to deal with

the security requirements artefacts variability from the early stages of SPL

development in a systematic way. The approach is supported by a tool

(SREPPLineTool) which provides automated support to facilitate the application of

security quality requirements engineering process for SPLs.

132

Devoting a SPL process to analyze security requirements in e-Government field

and provide developers by a repository of security assets intended to be reused in

several e-Government subfields, will allow the suitable and robust realization of

security aspects, and thereby will increase e-Government applications’ quality.

- Communication ASPL

A natural progression of e-Government will be the integration of scattered

systems at different levels (vertical) and different functions (horizontal) of

Government services [101]. Governmental institutions should collaborate, join-up,

and create chains of activities in order to improve services efficiency, enhance

transparency, save time and money and reduce sources of errors. For this reason

e-Government systems have to be interoperable.

Interoperability refers to the ability of two or more organizations to exchange

and interpret all necessary information to collaborate. In order for organizations to

be interoperable their strategies must cater for interoperation between business

processes as well as ICT systems [109]. Interoperability can be seen at different

levels according to the e-Government development stages. Marc N. et al [110]

present three levels based on the interoperability goals: Technical interoperability

maps to the goal of data exchange, Semantic interoperability maps to the goal of

meaning exchange and Organizational interoperability maps to the goal of process

agreement. Each abstraction level requires that the lower abstraction levels are

accomplished. Janssen and al [111] discuss challenges in each level and argue

that interoperability is one of the most critical issues facing government that need

to access information from multiple information systems.

Adopting SPL approach to develop e-Government applications will have a

positive impact on this aspect. Applications derived from the same product line are

more compatible and more likely to communicate easily. Nevertheless, if systems

are not planned to communicate it becomes necessary to enhance them by adding

components responsible for communication. Creating a communication ASPL will

resolve this issue. The communication ASPL should provide e-Government

institutions by communication components which fits their different needs such as:

to support several data formats, communication protocols, and basically to provide

efficient security means. The appropriate implementation of a communication

133

product line will allow better interoperability in e-Government domain, faster

achievement of advanced maturity levels (vertical and horizontal integration), and

will improve public satisfaction by offering one-stop services.

- Statistical services ASPL

Official statistics provide essential information for government, economy and

public. Statistical services systems aim to ease the collection, study and publishing

of statistical data. They can be provided by governmental agencies at all levels

(local and national) and other public bodies, and they may intend all major areas of

citizens' lives, such as: economic and social development, living conditions, health,

education, and environment. It is obvious that those systems are characterized by

several common feature (using same algorithms, providing similar models of

data…) and differ by others (domains they intend, platforms they will be integrated

in…). Thereby, developing an ASPL for statistical services will bring significant

advantages when integrated within the e-Government MPL. For instance, a family

for data-mining applications has been demonstrated in [112]. E-Learning Web

miner product line [112] provides statistical services using data mining algorithms.

Applications derived from this SPL can be integrated in several types of e-

Learning platforms, and aim to assist instructors involved in virtual education by

extracting and providing useful information which can be used to improve the

learning-teaching process.

- E-meeting ASPL

Meeting is a common requirement for a wide range of e-Government

applications. For instance: a deliberation at the year-end, a meeting of a scientific

council, a meeting of elected members of APC, APW or APN , medical meetings

(for example when dealing with a special patient case), meetings of business

leaders… These various meetings have many similarities and are also

distinguished by particular aspects. The e-meeting ASPL once implemented is

able to produce for each type of meetings the appropriate software in a very short

time.

- Validating information ASPL

One of the most important features that must be included in each e-Government

application is validating information. Government bodies have to ensure the

134

delivery of valid and highly reliable information. They have no right for error due to

the importance of the documents they deliver. In addition to the fact that correcting

such information may require long time and administrative and legal procedures

could be very complex. Establishing an infrastructure which enables to certify the

information correctness before putting it on an official document will allow: firstly to

win the citizens trust, and secondly contributing in the successful e-Government

introduction. Validation processes in any e-Government sub-domain are

characterized by several similarities:

- applied to an information with a particular type;

- go through stages of validation ranging from submission to the final

validation;

- involvement of stakeholders in each stage;

- conditions of information passing (or return) from one stage to another;

- following a validation schema…

Regarding the aforementioned similarities, it will be of benefit to implement an

ASPL for the development of validation components. Those components will be

integrated in e-Government applications to ensure the correctness and reliability of

the provided information.

6.3.1.3. E-Government ASPLs engineering

This first stage includes a set of ASPLs development processes, each one

dedicated to produce a SPL that fulfills the requirements of various e-Government

subfields in a specific common aspect. Examples on ASPLs have been

demonstrated in the previous section. ASPLs development processes are similar

to the traditional SPLs development processes, unless there is no application

engineering step since their aim is not to develop running applications, but rather

to create core assets that will be reused later. Each ASPL development process

takes as input the requirements related to the handled aspect, not only of one e-

Government subfield but of a set of e-Government subfields that share this aspect.

The aim is to fulfill this aspect’s requirements for a set of e-Gov sub-SPLs in order

to permit crosscutting reuse among them. This first phase may also take as input

the feedback obtained when developing final e-Government applications to take

into account new requirements, developing them, and making them available to be

reused. The outputs of this stage consist in all the developed artefacts resulting

135

from all ASPLs processes, including: reference requirements, reference

architectures, reusable components, and reusable tests artefacts. Those artefacts

are collected in a repository that will be reused in the second stage of e-

Government MPL engineering.

From the set of ASPLs presented in the previous section we choose the e-

Meeting ASPL for presentation in this section and we use it to illustrate next

development steps (partial derivation and integration). The e-Meeting SPL has

been presented in section 5 from the Chapter 3 so we do not repeat its

presentation in this chapter. Noting that it has been design for reuse by the

following e-Gov sub-SPLs: e-Primary, e-secondary, e-University, e-APC, e-Daïra

and e-Wilaya (i.e. all the SPLs included in the scope of our MPL). The FM we have

obtained when developing the e-Meeting ASPL is presented in: Figure 3.5 and

Figure 3.6 (chapter 3). A part of the e-Meeting ASPL architecture model is

explained in: section 5-Chapter 3, and illustrated by the figures: Figure 3.7 and

Figure 3.8 (chapter 3). The notations used for the models specification are

explained in the chapter 3.

6.3.2. E-Government sub-SPLs engineering

From the scope of our MPL, we choose two sub-SPLs in order to illustrate their

specification (FMs and architecture model) and integration with one of the ASPLs

they reuse.

6.3.2.1. The first sub-SPL: e-APC SPL

a. Subfield analysis and ASPLs extraction

The e-APC SPL delivers e-Admin applications for the various APCs institutions

(Section 2.1-chapter 4). Among the e-Gov MPL ASPLs, e-APC SPL reuses all of:

Download official documents, Data validation, Document management,

Communication, e-Meeting, Poll, statistics, Publishing Documents. The FM of this

sub-SPL is presented in the Figure 6.3. The reuse spots of the before-mentioned

ASPLs are determined in the FM and their sub-features are consequently not

considered during this sub-SPL subfield analysis and implementation thereafter.

The reuse-spots features in the e-APC SPL are: Download official doc, Data

validation, Document management, Communication, e-Meeting, Poll, statistics,

Publish Docs.

136

b. Sub-SPL design

Figure 6.4 shows the reference architecture of the e-APC SPL. The reuse-spots

components are: AddModul_Cmp, DownloadOfficialDoc_Cmp,

DataValidation_Cmp, DocManagement_Cmp, Communication_Cmp. The

refinement and implementation of those components is not performed during this

sub-SPL development process since they will be provided by the corresponding

ASPLs.

Figure 6. 3: The e-APC sub- SPL FM.

c. ASPLs Partial derivation

For e-APC sub-SPL, e-Meeting functionality is needed to ensure the smooth

running of the elected members meetings. The partial derivation of the e-Meeting

ASPL FM according to e-APC sub-SPL requirements results in the diagram shown

in the Figure 5. The partial derivation transformations were applied as follow:

- The e-Meetings conducted by the e-APC institutions are mainly decision

making meetings, where decisions are taken according to the vote results of

the elected members. Consequently, the “vote options” features become

mandatory in the e-Meeting ASPL.

User
management

Configuration

Document management
«reuse-spot»

E-APC

< 0, *>

Additional

Publish doc
«reuse-spot»

Poll
«reuse-spot»

e-Meeting
«reuse-spot»

Communication
«reuse-spot»

< 0, 1>

< 1, 1>

<1, 1>

<1, 1>
< 0, 1>

Statistics
«reuse-spot»

Request for
document

<1, 2>

Acts transcribed
on registers

Acts not transcribed in
the registers

Download official Docs
«reuse-spot»

Data Validation
«reuse-spot»

Modify
Personal info

Documents
modification

Manage
mentions

Event
declarations

<1, 4>

DeathDivorceWeddingBirth

<0, 1> <0, 1> <1, 1> <0, 1> <0, 1>

<0, 1><0, 1>

E-APC

137

- The obtained results from each e-APC meeting are published for democracy

reasons, thus the “publication of results” feature change from optional to

mandatory type.

- We keep “Item discussion” and “management of recurring items” features

because administrations usually discuss items before organizing meetings to

take decisions by voting.

Figure 6. 4: The e-APC sub- SPL reference architecture.

138

Figure 6. 5: Partially derived e-Meeting FM for e-APC sub-SPL.

The partial derivation of the e-Meeting ASPL reference architecture results in

the same architecture model presented by the Figure 3.6 (chapter 3), however

changes appears in the refinement of some components. For instance,

Publish_results_Cmp is a sub-component of the composite component

“Meeting_management_Cmp”. Publish_results_Cmp had the type “optional” in the

e-Meeting ASPL, during the partial derivation we change its type to “mandatory”

according to the partially derived FM (Figure 6.5). The resulted component

refinement is depicted by the Figure 6.6. Noting that the related interfaces and

connectors to this component change also to mandatory type.

Figure 6. 6: Partially derived “Meeting_management_Cmp” for e-APC sub-SPL.

E-Meeting

Create meeting

Planning

Item

validation

Manage meeting

Manage

permissions

Generate

report

Publication of

results

ArchivingConfiguring

Meeting

type

Meeting

tools

Attendance

management

Schedule

management

Files

management

Participation

management

<0, *>

Item

discussion

Synchronous

discussion

Asynchronous

discussion

<0, 2>

Management of

recurring items

<1, 1><1, 1>

<1, 1>

<1, 1>

<1, 1>

<1, 1>

<1, 1><1, 1>

<1, 1>

<1, 1>

<1, 1>

Request for meeting

Propose an item New item

notification

Agenda

generation

Date and time

Object and

schedule

Venue

Manage

participants

Groups

management Invitation

Registration

<0, 1>

<0, 1>

<0, 1>

<0, 1>
<0, 1>

<0, 1>

<0, 1><0, 1>

<0, 1>

<0, 1>

<1, 1>

<0, 1>

Vote Options

<1, 1>

«Opt»

: Meeting_management

Cmp

«Opt»IConfigMeeting

«Mdr»

:Notification_Cmp

«Opt»

:Archive _Management

Cmp

«Mdr»

: Generate report _Cmp

«Opt»

: Manage_Permissions

_Cmp

«Mdr»

: Publish_results

_Cmp

«Opt»IMeetingNote

«Opt»IConfigUI

:Main:Authentication

139

d. ASPLs integration

In the integration step, all the reuse-spots are replaced by the corresponding

partially derived ASPLs. For instance, the merging of e-Meeting ASPL FM with e-

Admin SPL FM is done by replacing the feature e-Meeting annotated as «reuse-

spot» by the partially derived e-Meeting ASPL FM. This operation results in the

FM depicted by Figure 6.7. Related constraints are checked in order to keep the

model consistent. For example, if the e-Admin SPL needs to archive the meetings

subjects and results, so the feature “Archiving” must be selected in the e-Meeting

ASPL.

Figure 6. 7: FMs merging of the e-Meeting ASPL and e-APC sub-SPL.

Finally, the presented activities are repeated for all the needed ASPLs (e-

Meeting, security, statistics, GUI and communication for the e-Admin SPL case)

until getting a complete SPL ready to be derived to produce final e-Admin

applications.

6.3.2.2. The second sub-SPL: e- University SPL

a. Subfield analysis and ASPLs extraction

The e-University sub-SPL provides e-learning applications for the various

university disciplines and institutions. Figure 6.8 represents the FM of this sub-

SPL. Features that are considered as reuse spots are: Download official

documents, Evaluation, Document management, Communication, e-Meeting, Poll,

statistics, Publishing Documents. The Evaluation ASPL has been demonstrated in

chapter 6 section 6.1.

User
management

…

E-APC

< 0, *>

Additional Modules

… E-Meeting

Communication
«reuse-spot»

< 0, 1>

< 1, 1>< 0, 1>

Statistics
«reuse-spot»

Create Meeting Manage Meeting …

< 1, 1> < 1, 1>
… …

… … …

140

Figure 6. 8: The e-University sub- SPL FM.

b. Sub-SPL design

The e-University sub-SPL architecture model has been reported in chapter 5

section 6.2 (Figure 5.10) as the composition model of an e-Government sub-SPL.

c. ASPLs Partial derivation

Figure 6.9 presents the e-Meeting ASPL FM after being partially derived for

integration with e-University SPL. We mean by e-Meeting for e-University

applications the electronic meetings joining students to their teachers online. Thus

the partial derivation decisions are taken according to the e-University

requirements defined during the e-University subfield analysis. The partial

derivation transformations were applied as follow:

- E-University meetings usually do not need to prepare an item to be discussed;

meetings are organized according to an educational planning, therefore, the

feature “Request for meeting” has been omitted in addition to all its sub-

features.

- “Vote options” feature is used for decision making meetings which is not the

case here. So “Vote options” feature is omitted from the e-Meeting ASPL.

User
management

Configuration

Document management
«reuse-spot»

E- University

< 0, *>

Additional Modules

Publish doc
«reuse-spot»

Poll
«reuse-spot»

e-Meeting
«reuse-spot»

Communication
«reuse-spot»

< 0, 1>

< 1, 1>

<1, 1>

<1, 1>
< 0, 1>

Statistics
«reuse-spot»

<1, 1>

e-University

Course management Download official Docs
«reuse-spot»

Enrollment

Groups
management

Default Standard

Evaluation
«reuse-spot»

Export content
<1, 1> <1, 1>

<1, 1>

<0, 1>
<0, 1> <0, 1>

<0, 1>

<0, 1>

Content

Online
view

Download

<1, 2>

141

Figure 6. 9: Partially derived e-Meeting FM for e-University sub-SPL.

Figure 6. 10: Partially derived e-Meeting reference architecture for e-University
sub-SPL.

- “Management of recurring items” feature can be included if the customer is

interested to the history of previously treated items, there results, statistics

about them and so on. This is also used for decision making meetings which is

E-Meeting

Create meeting

Planning

Manage meeting

Manage

permissions

Generate

report

Publication of

results

Archiving

Configuring

Meeting

type

Meeting

tools

Attendance

management

Schedule

management

Files

management

Participation

management

<0, *>

<1, 1>

<1, 1>

<0, 1>

<1, 1>

<0, 1>

<1, 1>

<1, 1>

<1, 1>

<1, 1>

Agenda

generation

Date and time

Object and

schedule

Venue

Manage

participants

Groups

management Invitation

Registration

<0, 1>
<0, 1>

<0, 1>

<0, 1><0, 1>

<0, 1>

<0, 1>

<0, 1>

«Mdr»

:Accounts_Management

Cmp

«Mdr»

:Roles_ManagementC

mp

«Opt»

:Meeting_Configuration

Cmp

«Mdr»

: Meeting _Planning Cmp

«Mdr»

: Meeting _Management

Cmp

«Mdr»

:Notification

Cmp

«Opt»

:UI_ManagementCmp

«Opt»

:Archive_Management

Cmp

«Mdr»IAccount

«Mdr»IRole

«Opt»IConfigMeeting

«Mdr»IPlanMeeting

«Mdr»IManageMeeting

:Main:Authentication

«Opt»IConfigUI

«Mdr»IMeetingNote

«Mdr»IPlanNote

«Opt»IConfigNote

«Opt»IArchiveMeeting

«Mdr»IRoleEvent

142

not the case here. So “Management of recurring items” feature is omitted from

the e-Meeting ASPL.

- Meeting reports in this case are not constantly needed; therefore, “Generate

report” feature will take the type optional instead of mandatory.

- “Invitation” feature becomes also optional since students do not need to be

invited each time they have an online course.

The e-Meeting ASPL architecture is partially derived according to the FM

Partially derived e-Meeting FM for e-University sub-SPL. The resulted reference

architecture model is reported by the Figure 6.10.

d. ASPLs integration

Next figure a part from the e-University sub-SPL FM after been merged with the

e-Meeting ASPL FM.

Figure 6. 11: FMs merging of the e-Meeting ASPL and e-University sub-SPL.

6.4. Discussion and evaluation

At the best of our knowledge an MPL for e-Government have not been yet

considered. However, SPLE have been adopted but only by few works in spite of

the obvious benefits that it can bring to e-Government. In this section we show an

overview of existing work in this area and we compare it to ours.

Based on an analysis of a sample set of e-Government architectures [113],

Achour et al proposed an architecture model for e-Government applications [114].

The proposed architecture is composed of three layers: the Front-end services

layer which represents a portal including all the governmental services, the Back-

end services layer that include various workflow applications responsible for the

User
management

Document management
«reuse-spot»

E- University

Additional Modules

Communication
«reuse-spot»

< 0, 1>

< 1, 1>
<1, 1>

< 0, 1>

< 0, *>

… E-Meeting Statistics
«reuse-spot»

Create Meeting Manage Meeting

< 1, 1> < 1, 1>

… …

…

……

…

143

execution of the services offered by organizations, and the legacy systems layer

which represents the various information systems already implanted within the

governmental organizations. They focused after that on the backend layer, for

which they proposed the adoption of SOPL (Service Oriented Product Line)

approach to develop their applications. Their SPL covers some services offered by

the Tunisian Ministry of the interior and local development as the demand of

National Identity Card (CIN), Passport and Bulletin n°3 (B3). The reference

architecture that they presented consists of business components, services and

orchestrators. Variability resolution was carried out at runtime, and instantiation of

the reference architecture results in workflow applications. Even SOA is a new and

promising approach, challenges that it face are numerous especially when

combined with SPL [115]. Furthermore, since variability is resolved at runtime the

developed systems are more similar to systems developed by Process Family

Engineering1 (PFE) [116] then to SPLs.

Based on their experience in the development of web applications, Carromeu

and al [117] built up a process of SPL to develop web systems in the e-

Government domain; and create computational tool support which automates this

process. The tool called “Titan Framework” base on a SPL repository to automate

the SPL derivation process when creating new Web-apps in the e-Government

domain. However, Titan framework generates Content Management Systems.

Web-apps created using this framework are mainly e-Government portals. The

proposed product line intends large scale reuse but do not consider specific e-

Government features, mainly horizontal and vertical communication and highly

interactive applications.

Buccella and Cechich [118] defined a methodology for creating SPLs for

Geographic Information Systems (GIS) applications. Their aim was to benefit from

the common set of services between GIS applications. The presented framework

was illustrated by a case study that integrates geographic information in two

governmental agencies. SPL approach has been used likewise to develop

auxiliary eLearning applications [112]. Sanchez and al used SPL engineering to

develop eLearning Web-miner product line, a family of data-mining applications

1
The Process Family Engineering (PFE) approach explores the idea of applying SPL philosophy for managing the variability of

business information systems. PFE provides only one product that evolves at runtime. [116]

144

aiming to assist educators involved in virtual education by extracting and providing

useful information that these educators can use to improve the learning-teaching

process. GIS SPL [118] and eLearning Web-miner product line [112] are SPLs

intended for auxiliary e-Government applications. Web-miner SPL aims to develop

data-mining applications related to e-Learning platforms, while GIS SPL allows the

development of geographic Information applications. Applications derived from

both SPLs can be integrated in e-Government applications to supply specific

services, so they can be considered as complementary modules (that could be

produced by ASPLs in our approach).

Most of the existing work relies on evolutionary approach. Authors base on their

experiences in a domain and the realized single applications to extract common

and variable aspects which help them to construct a product line. Their major

objective is to promote reuse. However, reuse in these works is limited by the

related small scope which covers a much closed set of applications or even

applications that do not cover the core of e-Government functionalities.

The table below reports a summary of a comparison between our work and

existing work according to four main criteria: Methodology, Scope (e-Government

as a whole, a subfield of e-Government or a particular aspect related to e-

Government), Reuse level (between applications in the same SPL, between

separated SPLs), Reuse aspect (business aspect, technical aspects). Regarding

the scope of these SPLs, it is either limited to a subfield of e-Government (online

administration [114]) or to a particular aspect related to e-Government (Data-

mining [112], Geographic information [118]), except one work in which the scope is

not limited and may intend e-Government in general [117]. Having the ability to

develop applications for several kinds of e-Government services is due to the fact

that this work have based on the reuse of technical aspects that may build the

base of any web application (Security, persistence, chat, Log, Skins…). In the

same way, [112] and [118] have focused on features that do not represent the

core of e-Government. These two SPLs can be considered in our approach as

specialized SPLs that we can use to implement optional requirements in some e-

Government applications. Nevertheless, authors in [114] consider business

aspects in their approach. However, their scope does not exceed online

administration, more specifically, a set of business processes strongly similar.

145

Furthermore, they were not addressed extremely important aspects in e-

Government, mainly: security, communication, document authentication, data

validation…

Unlike of all the existing approaches, ours consider reuse not only between

application within the same SPL but also between separated SPLs as well. Reuse

at this high level is ensured by the introduction of specialized SPLs. These latter

are not only responsible for the development of components that are common

between a wide range of e-Government applications, but also they implement key

features that helps to build a successful e-Government, such as: HMI, Security,

Data validation… Our approach considers in a first stage e-Government as a

whole and suggests reuse across all its subfields to benefits from the common

aspects between them, and to properly implement those aspects. In the second

stage, for each e-Government subfield we devote a SPL process which reuses the

core assets obtained during the first stage. In this way we ensure better handling

of technical as well as business aspects.

Our approach pays a particular attention to an aspect that is ignored in most of

existing work which is communication between e-Government applications. The

need to communicate is expected in the context of e-Government, in order to

improve governmental processes and thereby satisfy citizens. Considering this

aspect from the early stages of development by dedicating a SPL for this aim; will

facilitate the integration of systems thereafter.

As known e-Government is a broad domain, developing a SPL that covers a

specific set of e-Government services does not mean the development of an e-

Government SPL since the derived applications will not exceed the limited scope.

To the best of our knowledge there is no other work that exploits large scale reuse

between different e-Government subfields as we have presented in this thesis.

Table 6. 1: Comparing our approach to related work.

Approach Methodology Scope Reuse
level

Reuse aspect

A Service Oriented
Product Line
Architecture for E-
Government,
Ines and al [114]

SOPL life cycle A subfield
of
e-Gov
online admin

Between
applications
in a SPL

Business aspects
“Demand for the first
time”, “Demand for
loss”, “Demand for
modifications” for CIN,
Passport and B3.

146

Technical aspects
Authentication and
notification.

Component-based
Architecture for e-
Gov Web Systems
Development,
Carromeu and al[117]

PLUS
2

approach E-Gov
(not limited)

Between
applications
in a SPL

Technical aspects
Security, persistence,
chat, Log, Skins…

Software Product
Line Engineering for
e-Learning
Applications: A Case
Study, Sanchez and al
[112]

SPL process A particular
aspect
related to e-
Gov
Data-mining
applications
for eLearning

Between
applications
in a SPL

Technical aspects
Features related to
data-mining

Geographic e-
Services
Development
through Product-
Line Engineering
and Standardization
Buccella and Cechich
[118]

SPL Process A particular
aspect
related to e-
Gov
Geographic
information
systems in
governmenta
l agencies

Between
applications
in a SPL

Technical aspects
Geographic
information features

E-Government MPL e-Gov MPL
engineering
process

E-Gov
An e-Gov
MPL
composed of
ASPLs and
e-Gov
subfields
SPLs

Between
applications
within a SPL
&
between
SPLs within
the MPL

Business aspects
For each e-
Government subfields
Technical aspects
Between e-
Government subfields
(Security,
authentication,
Communication…)

6.5. Conclusion

Despite the great efforts expended by governments all around the world to

implement an efficient e-Government, most of these projects fail. Researchers

have identified numerous reasons for these failures basically:

• the delivered software do not meet the expected functionalities;

• late delivery of systems;

• lack of integration and interoperability;

• increasing costs;

• security and confidentiality issues;

• poor knowledge of the system and lack of suitable training;

2 Product Line UML-base Software engineering.

147

• lake of citizens trust and satisfaction.

In this chapter we have proposed to adapt our approach (AMPL) for the

development of e-Government systems. Our aim is to reach a successful e-

Government by improving the development process of e-Government applications.

The proposed approach takes advantages from the benefits provided by software

product line engineering namely: to improve productivity and software quality, and

to reduce time, cost, and effort of development. Furthermore, our approach helps

significantly to tackle the aforementioned issues. SPLE promotes large scale

reuse which allows the faster development of applications and decreases costs as

well. Variability management is a key activity in SPLE, it allows the adoption of

applications to fit the variable requirements of customers, and thus to gain their

satisfaction. The rest of issues could be faced by ASPLs. Even security,

communication and HMI are not the core functionalities of e-Government systems,

neglecting these aspects will result in a high probability of failure. Thereby, we

have suggested the dedication of a ASPL for each aspect. Security SPL will

enhance safety; confidentiality and citizen’s trust, communication SPL will allow

easier integration of e-Government systems, while HMI SPL will allow users to be

more familiar with applications without having to make a new training for each new

application. Other specialized SPLs are proposed for the development of other

common requirements in order to increase reuse and benefit from the great

similarity between e-Government systems.

Since the proposed approach is based on SPLE it will obviously meet the

challenges found in this area. Mainly the initialization of an e-Government software

product line requires a considerable launching investment, however once the base

of reusable elements is developed final applications can be achieved in short time.

Developers must give high attention to variability management; they must use

effective techniques to properly manage variability from the early development

stages. It is also important to develop a software architecture model suitable to e-

Government applications that facilitate the assembly (or derivation) and extension

of systems. Finally, e-Government is intended mainly to citizens, thus it is crucial

to consider their feedbacks in order to improve the delivered services.

148

CONCLUSION

In this thesis we have presented an approach that intend the management of

reuse at two abstraction levels: applications level and product lines level. The

presented approach takes advantages from two software engineering disciplines:

Software Architecture and Software Product Lines. It relies on the techniques and

methods provided by both of them to resolve the issues encountered when

developing systems for broad and complex fields such as e-Government.

The study that we have conducted on the SPLs approaches revealed the

necessity of adapting an MPL in order to allow the efficient software production

within complex fields. The review of the existing MPL engineering approaches

brings out three main aspects that must be considered when managing MPLs:

- Reuse among SPLs of an MPL must be systematized i.e. constructed

components must plan for reuse not only within a SPL but also between

separated SPLs and variability should be managed efficiently within MPLs.

- Effective methods have to be developed for structuring the MPL model,

starting from the various SPLs models and getting an MPL model including

dependencies between the various SPLs. Dependencies have to be specified

in order to simplify the MPL derivation thereafter.

- Solutions should be proposed to reduce the distributed derivation challenges

or avoid them completely.

On the other side, we have studied the integration of CBD approach and SPL

approach. The study we conducted revealed that the primary aspects that should

be covered when defining a new CBPL approach are:

149

- The CBPL process must base on the SPLE methodology on the one side,

and benefits from the CBD technologies on the other side. Both of SPLE

and CBD provide powerful techniques for supporting reuse but at opposite

granularity spectrum. CBD deals with reuse in the small while SPLE

manage reuse in the large. Therefore, significant benefits are expected

from their integration. The SPLE process lies on the distinction between two

development stages: development for reuse (domain engineering) and

development with reuse (SPL derivation). A set of reusable core assets is

constructed during the first stage and intended for reuse in the SPL scope.

SPLE provides techniques for making the adaptations easier and the reuse

systematic by managing the domain variability. CBD represents techniques

for implementing variability and makes the derivation step automation

possible by producing flexible components.

- The proposed approach should support variability management. Variability

must be identified for the various abstraction levels and modeled explicitly

in the different modeling views. In addition, mechanisms must be defined

for modeling the different variations kinds and this for each architecture

element. Thus, variability must be modeled and implemented for the

following levels: system architecture, composite components’ internal

structure, primitive components implementation, interfaces and connectors,

and using the following variation types: mandatory, optional, alternative,

AND, OR and XOR VPs and groups with cardinality.

- The proposed methodology should support the reuse systematization not

only within a single SPL but also among separated SPLs included in the

same field.

In order to achieve the traced objectives, we have proposed two complementary

approaches: CBPL and AMPL. CBPL aims to reach a high level of reuse that can

be obtained through the integration of two approaches: SPL and CBD. Each of

these approaches promotes reuse at different granularity levels. CBD supplies

technologies for reuse in the small, while SPL approach intends reuse in the large.

Putting them together allow us to reach large scale reuse and flexibility at the

same time. Moreover, CBD can overcome the lack of maturity in SPL engineering

150

by providing efficient technologies of development. This approach is validated by a

case study in chapter 3.

AMPL approach aims to resolve some MPLs engineering challenges basing on

two main concepts: separation of concerns and partial derivation. Separation of

concerns at MPL level helps systemizing reuse among SPLs by organizing the

MPL models into ASPLs aiming to develop the reusable components within an

MPL, and sub-SPLs targeted to produce the MPL final applications. The partial

derivation is used to prepare ASPLs for integration with their reusing sub-SPLs.

The early integration of MPL sub-SPLs avoids the distributed derivations

challenges encountered thereafter. In this paper we have explained our

methodology for developing MPLs, and validated it for the e-Gov field.

The existing works focus on resolving reuse challenges in the late development

stages i.e. at derivation time. They tend to derive separated SPLs and integrate

their heterogeneous instances. At this level several challenges are encountered

known by the distributed derivation. This reuse way is still opportunistic because it

has not been planned before, and results in long procedures of adaptation and

decision. Our approach, avoids all of those challenges by planning for reuse from

the early development stages. This planning is ensured by the introduction of

ASPLs that are responsible for the production of common components through the

MPL. Thus a crucial outcome of our work is the systematization of reuse between

SPLs of an MPL. The ASPLs are, after that, partially derived in order to ease their

integration with their reusing SPLs. The partial derivation represents an important

technique for the merging of separated SPLs. In our work, it helps integrating the

SPLs early in the development process to avoid the distributed derivation

challenges thereafter. Thus, partial derivation and early integration represent other

crucial outcomes of our work.

Finally, the proposed approach is validated in context of the e-Government field.

From another view point, the proposed approach allows to reach a successful e-

Government by improving the development process of e-Government applications.

It takes advantages from the benefits provided by SPL engineering namely: to

improve productivity and software quality, and to reduce time, cost, and effort of

development. Furthermore, our approach helps significantly to tackle the

aforementioned issues. SPLE promotes large scale reuse which allows the faster

151

development of applications and decrease costs as well. Variability management

is a key activity in SPLE; it allows adopting applications to fit the variable

customers’ requirements, and thus gaining their satisfaction. The rest of issues

could be resolved by ASPLs. Furthermore, even if security, communication and

HMI are not the core functionalities of e-Government systems, neglecting these

aspects will result in a high probability of failure. Thereby, we have suggested the

dedication of a ASPL for each of them. Security SPL will enhance safety;

confidentiality and citizen’s trust, communication SPL will allow easier integration

of e-Government systems, while HMI SPL will allow users to be more familiar with

applications without having to make a new training for each new application. Other

specialized SPLs are proposed for the development of other common

requirements in order to increase reuse and benefit from the great similarity

between e-Government systems.

Since the proposed approach is based on SPLE it will obviously meet the

challenges found in this area. Mainly the initialization of an e-Government SPL

requires a considerable launching investment, however once the base of reusable

elements is developed final applications can be achieved in short time. Developers

must give great attention to variability management; they must use effective

techniques to properly manage variability from the early development stages. It is

also important to develop a software architecture model suitable to e-Government

applications that facilitate the assembly (or derivation) and systems extension.

Finally, e-Government is intended mainly to citizens, thus it is crucial to consider

their feedbacks in order to improve the delivered services.

Our approach tackles some important MPLs development issues; nevertheless

more research work is still needed in this area. In the future we aim to: define the

partial derivation techniques for the various SPL core assets, and to formulate the

proposed activities in order to allow the partial derivation process automation. It

would be also important to test our approach in other MPLs environments than e-

Government in order to reach further improvements.

152

REFERENCES

[1] Len, B., Clements, and P. Kazman, R., “Software Architecture In Practice”,

Third Edition, Boston: Addison-Wesley. ISBN 978-0-321-81573-6, (2012).

[2] Perry, D. E., Wolf, A. L., "Foundations for the study of software

architecture", ACM SIGSOFT Software Engineering Notes. 17 (4): 40.

doi:10.1145/141874.141884, (1992).

[3] Jean-Christophe, " Les lignes de produits logiciels Réutilisation et

variabilité ", Publication périodique de Smals, (Juin 2009).

[4] Klaus,P., Böckle,G., and van der Linden,F., “Software Product Line

Engineering: Foundations, Principles, and Techniques”, Springer,(2005).

[5] Northrop, L.M., Clements, C.C., “A Framework for Software Product Line

Practice,” Version 5.0 (online), http://www.sei.cmu.edu/

[6] Chen, L., Babar, M.A., Nour, A., “Variability Management in Software

Product Lines: A Systematic Review,” SPLC, San Francisco, California,(

2009).

[7] Bachmann, F., and Clements, P.C., “Variability in Software Product Lines,”

technical report CMU/SEI, (2005).

[8] Yildiz, M., “E-government research: Reviewing the literature, limitations,

and ways forward”, Government Information Quarterly, vol. 24, no 3,

(2007), p. 646-665.

[9] Awais, R., Royer, J.C. and Rummler, A., “ Aspect-oriented, model-driven

software product lines: The AMPLE way”, Cambridge University Press,

(2011).

[10] Van Gurp, J., Bosch, J., & Svahnberg, M., “On the Notion of Variability in

Software Product Lines”. In Proceedings Working IEEE/IFIP Conference on

Software Architecture, IEEE, (2001, August), 45-54.

[11] Van Grup, J., Bosch, J., Svahnberg, M., “Managing Variability in Software

Product Lines”. Proceedings of IEEE/IFIP Conference on Software

Architecture, (2000).

153

[12] Sinnema, M., & Deelstra, S., “Classifying variability modeling techniques.

Information and software technology”, 49(7), (2007), 717-739.

[13] Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J. H., Pohl, K.,

“Variability Issues in Software Product Lines”, Software Product-Family

Engineering, Lecture Notes in Computer Science Volume 2290, (2002), 13-

21.

[14] Kang, K. C., Hyesun, L., “Variability Modeling”, Systems and Software

Variability Management. Springer, (2013), 25-42.

[15] Van der Linden, F. J., Schmid, K., & Rommes, E., “Software product lines in

action: the best industrial practice in product line engineering”, Springer

Science & Business Media, (2007).

[16] Charles W. Krueger, “Variation Management for Software Production

Lines”, SPLC 2 Proceedings of the Second International Conference on

Software Product Lines, Pages 37-48, Springer-Verlag London, UK, (2002).

[17] Svahnberg, M., van Gurp, J. and Bosch, J., “A taxonomy of variability

realization techniques”, Software Practice and Experience, (2005).

[18] Classen, A., Heymans, P., Laney, R., Nuseibeh, B., & Tun, T. T., “On the

structure of problem variability: From feature diagrams to problem frames”,

(2007), 109-118.

[19] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-

Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report

CMU/SEI-90-TR-21, (1990).

[20] Lianping, C., Babar, M. A. and Ali, N., "Variability management in software

product lines: a systematic review." In Proceedings of the 13th International

Software Product Line Conference, Carnegie Mellon University,(2009), 81-

90.

[21] Lee, K., Kang, K. C., & Lee, J. , “Concepts and guidelines of feature

modeling for product line software engineering”, In Software Reuse:

Methods, Techniques, and Tools, Springer Berlin Heidelberg (2002), 62-77

.

[22] Fey, D., Fajta, R., & Boros, A., “ Feature modeling: A meta-model to

enhance usability and usefulness”, In International Conference on Software

Product Lines Springer, Berlin, Heidelberg, (August 2002), 198-216.

154

[23] Czarnecki, K., Eisenecker, U. W., “Generative programming: methods,

tools, and applications”, ACM Press/Addison-Wesley Publishing Co. New

York, NY, USA, (2000).

[24] Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M., “FORM: A

Feature-Oriented Reuse Method with Domain-Specific Reference

Architectures”, Annals of Software Engineering, vol. 5, (1998), 143-168.

[25] Griss, M. L., Favaro, J. Alessandro, M., “Integrating Feature Modeling with

the RSEB”, Proceedings of the Fifty International Conference on Software

Reuse, Victoria, Canada, (June 1998).

[26] Riebisch, M., Böllert, K., Streitferdt, D., & Philippow, I., “Extending feature

diagrams with UML multiplicities”, In 6th World Conference on Integrated

Design & Process Technology (IDPT2002), Vol. 23, (2002, June), 1-7.

[27] Czarnecki, K., and Kim, Ch. H. P. "Cardinality-based feature modeling and

constraints: A progress report", International Workshop on Software

Factories, (2005).

[28] Czarnecki, K., Helsen, S., and Eisenecker, U., "Formalizing

cardinality‐based feature models and their specialization", Software

process: Improvement and practice 10.1, (2005), 7-29.

[29] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wąsowski, A.,

“Cool features and tough decisions: a comparison of variability modeling

approaches”, In Proceedings of the sixth international workshop on

variability modeling of software-intensive systems, ACM, (2012, January),

173-182.

[30] Software Productivity Consortium Services Corporation, Technical Report

SPC-92019-CMC. Reuse-Driven Software Processes Guidebook, Version

02.00.03, (1993).

[31] Forster, T., Muthig, D. and Pech, D., "Understanding Decision Models-

Visualization and Complexity Reduction of Software Variability." VaMoS,

(2008).

[32] Atkinson, C., Bayer, J. and Muthig, D., “Component-Based Product Line

Development: The KobrA Approach”, Proceedings of the First Software

Product Lines Conference SPLC1, (2000).

[33] Gomaa, H., & Webber, D. L., “Modeling adaptive and evolvable software

product lines using the variation point model”. In System Sciences, 2004.

155

Proceedings of the 37th Annual Hawaii International Conference on IEEE,

(January 2004), page 10.

[34] Jacobson, I., Griss, M., Jonsson, P., “Software Reuse- Architecture,

Process and Organization for Business Success”. ACM Press, New York,

NY, (1997).

[35] Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J., “Covamof: A framework

for modeling variability in software product families”. In International

Conference on Software Product Lines , Springer, Berlin, Heidelberg,

(2004, August), 197-213.

[36] Kakola, T. and Duenas, J. C., “Software Product Lines, Research Issues in

Engineering and Management”, Springer, (2006).

[37] Clauss, M., "Generic Modeling using UML extensions for variability", In:

Workshop on Domain Specific Visual Languages at OOPSLA, USA, (2001).

[38] Clauss, M., "Modeling variability with UML", GCSE 200-Young Researchers

Workshop, September 2001.

[39] Ziadi, T., Hélouët, L., and Jézéquel, J. M., "Modélisation de Lignes de

Produits en UML", In Proceedings of Langages et Modèles à Objets

(LMO03) Vannes/France, (2003).

[40] Ziadi, T., Hélouët, L., and Jézéquel, J. M., “Towards a UML Profile for

Software Product Lines”, In Proceedings of International Workshop on

Product Family Engineering (PFE-5), Seana / Italy, (2003).

[41] Ziadi, T. and Jézéquel, J. M., “Product Line Engineering with the UML:

Deriving Products”, chapter in Software Product Lines: Reasearch Issues in

Engineering and Management, Springer-Verlag, (2006), 557-596.

[42] Donegan, P. M., & Masiero, P. C., “Design Issues in a Component-based

Software Product Line”, In SBCARS, (August 2007), 3-16.

[43] Razavian, M., Khosravi, R., “Modeling Variability in the Component and

Connector View of Architecture Using UML”, 6th IEEE/ACS, (2008).

[44] Van Ommering, R., “The Koala component model for consumer electronics

software”, Philips Research Eindhoven, IEEE Computer 33(3), (MAR 2000).

[45] Asikainen, T., Soininen, T., & Männistö, T., “A Koala-based approach for

modelling and deploying configurable software product families”, In

International Workshop on Software Product-Family Engineering, Springer,

Berlin, Heidelberg, (November 2003), 225-249.

156

[46] Voelter, M. Visser, E., “Product Line Engineering using Domain-Specific

Languages”, 15th international SPLC, (2011).

[47] Apel, S., Batory, D., Kästner, C., & Saake, G., “A development process for

feature-oriented product lines”, In Feature-Oriented Software Product Lines,

Springer, Berlin, Heidelberg, (2013), 17-44.

[48] Gerald, H., Grünbacher, P. and Rabiser, R., “A systematic review and an

expert survey on capabilities supporting multi product lines”, Information

and Software Technology 54, no. 8, (2012), 828-852.

[49] Savolainen, J., Mannion, M., Kuusela, J., “Developing platforms for multiple

software product lines”, In proceeding of Software Product Line

Conference, Salvador, Brazil, (2012), 220-228.

[50] Bosch, J., “The challenges of broadening the scope of software product

families”, Communications of the ACM 49.12, (2006) ,41-44.

[51] Schröter, R., “Using Multi-Level Interfaces to Improve Analyses of Multi

Product Lines”, Technical report, Otto-von-Guericke University Magdeburg,

Germany, (2014).

[52] Schröter, R., Siegmund, N., Thüm, T., “Towards modular analysis of multi

product lines”, In Proceedings of the 17th International Software Product

Line Conference co-located workshops, ACM, (2013), 96-99.

[53] Van Ommering, R., "Beyond product families: Building a product

population?", International Workshop on Software Architectures for Product

Families, Springer Berlin Heidelberg, (2000).

[54] Van Ommering, R., "Building product populations with software

components." Proceedings of the 24th international conference on Software

engineering, ACM, (May 2002), 255-265.

[55] Altintas, N. I., & Cetin, S., “Managing large scale reuse across multiple

software product lines”, In International Conference on Software Reuse .

Springer, Berlin, Heidelberg, (2008, May), 166-177.

[56] Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T., “Structuring the

modeling space and supporting evolution in software product line

engineering”, Journal of Systems and Software 83 (7), (2010), 1108–1122.

[57] Rosenmüller, M., Siegmund, N., Kästner, C., Syed, S. ur R., “Modeling

dependent software product lines”, In Proceedings of the GPCE Workshop

157

on Modularization, Composition and Generative Techniques for Product

Line Engineering (McGPLE) (2008), 13-18.

[58] Rosenmüller, M., and Siegmund, N., "Automating the Configuration of Multi

Software Product Lines." VaMoS 10, (2010), 123-130.

[59] Hartmann, H., Trew, T., “Using feature diagrams with context variability to

model multiple product lines for software supply chains”, In Software

Product Line Conference, IEEE, (2008), 12-21.

[60] Kruchten, P., Obbink, H. and Stafford, J., "The past, present, and future for

software architecture", IEEE software 23.2, (2006), 22-30.

[61] Fritz, S.,” What is software architecture?”, SAICSIT '12 Proceedings of the

South African Institute for Computer Scientists and Information

Technologists Conference. Pretoria, South Africa, (October 2012), 363-373.

[62] Bass, L., Clements, P., & Kazman, R., "Software architecture in practice."

Boston, Massachusetts Addison, (2003).

[63] Schmidt, D. C., & Buschmann, F., “Patterns, frameworks, and middleware:

their synergistic relationships”, In 25th International Conference on

Software Engineering, 2003. Proceedings, IEEE, (May 2003), 694-704.

[64] Pressman, R. S., “Software engineering: a practitioner's approach”,

Palgrave Macmillan, (2005).

[65] Garlan, D., and Dewayne, E. P. ,"Introduction to the special issue on

software architecture", IEEE Trans. Software Eng. 21.4, (1995), 269-274.

[66] GARLAN, D., “Software architecture: a roadmap”. In Proceedings of the

Conference on the Future of Software Engineering, ACM, (2000), 91-101.

[67] Brown, Alan W., “Large-scale, component-based development”, Vol. 1.

Englewood Cliffs: Prentice Hall PTR, (2000).

[68] Duncan, S., “Component software: Beyond object-oriented programming”,

Software Quality Professional, 5(4), 42, (2003).

[69] González, R., and Torres, M. "Critical issues in component-based

development", In Proceedings of The 3rd International Conference on

Computing, Communications and Control Technologies (CCCT'05), (2005).

[70] Bennouar, D., “The Integrated Approach to Software Architecture”, Ph.D.

Thesis, Ecole Supérieure d’Informatique, Oued Smar, Algiers (in French),

(2009)

158

[71] Garlan, D., T. Monroe, R. and Wile, D., "Acme: Architectural description of

component-based systems", Foundations of component-based systems 68,

(2000),47-68.

[72] Medvidovic , N. and Taylor, N R., “A classification and comparison

framework for software architecture description languages”, IEEE

Transactions on Software Engineering, 26(1) :70.93,(2000).

[73] Mary, S., & David, G. (1996). Software architecture: perspectives on an

emerging discipline. Prentice-Hall. “Software Architecture Perspective on an

Emerging Discipline”, Prentice Hall India, First edition, (2000).

[74] Magee, J., Dulay, N., & Kramer, J., "Structuring parallel and distributed

programs." Software Engineering Journal 8.2, (1993), 73-82.

[75] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., & Stefani, J. B., "The

fractal component model and its support in java", Software: Practice and

Experience 36,11‐12, (2006),1257-1284.

[76] Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., & Mann,

W., “Specification and analysis of system architecture using Rapide”, IEEE

Transactions on Software Engineering, 21(4), (1995), 336-354.

[77] Saadi, A., “An Action Language for the Specification and the Validation of

Software Architecture Behavior in the IASA Approach”, Magister Thesis (in

French), LRDSI Lab, Computer Science Department, The Saad Dahlab

University, Blida, Algeria, (June 2008).

[78] Bennouar , D., Saadi, A., “The Design of an eGovernment Application

Using an Aspect Oriented Software Architecture Approach”, AOSA

conference, (2009).

[79] Bennouar, D., Henni, A., Saadi, A., “The Design of A Complex Software

System Using A Software Architecture Approach”, The International Arab

Conference on Information Technology, (2008).

[80] Bennouar , D., Khammaci, T., Henni, A., “A new approach for component’s

port modeling in software architecture”, In Journal of System and Software,

Elsevier, Volume 83 Issue 8, (August 2010).

[81] Lazilha, F. R., Barroca, L., de Oliveira Junior, E. A., & de Souza Gimenes, I.

M., “A component-based product line architecture for workflow

management systems”, CLEI Electronic Journal, 7, (2004).

159

[82] D’Souza, D. F., A. C. Wills. “Objects, Components and Frameworks with

UML – The Catalysis Approach”, Addison Wesley Publishing Company,

(1999).

[83] Jacobson, I., Griss, M., Jonsson, P., “Software Reuse – Architecture

Process and Organization for Business Success”, New York: Addison-

Wesley, (1997).

[84] Brown, T. J., Spence, I., Kilpatrick, P., & Crookes, D., “Adaptable

components for software product line engineering”, In International

Conference on Software Product Lines, Springer, Berlin, Heidelberg, (2002,

August), 154-175.

[85] Rob van, O., “The Koala component model for consumer electronics

software”, Philips Research Eindhoven, IEEE Computer 33(3), (MAR 2000).

[86] Van Ommering, R., “Building product populations with software

components”, In Software Engineering, ICSE 2002, Proceedings of the

24rd International Conference on, IEEE, (May 2002), 255-265.

[87] Asikainen, T., Soininen, T., & Männistö, T., “A Koala-Based Approach for

Modelling and Deploying Configurable Software Product Families”, PFE-5,

(2004).

[88] Loughran, N., Sánchez, P., Garcia, A., and Fuentes, L., “Language support

for managing variability in architectural models”, In Software Composition

Springer Berlin/Heidelberg, (2008), pp. 36-51.

[89] Tizzei, L. P., Rubira, C. M., & Lee, J., “A Feature-oriented Solution with

Aspects for Component-based Software Product Line Architecting”, SEAA,

12, (2012), 1-10.

[90] Atkinson, C., Bayer, J., & Muthig, D. “Component-based product line

development: the KobrA approach”, In Proceedings of the 1st Software

Product Line Conference, (2000, August), 289-309.

[91] Dobrica, L., & Ovaska, E. , “Applying UML Extensions in Modeling Software

Product Line Architecture of a Distribution Services Platform”, Model-Driven

Domain Analysis and Software Development: Architectures and Functions:

Architectures and Functions, (2010), 351.

[92] Weerakkody, V., and Choudrie, J., “Exploring e-government in the UK:

Challenges, issues and complexities”, Journal of Information Science &

Technology, 2(2), (2005).

160

[93] Guendouz, A., Bennouar, D., “Component-Based Specification of Software

Product Line Architecture”. In the International Conference on Advanced

Aspects of Software Engineering ICAASE, (2014), 100-107.

[94] Guendouz, A., Bennouar, D., Ramdani, A., Mazari, H., “Customer

Satisfaction through E-Learning Software Product Line”, Proceedings of the

9th International Conference on Internet and Web Applications and

Services, ICIW, (2014), 14-18.

[95] Lee, K., “Variability and Aspect Orientation”, Systems and Software

Variability Management, Springer Berlin Heidelberg, (2013), 293-300.

[96] Guendouz, A. and Bennouar, D., “AMPL: aspect multiple product lines”,

International Journal of Computers and Applications, DOI:

10.1080/1206212X.2020.1735761, (2020), 1-11.

[97] Guendouz, A. and Bennouar, D., “Managing reuse across MPLs through

Partial Derivation”, in proceeding of International Arab Conference on

Information Technology ACIT, (2016).

[98] Rabiser, R., Grünbacher, P., Holl, G., “Improving awareness during product

derivation in multi-user multi product line environments”, Proc. Int. Conf.

Automated Configuration and Tailoring of Applications, in Conjunction with

25th IEEE/ACMè Int. Conf. on Automated Software Engineering, Antwerp,

Belgium, CEUR-WS, (2010), 1-5.

[99] Czarnecki, K., Helsen, S., Eisenecker, U.: ‘Staged configuration using

feature models’: ‘Software Product Lines’ (Springer, 2004), pp. 266-283

[100] Czarnecki, K., Helsen, S., Eisenecker, U., “Staged configuration through

specialization and multilevel configuration of feature models”, Software

Process: Improvement and Practice,10, 2, , ‘2005), 143-169

[101] Layne, K., and Lee, J., “Developing fully functional E-government: A four

stage model”, Government Information Quarterly 18, ELSEVIER, (2001),

122–136.

[102] William G. Wood,” Government Product Lines”, Book: Software Product

Lines, Springer US, (2000),183-192

[103] Kumar, V., Mukerji, B., Butt, I., and Persaud, A., “Factors for Successful e-

Government Adoption: a Conceptual Framework”, Electronic Journal of e-

Government Volume 5 Issue 1, (2007), 63 – 76.

161

[104] HUANG, Z. and BENYOUCEF, M., “Usability and credibility of e-

government websites”, Government Information Quarterly, vol. 31, no 4,

(2014), 584-595.

[105] Müller, J., “Generating Graphical User Interfaces for Software Product

Lines: A Constraint-based Approach”, In proceeding of: 15

Interuniversitäres Doktorandenseminar Wirtschaftsinformatik der

Universitäten Chemnitz, Dresden, Freiberg, Halle-Wittenberg, Jena und

Leipzig, (2011).

[106] Mellado, D., Fernandez-Medina, E., & Piattini, M., “Security Requirements

Variability for Software Product Lines”, The Third International Conference

on Availability, Reliability and Security, Barcelona, (March 2008), 1413-

1420.

[107] Rodríguez, J., Fernández-Medina, E., Piattini, M., & Mellado, D., “A

Security Requirements Engineering Tool for Domain Engineering in

Software Product Lines”, Non-Functional Properties in Service Oriented

Architecture(book), Publisher: IGI Global, Pub. Date: March 31, (2011), 73.

[108] Mellado, D., Fernández-Medina, E., & Piattini, M., “Security Requirements

Management in Software Product Line Engineering”, In: e-Business and

Telecommunications. Springer Berlin Heidelberg, (2009), 250-263.

[109] Ralyté, J., Jeusfeld, M. A., Backlund, P., Kühn, H., & Arni-Bloch, N., “ A

knowledge-based approach to manage information systems

interoperability”, Information Systems, vol. 33, no 7, (2008), 754-784.

[110] Novakouski, M., Grace, A. L., “Interoperability in the e-Government

Context”, technical note CMU/SEI, (January 2012).

[111] Janssen, M., Charalabibis, Y., Kuk, G., & Cresswell, T., “E-government

Interoperability, Infrastructure and Architecture: State-of-the-art and

Challenges”, Journal of Theoretical and Applied Electronic Commerce

Research, vol. 6, no 1, (April 2011), I-VIII.

[112] Sanchez ,P., Diego, G., and Marta, Z., “Software Product Line Engineering

for e-Learning Applications: A Case Study,” 2012 International Symposium

on Computers in Education (SIIE 2012), Andorra, (2012), 1-6.

[113] HELALI, R., ACHOUR, I., JILANI, L. L., ”A Study of E-Government

Architectures”. In : E-Technologies: Transformation in a Connected World.

Springer Berlin Heidelberg, (2011), 158-172.

162

[114] Achour, I. Labed, L., Helali, R. and Ben Ghazela, H., “A Service Oriented

Product Line Architecture for E-Government”, The 2011 International

Conference on e-Education, e-Business, Enterprise Information Systems,

and e-Government, USA, (2011).

[115] Lee, J., Kotonya, G., “Combining Service-Orientation with Product Line

Engineering”, IEEE Software, Volume:27 , Issue: 3 , (05 February 2010)

,35 - 41.

[116] Bayer, J., Buhl ,W., Giese, C., Lehner, T., Ocampo, A., Puhlmann, F.,

Richter, E., Schnieders, A., Weiland, J., and Weske, M., “Process Family

Engineering: Modeling Variant-Rich Processes”, PESOA-Report No. 18,

(2005).

[117] Carromeu, C., Paiva, D. M. B., Cagnin, M. I., Rubinsztejn, H. K. S., Turine,

M. A. S., and Breitman, K. Component-based architecture for e-Gov web

systems development”, In 2010 17th IEEE International Conference and

Workshops on Engineering of Computer Based Systems, IEEE, (2010,

March), 379-385.

[118] Buccella, A., & Cechich, A., “Geographic e-Services Development through

Product-Line Engineering and Standardization”, Electronic Government and

the Information Systems Perspective, Lecture Notes in Computer Science

Volume 6267, (2010), 150-157.

