MA-004-431-1

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

&>

&l dl &2 gdl gl
AIR ALGERIE

UNIVERSITY OF SAAD DAHLEB BLIDA
U.S.D.B
FAcuLTY OF SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

THESIS

SUBMITTED FOR THE FULLFILLMENT REQUIRMENT TO GET MASTER DEGREE IN
COMPUTER SCIENCE
OorTION : SIR

IMPLEMENTATION OF A DISTRIBUTED ALGORITHM FOR
THE BALANCING OF INTEGER INDIVISIBLE LOADS IN

DISTRIBUTED SYSTEMS

Supervised by : Presented by :

Pr.OULD-KHAOTUA M. BENSAFI HinD

Board of Examiners :

DrR.BENYAHIA M. PRESEDENT USDB
‘PR.OULD-KHAOUA M. SUPERVISOR USDB
Dr.ZAHRA F. EXAMINER USDB
MME.HAMMAD A. SUPERVISOR

AcabpeEMIC YEAR : 2017/2018

Abstruct

One of the important tools within the distributed computer systems is load balancing.
The load balancing is a process of redistribution of tasks among multiple processors. This
redistribution should be made so that each processor has approximately equal work to do.
In this thesis we present a dynamic algorithm for balancing indivisible loads on a network.
Our aim is to reach an equilibrium state of the network using a final number of steps. The
algorithm works as follows: cach node in the network communicate with its neighbors and
balance their loads locally to reach the equilibrium state. The results of the experiments
of various load balancing methods, considering two typical load balancing environement
centralized and decentralized, indicate that the proposed greedy sort method has more

advancements over the others, especially in decentralized than a centralized environement.

Key words: Load balancing, indivisible loads, dvnamic load balancing.

Résumé

L’un des moyens trés importants dans le domaine des systémes distribués est I'équilibrage
de charge. L’équilibrage de charge consiste a la redistribution des charges du travail sur
différents processeurs. Cette redistribution doit garantir que chacun des processeurs ex-
istants aura presque la méme charge du travail. Dans ce mémoire nous présentons un
algorithme d’équilibrage des charges indivisibles dans un réseau. Notre but est d’arriver
par la suite & un état d’équilibre global. L’algorithme fonctionne comme suit: chaque
nceud dans le réseau communique avec ses voisins et équilibrent leur charges localement
pour atteindre 1'état d’équilibre global. Les résultats des expérimentations de différentes
méthodes d’équilibrage, en considérant les deux cas centralisé et décentralisé, la méthode
" greedy sort" proposée donne de bonmnes résultats par rapport aux deux autres. dans un

milieu décentralisé mieux que dans le centralisé.

Mot clés: Equilibrage de charge, charges indivisibles, équilibrage de charge dynamique.

oasle

5ylic 437 G (da) goll BN (B AloaTuall Sl ¥ @aT i uSias (Laondl 45 31 g0 3f

sl of whe B pBiaSialt Cilloctlasll LaTimu ole 5392 gall JLeo¥) g5 53 Bsley auiss s
ulajhdldé-‘,.lcdmm S oluia dulall a5 95l Aroni @J:,,‘.ab.as.smm
45 31 303 ‘L&mLu.a MJJI?PM_Q;L&Mﬂﬁoﬁ“|and»wﬁﬁ¢bal&é’&
(eaElS ALIE Al fesdl le Jeall aa JME e 5 3Em, LA U] e ASul Joodl

uLn,.Lt.qu Jalds a 93, MI ‘,5 JL@»J& ‘,.ﬂ.n.ﬂé AJJ|3AJ| 4o)yl g5 oo g K

P

uLa.mm.LmJuJLa.ch_aLﬁ'l Ldas‘}oajlu)lymwnquo)jbnaﬂnm?ltn

Ain w8y uLCdiJJLi X La.n P P . L‘.:a u.!ac.u ué % md«; <;ort"2:. ¥ P |
--953 > - 3 43y et J-""-‘J

Saonll TS alins 2330 g0 ¢ uandill ALIE 5ud Jom ¢ Jooull X33l ge :dirlide OLaiS

Acknowledgment

First and foremost, I would like to thank ALLAH Almighty for giving me the strength,
knowledge, ability and opportunity to undertake this research study and to persevere and
complete it satisfactorily. Without his blessings, this achicvement would not have been

possible.

Second I would like to thank my thesis advisor Prof. OULD—KHAOUA Mohamed of
the Computer Science department at Blida university. The door to Prof.OULD—KHAOQUA
office was always open whenever I ran into a trouble spot or had a question about my
research or writing. He consistently allowed this paper to be my own work, but stecred

me in the right direction whenever he thought I needed it.

I'would also like to thank the head of the IT cell at "Algeria Airlines" Mme.HAMMAD
Amina, without her passionate participation and input, this thesis could not have been

successfully conducted.

Finally, I must express my very profound gratitude to my parents and to my brothers
Adel and Nabil and to my freinds for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of researching and
writing this thesis. This accomplishment would not have been possible without them.
Thank you.

Contents

1

2

1

2

Related works

Static Load Balalncing
Dynamic Load Balalncing
Load Balancing in distributed systems
1.3.1 Load Balancing in cloud computing environments
1.3.2 Load Balancing in grid computing environments
Indivisible loads problem
141 Divisibleloads.

142 Imdivisibleloads _ _ ___ .

Parallel or distributed system
Types of distributed systems
24.1 Distributed Computing Systems __
2.4.2 Distributed Information Systems
2.4.3 Distributed Pervasive Systems

Distributed systems challenges

16

17

18

20

1

25.1 Load balancing problem

3 Self-stabilizing algorithm for indivisible integer-valued loads
Self stabilazing algorithm for indivisible loads
3.1.1 Self-stabilizing approach
3.1.2 Thealgorithm L.
3.1.3 Pairwisemethods _

4 Numerical results
1 First Experiment: Brute force vs. Greedy Sort
2 Second Experiment: Centralized vs. Decentralized
3 Third Experiment: Decentralized algorithm, Extreme case
4 Fourth Experiment: Different topologies _
5 Discussing
Conclusion
Bibliography
1
Appendix

N

29

31

32

32

36

40
40

42

46

49

51

52

56

List of Figures

0.1

4.2

4.3

classification of loads processing. 7] 8
Knapsack analogy. 9
A distributed system that connects processors by a communication network. 21
Difference between distributed and parallel system. 23
An example of a cluster computing system. 24
A nested tramsaction. 25
Interapplication commumnication. _ 26
Example of body-area network. 27
Organizing a sensor network database, while storing and processing data

(a) only at the operator’s site or (b) only at the sensors. 28
Molecular dynamics simulation software. _ . __ 30
Simple network of 8modes. 31
Network nodes before (right) and after (left) the balancing. 32
Self-stabilization approach. 33
The damped pendulum analogy. _ _ 33
Apairof nodes example. 38
Minimum (a) and Maximum (b) total load by iteration for 200 nodes:

Comparaison of Brute Force (in purple) and Greedy sort (in green) pairwise

methods. 0oL 41
Delta by iteration for 200 nodes: Comparaison of Brute Force (in purple)
and Greedy sort (in green) pairwise methods. _ 41

Itrations by nodes: Comparaison of Brute Force (in purple) and Greedy

sort (in green) pairwise methods. 42

4.4

4.6

4.8

4.9

4.10

4.11

0.13

0.14

0.16

SLLE

Minimum (a) and Maximum (b) total load by iteration for 200 nodes:

Centralized case (in purple) and Decentralized case (in green) using Greedy

Delta by iteration for 200 nodes: Centralized case (in purple) and Decen-
tralized case (in green) using Greedy Sort.

Itrations by nodes: Centralized case (in purple) and Decentralized case (in

green) using Greedy Sort.

Minimum (a) and Maximum (b) total load by iteration for 200 nodes:
Decentralized case (in purple) and Decentralized with all loads in one node

(in green) using Greedy Sort.

Delta by iteration for 200 nodes: Decentralized case (in purple) and De-

centralized with all loads in one node (in green) using Greedy Sort.
Diffrent network topologeis.

Minimum (a) and Maximum (b) total load by iteration: Grid topology
(in purple). Torus topology (in green). Hypercube topology (in blue) and
Hash—Net topology (in orange) using Greedy Sort.

Delta by iteration: Grid topology (in purple), Torus topology (in green),
Hypercube topology (in blue) and Hash—Net topology (in orange) using
Greedy Sort. L

2 Minimum (a) and Maximum (b) total load by iteration for 400 nodes:

Comparaison of Brute Force (in purple) and Greedy sort (in green) pairwise

methods.,

Delta by iteration for 400 nodes: Comparaison of Brute Force (in purple)

and Greedy sort (in green) pairwise methods.

Minimum (a) and Maximum (b) total load by iteration for 600 nodes:
Comparaison of Brute Force (in purple) and Greedy sort (in green) pairwise
methods.

Delta by iteration for 600 nodes: Comparaison of Brute Force (in purple)

and Greedy sort (in green) pairwise methods.

Minimum (a) and Maximum (b) total load by iteration for 400 nodes:
Comparaison of Centralized (in purple) and Decentralized (in green) cases.

Delta by iteration for 400 nodes: Comparaison of Centralized (in purple)
and Decentralized (in green) cases. _

48

48

26

BYi

Ut
=]

58

58

59

0.18

0.19

0.21

Minimum (a) and Maximum (b) total load by iteration for 400 nodes: Grid
topology (in purple), Torus topology (in green), Hypercube topology (in
blue) and Hash—Net topology (in orange) using Greedy Sort.

Delta by iteration for 400 nodes: Grid topology (in purple). Torus topol-
ogy (in green), Hypercube topology (in blue) and Hash—Net topology (in

orange) using Greedy Sort.

Minimum (a) and Maximum (b) total load by iteration for 600 nodes: Grid
topology (in purple), Torus topology (in green), Hypercube topology (in

blue) and Hash—Net topology (in orange) using Greedy Sort.

Delta by iteration for 600 nodes: Grid topology (in purple). Torus topol-
ogy (in green), Hypercube topology (in blue) and Hash—Net topology (in

orange) using Greedy Sort.

60

List of Tables

4.1 Exection time of Brute Force and Greedy Sort

4.2 Exection time of Centralized and Decentralized self-stab algorithm.

49

Introduction

To increase the performance of the processors, at first, the founders have hardly worked
to increase the frequency of operation of their chips. However, it seems that today we have
arrived at frequency that will be difficult to break. To increase performance, manufactors

have turned to produce chips with multiple compute units.

Althoug, in robust systems, the use of multi-core or multi-processors machines is not
vet sufficient. A recent tendance was to distribute computation among several physical
processors. In front of the physical limits of the storage capacity and the speed of cal-
culation, distributed systems appear as a competetive solution that can solve problems
requiring large computing capabilities and handling large amounts of data. Several ad-
vantages characterize these distributed computer systems : high availibility, best fault
tolerance, great flexibility and most importantly, they allow to share many ressources

(processor, memory, disk, ect.) through a network.

The optimal use and sharing of computing ressources of distributed systems is a very
important aspect that mobilize many researchs around the world. This optimality requires
a distribution of the workload on the different computer nodes intelligently. It is necessary
to avoid, as far as possible, situations where some nodes are overloaded while others are
underloaded or completly free. Balancing the workload on the various available resources

proves to be a real challenge.

In general, the underlying principle of load balancing is to distribute load units on
a distributed network of ressources. This definition can encompress a broad class of
problems such as performance, response time, scalability, overhead and many more. The
notion of load can be another crucial problem, the load unit could take a sevral forms

(see figure 0.1). not necessary related to a computer task :

e Indivisible loads : These loads are indepandent, indivisible, and, in general, of
different sizes. This means that the load cannot be further subdivided, thus, they

have to be processed in their entirety in a single processor.

e Divisible loads : A divisible load can be either modularly or arbiturly divised. A
modularly divisible load is a priori subdivided into smaller modules based on some
characteristics of the load or the system. The processing of a load is complete when
all its modules are processed. Alternatively, an arbiturly divisible load has the prop-
erty that all items in the load demand an identical type of processing. These loads
have the characteristic that they can be arbitrarily partitioned into any number of

load fractions. These load fractions may or may not have precedence relations|6].

-]

Processing Load E

Indlivisible | 4 Glidisible !

ey

v
Modtlarly Divisible J l Arbitrarify Divisible

Figure 0.1: classification of loads processing. [7]

During the last years, load balancing became an important prerequisite for both indis-
trial and academic users to balance their work efficiently, so, load balancing is known to
have applications in many domains : Clouds, scheduling, routing. numerical computaion,

finite element computations and wireless sensor networks [5].

The deployment of load balancing algorithm involves many challenges. For example,
the decentralized nature of the system where there are no base station. it means, that
to reach the state of equilibrium, nodes have to communicate and exchange data localy.
The second challenge is the indivisible nature of data, how can we stabilize the global
workload without the subdivision of the load unit? This issue is known as indivisible
integer-valued load balancing problem : Stabilizing all loads arrived to the system using

only local communications while maintaining the integrity of the load unit.

Based on the previous motivation, in this report, we focus our research on the dis-
tributed load balancing of indivisible loads problem. The main contribution of the thesis
is a self stabilizing algorithm inspired of the self stabilizing algorithm initially developed
to tackle the problem of non negative real numbers of divisible loads (average consensus
in wirless sensor networks). A good analogy of our approach is the Multiple integer Knap-
sack Problem (MKP)(figure 0.2). The MKP fits naturally to our problem if we consider
nodes of the network as similar knapsacks all filled with items of different sizes. If the
knapsack are communicating, then the system self stabilize to an equilibrium with almost

the same weight in each knapsack.

These mext sections are organized as follows. Im section 1 we present a review of
the existing load balancing algorithms in the various distributed systems. In section 2
we introduce the distributed systems and the load balancing problem. In section 3 the
proposed solution is presented. In section 4 we detail the simulation and the experiments
of our algorithm. In the last part we present our conclusions and the future work on this

topic.

"\~) [< > v_) : ‘ I } 3
ke | | s
— — —_
- - -
Inital distribution
ﬁ j d ﬂ Nl

Figure 0.2: Knapsack analogy.

Chapter 1

Related works

Load Balancing (LB) is a method of increasing the performance of Distributed System
(DS). It is a policy of transferring the load among various processors of DS to improve job
response time and resource utilization while also ignoring a condition where few processors
are overloaded while others are idle or doing under loaded work at any given instant of
time in the system [1]. It can be classified into two subcategorics : Static Load Balancing
(SLB) and Dynamic Load Balancing (DLB).

The SLB algorithms are generally based on the informations about the behaviour of
the system. The algorithm is executed by providing prior informations about the system.
This means that the decisions related to load balance are made at compile time. Many
hypotheses are assumed like the performance of a node or the resources needed to execute
a task. Dynamic strategies, in the other hand, react to the current system state in making
transfert decisions. The current status of the distributed network is analyzed to adapt

the system dynamically.

The LB problem (static or dynamic) has been discussed in traditional distributed
systems literature for more than two decades. Various strategies and algorithms have
been proposed, implemented and classified in a number of studies . In this chapter, we

will cite some articles in order to give an overviw of the problem.

1 Static Load Balalncing

In this method the performance of the processors is determined at the initial stage
of process. Then based on their performance the work load is distributed by the master
processor. The slave processors calculate their allocated work and then send their result
to the master.In these method, a job is always executed on the processor to which it is
assigned that is SLB techniques are non preemptive. The main intention of SLB method
is to reduce the overall execution time of a concurrent program while minimizing the

communication delays.

10

Many authors have been interested to study SLB strategies. For example, S. Ichikawa
and S. Yamashita present in [22] a static load balancing scheme for partial differential
equation solvers in a distributed computing environment. Their method considers both
computing and communication time to minimize the total execution time with automatic
data partitioning and processor allocation. The problem was formulated as a combinato-
rial optimization and solved by the branch-and-bound method for up to 20-24 processors.
They present approximation algorithms that give good allocation and partitioning in prac-
tical time. The quality of the approximation was evaluated in comparison to the optimal

solution or theoretical lower bounds.

Another interesting work was the balance of Nash [20]. D.Grosu and A.T.Chronopoulos
formulate the SLB problem in heterogencous distributed systems as a noncooperative
game among users. For the proposed noncooperative LB game, they present the struc-
ture of the Nash equilibrium. Based on this structure they derive a new distributed LB
algorithm. The performance of their noncooperative load balancing scheme is compared
with that of other existing schemes (proportional scheme [9], global optimal scheme [23],
and individual optimal scheme [24]). The main advantages of their load balancing scheme

are the distributed structure, low complexity and optimality of allocation for each user.

Jie Li and Hisao Kameda studied also the SLB problem in a distributed computer
system with the tree hierarchy configuration [28]. The problem was formulated as a
nonlinear optimization problem. After studying the conditions that the solution to the
optimization problem of the tree hierarchy network satisfies, It was demonstrated that
the special structure of the optimization problem leads to an interesting decomposition
technique. A new effective decomposition algorithm to solve the optimization problem was
presented. The proposed algorithm was compared with two other well known algorithms:
the Flow Deviation (FD) algorithm and the DafermosSparrow (D-S) algorithm. The
experiments shows that both the proposed algorithm and the D-S algorithm have much

faster convergence in terms of central processing unit (CPU) time than the FD algorithm.

The SLB in single channel and star network configurations was studied in [35, 34].
Tantawi and Towsley studied LB of single class jobs in a distributed computer system
that consists of a set of heterogeneous host computers connected by single channel and star
communications networks such as satellite networks and some LAN’s. A key assumption
of theirs was that the communication delay does not depend on the source-destination
pair. They considered an optimal SLB strategy which determines the optimal load at each
host so as to minimize the mean job response time, and derived two algorithms (called
single-point algorithms) that determines the optimal load at each host for given system

parameters.

Static policies use only the system statistical information in making LB decisions, and
therefore have the advantages in mathematical analysis and in implementation because

of their simplicity. Also, static strategies will suppress (or at least minimize) data redis-

11

tributions and control overhead during execution. Furthermore, static allocations seem
to be necessary for a simple and efficient memory allocation|[23]. Even though, a usual
disadvantage of all static methods is that the final selection of a node for process alloca-
tion is made when the process is initially created and it cannot be changed during process
execution in order to make variations in the system load [33]. This lead us to focus on

another important and efficient type of LB: the dynamic load balancing.

2 Dynamic Load Balalncing

As the literature is vast with respect to DLB, we will see different works to dealing

with this problem.

However, it is necessary to begin to clarify the meaning of DLB in the literature,
with many possible interpretations. For example. we can talk about DLB when the load
varies during the LB process [11].We also talk about DLB when the network topology
varies [3]. In this example, J.Bahi, R.Couturier and F.Vernier see a dynamic network
as a network with dynamic links. the edges in the network may vary at each time step.
They suppose that no computer can be added or defimitively retrieved in a dynamic
network and at each time step, each node in a dynamic network knows which of its
edges are alive (a dynamic network can be viewed here as a network in which some
edges can be lost during the execution of the algorithm due to faulty communications or
timeout). With these considerations, they propose three algorithms: Their first algorithm
is a classical diffusion load balancing algorithm, requiring some adaptations because of
the dynamicity of the network (the diffusion matrix integrates the information when a
link is missing). GAE is a new algorithm. It constraints one node to exchange its load
with at most one of its neighbors: at time ¢ and for each node, all edges except one
are unusable (the choice of the single neighbor of each node is done using strategies
arbitrary, random or more sophisticated). The latter, which we called relaxed diffusion,
introduces a relaxation parameter in the diffusion algorithm. The relaxation parameter
may dramatically speed up the convergence. The authors then simulate different networks
with a certain percentage of unusable edges (from 0% to 50%) to illustrate the behavior
of these algorithms and to prove their convergence towards the uniform distribution of
the workload. The algorithms of J. Bahi, R. Couturier and F. Vernier allow to balance

the load on a dynamic network in which the communication links are not 100% reliable.

Another approach for dynamic load balancing is to "use the past to predict the fu-
ture", that is, to use the computational speed observed for each processor or resource
to decide the redistribution of the loads. Many authors [10, 40] have been interested in
this approach, especially [40] where load balancing involves assigning to each processor a
job proportional to its capabilitics with minimizing the execution time of the program.

The authors examine the different behaviors of load balancing strategies: global versus

12

local and centralized versus distributed on a network of workstations. They showed that
different strategies are best for different applications under varying parameters such as

the number of processors, data size, iteration cost, communication cost, etc.

A very particular view of dynamic load balancing is based on the redistribution of
data among the participating processors during the execution of the algorithm. This
redistribution is done by transferring data from the most loaded processors to the least
loaded processors. This load balancing phase can be centralized by a single processor or
distributed over all the processors.For example, in [21], the main problem is the permanent
change in the load of each workstation (the authors worked on an architecture organized
imto clusters), which makes the execution time of parallel applications unpredictable.
Simulation and experimental studies of their load balancing strategy were performed
under various load situations and it was shown that it can effectively balance the workload
among the workstations involved. Further, it was shown that a significant improvement
in performance can be achieved when compared to the case where no load balancing is

cmployed.

Another example of the many existing models for dynamic load balancing strategies in
[38] where H.Willebeeck-Lemair and P.Reeves present five approaches. "Sender/Receiver
Initiated Diffusion(SID/RID)" can be summarized as follows: all processors inform their
nearby neighbors of their load level and update this information while the application is
running, the "Hierarchical Balancing Method (HBM)" organizes the system into hierarchy
of subsystems, the Gardient Model (GM) uses a routing map to migrate the data from
the most heavily loaded processors to the least loaded and closest processors, and finally,
the Dimension Exchange Method (DEM) which is method of exchange in the different
dimensions of a hypercube that requires a synchronization phase to balance the load and

then iteratively balance it again.

the main advantage of dynamic load balancing over static scheduling is that the system
does not need any pieces of information about the behavior of the load for the tasks
deployed on the distributed network. Without this constraint, these algorithms can be
deployed in a more general way without prior knowledge of the deployed applications.
This adaptability comes with a cost: the run-time overhead due to load transfer among
the nodes and the complexity of the load balancing decision process. Nowday, the dynamic

strategies are more used then the static ones.

In the following section we present a more specific view of dynamic load balancing, with
more restrictive assumptions. Several authors are interested in dynamic load balancing
for specific environments: parallel applications, clouds, ..ect. In the next section, we will

present the load balancing problem in the different distributed systems.

13

3 Load Balancing in distributed systems

The problem of load distribution has been studied for more than thirty vears in the
areas of distributed systems [36, 16, 17]. In what follows, we focus on the main research

work dealing with dynamic load balancing in particular contexts.

1.3.1 Load Balancing in cloud computing environments

Cloud computing is emerging technology which is a new standard of large scale dis-
tributed computing and parallel computing. It provides shared resources, information,
software packages and other resources as per client requirements at specific time. As
cloud computing is growing rapidly and more users are attracted towards utility comput-
ing. better and fast service needs to be provided. For better management of available good
load balancing techniques are required. So that load balancing in cloud becoming more
interested area of research. And through better load balancing in cloud, performance is

increased and user gets better services [13].

we can define a cloud computing as the internet based computing in which the different
services like storage, servers and application are provided to organizations computers and
device using internet. It is a type of computing in which resources are shared rather than
owning personal devises or local personal servers which can be used to handle applications
on system. So as compared to this traditional “own and use” technique if we use cloud
computing, the purchasing and maintenance cost of infrastructure is climinated. It allows
the users to use resources according to the arrival of their needs in real time.Thus, we can
say that cloud computing enables the user to have convenient and on-demand access of
shared pool of computing resource such as storage, network, application and services, ...ctc
[13].

In 2010, S C. Wang et al. [37] presented a dvnamic load balancing algorithm called load
balancing Min-Min (LBMM) technique which is based on three level frameworks. This
technique uses Opportunistic Load Balancing algorithm which keep each node busy in the
cloud without considering execution time of node. Because of this it causes bottle neck
in system. This problem is solved by LBMM three layer architecture. First layer request
manager which is responsible for receiving task and assigning it to one service manager
to second level. On receiving the request service manager divide it into subtasks. After

that service manager will assign subtask to service node to execute task.

In [25]. Dhinesh Babu L.D and P. Venkata Krishna proposed a Honey Bee Behavior
inspired Load Balancing (HBB-LB) technique which helps to achieve even load balancing
across Virtual Machine (VM) to maximize throughput. It considers the priority of task
waiting in queue for execution in virtual machines. After that work load on VM calculated

decides weather the system is overloaded, under loaded or balanced. And based on this

14

YMs are grouped. New according to load on VM the task is scheduled on VMs. Task
which is removed carlier. To find the correct low loaded VM for current task, tasks which

are removed carlier from over loaded VM are helpful.

In 2014, the load balancing model which was proposed in [32] is aimed at the public
cloud which has numerous nodes with distributed computing resources in many different
geographic locations. This model divides the public cloud into several cloud partitions.
When the environment is very large and complex, these divisions simplify the load bal-
ancing. The cloud has a main controller that chooses the suitable partitions for arriving

jobs while the balancer for each cloud partition chooses the best load balancing strategy.

The paper in [31] presented a dynamic load balancing algorithm for cloud computing
based on an existing algorithm called weighted least connection (WLC) [27]. The WLC
algorithm assigns tasks to the node based on the number of connections that exist for
that node. This is done based on a comparison of the number of connections of each node
in the cloud and then the task is assigned to the node with least number of connections.
However, WLC does not take into consideration the capabilities of each node such as
processing speed, storage capacity and bandwidth. The proposed algorithm is called
Exponential Smooth Forecast based on Weighted Least Connection (ESWLC). ESWLC
improves WLC, that is,the ESWLC builds the conclusion of assigning a certain task to
a node after having a number of tasks assigned to that node and getting to know the
node capabilitics. ESWLC builds the decision based on the experience of the node’s CPU
power, memory, number of connections and the amount of disk space currently being

used.

1.3.2 Load Balancing in grid computing environments

Contrary to the traditional distributed systems for which a plethora of algorithms
have been proposed, few of which were focussed on grid computing. This is due to the

innovation and the specific characteristics of this infrastructure.

Foster and Carl Kesselman proposed a distributed computing infrastructure for ad-
vanced science and engineering, which they called the Grid [29]. A computational grid is
a distributed architecture of large numbers of computers connected that enables effective
access to high performance computing ressources. The systems connected together by a
grid might be distributed globally, running on mutiple hardware platforms. under differ-
ent organizations. Servers or personal computers run independent tasks and are loosely
linked by the internet or low-speed networks.

In 2006, Belabbas Yagoubi and Yahya Slimani [39] propose a load balancing algorithm
based on a tree model representation of a grid architecture. Based on a tree model. their

algorithm presents the following main features: it is layered, it supports heterogeneity

and scalability, and finally, it is totally independent from any physical architecture of
a grid. The tree model presented in their paper allows the transformation of any grid
architecture into an unique tree with at most four levels. The proposed strategy was
implemented and evaluated on a grid simulator developed for the circumstance. The first
results of the experimentations show that the proposed model can lead to a better load
balancing without high overhead. It was observed also that significant benefit in mean
response time was realized with a reduction of communication cost between clusters of

the grid.

J. Cao, et. al. use ‘intelligent agents’ [8] to balance the load in grid. In this method,
each agent acts as a local resource. These agents reduce the execution time by sharing
and interchanging the information with each other. Having hierarchical structure is of the
specification of these agents. By using this specification. as well as static and dynamic

methods, the agents provide load balancing.

In [29]. the algorithm which is based on ant colony optimization (ACO). the ants
can move in the form of search-max or search-min. In the first case. an ant moves
ahead at random to find a node with overload, then it switches in the form of search-min
(underload). and it is the time that the ant makes balance between the heavy-load node
and the light one. Using artificial life techniques is one of the methods which provide
load balancing in Grid. This method utilizes two kinds of algorithms including genetic
and Tabu search (TS) to solve the problem of Grid load balancing. Whenever the space
of solution is broad the genctic algorithm can be used. This algorithm performs the
Job scheduling alternatively and continuously because the load balancing can be done

periodically.

4 Indivisible loads problem

The interest in network-based computing has grown significantly in last vears. In this
environement, a number of workstations or computers are linked through a network to
form a wide loosely coupled distributed system. One of the major advantages of such a
distributed system, besides its role of storing information in a distributed manner and
allowing the use of shared resources, is the capability that it offers to a user to exploit
the considerable power of the complete network or the subnet of it by partitioning and

transferring its own processing load to the other processors in the network.

This load distribution paradigm essentially concerns a single large load that comes
from or arrives at one of the nodes of the network. The load is massive and requires a
lot of time to process given the computing capacity of the node. The processor partitions
the load into multiple fractions, retains one of the fractions to be processed, and sends

the rest to its neighbors (or other nodes in the network) for processing. An important

16

problem here is to decide how to achieve a balance in the load distribution between
the processors so that the calculation is completed in the shortest possible time. This
balancing can be done early or dynamically depending the calculation progresses and the
computational requirements. This strategy of division is suitable for applications that can
independently process the processing load into smaller fractions so that partial solutions

can be consolidated to build the complete solution to the problem.

Not so far, the problems discussed in the literature did not attempt to formulate
scheduling policies based on the type of loads submitted by a user. Usually, the stress
has been on designing new and more efficient parallel algorithms in place of classical
sequential algorithms, which requires the parallelism of functions to be exploited in the
algorithm. However, there is another type of parallelism that occurs in data and is called
parallelism of the data, that is, to partition the date into optimally sized segments and
assigned to several processors, in order to be processed in the shortest possible time. But,
how this partitioning (or division of load) can be performed depends on its divisibility
property, that is, on the property that determines whether a load can be decomposed into
a smaller set of loads. This leads us directly to the domain of what is known as divisible

and indivisible loads.

1.4.1 Divisible loads

The simplest definition of of a divisible load is that is the one that can be arbitrarily
divisible, that is, one that can be divided into any number of segments of any desired
fractional size and execute these parts independently in parallel on different processors.
such loads are commonly encountered in applications involving image processing, signal

processing, processsing of massive experimental data, and so on.

e Image processing

In image processing for example, the first level of computation partitions the given
Image into many segments. Each of these segments is processed locally and in-
dependently on different processors. This is done to extract local features of the
image from different segments. In the second level of computation, these local fea-
tures from different processors are exchanged and processed to extract the desired
feature. It is at the first level of computation that the load can be considered to
be arbitarily divisible without any precedence relations. As before, the given image
can be arbitrarily partitioned into several subframes of varying sizes (that is, each
may contain a different number of pixels) and each of these subframes can be pro-
cessed independently. A practical situation in which processing of such dara may
frequently be necessary involves the space shuttle orbiter, which collects massive

volume of image data that has to be communicated to the earth for processing .

1¥

This kind of data also has the potentiel of arbitrary divisibility. The data can be
partitioned and sent directly for processing to a number of processors situated at
various geographical points on the surface of the earth, in which case they incur
considerable communication delays. Depending on the location of the processing

units the communication delays will be different.

e Signal processing

another example of divisibility is the signal processing. A simple application involves
the poroblem of recovering a signal buried in zero-mean noise. The raw data consists
of a large number of measurements that can be arbitrary partitionned and shared

among several Processors.

e Massive experimental data

Another application involves passing a very long linear data file through a digital
filter. This may be for frequency shaping purposes (this is. passing the data through
a low pass filter) or for pattern matching (that is, passing the data through a
matched filter designed to find a particular pattern). In either case the data file
may be partitioned among a number of processors. Each processor runs the same

filter on its segment of the data.

Several studies have been done to deal with problem of divisible loads. Theoretical analysis
of balancing arbitrarily divisible loads using diffusion-based DLB schemes has been done
using spectral analysis of Markov processes on graphs as in [30]. The analysis has also
been extended to distributed gossip algorithms that reach a consensus [2].

1.4.2 Indivisible loads

These loads are independent, indivisible, and. in general, of different sizes. This means
that a load cannot be further subdivided and has to be processed in its entirety in single
processor. The problem of the indivisible loads is known to be NP-complete and hence
only heuristic algorithms can be proposed to obtain suboptimal solutions in reasonable
time [6]. These loads can be either real or integer valued. For example. a real-valued
loads can be found in the scientific simulations, where the initial computational domain
is decomposed into smaller subdomains whose sizes are fixed. At amy given time. the
cost of cach subdomain is a real number, and subdomains cannot be subdivided. Or
integer-valued, as the example of the google accounts. These accounts can be moved from

a server to another in their entirely and cannot be subdivised.

18

In the following sections. we focus on DLB of indivisible integer-valued loads in ar-
bitrary networks. Each load is defined by a constant integer number. Loads cannot be

modified or subdivided, but only moved from one processor to another.

It is observed with through our study that load balancing algorithm works on the
principle on which situation workload is assigned. during compile time or run time. De-
pending on the compile time or run time it may be static or dynamic. Static strategics
have the advantages in mathematical analysis and in implementation because of their
simplicity. But, in the other hand, dynamic load balancing policies have been believed to
have better performance than static ones in case of distributed environments whereas they
may have more overhead than the latter. In this chapter, some works on load balancing in
the different distributed systems was presented, the study showed that the load balancing

is an important issue in distributed systems that must be treated.

In the following sections. a novel dynamic load balancing algorithm will be proposed

and implemented. Our algotrithm will be inspired from Bahi et al. and Lagacheric works.

19

Chapter 2

Intorduction to distributed systems and

load balancing

Since the advent of the Internet in the 1970s [26]. a recent trend in computer systems
was to distribute computation among several physical processors. The advances in net-
working and hardware technology had made sensor networking and embedded systems
a reality and an integral part of each person’s life “ from the home network with the
interconnected gadgets to the automobile communicating by GPS (Global Positioning
System)—. For that, distributed computing was as the centerpiece of all computing and

information access.

The distributed systems is a very important field that has his principles and challenges.
In the following, we present the main principles of distributed systems. then a well known

problem in this systems. the load balancing problem.

1 Definitions

A distributed system is a collection of independent entities that cooperate to solve a
problem that cannot be individually solved. In computer science, a distributed system is
defined as a set of autonomous processors communicating over a communication network

(see figure 2.1) and having the following features [26]:

e No common physical clock This is an important assumption because it intro-
duces the element of “distribution” in the system and gives rise to the asynchrony

among the processors.

e No shared memory This is a key feature that requires message-transmission for

communication.

e Geographical separation The more geographically distant processors are, the
more representative is the distributed system. The processors are connected using
a local or a wide area network (LAN/WAN).

e Autonomy and heterogeneity The processors are “loosely coupled” in that they
have different speeds and each can be running a different operating system. They are
not usually part of a dedicated system, but cooperate with one another by offering

services or solving a problem together.

Processor
[
v
Memory

Processor |

Conumnunication network

Processor

,

v
Memory

(Y&." ANE‘ L;‘m‘:'

[

Y Processor

Processor
4
L4
Memory

Processor
[

Processor

[

v

Memory

v

L
Memory I

Figure 2.1: A distributed system that connects processors by a communication network.

2 Motivation

Generally, there are five major reasons for building distributed systems [23]. In the

following, we briefly elaborate on each of them.

e Resource Sharing: If a number of different nodes are connected to cach other,
then a user at one node may be able to use the resources available at another.
For example, a user at node A may be using a printer that is provided by node
B. Mcanwhile, a user in B may access a file that resides at A. Resources such
as peripherals, complete data sets in databases, special libraries, as well as data
(variable, files) cannot be fully replicated at all the sites because it is often neither
practical nor cost-effective. Further. they cannot be placed at a single site because
access to that site might prove to be a bottleneck. Therefore, such resources are

typically distributed across the system.

e Performance Improvement: If a particular computation can be partitioned into
a number of sub computations, that may allow us to distribute the computation
among the various nodes. In addition, if a particular node is currently overloaded
with jobs, some of them may be moved to other, lightly loaded nodes. This move-
ment of jobs is called load balancing.

e Reliability: If one node fails in a distributed system. the remaining nodes can
potentially continue operating. For example, If the system is composed of a number
of computers, the failure of one of them should not affect the rest. In general, if
enough redundancy exists in the system in both hardware and software, the system

can continue with its operation, even if some of its nodes have failed.

e Communication: When a number of nodes are connected to each other via a com-
munications network, the users at different nodes have the opportunity to exchange

information.

e Extensibility: This is the ability to easily adapt changes without significant dis-
ruption of the system. The changes may include varying workloads, adding more

hosts or replacing existing processors.

In addition to meeting the above requirements, a distributed system also offers the fol-

lowing advantages:

e Inherently distributed computations: In many applications such as money
transfer in banking, or reaching consensus among parties that are geographically

distant, the computation is inherently distributed.

e Access to geographically remote data and resources: In many scenarios,
the data cannot be replicated at every site participating in the distributed system
because it may be too large or too sensitive to be replicated. For example, payroll
data within a multinational corporation is both too large and too sensitive to be
replicated at every office/site. It is therefore stored at a central server. Similarly,
special resources such as supercomputers exist only in certain locations, and to

access such supercomputers, users need to log in.

3 Parallel or distributed system

The terms "paralle]l system" and "distributed system" have a lot of overlap, and no
clear distinction exists between them [18]. The same system may be characterized both as
parallel and distributed. For example, parallel system may be seen as a particular tightly

coupled form of distributed system. and distributed system may be seen as a loosely

N
N

coupled form of parallel system. Nevertheless, it is possible to classify the systems as

"parallel” or "distributed" using the following criteria:
e In parallel systems, all processors may have access to a shared memory to exchange
information between them.

e In distributed systems, each processor has its own private memory (distributed

memory). Information is exchanged by passing messages between the processors.

(a) T ‘ (b)

/ Memary
/
[

v 4

‘-x.‘ ;,* Processor |

L34 :
Pm?SSﬂ v

| Memory

[Processor H Processor H Processor }
! ! '

v v

T

Figure 2.2: Difference between distributed and parallel system.

The figure 2.2 illustrates the difference between distributed and parallel systems. Figure
(a) in the left shows a distributed syvstem where each node has its own local memory,
and information can be exchanged only by passing messages from one node to another
by using a communication links. Figure (b), in the right side, shows a parallel system in

which each processor has a direct access to a shared memory.

A very important point to mention here is that the definitions of distributed and
parallel algorithm can not quite mutch to the same definitions of distributed and parallel
systems. Nevertheless, as a rule, parallel system within a shared-memory processor uses

parallel algorithms while the distributed system uses distributed algorithms.

4 Types of distributed systems

Distributed systems are used for many different applications. For that. sevral types
distributed systems exist. In the following we make a distinction between distributed

computing systems. distributed information systems, and distributed embedded systems.

2.4.1 Distributed Computing Systems

An important class of distributed systems is the one used for high-performance com-
puting tasks. Basically, we can make a distinction between two subgroups : cluster

computing and grid computing.

Cluster Computing Systems

In cluster computing. the hardware consists of a collection of similar workstations or
computers, closely connected by a high—speed LAN. Cluster computing systems became
popular when the price/ performance ratio of personal computers has improved. At a
certain point, it became financially and technically interesting to build a supercomputer
by simply connecting a series of simple computers with a high-speed network. In almost all
cases, the cluster computing is used for parallel programming in which a single (compute

intensive) program is run in parallel on multiple machines.

Master node

Compute node

Compute node

Compute node

Component Component Component
Management of of of
application parallel parallel parallel
application application application
Local OS Local OS Local OS Local OS
|
-
C

g High-speed network “
sk s

Figure 2.3: An example of a cluster computing system.

One well-known example of a cluster computer is formed by Linux-based Beowulf
clusters (figure 2.3). Each Beowulf cluster consists of a collection of compute nodes that
are controlled and accessed by means of a single master node. The master typically
handles the allocation of nodes to a particular parallel program, maintains a batch queue

of submitted jobs, and provides an interface for the users of the system.

Grid Computing Systems

A characteristic of cluster computing is its homogeneity. In most cases, the comput-
ers in a cluster are largely identical, they have the same operating system, and are all
connected through the same network. In contrast, grid computing systems have a high de-
gree of heterogeneity: no assumptions are made concerning hardware, operating systems,

networks. etc.

2.4.2 Distributed Information Systems
Transaction Processing Systems

In practice, transactions on a database are usually performed in the form of transac-
tions. A transaction may be nested and constructed from a number of sub—transactions.
As shown in figure 2.4, the higher-level transaction can generate other transactions on

different machines. Each of these children can also perform one or more sub—transactions.

Nested transaction

——
by

Subtransaction Subtransaction

J
d]

9

Ajrline databas‘e\ /I'-Iotel database

Two different (independent) databases

Figure 2.4: A nested transaction.

Nested transactions are important in distributed systems because they provide a nat-
ural way to distribute a transaction across multiple machines. For example, a transaction
to plan a trip by which three different flights must be reserved can be divided into three
sub—transactions. Each of these sub—transactions can be managed separately and inde-

pendently of the other two.

N
<t

Enterprise Application Integration

The need for communication between applications has led to many communication
models. The main idea was that existing applications could exchange information directly,

as shown in figure 2.5.

Client | Client
application application
i | |
Communication middleware

B L) 1

Server-side Server-side Server-side
application application application

Figure 2.5: Interapplication communication.

Several types of communication middleware exist. With Remote Procedure Calls
(RPC), an application can effectively send a request to another application by doing a
local procedure call. A request is sent as message to the callee. Likewise, the result will

be sent back and returned to the application as the result of the procedure call.

As the popularity of object technology increased, techniques were developed to allow
calls to remote objects, leading to what is known as Remote Method Invocations (RMI).
An RMI is essentially the same as an RPC, except that it operates on objects instead of

applications.

2.4.3 Distributed Pervasive Systems

The distributed systems we have discussed so far are largely characterized by their sta-
bility: the nodes are fixed and have a more or less permanent and high quality connection
to a network. However, things have become very different with the introduction of mobile

and embedded computing devices. We are now dealing with distributed systems in which

26

instability is the default behavior. The devices we call distributed pervasive systems, are

often characterized by their small size, battery—powered, mobile and wireless connection.

Home Systems

These systems generally consist of one or more personal computers, but more im-
portantly integrate typical electronics such as TVs, audio and video equipment, gaming
devices, (smart) phones and other personal portable devices into a single system. In ad-
dition, we can expect that all kinds of devices such as kitchen appliances, surveillance
cameras, clocks, controllers for lighting, and so on, will all be hooked up into a single

distributed system.

The home systems are essentially intended to provide "services" to residents wherever
they are. For example, the movie shown on the video can be viewed in any room. your
phone calls should be automatically directed to the nearest phone, information should

always be available on demand and displayed on a nearby screen.

Electronic Health Care Systems

Another important and future class of pervasive systems is electronic (personal) health
care. With the increasing cost of medical treatments, new technologies are being developed
to monitor the well-being of individuals. A major goal of these systems is to prevent people

from being hospitalized.

o«
Tilt senso
r's

ECG sénsor

%
Motion segsors

body-area network

Figure 2.6: Example of body-area network.

Personal health care systems are often equipped with various sensors organized in

(preferably wireless) body-area network (BAN) (figure 2.6). The BAN can be permanently

27

connected to an external network, via a wireless connection, to which it sends monitored

data. Of course, other links with a doctor or other people may also exist.

Sensor Networks

Our last example of pervasive systems is sensor networks. A sensor network typically
comsists of tens to hundreds or thousands of relatively small nodes, each equipped with
a sensing device. Most sensor networks use wireless communication, and the nodes are

often battery powered. Their limited resources, restricted communication capabilities.

The relationship with distributed systems can be clarified by considering the sensor
networks as distributed databases. This view is fairly common and easy to understand
when many sensor networks are deployed for measurement and surveillance applications.
In these cases, an operator would like to extract information from the network by simply
issuing queries such as "What is the traffic load on Highway 17" Such queries resemble
those of traditional databases. In this case, the answer will probably be provided through
a collaboration of many sensors located around Highway 1, while leaving other sensors

untouched.

Sensor network

Operator’s site

Sensor data E

is sent directly
to operator

Each sensor
can process and Sensor network

store data

Sensors E

send only
answers

Operator's site

(b)

Figure 2.7: Organizing a sensor network database, while storing and processing data (a)
only at the operator’s site or (b) only at the sensors.

To organize a sensor network as a distributed database, there are essentially two

28

extremes, as shown in figure 2.7. First, sensors do not process but simply send their data
to a centralized database located at the operator’s site. The other extreme is to let each

node compute and send the answer.

5 Distributed systems challenges

Distributed computing systems have been in widespread existence since the 1970s
when the internet came into being [26]. At the time, the primary issues in the design of
the distributed systems included providing access to remote data in the face of failures.,
file system design and directory structure design. while these continue to be important
issues, many newer challenges have surfaced as improving the performance of the system

by balancing the load among nodes.

2.5.1 Load balancing problem

The load sharing problem is to develop algorithms to transfer jobs automatically from
heavily loaded processors to lightly loaded processors. Its primary goal is to ensure that
no processor is idle while there are processes waiting for services in other processors. Load
balancing may be necessary because of a variety of factors such as high network traffic

causing the network connection to be a bottleneck or high computational load.

Stativ vs. Dynamic

Load balancing algorithms can be broadly categorized into static and dynamic. Static
load balancing algorithms distribute processes/loads to processors at compile time relying
on a priori knowledge about the processes and the system on which they run, while

dynamic algorithms distribute loads to processors at run-time.

Static load balancing algorithms can be very attractive. For example, in parallel
programs. the satic strategies could be useful if the execution times of processes and
their communication requirements can be predicted, or, in other cases, they can be the
only choice because the size of the processes’state prevents migration of processes dur-
ing run—time. However, the dynamic strategies seems to be more effective. While the
static load balancing algorithms rely on the estimated execution times of processes and
interprocess communication requirements, this may be not satisfactory for parallel or dis-
tributed programs that are of the dynamic and/or unpredictable kind. For example, in
a parallel combinatorial search application, processes evaluate candidate solutions from

a set of possible solutions to find one that satisfies a problem—specific criterion. Each

process scarches for optimal solutions within a portion of the solution space. The solu-
tion space usually change as the search proceeds. Portions that encompass the optimal
solution with high probability will be expanded and explored exhaustively, while portions
that have no solutions will be deleted at run—time. Consequently, processes are gener-
ated and destroyed at run—time. To ensure efficiency, processes have to be distributed at

run—time.

Another example of dynamic and unpredictable program behavior is parallel simula-
tion of molecular dynamics (MD), see figure 2.8. An MD program simulates the dynamic
mteractions among atoms in a system of interest for a period of time. At each time step,
the simulation calculates the forces between atoms. the energy of the whole structure and
the movements of atoms. Assume that each process of the program is responsible for
simulating a portion of the system domain. As atoms tend to move around the system
domain, the computational requirements of the processes may change from step to step
and create an imbalance. To improve efficiency, processes’loads have to be redistributed

periodically at run—time.

Figure 2.8: Molecular dynamics simulation software.

In the previous section we presented the main principles of distributed systems. then.
we focused on one of their important challenges, the load balancing problem. In the next
section, our intention is to introduce a general dynamic load balancing algorithm for a

specific kind of loads, the indivisible loads.

30

Chapter 3

Self-stabilizing algorithm for indivisible

integer-valued loads

In the following sections, the network is represented with a connected nonoriented
graph G = (V;E). V is the set of vertices of the graph representing the nodes, and
E is the set of edges of the graph representing connections between nodes. Only static

topology is considered assuming bi-directional communications for connected nodes.

Edge Nodes

% -—
‘///” | \\\\E
\ \
l’f/ \

w4 /

|
t
t

Figure 3.1: Simple network of 8 nodes.

The indivisible load balancing problem can be then stated as follows: Each node i in
the network has an initial list of loads (this loads can not be divided). Then, when the
imbalance is detected, each node maintains this list in coordination with his neighbors to
reach the global legitimate state. The objective of the self stabilization algorithm is to
ensure that, after a period of time, each node in the network has approximately the same
sum of loads (figure 3.2).

31

TLit) =54 TLiz) =25

TL{t) =15 TL{t} =20
/ /
T :
TUr) =20 Tift) =28
ﬂ" Tt} =32 ﬂ Tile) =25
Tiiti =48 Tt =22

Figure 3.2: Network nodes before (right) and after (left) the balancing.

1 Self stabilazing algorithm for indivisible loads

In this section, we present a self stabilizing algorithm based on two balancing methods:
Brute force and greedy sort. These two pairwise methods will work to balance the loads
for each selected pair of nodes. The firt methods will serve as banchmark for our balancing

method, the greedy sort method.

3.1.1 Self-stabilizing approach

A self-stabilizing system is a distributed system that can be started in any possible
global state. Once started, the system regains its coherence by itself. After the faults
occur, the system starts to converge to legitimate behavior. The self-stabilization property
is very useful for systems in which processors may malfunction for a while, and then
restart their operations. When there is a long enough period during which no processor

malfunctions the system will stabilize.

The earlier study of self-stabilizing systems started with the fundamental paper of Di-
jkstra [15]. In 1974, Dijkstra introduced to computer science the notion of self-stabilization
in the context of distributed systems. He defined a system as self-stabilizing when «regard-
less of its initial state. it is guaranteed to arrive at a legitimate state in a finite number of
steps». The best analogy to describe the definition of djikstra of self-stabilization notion

could be the physical phenomena of the damped pendulum.

32

/ g Y '.f/ \

{Inwalid i
\ State /
N /

Convergence

\
)
%

Local actions in
distributed nodes.

Figure 3.3: Self-stabilization approach.

Imagine a pendulum initially in position 1 (figure 3.4) in stable position, then, for a
finite period of time the pendulum is perturbed (i.e someone can shake the pendulum
or the wind could blow on the pendulum). After the perturbation, the pendulum will
be in an arbitrary position (position 2). After a while, the pendulum will return to the
stable position (position 3). This simple analogy helped in understading the notion of
self-stabilization in the context of distributed systems.

~
=

1[371, ~o
AN\

/
\

—_—
=
=
—_—
=]
=

®)

Figure 3.4: The damped pendulum analogy.

Usually, when designing distributed systems. there are always "legitimate configu-
rations", that is, a configuration that are correct according to the specification of the
system. In most cases. the set of "legitimate states" is stable, that is. if the system start
from a legitimate configuration L and it can reach another configuration is also legiti-
mate. However, the distributed system is a physical system, that is. it may be submitted
to several kinds of faults that perturbes the system for a period of time, so, the system
reachs an arbitrary configuration U which is likely not to be legitimate. This configura-
tion is in some set of configuration that is likely to be larger then the set of legitimate
configurations. In this case, saying that the system is self-stabilizing means that if there
are no more perturbation, then, after a finite period of time , this system will reach the

legitimate state and stay in it. This property of starting from an arbitrary configuration

33

and converting to a legitimate configuration and stay in it is called : self-stabilization.

EL—— U3 L——"S (3.1)

sel f—stabilization

For this case of indivisible loads, the objective of self-stabilization is to arrive at a
global ligitimate state using a set of rules that will transfer the node load greater than a
threshold to neighbors using rules. These rules represent "atomic transactions" that will
be used to move an atomic quantity from an overloaded node to an underloaded node
within a number of steps until convergence. In our case, the legitimate state is a set of

configurations of the network nodes loads that satisfies the following requirements -

1. The maximum load is non-increasing and the minimum load is non-decreasing.

2. The load difference between two nodes is minimized as much as possible in each lap.

In the figure 3.2, we notice that the maximum total load is decreasing from 54 to 30 and
the minimum is increasing from 10 to 29. In the other hand, the delta between maximum

and minimum has been reduced from 44 to 1.

3.1.2 The algorithm

Using the graph model G' = (V; E), each node i has only a partial view of the system.
It is the local state that includes the state of the node and the state of its neighbors. The
union of local states of the nodes is the global state of the distributed system.

In our algorithm, based on its local state, a node can execute a move which is a pre-
defined rule. A node executes the set of rules as long as it is active (no equilibrium is
reached).

For a node i, we have the following:
Variables :

.1d Node identifier

zanvit Invitation pointer

1.accept Acceptation pointer

Macro :
i.neighbors List of neighbors
1.loads Current list of loads

i.virtual — loads Virtual list of loads

34

Rules :

Invitation The first rule is the invitation rule. This rule checks the local state of the
node to ensure that no invitation is pending. If applicable, the node checks the existence
of neighbors with a total load difference superior to its smallest load. The invitation

pointer is updated accordingly.

Accept invitation and begin tramnsaction This rule checks, for a node i if a
neighbor j has issued an invitation. And if the total load difference clause is valid, then

the node i accept the invitation and update the pointer accordingly.

Confirm transaction This rule checks that invitation and acceptance pointers are
paired. If true, then the virtual list of loads of both node 4 and j is updated accordingly

with the pairwise method.

Commit tramsaction This rule checks the invitation and acceptance pointers. the

current and future values then update the current list of 7 with its virtual list.

Release pointers after tramsaction This rule cleans the pointers states after an

operation between nodes.

Correct pointers This rule checks pointer states and corrects them if applicable.

Algorithm 1 Self-Stabilizing algorithm for indivisible integer-valued loads
R1 : Invitation //executed by the underloaded node
if 7.] = null and i.A = null and 35 € N(i) and 3l € L(i) : | < TotalLoad[L(j)]) —
Total Load[L(i)] then
(i1 + j)
end if
R2 : Accept invitation and begin transaction //executed by the overloaded node
if 3j € N(i) and 3l € L(j) :l < TotalLoad|L(j)]) — TotalLoad|[L(i)] and j.T = i and
1.A = null and i.] = null then
(2.A + 7)
end if
R3 : Confirm transaction
if 3j € N(i) and j A = i et i.] = j) and I € L(j) :I < TotalLoad[L(5)]) —
Total Load]L(i)] then
(Pair — Wise)
end if
R4 : Commit transaction
if (3j € N(i) : (jA=14and i.] =j)or (j.I =i and i.A = j) and TotalLoad[V (i)]) =
Total Load|V (j)]and Total Load[L(i)]) # Total Load[V (i) then
L(i) + V(i)
end if
R5 : Release pointers after transaction
if 3j € N(i) : (j.A =i and i.] = j) or (j.I =i or i.A = j) and TotalLoad[L(5)]) =
TotalLoad[L(7)] then
(2.1 + null)
(2. A + null)
end if
R6 : Correct pointers
if i.l = j and (j ¢ N(i) or [> TotalLoad[L(3)]) — TotalLoad|L(i)] and j.A # i and
L[j] = V[j]) then
(i.] < null)
end if
if (i.A =jand (j ¢ N(i) or 5.I # i or | > TotalLoad[L(5)]) — Total Load[L(i)] and
L[j] = V[j]) then
(2.A < null)
end if

3.1.3 Pairwise methods

As the imbalance is detected, the balance is applicated using the pairwise method.
This method is used to distribute the loads between the pair of nodes. In the following
are the outlines of this method :

For each pair (7;7) € E :

1. Merge the two current lists of loads.

2. Set the current lists of loads to none.

36

3. For each item of load in the merged list do :

e Sclect the least loaded node between 7 and j.
e Assign the load item to the selected node.

e Update the future list of the selected node.

In the previous method, we focus on the mutual exclusion property. In computer
science, the mutual exclusion is property of concurrency control which is intuited for the
purpose of preventing race condition. It is a requirement that one thread of execution
never enter its critical section at the same time that another concurring thread of execution
enter its own critical section. The requirement of metual exclusion was first indentified by
Dijkstra in [14]. In our solution, The term "mutual exclusion" stems from the fact that,
at each iteration (time-step), we may have parallel but independent pairs of neighbors

involved in the balancing process.

In our implementation, we have choose to use 2 pairwise methods. Onece the imbalance
is detected (the load difference between a node i and its neighbor j is greater than the
smallest load of j), the balance begins by executiong the choosen method. In the following,

we will explain each one in details.

Brute-force search

One way of balancing load is the "brute-force search" method, also called "exhaustive
search" or "generate and test". It’s a technic that consists of systematically enumerating
all possible candidates for the solution and checking whether each candidate satisfies the
problem’s statement. For example, to find the divisors of a natural number n, A force
brute search method would enumerate all integers from 1 to n. and check whether each
of them divides n without remainder. A brute-force approach for the eight queens puzzle
would examine all possible arrangements of 8 pieces on the 64-square chessboard. and.

for each arrangement, check whether each (queen) piece can attack any other.

The brute-force algorithms are known to be simple to implement, slow in exection,
tedious to test, and will always find a solution if it exists. They are tyvpically used in critical
applications where any errors in the algorithm would have very serious consequences: or
when the simplicity of implementation is more important than speed. Furthermore, the
force-brute search method is also useful as a baseline method to which all others are
compared. In the experimental results section. the brute-force search will be considered

as a baseline [12].

obviously. our method will enemurate every possible combination of loads, and then

select the combination with the smallest total load difference (figure 3.5).

37

‘ A) B

{3.9.4.1,10} {8.4}

Figure 3.5: A pair of nodes example.

Greedy simple

A greedy method is simple method used to solve optimization problems. The problems
that are solved using this method include finding the better order to execute a certain set
of jobs on a computer, finding the shortest path in graph, etc. It is a method that follows
the problem approach in making the locally optimal choice at each stage with the hope
of finding a global optimum solution [4].

To slove an optimization problem, we look for a set of condidats constituting a solution
that optimizes (minimizes or maximazes, as the case may be) the value of the objective
function. A greedy algorithm proceeds step by step. Imitially the set of condidates is
empty. Then at each step, we try to add to this set the best remaining candidates, our
choice being guided by the selection function. The selection function is dependent on
the problem at hand. For example, the selection function in the case of minimum weight
spanning tree picks an edge of minimum weight from the remaining edges, an object with
maximum profit per unit weight out of the remaining objects is chosen for puting in the
knapsack in the case of knapsack problem. or for our case. the node with minimum total

load is selected to receive the item load.

Using the pair of nodes in figure 3.5, the application of greedy simple will be as follows:
Fusion list ={3, 9, 4.1, 10, 8, 4}.
First step : A= {},B={}-
Distibuting the loads to the underloaded node in each step:

A={3}.B={}
A={3},B={9}

A={3,4},B={9}

A={3,4, 1},B={9}

A={3,4,1},B={9, 10}

38

o A={3,4,1,8},B={9, 10}

e A={3,4,1,8, 4}, B=1{9, 10}

The greedy methods are usually known to be simple, easy to implement and run fast.
However, the use of a greedy simple method do not always provide a globally optimum
solution. In the following example we sce how the greedy simple method makes a locally

optimal choices, however, ends up to a non optimal global solution.

Greedy sort

Basing on the same concept as greedy simple, the greedy sort adds the property of
sorted load. The same approach used in the method above will be applicated on a sorted
fusion list. This method will garanty to the greedy method the optimal global solution.
Fusion list = {3, 9, 4,1, 10, 8, 4}.

Fusion list sorted = {1, 3, 4.4, 8,9, 10}.
First step : A= {},B={}.
Distibuting the loads to the underloaded node in each step:

e A={1}.B={}
A={1},B={3}

A={1,4},B={3)

A={1,4},B={3, 4}

A={1,4,8},B={3, 4

A={1,4,8},B=1{3,4,9)

A={1,4,8,10},B={3, 4. 9}

In this chapter, we have introduced a self stabilizing algorithm for load balancing in
arbitrary networks. Dealing with indivisible loads, the idea of the algorithm was to use a
pairwise method that allows a pair of neighbors to share and redestibute their loads. In
the next chapter, the algorithm will be implemented and the experimantal results of the
implementation of the algorithm and the pairwise methods will be discussed.

39

Chapter 4
Numerical results

In this section, we provide numerical results to show the impact of different parameters
like network size, network topologie, centralized and decentralized approach ,and the pair-
wise methods on our algorithm. To evaluate the algorithm, we conducted a series of
experiments using codeblocks where the algorithm was implemented. The goals of these
experiments are to study and measure the scaling properties and convergence behavior of

the algorithm in several context.

In our experiments, the network is modeled as a graph. the edges representing the
links between nodes. We considered different number of nodes for the network in these
experiments: 200, 400 and 600. the graphs are generated following four possible topolo-
gies: grid, torus, hypercube and random (hash—net). The initial values and the number
of loads of the network nodes are random values in the range [1 — 10]. For each size of

graph, we consider 25 executions of the algorithm then the results are averaged.
1 First Experiment: Brute force vs. Greedy Sort

In first experiment we consider the maximum (MaxL) and minimum (MinL) total
loads by iterartion using brute force and the greedy sort method (figure 4.1).
The results show that the two methods bring us to the same results, with more iterations
to the sorted method. The experiments show also the evaluation of the difference value
between that max total load and the minimum total load that is decreasing with each

iteration to reach almost a negligible value (figure 4.2).

40

25

20

Minload

15

MinLoads by iterations

Brufe Force ——]

f 8 10
{b lterations

12 14 16

MaxLoad

70

el oads by iteraton

65 E

5 ¢ \
50
45
40

Bl

T T

Brufe Force

Greedy Sort ——

30 =y

1% lterations

Figure 4.1: Minimum (a) and Maximum (b) total load by iteration for 200 nodes: Com-

paraison of Brute Force (in purple) and Greedy sort (in green) pairwise methods.

T

Delta by iteration

60 |

Iy

DeltaLead

30+

10 ¢

Bruie Force ——

Greedy Sort ——

4 6 8 10

b Ierzions

12 14 16

Figure 4.2: Delta by iteration for 200 nodes: Comparaison of Brute Force (in purple) and

Greedy sort (in green) pairwise methods.

To study the impact of the network size on our algorithm. the results of different

sizes execution have been gathered in the following figure (4.3), the graph shows that the

number of iterations increases whenever the network topology size increases.

41

[terations by Hodes
160

" Force Brute ——
Greedy soit ——
140 &]

120 |-
100

80

Kb lterations

60 +

40 |

0 100 200 300 400 500 600

Figure 4.3: Itrations by nodes: Comparaison of Brute Force (in purple) and Greedy sort

(in green) pairwise methods.

2 Second Experiment: Centralized vs. Decentralized

The load balancing algorithms can be divided into two groups: centralized and decen-
tralized [19]. In this experiment, we present the behavior of self-stab (self—stabilizing)
algorithm in both cases using the greedy sort method. In the centralized case, a master
node collects the loads and distributes them among the different nodes of the networlk.
However, in the decentralized one, the load balancing is performed locally between each
node and his neighbors. As experiment 1, the delta, minimum and maximum total load

arc represented in figures 4.4 and 4.5

42

@ MinLoads by Ferations (b) MaxLoads by Resations
Kl - - . - 70 - : — :
Greedy sort centralized case —— Greedy sort cenfralized case ——
Greedy sort decentralized case —— | Greedy sort decentralized case ——
By / i &
20 ,—/ 50
,é 15 /_j'/ Té 40 &
E ' | /
z w0y _ S wi- ~
| / ~
5 2 2 ad
5 W
. — _
0 ——— 10 7
4’-'——/-
5 L . L . 1 0 = .) A L
0 200 400 600] 1000 1200 0 20 400 600 800 1000 1200
Heration teration

Figure 4.4: Minimum (a) and Maximum (b) total load by iteration for 200 nodes: Cen-
tralized case (in purple) and Decentralized case (in green) using Greedy Sort.

Delta by lterations

70 : >
Greedy sort centralized case ——
Greedy sort decentralized case ——
G0 i
50 ¢
40 i
9 1
g
0t
|
20
0} | ——
z g Y
0 e 4 i & :
0 200 400 600 800 1000
tlb iterations

Figure 4.5: Delta by iteration for 200 nodes: Centralized case (in purple) and Decentral-

ized case (in green) using Greedy Sort.

To study the impact of the network size on our algorithm, the results of different sized

execution have been gathered in the following figure (figure 4.6), the graph shows that

43

the number of iterations increases whenever the network topology size increases in both

cases and significantly in the centralized case.

lterations by Modes
2500) r ‘
Centralized case
Decentralized case ——
2000 + .
& 1500 -
2 .
-]
2 1000 } P
P
.“/"’/
500 L /
0 e L T e —]
(1 50 100 150 20 250 300 3B 400
b MNodes

Figure 4.6: Itrations by nodes: Centralized case (in purple) and Decentralized case (in

green) using Greedy Sort.

3 Third Experiment: Decentralized algorithm, Extreme

case

The figures 4.7 and 4.8 show a comparison of the decentralized self-stab algorithm and
decentralized sclf-stab algorithm with all loads in one node. This experiment is to show
the behavior of our algorithm in the most delicate case of all loads arriving to a single

node.

44

@ Minkoads by Ferations ®) Maxkoads by lterations
3 . 3500

il greedy'sun with a random distribution of loads —— Greedyf sort with random distribution ofloads ——
P greedy sort with all loads m one node —— gready sort with all loads an one node ——
L 1 3000 |
5 f
; 2500 +
20 |
T T 2000 |
g §
4 15t ¥ 1
= @
b3 s 1500 -
10
| 1000 |
3t i
0 _ 500 |
5 L . .) ' 0 (— aa— — T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
il fieration fteraion

Figure 4.7: Minimum (a) and Maximum (b) total load by iteration for 200 nodes: De-
centralized case (in purple) and Decentralized with all loads in one node (in green) using
Greedy Sort.

- Dieliiz by lterafions
3500 — —— ——— ™
Greedy sort with random disiribugion of loads ——
areedy sort with all loads on one node ——
=4 3000 r i
2500 l,
2000 ||
E |
g %
— 1500 |
!
1000 |
Al |
500 b
@ _ G T 1 ——
] 20 4m il & 100 120
Nb iterations

Figure 4.8: Delta by iteration for 200 nodes: Decentralized case (in purple) and Decen-
tralized with all loads in one node (in green) using Greedy Sort.

4 Fourth Experiment: Different topologies

The nodes of a distributed system need to communicate by some means. This is
effected by connecting the node to some form of network. A communications network
may be either static or dynamic. Static networks have a fixed connections. while dymamic

networks have switching connections which can change in time 1.

The mathematical term for the study of connectedness is "topology’. Networks investi-
gated in the literature includes: chains, grids, hypercubes. toruses, Hash—Nets (Random),
ect: that may have many properties as diameter, multiplicity of paths or coupling. The
choice of topology can determine the efficienty of an algorithm. In this section. we will
execute the self—stab algorithm using different static topologies to study the impact of

the coupling parameter.

To show the impact of the network topologies (loosely—coupled and strongly—coupled).

we excute the self-stab algorithm in four different topologics.

e Grid. In the grid topology, the nodes are stacked one on top of another. so the
processors are connected both vertically and horizontally. Figure 4.9 shows the

resulting topology which is called a ’grid’ or a ‘mesh’.

e Torus. Grids can be extended by connecting the loose ends together in the same
way the chain is converted to a ring, see figure 4.9. This topology is called a
‘toroidally connected grid’ or "torus’. All nodes in a torus have four neighbors

nodes.

e Hypercube. Simple cubes have three dimensions, *hypercubes’ are produced by
increasing the number of dimensions in a cube. The term hypercube refers to any

cube with four or more dimensions, see figure 4.9.

e Hash-Nets/Random. It’s an anarchic approach to the choice of topology for a

distributed system. It consists of connecting everything randomly. see figure 4.9.

Lwww_gigaflop.co.uk

46

O— :f-—r"'r-—:;
O OO !
[] ﬁ
. ’l DL}
) 'J‘L—— 'S fL
L% L
Grid
O—20
G{:l_{:(i [
0 !,L A
lﬁ 17~ P Al)
O A X |
Cube TV
i | .t',-'\ _'_,“!".
i xl?g \P*c/?:}r i) Hash-Net / Random
L | ' T)
L bk L BVAR'Y;
BRI
b S A
Hypercube

Figure 4.9: Diffrent network topologeis.

The results of executing the self-stab algorithm using greedy sort method in different
topologies are presented in the following (figures 4.10 and 4.11).

@ o (b) -
MinLoads by ierations MaxLoads by iteration
30 . " > 70 —_— .
Giid topology —— Grd topology ——
Torus topology —— 6 Torus topology ——
2% | Hypercube tapoiogy - < Hypercube topology —— |
Hash-Net/Random topology—— Hash-Net/Random topclogy
. —
- 60 ‘
20 o \
/ S S
ko) 7 o \
G ; a \
3 5} // 2 50 \
c / \
= 7 g \
= F = \
‘ / 45
0 / N
N
/ 4 RN
/ N
5 / 1 ~———
/ % | T
0 I 1 L I L 1 I L 30 L L Il ' 1 L i 1
] 2 4] 8 10 12 14 16 18] 2 4 [8 10 12 14 16 18
1ib lerations {¥h tlerations

Figure 4.10: Minimum (a) and Maximum (b) total load by iteration: Grid topology (in
purple), Torus topology (in green), Hypercube topology (in blue) and Hash—Net topology
(in orange) using Greedy Sort.

Diella y iteration
70 T - . :
Grid topology ——
Torus fopology ——
60 + Hypercube topology ——— 1
Hash-HeliRandom topalogy
L
g’) J
o
-
i
el

] 2 4 [} & 10 12 1M % 18
{4b lierations

Figure 4.11: Delta by iteration: Grid topology (in purple), Torus topology (in green),
Hypercube topology (in blue) and Hash—Net topology (in orange) using Greedy Sort.

The study of the network size on the different topologies is provided in Appendix
(figures 0.18, 0.19, 0.20 and 0.21).

48

5 Discussing

In the previous section, the experiments show the convergence of the self-stabilizing
algorithm and offer a study of the differents pairwise methods that was implemented.
The first experiment has evaluated the capability of the algorithm to stabilizing. In this
expirement, the brute force and greedy sort show a similar behavior with more iterations
for the sorted method. This can be justified by the fact that the sorted pairwise method
affects an item load in each time step (iteration), otherwise, the brute force approach,
besides of wastiong time in enumerating all combinations, the brute force shares load
between the pair of nodes in a one time step. In table 4.1 the execution time (in seconds)
of both methods is presented. These results show clearly that the sorted method is faster

than the brute force method.

Brute Force (s) Greedy Sort (s)

200 171.491 70416
400 427.285 276.688
600 849.754 570.19

Table 4.1: Exection time of Brute Force and Greedy Sort.

The second experiment involves the greedy sort method in two different contexts: Cen-
tralized and Decentralized. The previous results and the table 4.2 show that self—stab
algorithm converges faster in distributed environement then a centrazlized with less iter—
ations, that is due to the fact that in centralized algorithm one load is distributed at each

step to a single node, this makes more iterations and most importantly more time.

Centralized (s) Decentralized (s)

200 6811.24 70.416
400 87154 276.688
600 150862 570.19

Table 4.2: Exection time of Centralized and Decentralized sclf-stab algorithm.

Another experiment was to show the behavior of the distributed self—stab in the
most delicated case, the case when all the loads arriving to the system arrive to a single
node. The goal of this experiment is to compare to the centralized case. The results
show that the extreme case takes more iteration then usual. This can be explained as in
the extreme case all the network is empty. and the delta between the maximum and the
minimum total load is huge at the beginning so that takes more iterations and more time.
But in comparaison to the centralized case, the extreme self-stab algorithm reacts much
better.

The fourth and the final experiment was the execution of self—stab in different levels

of coupled networks, in topologies where nodes have more or less number of neighbors.

49

The self—stab algorithm in a "grid". then a more coupled topology the "torus", and then
another more coupled topology "hypercube", and even more in an anarchic topology shows
approximately the same behavior. The self—stab algorithm converges in the different

topologies and for different number of nodes.

50

Conclusion and Future work

In this report, we have presented a load balancing algorithm for any abstarct network.
The main challenge in building this algorithm was the indivisible nature of the loads
coming to the network. The presented algorithm is based on a self—stabilizing approach
in which each node can initiate transactions with its neighbors and reach a legitimate state
with a limited number of iterations. To demonstrate the algorithm capabilitics we have
benchmarked the self-stab algorithm using the proposed balancing method "Greedy Sort"
with the same algorithm using "Brute Force" method. Other experiments as distributed
vs. non distribitued network, topology design impact was their to improve the expected
behavior of the self— stab algorithm.

The analysis of the experiments results emphasize the advantages of the "Greedy Sort"
self—stablizing algorithm especially in a distributed environement. Although, several ways
of improvements and future research directions can be proposed. The analysis of the
self—stab algorithm usisng the discrete event simulation would be very usufull to show
the real behavior of the algorithm. Furthermore, the load balancing is known to be an
NP-complete problem and the designng of an heuristic to solve it will be a very interesting

future work.

51

Bibliography

[1] Mahfooz Alam and Zaki Ahmad Khan. Issues and challenges of load balancing algo-
rithm in cloud computing environment. Indian Journal of Science and Technology,
10(25), 2017.

[2] Tuncer Can Aysal, Mehmet Ercan Yildiz. Anand D Sarwate, and Anna Scaglione.
Broadcast gossip algorithms for consensus. IEEE Transactions on Signal processing,
57(7):2748-2761, 2009.

[3] Jacques Bahi, Raphaél Couturier, and Flavien Vernier. Synchronous distributed load
balancing on dynamic networks. Journal of Parallel and Distributed Computing,
65(11):1397-1405, 2005.

[4] SK Basu. Design methods and analysis of algorithms. PHI Learning Pvt. Ltd., 2013.

[5] Petra Berenbrink, Colin Cooper, Tom Friedetzky, Tobias Friedrich, and Thomas
Sauerwald. Randomized diffusion for indivisible loads. Jowrnal of Computer and
System Sciences, 81(1):159-185, 2015.

[6] Veeravalli Bharadwaj, Debasish Ghose, Venkataraman Mani, and Thomas G Rober-
tazzi. Scheduling divisible loads in parallel and distributed systems, volume 8. John
Wiley & Sons, 1996.

[7] Veeravalli Bharadwaj, Debasish Ghose, and Thomas G Robertazzi. Divisible load
theory: A mew paradigm for load scheduling in distributed systems. Cluster Com-
puting, 6(1):7-17, 2003.

[8] Junwei Cao, Daniel P Spooner, Stephen A Jarvis, and Graham R Nudd. Grid load
balancing using intelligent agents. Future generation computer systems, 21(1):135—
149, 2005.

[9] Yuan-Chich Chow et al. Models for dynamic load balancing in a heterogeneous
multiple processor system. IEEE Transactions on Computers, 100(5):354-361, 1979.

[10] Michal Cierniak, Mohammed Javeed Zaki. and Wei Li. Compile-time scheduling
algorithms for a heterogeneous network of workstations. The Computer Journal.
40(6)-356-372, 1997.

32

[11]

112

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

George Cybenko. Dynamic load balancing for distributed memory multiprocessors.
Journal of parallel and distributed computing, 7(2):279-301, 1989.

Taz Daughtrey and Sue Carroll. Fundamental concepts for the software quality engi-
neer, volume 2. ASQ Quality Press, 2007.

Tushar Desai and Jignesh Prajapati. A survey of various load balancing techniques
and challenges in cloud computing. International Journal of Scientific & Technology
Research, 2(11):158-161. 2013.

Edsger W Dijkstra. Solution of a problem in concurrent programming control. In
Pioneers and Their Contributions to Software Engineering, pages 289-294. Springer,
2001.

EW Dijkstra. Self-stabilizing systems in spite of distributed control. commua. ACM
17, 11 (Nov. 1974), pages 643-644.

Derek L Eager, Edward D Lazowska, and John Zahorjan. A comparison of receiver-
initiated and sender-initiated adaptive load sharing. ACM SIGMETRICS Perfor-
mance Evaluation Review, 13(2):1-3, 1985.

YT éWM85¢. Wang and rjt morris. load sharing in distributed svstems. IEEE
Transactions on Computers, C-34: 204i217, 1985.

Sukumar Ghosh. Distributed systems: An algorithmic approach, (chapman hall /ere

computer and information science series), 2007.

Sukalyan Goswami and Ajanta De Sarkar. A comparative study of load balanc-
ing algorithms in computational grid environment. In Computational Intelligence,
Modelling and Simulation (CIMSim). 2013 Fifth International Conference on, pages
99-104. IEEE, 2013.

Daniel Grosu and Anthony T Chronopoulos. Noncooperative load balancing in dis-
tributed systems. Jowrnal of parallel and distributed computing, 65(9):1022-1034,
2005.

Mounir Hamdi and Chi-Kin Lee. Dynamic load balancing of data parallel applica-
tions on a distributed network. In Proceedings of the 9th international conference on
Supercomputing, pages 170-179. ACM, 1995.

Shuichi Ichikawa and Shinji Yamashita. Static load balancing of parallel pde solver for
distributed computing environment. In Proc. 13th Int’l Conf. Parallel and Distributed
Computing Systems, pages 399-405, 2000.

Hisao Kameda, Jie Li. Chonggun Kim, and Yongbing Zhang. Optimal load balancing

in distributed computer systems. Springer Science & Business Media, 2012.

93

[24] Chonggun Kim and Hisao Kameda. Optimal static load balancing of multi-class
Jobs in a distributed computer system. IEICE TRANSACTIONS (1976-1990),
73(7):1207-1214, 1990.

[25] P Venkata Krishna. Homey bee behavior inspired load balancing of tasks in cloud
computing environments. Applied Soft Computing, 13(5):2292-2303, 2013.

[26] Ajay D Kshemkalyani and Mukesh Singhal. Distributed computing: principles. algo-

rithms, and systems. Cambridge University Press, 2011.

[27] Rich Lee and Bingchiang Jeng. Load-balancing tactics in cloud. In Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), 2011 International Con-
ference on, pages 447-454. IEEE, 2011.

[28] Jie Li and Hisao Kameda. A decomposition algorithm for optimal static load bal-
ancing in tree hierarchy network configurations. IEEE Transactions on Parallel and
Distributed Systems, 5(5):540-548, 1994.

[29] Simone A Ludwig and Azin Moallem. Swarm intelligence approaches for grid load
balancing. Journal of Grid Computing, 9(3):279-301, 2011.

[30] Yuval Rabani, Alistair Sinclair, and Rolf Wanka. Local divergence of markov chains
and the analysis of iterative load-balancing schemes. In Foundations of Computer
Science, 1998. Proceedings. 39th Annual Symposium on, pages 694-703. IEEE. 1998.

[31] Xiaona Ren, Rongheng Lin, and Hua Zou. A dynamic load balancing strategy for
cloud computing platform based on exponential smoothing forecast. In Cloud Com-
puting and Intelligence Systems (CCIS). 2011 IEEE International Conference on,
pages 220-224. IEEE, 2011.

[32] Siddharth Sonawane, Prathmesh Arnikar, Ankita Fale, Sagar Aghav, and Shikha

Pachouly. Load balancing in cloud computing. International Journal, 4(2), 2014.

[33] P Beaulah Soundarabai. A Sandhya Rani, Ritesh Kumar Sahai, J Thriveni, and
KR Venugopal. Comparative study on load balancing techniques in distributed sys-
tems [j]. International Journal of Information Technology, 6(1):53-60, 2012.

[34] Asser N Tantawi and Don Towsley. Optimal static load balancing in distributed
computer systems. Journal of the ACM (JACM). 32(2):445-465, 1985.

[35] Asser N Tantawi and Donald F Towsley. A general model for optimal static load bal-
ancing in star network configurations. In Proceedings of the Tenth International Sym-
posium on Computer Performance Modelling. Measurement and Evaluation, pages
277-291. North-Holland Publishing Co.. 1984.

[36] Alexander Thomasian. A performance study of dynamic load balancing in distributed
systems. In ICDCS. pages 178-184. 1987.

54

[37]

[38]

139]

[40]

Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao, and Shun-Sheng Wang. Towards
a load balancing in a three-level cloud computing network. In Computer Science
and information technology (ICCSIT). 2010 3rd IEEE International Conference on.
volume 1, pages 108-113. IEEE, 2010.

Marc H Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic load
balancing on highly parallel computers. JEEE Transactions on parallel and distributed
systems, 4(9):979-993, 1993.

Belabbas Yagoubi and Yahya Slimani. Dynamic load balancing strategy for grid
computing. Transactions on Engineering, Computing and Technology, 13:260-265,
2006.

Mohammed Javeed Zaki, Wei Li, and Srinivasan Parthasarathy. Customized dynamic
load balancing for a network of workstations. In High Performance Distributed Com-

puting, 1996., Proceedings of 5th IEEE International Symposium on, pages 282-291.
IEEE, 1996.

Appendix

Brute Force vs. Greedy Sort : Min, Max and Delta for 400 and

600 nodes

different experiments for both 400 and 600 nodes.

(@

MinLoad

The following figures show the same previous results of min, max and delta of the

15

10

en

IinLoads by iterations
Brute Force —— ‘
Greedy Sort —— |
-
///
/""
y/

& 1 12 14
1l lterations

E=S
= |

16

(®)

Maxl.oad

70

80 &

5 ¢

4|
5L

L

65

45 t

MaxLoads by iteration

\ Brute Force ——

Greedy St —— |

] 2 4 (i &] 12 14 16
1db lterations

Figure 0.12: Minimum (a) and Maximum (b) total load by iteration for 400 nodes: Com-

paraison of Brute Force (in purple) and Greedy sort (in green) pairwise methods.

56

Delta by iterafion

DeltaLoad

k11

20 +

Brute Force ——
Greedy Sort

Hb lerations

Figure 0.13: Delta by iteration for 400 nodes: Comparaison of Brute Force (in purple)

and Greedy sort (in green) pairwise methods.

n

15

MinLoad

10

tinLoads by fterations)

. - - bii]
Brute Force ——
G‘eeﬁy Sort —

= 5

//"'] 55 b

50

MaxLoad

. . " - - 30
8 10 12 4 16 18
[lterafions.

fad oads by iteration

3%t

% ‘ ' ") " Brute Force ——
\ Greedy Soit ——
.\\
\
3
\ll
\.\\‘
\
|
N\ |
.
ﬁ_\—‘h—_

Hiy lterafions

Figure 0.14: Minimum (a) and Maximum (b) total load by iteration for 600 nodes: Com-

paraison of Brute Force (in purple) and Greedy sort (in green) pairwise methods.

Delta by iteration

0 - - . = - - - -
Brute Force ——
Greedy Sort ——
60
Al
T 40
o
p)
s
g i}
20
10 } \H
ﬂ, i v 0 u I I u
0 2 4 6 8 10 12 14 16 18
Hib lrafions

Figure 0.15: Delta by iteration for 600 nodes: Comparaison of Brute Force (in purple)

and Greedy sort (in green) pairwise methods.

Centralized vs. Decentralized : Min, Max and Delta for 400

Minl.oad

(a)
30

2

20

10

By

Nink oads by kesations U Maoads by berations
. : 70 : _ e
Greedy sort cenfralized case —— Greedy sort centralized case ——
Greedy sort decentralized case —— Greedy sort decentralized case ——
. 60 +
,[
7
r ?
= ;
/ T ML
o {
-l P
s Wi ~
e /
- s~
/‘_/J 1 el e
_/__« ’HIJ
10+ e
| _4_,——/
' 2 L I 0 1 ! '
300 1000 1500 2000 2500 1 500 1000 1500 2000 2500
fieration iteration

Figure 0.16: Minimum (a) and Maximum (b) total load by iteration for 400 nodes: Com-
paraison of Centralized (in purple) and Decentralized (in green) cases.

Delta by Iterations

70
Greedy sort centralized case ——
Greedy sort decentralized case ———
60 +
50
40 ¢
)
T |
W
1
0}]
10 + e~
et " |
0 500 1000 1500 2000 2500

I iterations

Figure 0.17: Delta by iteration for 400 nodes: Comparaison of Centralized (in purple)
and Decentralized (in green) cases.

Different topologies : Min, Max and Delta for 400 and 600 nodes

® HinLoads by terations () MexLoads by itsrason
30 : ; : ; . ; . ; 70 : : : - — :
Grid topology —— : Gnd topology ——
| Tarnus topology —— Bl Tarus topology —— }
2% | Hypercube fopsiogy J T3 Hypescube topology
Hash leRasdom topology —— | Hash-hletRandom topology
e 60 ¢ \
e
et e \
20 } ” \
77, 5L\
T | i \
] g i
E 15t E'; 50 t \\
z / z :
J 45t \,
10 t /// 1 \
/' 40 L Y
4 R
/ 5]
0 . . ' s A . - : 30 . . " - : : ' :
0 2 4 6 8 0 122 # 16 0 2 4 & & W 122 1 16 18
1 lierations 1l lerations

Figure 0.18: Minimum (a) and Maximum (b) total load by iteration for 400 nodes:
Grid topology (in purple), Torus topology (in green), Hypercube topology (in blue) and
Hash—Net topology (in orange) using Greedy Sort.

Delta by iteration

T - . - - -
Grid topology ——
3 Tornus topalogy ——
Ll Hyperoube implogy ——
Hash-Net/Random topology
50 ¢
T wf .
3 A
(]
3 \\
10| T
0 x L L I

Figure 0.19: Delta by iteration for 400 nodes: Grid topology (in purple), Torus topology

(in green), Hypercube topology (in blue) and Hash—Net topology (in orange) using Greedy

Sort.
@ MinL oads by feretions ®) M oads by iteration
30 —_— - 70 —— s
Gid topology —— Gingt topology
Torus topohgy —— 1 Torus topology ——
2 | Hypercuhe topology | 8 \ Hypercube topology
HashletRandom topology —— A Hash-letRandom topdlogy
e &0 \
2 Ve \
7 B\
o o Y
2 1ht < 5 \
£ i]
2 -
45 N
10+
i W
b 15 T ———
Q, i I L L) L I w L . . I I P o I I
) & 10 122 M 1% 11| 2 6 2 4 6 & 10 122 14 1% 18 20

I lterations

Ib Iterations

Figure 0.20: Minimum (a) and Maximum (b) total load by iteration for 600 nodes:
Grid topology (in purple), Torus topology (in green), Hypercube topology (in blue) and

Hash—Net topology (in orange) using Greedy Sort.

60

Dela by iteration

] - - :
i : Grid topology ——
\"-«, Torus topology ——
60 Hyperoube topalogy —— -
Hash-Het/Random topology
- 50
g 40
o
11 |
b
S
L 21
10 t
]

6 2 4 6 8 10 12 14 16 18 2
b lierations

Figure 0.21: Delta by iteration for 600 nodes: Grid topology (in purple). Torus topology
(in green), Hypercube topology (in blue) and Hash—Net topology (in orange) using Greedy
Sort.

