#### REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

الجمهورية الجزائرية الديمقراطية الشعبية

# MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

وزارة التعليم العالى والبحث العلمي



#### **UNIVERSITE SAAD DAHLAB - BLIDA 1**

جامعة سعد دحلب البليدة -1-

#### **FACULTE DE TECHNOLOGIE**

كلبة التكنولوجيا

#### **DEPARTEMENT DE GENIE CIVIL**

قسم الهندسة المدنية

## **MEMOIRE DE MASTER**

Spécialité : structures

#### THEME:

ETUDE D'UN BATIMENT DE FORME IRREGULIERE EN
BETON ARME AVEC ETUDE COMPARATIVE DES EFFETS
DE LA TEMPERATURE.

# Présenté par :

**Encadreur:** 

M. Mohamed Chakib KHERRABI.

Dr. Omar FERDJANI.

M. Oussama REGOUI.

Année universitaire 2020-2021

#### ملخص

الهدف من هذا المشروع هو دراسة وتصميم هيكل للاستخدام المكتبي الذي يتكون من طابق أرضي زائد ثمانية طوابق علوية والذي سيكون موجودًا في ولاية تيبازة؛ المصنفة في المنطقة الزلزالية الثالثة حسب (القواعد الجزائرية لمقاومة الزلازل) (ق.ج.ز/99) طبعة 2003.

يبدأ الفصل الأول في الوصف العام للمشروع؛ ثم التحجيم المسبق للعناصر الهيكلية.

الفصل الثاني خصص للعناصر الثانوية (الدرج البلاطة المملوءة والحاجز).

بدأت الدراسة الديناميكية في الفصل الثالث باستخدام برنامج SAP2000 لتحديد الخصائص الديناميكية للهيكل.

الفصل الرابع يشمل تسليح العناصر المقاومة المختلفة للهيكل (الأساسات، الأعمدة، الروافد، الجدران). تم تخصيص الفصل الأخير للدراسة المقارنة لتغيرات درجة الحرارة.

يتم إجراء جميع الحسابات مع مراعاة القواعد سارية المفعول (CBA93. RPA99 V2003) الكلمات المفتاحية: هيكل، خرسانة، SAP2000، دراسة حرارية، RPA، CBA، إجهادات.

**RESUME** 

Le but de ce projet est se faire l'étude et la conception d'une structure à usage bureaux

de (R+8) qui sera implantée dans la Wilaya de TIPAZA; classée en zone III selon le

règlement parasismique algérien (RPA99 V2003).

La première partie entame la description générale de l'ouvrage; ensuite le pré

dimensionnement des éléments structuraux.

La deuxième partie a été consacrée aux éléments secondaires (les escaliers, dalles

pleines et l'acrotère).

L'étude dynamique a été entamée dans la troisième partie en utilisant le logiciel

SAP2000 afin de déterminer les paramètres dynamiques de la structure.

La quatrième partie comprend le ferraillage des différents éléments résistants de la

structure (fondation, poteau, poutres, voiles).

La dernière partie a été consacrée pour l'étude thermique comparative.

Tous les calculs sont faits en tenant compte des règlements en vigueur (CBA93. RPA99

V2003).

Les mots clés: structure, béton, SAP2000, étude thermique, CBA, RPA, sollicitations.

**ABSTRACT** 

The objective of this project is to study and design a structure for office use consisting of a

ground floor plus eight upper floors that will be located in the state of Tipaza; Classified in

the third seismic zone according to the National Center for Research Applied in Earthquake

Resistance Engineering.

The first part begins with the general description of the work; Then pre-sizing the structural

elements.

The second part is devoted to the secondary elements (stairs, solid boards, bulkheads).

The dynamic study started in the third part using SAP2000 software to determine the

dynamic parameters of the structure.

The fourth part includes the reinforcement of the various resistant elements of the structure

(foundation, column, beams, and walls). The last part is devoted to the comparative thermal

study.

All calculations are made subject to applicable regulations (CBA93. RPA99 V2003)

**Keywords:** structure, concrete, SAP2000, thermal study, CBA, RPA, stresses



Nous tenons à remercier dieu ; le tout puissant qui nous a permis d'apprendre à lire et à connaître le vrai sens de la vie.

Nous remercions vivement ; notre promoteur M.Omar Ferdjani de nous avoir pris en charges et pour sa disponibilité ; son aide et ses précieux conseils.

Nous exprimons aussi nos reconnaissances à tous les membres du jury d'avoir accepté de lire ; de présider et d'examiner ce modeste travail.

Nous portons avec gratitude de reconnaissances pour tous les enseignants qui ont contribués à notre formation durant tous les cycles ; et plus particulièrement les enseignants du département du génie civil.

On remercie également les personnes qui nous soutiennent et nous encouragent de prêt ou de loin.



Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce modeste travail :

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin ; ma mère qui a été mes côtés et ma soutenue durant tout ma vie ; et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis ; merci mes parents.

- A toute ma famille.
- A mon binôme et sa famille.
- A M. Belhouchet Fouzi (Ingénieur en génie civil).





Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce modeste travail :

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin ; ma mère qui a été mes côtés et ma soutenue durant tout ma vie ; et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis ; merci mes parents.

- A toute ma famille.
- A mon binôme et sa famille.
- A M. Belhouchet Fouzi (Ingénieur en génie civil).

Dussama

#### LISTE DES FIGURES

#### **CHAPITRE I. Généralités Figure I.1.** Diagramme contraintes – déformations du béton à L'ELU...... 06 **Figure I.2.** Diagramme contraintes – déformation de l'acier à L'ELU. ..... 07 CHAPITRE II. Pré dimensionnement des éléments structuraux **Figure II.1.** Coupe d'un plancher corps creux. 08 **Figure II.2.** Coupe transversale de l'acrotère. 15 Figure II.3. La surface reprise par le poteau. 16 **Figure II.4.** Section réduite de poteau Br. 19 Figure II.5. Schéma du voile. 26 CHAPITRE III. Calcul des éléments secondaires **Figure III.1.** Coupe transversale de l'acrotère. 29 **Figure III.2.** Ferraillage longitudinale de l'acrotère. 32 **Figure III.3.** Ferraillage de l'acrotère. 35 **Figure III.4.** P anneau de dalle plaine sur 4 appuis. 36 **Figure III.5.** Disposition constructive des armatures de la dalle plaine. .......... 42 **Figure III.6.** Schéma d'un escalier. 42 **Figure III.7.** Diagrammes des efforts internes sur les escaliers (ELU). ...... 45 **Figure III.8.** Diagrammes des efforts internes sur les escaliers (ELS). 46 **Figure III.9.** Schéma de ferraillage des escaliers. 55 **CHAPITRE IV. Etude dynamique Figure IV.1.** Model de la structure gauche. 58 Figure IV.2. Spectre de réponse. 60 **Figure IV.3.** Disposition des voiles. 60 **Figure IV.4.** Model de la structure droite. 66 CHAPITRE V. Ferraillage des éléments structuraux

**Figure V.1.** Coupe longitudinale du ferraillage de la poutre principale. ..........

**Figure V.2.** Schéma de la zone nodale.

**Figure V.3.** Schéma de ferraillage des poteaux.

78

79

86

| Figure V.4. Répartition des moments.                                          | 87  |
|-------------------------------------------------------------------------------|-----|
| <b>Figure V.5.</b> Ferraillage du voile Vx <sub>3</sub> (RDC).                | 93  |
| <b>Figure V.6.</b> Ferraillage du voile Vy <sub>5</sub> .                     | 93  |
| CHAPITRE VI. Etude de l'infrastructure                                        |     |
| Figure VI.1. Schéma de la semelle isolée.                                     | 95  |
| Figure VI.2. Coupe transversale de la semelle filante.                        | 98  |
| Figure VI.3. Distribution des contraintes dans la nervure.                    | 99  |
| <b>Figure VI.4.</b> Schéma de ferraillage de la semelle filante suivant (x-x) | 103 |
| Figure VI.5. Schéma de ferraillage de la semelle filante suivant (y-y)        | 103 |
| Figure VI.6. Schéma de ferraillage de longrine.                               | 107 |
| <b>Figure VI.7.</b> Ferraillage de voile périphérique suivant (x-x).          | 110 |
| <b>Figure VI.8.</b> Ferraillage de voile périphérique suivant (y-y)           | 110 |

# LISTE DES TABLEAUX

| CHAPITRE II. Pré dimensionnement des éléments structuraux                            |    |
|--------------------------------------------------------------------------------------|----|
| Tableau II.1. Hauteur des sections des poutres.                                      | 10 |
| Tableau II.2. Récapitulation du pré dimensionnement des poutres.                     | 11 |
| Tableau II.3. Charges permanentes sur le plancher terrasse (corps creux)             | 12 |
| <b>Tableau II.4.</b> Charges permanentes sur le plancher terrasse (dalle plaine)     | 12 |
| Tableau II.5. Charges permanentes sur le plancher courant (corps creux)              | 13 |
| Tableau II.6. Charges permanentes sur le plancher courant (dalle plaine)             | 13 |
| <b>Tableau II.7.</b> Charges permanentes sur les murs extérieurs à double cloisons   | 14 |
| <b>Tableau II.8.</b> Charges permanentes sur les murs intérieurs à une seule cloison | 14 |
| Tableau II.9. Les valeurs des charges d'exploitation selon le DTR                    | 15 |
| Tableau II.10. Application de la loi de dégression                                   | 18 |
| Tableau II.11. Choix des sections des poteaux                                        | 23 |
| Tableau II.12. Choix final des sections des poteaux                                  | 23 |
| Tableau II.13. Vérification de sections adoptées.                                    | 24 |
| Tableau II.14. Résultats du pré dimensionnement des éléments                         | 27 |
| CHAPITRE III. Calcul des éléments secondaires                                        |    |
| Tableau III.1. Calcul des moments pour les deux panneaux                             | 37 |
| <b>Tableau III.2.</b> Vérification des contraintes dans le béton à L'ELS             | 41 |
| Tableau III.3. Charge permanent sur la paillasse                                     | 44 |
| Tableau III.4. Charge permanent sur le palies                                        | 44 |
| Tableau III.5. Vérification de la flèche de l'escalier type 1                        | 50 |
| <b>Tableau III.6.</b> Vérification de la flèche de l'escalier type 2                 | 54 |
| CHAPITRE IV. Etude dynamique                                                         |    |
| Tableau IV.1. Valeur de facteur de qualité Q                                         | 58 |
| <b>Tableau IV.2.</b> Périodes et taux de participation massique                      | 61 |
| Tableau IV.3. Charges verticales reprise par les portiques et voiles.                | 61 |
| <b>Tableau IV.4.</b> L'interaction sous charge horizontale (x-x)                     | 62 |
| <b>Tableau IV.5.</b> L'interaction sous charge horizontale (y-y)                     | 62 |
| <b>Tableau IV.6.</b> Vérification de l'effort normale                                | 63 |

| Tableau IV.7. Vérification des déplacements (x-x)                                              | 63 |
|------------------------------------------------------------------------------------------------|----|
| Tableau IV.8. Vérification des déplacements (y-y)                                              | 64 |
| <b>Tableau IV.9.</b> Vérification de l'effet $P-\Delta$ (x-x)                                  | 64 |
| <b>Tableau IV.10.</b> Vérification de l'effet P-Δ (y-y).                                       | 65 |
| <b>Tableau IV.11.</b> Vérification de V à la base                                              | 65 |
| Tableau IV.12. Périodes et taux de participation massique                                      | 66 |
| Tableau IV.13. Justification de l'interaction sous charge verticale                            | 67 |
| <b>Tableau IV.14.</b> Justification de l'interaction sous charge horizontale (x-x)             | 67 |
| <b>Tableau IV.15.</b> Justification de l'interaction sous charge horizontale (y-y)             | 68 |
| Tableau IV.16. Vérification de l'effort normal réduit                                          | 68 |
| <b>Tableau IV.17.</b> Vérification des déplacements (x-x)                                      | 69 |
| Tableau IV.18. Vérification des déplacements (y-y)                                             | 69 |
| <b>Tableau IV.19.</b> Justification de l'effet P- $\Delta$ (x-x)                               | 70 |
| <b>Tableau IV.20.</b> Justification de l'effet P- $\Delta$ (y-y)                               | 70 |
| <b>Tableau IV.21.</b> Vérification de V à la base                                              | 71 |
| CHAPITRE V. Ferraillage des éléments structuraux                                               |    |
| Tableau V.1. Sollicitations dans les poutres principales et secondaires                        | 73 |
| Tableau V.2. Ferraillage des poutres.                                                          | 74 |
| Tableau V.3. Ferraillage transversale des poutres.                                             | 76 |
| Tableau V.4. Vérification à L'ELS.                                                             | 76 |
| Tableau V.5. Schéma de ferraillage des poutres.                                                | 77 |
| Tableau V.6. Sollicitations dans les poteaux.                                                  | 80 |
| <b>Tableau V.7.</b> Ferraillage des poteaux avec N <sub>max</sub> ; M <sub>cor</sub> .         | 80 |
| <b>Tableau V.8.</b> Ferraillage des poteaux avec N <sub>min</sub> ; M <sub>cor</sub> .         | 81 |
| <b>Tableau V.9.</b> Ferraillage des poteaux avec M <sub>max</sub> ; N <sub>cor</sub> .         | 81 |
| Tableau V.10. Choix des armatures pour les poteaux.                                            | 82 |
| Tableau V.11. Choix des armatures transversales pour les poteaux.                              | 83 |
| <b>Tableau V.12.</b> Vérification de la contrainte de cisaillement pour les poteaux            | 84 |
| Tableau V.13. Vérification de L'ELU stabilité de forme                                         | 84 |
| <b>Tableau V.14.</b> Vérification à L'ELS avec N <sub>max</sub> ; M <sub>cor</sub>             | 85 |
| <b>Tableau V.15.</b> Vérification des poteaux à L'ELS avec M <sub>max</sub> ; N <sub>cor</sub> | 85 |
| Tableau V.16. Vérification de la zone nodale                                                   | 87 |
| <b>Tableau V.17.</b> Sollicitation dans les voiles                                             | 89 |

| <b>Tableau V.18.</b> Ferraillage des voiles de RDC (x-x).                         | 91  |
|-----------------------------------------------------------------------------------|-----|
| Tableau V.19. Ferraillage des voiles de RDC (y-y).                                | 91  |
| <b>Tableau V.20.</b> Ferraillage des voiles de 6 <sup>ème</sup> étage (x-x).      | 92  |
| <b>Tableau V.21.</b> Ferraillage des voiles de 6 <sup>ème</sup> étage (y-y).      | 92  |
| CHAPITRE VI. Etude de l'infrastructure                                            |     |
| Tableau VI.1 : Vérification des contraintes à L'ELS dans les nervures             | 102 |
| <b>Tableau VI.2 :</b> Section de ferraillage des nervures suivant (X-X) et (Y-Y)  | 103 |
| CHAPITRE VII. Etude Thermique Comparative                                         |     |
| Tableau VII.1. Sollicitation les plus défavorables dans les deux poutres les plus | 113 |
| exposées.                                                                         |     |
| Tableau VII.2. Ferraillage longitudinale des poutres.                             | 113 |
| Tableau VII.3. Vérification des poutres à L'ELS.                                  | 114 |
| Tableau VII.4. Ferraillage longitudinale des poutres à L'ELS.                     | 114 |
| Tableau VII.5. Comparaison des résultats.                                         | 115 |
|                                                                                   |     |

# Liste des symboles

- A : Coefficient d'accélération de zone
- A<sub>s</sub>: Aire d'une section d'acier.
- A<sub>t</sub>: Section d'armatures transversales.
- B : Aire d'une section de béton.
- ø : Diamètre des armatures, mode propre.
- $\varphi$ : Angle de frottement.
- C : Cohésion.
- $\overline{q}$ : Capacité portante admissible.
- Q : Charge d'exploitation.
- $\gamma_s$ : Coefficient de sécurité dans l'acier.
- γ<sub>b</sub>: Coefficient de sécurité dans le béton.
- $\sigma_s$ : Contrainte de traction de l'acier.
- $\sigma_{bc}$ : Contrainte de compression du béton.
- $\overline{\sigma}_s$ : Contrainte de traction admissible de l'acier.
- $\overline{\sigma}_{bc}$ : Contrainte de compression admissible du béton.
- <sup>τ</sup><sub>u</sub>: Contrainte ultime de cisaillement.
- $\tau$ : Contrainte tangentielle.
- $\beta$ : Coefficient de pondération.
- $\sigma_{sol}$ : Contrainte du sol.
- $\sigma_m$ : Contrainte moyenne.
- G : Charge permanente.
- $\xi$ : Déformation relative.
- $V_0$ : Effort tranchant a la base.
- E.L.U : Etat limite ultime.
- E.L.S: Etat limite service.
- N<sub>ser</sub>: Effort normal pondéré aux états limites de service.
- N<sub>u</sub>: Effort normal pondéré aux états limites ultime.
- $T_u$ : Effort tranchant ultime.
- T: Effort tranchant, Période.

- $S_t$ : Espacement.
- $\lambda$ : Elancement.
- F : Force concentrée.
- f: Flèche.
- f : Flèche admissible.
- D : Fiche d'ancrage.
- L: Longueur ou portée.
- L<sub>f</sub>: Longueur de flambement.
- d : Hauteur utile.
- F<sub>e</sub>: Limite d'élasticité de l'acier.
- M<sub>u</sub>: Moment à l'état limite ultime.
- M<sub>ser</sub>: Moment à l'état limite de service.
- M<sub>t</sub>: Moment en travée.
- M<sub>a</sub>: Moment sur appuis.
- M<sub>0</sub>: Moment en travée d'une poutre reposant sur deux appuis libres, Moment a la base.
- I : Moment d'inertie.
- f<sub>i</sub>: Flèche due aux charges instantanées.
- f<sub>v</sub>: Flèche due aux charges de longue durée.
- I<sub>fi</sub>: Moment d'inertie fictif pour les déformations instantanées.
- I<sub>fv</sub>: Moment d'inertie fictif pour les déformations différées.
- M : Moment, Masse.
- E<sub>ij</sub>: Module d'élasticité instantané.
- E<sub>vi</sub>: Module d'élasticité différé.
- E<sub>s</sub>: Module d'élasticité de l'acier.
- P: Rayon moyen.
- f<sub>c28</sub>: Résistance caractéristique à la compression du béton à 28 jours d'age.
- f<sub>128</sub>: Résistance caractéristique à la traction du béton à 28 jours d'age.
- F<sub>cj</sub>: Résistance caractéristique à la compression du béton à j jours d'age.
- K : Coefficient de raideur de sol.
- $\delta$  : Rapport de l'aire d'acier à l'aire de béton.
- $Y,Y_1$ : Position de l'axe neutre.
- I<sub>0</sub> : Moment d'inertie de la section totale homogène

# Table des matières

| ملخص                                                                    |      |
|-------------------------------------------------------------------------|------|
| Résume                                                                  |      |
| Abstract                                                                |      |
| Remerciement                                                            |      |
| Liste des figures                                                       |      |
| Liste des tableaux                                                      |      |
| Liste des symboles                                                      |      |
| Introduction générale                                                   | 01   |
| CHAPITRE I. Généralités.                                                |      |
| I.1. Présentation de l'ouvrage.                                         | 02   |
| I.2. Données géotechnique.                                              | 02   |
| I.3. Caractéristiques des matériaux utilisés.                           | 03   |
| I.4. Normes et réglementations utilisés                                 | 05   |
| I.5. Hypothèses et méthodes de calcul                                   | 05   |
| CHAPITRE II. Pré dimensionnement des éléments structuraux (résistants). | 08   |
| II.1. Introduction                                                      | 08   |
| II.2.1. Plancher en corps creux.                                        | 08   |
| II.2.2. Plancher dalle pleine                                           | 09   |
| II.3. Pré dimensionnement des poutres.                                  | 09   |
| II.3.1. Les poutres principales (P.P).                                  | 09   |
| II.3.2. Les poutres secondaires (P.S)                                   | 10   |
| II.3.3. Vérification des conditions imposées par le RPA                 | 11   |
| II.4. Evaluation des charges (permanentes et exploitations)             | 11   |
| II.4.1. Charges permanentes                                             | 11   |
| II.4.2. Charges d'exploitations.                                        | 15   |
| II.5. Pré dimensionnement des poteaux                                   | 15   |
| II.5.1. Etapes de pré dimensionnement                                   | 16   |
| II.5.2. Calcul de la surface reprise par le poteau le plus sollicité    |      |
|                                                                         |      |
| II.5.3. Application de la loi de dégression.                            | 17   |
| II.5.4. Calcul de la section des poteaux                                | 18   |
| II.6. Pré dimensionnement des voiles.                                   | 26   |
| II. / Conclusion                                                        | ′)′7 |

| CHA                             | PITRE | TTT | Calcul  | aah  | álámanta  | s secondaires. |
|---------------------------------|-------|-----|---------|------|-----------|----------------|
| $\mathbf{L} \cdot \mathbf{D} A$ |       |     | Caiciii | HES. | eieineins | s secondantes. |

| III.1. Introduction                                      | 28 |
|----------------------------------------------------------|----|
| III.2. Calcul de l'acrotère                              | 28 |
| III.2.1. Hypothèses de calcul.                           | 29 |
| III.2.2. Evaluation des charges                          | 29 |
| III.2.3. Ferraillage à L'ELU                             | 30 |
| III.2.4. Vérification à L'ELS                            | 32 |
| III.2.5. Vérification de l'effort tranchant              | 35 |
| III.3. Calcul de la dalle pleine                         | 36 |
| III.3.1. Ferraillage à L'ELU                             | 36 |
| III.3.2. Vérification de l'effort tranchant              | 39 |
| III.3.3. Vérification à L'ELS                            | 40 |
| III.4. Calcul des escaliers                              | 42 |
|                                                          | 42 |
| III.4.2. Evaluation des charges sur les escaliers        | 44 |
| III.4.3. Calcul des sollicitations                       | 45 |
| III.4.4. Déterminations du ferraillage                   | 46 |
| III.4.5. Vérifications de l'effort tranchant             | 48 |
| III.4.6. Vérification à L'ELS                            | 48 |
| CHAPITRE IV. Etude dynamique.                            |    |
| IV.1. Introduction                                       | 56 |
| IV.2. Choix de la méthode de calcul                      | 56 |
| IV.3. Présentation de la méthode modale spectrale        | 56 |
| IV.4. Etude de la structure gauche                       | 58 |
| IV.4.1 : Interprétation des résultats de la modélisation | 60 |
| IV.4.2 : Vérification de l'effort normal réduit          | 63 |
| IV.4.3 : Vérification des déplacements                   | 63 |
| IV.4.4 : Justification vis-à-vis de l'effet P-Δ.         | 64 |
| IV.4.5 : Vérification de V à la base                     | 65 |
| IV.5. Etude de la structure droite                       | 66 |
| IV.5.1 : Interprétation des résultats de la modélisation | 66 |
| IV.5.2 : Justification de l'interaction portique –voiles | 67 |
| IV.5.3 : Vérification de l'effort normal réduit          | 68 |
| IV.5.4. Justification vis-à-vis de l'effet P-Δ.          | 70 |
| IV.5.5. Vérification de V à la base                      | 70 |
| IV.6. Justification de la largeur du joint               | 71 |

| CHAPITRE V. Ferraillage des éléments structuraux.     |
|-------------------------------------------------------|
| V.1. Introduction                                     |
| V.2. Ferraillage des poutres.                         |
| V.2.1. Recommandations réglementaires                 |
| V.2.2. Sollicitations et ferraillage                  |
| V.2.3. Vérification à L'ELS                           |
| V.2.4. Schéma de ferraillage                          |
| V.3. Ferraillage des poteaux                          |
| V.3.1. Recommandations réglementaires                 |
| V.3.2. Sollicitations et ferraillage                  |
| V.3.3. Vérification à L'ELS                           |
| V.3.4. Schéma de ferraillage                          |
| V.4. Vérification des zones nodales                   |
| V.5. Ferraillage des voiles                           |
| V.5.1. Recommandations réglementaires                 |
| V.5.2. Sollicitations et ferraillage                  |
| CHADITE VI Fanda da Pinfinadanna                      |
| VI.1. Introduction                                    |
| VI.2. Critères de choix du type des fondations        |
| VI.3. Choix du type des fondation.                    |
| VI.3.1. Vérification des semelles isolées.            |
| VI.3.2. Vérification des semelles filantes.           |
| VI.3.3. Vérification des semelles filantes croisées   |
| VI.4. Ferraillage des fondations.                     |
| VI.4.1. Ferraillage de la semelle                     |
| VI.4.2. Ferraillage de la nervure (libage)            |
| VI.4.3. Les vérifications.                            |
| VI.4.4. Schéma de ferraillage des fondations.         |
| VI.5. Calcul des longrines.                           |
| VI.6. Etude du voile périphérique                     |
|                                                       |
| CHAPITRE VII. Etude thermique comparative             |
| VII.1. Introduction                                   |
| VII.2.1 Définition de la charge de la température (T) |
| VII.2. 2. Le calcul à la température                  |
| VII.2.3. Hypothèses et combinaisons de calcul.        |
| VII.3. Sollicitations et ferraillage des poutres      |
| , 11.5. Sometations of fortunage des poures           |

VII.3.1. Sollicitations de calcul.

112

| VII.3.2. Ferraillage des poutres.                 | 113 |
|---------------------------------------------------|-----|
| VII.3.3. Vérification à L'ELS.                    | 113 |
| VII.4. Comparaison; conclusion et recommandations | 115 |
| VII.4.1. Comparaison des résultats                | 115 |
| VII.4.2. Étude économique (estimation du coût)    | 116 |
| VII. 5. Conclusion.                               | 117 |
| Conclusion générale                               | 118 |
| Bibliographie                                     |     |

#### INTRODUCTION GENERALE

Toute étude de projet d'un bâtiment dans la structure est en béton armé, a pour but d'assurer la stabilité et la résistance des bâtiments afin d'assurer la stabilité du bâtiment.

On sait que le développement économique dans les pays industrialisés privilégie la construction verticale dans un souci d'économie de l'espace.

Cependant, il existe un danger représenté par ce choix, à cause des dégâts qui peuvent lui occasionner les séismes et le vent. Pour cela, il y a lieu de respecter les normes et les recommandations parasismiques qui rigidifient convenablement la structure.

Quels que soient les types des bâtiments en béton armé, leurs études rencontrent de nombreuses difficultés dans le choix du modèle de comportement.

Les règlements parasismiques Algériens définissent des modèles et des approches spécifiques à chaque type de bâtiment.

La stabilité de l'ouvrage est en fonction de la résistance des différents éléments structuraux (poteaux, poutres, voiles...) aux différentes sollicitations (compression, flexion...) dont la résistance de ces éléments est en fonction du type des matériaux utilisés et de leurs dimensions et caractéristiques.

Donc ; pour le calcul des éléments constituants un ouvrage, on va suivre des règlements et des méthodes connues (BAEL91 modifié99, RPA99V2003) qui se basent sur la connaissance des matériaux (béton et acier) et le dimensionnement et ferraillage des éléments résistants de la structure.

# CHAPITRE I Généralités

CHAPITRE I: Généralités

#### I.1 : Présentation de l'ouvrage

Le projet qui fait objet de notre mémoire consiste à faire l'étude génie civil de l'administration de l'école supérieure de la magistrature (ESM).

C'est un bâtiment à usage bureaux en R+8 en béton armé irrégulier en plan et en élévation.

Ce projet est situé à la commune de KOLEA - Wilaya de TIPAZA classée d'âpres le RPA 99/V2003 comme une zone de sismicité élevée (zone III).

Ce bâtiment peut accueillir simultanément plus de 300 personnes (bâtiment à usage bureau) donc c'est un ouvrage de grande importance (groupe d'usage 1-B)

Les caractéristiques géométriques de l'ouvrage :

ightharpoonup Longueur en plan : L<sub>x</sub> =65,59 m

**❖** Largeur en plan : L<sub>Y</sub> =19,32 m

❖ Hauteur totale du bâtiment : H<sub>t</sub>= 38,08 m

❖ Hauteur totale du bâtiment + l'acrotère : H<sub>t</sub>=38,68 m

❖ Hauteur du RDC et 1<sup>er</sup> étage : H= 4,76 m

❖ Hauteur des autres étages : H= 4.08 m

#### I.2 : Données géotechnique du site

Selon l'étude géotechnique faite par le laboratoire de l'habitation et de la construction du centre (L.H.C.C) et qui est détaillé par le rapport du sol « dossier N°151 » ; le site présente les caractéristiques suivantes :

- Le terrain est constitué essentiellement par des sables moyennement limoneux parfois avec présence des calcaires, le niveau d'eau a été localisé entre 2,5m à 4m de profondeur.
- Le sol est classé en catégorie S2 (sol ferme) d'après les essais géophysiques.
- Pour une profondeur d'ancrage de 2m à 2,5m à partir du terrain naturel la contrainte admissible du sol égale à 1,8 bar ( $\bar{\sigma}$ =1,8 bar =180 KPa).
- Les analyses chimiques du sol n'ont révélé aucun élément agressif nuisible pour le béton des fondations.

CHAPITRE I: Généralités

#### I.3 : Caractéristiques des matériaux utilisés

#### I.3.1: Le Béton

Le béton est un matériau constitué par le mélange des matériaux inertes (granulats) avec un liant hydraulique (ciment) ; de l'eau de gâchage et éventuellement des adjuvants.

La composition type de 1 m³ de béton ordinaire est :

- 350 kg de ciment CPA 325.
- 400 l de sable cg<5mm.
- 800 l de gravillons 5 mm<cg<25 mm.
- 175 l d'eau de gâchage.

Le béton doit présenter certains critères à savoir :

- Une résistance mécanique suffisante.
- Un retrait minimum.
- Une bonne tenue dans le temps (durabilité).

#### \* Résistance du béton à la compression

Le béton présente une bonne résistance à la compression ; elle est définie par des essais sur des éprouvettes cylindriques normalisées de  $200~\rm cm^2$  de section et de  $32~\rm cm$  de hauteur ; cette résistance est mesurée à l'âge de  $28~\rm jours$  pour définir la valeur caractéristique noté  $F_{c28}$  on peut calculer la résistance à n'importe quel jour par les formules suivantes donnée par le CBA  $93~\rm pour$   $F_{c28}$ = $40~\rm MPa$ .

$$f_{cj} \! = \frac{j}{4.76 \ + 0.83j} f_{_{c28}} \ ..... si \ j < 28 \ jours. \label{eq:fcj}$$

Pour notre étude F<sub>c28</sub>=25 MPa

#### \* Résistance du béton à la traction

La résistance à la traction peut être déterminée par plusieurs essais ; parmi ces essais on cite :

- Traction directe sur les cylindres précédents en collant des têtes de traction.
- Traction par fendage « essai brésilien ».

CHAPITRE I : Généralités

- Traction par flexion (3 points; 4 points).

On peut calculer la valeur caractéristique de la résistance du béton à la traction noté  $F_{tj}$  par la relation :  $F_{tj}$ = 0,6+0,06 $F_{cj}$  ( $f_{c28}$ <60 MPA).

Pour notre cas :  $F_{c28}=25$  MPa.

F<sub>t28</sub>=2,1 MPa.

#### **❖** Module de déformation longitudinale du béton

Ce module est connu sous le nom « module de Young » ou module d'élasticité ; pour le béton on distingue deux valeurs pour le module de déformation.

- Module de déformation instantanée  $Eb_{ij}$  pour des contraintes d'une durée d'application inférieur à 24 heures.

 $Eb_{ij} = 11000 (fcj)^{1/3}$ 

Pour :  $F_{c28}$ =25 MPa

On a : Ebi =32164,2 MPa

#### **❖** Module de déformation différée Eb<sub>vi</sub>

Pour les contraintes de longue durée d'application ; et pour tenir compte le phénomène de fluage du béton.

Ebvj= $3700(fcj)^{1/3}$ 

Pour :  $F_{c28}$ =25 MPa

Ebvj=10819 MPa

#### **Coefficient de poisson**

Le coefficient de poisson est pris égal à 0,2 pour le calcul des déformations et à 0 (zéro) pour le calcul des sollicitations.

ELU : υ=0 calcul des sollicitations (béton fissuré)

ELS: v=0,2 calcul des déformations (béton non fissuré)

#### **\*** Coefficient de dilatation thermique

Pour béton C=0,7 à 1,2x  $10^{-5}C^{\circ -1}$ 

Pour acier C=  $10^{-5}C^{\circ-1}$ 

Pour béton armé  $C = 10^{-5} C^{\circ -1}$ 

CHAPITRE I: Généralités

#### **❖** Poids volumique du béton

Pour le béton armé ordinaire on adopte la valeur  $\rho = 25 \text{ KN/m}^3$ 

#### I.3.2: Acier de construction

Afin de remédier au problème de faible résistance du béton à la traction ; on intègre dans les pièces de béton des barres d'acier appelées armatures d'où le nom béton armé.

Les aciers utilisés dans la construction en B.A sont :

- Acier naturel (ronds lisses R.L) FeE215 et FeE235.
- Acier à haute adhérence FeE400 et FeE500.
- Treillis soudés (T.S)  $\Phi$ =6 mm pour les dalles.

#### \* Caractéristiques mécaniques des aciers

Pour notre étude on prend FeE500 avec : Fe=500 MPa

 $Es=2*10^5MPa$ 

Coefficient de poisson : v=0,3

#### I.4: Normes et réglementations utilisés

Notre étude sera faite conformément aux règlements suivants :

- CBA 93 (code du béton armé).
- BAEL91 modifié 99 (béton armé aux états limites).
- RPA99/version 2003(règles parasismique algériennes).
- DTR BC 2.2 (charges permanentes et surcharges d'exploitation).

#### I.5: Hypothèses et Méthode de calcul

Le calcul de ce projet est basé sur la méthode des états limites « semi –probabilistes ».

Un état limite est un état pour lequel une condition requise d'une construction (ou d'un de ses élément) est strictement satisfaite et cesserait de l'être en cas de variation défavorable des actions appliquées.

On distingue deux états limites.

#### I.5.1: Etat limite ultime ELU

C'est un état qui correspond à la capacité portante maximale de la structure, son dépassement va entrainer la rupture locale ou globale ; la perte d'équilibre statique ou dynamique et l'instabilité de forme.

CHAPITRE I : Généralités

Les hypothèses de calcul à L'ELU sont :

- Les sections droites restent planes après déformation.

- Pas de glissement relatif entre le béton et les armatures (parfaites adhérence).
- La résistance à la traction du béton est négligeable.
- L'allongement ultime de l'acier est limité à 10 ‰.
- Le raccourcissement ultime du béton est limité à 3,5% en flexion et à 2% dans le cas de la compression simple.

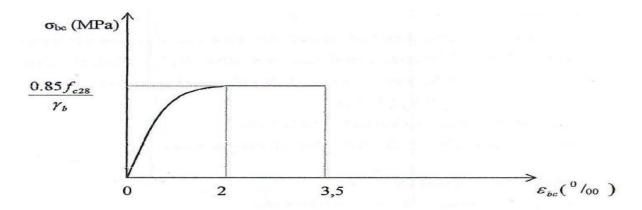



Figure. I.1: Diagramme contraintes déformation du béton à l'ELU.

Avec:

 $\sigma_{bc}$ : Contrainte de calcul.

 $\gamma_b$ : coefficient de sécurité vaut 1,5 sauf en cas de combinaisons accidentelles pour lesquelles il vaut alors 1,15.

 $\theta$ : Coefficient dépendant de la durée d'application des charges ; ces valeurs sont :

Si 
$$t > 24 \text{ h} \Longrightarrow \theta = 1$$

Si 
$$1h \le t < 24h \Longrightarrow \theta = 0.9$$

Si 
$$t < 1h \Longrightarrow \theta = 0.85$$

Pour la contrainte de cisaillement du béton  $\tau_u$ 

 $\tau_{\nu}$ =min (0,2 \* fc28/yb; 5MPa)  $\Rightarrow$  pour fissuration peu nuisible.

 $\tau_u$ =min (0,15 \* fc28/yb ; 4 MPa)  $\Longrightarrow$  pour la fissuration préjudiciable ou très préjudiciable.

CHAPITRE I: Généralités

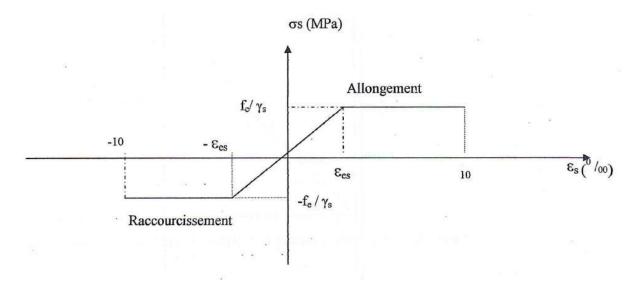



Figure I.2: diagramme contraintes-déformations de l'acier à L'ELU.

Avec :  $\sigma_s = \text{fe}/\gamma_s$ 

 $\gamma_s$ =1,15  $\Longrightarrow$ situation durable.

 $\gamma_s=1 \Longrightarrow$  situation accidentelle.

#### I.5.2: Etat limite de service ELS

- Les trois premières hypothèses citées à L'ELU.
- Le béton et l'acier sont considérés comme des matériaux linéairement élastiques.
- On considère un coefficient d'équivalence acier –béton (n) avec :n= $\frac{E_s}{E_b}$ .

Les contraintes de calcul à L'ELS (CBA art A.4.5)

 $\sigma_{bc}$ =0,6\* $f_{c28}$  $\Longrightarrow$  pour la vérification de la compression du béton

 $\sigma_s$ =min  $(\frac{2}{3}$  fe;  $110\sqrt{n*f_{tj}}$ )  $\Longrightarrow$  fissuration préjudiciable.

 $\sigma_s$ =min ( $\frac{1}{2}$ fe;  $90\sqrt{n*f_{tj}}$ )  $\Longrightarrow$  fissuration très préjudiciable.

Avec :  $f_{tj}$ : la résistance du béton à la traction.

 $\eta$ : coefficient de fissuration.

 $\eta=1 \Longrightarrow pour acier dou.$ 

 $\eta=1,6\Longrightarrow$  pour acier H.A.

# CHAPITRE II Pré dimensionnement des éléments Structuraux (résistants)

#### II.1: Introduction

Avant d'entamer tout calcul ; il est plus pratique d'estimer l'ordre de grandeur des éléments de la structure ; pour cela les règlements en vigueur notamment le « RPA99. V.2003 » et « CBA99 » mettent au point ce qui est nécessaire pour un pré dimensionnement à la fois sécuritaire et économique.

#### II.2 : Pré dimensionnement des dalles

Pour notre ouvrage la charge d'exploitation est modérée Q< 5KN/m² donc on choisit un plancher a corps creux sauf pour la partie centrale on choisit la dalle pleine à cause de la longueur de la travée qui dépasse 6 m.

#### II.2.1: Plancher en corps creux

$$\frac{L}{25} \le h_t \le \frac{L}{20}$$

Avec : L=la plus grande portée dans le sens des poutrelles (entre nus d'appuis)

Dans notre cas L=5m 
$$\Longrightarrow \frac{5}{25} \le h_t \le \frac{5}{20}$$

 $20 \text{ cm} \le h_t \le 25 \text{ cm} \Longrightarrow \text{on prend} : h_t = 25 \text{cm}.$ 

Nous adoptons pour  $h_t=25$  cm un plancher de (20+5 cm).

Avec hauteur du corps creux : 20 cm.

La hauteur de la dalle de compression : 5 cm.

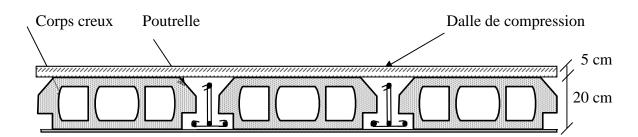



Figure II. 1: coupe d'un plancher corps creux.

#### II.2.2: Plancher dalle pleine

L'épaisseur de la dalle pleine dépend des trois conditions suivantes :

- \* Résistance à la flexion :
- Pour dalle reposant sur 2 appuis  $\Longrightarrow \frac{Lx}{35} \le e \le \frac{Lx}{30}$ .
- Pour dalle reposant sur 3 ou 4 appuis  $\implies \frac{Lx}{50} \le e \le \frac{Lx}{40}$ .

L<sub>x</sub>= la petite portée du panneau le plus sollicité.

#### **Sécurité en matière d'incendie**

- e= 7 cm pour une heure de coupe feux.
- e= 11 cm pour deux heures de coupe feux.
- e= 17,5 cm pour quatre heures de coupe feux.

#### **❖** Isolation phonique

Selon les règles du CBA93 en vigueur en Algérie ; l'épaisseur de la dalle doit être supérieure ou égale 13 cm.

- Pour le projet (L<sub>x</sub>=6,7 m) la dalle repose sur 4 appuis.

$$\frac{670}{50} \le e \le \frac{670}{40}$$

14 cm≤ e≤ 17 cm  $\Rightarrow$  on choisis : e=15cm.

#### II.3 : Pré dimensionnement des poutres

Les poutres sont des éléments porteurs horizontaux en béton armé ; leur pré dimensionnement se base sur les deux étapes suivantes :

- Détermination des dimensions (b; h) à partir des formules empiriques données par le BAEL 91 modifié 99.
- Vérification des conditions imposées sur (b; h) par le RPA99/V.2003.

#### II.3.1: les poutres principales (P.P)

Elles sont disposées perpendiculairement aux poutrelles pour reprendre les charges provenant du plancher.

**N.B** 01 : Les poutres qui entourent les dalles pleines sont toutes porteuses, leurs dimensions sont données par les formules suivantes :

$$\frac{L}{15} < h < \frac{L}{10} \Longrightarrow 0.3h \le b \le 0.7h$$

Avec : L=la portée de la poutre entre nus d'appuis.

**N.B 02** : La portée entre nus des poutres porteuses varie entre 6,75 m jusqu'à 3mce qui donne des sections différentes : on récapitule les résultats dans le tableau suivant :

**Tableau II .1 :** hauteur des sections des poutres.

| L(m) | H(m)      | Choix (h) |
|------|-----------|-----------|
| 6,75 | 45≤h≤67,5 | 60        |
| 6,41 | 43≤h≤64   | 55        |
| 5,82 | 39≤h≤58   | 50        |
| 5    | 33≤h≤50   | 40        |
| 4,1  | 21≤h≤41   | 35        |
| 3    | 20≤h≤30   | 30        |

Vue la difficulté d'exécution on va adopter le même coffrage « même section » pour toutes les poutres ont choisis : h=60 cm.

Pour la largeur b ont choisi :  $(0,3*60) \le b \le (0,7*60)$ .

18 cm ≤b≤ 42 cm ont choisis : b=30 cm.

Conclusion: pour toutes les poutres principales on adopte:

H=60 cm ; b=30 cm.

#### II.3.2: Les poutres secondaires (P.S)

Elles sont disposées parallèlement aux poutrelles

$$L_{\text{max}} = 5.3 \text{ m} \Rightarrow \frac{530}{15} \le h \le \frac{530}{10} \Rightarrow [35 \text{ cm} \le h \le 53 \text{ cm}]$$

Choisis: h=45 cm.

$$(0,3*45) \le b \le (0,7*45)$$

 $18 \le b \le 42 \implies$  on choisis : b=30 cm.

Conclusion: pour toutes les poutres secondaires on adopte

b = 30 cm; h = 45 cm.

#### II.3.3 : vérification des conditions imposées par le RPA

Les poutres doivent respecter les dimensions :  $b \ge 20$  cm ;  $h \ge 30$  cm ;  $(h/b) \le 4$ .

#### Récapitulation:

**Tableau II.2 :** récapitulation du pré dimensionnement des poutres.

| P.P     | P.S     | Condition | Vérification |
|---------|---------|-----------|--------------|
| H=60 cm | H=45 cm | h≥ 30 cm  | Vérifier     |
| B=30 cm | B=30 cm | b≥ 20 cm  | Vérifier     |
| h/b=2   | h/b=1,5 | h/b≤4     | Vérifier     |

#### **II.4**: Evaluation des charges (permanentes et exploitation)

Cette étape consiste à déterminer les charges selon le « DTR B.C.2.2 » qui influent sur la résistance et la stabilité de notre ouvrage.

#### **II.4.1:** Charges permanentes

A: Plancher terrasse inaccessible

A.1: Dalle en corps creux (20+5)

**TableauII.3:** charges permanentes sur le plancher terrasse (corps creux).

|   |                               | Epaisseur | Poids volumique |                        |
|---|-------------------------------|-----------|-----------------|------------------------|
|   | Matériaux                     | (m)       | $(KN/m^3)$      | G (KN/m <sup>2</sup> ) |
| 1 | Protection mécanique en       | 0,05      | 18              | 0,90                   |
|   | gravier                       |           |                 |                        |
| 2 | Etanchéité multicouches       | -         | -               | 0,12                   |
| 3 | Forme de ponte                | 0,10      | 22              | 2,20                   |
| 4 | Isolation thermique (liège)   | 0,04      | 4               | 0,16                   |
| 5 | Dalle à corps creux           | 0,25      | -               | 3.3                    |
| 6 | Enduit au plâtre              | 0,02      | 10              | 0,20                   |
|   | Σ G=0.9+0.12+2.2+0.16+3.3+0.2 |           |                 | 6,88                   |

# A.2 : Dalle pleine

**TableauII.4:** charges permanentes sur le plancher terrasse (dalle pleine).

|   | Matériaux                      | Ep(m) | Densité(KN/m <sup>3</sup> ) | G (KN/m <sup>2</sup> ) |
|---|--------------------------------|-------|-----------------------------|------------------------|
| 1 | Protection mécanique en        | 0,05  | 18                          | 0,90                   |
|   | gravier                        |       |                             |                        |
| 2 | Etanchéité multicouches        | -     | -                           | 0,12                   |
| 3 | Forme de ponte                 | 0,10  | 22                          | 2,20                   |
| 4 | Isolation thermique (liège)    | 0,04  | 4                           | 0,16                   |
| 5 | Dalle pleine                   | 0,15  | -                           | 3,75                   |
| 6 | Enduit au plâtre               | 0,02  | 10                          | 0,20                   |
|   | Σ G=0.9+0.12+2.2+0.16+3.75+0.2 |       |                             | 7,33                   |

# **B**: plancher courants

### B.1: dalle en corps creux (20+5)

**TableauII.5:** charges permanentes sur le plancher courant (corps creux).

|   | Matériaux               | Epaisseur(m) | Densité (KN/m <sup>3</sup> ) | G (KN/m <sup>2</sup> ) |
|---|-------------------------|--------------|------------------------------|------------------------|
| 1 | Carrelage               | 0,02         | 20                           | 0.4                    |
| 2 | Mortier de pose         | 0,02         | 20                           | 0.4                    |
| 3 | Lit de sable            | 0,03         | 18                           | 0.54                   |
| 4 | Dalles à corps<br>creux | 0,25         | -                            | 3.3                    |
| 5 | Enduit au plâtre        | 0,02         | 10                           | 0.2                    |
| 6 | Cloisons légères        | -            | -                            | 1.00                   |
|   | Σ G=                    | 5,84         |                              |                        |

# **B.2**: Dalle pleine

**TableauII.6:** charges permanentes sur plancher courant (dalle pleine).

|   | Matériaux                    | Epaisseur(m) | Densité (KN/m <sup>3</sup> ) | G (KN/m <sup>2</sup> ) |
|---|------------------------------|--------------|------------------------------|------------------------|
|   |                              |              |                              |                        |
| 1 | Carrelage                    | 0,02         | 20                           | 0.4                    |
| 2 | Mortier de pose              | 0,02         | 20                           | 0.4                    |
| 3 | Lit de sable                 | 0,02         | 18                           | 0.36                   |
| 4 | Dalles pleine                | 0,15         | 25                           | 3.75                   |
| 5 | Enduit au plâtre             | 0,02         | 12                           | 0.24                   |
| 6 | Cloisons légères             | -            | -                            | 1.00                   |
|   | Σ G=0.4+0.4+0.36+3.75+0.24+1 |              |                              | 6,15                   |

## C: Maçonnerie

#### C.1: Mur extérieur à double cloison

**TableauII.7:** charges permanentes sur les murs extérieurs à double cloisons.

|    | Matériaux                  | e(m) | Densité (KN/m <sup>3</sup> ) | G (KN/m <sup>2</sup> ) |
|----|----------------------------|------|------------------------------|------------------------|
| 1. | Enduit intérieur au plâtre | 0,02 | 10                           | 0,20                   |
| 2. | Briques creuses            | 0,10 | 9                            | 0,90                   |
| 3. | Lame d'aire                | 0,05 | -                            | 00                     |
| 4. | Enduit extérieur au ciment | 0,02 | 18                           | 0,36                   |
| 5. | Briques creuses            | 0,15 | 9                            | 1,35                   |
|    | Σ G=0,20+0,90+0,36+1,35    |      |                              | 2,81                   |
|    |                            |      |                              |                        |

#### C.2: Mur intérieur à une seule cloison

**TableauII.8**: charges permanentes sur les murs intérieurs à une seule cloison.

| Désignation                | Ep(m)            | Densité (KN/m <sup>3</sup> ) | Poids (KN/m <sup>3</sup> |
|----------------------------|------------------|------------------------------|--------------------------|
| Enduit intérieur en plâtre | 0,02             | 10                           | 0,2                      |
| Brique creuse              | 0,1              | 9                            | 0,9                      |
| Enduit intérieur en ciment | 0,02             | 18                           | 0,36                     |
|                            | Σ G=0,2+0,9+0,36 |                              | 1,46                     |

#### D: Acrotère

On calcule le poids propre de l'acrotère pour 1 ml avec :

$$G=S*\rho_b*1$$

 $\rho$ b : le poids volumique du béton 25 KN/m³.

S : la surface transversale totale de l'acrotère avec :

$$S = (0,1*0,6) + (0,1*0,1) - (0,1*0,02)/2 = 0,069m^2$$
.

G=(0.069\*25\*1)=1.73 KN/ml.

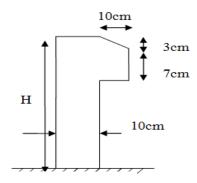



Figure II.2 : coupe transversale de l'acrotère.

#### **II.4.2**: Charges d'exploitations

Les valeurs nominales des charges d'exploitation dans notre ouvrage qui est un ouvrage à usage bureaux sont données dons le tableau suivant :

Tableau II.9: les valeurs des charges d'exploitation selon le « DTR B.C.2.2 » Art7.2.2.

| Nature du local                    | Q (KN/m²) |
|------------------------------------|-----------|
| Bureaux proprement dits            | 2,5       |
| Circulation et escalier            | 2,5       |
| Halls de réception                 | 2,5       |
| Salle de réunion avec tables       | 2,5       |
| Salle d'ordinateur et reprographie | 2,5       |

#### Remarque:

- Pour les salles de concours aux niveaux 3<sup>éme</sup>; 4éme, 5éme étages sont similaire à des salles de classes donc Q=2,5 KN/m².
- Pour le plancher terrasse inaccessible Qt=1 KN/m<sup>2</sup>.
- Pour la main courante sur l'acrotère Q=1 KN/ml.

#### II.5 : Pré dimensionnement des poteaux

Les poteaux ce sont des éléments porteurs verticaux ; en béton armé ; ils participent à la reprise des efforts sismiques et les charges verticales (permanentes et exploitation) pour les acheminer vers la base (les fondations).

Chaque type de poteau est affecté de la surface du plancher chargé qui lui revenant ; et on utilise un calcul basé sur la descente de charge.

Nous appliquerons la loi de dégression des charges d'exploitation.

## II.5.1 : Etapes de pré dimensionnement

- ❖ Calcul de la surface reprise par chaque poteau.
- ❖ Evaluation de l'effort normal ultime de la compression à chaque niveau.
- ❖ La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau.
- ❖ La section du poteau obtenue doit vérifier les conditions minimales imposées par le « RPA99 V2003 ».

## Remarque:

Pour leur conférer une meilleure résistance aux sollicitations sismiques ; il est recommandé de donner aux poteaux d'angle et de rive des sections comparables à celles des poteaux centraux « RPA art7.4.1 ».

Pour cela on adoptera le même coffrage pour tous les poteaux en se basant sur le poteau central le plus sollicité.

## II.5.2 : Calcul de la surface reprise par le poteau le plus sollicité

Le poteau le plus sollicité c'est le poteau F9.

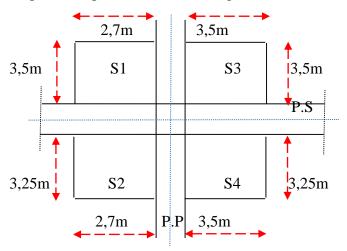



Figure II.3: la surface reprise par le poteau.

S1 et S2 plancher corps creux.

S3 et S4 dalle pleine.

$$S1 = (2,7*3,5) = 9,45m^2$$
.

$$S2=(2,7*3,25)=8,78m.^2$$

$$S3 = (3,5*3,5) = 12,25m^2$$
.

$$S4=(3,5*3,25)=11,38m^2$$
.

$$S1+S3=21,7m^2$$
.

$$S3+S4=23,62m^2$$
.

## II.5.3 : Application de la loi dégression

Comme il est rare que toutes les charges d'exploitation agissent simultanément, nous appliquons pour leur détermination la loi de dégression.

Selon le « DTR B.C.2.2 » Art6.3 on adopte pour le calcul des points d'appui les charges d'exploitation suivantes :

Sous terrasse .....  $Q_0$ 

Sous dernier étage (étage 1)..... $Q_0+Q_1$ 

Sous étage immédiatement inférieur

Etage 
$$2 \Longrightarrow Q_0 + 0.95(Q_1 + Q_2)$$

Etage 
$$3 \Longrightarrow Q_0 + 0,9 (Q_1 + Q_2 + Q_3)$$

Etage 
$$4 \Longrightarrow Q_0 + 0.85 (Q_1 + Q_2 + Q_3 + Q_4)$$

$$\label{eq:energy} \text{Etage } n {\Longrightarrow} Q_0 + \frac{3+n}{2n} (Q_1 + Q_2 + Q_3 + Q_4 + \ldots , Q_n) \quad \text{ avec : } n {>} 5.$$

Surcharges Σ surcharge Niveau de  $\Sigma$  surcharge plancher  $(KN/m^2)$ T  $\Sigma = \mathbf{Q}_0$ 1  $\mathbf{Q}_0$  $\Sigma = Q_0 + Q_1$ P8  $\mathbf{Q}_1$ 3,5 P7  $\Sigma = Q_0 + 0.95(Q_1 + Q_2)$  $\mathbf{Q}_2$ 5,75  $\Sigma = Q_0 + 0.9 (Q_1 + Q_2 + Q_3)$ P6  $Q_3$ 7,1  $\Sigma = Q_0 + 0.85 (Q_1 + Q_2 + Q_3 + Q_4)$ P5 8,89  $Q_4$  $\Sigma = Q_0 + 0.8 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5)$ P4 10,42  $Q_5$ P3  $\Sigma = Q_0 + 0.75 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6)$ 11,71  $Q_6$  $\Sigma = Q_0 + 0.71 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7)$ P2 12,91  $\mathbf{Q}_7$  $\Sigma = Q_0 + 0.69 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8)$ P1 14,3  $\mathbf{Q}_8$ 

Tableau II.10 : application de la loi de dégression.

## II.5.4 : Calcul de la section des poteaux

 $\mathbf{Q}_9$ 

P RDC

Le pré dimensionnement est déterminé en supposant que les poteaux sont soumis à la compression simple A L'ELU selon la formule suivante :

$$N_u = \alpha \left( \frac{Br*fc28}{0.9*\gamma b} + \frac{As*fe}{\gamma s} \right) \Longrightarrow (1)$$

 $\Sigma = Q_0 + 0.67(Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8 + Q_9)$ 

Avec :  $N_u$  : effort normal ultime  $N_u$ = (1,35\*G) + (1,5\*Q).

 $\alpha$ : coefficient réducteur tenant compte le flambement  $\alpha = f(\lambda)$ 

 $\lambda$ : élancement d'EULER  $\Longrightarrow \lambda = L_f/i$ 

L<sub>f</sub>=longueur de flambement

i=rayon de giration  $\Longrightarrow$ i= $\sqrt{\frac{I}{B}}$ .

15,6

I : moment d'inertie de la section par rapport à l'axe passant par son centre de gravité  $I = \frac{bh^3}{12}.$ 

B : surface de la section du béton B=a\*b.

 $\gamma_b$ : coefficient de sécurité pour le béton  $\Rightarrow \gamma_{b=1,5}$  (situation durable).

 $\gamma_s$ : coefficient de sécurité pour l'acier  $\Rightarrow \gamma_s = 1,15$ (situation durable).

Fe=limite élastique de l'acier ⇒ fe=500MPa.

 $f_{c28}$ =contrainte caractéristique du béton à 28 jours  $\Longrightarrow f_{c28}$ =25 MPa.

A<sub>s</sub>= section d'acier.

 $B_r$ =section réduite d'un poteau ; obtenue en réduisant de sa section réelle 1cm d'épaisseur sur toute sa périphérie  $\Rightarrow$ Br= (a-2) \*(b-2) cm².

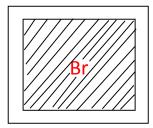



Figure II.4: section réduite du poteau Br.

Selon le RPA99/V2003:

En zone 2b et  $3 \Longrightarrow As_{min} > 0.9\% B \ll art 7.4.2.1 \gg$ .

On cherche à dimensionner le poteau de telle sorte que :

$$As=1\%B \implies As=0,01B.....(2)$$

$$\alpha = \frac{0.85}{1 + 0.2(\frac{\lambda}{35})^2}$$
 si :  $\lambda < 50 \Longrightarrow \frac{As}{B} = 0.01 \dots (3)$ 

$$\alpha = 0.6(\frac{50}{\lambda})^2$$
 si: 50<  $\lambda < 10$ .

Pour les poteaux carrés il est préférable de prendre  $\lambda$ =35

Pour :  $\lambda = 35 \Longrightarrow \alpha = 0.708$ .

De l'équation (1) et (2) et (3) on tire la valeur de Br :

Br > 
$$\frac{Nu}{\alpha*(\frac{fc28}{0.9*\gamma b} + \frac{0.01*fe}{\gamma s})} = 0.062Nu$$

## - Poids revenants au poteau du 8éme étages Gt

Poids du plancher terrasse : (9,45\*6,88) + (12,25\*7,33) = 154,81 KN.

Poids de la poutre principale : (0.3\*0.6\*6.75\*25) = 30.38 KN.

Poids de poutre secondaire : (0,3\*0,45\*6,2\*25) = 20,93 KN.

Poids de l'acrotère : (1,73\*6,2) =10,73 KN.

 $G_t = (154,81+30,38+20,93+10,73) \implies G_t = 216,85 \text{ KN}.$ 

## - Poids revenant au poteau du 7éme étage G

$$G = G_8 + G_T$$

Poids du plancher courant : (9,45\*5,84) + (12,25\*6,15) = 130,53 KN.

Poids de la poutre principale : 30,38 KN.

Poids de la poutre secondaire : 20,93 KN.

Poids du mur : (6,2\*3,83\*2,81) =66,73 KN.

 $G_8 = (130,53+30,38+20,93+66,73) \implies G_8 = 248,57 \text{ KN}.$ 

 $G = (248,57+216,85) \Longrightarrow G = 465,42 \text{ KN}.$ 

## - Poids revenant au poteau du 6éme étage G

$$G = G_7 + G_8 + G_T$$

 $G_7=G_8$  (plancher identique)  $\Longrightarrow$   $G_7=248,57$  KN.

 $G=(248,57+465,42) \implies G=713,99 \text{ KN}.$ 

## - Poids revenant au poteau du 5éme étage G

$$G = G_6 + G_7 + G_8 + G_T$$

Poids du plancher courant : (9,45\*5,84) + (12,25\*6,15) = 130,53KN.

Poids du plancher terrasse : (8,78\*6,88) + (11,38\*7,33) = 143,82 KN.

# CHAPITRE II : Pré dimensionnement des éléments structuraux (résistants)

Poids de la poutre principale : 30,38 KN.

Poids de la poutre secondaire : 20,93 KN.

Poids du mur: 66,73 KN.

$$G_6 = (130,53+143,82+30,38+20,93+66,73) = 392,39 \text{ KN}$$

$$G=(392,39+713,99) \implies G=1106,38 \text{ KN}.$$

## - Poids revenant au poteau du 4éme étage G

$$G=G_5+G_6+G_7+G_8+G_T$$

Poids du plancher courant : (18,23\*5,84) + (23,62\*6,15) = 251,73 KN.

Poids de la poutre secondaire : 20,93 KN.

Poids de la poutre principale : 30,38 KN.

Poids du mur : (53,83\*8\*1,46) =44,73 KN.

$$G_5 = (215,73+20,93+30,38+44,73) \Longrightarrow G_5 = 347,77 \text{ KN}.$$

$$G=(347,77+1106,38) \Longrightarrow G=1454,15 \text{ KN}.$$

## - Poids revenant au poteau du 3éme étage

G<sub>4</sub>=G<sub>5</sub> (plancher identique)

$$G_4 = 347,77 \text{ KN}.$$

$$G = (347,77+1454,15) \Longrightarrow G = 1801,92 \text{ KN}.$$

## - Poids revenant au poteau du 2ème étage

G<sub>3</sub>=G<sub>4</sub> (plancher identique)

 $G_3=347,77$  KN.

$$G = (347,77+1801,92) \Longrightarrow G = 2149,69 \text{ KN}.$$

## - Poids revenant au poteau du 1er étage

 $G_2=G_3$  (plancher identiques)

G<sub>2</sub>=347,77 KN.

$$G=(347,77+2146,69) \Longrightarrow G=2497,46 \text{ KN}.$$

## - Poids revenant au poteau du RDC

 $G_1=G_2$  (plancher identiques)

 $G_1=347,77$  KN.

$$G=(347,77+2497,46) \implies G=2845,23 \text{ KN}.$$

Exemple de calcul:

## - Pour le poteau du 8éme étage

$$N_G=216,85 \text{ KN}$$
;  $N_Q=(41,85*1)=41,85 \text{ KN}$ .

$$N_U = (1,35*216,85) + (1,5*41,85) = 355,52 \text{ KN}.$$

$$Br > (0,062Nu) \Longrightarrow Br > 0,062(355,52*10^3)$$

Br>220,42cm<sup>2</sup>

$$A > \sqrt{Br} + 2 \implies a > \sqrt{220.42} + 2$$

$$a=b>16,85 \text{ cm} \implies \text{le choix} : a=b=30 \text{ cm}$$

Vérification de la section à ELS:

$$N_{SER} = (N_G + N_Q) = (216,85 + 41,85) = 258,7 \text{ KN}.$$

$$\sigma_{SER} = \frac{Nser}{B+nAs} \implies avec : n : coefficient d'équivalence = 15$$

On à supposer que : As= $1\%B \Longrightarrow As=0.01B$ .

$$\sigma_{\text{ser}} = \frac{\text{Nser}}{1.15\text{B}} = \frac{258.7 \times 10^3}{1.15 \times 300 \times 300} = 2.5 \text{ MPa.}$$

$$\overline{\sigma_{bc}}$$
= (0,6\*f<sub>c28</sub>) =(0,6\*25) = 15 MPa.

$$\sigma_{ser}$$
=2,5 MPa< $\overline{\sigma_{bc}}$ =15 MPa

Le même calcul sera effectué pour les autres niveaux on résume les résultats dans le tableau suivant

 $N_G(KN)$  $N_Q(KN)$  $N_U(KN)$ Br(cm<sup>2</sup>) A=b(cm) niv Choix  $N_{ser}(KN)$  $\sigma_{ser}$ P8 216,85 41,85 355,52 220,42 16,85 30 258,7 2,5 P7 465,42 146,48 848,04 525,78 24,9 30 611,9 5,91 954,63 P6 713,99 240,64 821,41 30,7 35 6,78 1324,32 P5 297,14 1202,38 1106,38 1939,32 36,7 40 1403,52 7,63 P4 1454,15 372,05 2521,18 1563,13 41,54 45 1826,2 7,84 1801,92 P3 45,7 50 2238 7,78 436,08 3086,71 1913,76 P2 2149,69 490,06 3637,17 2255,05 49,5 50 2639,75 9,18 P1 2497,46 540,28 4181,99 2592,83 52,9 55 3037,74 8,73 P 2845,23 598,46 4738,75 2938,03 56,2 60 3443,69 8,32 **RDC** 

**Tableau II.11:** choix des sections des poteaux.

# Selon le RPA99. V.2003, Art 7.4.1:

- En zone 2b et 3

- Min (b; h)  $\geq$ 30 cm

- Min (b; h)  $\geq \frac{he}{20}$ 

 $- \quad \frac{1}{4} < \frac{b}{h} < 4$ 

Choix finals:

**Tableau II.12:** choix finals des sections des poteaux.

| Etage                  | Section carrée (cm²) |
|------------------------|----------------------|
| 8éme                   | 40*40                |
| 7éme et 6éme           | 45*45                |
| 5éme et 4éme           | 50*50                |
| 3éme et 2éme           | 55*55                |
| 1 <sup>er</sup> et RDC | 60*60                |

Comme on a calculé la section sans prendre en considération le poids propre exacte du poteau on doit vérifier notre choix avec le poids exact :

# CHAPITRE II : Pré dimensionnement des éléments structuraux (résistants)

- Poteau (40\*40): G= (0.42\*4,08\*25) =16,32 KN.

- Poteau (45\*45): G= (0,45\*4,08\*25) = 20,66 KN.

- Poteau (50\*50): G= (0.52\*4.08\*25) =25.5 KN.

- Poteau (55\*55): G= (0.552\*4.08\*25) = 30.86 KN.

- Poteau (60\*60): G= (0,62\*4,76\*25) =42,84 KN.

On doit vérifier que :  $Nu \le \overline{N_u} = \frac{Br}{0,062}$ 

## Exemple:

Poteau 8 étage (40\*40):

Ng= (216,85+16,32) =233,17 KN.

 $N_0=41,85$  KN.

$$N_u = (1,35*233,17) + (1,5*41,85) = 377,55 \text{ KN}.$$

$$\overline{N_u} = \frac{380^2}{0,062} 10^{-3} = 2329,032 \text{ KN}.$$

 $N_u=377,55 \text{ KN} \le \overline{N_u}=2329,032 \text{ KN} \Longrightarrow \text{ vérifier}.$ 

Vérification à ELS:

 $N_{ser} = 2750,02 \text{ KN}.$ 

$$\sigma_{\text{ser}} = \frac{275,02*10^3}{1,15*400^2} = 1,49 \text{ MPa}$$

 $\sigma_{\text{ser}}$ =1,49 MPa< $\bar{\sigma}$ =15 MPa  $\Longrightarrow$  vérifier.

On va résumer les calculs dans le tableau suivant :

Tableau II.13: vérification des sections adoptées.

| niv | Section | $N_G$   | N <sub>Q</sub> | Br    | $N_{\rm U}$ | $\overline{N_u}$ | N <sub>ser</sub> | $\sigma_{ser}(MPA)$ |
|-----|---------|---------|----------------|-------|-------------|------------------|------------------|---------------------|
|     |         | (KN)    | (KN)           | (cm²) | (KN)        |                  | (KN)             |                     |
| P8  | 40      | 233,17  | 41,85          | 1444  | 377,55      | 2329             | 275,02           | 1,49                |
| P7  | 45      | 486,08  | 146,48         | 1849  | 875,93      | 2982,26          | 632,56           | 2,72                |
| P6  | 45      | 734,65  | 240,64         | 1849  | 1352,74     | 2982,26          | 975,29           | 4,19                |
| P5  | 50      | 1131,88 | 297,14         | 2304  | 1975,75     | 3716,13          | 1429,02          | 4,97                |

CHAPITRE II : Pré dimensionnement des éléments structuraux (résistants)

| P4  | 50 | 1479,65 | 372,05 | 2304 | 2555,6  | 3716,13 | 1851,7  | 6,44 |
|-----|----|---------|--------|------|---------|---------|---------|------|
| P3  | 55 | 1832,78 | 436,08 | 2809 | 3128,37 | 4530,65 | 2268,86 | 6,52 |
| P2  | 55 | 2180,55 | 490,06 | 2809 | 3678,83 | 4530,65 | 2670,61 | 7,68 |
| P1  | 60 | 2540,3  | 540,28 | 3364 | 4239,83 | 5425,81 | 3080,58 | 7,44 |
| RDC | 60 | 2888,07 | 598,46 | 3364 | 4796,58 | 5425,81 | 3486,53 | 8,42 |

Pour tous les poteaux :  $Nu < \overline{N_u} \Longrightarrow ELU$  vérifié.

$$\sigma_{ser} < \bar{\sigma} \Longrightarrow ELS \text{ vérifié.}$$

Les exigences du RPA sont satisfaites.

## Vérification au flambement :

Au début on a supposé l'élancement λ=35

Pour chaque poteau on doit vérifier que  $\lambda$ <35

$$\lambda = \frac{Lf}{i}$$
 avec :  $L_f = 0.7L_0$ ;  $i = \sqrt{\frac{I}{A}}$ 

Pour poteau carré :  $i = \frac{a * \sqrt{3}}{6}$ 

- Poteau 40\*40:

$$i = \frac{\sqrt{3}}{6} * 40 = 11,55 \text{ cm}$$

$$\lambda = \frac{0.7*4.08}{11,55} = 24,73 < 35 \implies v\acute{e}rifi\acute{e}.$$

- Poteau 45\*45:

$$i = \frac{\sqrt{3}}{6} * 45 = 12,99 \text{ cm}$$

$$\lambda = \frac{0.7*4.08}{12.99} = 22 < 35 \Longrightarrow v\acute{e}rifi\acute{e}.$$

- Poteau 50\*50 :

$$i = \frac{\sqrt{3}}{6} * 50 = 14,43 \text{ cm}$$

$$\lambda = \frac{0.7*4.08}{14.43} = 20 < 35 \implies \text{v\'erifi\'e}.$$

- Poteau 55\*55:

$$i = \frac{\sqrt{3}}{6} * 55 = 15,87 \text{ cm}$$

$$\lambda = \frac{0.7*4,08}{15.87} = 18 < 35 \implies \text{vérifié}.$$

- Poteau 60\*60:

$$i = \frac{\sqrt{3}}{6} * 60 = 17,32 \text{ cm}$$

$$\lambda = \frac{0.7*4,08}{19,24} = 19,24 < 35 \implies \text{v\'erifi\'e}.$$

Notre choix a vérifié toutes les conditions et les exigences réglementaires donc on va l'adopter.

#### II.6 : Pré dimensionnement des voiles

Les voiles de contreventement ; ce sont des murs rigides en béton armé servent d'une part ; à contreventer le bâtiment en reprenant les efforts horizontaux (séisme et ou vent) et d'autre part à reprendre les efforts verticaux qu'ils transmettent aux fondations.

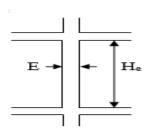



Figure II.5 : Schéma du voile.

Avec:

l= longueur du voile.

a=épaisseur du voile.

H<sub>e</sub>=hauteur libre de l'étage.

Le RPA 99 V2003 oblige d'introduire les voiles pour toute construction où la hauteur totale dépasse 8 m; et c'est le cas de notre ouvrage.

Le pré dimensionnement des voiles consiste à choisir une épaisseur convenable qui respecte les exigences réglementaires, dans notre cas :

$$A_{min} \ge max (15 cm; \frac{h_e}{20}) \Longrightarrow (Art7.7.1)$$

Pour le RDC et 1 er étage :

$$He = (4,76-0,5) = 4,26m.$$

 $A_{min} \ge max (15cm; 426/20) \implies ont choisis : a=25 cm.$ 

Pour les autres étages (2éme ...... 8éme) :

$$He=(4,08-0,5)=3,58m.$$

 $A_{min} \ge max (15cm; 358/20) \Longrightarrow ont choisis: a=20cm.$ 

Le RPA exige aussi que : L> 4a.

## II.7: Conclusion

Etant donné que le pré dimensionnement des éléments structuraux est effectué; et que toutes les exigences réglementaires sont satisfaites; on adopte les dimensions suivantes qu'sont à la fois sécuritaire et économique.

**Tableau II.14 :** résultats du pré dimensionnement des éléments.

| Eléments                       | Dimensions       |  |  |  |  |
|--------------------------------|------------------|--|--|--|--|
| Plancher corps creux           | 20+5             |  |  |  |  |
| Dalle pleine                   | E=15 cm          |  |  |  |  |
| Poutres porteuse (P.P)         | B=30cm; h=60cm   |  |  |  |  |
| Poutres secondaires (P.S)      | B=30 cm; h=45 cm |  |  |  |  |
| Poteaux 8 étage                | 40*40(cm²)       |  |  |  |  |
| Poteaux 7et 6 étages           | 45*45(cm²)       |  |  |  |  |
| Poteaux 5 et 4 étages          | 50*50 (cm²)      |  |  |  |  |
| Poteaux 3et 2 étages           | 55*55(cm²)       |  |  |  |  |
| Poteaux 1 <sup>er</sup> et RDC | 60*60(cm²)       |  |  |  |  |
| Voiles 1 <sup>er</sup> et RDC  | A=25 cm          |  |  |  |  |
| Voiles (2éme8éme)              | A=20 cm          |  |  |  |  |

# CHAPITRE III Calcul Des Eléments Secondaires

#### **III.1: Introduction**

Dans une structure quelconque on distingue deux types d'éléments :

- Les éléments porteurs (ou principaux) : qui contribuent directement au contreventement ; à la résistance et à la stabilité d'ensemble de la structure.
- Les éléments secondaires : ils ne participent pas directement à la stabilité d'ensemble de la structure.

Ils ont un caractère soit autonome et isostatique (comme l'acrotère, les balcons ; les linteaux, les éléments architectoniques ...), soit hyperstatiques « faiblement » (comme les escaliers, les dalles ...).

La caractéristique principale des éléments secondaires est que leur rupture n'entraine pas automatiquement la rupture de la structure dans son ensemble.

Dans le présent chapitre nous considérons l'étude des éléments secondaires que comporte notre bâtiment.

Nous citons : 1) l'acrotère.

- 2) La dalle pleine.
- 3) Les escaliers.

Le calcul de ces éléments s'effectue suivant le règlement « C.B.A 93 –B.A.E.L91 » en respectant le règlement parasismique algérien « R.P.A99 V2003 ».

## III.2 : Calcul de l'acrotère

L'acrotère est un élément secondaire en béton armé qui entoure le plancher terrasse ; dont la réalisation est nécessaire pour des raisons d'étanchéité.

L'acrotère est considéré comme une console encastrée au niveau du plancher terrasse.

Il est soumis à trois forces:

- Son poids propre (G).
- Une surcharge d'exploitation horizontale (main courante) (Q).
- Une force latérale due à l'effet sismique (Fp).

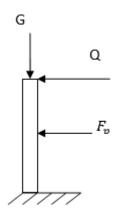



Figure III.1 : coupe transversale de l'acrotère.

## III.2.1 : Hypothèses de calcul

- L'acrotère est sollicité en flexion composée.
- La fissuration est considérée comme préjudiciable.
- Le calcul se fera pour une bande de 1m.

## III.2.2: Evaluation des charges

A) Charges permanentes G:

G : le poids propre de l'acrotère Gpp

Gpp=1,73 KN/ml « déjà calcule dans 2.4.4 »

- Revêtement en ciment (e=2cm;  $\rho$ =18 KN/m<sup>3</sup>).
- Grs= $(0.02*18)*((60+10)*2*10^{-2}) = 0.504 \text{ KN/ml}.$
- G=(0.504+1.73)=2.23 KN/ml.
- B) Charge d'exploitation Q:

Selon le « **D.T.R B.C.22** » : Q=1KN/ml

C) La force due au séisme Fp:

Selon le R.P.A : Fp=4\*A\*C<sub>P</sub>\*W<sub>P</sub> « **Art 6.2.3** »

Avec : A : coefficient d'accélération de zone.

C<sub>P</sub>: facteur de force horizontale.

W<sub>P</sub>: poids de l'acrotère.

Dans notre projet : A=0,3 (zone III ; groupe d'usage 1.B) « RPA tableau 4.1 »

C<sub>P</sub>=0,8 (élément en console)

« RPA99-V2003 », tableau 6.1

W<sub>P</sub>=2,23 KN (pour une bande de 1m).

Fp = (4\*0,3\*0,8\*2,23) = 2,14 KN.

 $Q=max (1,5Q ; Fp) \Longrightarrow Q=max (1,5 KN ; 2,14 KN)$ 

Q=2,14 KN

Donc pour une bande de 1m de largeur : G=2,23 KN ; Q=2,14 KN.

## III.2.3: Ferraillage à ELU

 $N_u=1,35G=3,01$  KN.

 $M_u=1,5*Q*h=1,93 \text{ KN.M}$ 

 $T_u=1,5*Q=3,21$  KN.

B= 100 cm ; h=10 cm ; f<sub>c28</sub>=25 MPa ;  $\sigma_{bc}$ =14,17 MPa ; c=c'=2 cm ; Fe=500 MPa

On suppose que d=0,75h=7,5 cm

$$e_1 = \frac{Mu}{Nu} = \frac{1,93}{3.01} = 64,1 \text{ cm}.$$

Pour la justification vis-à-vis l'état limite de stabilité de forme (flambement) il faut remplacer e<sub>1</sub> par e (excentricité réelle de calcul) :

 $e = e_1 + e_2 + e_a$ 

Avec :  $e_1$ : excentricité théorique.

e<sub>2</sub>: Excentricité accidentelle.

 $e_a$ : Max (2cm; h/250)  $\Longrightarrow$  C.B.A.

 $e_a = \max (2\text{cm}; 60/250) \implies e_a = 2\text{ cm}.$ 

 $e_2$ : Excentricité du second ordre (elle tient compte le fluage).

$$e_2 = \frac{3 \text{ Lf}^2}{\text{h} * 10^4} (2 + \alpha \Phi)$$

Avec : L<sub>f</sub>= langueur de flambement

$$L_f = (2*h) = (2*0,6) = 1,2m.$$

h: hauteur de la section h=10cm.

$$\alpha = \frac{Mg}{Mg + Mq} = \frac{0}{0 + 1,29} = 0$$

Ø: Rapport de déformation du au fluage à la déformation instantanée; généralement Ø=2

$$e_2 = \frac{3*1,2^2}{0,1*10^4} (2+0) = 0,009 \text{ m}$$

$$e = (0.641 + 0.009 + 0.02) = 0.67 m$$

 $N_u = 3,01 \text{ KN}.$ 

$$e = \frac{Mu}{Nu} = \frac{2,02}{3,01} = 67 \text{ cm}.$$

On calcule le coefficient de remplissage  $\psi_1$ :

$$\psi_1 = 0.002 < 0.81$$
;  $\psi_1 = 0.002 < \frac{2}{3}$ 

On calcul l'excentricité relative  $\xi$  par la formule :

$$- \xi = \frac{1 + \sqrt{9 - 12\Psi 1}}{4(3 + \sqrt{9 - 12\Psi 1})} = \frac{1 + \sqrt{9 - 12(0,002)}}{4(3 + \sqrt{9 - 12(0,002)})} = 0,1666.$$

On calcul  $e_{nc}$  avec :  $e_{nc}$  = ( $\xi$  \* h) = (0,1666\*10)  $\Longrightarrow e_{nc}$  =1,666 cm.

e=67 cm > $e_{nc}$ =1,666 cm  $\Longrightarrow$ section partiellement comprimé.

Calcul à la flexion simple avec le moment par rapport aux aciers tendus  $M_{as}$ .

$$M_{as}=M_u+N_u (d-\frac{h}{2})=(2,02+3,01)*(0,075-\frac{0,1}{2}) \Longrightarrow M_{as}=2,1 \text{ KN.M}$$

$$\mu = \frac{2.1*10^6}{1000*75^2*14.17} = 0,0263 < \mu_r \Longrightarrow As' = 0.$$

$$\alpha = 1,25 (1 - \sqrt{1 - 2(0,0269)}) = 0,033.$$

$$Z=7,5(1-0,4(0,033))=7,4$$
 cm.

$$A_{sf} = \frac{2,1*10^6}{74*\frac{500}{1.15}} = 0,65 \text{ cm}^2.$$

As= A<sub>sf</sub> 
$$-\frac{Nu}{6s}$$
 = 0,65  $-\frac{3,01*10^3}{\frac{500}{1.15}}$  =0,58 cm<sup>2</sup>

As 
$$\geq \max(\frac{b*h}{1000}; 0.23 \ b*d*\frac{ftj}{fe}).$$

As 
$$\geq \max(\frac{100*10}{1000}; 0.23*100*7.5*\frac{2.1}{500}).$$

As  $\geq$  max (1 cm<sup>2</sup>; 0,72 cm<sup>2</sup>).

As 
$$\geq 1 \text{ cm}^2 \implies \text{choix} : 6\text{T}6 = 1,7 \text{ cm}^2$$
.

Pour les armateurs de répartitions Ar :

Ar= 
$$(As/4) = (1,7/4) = 0,43 \text{ cm}^2 \Rightarrow \text{Choix } 4T6=1,13 \text{ cm}^2$$
. (T6; e=20 cm).

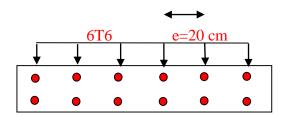



Figure III.2 : ferraillage longitudinale de l'acrotère.

Vérification du « d » : on doit vérifier que :d<sub>ext</sub>>d<sub>cal</sub>= 7,5 cm.

$$d_{\text{ext}} = 10-2 - \frac{1,7*0,3}{1.7} = 7,7 \text{ cm}.$$

$$d_{ext} = 7.7 \text{ cm} > d_{cal} = 7.5 \text{ cm} \implies \text{v\'erifi\'e}.$$

## III.2.4: Vérification à ELS

$$\overline{\sigma_S}$$
= min  $(\frac{2}{3}fe; 110\sqrt{\eta ftj})$ = (333,33; 201,6)

$$\overline{\sigma_S}$$
=201,6 MPa ; $\sigma_{bc}$ = 15 MPa.

 $N_{ser} = 2,23 \text{ KN }; M_{ser} = 1,28 \text{ KN.M}$ 

B=100 cm; h=10 cm; d=7,7 cm;  $c_1=c_2=2,3$  cm;  $As^1=As^2=1,7$  cm<sup>2</sup>

On calcule la section homogénéisée S:

$$S = (b*h) + 15(As^1 + As^2)$$

$$S = (100*10) +15(1,7+1,7) \implies S=1051 \text{ m}^2$$

On calcule la position de l'axe neutre V :

$$V = \frac{\frac{1}{2}*b*h^2 + 15(A1*C1 + A2*d)}{S} = \frac{\frac{1}{2}*100*10^2 + 15(1,7*2,3+1,7*7,7)}{1051}$$

$$V=V'=5cm$$

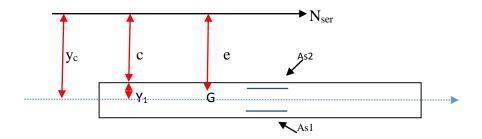
On calcule le moment d'inertie par rapport à l'axe neutre :

$$I_{G1} = (1/3)*(b*h^3) + 15(A_1C_1^2 + A_2d^2) - SV_1^2$$

$$I_{G1} = (1/3)*(100*10^3) + 15(1,71*2,3^2+1,7*7,7^2) + (1051*5^2)$$

$$I_{G1}=333333,33+1646,79-26275 \Longrightarrow I_{G1}=8705,12 \text{ cm}^4.$$

On calcule le moment par rapport à l'axe neutre :


$$M_{ser/G1} = M_{ser} - N_{ser}((h/2) - V)$$

$$M_{ser/G1}=M_{ser}=1,28 \text{ KN.M}$$

$$\sigma_{bc/min} = \frac{2,23*10^3}{1051*10^2} - \frac{1,28*10^6}{8705.12*10^4} *50 = (0,0212-0,74) = -0,72 \text{ MPa}.$$

 $\sigma_{bc/min}$ =-0,72 MPa > 0  $\Longrightarrow$  c'est les cas d'une section partiellement comprimé.

$$e = (M_{ser}/N_{ser})$$
;  $e = (1,28/2,23)=57,4$  cm.



$$C=e-(h/2)=(57,4-5)=52,4$$
 cm.

Pour calculer la distance Y<sub>1</sub> on cherche la racine de l'équation :

$$Y_c^3+py_c+q=0$$
; avec:

$$P=-3*c^2+\frac{90*A1}{h}(C+C_1)+\frac{90*A2}{h}(C+d)$$

Q=2C<sup>3</sup>-
$$\frac{90*A1}{b}$$
(C+C<sub>1</sub>)<sup>2</sup> - $\frac{90*A2}{b}$ (C+d) <sup>2</sup>

$$\Delta = q^2 + 4(p/3)^3$$

On calcule P:

$$P = -3 (52,4)^2 + \frac{90*1,7}{100} (52,4+2,3) + \frac{90*1,7}{100} (52,4+7,7)$$

$$P = -8237,28 + 83,691 + 91,953 = -8061,636 \text{ cm}^2$$

$$Q = 2(52,4)^3 - \frac{90*1,7}{100}(52,4+2,3)^2 - (\frac{90*1,7}{100})^*(52,4+7,7)^2$$

$$Q = 287755,65 - 4577,9 - 5526,38 = 277651,37 \text{ cm}^3$$

$$\Delta = (277651,37)^2 + 4(\frac{-8061,636}{3})^3 = \text{valeur négative}$$

$$\Delta < 0 \Longrightarrow \Phi = \arccos\left(\frac{q}{2} * \left(\frac{-p}{3}\right)^{-3/2}\right)$$

 $\Phi = 0.083 \text{ rad}$ 

$$y_c = -2\sqrt{\frac{-p}{3}}\cos{(\frac{2\pi}{3} + \frac{\Phi}{3})} \implies y_c = 54.3 \text{ cm}.$$

D'où : 
$$y_1 = y_c - c = 54,3-52,4 \implies y_1 = 1,9 \text{ cm}.$$

On calcule les contraintes à L'ELS:

$$\sigma_{bc} = \frac{N-Y}{\frac{B*Y^2}{2}15*A(y-c)-15A(d-y)} = \frac{2,23*10^3*19}{\frac{1000*19^2}{2}+15*170(19-23)-15*170*(77-19)} = 1,9 \text{ MPa.}$$

$$\sigma_{s1} = 15 \ \sigma_{bc} * \frac{y-c}{y} = 15*1,9*(\frac{19-23}{19}) = -6 \text{ MPa}.$$

$$\sigma_{s2} = 15 \sigma_{bc} * \frac{D-Y}{y} = 15*1,9*(\frac{77-19}{19}) = 87 \text{ MPa.}$$

# Vérification :

$$\sigma_{bc}$$
= 1,9  $<\overline{\sigma_{bc}}$ =15 MPA  $\implies$  vérifié.

$$\sigma_s$$
=87 MPa < $\overline{\sigma_s}$ =201,6 MPa ⇒ vérifié.

Donc L'ELS est vérifiée.

## III.2.5 : Vérification de l'effort tranchant

On doit vérifier que : $\tau_U \leq \overline{\tau_U}$ 

Avec :  $\tau_U = \frac{\tau u}{b*d}$ ;  $\overline{\tau_U} = \min(\frac{0.15*fc28}{yb}; 4 \text{ MPa}) \Longrightarrow \text{fissuration préjudiciable.}$ 

$$\tau_u = \frac{3.21 * 10^3}{1000 * 77} = 0.042 \text{ MPa}.$$

$$\overline{\tau_U}$$
=min ( $\frac{0,15*25}{1,5}$ ; 4 MPa)= min (2,5 MPa; 4MPa) $\Longrightarrow \overline{\tau_U}$ = 2,5 MPa.

 $\tau_u$ =0,042 MPa  $<\overline{\tau_U}$ =2,5 MPa  $\Longrightarrow$  vérifié.

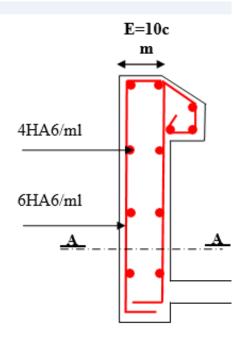



Figure III.3 : Ferraillage l'acrotère.

## III.3 : Calcul de la dalle pleine

Une dalle pleine est définie comme une plaque horizontale en béton armé ; dont l'épaisseur est relativement faible par rapport aux autres dimensions.

Cette plaque peut être encastrée sur deux ou plusieurs appuis ; comme elle peut être assimilée à une console.

On appelle panneau de dalle dans un plancher les parties de dalles bordées par des appuis.

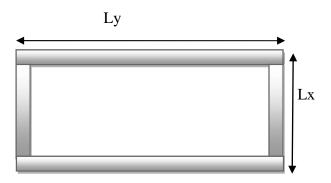



Figure III.4: Panneau de dalle sur 4 appuis.

 $L_x < L_y \implies si : \rho = L_x/L_y < 0.4 \implies la dalle travaille dans un seul sens.$ 

Si :  $\rho = L_X/L_y > 0.4 \implies$  la dalle travaille dans deux sens.

## III.3.1: Ferraillage à ELU

Pour notre bâtiment on a deux panneaux de dalle sur 4 appuis ; nous calculons le ferraillage pour le panneau le plus sollicité par les formules de pujeot qui donnent les moments par unité de longueur (bande de 1 m) au centre du panneau :  $M_x = \mu_x *p*l_x^2$ 

$$M_y = \mu_y * M_x$$

On résume les calculs dans le tableau suivant :

P:  $(KN/m^2)$  avec: p=1,35G+1,5Q  $\Longrightarrow$  (ELU)

 $P=G+Q \Longrightarrow (ELS)$ 

 $G=8,65 \text{ KN/m}^2$ ;  $Q=2,5 \text{ KN/m}^2$ 

 $P^{elu} = (1,35*8,65) + (1,5*2,5) = 15,43 \text{ KN/m}^2.$ 

 Tableau III.1 : Calcul des moments pour les deux panneaux.

|           | L <sub>X</sub> | L <sub>Y</sub> | L <sub>X</sub> /L <sub>Y</sub> | $\mu_{x}$ | $\mu_{y}$ | M <sub>x</sub> | $M_{\rm y}$ |
|-----------|----------------|----------------|--------------------------------|-----------|-----------|----------------|-------------|
| Panneau 1 | 5              | 6,9            | 0,72                           | 0,0658    | 0,4624    | 25,38          | 11,74       |
| Panneau 2 | 6,4            | 6,9            | 0,93                           | 0,0428    | 0,0845    | 27,05          | 22,86       |

Dans les deux directions le panneau 2 est le plus sollicité.

Pour le calcul de ferraillage :

Mx = 27,05 KN.M/m

My=22,86 KN.M/m

A) Pour la direction X-X:

Mx=27,05 KN.M/m

A) 1 : Pour la travée :

 $M_x^t$ =0,75 $M_x$ = (0,75\*27,05) =20,29 KN.M/m

On pose : d=22 cm ;  $\sigma_{bc}$ =14,17 MPa

$$\mu = \frac{Mt}{b*d^2*\sigma} = \frac{20,29*10^6}{1000*220^2*14,17} = 0,03.$$

$$\alpha \!\!=\!\! 1,\! 25*(1\!-\!\sqrt{1-2\mu}) \!\!=\!\! 1,\! 25(1\!-\!\sqrt{1-2*0,\! 03}) \!\!=\!\! 0,\! 038 <\!\! \alpha_{lim}$$

 $Z=d(1-0.4\alpha)=22(1-0.4(0.038))=21.7$  cm.

As 
$$> \frac{Mx}{7*05} = \frac{20,29*10^6}{217*435} * 10^{-2} = 2,15 \text{ cm}^2$$
.

C.N.F: $As_{min} = (0.72*10^{-3})*(100*22)=1.59 \text{ cm}^2.$ 

Choix:  $5T8=2,51 \text{ cm}^2 \Longrightarrow [T8=; e=25\text{cm}]$ 

Calcul de d<sub>ext</sub>:

$$d_{ext} = 25 - c_{ext}$$

$$c_{\text{ext}} = \frac{\sum A * x}{A} = \frac{2,51*2,5}{2.51} = 2,5 \text{ cm}.$$

 $d_{ext} = (25 - 2.5) = 22.5 \text{ cm} > d_{cal} = 22 \text{ cm} \implies \text{vérifié.}$ 

A) 2: sur appuis:

$$M_X^A = (0.5*M_x) = (0.5*27.05) = 13.53 \text{ KN.M/m}.$$

$$\mu = \frac{13,53*10^6}{1000*220^2*14,17} = 0,02$$

$$\alpha = 1,25*(1-\sqrt{1-2*0,02)})=0,025<\alpha_{lim}\Longrightarrow As'=0$$

$$Z=22(1-(0,4*0,025))=21.8$$
 cm.

$$As > \frac{13,53*10^6}{218*345} * 10^{-2} = 1,43 \text{ cm}^2.$$

$$As_{min}=1,59 \text{ cm}^2 \iff (C.N.F)$$

Choix:  $4T8=2,01 \text{ cm}^2 \Longrightarrow [T8; e=30\text{cm}].$ 

B) Pour la direction Y-Y:

 $M_v = 22,86 \text{ KN.M/m}$ 

B) 1 : pour la travée :

$$M_y^t = 0.75 M_y = (0.75*22.86) = 17.15 KN.M/m$$

On pose: d=21 cm

$$\mu = \frac{17,15*10^6}{1000*210^2*14.17} = 0,027$$

$$\alpha = 1,25*(1-\sqrt{1-0,4*0,034}) = 0,034 < \alpha_{lim} \Longrightarrow As' = 0.$$

$$Z=21*(1-0,4*0,034)=20,7$$
 cm.

As 
$$> \frac{17,15*10^6}{207*435} * 10^{-2} = 1,9 \text{ cm}^2$$
.

C.N.F:
$$As_{min} = (0.72*10^{-3})*(21*100)=1,51 \text{ cm}^2.$$

Choix: 
$$5T8=2,51 \text{ cm}^2 \Longrightarrow [T8; e=25 \text{ cm}].$$

On calcule dext:

$$c_{\text{ext}} = \frac{2,51*3,2}{2,51} = 3,2 \text{ cm}.$$

$$d_{ext}$$
= (25-3,2)=21,8 cm >  $d_{cal}$ =21 cm  $\Longrightarrow$ vérifié.

B) 2 : Sur appuis :

$$M_y^a = 0.5*M_y = 0.5*22,86=11,43 \text{ KN.M/m}$$

$$\mu = \frac{11,43*10^6}{1000*210^2*14,17} = 0,018$$

$$\alpha = 1,25*(1 - \sqrt{1 - 2*0,018}) = 0,023 < \alpha_{lim}$$

$$Z=21*(1-0.4*0.023)=20.8$$
 cm

As 
$$> \frac{11,43*10^6}{208*435} * 10^{-2} = 1,26 \text{ cm}^2$$

$$As_{min}=1,51 \text{ cm}^2$$

Choix: 
$$4T8=2,01 \text{ cm}^2 \implies T8$$
;  $e=30 \text{ cm}$ 

$$c_{ext}$$
=3,2 cm;  $d_{ext}$ = 21,8 cm >  $d_{cal}$ =21 cm  $\Longrightarrow$  vérifier

# **Conclusion**:

Suivant : X-X ⇒travée : 5T8 ; (T8 ; e=25 cm)

Appui: 4T8;(T8; e=30 cm)

Suivant : Y-Y⇒travée : 4T8 ; (T8 ; e=25 cm)

Appui: 4T8;(T8; e=30 cm)

Vérifications des espacements :

E<min (3h; 33 cm); e<min (75 cm; 33 cm)

E=30 cm ⇒espacements vérifiés.

## III.3.2 : Vérification de l'effort tranchant

$$V_{max} = \frac{Pu*Ly}{2} * \frac{1}{2 + \frac{\rho}{2}} = \frac{15,43*6,9}{2} * \frac{1}{1 + \frac{0,93}{2}} = 36,3 \text{ KN}.$$

On doit vérifier que :  $\tau_{bu}^{max} \!\! < \!\! \bar{\tau}$ 

$$\tau_{bu}^{max} = \frac{Vmax}{b*d} = \frac{36,3*10^3}{1000*220} = 0,17 \text{ MPa.}$$

$$\bar{\tau}$$
=0,07\* $\frac{fc_{28}}{yb}$ = $\frac{0,07*25}{1,5}$ =1,17 MPa.

$$\tau_{\text{bu}}^{\text{max}} = 0.17 \text{ MPa} < \bar{\tau} = 1.17 \text{ MPa} \implies \text{v\'erifi\'e}.$$

Il n'y a donc pas de rupture par cisaillement.

Les armatures transversales ne sont pas nécessaires.

## III.3.3: Vérifications à l'ELS

$$P_s=G+Q=(8,65+2,5)=11,15 \text{ KN/m}^2.$$

$$L_x/L_y=(6,4/6,9)=0,93 \Longrightarrow \mu_x=0,05$$
;  $\mu_y=0,8939$ 

$$M_x = \mu_x * P_s * L_x^2 = 0.05 * 11.15 * 6.4^2 = 22.83 \text{ KN.M/m.}$$

$$M_Y = \mu_y * M_x = 20,41 \text{ KN.M/m}$$

Suivant X-X:

Travée :  $M_x^t = (0.75M_X) = 17.12 \text{ KN.M/m}.$ 

Appui :  $M_x^a = (0.5M_x)=11.42 \text{ KN.M/m}.$ 

Suivant Y-Y:

Travée :  $M_y^t = 0.75M_y = 15.31 \text{ KN.M/m.}$ 

Appius: $M_y^a = 0.5M_y = 10.21 \text{ KN.M/m}.$ 

- A) Vérification des contraintes :
- Béton :  $\sigma_{bc} = \frac{Mser}{I} *x < \overline{\sigma_{bc}} = 15 \text{ MPa.}$
- Acier:  $\sigma_s = n * \frac{Mser}{I} * (d-x) < \overline{\sigma}_s \text{ avec} : n=15$

La fissuration est considérée comme peu nuisible ⇒ aucune vérification pour les aciers.

- Détermination de la valeur de « X » :

$$\frac{b}{2}x^2 + n(As + As') * x - n(As * d + As' * c') = 0$$

- Détermination du moment d'inertie « I » :

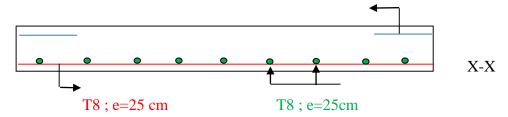
$$\frac{b*x^3}{3} + n*As'*(x-c') + n*As(d-x)^2$$

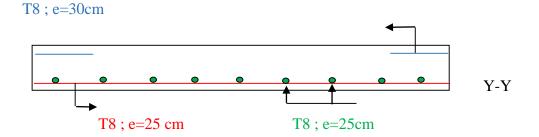
Les résultats trouvés en travées et sur appuis dans les deux directions sont regroupés dans le tableau suivant :

|            | $M_{ser}(KN.M/m)$ | As (cm²) | X (cm) | I (cm <sup>4</sup> ) | $\sigma_{bc}(\text{MPa})$ | $\sigma_{bc} < \overline{\sigma_{bc}}$ |
|------------|-------------------|----------|--------|----------------------|---------------------------|----------------------------------------|
| Travée x-x | 17,12             | 2,51     | 3,76   | 14994                | 4,3                       | Oui                                    |
| Travée y-y | 15,31             | 2,51     | 3,69   | 14023                | 4                         | Oui                                    |
| Appui x-x  | 11,42             | 2,01     | 3,4    | 12309                | 3,15                      | oui                                    |
| Appui y-y  | 10,21             | 2,01     | 3,34   | 11516                | 3                         | oui                                    |

Tableau III.2: vérification des contraintes dans le béton à ELS.

## B) Vérification de la flèche:


Il n'est pas nécessaire de faire la vérification de la flèche ; si les trois conditions suivantes sont vérifiées simultanément :


$$\stackrel{\mathbf{e}}{\leftarrow} \frac{1}{1} \ge \frac{1}{27} \grave{a} \frac{1}{35} \Longrightarrow 0.04 > 0.037 \grave{a} 0.028....\text{ vérifiée}$$

$$\stackrel{\bullet}{\bullet}$$
  $\frac{A}{b*d}$  ≤  $\frac{4.2}{fe}$   $\Longrightarrow$  (1,2\*10<sup>-3</sup>) < (8,4\*10<sup>-3</sup>) ..... Vérifiée

Les trois conditions sont vérifiées ; donc le calcul de la flèche n'est pas nécessaire.

T8; e=30cm





**FigureIII.5**: Disposition constructive des armatures de la dalle pleine.

## III.4: Calcul des escaliers

Les escaliers sont des éléments constitués d'une succession de gradins permettant la circulation entre les différents niveaux d'un immeuble.

- (1) : e (épaisseur du palier de repos).
- (2) :  $L_0$  (projection horizontale de la paillasse).
- (3) : g (giron largeur de la marche).
- (4) : h (hauteur du contre marche).
- (5) : H<sub>0</sub> (hauteur de la volée).
- (6) :α (inclinaison de la paillasse).

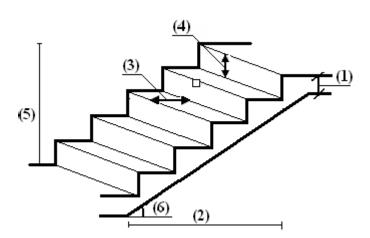



Figure III.6: schéma d'un escalier.

#### III.4.1: Dimensions des escaliers

Dans notre bâtiment il y'à 2 types d'escaliers :

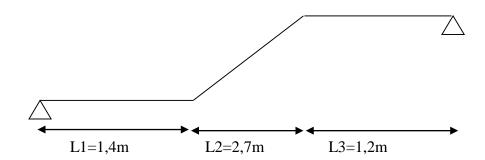
# **❖** Pour le type 01

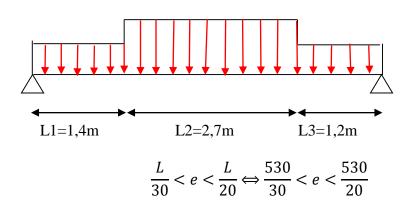
Ce sont des escaliers à 3 volées et 2 paliers de repos d'après les plans d'architecture ; les escaliers ont les dimensions suivantes :

- ❖ La hauteur de la contre marche h=17 cm.
- ❖ La largeur de la marche (giron) g=30 cm.
- ❖ La longueur de la marche (emmarchement) L=140 cm.

Vérification de la formule « BLONDEL » :

Pour le confort des usagers des escaliers ; on doit respecter la condition de « BLONDEL ».


59 < 2h+g < 66 cm


17 cm < h < 18 cm; g > 23 cm

- $\bullet$  H=17 cm  $\Rightarrow$  vérifier
- $\bullet$  G= 30 cm  $\Rightarrow$  vérifier
- $\Rightarrow$  2h+g= (2\*17) +30=64 cm  $\Rightarrow$  vérifier

Les conditions de « BLONDEL » sont satisfaites

- Détermination de l'épaisseur de la dalle (palier+ paillasse) :





17,6 cm <e< 26,5 cm $\Longrightarrow$  on prend : e=20cm

# III.4.2: Evaluation des charges sur les escaliers

# ❖ Sur la paillasse :

Tableur III.3: charges permanent sur la paillasse.

| Désignation                                | $P(KN/m^3)$ | E (m)  | Poids(KN/m²) |
|--------------------------------------------|-------------|--------|--------------|
| Revêtement du sol en carrelage verticale   | 22          | 0,02   | 0,44         |
| Mortier de pose                            | 20          | 0,02   | 0,4          |
| Paillasse                                  | 25          | 0,2    | 5            |
| Enduit plâtre                              | 10          | 0,015  | 0,15         |
| Revêtement du sol en carrelage horizontale | 22          | 0,02   | 0,44         |
| Marche                                     | 22          | 0,17/2 | 1,87         |
|                                            |             | ΣG     | 8,87         |

# Sur palier:

**Tableau III.4:** charges permanent sur le palier.

| Désignation                    | P (KN/m <sup>3</sup> ) | E (m) | Poids (KN/m²) |
|--------------------------------|------------------------|-------|---------------|
| Revêtement du sol en carrelage | 22                     | 0,02  | 0,44          |
| Mortier de pose                | 20                     | 0,02  | 0,4           |
| Lit de sable                   | 18                     | 0,02  | 0,36          |
| Enduit plâtre                  | 10                     | 0,015 | 0,15          |
| Palier (dalle pleine)          | 25                     | 0,2   | 5             |
|                                |                        | ΣG    | 6,35          |

La charge d'exploitation Q :

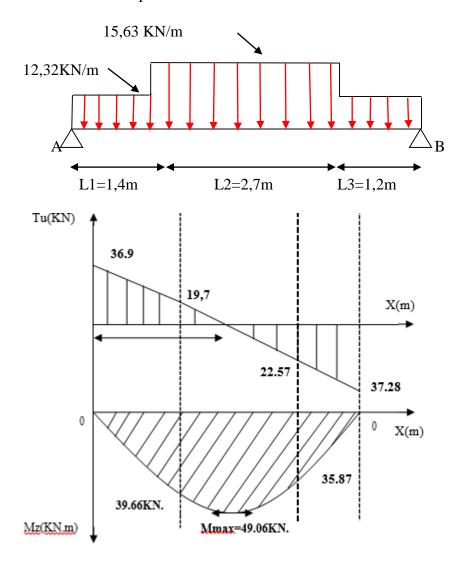
Pour les escaliers Q=2,5 KN/m<sup>2</sup>

Pour la paillasse :

$$Q_u \! = (1,\!35\!*\!8,\!8) + (1,\!5\!*\!2,\!5) = \!15,\!63 \ KN/m^2.$$

$$Q_{ser}$$
=8,8+2,5 =11,3 KN/m<sup>2</sup>.

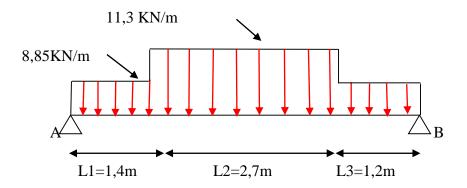
Pour le palier :

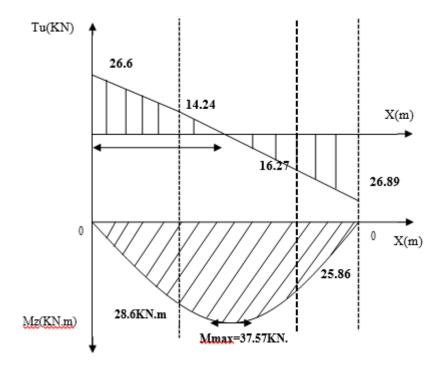

 $Q_u = (1,35*6,35)+(1,5*2,5)=12,32 \text{ KN/m}^2.$ 

 $Q_{ser}$ =8,85 KN/m<sup>2</sup>.

## III.4.3: Calcul des sollicitations

On calcul les sollicitations pour une bande de 1m à la flexion simple, on trace les diagrammes des efforts internes par la R.D.M :


- Schéma statique ELU:




 $\label{eq:max} \mbox{$M_u^{max}$=49,06 KN.m} \quad ; \mbox{$T_u^{max}$=37,28 KN.}$ 

Figure III.7: digramme des efforts interne sur les escaliers (ELU).

- Schéma statique (ELS):





 $M_{ser}^{max}$ =37,57 KN.m ;  $T_{ser}^{max}$ =26,89 KN.

Figure III.8: digramme des efforts interne sur les escaliers (ELS).

# III.4.4: Détermination du ferraillage

Le calcul se fait manuellement et selon les conditions d'appuis : poutre simplement appuie (plus au moin encastrée)  $(0.85M_0$  en travée et  $0.3M_0$  sur appuis).

## III.4.4.A: En travée

H=0.2m; b=1m; d=17.5 cm

 $M_u^t = 0.85M^{max} = (0.85*49.06) = 41.7 \text{ KN.M}$ 

$$\mu = \frac{41.7*10^6}{1000*175^2*14.17} = 0.096 < \mu_r \Longrightarrow \text{As'} = 0$$

$$\alpha = 1,25*(1-\sqrt{1-(2*0,096)})=0,13$$

$$Z=17,5*(1-(0,4*0,13))=16,6$$
 cm

As 
$$> \frac{41,7*10^6}{435*166} *10^{-2} = 5,77 \text{ cm}^2/\text{ml}$$

C.N.F: As 
$$> 0.23*100*17.5*\frac{2.1}{500} \Longrightarrow As > 1.69 \text{ cm}^2/\text{ml}$$

Choix:  $6T12=6,79 \text{ cm}^2/\text{ml} \Longrightarrow (T12; e=20\text{cm})$ 

Vérification du d<sub>ext</sub>:

$$d_{ext}$$
=h-  $c_{ext}$ =20-1- $\frac{6,79*0,6}{6,79}$ =18,4 cm.

$$d_{ext}$$
=18,4 cm >  $d_{cal}$ =17,5 cm  $\Longrightarrow$ vérifier

Armateur de répartition Ar :

$$Ar = (As/4) = (6,79/4) = 1,7 \text{ cm}^2/\text{ml}$$

On adopte :  $4T10=3,14 \text{ cm}^2/\text{ml} \Rightarrow (T10 \text{ ; e}=30 \text{ cm})$ 

## III.4.4.B: Sur appuis:

H=20 m; b=1000 cm; d=17.5 cm

$$M_u^a = (0.3*49.06) = 15 \text{ KN.M}$$

$$\mu = \frac{15*10^6}{1000*175^2*14.17} = 0,035 < \mu_r \Longrightarrow As' = 0$$

$$\alpha = 1,25*(1-\sqrt{1-(2*0,035)})=0,045.$$

$$Z=17.5*(1-(0.4*0.045))=17.2$$
 cm.

$$As > \frac{15*10^6}{435*172}*10^{-2} = 2 \text{ cm}^2/\text{ml}.$$

C.N.F: As 
$$> 0.23*100*17.5*\frac{2.1}{500} \implies \text{As} > 1.69 \text{ cm}^2/\text{ml}$$

Choix:  $6T10=4,71 \text{ cm}^2/\text{ml} \Longrightarrow [T10; e=20\text{cm}]$ 

Vérification du d<sub>ext</sub>:

$$d_{ext}$$
=18,5 cm >  $d_{cal}$ =17,5 cm  $\Longrightarrow$  vérifier

Armateur de répartition Ar :

$$Ar = (As/4) = (4,71/4) = 1,2 \text{ cm}^2/\text{ml}$$

On adopte :  $4T10=3,14 \text{ cm}^2/\text{ml} \Longrightarrow [T10 ; e=30 \text{ cm}]$ 

## III.4.5 : Vérification de l'effort tranchant

$$\tau_u = \frac{Tu}{b*d} = \frac{37,28*10^3}{1000*185} = 0,2 \text{ MPa}$$

$$\overline{\tau_{u}} = \min (0.2*\frac{fc28}{Vb}; 5MPa)$$

$$\overline{\tau_u}$$
= min (3,33 MPa; 5MPa) =3,33 MPa.

$$\tau_u$$
=,02 MPa  $<\overline{\tau_u}$ =3,33 MPa  $\Longrightarrow$ vérifier

## III.4.6: Vérifications à ELS

## III.4.6.A: Vérifications des contraintes

La fissuration est peu nuisible donc aucune vérification n'est demandée pour les aciers.

On doit vérifier la contrainte dans le béton :

$$\sigma_{bc} = \frac{Mser}{I} * x < \overline{\sigma_{bc}}$$

$$\frac{b * x^2}{2} + n(As + As') * x - n(As * d + As' * c) = 0$$

$$I = \frac{b * x^3}{3} + n * As'(x - c')^2 + n * As(d - x)^2$$

Avec: n=15

Après calcul on trouve:

$$M_{ser} = (37,57*0,85) = 31,9 \text{ KN.M}$$

$$\sigma_{bc} = \frac{31,9*10^6}{22433*10^4} *52 = 7,4 \text{ MPa.}$$

$$\sigma_{bc}$$
=7,4 MPa  $<\overline{\sigma_{bc}}$ =15 MPa  $\Longrightarrow$  vérifier

## III.4.6.B : Vérification de la flèche

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées : (C.B.A 93)

$$\frac{e}{l} \ge \frac{1}{16} \Longrightarrow 0.074 > 0.0625$$
 (vérifier)

$$\frac{e}{l} \ge \frac{Mt}{10M0} \Longrightarrow 0.074 < 0.085 \text{ (non vérifié)}$$

$$\frac{\text{As}}{\text{b*d}} \le \frac{4.2}{\text{fe}} \implies 0.0037 < 0.0084 \text{ (vérifier)}$$

Une seule condition n'est pas vérifiée ; dont il est nécessaire de calculer la flèche.

- Flèche totale : 
$$\Delta f_t = f_y - f_i \leq \overline{f}$$

- Avec: 
$$f_i = \frac{M_{ser} * L^2}{10Ei * Ii}$$
;  $f_y = \frac{M_{ser} * I^2}{10Ev * Iv}$ 

$$\overline{f}$$
= L/500  $\Longrightarrow$  (L=2,7 m < 5m)

❖ Moment d'inertie de la section homogène I₀:

Selon le C.B.A 93:

$$I = \frac{b * h^3}{12} + 15 * As \left(d - \frac{h}{2}\right)^2 + 15 * As' \left(\frac{h}{2} - c'\right)$$

$$I_{fi} = \frac{1}{1 + \lambda i * \mu}$$

$$I_{fv} = \frac{1,1 * I}{1 + \lambda v * \mu}$$

$$I_{fi} = \frac{1,1*I}{1+\lambda i*\mu}$$
 moment d'inertie fictive

$$\lambda i = \frac{0.05 * ft28}{\rho * (2 + 3 * \frac{b0}{b})}$$
$$\lambda v = \frac{2}{3} * \lambda i$$

$$\lambda v = \frac{2}{3} * \lambda i$$

$$\rho = \frac{As}{b*d}$$

$$\mu = 1 - \frac{1,75*ft28}{4*\rho*\sigma_s + ft28}$$

$$\sigma_s = \frac{Mser}{As*d}$$

 $E_i = 32164,2 \text{ MPa}$ ;  $E_v = 10819 \text{ MPa}$ 

Les résultats sont récapitulés dans le tableau suivant :

**Tableau III.5 :** vérification de la flèche de l'escalier.

| $M_{ser}$ | As(cm²) | ρ      | $\sigma_s(MPa)$ | λί    | λν   | μ     | $I_0(cm^4)$ | I <sub>fi</sub>    | I <sub>fv</sub>    |
|-----------|---------|--------|-----------------|-------|------|-------|-------------|--------------------|--------------------|
|           |         |        |                 |       |      |       |             | (cm <sup>4</sup> ) | (cm <sup>4</sup> ) |
| 31,9      | 6,79    | 0,0037 | 256             | 5,676 | 2,27 | 0,625 | 73853       | 17864              | 33587              |

Donc:  $f_i = 0.4 \text{ cm}$ ;  $f_v = 0.65 \text{ cm}$ 

 $\Delta_{\rm ft}$ =0,25 cm  $\leq$ 0,54 cm  $\Longrightarrow$ vérifier

# **Second Second S**

Le 2<sup>éme</sup> type d'escalier que contient notre bâtiment, ces des escaliers appuies sur les voiles de la cage d'ascenseur allant de R.D.C jusqu'à 2<sup>éme</sup> étage.

Dans ce cas les marches peuvent être considérées comme encastrées dans les voiles.

## 1/Dimensions:

- La hauteur de là contre marche h=17 cm.
- La largeur de la marche g=30 cm.
- La longueur de la marche l=160 cm.
- L'épaisseur de la dalle (palier et paillasse) e=20 cm.

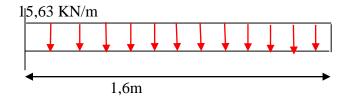
## 2/Evaluation des charges :

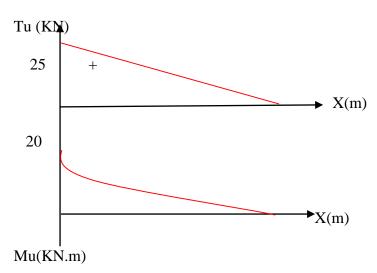
On considère les mêmes charges que les escaliers de type 01 :

G=8,8 KN/m<sup>2</sup> (sur la paillasse)

G=6,35 KN/m<sup>2</sup> (sur le palier)

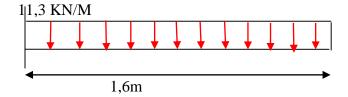
 $Q=2,5 \text{ KN/m}^2$ 


#### 3/calcul des sollicitations :

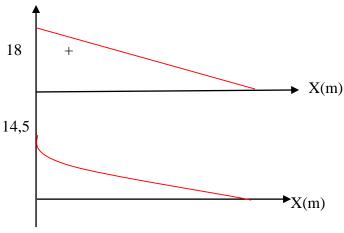

$$Q_{\nu} = (1,35*8,8) + (1,5*2,5) = 15,63 \text{ KN/m}^2$$

$$Q_{ser} = (8,8+2,5)=11,3 \text{ KN/m}^2$$

On calcul les sollicitations pour une bande de 1m à la flexion simple ; on trace les diagrammes des efforts internes par la R.D.M.


- Schéma statique (ELU):






 $\label{eq:max} \footnotesize M_u^{max} \!\!=\!\! 20 \; KN.m; \! T_u^{max} \!\!=\!\! 25 \; KN.$ 

- Schéma statique (ELS)



Tser (KN)



Mser(KN.M)

$$M_{ser}$$
= -14,5 KN.M;  $T_{ser}$ =18 KN.

#### 4/Détermination du ferraillage :

Le calcul se fait manuellement et selon les conditions d'appuis : poutre console encastré à une extrémité et libre à l'autre avec un moment max au niveau de l'encastrement.

Les fibres tendues sont dans la partie supérieure de la section.

H=0,2m; b=1m; d=17,5m;  $M_u=20$  KN.M

$$\mu = \frac{20*10^6}{1000*175^2*14,17} = 0,046 < \mu_R \Longrightarrow As' = 0.$$

$$\alpha = 1,25*(1-\sqrt{1-2*0046}) = 0,059.$$

$$Z=17,5*(1-0,4*0,059)=17$$
 cm.

As 
$$\geq \frac{20}{170*435} 10^6 = 2.7 \text{ cm}^2$$
.

Choix: 5T10=3,93 cm<sup>2</sup>/ml

CNF :As 
$$\ge 0.23*100*175*\frac{2.1}{500}=1,69 \text{ cm}^2/\text{ml} \Longrightarrow [T10 ; e=25 \text{ cm}]$$

Vérification dud<sub>ext</sub>:

$$d_{\text{ext}} = \text{h-} c_{\text{ext}} = 20 - 1 - \frac{3,93*0,5}{3,93} = 18,5 \text{ cm}.$$

$$d_{ext}=18,5 \text{ cm} > d_{cal}=17,5 \text{ cm} \implies \text{vérifier}$$

Armature de répartition Ar :

$$Ar = \frac{As}{4} = \frac{3,93}{4} = 1 \text{ cm}^2/\text{ml}$$

Choix:  $4T8=2,01 \text{ cm}^2 \Longrightarrow [T8; e=30 \text{ cm}]$ 

Vérification de l'effort tranchant :

$$\tau_{\rm u} = \frac{{
m Tu}}{{
m b}*{
m d}} = \frac{25*10^3}{1000*185} = 0,14 \, {
m MPa}$$

$$\overline{\tau_u}$$
= min  $(0,2*\frac{fc28}{\gamma b}; 5\text{MPa})$ 

$$\overline{\tau_u} = \min (3.33 \text{ MPa}; 5 \text{ MPa}) = 3.33 \text{ MPa}$$

$$\tau_u$$
= 0,14 MPa  $<\overline{\tau_u}$ =3,33 MPa  $\Longrightarrow$ vérifier

#### **❖** Vérification à ELS

La fissuration est peu nuisible donc aucune vérification n'est demandée pour les aciers.

On doit vérifier la contrainte dans le béton :

$$\sigma_{bc} = \frac{Mser}{I} x < \overline{\sigma_{bc}}$$

$$\frac{b * x^2}{2} + n * (As + As')x - n * (As * d + As' * c') = 0$$

$$\frac{b * x^3}{3} + n * As'(x - c')^2 + n * As(d - x)^2$$

Avec: n=15

Après calcul on trouve:

$$X=4,1 \text{ cm}$$
;  $I=14521 \text{ cm}^2$ ;  $M_{ser}=14,5 \text{ KN.M}$ 

$$\sigma_{bc} = \frac{14.5 * 10^6 * 41}{14521 * 10^4} = 4.1 \text{ MPa}$$

$$\sigma_{bc}$$
=4,1 MPa  $<\overline{\sigma_{bc}}$ =15 MPa  $\Longrightarrow$  vérifier

#### **Vérification de la flèche :**

On doit vérifier que :  $\Delta_{ft} < \overline{f}$ 

Avec: 
$$\bar{f} = \frac{L}{250} = \frac{160}{250} = 0.64 \text{ cm}$$

$$\Delta_{\rm ft} = f_{\rm v} - f_{\rm i}$$

$$f_i = \frac{Mser*l^2}{4Ei*I*fi} ; f_v = \frac{Mser*l^2}{4Ev*I*fv}$$

On calcule le moment d'inertie de la section homogène I<sub>0</sub>:

$$I_0 = \frac{b * h^3}{12} + 15As * \left(d - \frac{h}{2}\right)^2 + 15As' * \left(\frac{h}{2} - c'\right)$$

Moment d'inertie fictive :

$$I_{fi} = \frac{1,1*I}{1+\lambda i*\mu}; \ I_{fv} = \frac{1,1*I}{1+\lambda v*\mu}$$

Avec:

$$\lambda_i = \frac{0.05*ft28}{\rho*(2+\frac{b0}{h})} \Rightarrow \rho = \frac{As}{b*d}$$

$$\rm E_{i}{=}32164{,}2~MPa$$
 ;  $\rm E_{v}{=}10819~MPa$ 

Les résultats sont récapitulés dans le tableau suivant :

**Tableau III.6 :** vérification de la flèche de l'escalier type 2.

| M <sub>ser</sub> | As   | ρ      | $\sigma_{\rm s}$ | $\lambda_i$ | $\lambda_{ m v}$ | μ     | $I_0$ | $I_{\mathrm{fi}}$ | I <sub>fv</sub> |
|------------------|------|--------|------------------|-------------|------------------|-------|-------|-------------------|-----------------|
| 14,5             | 3,93 | 0,0021 | 200              | 10          | 4                | 0,028 | 70926 | 60952             | 70160           |

 $F_i=0,47 \text{ mm}$ ;  $f_v=1,25 \text{ mm}$ 

 $\Delta_{ft}$ =0,78 mm  $<\bar{f}$ =6,4 mm $\Longrightarrow$  vérifié

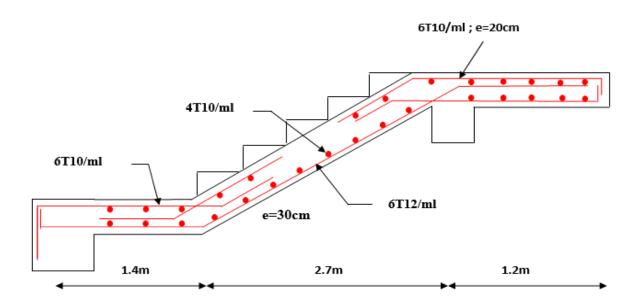



Figure III.9: Schéma de ferraillage des escaliers.

# CHAPITRE IV Etude dynamique

#### **IV.1: Introduction**

Parmi les catastrophes naturelles qui affectent le nord de l'Algérie ; les secousses sismiques.

Ils sont sans doute celles qui ont l'effet le plus destructeur dans les zones urbanisées.

Face à ce risque et à l'impossibilité de le prévoir la plus importante prévention est la construction parasismique.

La meilleure façon d'envisager des constructions parasismiques consiste à formuler des critères à la fois économiquement justifiés et techniquement cohérents.

#### IV.2 : Choix de la méthode de calcul

Le calcul de la force sismique globale à la base d'un bâtiment peut se faire à l'aide de deux Principales méthodes.

#### IV.2.1: Méthode statique équivalente

Dans cette méthode, l'effet dynamique de la force sismique est remplacé par un effet statique Qui produit la même réponse (déplacement maximal) que la force dynamique réelle.

L'utilisation de cette méthode exige la vérification de certaines conditions définies par le RPA (régularité en plan, régularité en élévation, etc.)

#### IV.2.2: Méthodes dynamiques

Qui regroupe.

- Méthode d'analyse modale spectrale.
- Méthode d'analyse dynamique par accélérogramme.

La hauteur de notre structure (zone III, groupe d'usage B1), donc La méthode statique équivalente est inapplicable (**RPA99 Art 4.1.2**).

La méthode d'analyse dynamique par accélérogramme nécessite l'intervention d'un personnel qualifié, donc la méthode qui convient pour notre cas est la méthode d'analyse modale spectrale.

#### IV.3 : Présentation de la méthode modale spectrale

La méthode modale spectrale est, sans doute, la méthode la plus utilisée pour l'analyse sismique des structures. Dans cette méthode, on recherche pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques représentées

par un spectre de réponse de calcul. Ces effets vont être combinés par la suite suivant la combinaison la plus appropriée pour obtenir la réponse totale de la structure.

Une fois l'effort dynamique est calculé, le RPA prévoit de faire la vérification suivante :

$$V_{\rm dyn} \ge 0.8 * V_{\rm sta}$$

Dans le cas où la condition n'est pas vérifiée, toutes les réponses obtenues à partir de la méthode dynamique doivent être majorés de  $(0.8V_{st}/V_{dyn})$ .

Avec:

 $V_{dyn}$  : L'effort tranchant dynamique (calculé par la méthode spectrale modal).

$$V_{sta} = \frac{A * D * Q * W}{R}$$

Tel que:

A : Coefficient d'accélération de zone.

D : Facteur d'amplification dynamique moyen.

W: Poids total de la structure.

R : Coefficient de comportement de la structure.

Q : Facteur de qualité.

Les paramètres cités au-dessus dépendent des caractéristiques de notre structure :

- Groupe d'usage (B1)  $\Rightarrow$  A=0,3
- Zone sismique (III)
- Dans le cas de notre projet, on adopte un système de contreventement mixte portiques-voiles avec justification de l'interaction, donc :  $\mathbf{R} = \mathbf{5}$ .
  - $Q = 1 + \Sigma_1^6 * P_q \Rightarrow RPA99/2003$  (Formule 4.4)

Pq : est la pénalité à retenir selon que le critère de qualité (q) est observé ou non.

Les valeurs à retenir sont dans le tableau 4. (À noter que c'est la même dans les deux sens).

| N° | Critère q                                             | Observation | Pénalités |
|----|-------------------------------------------------------|-------------|-----------|
| 1  | Conditions minimales sur les files de contreventement | Non Vérifié | 0,05      |
| 2  | Redondance en plan                                    | Non Vérifié | 0,05      |
| 3  | Régularité en plan                                    | Non Vérifié | 0,05      |
| 4  | Régularité en élévation                               | Non Vérifié | 0,05      |
| 5  | Contrôle de qualité des matériaux                     | Vérifié     | 0         |
| 6  | Contrôles d'exécution                                 | Vérifié     | 0         |

Tableau IV.1 : Valeur de facteur de qualité Q.

Donc:  $Q_X=Q_Y=1,2$ 

- $W=\Sigma_{i=1}^n*W_i$ ; avec :  $W_i=W_{Gi}+\beta*W_{Qi}\Longrightarrow$ **RPA99** (Formule 4.5)
- W : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.
- WQI: Charges d'exploitation.
- β: Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation.

# IV.4 Etude de La structure gauche :

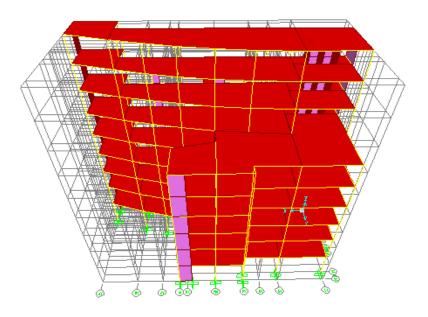



Figure IV.1 : Model de la structure gauche.

Poids de la structure : W<sub>g</sub>=47807,3 KN

2,5
$$\eta$$
  $\Longrightarrow 0 < T < T_2$   
D=2,5 $\eta$  (T<sub>2</sub>/T)<sup>2/3</sup>  $\Longrightarrow T_2 < T < 3.0 s$   
2,5 $\eta$  (T<sub>2</sub>/3)<sup>2/3</sup>\*(3/T)<sup>5/3</sup>  $\Longrightarrow T > 3.0s$   
 $\eta = \sqrt{\frac{7}{2+\xi}} > 0,7$ 

 $\xi$ : Le pourcentage d'amortissement critique en fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Pour notre structure, on a un remplissage dense et un système mixte :

$$\xi = \frac{7+10}{2} = 8,5\% \implies D'où, \eta = 0,82$$

On a un site meuble S2: T1=0,15s; T2=0,40s

- Calcul de la période fondamentale de la structure : Le contreventement de notre structure est assuré par un système mixte, donc :

$$T=C_T*h_n^{(3/4)}$$

$$T = \frac{0.9*h}{\sqrt{Lx,y}}$$

H=38,08m: Hauteur total du bâtiment

C<sub>T</sub> =0,05 : Coefficient qui dépend du système de contreventement utilisé (**Tableau 4.6** du RPA99/2003)

$$T=0.05*(38,08^{3/4})=0.766 \text{ s}$$

L : Dimension maximal du bâtiment à sa base dans le sens de calcul.

$$L_x=36,31m \Longrightarrow T_x=0,57s \Longrightarrow D_x=1,614$$

$$L_v=19,32m \Longrightarrow T_v=0,78s \Longrightarrow D_v=1,323$$

La force sismique totale à la base de la structure est :

$$V_x = \frac{0.3*1,614*1,2*47807,3}{5} = 5555,6 \text{ KN}.$$

$$V_y = \frac{0.3*1.2*1.323*47807.3}{5} = 4553.93 \text{ KN}.$$

Spectre de réponse de calcul :

Pour la méthode dynamique modale de réponse de calcul suivant :

$$\frac{S}{g} = \begin{cases} 1,25A \ (1 + \frac{T}{T_1}(2,5\eta * \frac{Q}{R} - 1)) & \Rightarrow 0 < T < T_1 \\ 2,5\eta \ (1,25A) \ (\frac{Q}{R}) & \Rightarrow T_1 < T < T_2 \\ 2,5\eta \ (1,25A) \ (\frac{Q}{R}) \ (\frac{T_2}{T})^{2/3} \Rightarrow T_2 < T < 3.0 \text{ s} \\ 2,5\eta \ (1,25A) \ (\frac{Q}{R}) * (\frac{T_2}{3})^{2/3} * (\frac{3}{T})^{5/3} \Rightarrow T > 3.0 \text{ s} \end{cases}$$

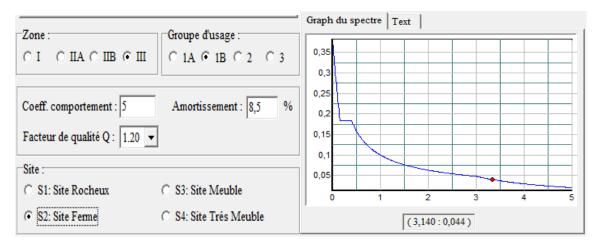



Figure IV.2 : Spectre de réponse.

Pour l'application de la méthode dynamique modale spectrale d'analyse par éléments fini dénommé SAP 2000.v14.

#### La disposition des voiles adopté

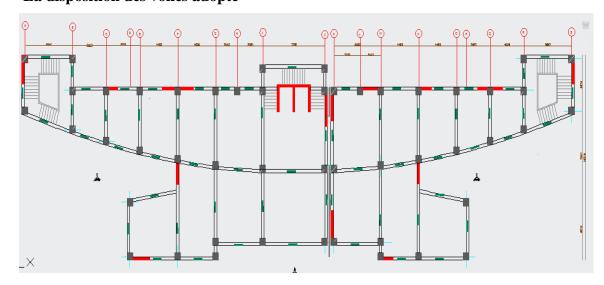



Figure IV.3: disposition des voiles.

#### IV.4.1: Interprétation des résultats de la modélisation

1/Périodes de vibration et taux de participation des masses modales :

Le taux de participation massique tel qu'il est exigé par le RPA99 à 90%. Le tableau IV.2 donne la participation massique pour chaque mode :

| Mode | Période  | UX       | UY         | UZ          | Sum UX  | Sum UY  |
|------|----------|----------|------------|-------------|---------|---------|
| 1    | 1,000297 | 0,01354  | 0,66061    | 0,00018     | 0,01354 | 0,66061 |
| 2    | 0,950145 | 0,56121  | 0,01575    | 0,00001561  | 0,57474 | 0,67637 |
| 3    | 0,79213  | 0,12983  | 0,00036    | 0,00001299  | 0,70458 | 0,67673 |
| 4    | 0,324556 | 0,00953  | 0,13878    | 0,00017     | 0,7141  | 0,81551 |
| 5    | 0,319462 | 0,09553  | 0,0266     | 0,00027     | 0,80963 | 0,8421  |
| 6    | 0,240617 | 0,04815  | 0,00167    | 0,000003824 | 0,85778 | 0,84378 |
| 7    | 0,163958 | 0,02809  | 0,0176     | 0,00000815  | 0,88587 | 0,86138 |
| 8    | 0,148402 | 0,02114  | 0,04568    | 0,00158     | 0,90702 | 0,90706 |
| 9    | 0,122004 | 0,00022  | 0,00042    | 0,17426     | 0,90724 | 0,90748 |
| 10   | 0,113107 | 0,113107 | 0,00454    | 0,00054     | 0,92255 | 0,91202 |
| 11   | 0,10074  | 0,00048  | 0,00001856 | 0,00004049  | 0,92303 | 0,91204 |
| 12   | 0,095558 | 0,00326  | 0,0016     | 0,03745     | 0,92629 | 0,91365 |

**Tableau IV.2 :** Périodes et taux de participation.

#### IV.4.1.1: Justification de l'interaction portique-voiles

❖ Sous charge verticale ELS :

Le RPA 99 est exigent pour les systèmes mixtes ce qui suit :

- Les voiles doivent reprendre au plus 20% des sollicitations.
- Les portiques doivent reprendre au moins 80% des sollicitations.

Les résultats obtenus sont récapitulés dans le tableau 4.3.

**Tableau IV.3:** Charges verticales reprises par les portiques et voiles.

|          | Charge                     | reprise | Pourcentage repris |            |  |
|----------|----------------------------|---------|--------------------|------------|--|
|          | Portiques (KN) Voiles (KN) |         | Portiques (%)      | Voiles (%) |  |
| RDC      | 41931                      | 10400   | 80,2               | 19 ,8      |  |
| 1 étage  | 35815                      | 8800    | 80,3               | 19,7       |  |
| 2 étages | 31579                      | 6316    | 83                 | 17         |  |
| 3 étages | 30000                      | 6021    | 79,5               | 20,5       |  |
| 4 étages | 23622                      | 4724    | 81,8               | 18,2       |  |
| 5 étages | 17279                      | 3460    | 79                 | 21         |  |
| 6 étages | 1124                       | 2400    | 79,3               | 20,7       |  |
| 7 étages | 7280                       | 1456    | 80                 | 20         |  |
| 8 étages | 3629                       | 726     | 80,6               | 19,4       |  |

Sous-charges horizontales:

Les RPA99/2003 (Art3.4. a) exigent pour les systèmes mixtes ce qui suit :

- Les voiles doivent reprendre au plus 75% des sollicitations.
- Les portiques doivent reprendre au moins 25% des sollicitations.

Les résultats obtenus sont récapitulés dans le tableau IV.4.

#### - Suivant X-X:

**Tableau IV.4:** L'interaction sous charge horizontale X-X.

|          | Charge reprise |             | Pourcentage repris |            |  |
|----------|----------------|-------------|--------------------|------------|--|
|          | Portiques (KN) | Voiles (KN) | Portiques (%)      | Voiles (%) |  |
| RDC      | 2764,74        | 2742,80     | 50,2               | 49,8       |  |
| 1 étage  | 1220,31        | 1198,56     | 50,45              | 49,55      |  |
| 2 étages | 846,21         | 819,54      | 50,80              | 49,2       |  |
| 3 étages | 674,08         | 634,67      | 51,50              | 48,5       |  |
| 4 étages | 518,83         | 471,17      | 52,41              | 47,59      |  |
| 5 étages | 331,85         | 294,31      | 53                 | 47         |  |
| 6 étages | 286,36         | 274,54      | 51,05              | 48,95      |  |
| 7 étages | 101,72         | 112,97      | 47,38              | 52,62      |  |
| 8 étages | 61             | 66          | 48                 | 52         |  |

L'interaction sous charge horizontale est vérifiée suivant X-X.

#### - Suivant Y-Y:

**Tableau IV.5:** L'interaction sous charge horizontale Y-Y.

|          | Charge reprise  Portiques (KN) Voiles (KN) |         | Pourcentage repris |            |  |
|----------|--------------------------------------------|---------|--------------------|------------|--|
|          |                                            |         | Portiques (%)      | Voiles (%) |  |
| RDC      | 3648,17                                    | 3663,27 | 49,9               | 50,10      |  |
| 1 étage  | 1044,94                                    | 1044,03 | 50,02              | 49,98      |  |
| 2 étages | 476,22                                     | 458     | 50,98              | 49,02      |  |
| 3 étages | 913,21                                     | 909,65  | 50,10              | 49,9       |  |
| 4 étages | 1191,04                                    | 1188,14 | 50,06              | 49,94      |  |
| 5 étages | 1154,8                                     | 1154,8  | 50                 | 50         |  |
| 6 étages | 969,95                                     | 964,62  | 50,14              | 49,86      |  |
| 7 étages | 778,74                                     | 769,68  | 50,29              | 49,71      |  |
| 8 étages | 383,46                                     | 375,65  | 50,52              | 49,48      |  |

L'interaction sous charge horizontale est vérifiée suivant Y-Y.

#### IV.4.2 : Vérification de l'effort normal réduit

L'effort normal réduit doit être vérifié, afin d'éviter ou de limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme

La formule utilisée est la suivante : v = Nd / (B\*fc28) 0.3

**Tableau IV.6 :** Vérification de l'effort normal réduit.

| Niveau | Nd (KN)  | Type de | B (m2) | υ     | Remarque |
|--------|----------|---------|--------|-------|----------|
|        |          | poteaux |        |       |          |
| RDC    | 3600     | 70*70   | 4900   | 0,294 | Vérifier |
| R+1    | 3488,018 | 70*70   | 4900   | 0,285 | Vérifier |
| R+2    | 2946,043 | 65*65   | 4225   | 0,240 | Vérifier |
| R+3    | 2427,894 | 65*65   | 4225   | 0,198 | Vérifier |
| R+4    | 1916,518 | 60*60   | 3600   | 0,156 | Vérifier |
| R+5    | 1420,897 | 60*60   | 3600   | 0,116 | Vérifier |
| R+6    | 921,756  | 55*55   | 3025   | 0,075 | Vérifier |
| R+7    | 606,49   | 55*55   | 3025   | 0,05  | Vérifier |
| R+8    | 317,531  | 50*50   | 2500   | 0,026 | Vérifier |

L'effort normal réduit est vérifié.

# IV.4.3 : Vérification des déplacements

Selon le RPA99 (Art 5.10), les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage. Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à :

R : coefficient de comportement (R=5).

- Déplacement suivant X-X:

**Tableau IV.7 :** Vérification des déplacements x-x.

|     | δ <sub>ek</sub> (cm) | $\delta_k$ (cm) | δ <sub>k-1</sub> (cm) | $\Delta_k$ (cm) | h <sub>k</sub> (cm) | $\Delta_k/h_t$ |
|-----|----------------------|-----------------|-----------------------|-----------------|---------------------|----------------|
| RDC | 0,25                 | 1,25            | 0                     | 1,25            | 478                 | 0,262          |
| R+1 | 0,79                 | 3,95            | 1,25                  | 2,7             | 478                 | 0,565          |
| R+2 | 1,34                 | 6,7             | 3,95                  | 2,75            | 408                 | 0,674          |
| R+3 | 1,93                 | 9,65            | 6,7                   | 2,95            | 408                 | 0,723          |
| R+4 | 2,52                 | 12,6            | 9,65                  | 2,95            | 408                 | 0,723          |
| R+5 | 3,06                 | 15,3            | 12,6                  | 2,7             | 408                 | 0,661          |
| R+6 | 3,56                 | 17,8            | 15,3                  | 2,5             | 408                 | 0,612          |
| R+7 | 4,03                 | 20,15           | 17,8                  | 2,35            | 408                 | 0,575          |
| R+8 | 4,45                 | 22,25           | 20,15                 | 2,1             | 408                 | 0,514          |

# - Déplacement suivant Y-Y:

Tableau IV.8: Vérification des déplacements Y-Y.

|     | δ <sub>ek</sub> (cm) | $\delta_k$ (cm) | δ <sub>k-1</sub> (cm) | $\Delta_k$ (cm) | h <sub>k</sub> (cm) | $\Delta_k/h_t$ |
|-----|----------------------|-----------------|-----------------------|-----------------|---------------------|----------------|
| RDC | 0,16                 | 0,8             | 0                     | 0,8             | 478                 | 0,167          |
| R+1 | 0,54                 | 2,7             | 0,8                   | 1,9             | 478                 | 0,397          |
| R+2 | 0,96                 | 4,85            | 2,7                   | 2,15            | 408                 | 0,526          |
| R+3 | 1,48                 | 7,4             | 4,85                  | 2,55            | 408                 | 0,625          |
| R+4 | 2,03                 | 10,15           | 7,4                   | 2,75            | 408                 | 0,674          |
| R+5 | 2,57                 | 12,85           | 10,15                 | 2,7             | 408                 | 0,618          |
| R+6 | 3,13                 | 15,65           | 12,85                 | 2,8             | 408                 | 0,686          |
| R+7 | 3,67                 | 18,35           | 15,65                 | 2,7             | 408                 | 0,618          |
| R+8 | 4,2                  | 21              | 18,35                 | 2,65            | 408                 | 0,650          |

Déplacement vérifié suivant Y-Y.

# IV.4.4 : Justification vis-à-vis de l'effet P- $\Delta$

- Suivant X-X:

**Tableau IV.9 :** Vérification de l'effet  $P-\Delta X-X$ .

|     | H <sub>K</sub> (cm) | P <sub>K</sub> (KN) | $\Delta_{\rm K}$ (cm) | V <sub>K</sub> (KN) | $\Phi_{\mathrm{K}}$ |
|-----|---------------------|---------------------|-----------------------|---------------------|---------------------|
| RDC | 478                 | 46964,4             | 1,25                  | 4452,67             | 0,028               |
| R+1 | 478                 | 40121,46            | 2,7                   | 4293,98             | 0,053               |
| R+2 | 408                 | 33278,53            | 2,75                  | 3934,15             | 0,057               |
| R+3 | 408                 | 27071,54            | 2,95                  | 3505,26             | 0,056               |
| R+4 | 408                 | 21347,8             | 2,95                  | 3036,83             | 0,051               |
| R+5 | 408                 | 15783,43            | 2,7                   | 2476,74             | 0,042               |
| R+6 | 408                 | 10135,5             | 2,5                   | 1843,95             | 0,034               |
| R+7 | 408                 | 6823,78             | 2,35                  | 1519,77             | 0,026               |
| R+8 | 408                 | 3530,53             | 2,1                   | 1387,68             | 0,013               |

L'effet P-∆ est vérifié.

#### - Suivant Y-Y:

**Tableau IV.10 :** Vérification de l'effet P- $\Delta$ Y-Y.

|     | H <sub>K</sub> (cm) | P <sub>K</sub> (KN) | $\Delta_{\rm K}$ (cm) | V <sub>K</sub> (KN) | $\Phi_{\mathrm{K}}$ |
|-----|---------------------|---------------------|-----------------------|---------------------|---------------------|
| RDC | 478                 | 46964,4             | 0,8                   | 3651,94             | 0,022               |
| R+1 | 478                 | 40121,46            | 1,9                   | 3519,94             | 0,045               |
| R+2 | 408                 | 33278,53            | 2,15                  | 3206                | 0,055               |
| R+3 | 408                 | 27071,54            | 2,55                  | 2839,86             | 0,06                |
| R+4 | 408                 | 21347,8             | 2,75                  | 2473,62             | 0,058               |
| R+5 | 408                 | 15783,43            | 2,7                   | 2065,37             | 0,051               |
| R+6 | 408                 | 10135,5             | 2,8                   | 1615,78             | 0,043               |
| R+7 | 408                 | 6823,78             | 2,7                   | 1381,60             | 0,033               |
| R+8 | 408                 | 3530,53             | 2,65                  | 1257,58             | 0,018               |

L'effet P -∆ est vérifié.

# IV.4.5 : Vérification de V à la base

F<sub>x</sub>=2094,95 KN.

F<sub>y</sub>=2164,95 KN.

On v à majoré  $E_x$  et  $E_y$ :

 $E_X = (9.81*1.26) = 13.0669.$ 

 $E_y = (9.81*1.081) = 10.3397.$ 

Tableau IV.11: Vérification V à la base.

|          | V <sub>dy</sub> (KN) | 0,8*V <sub>st</sub> (KN) | Observation |
|----------|----------------------|--------------------------|-------------|
| Sens X-X | 4502                 | 4453,23                  | Vérifier    |
| Sens Y-Y | 3652,58              | 3643,53                  | Vérifier    |

#### IV.5. Etude de La structure droite :

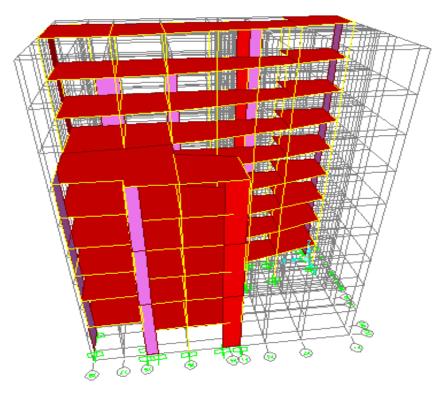



Figure IV.4 : Model de la structure droite.

 $L_x=28,92 \text{ m}$ ;  $L_Y=19,32 \text{ m}$ 

T=1,035 s

 $T_x=0,64s \Longrightarrow D_x=1,496.$ 

 $T_y=0,77s \implies D_y=1,323.$ 

Le poids de la structure : W=30829,1 KN.

# IV.5.1 : Périodes de vibration et taux de participation des masses modales

**TableauIV.12 :** Périodes et taux de participation.

| Mode | Période  | UX       | UY      | UZ           | Sum UX  | Sum UY  |
|------|----------|----------|---------|--------------|---------|---------|
| 1    | 1,035006 | 0,65524  | 0,02256 | 0,000007788  | 0,65524 | 0,02256 |
| 2    | 0,94499  | 0,03191  | 0,61984 | 0,00001215   | 0,68714 | 0,6424  |
| 3    | 0,748616 | 0,00499  | 0,03879 | 0,000004612  | 0,69213 | 0,68119 |
| 4    | 0,317931 | 0,10565  | 0,03522 | 0,00005678   | 0,79778 | 0,71641 |
| 5    | 0,309139 | 0,02741  | 0,11253 | 0,0000408    | 0,82519 | 0,82894 |
| 6    | 0,241243 | 0,241243 | 0,0013  | 0,0000001139 | 0,83332 | 0,83024 |
| 7    | 0,152823 | 0,02608  | 0,03221 | 0,00006269   | 0,8594  | 0,86245 |

| 8  | 0,149791 | 0,03358    | 0,03549 | 0,00026 | 0,89299 | 0,89794 |
|----|----------|------------|---------|---------|---------|---------|
| 9  | 0,115249 | 0,00233    | 0,00102 | 0,00045 | 0,89532 | 0,89896 |
| 10 | 0,105217 | 0,00479    | 0,00033 | 0,00021 | 0,90011 | 0,89929 |
| 11 | 0,096742 | 0,00078    | 0,01291 | 0,01051 | 0,90088 | 0,9122  |
| 12 | 0,094401 | 0,00001631 | 0,00065 | 0,11884 | 0,9009  | 0,91284 |

# IV.5.2: Justification de l'interaction portique –voiles

Sous charge verticale:

**Tableau IV.13:** justification de l'interaction sous charge verticale.

|          | Charge        | reprise    | Pourcentage repris |           |  |
|----------|---------------|------------|--------------------|-----------|--|
|          | Portiques(KN) | Voiles(KN) | Portiques (%)      | Voiles(%) |  |
| RDC      | 27193,65      | 7012,53    | 79,50              | 20,50     |  |
| 1 étage  | 22768,7       | 6512,53    | 77,75              | 22,55     |  |
| 2 étages | 19582,68      | 4747,23    | 80,49              | 19,51     |  |
| 3 étages | 15507,48      | 4614,14    | 77                 | 23        |  |
| 4 étages | 12315         | 3331,71    | 78,71              | 21,29     |  |
| 5 étages | 9000          | 2500       | 78,3               | 21,7      |  |
| 6 étages | 6000          | 1350       | 82                 | 18        |  |
| 7 étages | 4000          | 1000       | 80                 | 20        |  |
| 8 étages | 1815          | 463,37     | 79,66              | 20,34     |  |

# Sous-charges horizontales:

- Suivant X-X

**Tableau IV.14:** justification sous charge horizontale X-X.

|          | Charge        | reprise    | Pourcentage repris |           |  |
|----------|---------------|------------|--------------------|-----------|--|
|          | Portiques(KN) | Voiles(KN) | Portiques (%)      | Voiles(%) |  |
| RDC      | 518,22        | 515,43     | 50,13              | 49,87     |  |
| 1 étage  | 423,18        | 426,86     | 49,78              | 50,22     |  |
| 2 étages | 349,4         | 340,8      | 50,62              | 49,38     |  |
| 3 étages | 350,83        | 343,17     | 50,55              | 49,45     |  |
| 4 étages | 193,31        | 193        | 50,04              | 49,96     |  |
| 5 étages | 237,2         | 232,47     | 50,50              | 49,5      |  |

| 6 étages | 252,89 | 252,39 | 50,04 | 49,96 |
|----------|--------|--------|-------|-------|
| 7 étages | 273,38 | 276,46 | 49,71 | 50,29 |
| 8 étages | 67,45  | 66,85  | 50,22 | 49,78 |

#### Suivant Y-Y:

**Tableau IV.15:** justification de l'interaction sous charge horizontale Y-Y.

|          | Charge        | reprise    | Pourcentage repris |           |
|----------|---------------|------------|--------------------|-----------|
|          | Portiques(KN) | Voiles(KN) | Portiques (%)      | Voiles(%) |
| RDC      | 2120          | 2122,58    | 49,96              | 50,04     |
| 1 étage  | 845,65        | 844,88     | 50,02              | 49,98     |
| 2 étages | 349,84        | 337,43     | 50,90              | 49,1      |
| 3 étages | 411,28        | 402,64     | 50,30              | 49,70     |
| 4 étages | 737,84        | 741,83     | 49,86              | 50,14     |
| 5 étages | 682           | 686,41     | 49,83              | 50,17     |
| 6 étages | 648,37        | 654        | 49,78              | 50,22     |
| 7 étages | 600,23        | 602,64     | 49,89              | 50,11     |
| 8 étages | 347,73        | 346        | 50 ,12             | 49,88     |

# IV.5.3: Vérification de l'effort normal réduit

Tableau IV.16: vérification de l'effort normal réduit.

| Niveau | Nd (KN) | Type des | B (m2) | υ     | Remarque |
|--------|---------|----------|--------|-------|----------|
|        |         | poteaux  |        |       |          |
| RDC    | 2800    | 70*70    | 4900   | 0,229 | Vérifier |
| R+1    | 2395    | 70*70    | 4900   | 0,196 | Vérifier |
| R+2    | 2000    | 65*65    | 4225   | 0,189 | Vérifier |
| R+3    | 1626,24 | 65*65    | 4225   | 0,154 | Vérifier |
| R+4    | 1258,83 | 60*60    | 3600   | 0,140 | Vérifier |
| R+5    | 902,11  | 60*60    | 3600   | 0,100 | Vérifier |
| R+6    | 580,96  | 55*55    | 3025   | 0,077 | Vérifier |
| R+7    | 383,44  | 55*55    | 3025   | 0,051 | Vérifier |
| R+8    | 191     | 50*50    | 2500   | 0,031 | Vérifier |

Vérification des déplacements :

Déplacement suivant X-X:

**Tableau IV.17 :** vérification des déplacements X-X.

|     | $\delta_{ek}$ (cm) | $\delta_k$ (cm) | $\delta_{k-1}(cm)$ | $\Delta_k$ (cm) | h <sub>k</sub> (cm) | $\Delta_k/h_t$ |
|-----|--------------------|-----------------|--------------------|-----------------|---------------------|----------------|
| RDC | 0,22               | 1,1             | 0                  | 1,1             | 478                 | 0,23           |
| R+1 | 0,73               | 3,65            | 1,1                | 2,55            | 478                 | 0,533          |
| R+2 | 1,35               | 6,75            | 3,65               | 3,1             | 408                 | 0,76           |
| R+3 | 2,03               | 10,15           | 6,75               | 3,4             | 408                 | 0,83           |
| R+4 | 2,73               | 13,65           | 10,15              | 3,5             | 408                 | 0,85           |
| R+5 | 3,36               | 16,8            | 13,65              | 3,15            | 408                 | 0,77           |
| R+6 | 3,98               | 19,9            | 16,8               | 3,1             | 408                 | 0,76           |
| R+7 | 4,49               | 22,45           | 19,9               | 2,55            | 408                 | 0,625          |
| R+8 | 4,9                | 24,7            | 22,45              | 2,45            | 408                 | 0,6            |

Déplacement suivant Y-Y:

TableauIV.18: vérification des déplacements Y-Y.

|     | $\delta_{ek}$ (cm) | $\delta_k$ (cm) | $\delta_{k-1}(cm)$ | $\Delta_k$ (cm) | h <sub>k</sub> (cm) | $\Delta_k/h_t$ |
|-----|--------------------|-----------------|--------------------|-----------------|---------------------|----------------|
| RDC | 0,21               | 1,05            | 0                  | 1,05            | 478                 | 0,22           |
| R+1 | 0,67               | 3,35            | 1,05               | 3,51            | 478                 | 0,73           |
| R+2 | 1,22               | 6,1             | 3,35               | 2,75            | 408                 | 0,67           |
| R+3 | 1,79               | 8,95            | 6,1                | 2,85            | 408                 | 0,7            |
| R+4 | 2,38               | 11,9            | 8,95               | 2,95            | 408                 | 0,72           |
| R+5 | 2,92               | 14,6            | 11,9               | 2,7             | 408                 | 0,66           |
| R+6 | 3,47               | 17,35           | 14,6               | 2,75            | 408                 | 0,67           |
| R+7 | 3,91               | 19,55           | 17,35              | 2,2             | 408                 | 0,54           |
| R+8 | 4,34               | 21,7            | 19,55              | 2,15            | 408                 | 0,53           |

Déplacement vérifié suivant Y-Y.

#### IV.5.4. Justification vis-à-vis de l'effet P- $\Delta$

#### Suivant X-X:

**Tableau IV.19 :** justification de l'effet P- $\Delta$ X-X.

|     | H <sub>K</sub> (cm) | P <sub>K</sub> (KN) | $\Delta_{\mathrm{K}}$ (cm) | V <sub>K</sub> (KN) | $\Phi_{\mathrm{K}}$ |
|-----|---------------------|---------------------|----------------------------|---------------------|---------------------|
| RDC | 478                 | 30057,9             | 1,1                        | 2639,53             | 0,026               |
| R+1 | 478                 | 26093,72            | 2,55                       | 2567,89             | 0,047               |
| R+2 | 408                 | 21251,91            | 3,1                        | 2350                | 0,069               |
| R+3 | 408                 | 17715,87            | 3,4                        | 2120,27             | 0,070               |
| R+4 | 408                 | 13653,51            | 3,5                        | 1824,40             | 0,064               |
| R+5 | 408                 | 10374               | 3,15                       | 1528,18             | 0,052               |
| R+6 | 408                 | 6492,67             | 3,1                        | 1162,08             | 0,042               |
| R+7 | 408                 | 4491,47             | 2,55                       | 897,67              | 0,031               |
| R+8 | 408                 | 2141,43             | 2,45                       | 503,64              | 0,026               |

#### Suivant Y-Y:

**Tableau IV.20 :** justification de l'effet P- $\Delta$ Y.Y.

|     | H <sub>K</sub> (cm) | P <sub>K</sub> (KN) | $\Delta_{\rm K}$ (cm) | V <sub>K</sub> (KN) | $\Phi_{\mathrm{K}}$ |
|-----|---------------------|---------------------|-----------------------|---------------------|---------------------|
| RDC | 478                 | 30057,9             | 1,05                  | 2337,7              | 0,028               |
| R+1 | 478                 | 26093,72            | 3,51                  | 2265,20             | 0,085               |
| R+2 | 408                 | 21251,91            | 2,75                  | 2060,65             | 0,07                |
| R+3 | 408                 | 17715,87            | 2,85                  | 1857,78             | 0,067               |
| R+4 | 408                 | 13653,51            | 2,95                  | 1597,28             | 0,062               |
| R+5 | 408                 | 10374               | 2,7                   | 1342,37             | 0,051               |
| R+6 | 408                 | 6492,67             | 2,75                  | 1038,84             | 0,042               |
| R+7 | 408                 | 4491,47             | 2,2                   | 812,60              | 0,030               |
| R+8 | 408                 | 2141,43             | 2,15                  | 456,42              | 0,025               |

L'effet P-Δ est vérifié.

## IV.5.5. Vérification de V à la base

 $F_x = 2094,95 \text{ KN}.$ 

 $F_y = 2164,95 \text{ KN}.$ 

On v à majoré E<sub>x</sub> et E<sub>y</sub>:

 $E_X = (9.81*1.26) = 12.3606.$ 

 $E_v = (9.81*1.081) = 10.6046$ 

Tableau IV.21: vérification de V à la base.

|          | V <sub>dy</sub> (KN) | 0,8*V <sub>st</sub> (KN) |          |
|----------|----------------------|--------------------------|----------|
| Sens X-X | 2639,63              | 2632,4                   | Vérifier |
| Sens Y-Y | 2340,31              | 2327,64                  | Vérifier |

#### IV.6. Justification de la largeur du joint

Deux blocs voisins doivent être séparés par des joints sismiques dont la largeur minimale  $d_{min}$  satisfait la condition suivante :

$$d_{min} = 15 \text{ mm} + (\delta 1 + \delta 2) \ge 40 \text{mm}$$

 $\delta$ 1;  $\delta$ 2: déplacements maximaux des deux blocs au niveau du sommet.

Application numérique :

$$\delta 1 = 45 \text{mm}$$

$$\delta 2 = 49 \text{mm}$$

$$d_{\min} \ge 45 + 49 + 15 = 109 \text{mm}$$

On choisit : 
$$d = 200$$
mm=  $20$ cm

# CHAPITRE V Ferraillage des éléments structuraux.

#### **V.1: Introduction**

La superstructure est la partie supérieure du bâtiment ; située au-dessus du sol ; elle est constituée de l'ensemble des éléments de contreventement : les portiques (poteaux – poutre) et les voiles ; ces éléments en béton armé leur rôle est d'assurer la résistance et la stabilité de la structure face aux différentes charges (permanentes – variables et accidentelles).

Ce pendant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

Le ferraillage des éléments structuraux devra être conforme aux règlements en vigueur en l'occurrence le B.A.E.L 99/modifié 99 ; le C.B.A 93 ; le R.P.A 99/V2003.

#### V.2 : Ferraillage des poutres

Les poutres sont des éléments structuraux horizontaux qui permettent de transférer les charges aux poteaux ; elles sont sollicitées par des moments de flexion et des efforts tranchants.

On fait le calcul pour les deux situations suivantes :

Situation durable : (1,35G+1,5Q) et (G+Q)

Situation accidentelle :  $(G+Q\pm E)$  et  $(0.8G\pm E)$ 

#### V.2.1: Recommandations réglementaires

#### A) Armatures longitudinales:

Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% de la section ; c'est-à-dire ;  $A_{min} = 0.5\%$  \*b\*h

- Le pourcentage total maximum des aciers longitudinaux est de :
- ❖ 4% de la section de béton en zone courante.
- ❖6% de la section de béton en zone de recouvrement.
- La longueur minimale de recouvrement est de  $50\Phi$  en zone III.
- Condition de non fragilité (C.N.F)

$$A_{min} = 0$$
, 23\*b\*d\*( $f_{t28}/f_e$ ) (B.A.E. L. Art A.4.2)

- B) Armatures transversales:
  - La quantité d'armatures transversales minimales est donnée par :  $A_t$ =0,003\*s\*b.
  - L'espacement maximum entre les armatures transversales est déterminé comme suit :
    - Dans la zone nodale et en travée si les armatures comprimées sont nécessaires :

 $S_t \leq \min(h/4; 12\Phi l)$ 

\*\* En dehors de la zone nodale :  $S_t \le h/2$ .

La valeur de  $\Phi l$  est le plus petit diamètre utilisé.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.

#### V.2.2: Sollicitation et ferraillage

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement de notre modèle ; vu la différence négligeable des sollicitations dans les poutres dans les différents étages ; on va calculer le ferraillage comme suit :

| étage                               | Туре | Section (cm) | Localisation | M (KN.m) |
|-------------------------------------|------|--------------|--------------|----------|
| 1 <sup>er</sup><br>2 <sup>ème</sup> | P.P  | 30x60        | Appui        | 287,21   |

**Tableau V.1:** sollicitations dans les poutres principales et secondaires.

Travée 185,93  $3^{\text{ème}}$ P.S 30x45 121,7 Appui 4<sup>ème</sup> 5<sup>ème</sup> 97 Travée 6<sup>ème</sup> P.P 30x60 238 Appui 7ème Travée 205 8ème P.S 30x45 110 Appui Travée 103

A) Calcul des armatures longitudinales (flexion simple)

Calcul du moment réduit  $\mu$ :

$$\mu = \frac{\text{Mu}}{\text{b*d^2*\sigma bc}} \text{Avec}:$$

$$\sigma_{bc}$$
=14,17 MPa ( $\gamma_b$ =1,5)

$$\sigma_{bc}$$
=18,48 MPa ( $\gamma_b$ =1,15)

Si : 
$$\mu \le \mu_R$$
 alors : As'=0 et  $A_s = \frac{M_u}{z + \overline{\sigma_s}}$ 

Avec:

 $\overline{\sigma_s}$ =435 MPa  $\Longrightarrow$  pour situation durable ( $\gamma_s$ =1,15).

 $\overline{\sigma_s}$ =500 MPa  $\Longrightarrow$  pour situation accidentelle ( $\gamma_s$ =1).

Si: 
$$\mu > \mu_R$$
 alors: As'=  $\frac{Mu-Mr}{(d-d')\frac{fe}{vs}}$ et A<sub>s</sub>=  $\frac{Mr}{z*\sigma s}$ +As'.

Avec :  $M_R = \mu r * b * d^2 * \sigma_b$ 

Le calcul et le choix des barres sont récapitulé dans le tableau ci-dessous :

**Tableau V.2 :** ferraillage des poutres.

| étage                             | Туре | Localisation | A <sub>cal</sub> (cm <sup>2</sup> ) | Choix           |
|-----------------------------------|------|--------------|-------------------------------------|-----------------|
| 1 <sup>er</sup>                   | P.P  | Appui        | 11,84                               | 6T16=12,06      |
| 3 <sup>ème</sup>                  |      | Travée       | 8,65                                | 6T14=9,24       |
| 4 <sup>ème</sup>                  | P.S  | Appui        | 6,59                                | 6T12=6,8        |
| 5 <sup>ème</sup>                  |      | Travée       | 6,06                                | 6T12=6,8        |
| 6 <sup>ème</sup> 7 <sup>ème</sup> | P.P  | Appui        | 9,61                                | 3T16+3T14=10,65 |
| 8 <sup>ème</sup>                  |      | Travée       | 9,64                                | 3T16+3T14=10,65 |
|                                   | P.S  | Appui        | 5,9                                 | 6T12=6,8        |
|                                   |      | Travée       | 6,47                                | 6T12=6,8        |

❖ Pourcentage maximum des armatures longitudinales en zone courante :

$$P.P:A_{max}=72 \text{ cm}^2 > A_{cal}=21,3 \text{ cm}^2 > A_{min}=9 \text{ cm}^2.$$

 $P.S:A_{max}=54 \text{ cm}^2 > A_{cal}=13,6 \text{ cm}^2 > A_{min}=6,75 \text{ cm}^2.$ 

❖ Longueurs de recouvrements L<sub>r</sub> :

 $L_r \ge 50\Phi$  (zone III)

 $\Phi$ = 1,6 cm  $\Longrightarrow$  L<sub>r</sub>  $\ge$ 80cm on adopte L<sub>r</sub>= 80 cm.

 $\Phi$ = 1,4cm  $\implies$  L<sub>r</sub>  $\ge$ 70cm on adopte L<sub>r</sub>= 70 cm.

 $\Phi$ = 1,2 cm  $\Longrightarrow$  L<sub>r</sub>  $\ge$ 60cm on adopte L<sub>r</sub>= 60 cm.

B) Calcul des armatures transversales :

$$\phi_t \le Min (h/35; \phi_1; b/10) = 1,6 cm.$$

Nous prenons :  $\phi_t = 8 \text{ mm}$ .

On calcule le ferraillage avec l'effort tranchant le plus défavorable T<sup>ELU</sup>=230 KN :

$$(A_t/S_t) \ge (T^{ELU}/0.9*d*\sigma S)$$

#### Pour la zone nodale :

On prend  $S_t = 10 \text{ cm}$ 

$$A_t \ge \frac{T_{ELU} * S_t}{0.9 * d * \sigma s} \Longrightarrow A_t \ge \frac{230 * 10^3 * 100}{0.9 * 540 * 435}$$

 $A_t \ge 1,08 \text{ cm}^2$ 

Choix: 4T8= 2,01 cm<sup>2</sup> « un cadre + un étrier »

Pour la zone courante :

On prend  $S_t = 15$  cm

$$A_t \ge \frac{230*10^3*150}{0.9*540*435} = 1,63 \text{ cm}^2$$

Choix:  $4T8 = 2.01 \text{ cm}^2 \text{ « un cadre + un étrier »}$ 

#### **❖** Vérification vis-à-vis le R.P.A:

$$A_t = 0.0035 * S_t * b = 1.35 \text{ cm}^2 \implies \text{v\'erifier}$$

$$S_t \le \min (h/4; 12\phi_1) = 15 \text{ cm} \implies \text{v\'erifier} \ll \text{zone nodale} \gg$$

 $S_t \le h/4 = 30 \text{ cm} \implies \text{v\'erifier} \ll \text{zone courante} \gg$ 

#### **Vérification de la contrainte de cisaillement :**

$$\tau_{\rm u} = \frac{{\rm Tu}}{{\rm b}*{\rm d}} \leq \overline{\tau_{\rm u}}$$

$$\overline{\tau_{11}}$$
= 2,5 MPa.

$$\tau_{\rm u} = \frac{230*10^3}{300*540} = 1,42 \text{ MPa.}$$

$$\tau_{\rm u}$$
= 1,42 < 2,5 MPa  $\Longrightarrow$  vérifier.

On fait le même calcul pour les poutres secondaires les résultats de calcul sont résumés dans le tableau suivant :

| Type | Section | Tu (KN) | $	au_{\mathrm{u}}(\mathrm{MPA})$ | S <sub>t</sub> (cm) |         | A <sub>t</sub> (cm <sup>2</sup> ) | choix |
|------|---------|---------|----------------------------------|---------------------|---------|-----------------------------------|-------|
| P.P  | 30*60   | 230     | 1,42                             | 10 (ZN)             | 15 (ZC) | 2,01                              | 4T8   |
| P.S  | 30*45   | 121,05  | 1                                | 10 (ZN)             | 15 (ZC) | 1,51                              | 3T8   |

**Tableau V.3:** ferraillage transversales des poutres.

#### V.2.3: Vérification à L'ELS

#### V.2.3.1 : Vérification des contraintes :

On considère que la fissuration est préjudiciable on doit vérifier que :

$$\begin{split} &\sigma_{bc} \leq \overline{\sigma_{bc}} = 15 \text{ Mpa} \\ &\sigma_s \leq \overline{\sigma_s} = 201 \text{ Mpa (F.P)} \\ &\operatorname{Avec}: \sigma_{bc} = \frac{\operatorname{Mser}}{\operatorname{I}} {}^*x \text{ ; } \sigma_s = n {}^*\!\frac{\operatorname{Mser}}{\operatorname{I}} {}^*(d\text{-}x) \\ &\frac{b*x^2}{2} + n(\operatorname{As} + \operatorname{As}')x - n(\operatorname{As} *d + \operatorname{As}' *c') = 0 \\ &\operatorname{I} = \frac{b*x^3}{3} + n *\operatorname{AS}'(x - c')^2 + n *\operatorname{As}(d - x)^2 \end{split}$$

Les résultats sont récapitulés dans le tableau suivant :

**Tableau V.4:** vérification à L'ELS.

| Poutres     | Localisation | M <sub>ser</sub> | $\sigma_{bc}$ | $\overline{\sigma_{bc}}$ | $\sigma_{ m s}$ | $\overline{\sigma_s}(Mp)$ | Observation |
|-------------|--------------|------------------|---------------|--------------------------|-----------------|---------------------------|-------------|
|             |              | KN.m             | (MPa)         | (MPa)                    | (MPa)           | a)                        |             |
| Principales | Appui        | 105              | 6,61          | 15                       | 182             | 201                       | vérifier    |
|             | Travée       | 71               | 4,75          | 15                       | 153             | 201                       | vérifier    |
| Secondaires | Appui        | 39               | 7,51          | 15                       | 158             | 201                       | vérifier    |
|             | Travée       | 25               | 5,44          | 15                       | 141             | 201                       | vérifier    |

#### V.2.3.2 : Vérification de la flèche

Si les trois conditions suivantes sont vérifiées ; alors il n'est pas indispensable de procéder à un calcul de déformation.

- 
$$h/L \ge 1/16$$
  
-  $h/L \ge M_t/10M_0$  (BAEL Art B.6.5.1)

-  $A_s/b*d \le 4,2/f_e$ 

Pour la poutre principale :

 $h/L = (60/700) = 0.086 > 1/16 = 0.063 \implies vérifier.$ 

 $h/L = 0.086 > 186/(10*260) = 0.72 \implies vérifier.$ 

 $9,24/(30*55) = 0,0056 < 0,0084 \implies \text{vérifier}.$ 

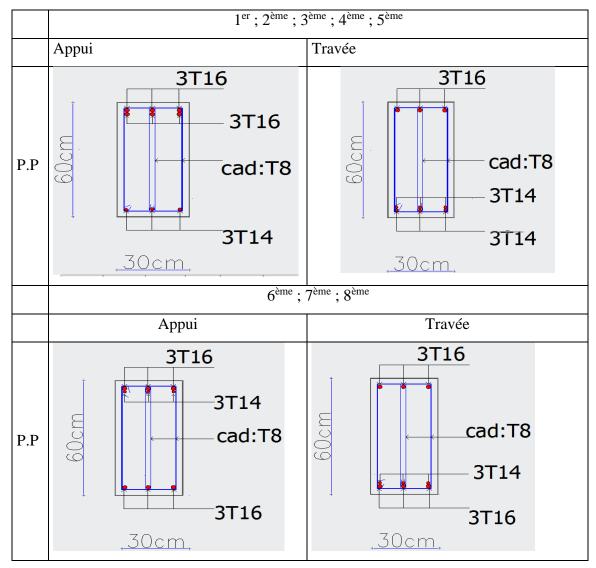
Le calcul de la flèche n'est pas nécessaire.

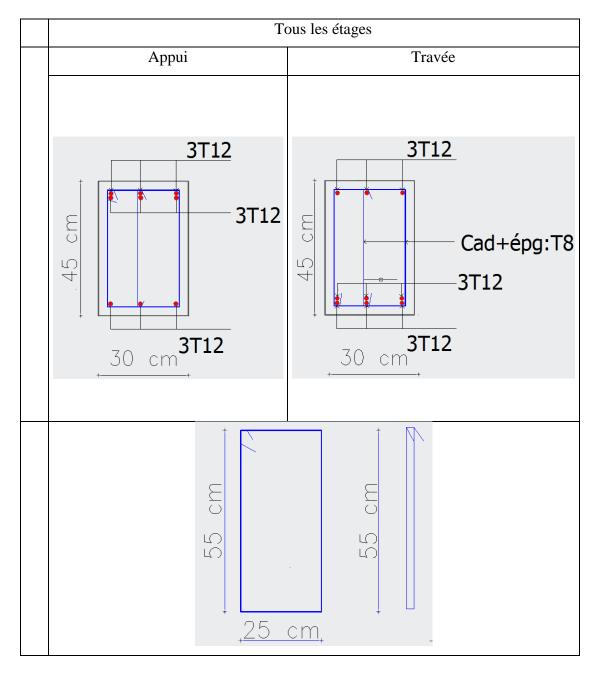
Pour la poutre secondaire :

 $h/L = (45/500) \ge (1/16) \Leftrightarrow 0.09 > 0.063 \Rightarrow vérifier$ 

 $h/L = 0.09 \ge 0.065 \implies vérifier$ 

 $A_s/(b^*d) = [6,28/(30^*45)] = 0,0045 < 0,0084 \implies vérifier$ 


Le calcul de la flèche n'est pas nécessaire.


#### **Conclusion:**

Pour les poutres porteuse et secondaire L'ELS et vérifier.

#### V.2.4 : Schéma de ferraillage

Tableau V.5 : schéma de ferraillage des poutres.





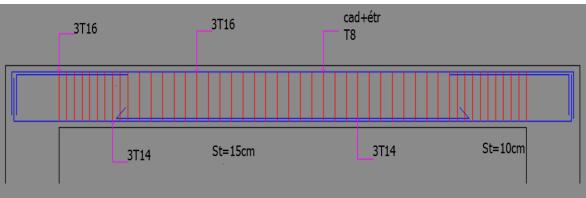



Figure V.1 : Coupe longitudinale du ferraillage de la poutre principale.

#### V.3 : Ferraillage des poteaux

Les poteaux sont des éléments verticaux qui ont le rôle de transmettre les charges apportées par les poutres aux fondations.

Le ferraillage des poteaux est calculé en flexion composée en fonction de l'effort normal (N) et du moment fléchissant (M) donnés par les combinaisons les plus défavorables ; parmi celles introduites dans le fichier SAP2000 de notre modèle.

- 1) 1,35G+1,5Q
- 2) G+Q
- 3)  $G+Q\pm E$
- 4)  $0.8G \pm E$

A partir de ces combinaisons ; on distingue les 3 cas suivants :

- 1)  $N_{max} \rightarrow M_{correspondent}$
- 2)  $N_{min} \rightarrow M_{correspondent}$
- 3)  $M_{max} \rightarrow N_{correspondent}$

#### V.3.1: Recommandations réglementaires

- Les armatures longitudinales doivent être à haute adhérence ; droites et dépourvues de crochets.
- Le pourcentage minimal des armatures est de 0,9% (zone III).
- Le pourcentage maximal est de 3% (zone courante) et 6% (zone de recouvrement).
- Le diamètre minimal est de 12 mm.
- La longueur minimale de recouvrements est de 50  $\Phi$  (zone III).
- La distance entre les barres dans une face du poteau ne doit pas dépasser 20cm (zone III).
- Les jonctions par recouvrement doivent être faites à l'extérieur des zones nodales.

La zone nodale est définie comme suit :

$$L'=2h$$
.

H'=max (
$$\frac{h_e}{6}$$
; b; 60cm)

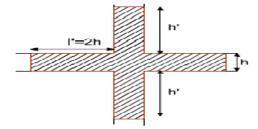



Figure V.2 : Schéma de la zone nodale.

## V.3.2 : Sollicitations et ferraillage

#### V.3.2.1: Sollicitations dans les poteaux

Les sollicitations sont extraites directement de notre modèle.

|                  | $N_{max} \Longrightarrow M_{cor}$ |         | N <sub>min</sub> = | $\Rightarrow$ M <sub>cor</sub> | M <sub>max</sub> = | V (KN) |        |
|------------------|-----------------------------------|---------|--------------------|--------------------------------|--------------------|--------|--------|
|                  | N (KN)                            | M(KN.M) | N (KN)             | M (KN.m)                       | M (KN.m)           | N (KN) |        |
| RDC              | 4902                              | 19,53   | -692,7             | 48,31                          | 560,46             | 1194,4 | 66,6   |
| 1 <sup>er</sup>  | 4621,77                           | 17,07   | -645,3             | 90,53                          | 479,52             | 791,5  | 121,45 |
| 2 <sup>ème</sup> | 4046,65                           | 18,02   | -567,34            | 38,6                           | 431,97             | 393,8  | 201,77 |
| 3 <sup>ème</sup> | 3331,95                           | 19,46   | -448,9             | 35,1                           | 397                | 322    | 160,25 |
| 4 <sup>ème</sup> | 2626,54                           | 22,5    | -387,93            | 42,64                          | 333                | 298,2  | 130,17 |
| 5 <sup>ème</sup> | 1942,58                           | 23      | -275,4             | 29,6                           | 292,28             | 233,71 | 218    |
| 6 <sup>ème</sup> | 1256                              | 31,74   | -111,7             | 26                             | 233,32             | 198    | 121,6  |
| 7 <sup>ème</sup> | 823                               | 39,2    | -85,6              | 29,1                           | 257                | 170,3  | 142,3  |
| 8 <sup>ème</sup> | 430,21                            | 27,62   | -61,3              | 22,9                           | 234,6              | 130,6  | 125,75 |

**Tableau V.6:** sollicitations dans les poteaux.

#### V.3.2.2: Ferraillage longitudinale des poteaux

Les poteaux sont ferraillés par le maximum obtenu après comparaison entre le ferraillage donné par le logiciel « SOCOTEC » et le minimum exigé par le RPA.

 $\bullet$  Cas N°1: N<sub>max</sub>  $\Longrightarrow$  M<sub>cor</sub>

NB: N>0 (compression)

**Tableau V.7:** ferraillage des poteaux avec N<sub>max</sub> etM<sub>cor</sub>.

| niveaux          | Section | N <sub>max</sub> (KN) | M <sub>cor</sub> (KN.M) | Type de | As | As' | Asmin |
|------------------|---------|-----------------------|-------------------------|---------|----|-----|-------|
|                  | (cm²)   |                       |                         | section |    |     | (cm²) |
| RDC              | 70*70   | 4902                  | 19 ,53                  | SEC     | 0  | 0   | 44,1  |
| 1 <sup>er</sup>  | 70*70   | 4621,77               | 17,07                   | SEC     | 0  | 0   | 44,1  |
| 2 <sup>ème</sup> | 65*65   | 4046,65               | 18,02                   | SEC     | 0  | 0   | 38    |
| 3 <sup>ème</sup> | 65*65   | 3331,95               | 19,46                   | SEC     | 0  | 0   | 38    |
| 4 <sup>ème</sup> | 60*60   | 2626,54               | 22,5                    | SEC     | 0  | 0   | 32,4  |
| 5 <sup>ème</sup> | 60*60   | 1942,58               | 23                      | SEC     | 0  | 0   | 32,4  |
| 6 <sup>ème</sup> | 55*55   | 1256                  | 31,74                   | SEC     | 0  | 0   | 27,23 |
| 7 <sup>ème</sup> | 55*55   | 823                   | 39,2                    | SEC     | 0  | 0   | 27,23 |
| 8 <sup>ème</sup> | 50*50   | 430,21                | 27,62                   | SEC     | 0  | 0   | 22,5  |

**Tableau V.8 :** ferraillage des poteaux avec  $N_{min}$  etM<sub>cor</sub>.

| niveaux          | Section | N <sub>min</sub> | $M_{cor}$ | Type de | As    | As'  | As <sub>min</sub> |
|------------------|---------|------------------|-----------|---------|-------|------|-------------------|
|                  | (cm²)   | (KN)             | (KN.M)    | section |       |      | (cm²)             |
| RDC              | 70*70   | -692,7           | 48,31     | SET     | 9,95  | 5,98 | 44,1              |
| 1 <sup>er</sup>  | 70*70   | -645,3           | 90,53     | SET     | 11,14 | 3,7  | 44,1              |
| 2 <sup>ème</sup> | 65*65   | -567,34          | 38,6      | SET     | 8,22  | 4,83 | 38                |
| 3 <sup>ème</sup> | 65*65   | -448,9           | 35,1      | SET     | 6,69  | 3,64 | 38                |
| 4 <sup>ème</sup> | 60*60   | -387,93          | 42,64     | SET     | 6,5   | 2,42 | 32,4              |
| 5 <sup>ème</sup> | 60*60   | -275,4           | 29,6      | SET     | 4,6   | 1,75 | 32,4              |
| 6 <sup>ème</sup> | 55*55   | -111,7           | 26        | SPC     | 2,61  | 0    | 27,23             |
| 7 <sup>ème</sup> | 55*55   | -85,6            | 29,1      | SPC     | 2,42  | 0    | 27,23             |
| 8 <sup>ème</sup> | 50*50   | -61,3            | 22,9      | SPC     | 1,69  | 0    | 22,5              |

NB : N < 0 (traction)

❖ Cas N°3 :  $M_{max} \Rightarrow N_{cor}$ 

**Tableau V.9 :** ferraillage des poteaux avec M<sub>max</sub> etN<sub>cor</sub>.

| niveaux          | Section | $M_{max}(KN.M)$ | N <sub>cor</sub> | Type de | As    | As' | As <sub>min</sub> |
|------------------|---------|-----------------|------------------|---------|-------|-----|-------------------|
|                  | (cm²)   |                 | (KN)             | section |       |     | (cm²)             |
| RDC              | 70*70   | 560,46          | 1194,4           | SPC     | 10,31 | 0   | 44,1              |
| 1 <sup>er</sup>  | 70*70   | 479,52          | 791,5            | SPC     | 10,3  | 0   | 44,1              |
| 2 <sup>ème</sup> | 65*65   | 431,97          | 393,8            | SPC     | 14,05 | 0   | 38                |
| 3 <sup>ème</sup> | 65*65   | 397             | 322              | SPC     | 13,13 | 0   | 38                |
| 4 <sup>ème</sup> | 60*60   | 333             | 298,2            | SPC     | 12,3  | 0   | 32,4              |
| 5 <sup>ème</sup> | 60*60   | 212,28          | 233,21           | SPC     | 10,73 | 0   | 32,4              |
| 6 <sup>ème</sup> | 55*55   | 233,32          | 198              | SPC     | 9,36  | 0   | 27,23             |
| 7 <sup>ème</sup> | 55*55   | 257             | 170,3            | SPC     | 10,93 | 0   | 27,23             |
| 8ème             | 50*50   | 234,6           | 130,6            | SPC     | 11,87 | 0   | 22,5              |

#### **\*** Choix des armatures

Le choix des armatures doit être à la fois économique ; réalisable et cohérent ; et on doit respecter la symétrie dans la section ; pour cela on adopte le choix suivant :

| Niveaux                                            | A <sub>cal</sub> (cm <sup>2</sup> ) | A <sub>min</sub> (cm <sup>2</sup> ) | Choix des armatures                 |
|----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| RDC+1 <sup>er</sup> +2 <sup>ème</sup>              | 43                                  | 44,1                                | 16T20= 50,27 cm <sup>2</sup>        |
| 3ème +4ème +5ème                                   | 39,8                                | 38                                  | 8T20+8T16= 41,5 cm <sup>2</sup>     |
| $6^{\text{ème}} + 7^{\text{ème}} + 8^{\text{ème}}$ | 32                                  | 27,2                                | $16\text{T}16 = 32,17 \text{ cm}^2$ |

**Tableau V.10:** choix des armatures pour les poteaux.

#### V.3.2.3: Ferraillage transversale

Les armatures transversales des poteaux sont calculées à l'aide de la formule de RPA 99 V2003 Art 7.4.2.2 :

$$\frac{At}{St} = \frac{\rho a * Vu}{h * fe}$$

Avec:

- V<sub>u</sub>= est l'effort tranchant de calcul.

- H: hauteur totale de la section brute.

- F<sub>e</sub>: contrainte limite élastique de l'acier d'armature transversale.

-  $ho_a$  : est un coefficient correcteur qui tient compte du mode fragile de la rupture par effort tranchant :

$$\rho_a = 2.5 \quad \text{si} \Longrightarrow \lambda_g \ge 5$$

$$\rho_a = 3.75 \text{ si} \Longrightarrow \lambda_g < 5$$

 $\lambda_g$ : L'élancement géométrique  $\lambda_g$ = (L<sub>f</sub>/a) ou (L<sub>f</sub>/b).

-  $S_t = l$ 'espacement entre les armatures transversales :

Dans la zone nodale :  $S_t \le 10$  cm.

Dans la zone courante :  $S_t \le \min(b/2; h/2; 10 \Phi_L)$ 

- La quantité d'armatures transversales minimale  $(A_t \, / S_t * b)$  en % est donnée comme suit :

$$Si: \lambda_q \ge 5 \implies 0.3\%$$

Si : 
$$\lambda_g \le 3 \Longrightarrow 0.8 \%$$

Si :  $3 < \lambda_q < 5 \implies$  interpoler entre les valeurs limites précédentes.

 $V_{u}^{max}$  $A_t^{cal}$  (cm<sup>2</sup>) Section  $L_f(m)$ Zone S<sub>t</sub> (cm)  $\lambda_a$ A<sub>min</sub> (cm<sup>2</sup>)  $\rho_a$ (cm<sup>2</sup>) (kn) 3,33 RDC 70\*70 4,76 3,75 N 66,6 10 0,11 2,8  $\mathbf{C}$ 15 0,16 3,96 1<sup>er</sup> 70\*70 3,33 4,76 3,75 121,45 N 10 0,2 2,8 C 15 0,28 3,96 2<sup>ème</sup> 3,75 201,77 65\*65 2,86 4,4 N 10 0,37 2,73  $\mathbf{C}$ 15 0,56 3,91 3<sup>ème</sup> 3,75 65\*65 2,86 4,4 160,25 N 10 0,29 2,73 C 0,44 15 3,91 4<sup>ème</sup> 4,77 3,75 130,17 60\*60 2,86 N 10 0,24 2,4 C 15 0,36 3,6 5<sup>ème</sup> 60\*60 2,86 4,77 3,75 218 N 10 0,4 2,4 C 15 0,6 3,6 6<sup>ème</sup> 55\*55 2,86 5,2 2,5 121,6 N 10 0,15 1,65 C 15 0,22 2,48 7ème 2,5 2,86 5,2 10 55\*55 142,3 N 0,17 1,65 C 15 0,26 2,48 8ème 50\*50 2,86 5,7 2,5 125,75 N 10 0,15 1,5 C 15 0,23 2,25

**Tableau V.11:** Choix des armatures transversales pour les poteaux.

Choix: 6T10=4,71 cm<sup>2</sup>

# **\*** Vérification de la contrainte de cisaillement

On doit vérifier que :  $\tau_{u} {=} \left[ V_{u}^{max} {/} \left( b^{*}d \right) \right] {\leq} \overline{\tau_{u}}$ 

$$\overline{\tau_{\rm u}} = (\rho_{\rm d} * f_{\rm c28}) \Longrightarrow RPA$$

$$\overline{\tau_u} = \min (0.15 * f_{c28} / \gamma_b ; 4 \text{ MPa}) \Longrightarrow BAEL$$

Les résultats sont rassemblés dans le tableau suivant :

|                  | Section | $V_u^{max}$ | τu    | $\lambda_{ m y}$ | $ ho_{ m d}$ | $\overline{	au_{\mathrm{u}}}$ | $\overline{\tau_{\mathrm{u}}}$ | observation |
|------------------|---------|-------------|-------|------------------|--------------|-------------------------------|--------------------------------|-------------|
|                  | (cm²)   | (KN)        | (Mpa) |                  |              | (RPA)                         | (BAEL)                         |             |
| RDC              | 70*70   | 66,6        | 0,15  | 4,76             | 0,04         | 1                             | 3,33                           |             |
| 1 <sup>er</sup>  | 70*70   | 121,45      | 0,28  | 4,76             | 0,04         | 1                             | 3,33                           |             |
| 2 <sup>ème</sup> | 65*65   | 201,77      | 0,53  | 4,4              | 0,04         | 1                             | 3,33                           |             |
| 3 <sup>ème</sup> | 65*65   | 160,25      | 0,42  | 4,4              | 0,04         | 1                             | 3,33                           |             |
| 4 <sup>ème</sup> | 60*60   | 130,17      | 0,4   | 4,77             | 0,04         | 1                             | 3,33                           | Vérifier    |
| 5 <sup>ème</sup> | 60*60   | 218         | 0,67  | 4,77             | 0,04         | 1                             | 3,33                           |             |
| 6 <sup>ème</sup> | 55*55   | 121,6       | 0,45  | 5,2              | 0,075        | 1,87                          | 3,33                           |             |
| 7 <sup>ème</sup> | 55*55   | 142,3       | 0,53  | 5,2              | 0,075        | 1,87                          | 3,33                           |             |
| 8 <sup>ème</sup> | 50*50   | 125,75      | 0,56  | 5,7              | 0,075        | 1,87                          | 3,33                           |             |

Tableau V.12: vérification de la contrainte de cisaillement pour les poteaux.

#### ❖ Vérification à l'état limite ultime de stabilité de forme :

Les éléments soumis à la flexion composée doivent être justifiés vis-à-vis du flambement pour le poteau le plus sollicité on doit assurer que :

$$N_u^{max} \le \overline{N_u} = \alpha \left( \frac{Br*fc28}{0.9*\gamma b} + \frac{As*fe}{\gamma s} \right)$$

Les paramètres de cette formule sont expliqués dans le chapitre (II.5.4)

Les résultats de calcul sont récapitulés dans le tableau suivant :

**Tableau V.13 :** vérification de L'ELU stabilité de forme.

|                  | I (cm) | λ     | α     | As (cm²) | Br (cm²) | N <sub>u</sub> <sup>max</sup> | $\overline{N_u}$ | observation |
|------------------|--------|-------|-------|----------|----------|-------------------------------|------------------|-------------|
| RDC              | 21,65  | 15,4  | 0,818 | 50,27    | 4624     | 4902                          | 8792             | Vérifier    |
| 1 <sup>er</sup>  | 21,65  | 15,4  | 0,818 | 50,27    | 4624     | 4621,77                       | 8792             | Vérifier    |
| 2 <sup>ème</sup> | 18,76  | 15,22 | 0,82  | 50,27    | 3969     | 4046,7                        | 7819             | Vérifier    |
| 3 <sup>ème</sup> | 18,76  | 15,22 | 0,82  | 41,5     | 3969     | 3332                          | 7506             | Vérifier    |
| 4 <sup>ème</sup> | 17,32  | 16,5  | 0,81  | 41,5     | 3364     | 2627                          | 6490             | Vérifier    |
| 5 <sup>ème</sup> | 17,32  | 16,5  | 0,81  | 41,5     | 3364     | 1943                          | 6490             | Vérifier    |
| 6 <sup>ème</sup> | 15,88  | 18    | 0,8   | 32,17    | 2809     | 1256                          | 5560             | Vérifier    |
| 7 <sup>ème</sup> | 15,88  | 18    | 0,8   | 32,17    | 2809     | 823                           | 5560             | Vérifier    |
| 8 <sup>ème</sup> | 14,43  | 19,8  | 0,798 | 32,17    | 2304     | 431                           | 4803             | Vérifier    |

#### V.3.3: Vérifications à l'ELS

Les contraintes sont calculées à L'ELS sous (N<sub>ser</sub> ;M<sub>ser</sub>) puis elles sont comparées aux contraintes admissibles.

$$\sigma b = \frac{Mser}{I} * y \le \overline{\sigma_{bc}} = 0,6 * fc28 = 15 \text{ Mpa}$$

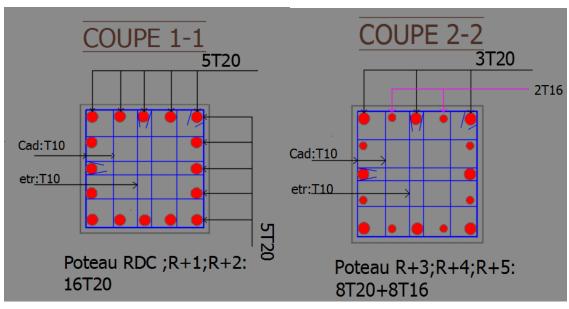
$$\sigma s = \frac{n * Mser}{I} * (d - y) \le \overline{\sigma_s} = \min\left(\frac{2}{3} \text{ fe}; 110\sqrt{n * ft28}\right)$$

Pour fissuration préjudiciable

**Tableau V.14 :** vérification à ELS avec  $N^{max}$  et  $M^{cor}$ .

|                  | Section | N <sub>ser</sub> | M <sub>ser</sub> | $\sigma_{bc}(MPA)$ | $\overline{\sigma_{bc}}$ | $\sigma_{\rm s}$ | $\overline{\sigma_{s}}$ | observation |
|------------------|---------|------------------|------------------|--------------------|--------------------------|------------------|-------------------------|-------------|
|                  | (cm²)   | (KN              | (KN.M)           |                    |                          |                  |                         |             |
| RDC              | 70*70   | 4042             | 2,7              | 7,85               | 15                       | 0                | 201                     | Vérifier    |
| 1 <sup>er</sup>  | 70*70   | 3488             | 1                | 6,7                | 15                       | 0                | 201                     | Vérifier    |
| 2 <sup>ème</sup> | 65*65   | 2946             | 1,9              | 6,55               | 15                       | 0                | 201                     | Vérifier    |
| 3 <sup>ème</sup> | 65*65   | 2428             | 2,5              | 5,31               | 15                       | 0                | 201                     | Vérifier    |
| 4 <sup>ème</sup> | 60*60   | 1916,5           | 3,5              | 4,88               | 15                       | 0                | 201                     | Vérifier    |
| 5 <sup>ème</sup> | 60*60   | 1421             | 4                | 3,7                | 15                       | 0                | 201                     | Vérifier    |
| 6 <sup>ème</sup> | 55*55   | 922              | 7,3              | 2,97               | 15                       | 0                | 201                     | Vérifier    |
| 7 <sup>ème</sup> | 55*55   | 607              | 11,5             | 2,16               | 15                       | 0                | 201                     | Vérifier    |
| 8 <sup>ème</sup> | 50*50   | 318              | 6,5              | 1,4                | 15                       | 0                | 201                     | Vérifier    |

**Tableau V.15:** vérification des poteaux à ELS avec (M<sup>max</sup>; N<sup>cor</sup>).


|                  | Section | N <sub>ser</sub> | $M_{ser}$ | $\sigma_{ m bc}$ | $\overline{\sigma_{bc}}$ | $\sigma_{\rm s}$ | $\overline{\sigma_s}$ | observation |
|------------------|---------|------------------|-----------|------------------|--------------------------|------------------|-----------------------|-------------|
|                  | (cm²)   | (KN              | (KN.M)    |                  |                          |                  |                       |             |
| RDC              | 70*70   | 2708             | 107       | 6,61             | 15                       | 0                | 201                   | Vérifier    |
| 1 <sup>er</sup>  | 70*70   | 2300             | 178       | 6,91             | 15                       | 0                | 201                   | Vérifier    |
| 2 <sup>ème</sup> | 65*65   | 1826             | 152,5     | 6,61             | 15                       | 0                | 201                   | Vérifier    |
| 3 <sup>ème</sup> | 65*65   | 1323             | 197       | 6,56             | 15                       | 3,9              | 201                   | Vérifier    |
| 4 <sup>ème</sup> | 60*60   | 900              | 151       | 5,97             | 15                       | 16,3             | 201                   | Vérifier    |
| 5 <sup>ème</sup> | 60*60   | 781              | 293       | 11               | 15                       | 131              | 201                   | Vérifier    |
| 6 <sup>ème</sup> | 55*55   | 410              | 85        | 4,3              | 15                       | 54               | 201                   | Vérifier    |

| 7 <sup>ème</sup> | 55*55 | 600 | 109 | 5,5  | 15 | 29,8 | 201 | Vérifier |
|------------------|-------|-----|-----|------|----|------|-----|----------|
| 8 <sup>ème</sup> | 50*50 | 196 | 140 | 9,41 | 15 | 95   | 201 | Vérifier |

#### Conclusion

Pour les poteaux L'ELS est vérifié.

#### V.3.4 : Schéma de ferraillage



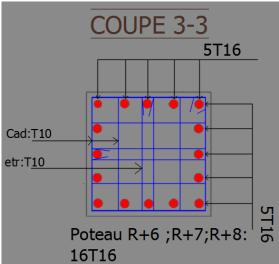



Figure V.3 : Schéma de ferraillage des poteaux.

#### V.4 : Vérification des zones nodales

Dans le but de faire en sorte que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux le RPA 99/ version 2003 exige de vérifier :

$$|M_n|+|M_s| \ge 1.25 (|M_w|+|Me|) \Longrightarrow \ll Art 7.6.2$$
».

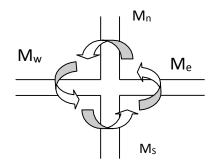



Figure V.4: Répartition des moments.

#### Dans les zones nodales :

Le moment résistant d'une section M<sub>r</sub> dépend :

- Des dimensions de la section du béton.
- De la quantité d'acier dans la section.
- De la contrainte limite élastique des aciers.

Tel que :  $M_r = z^*As^*(f_e/\gamma_s)$  ; avec Z=0,8h (supposition)

#### Exemple de calcul:

#### Poteau du RDC:

 $\label{eq:as=50,27 cm^2; Z=0,8*70=56 cm; M_n=M_s=[(560*50,27*10^2)*(500/1,15)*10^{-6}]=1224 \ KN.M}$ 

#### Pour la poutre :

 $\label{eq:assumption} As = 12,06 \text{ cm}^2 \text{ ; } Z = 0,8*60 = 48 \text{ cm} \text{ ; } M_w = Me = [(480*12,06*10^2)*(500/1,15)*10^{-6}] = 252 \text{ KN.M}$ 

Les calculs sont résumés dans le tableau suivant :

**Tableau V.16 :** vérification de la zone nodale.

| niveaux          | M <sub>n</sub> | M <sub>s</sub> | M <sub>n</sub> | M <sub>w</sub> | Me  | $1,25(M_w + Me)$ | observation |
|------------------|----------------|----------------|----------------|----------------|-----|------------------|-------------|
|                  |                |                | $+M_s$         |                |     |                  |             |
| RDC              | 1224           | 1224           | 2448           | 252            | 252 | 630              | Vérifier    |
| 1 <sup>er</sup>  | 1224           | 1224           | 2448           | 252            | 252 | 630              | Vérifier    |
| 2 <sup>ème</sup> | 1136           | 1136           | 2272           | 252            | 252 | 630              | Vérifier    |
| 3 <sup>ème</sup> | 931            | 931            | 1862           | 252            | 252 | 630              | Vérifier    |
| 4 <sup>ème</sup> | 860            | 860            | 1720           | 252            | 252 | 630              | Vérifier    |
| 5 <sup>ème</sup> | 860            | 860            | 1720           | 252            | 252 | 630              | Vérifier    |
| 6 <sup>ème</sup> | 625            | 625            | 1250           | 223            | 223 | 558              | Vérifier    |
| 7 <sup>ème</sup> | 625            | 625            | 1250           | 223            | 223 | 558              | Vérifier    |
| 8 <sup>ème</sup> | 560            | 560            | 1120           | 223            | 223 | 558              | Vérifier    |

## V.5: Ferraillage des voiles

Les voiles et murs sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur ; généralement verticaux et chargés dans leur plan ; ces éléments peuvent être :

- En maçonnerie non armé ou armée ; auxquels on réservera le nom de murs.
- En béton armé ou non appelés voiles.

On va traiter l'étude des voiles par la méthode des contraintes.

#### V.5.1: Recommandations réglementaires

#### A) Armatures verticales:

Elles sont destinées à reprendre les efforts de la flexion (traction +compression) et sont disposées à deux nappes parallèles aux faces du voile ; ces armatures doivent respecter les prescriptions suivantes :

❖ Le pourcentage minimal sur toute la zone tendue est de  $(0,2\%*L_t*e)$ .

 $Avec: L_t: longueur \ de \ la \ zone \ tendue$ 

E : épaisseur du voile.

- ❖ Les barres verticales des zones extrêmes doivent être ligaturées par des cadres horizontaux dont l'espacement (S<sub>T</sub>) doit être inférieur à l'épaisseur du voile.
- ❖ L'espacement des barres verticales doit être réduit à la moitié sur une longueur L/10 dans les zones extrêmes.
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

#### **B)** Armatures horizontales:

Elles sont destinées à reprendre les efforts tranchants ; disposées en deux nappes vers l'extrémité des armatures verticales pour empêcher leurs flambements elles doivent être munies de crochets à  $135^{\circ}$  de longueur  $10\Phi$ .

#### **C)** Armatures transversales :

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement ; elles sont au nombre de 4 épingles par 1 m² au moins.

#### D) Armatures de couture :

Le long des joints de reprises de coulage ; l'effort tranchant doit être pris par la section des aciers de couture ; dont la section doit être calculée par la formule :  $A_{vj} = (1, 1*V)/f_e$ .

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction duaux moments de renversement.

#### E) Règles communes :

Le pourcentage minimal des armatures verticales et horizontales est :

- $A_{min} = 0.15\% \implies$  section globale du voile.
- $A_{min} = 0.1\% \implies$  zone courante.

L'espacement des barres (horizontales et verticales) S < min (1,5e; 30cm).

Diamètre des barres (horizontales et verticales)  $\Phi < e/10$ .

Longueur de recouvrement :

 $L_r$ = 40  $\Phi$  « zone tendue ».

 $L_r$ = 20  $\Phi$  « zone comprimé ».

#### V.5.2 : Sollicitations et ferraillage

#### V.5.2.1: Sollicitations dans les voiles

Le calcul de ferraillage par la méthode des contraintes.

Les sollicitations de calcul sont extraites directement du logiciel SAP2000 ; les résultats sont résumés dans le tableau suivant :

**Tableau V.17:** Sollicitation dans les voiles.

|                 | $N_{max} \Rightarrow M_{cor}$ |          | $M_{max} =$ | ⇒ N <sub>cor</sub> | N <sub>min</sub> = | $\Rightarrow M_{cor}$ | V (KN) |
|-----------------|-------------------------------|----------|-------------|--------------------|--------------------|-----------------------|--------|
|                 | N (KN)                        | M (KN.m) | M (KN.m)    | N (KN)             | N (KN)             | M (KN.m)              |        |
| V <sub>X1</sub> | 2171                          | 950      | 2887        | 1542               | 56                 | 24                    | 669    |
| V <sub>X2</sub> | 1823                          | 948      | 2830        | 917                | -18                | 81                    | 674    |
| V <sub>X3</sub> | 1743                          | 661      | 1929        | 743                | 77                 | 110                   | 362    |
| $V_{X4}$        | 1789                          | 661      | 1930        | 700                | 11                 | 145                   | 363    |
| $V_{X5}$        | 863                           | 318      | 528         | 232                | 102                | 273                   | 174    |
| $V_{X6}$        | 1513                          | 970      | 2796        | 1011               | 111                | 183                   | 635    |
| $V_{Y1}$        | 2352                          | 1260     | 4000        | 1587               | 193                | 120                   | 975    |
| $V_{Y2}$        | 2447                          | 811      | 2211        | 1150               | 473                | 243                   | 951    |
| $V_{Y3}$        | 1704                          | 1143     | 2433        | 1391               | 311                | 276                   | 709    |
| $V_{Y4}$        | 2291                          | 836      | 2317        | 1713               | 20                 | 129                   | 681    |
| V <sub>Y5</sub> | 1995                          | 963      | 2278        | 904                | -36                | 201                   | 430    |
| V <sub>Y6</sub> | 1113                          | 1284     | 2385        | 1200               | 101                | 237                   | 576    |

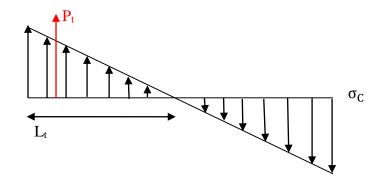
## V.5.2.2: Ferraillage des voiles

Nous calculons le ferraillage des voiles par la méthode des contraintes.

**\*** Exemple de calcul :

Pour le voile  $V_{x1}$ : M= 2887 KN.M; N= 1542 KN; V= 669 KN (compression)

L= 1,85 m; e= 25 cm.


- Pour les armatures verticales (longitudinales) :

$$\sigma = \frac{1542 * 10^3}{250 * 1850} \pm \frac{2887 * 10^6 * 925}{250 * \frac{1850^3}{12}}$$

$$\sigma_t$$
= -16,91 MPa.

$$\sigma_c = 23,57 \text{ MPa}.$$

On calcul la longueur de la zone tendue



$$\frac{\sigma t}{Lt} = \frac{\sigma c}{L - Lt} \Longrightarrow Lt = \frac{\sigma t}{\sigma t + \sigma c} * L$$

Lt = 
$$\left(\frac{16,91}{16,91 + 23,57}\right) * 1,85 \Longrightarrow Lt = 0,77 \text{ m}$$

On calcul la force de la traction Pt:

$$P_t \!\! = (\sigma_t \ ^*L_t)^*(e/2) \!\! = (16.91^*770^*10^{-3})^*(250/2) \!\! = 1627.59 \ KN.$$

Donc on peut calculer le ferraillage longitudinal avec :

$$A_s = (P_t / \sigma_S) \Longrightarrow As = (1627,59/500) = 32,55 \text{ cm}^2$$

$$As_{min} = 0.2\% * (77*25) = 3.85 \text{ cm}^2.$$

Choix:

❖ Pour les armatures horizontales (transversales) :

$$\frac{At}{St} = \frac{V}{0.9 * d * \sigma s}$$

Soit: St=15 cm; At 
$$\geq \frac{669*10^3*150}{0.9*1665*500}*10^2$$

At  $\geq$  1,34 cm<sup>2</sup>; choix: 2T10=1,57 cm<sup>2</sup>

De la même manière on va calculer le ferraillage pour les autres voiles.

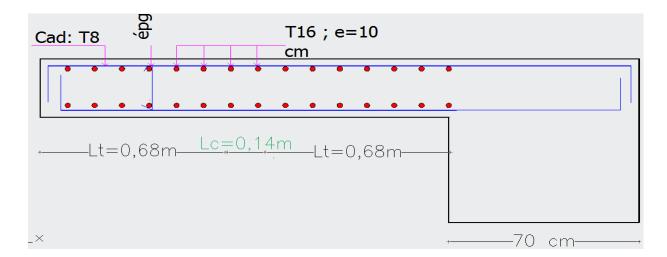
Les résultats sont récapitulés dans les tableaux suivants :

**Tableau V.18:** Ferraillage des voiles de RDC (X-X).

| voile                                | $Vx_1$  | Vx <sub>2</sub> | Vx <sub>3</sub> | $Vx_4$  | Vx <sub>5</sub> | $Vx_6$  |
|--------------------------------------|---------|-----------------|-----------------|---------|-----------------|---------|
| L (m)                                | 1,85    | 1,85            | 1,5             | 1,5     | 1               | 2       |
| E (cm)                               | 25      | 25              | 25              | 25      | 25              | 25      |
| M (KN.m)                             | 2887    | 2830            | 1929            | 1930    | 528             | 2796    |
| N (KN)                               | 1542    | 917             | 743             | 700     | 232             | 1011    |
| V (KN)                               | 669     | 674             | 362             | 363     | 174             | 635     |
| Lt (m)                               | 0,77    | 0,83            | 0,68            | 0,68    | 0,46            | 0,88    |
| As <sub>v</sub> (cm <sup>2</sup> )   | 32,55   | 37,08           | 31,62           | 31,82   | 13,46           | 32,52   |
| As <sub>min</sub> (cm <sup>2</sup> ) | 3,85    | 4,15            | 3,4             | 3,4     | 2,3             | 4,4     |
| choix                                | 2*16T16 | 2*18T16         | 2*16T16         | 2*16T16 | 2*7T16          | 2*16T16 |
| As <sub>h</sub>                      | 1,34    | 1,35            | 0,89            | 0,89    | 0,64            | 1,18    |
| choix                                | 10T8    | 10T8            | 10T8            | 10T8    | 10T8            | 10T8    |

Tableau V.19: Ferraillage des voiles de RDC (Y-Y).

| voile                              | $Vy_1$ | $Vy_2$ | Vy <sub>3</sub> | $Vy_4$ | Vy <sub>5</sub> | Vy <sub>6</sub> |
|------------------------------------|--------|--------|-----------------|--------|-----------------|-----------------|
| L (m)                              | 3      | 2,45   | 2,45            | 2,45   | 2               | 2               |
| E (cm)                             | 25     | 25     | 25              | 25     | 25              | 25              |
| M (KN.m)                           | 4000   | 2211   | 2433            | 2317   | 2278            | 2385            |
| N (KN)                             | 1587   | 1150   | 1391            | 1713   | 904             | 1200            |
| V (KN)                             | 975    | 951    | 709             | 681    | 430             | 576             |
| Lt (m)                             | 1,2    | 0,96   | 0,94            | 0,85   | 0,87            | 0,83            |
| As <sub>v</sub> (cm <sup>2</sup> ) | 25,65  | 16,7   | 17,53           | 13,72  | 25,8            | 24,7            |


| As <sub>min</sub> (cm <sup>2</sup> ) | 6       | 4,8    | 4,7    | 4,25   | 4,35    | 4,15    |
|--------------------------------------|---------|--------|--------|--------|---------|---------|
| choix                                | 2*13T16 | 2*9T16 | 2*9T16 | 2*7T16 | 2*13T16 | 2*13T16 |
| Ash                                  | 1,2     | 1,44   | 1,07   | 1,02   | 0,8     | 1,07    |
| choix                                | 10T8    | 10T8   | 10T8   | 10T8   | 10T8    | 10T8    |

**Tableau V.20:** Ferraillage des voiles du  $6^{\text{ème}}$  étage (X-X).

| voile                                | $Vx_1$  | $Vx_2$  | $Vx_3$  | V <sub>X4</sub> | $V_{X_5}$ |
|--------------------------------------|---------|---------|---------|-----------------|-----------|
| L (m)                                | 1,85    | 1,85    | 1,5     | 1,5             | 1         |
| E (cm)                               | 20      | 20      | 20      | 20              | 20        |
| M (KN.m)                             | 763,5   | 922     | 292     | 285             | 237       |
| N (KN)                               | 275     | 440     | 55      | 54              | 118       |
| V (KN)                               | 372     | 459     | 173     | 144             | 117       |
| Lt (m)                               | 0,81    | 0,77    | 0,72    | 0,69            | 0,46      |
| As <sub>v</sub> (cm <sup>2</sup> )   | 9,51    | 10,43   | 5,34    | 5               | 6         |
| As <sub>min</sub> (cm <sup>2</sup> ) | 3,28    | 3,08    | 2,88    | 2,76            | 1,84      |
| choix                                | 2*16T10 | 2*18T10 | 2*16T10 | 2*16T10         | 2*16T10   |
| As <sub>h</sub>                      | 0,74    | 0,92    | 0,43    | 0,36            | 0,43      |
| choix                                | 10T8    | 10T8    | 10T8    | 10T8            | 10T8      |

**Tableau V.21 :** Ferraillage des voiles du  $6^{\grave{e}me}$  étage (Y-Y).

| voile                                | $Vy_1$  | Vy <sub>2</sub> | Vy <sub>3</sub> | Vy <sub>4</sub> | Vy <sub>5</sub> |
|--------------------------------------|---------|-----------------|-----------------|-----------------|-----------------|
| L (m)                                | 3       | 2,45            | 2,45            | 2,45            | 2               |
| E (cm)                               | 20      | 20              | 20              | 20              | 20              |
| M (KN.m)                             | 994     | 561             | 800             | 725             | 495             |
| N (KN)                               | 1052    | 1038            | 705             | 239             | 490             |
| V (KN)                               | 347     | 202             | 228             | 372             | 221             |
| Lt (m)                               | 0,71    | 0,3             | 0,78            | 1,06            | 0,67            |
| As <sub>v</sub> (cm <sup>2</sup> )   | 2,22    | 0,44            | 5               | 6,63            | 3,62            |
| As <sub>min</sub> (cm <sup>2</sup> ) | 2,84    | 1,2             | 3,12            | 4,24            | 2,68            |
| choix                                | 2*13T10 | 2*9T10          | 2*9T10          | 2*7T10          | 2*13T10         |
| As <sub>h</sub>                      | 0,64    | 0,31            | 0,34            | 0,56            | 0,41            |
| choix                                | 10T8    | 10T8            | 10T8            | 10T8            | 10T8            |



**Figure V.5 :** Ferraillage du voile Vx<sub>3</sub> (RDC).

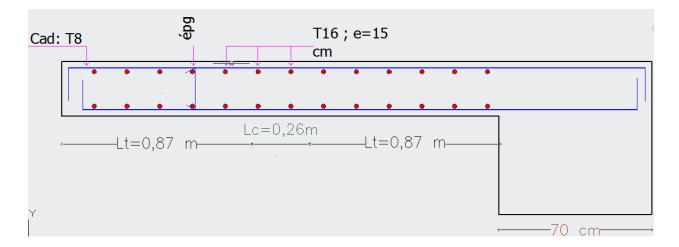



Figure V.6: Ferraillage du voile Vy<sub>5</sub>.

# CHAPITRE VI Etude de l'infrastructure

#### **VI.1: Introduction**

L'infrastructure d'une construction est constituée par les parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure ; le plus souvent on trouve dans l'infrastructure les éléments suivant « les fondations-les longrines-les voiles périphériques ».

Les fondations constituent donc la partie essentielle de l'ouvrage puisque de leurs bonnes conception et réalisation découle la bonne tenue de l'ensemble.

La cohérence du projet vis-à-vis du site ; du sol ; de l'ouvrage et interaction sol structure.

#### VI.2 : Critères de choix du type des fondations

Le choix du type des fondations dépend essentiellement des facteurs suivants :

- La capacité portante du sol.
- Les charges transmises au sol.
- La distance entre axes des poteaux.
- La profondeur du bon sol.
- Le coût. (Raisons économiques)

Pour le choix du type de fondation ; on vérifie dans l'ordre suivant : les semelles isolées ; les semelles filantes et le radier général et enfin on opte pour le choix qui convient.

Selon le rapport du sol; la contrainte admissible est de 1,8 Bars à une profondeur de 2 m.

#### VI.3: Choix du type des fondations

#### VI.3.1 : Vérification des semelles isolées

Les poteaux étant de sections carrées ; on choisit des semelles carrées.

La vérification à faire est :  $\frac{N}{S} \le \overline{\sigma_{sol}}$ 

Pour cette vérification on prend la semelle sous le poteau le plus sollicitée avec :

S : surface d'appui de la semelle.

 $\overline{\sigma_{sol}}$ = 180 KPa; contrainte admissible du sol.

 $N = N_{max} + P_s$ .

N<sub>max</sub>: Effort normal à la base du poteau ; obtenu par le logiciel SAP2000 à L'ELS.

P<sub>s</sub>: Poids de la semelle estimé à 5% N.

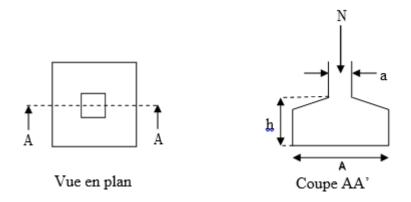



Figure VI.1 : Schéma de la semelle isolé.

 $N_{\text{max}} = 3700 \text{ KN}.$ 

N = 3700 + (0.05\*3700) = 3885 KN.

$$\frac{N}{S} \le \overline{\sigma_{sol}} \Longrightarrow S = \frac{N}{\overline{\sigma_{sol}}} \Longrightarrow S = \frac{3885}{180}$$

$$S \le 21.6 \Rightarrow S=B*B \Rightarrow B \ge 4.65m$$
.

Vu l'entraxe minimal des poteaux ; on remarque qu'il va y'avoir un chevauchement entre les semelles ; ce qui revient à dire que ce type de semelles ne convient pas à notre cas.

#### VI.3.2 : Vérification des semelles filantes

Nous allons faire la vérification de la semelle sous le portique le plus sollicite dans les 2 directions comme suit :

$$\overline{\sigma_{sol}} \ge \frac{N}{S} = \frac{N}{B*L} \Longrightarrow B \ge \frac{N}{\overline{\sigma_{sol}}*L}$$

B: Largeur de la semelle.

L : Longueur de la semelle.

#### **❖** Pour la semelle suivant X-X:

La semelle supporte 11 poteaux

$$N = \sum_{i=1}^{11} N_i \Longrightarrow N = 12166 \text{ KN}$$

$$L = 31m$$
;  $B \ge \frac{12166}{31 * 180} = 2,18m$ 

#### **❖** Pour la semelle suivant Y-Y

La semelle supporte 4 poteaux

$$N = \sum_{i=1}^{4} N_i \Longrightarrow N = 8566 \text{ KN}$$

$$L = 18.2m$$
 ;  $B \ge \frac{8566}{18.2 * 180} = 2.61m$ 

#### Remarque:

Vu la distance existence entre les axes des deux portiques parallèles suivant le sens Y-Y on constate qu'il y a un chevauchement entre les semelles ; donc se choix ne convient pas.

#### VI.3.3 : Vérification des semelles filantes croisées

Pour pouvoir diminuer la largeur de la semelle on choisit un système de semelles filantes dans les deux directions (croisées) ; on suppose que la largeur B= 2m.

On vérifie la semelle croisée sous poteaux les sollicité :

$$N = \Sigma N_i \implies N = 15720 \text{ KN}$$

$$\sigma_{sol} \le \frac{N}{R * L}$$
 avec :  $B = 2m$ ;  $L = 49.2m$ 

$$\frac{15720}{2*49,2}=159,8 \text{ KPa} < \overline{\sigma_{sol}}=180 \text{KPa} \Longrightarrow \text{v\'erifie}.$$

Donc on adopte le choix des semelles filantes croisées avec une largeur B=2m.

#### **Détermination de la hauteur de la semelle :**

D'après la condition de rigidité  $h \ge \frac{B-b}{4} + 5 \text{cm.} \implies h \ge \frac{200-70}{4} + 5 = 37,5 \text{ cm.}$ 

On adopte : h=40 cm.

#### ❖ Vérification en tenant compte du poids de la semelle

$$N_{tot} = N_{sup} + N_{inf}$$

$$N_{inf} = (49,2*2*0,4*25) = 98 \text{ KN}.$$

$$N_{tot} = (15720 + 984) = 16704 \text{ KN}.$$

$$\sigma = \frac{16704}{49.2*2} = 170 \text{ KPa} < \overline{\sigma_{sol}} = 180 \text{ KPa.} \Longrightarrow \text{v\'erfie.}$$

#### **❖** Dimensionnement de la nervure (libage)

Pour assurer la rigidité de la semelle on prévoit un libage (nervure) ; en se basant sur la théorie de la poutre sur sol élastique ; on doit satisfaire la condition suivante :

$$\frac{\pi}{2} * L_e \ge L_{max}$$

Avec :Le : la longueur élastique avec Le = 
$$\sqrt[4]{\frac{4EI}{KB}}$$

E : module d'élasticité du béton on considère E=20000 MPa.

I : moment d'inertie de la nervure.

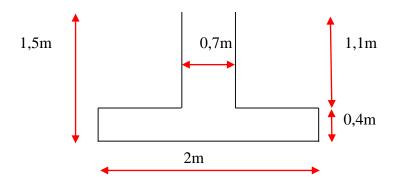
K : coefficient de raideur du sol dans notre sac K=40 MPa/m.

B : largeur de la semelle.

 $L_{max}$ : La plus grand potée ;  $L_{max} = 6.7 \text{ m}$ .

$$\frac{\pi}{2} \sqrt[4]{\frac{4KI}{KB}} \ge 6.7 \text{m}$$

$$\frac{\pi}{2} \sqrt[4]{\frac{4 * 20000 * I}{40 * 10^{-3} * 20000}} \ge 6.7 \text{m}$$


$$A.N \Rightarrow h_N \ge 146,7 \text{ cm}.$$

On adopte :  $h_N = 150$  cm.

#### **Conclusion:**

Après calculs et vérifications on a opté pour des semelles filantes croisées dans les deux directions avec les dimensions suivantes :

- Largeur de la semelle B= 2m.
- Hauteur de la semelle h= 40 cm.
- Hauteur de la nervure  $h_N = 1.5 \text{ m}$ .
- Largeur de la nervure b= 70 cm.



**Figure VI.2 :** Coupe transversale de la semelle filante.

#### VI.4: Ferraillage des fondations

#### VI.4.1 : Ferraillage de la semelle

Par la méthode des bielles pour 1ml ;  $A_s = \frac{P*(B-b)}{8*d*\sigma_s}$ 

Avec : 
$$P(KN/m) \Rightarrow P = \frac{N_{max}}{L_{sf}}$$
.

 $N_{max}$ : L'effort normal max extrait de notre modèle avec les combinaisons (1,35G +1,5Q) et (G+Q±E).

# ❖ Pour la semelle « Sf<sub>1</sub> » X-X

L=31,2 m;  $N_{\text{max}}=19475 \text{ KN}$ .

$$A_s = \frac{624,2 * 10^3 * (2000 - 700)}{8 * 350 * 435} = 6,66 \text{ cm}^2/\text{ml}$$

Choix:  $6T12+6,79 \text{ cm}^2/\text{ml}$  (T12; e=20 cm).

Armatures de répartition :

$$A_r = \frac{A_s}{4} \Longrightarrow A_r = \frac{6.79}{4} = 1.2 \text{ cm}^2/\text{ml}.$$

Choix:  $4T8=2,01 \text{ cm}^2/\text{ml} \implies (T8; e=30\text{cm}).$ 

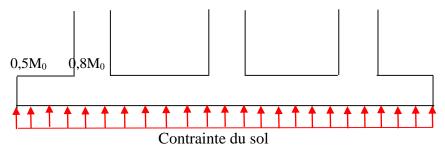
#### **❖** Pour la semelle « Sf<sub>2</sub> » Y-Y

L=19,35m;  $N_{max}=13206$  KN.

$$P = \frac{13206}{19.35} = 682.5 \text{ KN/ml}$$

$$A_s = \frac{682.5 * 10^3 * (2000 - 700)}{8 * 350 * 435} = 7.28 \text{ cm}^2/\text{ml}$$

Choix:  $7T12=7.92 \text{ cm}^2/\text{ml} \Longrightarrow (T12; e=15\text{cm}).$ 


Armatures de répartition :

$$A_r = \frac{A_s}{4} \Longrightarrow A_r = \frac{7,92}{4} = 1,98 \text{ cm}^2/\text{ml}.$$

Choix:  $4T8=2,01 \text{ cm}^2/\text{ml} \Longrightarrow (T8; e=30 \text{ cm}).$ 

#### VI.4.2 : Ferraillage de la nervure (libage)

La nervure chargée par le sol suivant un diagramme des contraintes linéaire ; sera considérée comme une poutre continue travaillant en flexion simple.



**Figure VI.3:** Distribution des contraintes dans la nervure.

#### **Pour la nervure de la semelle filante « Sf\_1 \gg X-X :**

$$h_{N}=$$
 1,5 m ;  $b=$  70 cm ;  $q=$  624,2  $\frac{KN}{m}$  ;  $L=$  6,7 m .

$$M_0 = \frac{q * l^2}{8} = \frac{624,2 * (6,7)^2}{8} = 3502,5 \text{ KN. M}$$

$$M_t = 0.8 * M_0 = 0.8 * 3502.5 = 2802 \text{ KN. M}$$

$$M_a = 0.5 * M_0 = 0.5 * 3502.5 = 1751.3 \text{ KN. M}$$

- Le ferraillage pour la travée :

$$\mu = \frac{2802*10^6}{700*(1400)^2*14,17} = 0,144 < \mu_{lim} \Longrightarrow A_{s'} = 0$$

$$\alpha = 1,25 * \left(1 - \sqrt{1 - 2 * (0,144)}\right) = 0,195$$

$$Z = 140 * (1 - 0.4 * (0.195)) = 129 \text{ cm}$$

$$A_s \ge \frac{2802 * 10^6}{1290 * 435} = 49.9 \text{ cm}^2.$$

C.N.F : 
$$A_s \ge 140 * 70 * 0.23 * \frac{2.1}{500} = 9.47 \text{ cm}^2$$
.

Choix: 16T20 = 50,27 cm<sup>2</sup>.

- Le ferraillage pour l'appui :

$$\mu = \frac{1751,3 * 10^6}{700 * (1400)^2 * 14,17} = 0.09 < \mu_{lim} \Longrightarrow A_{s'} = 0$$

$$\alpha = 0.12$$
; z = 133.3 cm.

$$A_s \ge \frac{1751,3 * 10^6}{1333 * 435} = 30,2 \text{ cm}^2.$$

C.N.F : 
$$A_s \ge 9,47 \text{ cm}^2$$
.

Choix:  $10T20 = 31,42 \text{ cm}^2$ .

- Ferraillage transversale:

$$T^{\text{max}} = \frac{q * l}{2} = \frac{624,2 * 6,7}{2} = 2091 \text{ KN}.$$

Avec espacement :  $S_t = 15 cm$ .

$$A_t = \frac{2091 * 10^3 * 150}{0.9 * 1400 * 435} * 10^{-2} = 5,72 \text{ cm}^2.$$

Choix:  $8T10 = 6.28 \text{ cm}^2$ .

#### **❖** Pour la nervure de la semelle filante « Sf<sub>2</sub> » Y-Y :

$$h_N = 1.5 \text{ m}$$
;  $b = 70 \text{ cm}$ ;  $q = 682.5 \frac{KN}{m}$ ;  $L = 6.5 \text{ m}$ .

$$M_0 = \frac{q * l^2}{8} = \frac{682,5 * (6,5)^2}{8} = 3604 \text{ KN. M}$$

$$M_t = 0.8 * M_0 = 0.8 * 3604 = 2883 \text{ KN. M}$$

$$M_a = 0.5 * M_0 = 0.5 * 3604 = 1802 \text{ KN. M}$$

- Le ferraillage longitudinal pour la travée :

$$\mu = \frac{2883 * 10^6}{700 * (1400)^2 * 14,17} = 0,148$$

$$\alpha = 1.25 * (1 - \sqrt{1 - 2 * (0.148)}) = 0.2$$

$$Z = 140 * (1 - 0.4 * (0.2)) = 129 \text{ cm}$$

$$A_s \ge \frac{2883 * 10^6}{1290 * 435} = 51,38 \text{ cm}^2.$$

C.N.F : 
$$A_s \ge 9,47 \text{ cm}^2$$
.

Choix:  $14T20 + 2T25 = 53.8 \text{ cm}^2$ .

- Le ferraillage longitudinal pour l'appui :

$$\mu = \frac{1802*10^6}{700*(1400)^2*14,17} = 0,093 < \mu_{lim} \Longrightarrow A_{s'} = 0$$

$$\alpha = 0.12$$
; z = 133.3 cm.

$$A_s \ge \frac{1802 * 10^6}{1333 * 435} = 31,08 \text{ cm}^2.$$

C.N.F : 
$$A_s \ge 9,47 \text{ cm}^2$$
.

Choix: 10T20= 31,42 cm<sup>2</sup>.

- Ferraillage transversale :

$$T^{\text{max}} = \frac{q * l}{2} = \frac{682,5 * 6,5}{2} = 2218 \text{ KN}.$$

Avec espacement :  $S_t = 15 cm$ .

$$A_{t} = \frac{2218 * 10^{3} * 150}{0.9 * 1400 * 435} * 10^{-2} = 6,07 \text{ cm}^{2}.$$

Choix: 8T10= 6,28 cm<sup>2</sup>.

#### VI.4.3: Les Vérifications

A) Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b*d} \leq \overline{\tau_u}$$

$$\tau_{\rm u} = \frac{2218*10^3}{700*1430} = \text{2,2 MPa}.$$

$$\overline{\tau_{\rm u}} = \min\left(\frac{0.1 * 25}{1.5}; 4\text{MPa}\right) = 2.5 \text{ MPa}.$$

$$\tau_u =$$
 2,2 MPa  $< \overline{\tau_u} =$  2,5 MPa  $\implies$  vérifie.

B) Vérification de la nervure à L'ELS:

On calcul les moments à L'ELS de la même façon que à L'ELU ; les résultats sont récapitulés dans le tableau suivant :

**Tableau VI.1:** Vérification des contraintes à L'ELS dans les nervures.

| Local | lisation | $M_s(KN.M)$ | $\sigma_{\rm bc} < \overline{\sigma_{\rm bc}}$ | observation | $\sigma_{\rm s} < \overline{\sigma_{\rm s}}$ | observation |
|-------|----------|-------------|------------------------------------------------|-------------|----------------------------------------------|-------------|
|       |          |             |                                                |             |                                              |             |
| X-X   | travée   | 1760        | 8,3<15                                         | Vérifié     | 143<165                                      | Vérifié     |
|       |          |             |                                                |             |                                              |             |
|       | appui    | 1100        | 5,7<15                                         | Vérifié     | 79<165                                       | Vérifié     |
| Y-Y   | travée   | 1816        | 8,6<15                                         | Vérifié     | 149<165                                      | Vérifié     |
|       | appui    | 1135        | 5,8<15                                         | Vérifié     | 83<165                                       | Vérifié     |

# VI.4.4 : Schéma de ferraillage des fondations

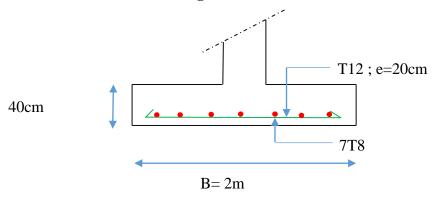



Figure VI.4 : Schéma de ferraillage de la semelle suivant X-X

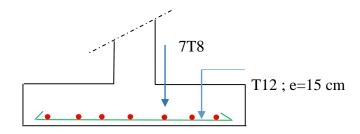
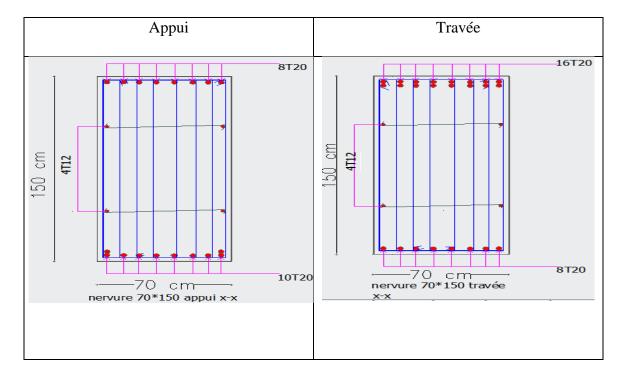
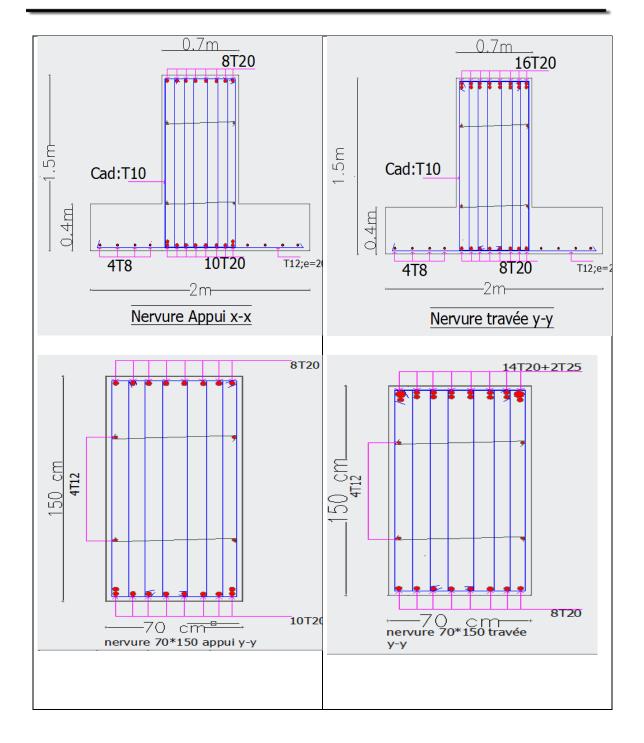





Figure VI.5 : Schéma de ferraillage de la semelle suivant Y-Y.

**Tableau VI.2 :** Section de ferraillage des nervures suivant (X-X) et (Y-Y)





# **V**érification de la stabilité au renversement :

Pour assurer la stabilité du bâtiment au renversement il faut que la condition suivante soit vérifiée :

$$e = \frac{M}{N} \le \frac{B}{4} \implies Art 10.1.5 RPA 99/V2003$$

Avec : M : le moment de renversement qui peut être causé par l'action sismique.

N : le poids total de la structure y compris le poids des fondations et éventuellement au poids du remblai.

#### 1) Pour la structure gauche :

Suivant x-x : B=36,05 M; N= 49000 KN; M= 103549 KN.M

$$\frac{M}{N} = \frac{103549}{49000} = 2,66 \text{ m}.$$

$$\frac{B}{4} = \frac{36,05}{4} = 9\text{m.} \Rightarrow \frac{M}{N} = 2,66\text{m} < \frac{B}{4} = 9\text{ m.} \Rightarrow \text{v\'erifie}$$

Suivant y-y: B=19,32 m; N =49000 KN; M= 167202 KN.M

$$\frac{M}{N} = \frac{167202}{49000} = 3.4 \text{ m}.$$

$$\frac{B}{4} = \frac{19,32}{4} = 4,8 \text{ m.} \Rightarrow \frac{M}{N} = 3,4 \text{ m} < \frac{B}{4} = 4,8 \text{ m.} \Rightarrow \text{v\'erifie}$$

#### 2) Pour la structure droite :

Suivant x-x: B=29,54 m; N=33000 KN; M=94313 KN.M

$$\frac{M}{N} = \frac{94313}{33000} = 2,86 \text{ m}.$$

$$\frac{B}{4} = \frac{29,54}{4} = 7,4 \text{m.} \Rightarrow \frac{M}{N} = 2,86 \text{m} < \frac{B}{4} = 7,4 \text{ m.} \Rightarrow \text{v\'erifie}$$

Suivant y-y: B=19,32 m; N=33000 KN; M=141913 KN.M

$$\frac{M}{N} = \frac{141913}{33000} = 4.3 \text{ m}.$$

$$\frac{B}{4} = \frac{19,32}{4} = 4,8 \text{ m.} \Rightarrow \frac{M}{N}4,3 = \text{m} < \frac{B}{4} = 4,8 \text{ m.} \Rightarrow \text{v\'erifie}$$

#### **Conclusion:**

La stabilité au renversement est vérifiée.

#### VI.5: Calcul des longrines

Selon le RPA ; la solidarisation par longrines ou dispositif équivalent est toujours exigée « RPA Art 10.1.1 ».

Les longrines doivent être calculées pour résister à la traction sous l'action d'une force égale à :

$$F = \frac{N}{\alpha} \ge 20KN.$$

N : égale à la valeur maximale des charges verticales de gravité apportées par les points d'appui solidarisés.

 $\alpha$ : Coefficient fonction de la zone sismique et la catégorie de site considérée.

Il est plus pratique de calculer le ferraillage nécessaire et après choisir une section du béton (le béton ne participe pas à la résistance à la traction).

**A.N**:  $N_u = 4796,58 \text{ KN}$ ;  $N_s = 3486,53 \text{ KN}$ ;  $\alpha = 12 \text{ (site S2 ; zone III)}$ .

- A' ELU :
$$F = \frac{N_u}{\alpha} = \frac{4796,58}{12} = 399,72 \text{ KN}.$$

$$A_s \ge \frac{F}{\sigma_S} = \frac{399,72 * 10^3}{435} * 10^{-2} = 9,19 \text{ cm}^2.$$

- ELS: 
$$F = \frac{N_s}{\alpha} = \frac{3486,53}{12} = 290,54 \text{ KN}.$$

$$A_s \ge \frac{F}{\sigma_s}$$
;  $\sigma_S = 90\sqrt{n * f_{t28}} \Longrightarrow$  (fissuration trés préjudiciable)

$$\sigma_{\rm S} = 9\sqrt{1.6 * 2.1} = 165 \text{ MPa}.$$

$$A_s \ge \frac{290,54 * 10^3}{165} * 10^{-2} = 17,61 \, cm^2.$$

 $A_s \ge \min(17,61; 9,19).$ 

$$A_s \ge 17,61 \implies \text{choix} : 4T20 + 4T16 = 20,61 \text{ cm}^2.$$

#### **❖** Dimensionnement de la section du béton

Pour assurer les bonnes conditions de coulage on doit garder un espacement suffisant entre les armatures talque :  $e \ge 1.5 \ c_g$ 

 $C_g$  : Diamètre de plus grands granulats dans notre cas  $\implies$   $C_g = 2.5$  cm.

$$e \ge 1.5 * 2.5 = 3.75 \text{ cm}.$$

Donc pour une section carrée de côté a :

$$a \ge 10 + (2 * 3,75) + (2 * 2) + 1,6 \implies a \ge 23,1 \text{ cm}.$$

On adopte: a = 30 cm.

C.N.F: 
$$A_s \ge \frac{B*f_{t28}}{f_e} = \frac{30*30*2,1}{500} = 3,78 \text{ cm}^2 \implies \text{v\'erifier}.$$

RPA : 
$$A_s \ge 0.6\%B = 30 * 30 * \frac{0.6}{100} = 5.4 \text{ cm}^2 \implies \text{v\'erifier}$$

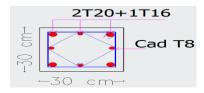



Figure VI.6 : Schéma de ferraillage de longrine.

#### VI.6: Etude du voile périphérique

Selon le RPA 99 ; les ossatures au-dessous du niveau de base du bâtiment doivent comporter un voile périphérique contenu entre le niveau des fondations et le niveau de base.

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec le plancher du RDC et les fondations.

#### VI.6.1 : Pré dimensionnement

Pour le pré dimensionnement du voile périphérique ; on se référé aux prescriptions du RPA 99 V2003 ; qui stipule d'après l'article 10.1.2.

Ce voile doit avoir les caractéristiques minimales ci-dessous :

- Epaisseur  $\geq 15 cm$ .
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0,1% B dans les deux sens (B : section du voile).
- Les ouvertures dans ce voile ne doivent pas réduire sa rigidité d'une manière importante.

#### VI.6.2: Evaluation des charges et surcharges

On considère le voile comme une dalle plaine reposant sur 4 appuis et qui supporte les charges horizontales dues aux poussées des terres.

On considère le tronçon le plus défavorable :  $L_{\rm x}=2{\rm m}$  ;  $L_{\rm y}=6.7{\rm m}$ .

Le voile périphérique est soumis à :

La poussée des terres G

$$G = h * \gamma * tg^2 * \left(\frac{\pi}{4} - \frac{\phi}{2}\right) - 2 * c * tg(\frac{\pi}{4} - \frac{\phi}{2})$$

Avec:

 $\gamma$ : le poids volumique du sol KN/ $m^3$ 

φ: l'angle de frottement interne.

C: cohésion du sol (KPa).

#### Remarque

On considère c=0 (le cas le plus défavorable)  $\gamma=19\frac{KN}{m^3}$  ; h=2m ;  $\phi=30^\circ$ 

$$G = 2 * 19 * tg^{2}((\frac{\pi}{4} - \frac{30}{2})) = 12,68 \text{ KN/m}^{2}$$

$$P = 1,35G = 1,35 * 12,68 = 17,12 \text{ KN/m}^2$$
.

#### VI.6.3: Effort dans la dalle

$$\frac{L_x}{L_v} = \frac{2}{6.7} = 0.3 < 0.4 \Rightarrow \mbox{la dalle travaille dans une seule direction}.$$

$$M_t = 0.8 * M_0 ; M_a = 0.5 * M_0$$

$$M_0 = \frac{ql^2}{8}$$
;  $q = 17,12 * 1 = 17,12 KN/m$ 

$$M_0 = \frac{17,12 * 2^2}{8} = 8,56 \text{ KN. m/m}$$

$$M_t = 0.8 * 8.56 = 6.85 \text{ KN. m/m}$$

$$M_a = 0.5 * 8.56 = 4.28 \text{ KN. m/m}$$

#### VI.6.4: Calcul du ferraillage

B=100 cm; h=15 cm;  $\sigma_{bc}$  = 14,17 MPa;  $\sigma_{s}$  = 435 MPa

- Pour la travée :

$$\mu = \frac{6,85*10^6}{1000*130^2*14.17} = 0,029 \ \Rightarrow \text{As'} = 0.$$

$$\alpha = 0.037 \Rightarrow z = 12.8 \text{ cm}.$$

$$As \ge \frac{6.85 * 10^6}{435 * 128} * 10^{-2} = 1.23 \ cm^2.$$

RPA: As 
$$> 0.1\% * 35 * 100 = 1.5 cm^2$$

CNF: As 
$$> 0.6\%_0 * 15 * 100 = 0.9 \text{ cm}^2$$

Choix:  $5T10/m = 3.93 \text{ cm}^2/m$ ; (T10; e=25 cm)

- Pour l'appui : (même calcul)

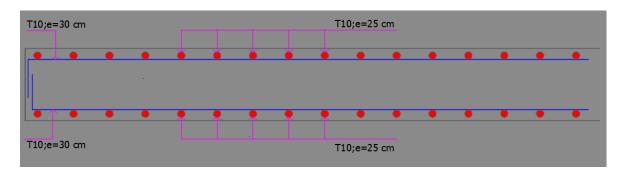
Choix:  $5T10/m = 3.93 \text{ cm}^2/m$ ; (T10; e=25 cm)

Pour les armatures de répartition Ar :

On prend Ar =  $4T10 = 3.14 \text{ cm}^2/\text{m} (T10 \text{ ; e}=30 \text{ cm})$ 

#### VI.6.5 : Vérification de l'effort tranchant

Nous devons vérifier que : 
$$\tau_u = \frac{T_u^{max}}{b*d} \leq \overline{\tau_u}$$


$$\overline{\tau_u} = \min(4 \text{ MPa}; \frac{15*fc_{28}}{\gamma_h}) = \min(4 \text{ MPa}; 2.5 \text{ MPa}) = 2.5 \text{ MPa}.$$

$$T_u^{\text{max}} = \frac{q * l}{2} = \frac{17,12 * 2}{2} = 17,12 \text{ KN}.$$

$$\tau_{\rm u} = \frac{17,12*10^3}{1000*130} = 0,13~\text{MPa}.$$

$$\tau_u = 0.13 \; \text{MPa} \leq \overline{\tau_u} = 2.5 \; \text{MPa.} \Rightarrow \text{v\'erifier}$$
 .

# VI.6.6 : Schéma de ferraillage



Figue VI.7: Ferraillage de voile périphérique suivant X-X.

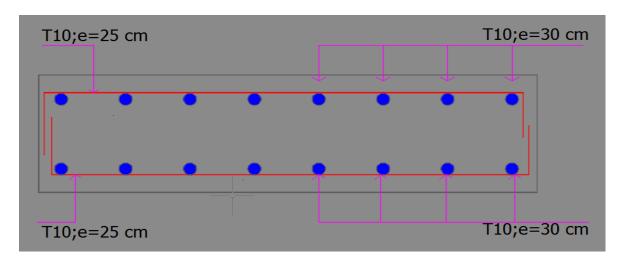



Figure VI.8 : Ferraillage de voile périphérique suivant Y-Y.

# CHAPITRE VII Etude Thermique Comparative.

#### **VII.1: Introduction**

Parmi les actions qui s'applique sur les constructions on trouve l'action de la température (T) ; elle devient influente si les dimensions en plan dépassent une certaine valeur (en général 25 m à 30 m).

Dans ce cas on est obligé de prendre en considération la charge de la température dans les calculs et les justifications ; sinon on doit réaliser un joint de dilatation.

Dans notre structure le concepteur a prévu un joint qui divise le bâtiment en deux.

Pour bien comprendre on fait une étude thermique sans joint et comparer avec la présence du joint ; et conclure qu'elle est le bon choix vis-à-vis le coût et les sollicitations.

#### VII.2 : Hypothèses et méthodes de calculs

#### VII.2.1 : Définition de la charge de la température (T)

La température est une déformation imposée « charge indirecte » qui provoque des efforts normaux de traction et de compression dans les poutres exposées à ces variations.

L'allongement et le raccourcissement des poutres provoquent un moment de flexion et un effort tranchant supplémentaire dans les poteaux.

#### VII.2.2 : Le calcul à la température

Afin de quantifier les induits par la température dans les différents éléments de la structure ; un calcul à la température a été conduit sur la base de la réglementation en vigueur.

Notre structure se situe à la wilaya de TIPAZA ; qui est une wilaya côtière ; la valeur de la variation de la température saisonnière est entre 35 C° et -15 C° selon le CBA 93.

Pour calculer la variation uniforme de la température  $\Delta T$  pour notre structure le CBA 93 recommande l'intervalle  $T_0$  (la température initiale au moment de la réalisation) entre  $+10C^{\circ}$  et  $+25C^{\circ}$ .

$$\Delta T_{u1} = T_{max} - T_0 \Longrightarrow T_{max} = +35 c^{\circ}$$

$$\Delta T_{u2} = T_{min} - T_0 \Longrightarrow T_{min} = -15 \; c^\circ$$

$$T_0 = (10; 25 \, \text{C}^\circ)$$

A défaut de justification plus précise ; on définit les variations uniformes de température suivant les bornes de l'intervalle  $+10^{\circ}$  et  $+25^{\circ}$  ; donc :

Cas 1 : 
$$\Delta T = +35 - (+10) = +25 \, \text{C}^{\circ}$$

Cas 2: 
$$\Delta T = +35 - (+25) = +10 \, \text{C}^{\circ}$$

Cas 3 : 
$$\Delta T = -15 - (+10) = -25 \, \text{C}^{\circ}$$

Cas 4 : 
$$\Delta T = -15 - (+25) = -40 \, \text{C}^{\circ}$$

Alors : 
$$\Delta T_{u1} = +25 \, \text{C}^{\circ}$$
;  $\Delta T_{u2} = -40 \, \text{C}^{\circ}$ 

#### VII.2.3: Hypothèses et combinaisons de calcul

- A) Le coefficient de dilatation thermique du béton armé  $\alpha = 10^{-5} C^{-1}$
- B) La température est généralement considérée comme un cas de charge lentement variable qui est donc introduite avec le module de déformation longitudinale différée  $E_{\rm v}=10819$  MPa.

Pour les combinaisons à considérées :

- 1,35G+ 1,35T+ Q⇒ ELU
- $1,35G + 1,5Q + 0,8T \Longrightarrow ELU$
- $G+T \Longrightarrow ELS$

#### VII.3 : Sollicitations et ferraillage des poutres

**N.B**: L'effet de la variation uniforme de température est généralement plus prononcé pour les poutres exposées en permanence aux conditions climatiques extérieurs ; induisant des efforts de traction ou de compression.

Les poutres qui sont sollicitées généralement en flexion simple sous les autres cas de charges ; se trouvent sollicité en flexion composée lorsque l'effet de la température est pris en compte.

#### VII.3.1 : Sollicitations de calcul

Les sollicitations de calcul (effort normal N et moment de flexion M) dans les poutres les plus exposées sont extraies directement de notre modèle dans le SAP2000.

**Remarque :** Les poutres porteuses ne sont pas sollicitées par les contraintes thermiques.

**Tableau VII.1 :** Sollicitations les plus défavorables dans les deux poutres les plus exposées.

| Poutre | Section | Localisation | N (KN) | M (KN.M) |
|--------|---------|--------------|--------|----------|
| 1      | 30*45   | Appui        | 810    | -103     |
|        |         | Travée       | 810    | 97       |
| 2      | 30*45   | Appui        | 837    | -89      |
|        |         | Travée       | 837    | 59       |

Convention : N > 0 (traction)

N < 0 (compression)

#### VII.3.2 : Ferraillage des poutres

Le ferraillage longitudinal des poutres se fait à la flexion composée à l'aide du logiciel SOCOTEC.

Les résultats de calcul sont résumés dans le tableau ci-dessous :

**Tableau VII.2 :** Ferraillage longitudinale des poutres.

| Poutre | Section | Localisation | As (cm²) | As' (cm²) | Choix | As (cm²) |
|--------|---------|--------------|----------|-----------|-------|----------|
| 1      | 30*45   | Appui        | 15,9     | 2,73      | 8T16  | 16 ,08   |
|        |         | Travée       | 15,51    | 3,12      | 8T16  | 16 ,08   |
| 2      | 30*45   | Appui        | 15,31    | 3,94      | 8T16  | 16 ,08   |
|        |         | Travée       | 13,39    | 5,86      | 8T16  | 16 ,08   |

#### VII.3.3: Vérification à l'ELS

A L'ELS on doit vérifier que :

$$\sigma_{\rm bc} \leq \overline{\sigma_{\rm bc}} = 15 \, \rm MPa$$

$$\sigma_{\rm s} \leq \overline{\sigma_{\rm s}} = 201,63 \, {\rm MPa}$$

Les efforts à L'ELS sont extraits de notre modèle dans le SAP2000 avec la combinaison G+T.

#### Poutre 1:

- N = -368 KN.
- N = +599 KN.
- $M_t = 81 \text{ KN. M}$
- $M_a = -86 \text{ KN. M}$

#### Poutre 2:

- N = -340 KN.
- N = +617 KN.
- $M_t = 38,95 \text{ KN. M}$
- $M_a = -45 \text{ KN. M}$

Les vérifications sont faites par le SOCOTEC ; les résultats sont mentionnés dans le tableau suivant :

Tableau VII.3: Vérification des poutres à L'ELS.

| Poutre | Section | Localisation | $\sigma_{\mathrm{bc}}$ | $\overline{\sigma_{bc}}$ | Vérification | $\sigma_{\rm s}$ | $\overline{\sigma_{\rm s}}$ | Vérification |
|--------|---------|--------------|------------------------|--------------------------|--------------|------------------|-----------------------------|--------------|
| 1      | 30*45   | Appui        | 9,2                    | 15                       | Oui          | 297              | 201,63                      | Non          |
|        |         | Travée       | 8,75                   | 15                       | Oui          | 286              | 201,63                      | Non          |
| 2      | 30*45   | Appui        | 5,54                   | 15                       | Oui          | 259              | 201,63                      | Non          |
|        |         | Travée       | 5,05                   | 15                       | Oui          | 243              | 201,63                      | Non          |

La contrainte de traction dans les aciers n'est pas vérifiée ; il faut augmenter la section de l'acier et par conséquent la section du béton.

On recalcule la quantité des armatures nécessaire pour que L'ELS soit vérifié ; à l'aide du SOCOTEC on obtient les résultats suivants :

**Tableau VII.4:** Ferraillage longitudinal des poutres à L'ELS.

| Po | outre | Section | Localisation | As (cm²) | As' (cm²) | Choix | As (adp)<br>(cm²) |
|----|-------|---------|--------------|----------|-----------|-------|-------------------|
|    | 1     | 30*45   | Appui        | 24,9     | 4,53      | 8T20  | 25,13             |
|    |       |         | Travée       | 24,1     | 4,97      | 8T20  | 25,13             |
|    | 2     | 30*45   | Appui        | 23,7     | 5,8       | 8T20  | 25,13             |
|    |       |         | Travée       | 21,2     | 6,7       | 8T20  | 25,13             |

Pour pouvoir disposer les barres d'acier on doit augmenter la largeur de la poutre de  $5 \text{ cm} \Rightarrow (35*45)$ .

#### VII.4: Comparaison; conclusion et recommandations

#### VII.4.1 : Comparaison des résultats

Après calcul de ferraillage des poutres avec la présence de l'action de la température (T) on va comparer les résultats avec celle trouvé précédemment en absence de la charge de la température ; on résume tout ça dans le tableau suivant :

|          |                 |        |        | Avec joint                | Sans joint                 |
|----------|-----------------|--------|--------|---------------------------|----------------------------|
|          | Section (béton) |        |        | 30*45 (cm)                | 35*45 (cm)                 |
|          | ferraillage     | Appui  | As     | 6T12=6,79 cm <sup>2</sup> | 8T20=25,13 cm <sup>2</sup> |
|          |                 |        | As'    | 3T12=3,39 cm <sup>2</sup> | 4T20=12,57 cm <sup>2</sup> |
|          |                 | Travée | As     | 6T12=6,79 cm <sup>2</sup> | 8T20=25,13 cm <sup>2</sup> |
| e 1      | feri            |        | As'    | 3T12=3,39 cm <sup>2</sup> | 4T20=12,57 cm <sup>2</sup> |
| Poutre 1 |                 | Somme  | As+As' | 10,18 cm <sup>2</sup>     | 37,7 cm <sup>2</sup>       |
|          | Section (béton) |        |        | 30*45 (cm)                | 35*45 (cm)                 |
|          |                 | Appui  | As     | 6T12=6,79 cm <sup>2</sup> | 8T20=25,13 cm <sup>2</sup> |
|          | ferraillage     |        | As'    | 3T12=3,39 cm <sup>2</sup> | 4T20=12,57 cm <sup>2</sup> |
|          |                 | Travée | As     | 6T12=6,79 cm <sup>2</sup> | 8T20=25,13 cm <sup>2</sup> |
| re 2     |                 |        | As'    | 3T12=3,39 cm <sup>2</sup> | 4T20=12,57 cm <sup>2</sup> |
| Poutre   |                 | Somme  | As+As' | 10,18 cm <sup>2</sup>     | 37,7 cm <sup>2</sup>       |

**Tableau VII.5 :** Comparaison des résultats.

On voit bien que le ferraillage des poutres a augmenté considérablement dans le cas de la présence de l'action thermique (sans joint de dilatation) ; c'est à cause de la présence d'un effort normal supplémentaire (traction, compression) dans les poutres dû à la variation uniforme de la température (condition climatique).

Pour avoir l'ordre de grandeur on calcule un facteur « F » avec :

$$F = \frac{\Sigma As \text{ (sans joint)}}{\Sigma As \text{ (avec joint)}} = \frac{37.7}{10.18} = 3.7$$

- Donc la quantité d'acier nécessaire à augmenter de 4 fois c.à.d. 300%.
- La quantité de béton à augmenter de 17%.
- Avec ces données uniquement on ne peut pas juger que réaliser un joint de dilatation c'est le meilleur choix ; car on double les poteaux au voisinage du joint et par conséquence on va multiplier la quantité du matériau (Béton +acier) par 2.

Donc pour pouvoir juger quelle est la solution la plus économique ; on fait une petite étude métré et estimation de coût.

## VII.4.2 : étude économique (estimation du coût)

**N.B**: On considère que : le prix de m³ de béton coute 8000 DA et le prix de 100 Kg d'acier (1 quintal) coute 10000 DA.

#### A) avec joint:

#### A.1) Pour les poteaux :

| Désignation | P.U      | U       | Quantité | Prix total  |
|-------------|----------|---------|----------|-------------|
| Béton       | 8000 DA  | $m^3$   | 93       | 744 000 DA  |
| Acier H.A   | 10000 DA | Quintal | 79,04    | 790 400 DA  |
| Total       | -        | -       | -        | 153 4400 DA |

#### A.2) Pour les poutres :

| Désignation | P.U      | U              | Quantité | Prix total  |
|-------------|----------|----------------|----------|-------------|
| Béton       | 8000 DA  | $\mathrm{m}^3$ | 145,8    | 116 6400 DA |
| Acier H.A   | 10000 DA | Quintal        | 86,3     | 863 000 DA  |
| Total       | -        | -              | -        | 202 9400 DA |

Le coût total avec joint = 356 3800 DA.

#### **B)** Sans joint:

#### B.1) Pour les poteaux :

| Désignation | P.U      | U       | Quantité | Prix total |
|-------------|----------|---------|----------|------------|
| Béton       | 8000 DA  | $m^3$   | 46,49    | 371 920 DA |
| Acier H.A   | 10000 DA | Quintal | 39,52    | 395 200 DA |
| Total       | -        | -       | -        | 767 120 DA |

#### B.2) Pour les poutres :

| Désignation | P.U      | U              | Quantité | Prix total  |
|-------------|----------|----------------|----------|-------------|
| Béton       | 8000 DA  | $\mathrm{m}^3$ | 170,1    | 136 0800 DA |
| Acier H.A   | 10000 DA | Quintal        | 319,62   | 319 6200 DA |
| Total       | -        | -              | -        | 455 7000 DA |

Le coût total sans joint = 532 4120 DA.

Donc on voit bien que le coût total sans joint est largement supérieur au coût avec joint ; on calcule la différence :

Avec la réalisation du joint de dilatation thermique ; nous avons économisé environs 176 millions de centime.

$$F = \frac{5324120}{3563800} = 1.5 \iff$$
 Le coût augmente avec environ 50%.

#### VII. 5: Conclusion

La réalisation d'un joint de dilatation thermique est le bon choix ; car il est économique par rapport à la réalisation du bâtiment sans joints.

#### **CONCLUSION GENERALE**

L'étude de cet ouvrage nous a permis d'arriver à certaines conclusions qui sont :

- ❖ Le pré dimensionnement est une étape importante pour estimer l'ordre de grandeur des éléments structuraux avant d'entamer ; le ferraillage et les vérifications.
- ❖ La modélisation doit autant que possible englober tous les éléments de la structure ; ceci permet d'avoir un comportement proche de la réalité.
  - L'irrégularité de la structure complique le choix de la disposition des voiles.
  - ❖ On a constaté que le RPA favorise la sécurité devant l'économie.
- ❖ Le radier générale n'est pas toujours la solution miracle ; surtout quand la structure et irrégulière en élévation ; car dans ce cas le radier va engendrer les tassements différentiels (les semelles filantes croisées peuvent régler le problème).
- ❖ L'étude thermique comparative nous a confirmé que l'ingénieur doit toujours prendre en considération le facteur économique.
- ❖ Dans le cas des ouvrages qui ont de grandes dimensions en plans ; l'effet de la température peut être dominant dans les poutres.
- ❖ En fin; notre souhait le plus cher est de voir notre travaille servir les futures promotions.

# Bibliographie

- \* Règles Parasismiques Algériennes, Edition CGS, RPA 99 / version 2003.
- \* Règles BAEL 91 modifiées 99, Edition Eyrolles, Troisième édition 2000.
- ❖ Règles de conception et de calcul des structures en béton armé (CBA93), Edition CGS,Décembre 1993.
- DTR B.C.2.2, charges permanentes et charges d'exploitations, Edition CGS, Octobre 1988.
- ❖ M.Belazougui, calcul des ouvrages en béton armé, Edition office des publications universitaires, (OPU).
- ❖ Cours de béton armé, 3<sup>ème</sup> année et master Génie Civil.
- Anciens mémoires de fin d'étude.
- \* Rapport de sol.