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Abstract

The main purpose of this thesis paper deals with large and heterogenous formats of data.
The reason behind why Big Data is so immense goes back to the five V’s: Variety, Veracity,
Volume, Velocity and Value. Our research aims to tackle the Variety and Value aspect of big
data. Compromised within our research, we will be working in a Data Lake environment. DL’s
are made up with several components such as; Data Ingestion, Meta Data, Data Governance,
Data security, etc. The module we have chosen to work on is Data Ingestion. Our study’s aim
is to ingest massive volumes of information from various sources into a Lake environment. To
ingest our data, we will be implementing the Extract, Load, Transform (ELT) process instead of
Extract, Transform, Load (ETL). The reason behind this decision was because we’re working in
a Data Lake environment, so data must be loaded in AS IS format with light transformations
only. After exploring various data ingestion frameworks, we came across several solutions. The
one that stood out from the crowd was Apache Spark. After thoroughly analyzing the framework,
we found a couple of missing elements. After adopting Sparks framework, we proceeded to
extend it by adding two of our features. The first is a Data Classifier and the second is a Data
Visualizer. The new data ingestion platform has been developed in PyCharm IDE, Apache Spark
3.0.0, using Python 3.6, under Ubuntu 20 and the Data Lake we chose is Hadoop.

Keywords:
Data Lake, Data Ingestion, ELT, Data Classifier, Data Visualizer and Big Data.
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Résumé

L’objectif principal de ce raport de thèse porte sur des formats de données volumineuses et
hétérogènes. La raison pour laquelle le Big Data est si immense remonté aux cinq Vs: Variété,
Véracité, Volume, Vélocité et Valeur. Notre recherche vise à aborder l’aspect variété et Valeur
des mégas données. Compromis dans nos recherches, nous travaillerons dans un environnement
data Lake. Les DL sont constitués de plusieurs composants tels que Ingestion de données,
Métadonnées, Gouvernances des données, Sécurité des données, etc. La partie sur laquelle nous
avons choisie de travailler est l’ingestion de données.
L’objectif de notre étude est d’ingérer des massifs volumes d’informations, provenant de diverses
sources dans un environnement lacustre.

Pour ingérer nos données, nous mettrons en œuvre le processus Extract, Load, Transform
(ELT) au lieu d’Extract, Transform, Load (ETL) à La raison que nous travaillons dans un
environnement data Lake, les données doivent donc être chargées au format AS IS avec des
transformations légères uniquement. Après avoir exploré divers frameworks d’ingestion de
données, nous avons trouvé de plusieurs solutions. Apache Spark était à la tête de pertinence.

Après une analyse approfondie du cadre, nous avons trouvé quelques éléments manquants.
En adoptant le framework Sparks, nous vons procédés à son extension en ajoutant deux de nos
contributions. Le premier est un classificateur de données et le second est un visualiseur de
données. La nouvelle plate-forme d’ingestion de données a été développée dans PyCharm IDE,
Apache Spark 3.0.0, en utilisant Python 3.6, sous Ubuntu 20 et le data Lake que nous avons
choisi est Hadoop.

Mots clés:
Data Lake, L’ingestion des données, ELT, Classifieur, Visualiseur, Données Massives.
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General introduction

Context

In the period of data and information, the idea of big data is no longer something that fascinates
businesses and society. For many years, big data has existed. It has been made clear that through
big data solutions, establishments produce insights and make informed decisions, take notice of
new trends and improve efficiency.
Big data can be defined as: “high-volume and variety of information assets that are generated at
an extremely high speed”. The word ‘big data’ refers to data sets that are complex and enormous
in terms of quantity. Market trends, unknown associations, patterns, customer preferences, etc.
can all be found in big data, and need to be discovered. Occasionally, Big Data defines the
process of gathering and examining great quantities of information, allowing businesses to make
knowledgeable decisions. Big data cannot be handled by old and traditional data processing apps
since it heterogenous.
Massive data can be created and collected from numerous sources, including social media
networks, websites, mobile applications, text messages, geographical locations and other media
files, etc. Sensors and Internet-of-Thing’s devices are the main drivers for the exponential
growth of our data. If analyzed correctly, these data points can explain a lot about our behavior,
personalities, and life events. The notion of big data and its importance has been around for
years, but only lately has technology permitted the speed and efficacy at which immense sets of
data can be analyzed. Both structured and unstructured grows significantly in the next few years,
it will be collected and observed to expose unexpected insights and even benefit the prediction of
our future.
The generation of large data at extremely short period of time has woken up a question: Where
and how can we store it? The big data solutions framework is understanding big data storage
methods on an enterprise level. This means being able to store and manage virtually unbounded
volumes of data. Big data is often stored in a Data Lake. While data warehouses are commonly
built on relational databases and contain structured data only, data lakes can support various
data types and typically are based on Hadoop clusters, cloud object storage services, NoSQL
databases or other big data platforms. The data in big data systems may be left in its raw
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form and then filtered and organized as needed for particular analytics uses. In other cases, it’s
preprocessed using data mining tools and data preparation software so it’s ready for applications
that are run regularly.
Since data is so massive, heterogenous and is arriving at a fast speed, it has been quite difficult to
load it into a data lake repository. The aim of data ingestion solutions was to aid scientists to
make data ingestion somehow unchallenging. Even though the most difficult area when dealing
with big data is finding how to ingest it since it’s not a simple task to do and requires experts.
The most popular data ingestion solutions that were created are: Apache Spark, Apache Gobblin,
Marmaray and Lambda. These solutions have given a hand to experts to aid them in their difficult
task to load data into the lake.
Even though all these solutions that were listed above do in fact effortlessly ingest data into the
lake, they all share the same inconveniences in common. The cons that we found when studying
these solutions are that they all ingest data in an extremely chaotic manner. These solutions
also load data into the lake in an irrational method. The techniques and methods used in these
generated solutions have led to un ultimate mess in the data lake leading it to lose rationality
and value. The essential reason behind why data lakes turn in to swamps of data is a result of
careless organization of data.
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Problematic

In the last decade, we have witnessed a widespread use of Data Warehouses in particularly
for decision making and data analysis. We already know it is without doubt that warehousing
permits in loading preprocessed data to guarantee high performance when processing analysis on
data. In addition, data warehousing is essentially storing data while using ETL process (Extract,
Transform and Load). However, with the arrival of big data, the requirements for data analysis
have become tremendously complicated and problematic to determine. Unquestionably the main
issue with data warehouse that it’s in continuous change thus making it unstable when it comes
to making decisions. Also, data warehousing has found complications when loading various
formats of data, since each format requires special treatment. In addition to the list of limitations,
we often fail to estimate the time needed to retrieve, clean and load the data to the warehouse.
ETL tools are here to make the process faster however efficient transformation takes up to several
days or weeks.

To every problem there is a solution and that is Data Lakes. In a Lake environment, the
structure of data can vary from structured, unstructured or semi-structured. The special feature
of a Data Lake is that it loads data in its raw, untouched state also known as “As is” format.
Since Data Lakes use ELT to process data, it requires less time to complete the overall procedure
because we’re loading the data directly without applying any transformation thus making it
less time consuming. The ultimate path to solve this issue to create a framework that will load
heterogenous data into a Data Lake through ELT tools.

Data ingestion is one of the most essential layers in a Lake’s architecture. It’s responsible to
ingesting various formats of data that is arriving at different rates. We’ve decided to focus our
research in this specific fragment of the Data Lakes architecture. We wish to implement Apache
Sparks framework since its one of the most popular ingesting frameworks to exist and develop it
to increase the overall ingestion operation.
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Objectives and Contributions

As a part of our thesis project, we are keenly interested with working on massive and varied
data in a Data Lake environment. Data Lake’s are built up with many aspects such as, Data
Ingestion, Governance, Storage, Security, Analytics etc. The component we have selected to
work on and develop is Data Ingestion in a Lake environment.

The ingestion of data is effectively ingesting enormous sets of diverse data whether they’re
structured, unstructured or semi-structured data into a Data Lake. The procedure that will take
place in our ingestion of data is ELT (Extract, Load Transform) and not ETL (Extract, Transform
Load). Since we will be working in a Data Lake environment, we will be ingesting data in “AS
IS” format.

The framework we wish to adopt and develop is Apache Spark. We will be appending our
personalized features to improve the overall ingestion procedure in this framework. The two
elements that will be added are Data Classifier before the data is ingested in to our Data Lake and
Data Visualizer after the ingestion is completed. By integrating the data classifier/categorizer
and visualizer to Apache Spark’s solution, we will be solving the data organization issue that all
the solutions share in common. We aim to solve this matter by operating the classifier to place
our data in defined categories according to their format before the ingestion begins.

The data categorizer will also be ingesting and loading the data into defined categories in to
the Lake. This means that we will gain total order on the Lake itself and reduce the risk of it
transforming into an ocean of data. One of the biggest reasons for data lakes to fail is the lack of
planning. Organizations dump all company-related data into their data lakes – this should not be
done.

When placing the old approach next to our new approach, you can notice the difference
vividly. With the old approaches, data was ingested in a random manner into a data pipeline and
that was loaded directly into the data lake. Data that is ingested by these solutions and dumped
directly into the lake means there is a lack of organization. This leads us to understanding there
is a high risk of the Lake losing its value and transforming into an ocean of data. Secondly,
Data Lakes becoming disorderly will have major influence on the user, since without doubt they
will experience a tough challenge when searching for specific pieces of information or finding
their precise location. Thirdly, without proper visualization of data and especially when it’s in a
chaotic state, this will lead to difficulties in understanding the meaning of data to a normal user.

In contrast with our new approach, categorizing the data into various data pipelines before
ingesting it will help gain total control of the order in regards of the way data is getting ingested.
Categorizing the data before ingestion has also aided in loading the data into structured and
defined classes according to their format. This has also benefited the data lake in guarding its
order and minimizing the chances of it turning into a swamp. By classifying the data in the lake,
this will help users spend less time in understanding where their data is located therefore meaning
they’re saving time searching for information. In addition, to benefit the user in understanding
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the data inside the lake, we’ve implemented the data visualizer after the ingestion is completed.
This will benefit the end user in identifying patterns, better analysis, finding errors, grasping the
latest trends and the most important aspect is understanding the story.
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Motivation

One of the five key components of a Data Lake’s architecture is Data Ingestion. The ingestion
layer is a highly scalable layer in the system that extracts data from various sources. It should
be flexible to run in batch, one-time, or real-time modes, and it should support all types of
data along with new data sources. Throughout our thesis project we implemented the ingestion
of heterogeneous data in a Data Lake environment. The reason why we decided to work in a
Data Lake environment is because: Data lakes have become the foundation of many big data
enterprises, just as they offer easier and more flexible options to scale when working with high
volumes and varied data that’s being generated at a high velocity – such as web, sensor or app
activity data. Since these types of data sources have become progressively dominant, interest in
data lakes has also been growing at a rapid pace Also, the reason behind why we selected data
ingestion out of all the components of a Data Lake architecture is because many companies face
major challenge coming from the massive generation of information from multiple data sources.
Here is where data ingestion plays the main role by consolidating data and storing it in the Lake.
Data ingestion is one of the primary stages of the data handling process. By using appropriate
data ingestion tools companies can collect, import, process data for later use or storage in a Lake.
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Thesis Organization

To effortlessly present our thesis work, our report has been precisely structured into eight
chapters.

The first chapter possesses details regarding Data Warehouses. This chapter explains the
function, types, schemas and architecture of DW. It also includes a detailed description of OLAP
and OLTP operations.

The second chapter contains all the fundamental data such as: The concept of big data. We
answered questions to what makes data tremendously big and what are its advantages. We went
in depth and explained big data’s ecosystem and all the components of its architecture, including
ELT/ETL ingestion techniques.

Chapter three is where we break down the details of Data Lake environment. This chapter
holds information such as: Importance, value, principals and the different technologies of a DL.
To close off, in a table, we compared both Warehouses and Lakes.

The following chapter is Data Ingestion, here we described all the different layers to ingest
data. In addition, Data Pipelines, CDC, data ingestion parameters and ingestion tools (Sqoop,
Kafka, Fluentd & SAS) were all clarified in chapter five.

Compromised within chapter six are the various data ingestion solutions we found such as:
Apache Spark, Gobblin, Marmaray and Lambda. To end this chapter, we provided a table to
compare the solutions and select the one we found suitable for our requirements.

Chapter seven holds information concerning our contributions that were added to enhance the
overall data ingestion procedure. Here, we’ve unraveled the two features that have been integrated
with precise explanations and definitions. Finally, the last chapter is the implementation stage
to finalize our theories. In this chapter, we present screenshots and detailed explanation of our
application.
Finally, chapter eight holds the general conclusion of the entire report. Throughout this chapter
we have managed to summarize every topic and subject that was explained. In addition, we’ve
added a segment called Future Work. In this fragment, we have explained our work that will be
integrated in the future.
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PART 1

The Fundamentals
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Chapter 1

Data Warehouse

Amid the first chapter, the information is all related to data warehouse. After a quick

introduction to the topic, follows all the steps related to how the process of data warehousing

functions. After that, all the types of data warehouses that are offered followed with their detailed

definition. Next, the list of schemas that are implemented in the warehouse with their illustrations.

Subsequently, we’ve presented the DW architecture and all the different procedures included

(OLAP and OLTP). To close this chapter, we’ve laid down the advantages and disadvantages of

warehouse and a conclusion.

1.1 Introduction

Data Lakes and Data Warehouses are both widely used for storing big data, but they are not
interchangeable terms. A data lake is a vast pool of raw data, the purpose for which is not yet
defined. A data warehouse is a repository for structured, filtered data that has already been
processed for a specific purpose.
The two types of data storage are often confused, but are much more different than they are alike.
In fact, the only real similarity between them is their high-level purpose of storing data. The
distinction is important because they serve different purposes and require different sets of eyes to
be properly optimized. While a data lake works for one company, a data warehouse will be a
better fit for another.
The reason behind why we have a whole chapter dedicated to data warehouse is because we
would like to clarify the difference between a warehouse and a lake. In addition, we aim to break
down the different aspects of data warehouses, architecture, principals and the process they use
to store data and accordingly compare them to a data lake.
A Data Warehouse (DW) is a procedure for collecting and handling data from diverse sources to
provide meaningful business insights. A Data Warehouse is usually used to connect and analyze
business data from heterogeneous sources. The data warehouse is the core of the BI system
which is built for data analysis and reporting.[10]
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An average data warehouse regularly contains the following elements:

• A relational database to store and manage data.

• An extraction, loading, and transformation (ETL) solution for preparing the data for
analysis.

• Statistical analysis, reporting, and data mining capabilities.

• Client analysis tools for visualizing and presenting data to business users.

1.2 Data Warehouse Functionality

Information arrives from one or many data sources and is placed in a central repository. Data
flows into a data warehouse from the transactional system and other relational databases. Data
may be structured, semi-structured or unstructured data. Data Warehouse stores data in files or
folders which helps to organize and use the data to take strategic decisions.[2]
The important functions which are needed to perform are:

• Data Extraction

• Data Cleansing

• Data Transformation

• Data Loading and Refreshing

The data is processed, transformed, and ingested so that users can access and work with the
processed data in the Data Warehouse through the help of many tools. A data warehouse
combines information coming from different sources into one comprehensive database. By
merging all of this information in one place, this aids organization to analyze its customers more
accurately. Data warehousing also makes data mining possible.

1.3 Categories of Data Warehouse

1. Enterprise Data Warehouse (EDW): Is a centralized warehouse.It offers decision sup-
port service across the enterprise, an integrated approach for organizing and representing
data. It also provides the capability to classify data according to the subject.[13]

2. Operational Data Store (ODS): In ODS, Data warehouse is refreshed in real time. Hence,
it is widely preferred for routine activities like storing records of the Employees.

3. Data Mart: A data mart is a subset of the data warehouse. It is specifically designed for a
precise line of business, such as sales or finance. In an independent data mart, data can
collect directly from sources.
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1.4 Data Warehouse Schemas

The Data Warehouse Schema is a structure that reasonably defines the contents of the Data
Warehouse , by facilitating the operations performed on the Warehouse. A schema is a logical
description that describes the entire database.[13]
There are three types:

1. Star schema It is a really basic structure to store the data in the data warehouse. The
center of this start schema one Fact table which links a series of Dimension tables. It is
crucial to fully understand the fact and dimension tables to be able to comprehend the star
schema.[2]
An example of a star schema is illustrated in Figure 1.1

Figure 1.1: Star-schema-illustration [27]

2. Snowflake schema The snowflake schema is the multidimensional structure. Similar as
the star schema the Fact table connects to the Dimension table but the only difference to
achieve the snowflake schema is to divide the Dimension tables into sub-dimension tables.
It is a very complex database design but it manages to keep a low-level data redundancy.
An example of a snowflake schema is described in Figure 1.2 below.

Figure 1.2: Snowflake-schema-illustration [27]
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3. Galaxy/constellation schema The constellation schema means two or more Fact tables
sharing one or more Dimensions. This schema describes a logical structure of data
warehouse or data mart. It is a sophisticated database design that is difficult to summarize
information.
Figure 1.3 is a representation of a galaxy schema.

Figure 1.3: Galaxy-schema-illustration [28]

1.5 Data Warehouse Architecture

There are three approaches for constructing Data Warehouse layers: Single Tier, Two tier
and Three tier.

• Single-tier architecture:The main objective of this architecture is to reduce the
amount of data stored and remove data redundancy. This architecture is not frequently
used.

• Two-tier architecture: This type of architecture separates physically accessible
sources and data warehouse. This architecture faces a lot of issues which are: It is
not expandable, does not support a large number of end-users and has connectivity
problems because of network limitations.

• Three-Tier Architecture: This is the most widely used Architecture of Data Ware-
house. It consists of the Top, Middle and Bottom Tier.

– Bottom Tier: Is the database of the warehouse. It is usually a relational database
system. The data is cleansed, transformed, and loaded into this layer.

– Middle Tier: The middle tier in Data warehouse is an OLAP server which is
implemented using either ROLAP or MOLAP model.

– Top-Tier: The top tier is a front-end client layer. This tier contains all the tools
and API that you connect and get data out from the data warehouse. It could
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be Query tools, reporting tools, managed query tools, Analysis tools and Data
mining tools.

1.6 OLAP(Online Analytical Processing)

OLAP is a software that lets users to analyze information from several database systems at the
same time. It is a technology that allows analysts to extract and view data from different points
of view.
OLAP Cube:Figure 1.4 below, is an illustration that describes an abstract version of the OLAP
cube. It is a data structure which has been adjusted for extremely quick data analysis. A Data
warehouse would extract information from various data sources. After that, the extracted data is
cleaned and transformed. Later on, data is loaded into an OLAP server or OLAP cube where
information is pre-calculated in advance for further analysis.

Figure 1.4: OLAP-cube-description [29]

1.6.1 OLAP Operations

Roll-up
Roll-up is also known as "aggregation". The rollup operation performs aggregation on a data
cube. It can be performed in two ways

• Reducing dimensions.

• Climbing up the hierarchy. Concept hierarchy is grouping things based on their order or
level.

Drill-down
It is data that is broken down into smaller chunks. It is the opposite of the rollup process. It can
be done via increasing dimension or moving down the concept hierarchy
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Slice/Dice
To slice and dice is to break a part of the information down into smaller parts or to study it from
different viewpoints so that you can understand it better.

Pivot
Pivot otherwise known as Rotate, changes the dimensional orientation of the cube; it rotates
the data axes to view the data from different perspectives. Pivot groups data with different
dimensions.

1.6.2 Advantages and Disadvantages of OLAP

Table 1.1 underneath presents two columns. The first column presents the advantages and the
second column presents the disadvantages that come with OLAP processing,

Advantages Disadvantages

• OLAP includes planning, budgeting, re-
porting, and analysis.

• Information and calculations are consis-
tent in an OLAP cube

• Quickly create and analyze "What if"
scenarios.

• OLAP provides tools such as modeling,
Data mining and performance reporting
forbusiness

• It is a powerful visualization online an-
alytical process system which provides
fasterresponse times.

• OLAP requires data to be organized in
either a star or snowflake schema. The-
seschemas are difficult to implement.

• In an OLAP cube you cannot have a
large number of dimensions.

• OLAP system cannot access transac-
tional data.

• The cube must be updated after any
modification. This is a time-consuming
process.

Table 1.1: Advantages and Disadvantages of OLAP

1.7 OLTP (Online Transaction Processing)

OLTP is an operational system that supports transaction-oriented applications in a three-tier
architecture[13]. It manages the everyday transactions of an organization. It enables the real-time
execution of large numbers of database transactions by large numbers of people, typically over
the internet. OLTP has placed the spotlight on query processing, preserving data integrity and
the effectiveness that is measured by the total number of transactions per second. Below is a list
of OLTP characteristics:
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• OLTP uses transactions that include small amounts of data.

• Process a large number of relatively simple transactions:insertions, updates, and deletions
to data, and simple data queries.

• The response time of OLTP system is short and very rapid.

• End-users can access directly to databases.

• OLTP uses a fully normalized schema for database consistency.

• It supports complex data models and tables.

1.8 Advantages and Disadvantages of Data

Warehouse

Table 1.2 below represents the pros and cons of a Data warehouse.

Advantages Disadvantages

• Data Warehouse aids to integrate many
sources of data.

• Data warehouse allows users to access
critical data from the number of sources
in a single place. Therefore, it saves
user’s time of recovering data from sev-
eral sources.

• Data warehouse stores a large amount
of historical data. This helps users to an-
alyze different time periods and trends
to make future predictions.

• Not an ideal option for unstructured
data.

• Creation and implementation of Data
Warehouse is time consuming.

• Data Warehouse can be outdated rela-
tively quickly.

• Difficult to make changes in data types
and ranges, data source schema, in-
dexes, and queries.

• The data warehouse may seem easy, but
actually, it is too complex for the aver-
age users.

Table 1.2: Advantages and Disadvantages of Data Warehouse
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1.9 Conclusion

Data warehousing is the foundation of automatic decision support system. It has been examined a
lot in the past ten years but still there are countless problems to be tackled in future. Performance
and organization are between the top research questions now. We have recognized some of the
newest tools available for data warehousing and classified the tools in rational manner. The
architecture of the data warehouse is also divided logically as well as a typical model of the
architecture is also given. We further analyzed some of the major research areas like OLAP
and OLTP. Finally, in a table placed a couple of benefits and inconveniences that concerns data
warehouses.
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Chapter 2

Big Data concepts

In this chapter, a thorough explanation of the basic concepts of big data. Also, the

five V’s that define why data is so big are listed below with detailed explanation. During this

chapter we will be presenting the challenges of Big Data and the advantages that come with it.

In addition, a detailed description on the different types of data (Structured, unstructured and

semi-structured). Correspondingly, this chapter contains a complete and detailed explanation

on big data’s ecosystem and all the different components that are held inside of it. This chapter

ends with a conclusion to sum up everything we discussed

2.1 Introduction

Big data is a term that describes the large volume of data – both structured and unstructured –
that engulfs a business on a day-to-day basis. But it’s not the amount of data that’s vital. It’s
what organizations do with the data that matters. Big data can be analyzed for insights that lead
to better decisions and strategic business moves.
Big Data helps the organizations to create new growth opportunities and entirely new categories
of companies that can combine and analyze industry data. These companies have plenty of
information about the products and services, buyers and suppliers, consumer preferences that
can be captured and analyzed.
The term “big data” refers to data that is so large, fast or complex that it’s difficult or impossible
to process using traditional methods. The volume, velocity and variety of big data is what makes
it so “Big”.
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2.2 V’s in Big Data

Big Data is broken down into five categories known as 5 V’s; Volume, Velocity, Variety, Veracity
and Value as portrayed in Figure 2.1

Figure 2.1: V’s in Big Data[14]

Volume
Volume refers to the incredible amounts of data generated each second from social media,
cell phones,cars, credit cards, photographs, video, etc. There’s a lot of data out there
and it comes in large amounts of data sizes of terabytes to zettabyte which is an almost
incomprehensible amount. With 90 Value When we talk about value, we’re referring to
the worth of the data being extracted.[17].

Value
When we talk about value, we’re referring to the worth of the data being extracted. The
majority of Data having no Value is of no good to the company, unless you turn it into
something useful. Having endless amounts of data is one thing, but unless it can be turned
into value it is useless.

Valocity
Velocity refers to the speed at which vast amounts of data are being generated, collected
and analyzed. It is the speed of which the data arrives ready to be processed. Every day
the number of emails, twitter messages, photos, video clips, etc. increases at lighting
speeds around the world. Every second of every day data is increasing. Not only must
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it be analyzed, but the speed of transmission, and access to the data must also remain
instantaneous.

Variety
Data is big, data is fast, but data is also extremely diverse. Data today looks very different
than data from the past. We no longer just have structured data (name, phone number,
address, financials, etc.) that fits nice and neatly into a data table. Today’s data is
unstructured. In fact, 80% of all the world’s data fits into this category, including photos,
video sequences, social media updates, etc.

Veracity
Veracity refers to the accuracy of data. Not all data is accurate or dependable, and with the
development of big data, it’s becoming harder to control which data brings which value. »

2.3 Big Data Challenges

As promising big data sounds, it comes with its challenges. First of all, it is called big data for
a reason. Although new technologies have been developed for data storage, data volumes are
still doubling in size. Big companies are still struggling to keep pace with their data and are
continuously finding ways to effectively store it.But it’s not enough to just store the data. Data
must be used to be valuable. It requires a lot of analysis and work to bring meaning to data.
This includes the cleansing of data and finding relevance within it. Data scientist say that they
would spend 50% to 80% of their time preparing data before it can actually be used. Finally, the
technology that is being used for big data is changing at tremendous speed. A few years ago, the
most popular technology that was used to handle big data was Apache Hadoop. After that in
2014 Apache Spark was introduced. Today, the best approach when dealing with big data would
be the combination of the two frameworks to keep up with the challenges faced.

2.4 Benefits of Big Data

• Big data makes it possible for you to gain more complete answers because you have more
information.

• More complete answers lead to more confidence in the data which means a completely
different approach to tackling problems.

• Identification of important information that can improve the quality of decision making.

• It can provide ideas from huge amounts of data from multiple sources that include those
that come from external third-party sources, the internet, social networks, those already
stored in company databases etc.
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• Big data is helpful in keeping data safe.

2.5 Types of Big Data

Structured data
Structured data is the only language a computer is capable of understanding. It concerns
all data which can be stored in database SQL in table with rows and columns. Structured
data represents only 5 to 10% of all informatics data. Structured data is the easiest type
of data to analyze because it requires little to no preparation before processing. The ETL
process for structured data stores the finished product in what is called a data warehouse[8].
These databases are highly structured and filtered for the specific analytics purpose the
initial data was harvested for.

Unstructured data
Unstructured data refers to the data that lacks any specific form or structure whatsoever.
This makes it very difficult and time-consuming to process and analyze unstructured data.
Unstructured data represents around 80% of data. It often includes text and multimedia
content. Examples include e-mail messages, word processing documents, videos, photos,
audio 10files, presentations, web pages and many other kinds of business documents. Just
as with structured data, unstructured data is either machine generated or human generated.
The hardest part of analyzing unstructured data is teaching an application to understand
the information it’s extracting. More often than not, this means translating it into some
form of structured data. Products like Hadoop are built with extensive networks of data
clusters and servers, allowing all of the data to be stored and analyzed on a big data scale.

Semi-structured data
Semi structured is the third type of big data. Semi-structured data pertains to the data
containing both the formats mentioned above, that is, structured and unstructured data.
Semi-structured data is information that doesn’t exist in a relational database but does
have some structural properties that make it easier to analyze. With some process you
can store them in relation database. For example, XML files or emails are examples of
semi-structured data. Semi-structured data has no set schema. This can be both a benefit
and a challenge. It can be more difficult to work with because effort must be put in to
tell the application what each data point means. But this also means that the limits in
structured data ETL in terms of definition don’t exist.
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2.6 Big Data Ecosystem

It’s not simple to extract data and it automatically turns valuable, it goes through many processes
of analysis that turn it into insights. Big data components pile up in layers, building a stack.
It’s a long difficult process that can take up to months maybe even years to implement. Data
must first be ingested from heterogeneous sources, translated and stored, then analyzed before
final presentation in an understandable format. Figure 2.2 represents the essential fragments
inside a big data ecosystem. Taking a look at the image below, the first two layers of a big data
ecosystem, ingestion and storage, include ETL. Extract, transform and load (ETL) is the process
of preparing data for analysis. Concepts like data extraction, loading, transforming all describe
the pre-analysis prep work. Working with big data requires significantly more prep work than
smaller forms of analytics.

Figure 2.2: Components-of-Big-Data Ecosystem [30]

2.6.1 Ingestion

The first step is dragging in data in its raw form, is the ingestion layer. Data can come from
relational databases, social media, emails, phone calls or somewhere else. There are two kinds
of data ingestion:

Batch, in which data is gathered in large bulks and delivered together at the same time.
The collection of data can be triggered by conditions launched on a schedule.
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Streaming, it is data that arrives in real time which is extremely necessary for data
analytics. As data is being generated it is also being pulled for direct analysis. Streaming
data requires more resources to constantly monitor any changes in data pools.

It’s not all about just getting the data into the system. This presents lots of challenges, some of
which are:

• Sustaining security: With a lot of data flowing in, it is no question in mind that it is a chal-
lenge to assure that every single dataset doesn’t carry some sort of security vulnerabilities.
All data must be retrieved ethically and according to the law, which can be problematic to
manage with such great quantities.

• Guaranteeing data quality: Just because there is a hefty amount of data doesn’t mean it’s
all valuable and useful. Having too much irrelevant, incomplete or incorrect data can cause
issues in analysis and processing down the line.

• Data speeds:Each data source has different setup for transporting data. If a data source is
slow and comes with low resources in exporting, this can drag down the entire speed of
the process and introduce new errors.

2.6.2 Data Cleansing and Organization

When data arrives, before it can be used for analysis it needs to be sorted and translated correctly.
It is essential that we manage to get as close as possible to achieve a uniform organization to
be able to process this data according to its timely manner in the actual analysis stage. The
components in the storage layer are responsible for making data readable, homogeneous and
efficient because data arrives in different formats and schemas. Once all the data is converted into
readable formats, it needs to be organized into a uniform schema. A schema basically defines the
characteristics of a dataset. For structured data, aligning schemas is all that is required. However,
for unstructured and semi structured data, semantics are required to be given to it before it
can be accurately organized. After all the data is as similar and close as can be, it then needs
to be cleansed. This means eliminating all useless and irrelevant information within the data.
When data comes from external sources, it’s enormously common for some of those sources to
duplicate each other. Therefore, useless information in the database must be removed from the
dataset that will be used for analysis. Once all the data is transformed, organized and cleaned, it
is ready for storage and analysis.
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2.6.3 Storage

The last step of ETL is loading the converted data and storing it in either a data lake or warehouse
and eventually processing it. It’s the actual embodiment of big data: a huge set of usable, homo-
geneous data, as opposed to simply a large collection of random, incohesive data. It is considered
that data lakes and date warehouse are the most crucial element of a big data ecosystem because
they need to contain only relevant data and hold little redundancy to allow quicker processing.
Lakes differ from warehouses since they preserve raw data which means little or no transfor-
mation has been applied. On the other hand, warehouses are focused on the specific task for
other analysis efforts thus makes it store less data and produce quicker results. This also means
that data lakes require a lot more storage and significant amount of transformation efforts down
the line. This leads on to the modification of extract, transform and load: extract load and
transform.[5]

2.6.4 ELT (Extract, Load and Transform)

When creating a data lake there is a process called Extract, Load and Transform (ELT) that is
used. The data is not transformed until the analysis stage. By doing this, the initial integrity
of the data is being preserved, meaning no information is getting lost in the transformation
stage permanently. For this reason, data lakes are preferred for fetching unused data later on
completing different queries and analysis on the complete dataset. Whereas with a warehouse,
you most likely can’t come back to the stored data to run a different analysis. ELT process: it is
related to ETL (Extract, Load and Transform ). Both of these processes involve three steps, but
with a crucial an obvious difference in the order:

• Extract: Retrieve data from various and dispatched sources, such as databases, social
media, cloud services, and other data repositories.

• Load: Move the data to a destination repository, such as a data warehouse (for structured
data) or a data lake (for unstructured data)

• Transform: To improve quality of the data changes are applied to the data so that it can
return accurate search results. Typical transformations are similar like ETL transformations
(removing duplicates, irrelevant, missing data)

2.6.5 ETL (Extract, Transform, Load)

Of course, the ETL process is much more involved than the brief definition above. To build an
ETL process, you need to answer questions and concerns about each of the three ETL stages,
such as:

• Extract: Two questions need to be answered in this phase: which data will you extract
and which kind of data sources? ETL data sources derive from numerous sources such as
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relational and non-relational databases, computer files, websites, social media and more.
However, not all data that is extracted means its valuable and relevant for your purpose. In
this case, you’ll need to decide which data to filter out, and organize it in a manner to push
it through the ETL pipeline.

• Transform: Several changes and transformations occur in this phase. The list below
presents a couple types of possible transformation of data:

– Cleansing:eliminating old, irrelevant observations, handle missing data, and dupli-
cated data.

– Joining: merging data from several sources.

– Validating: ensuring the integrity of the data.

– Summarizing: performing calculations on existing data and then creating new data
records.

• Load:In this phase, the destination of the final result of data should be define to where it
can be stored. In most cases, ETL prefers to use data warehouse to stores the transformed
data in a structured format plainly created for reporting and analytics. On the other hand,
some ETL architectures use an unstructured data lake as their endpoint. The data in a data
lake remains untouched and in its original format.

The main difference between ETL and ELT is that in ETL data is transformed before loading
it. this means that the data that is sent to the data warehouse is neat and standardized data.
However, in ELT the data is replicated without disturbing its natural format (no transformation
performed). This means that the data in a data lake is an exact replica of the original data
source. In ELT approach, transformation happens when a person or process needs something
from the data lake. This strategy is schema-on-read which is the complete opposite of ETL’s
schema-on-write.
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ETL VS ELT
Figure 2.3 is an illustration that compares the two different procedures ETL/ELT when
loading data into a warehouse or lake. This illustration will help compare both in the bullet
points underneath.

Figure 2.3: ETL vs ELT [21]

• ETL loads data first into the staging server and then into the target system whereas
ELT loads data directly into the target system.

• ETL model is used for relational and structured data while ELT is used for scalable
structured and unstructured data sources.

• ETL is mainly used for a small amount of data whereas ELT is used for large amounts
of data.

• ETL is easy to implement whereas ELT requires high skills to implement and main-
tain.

2.6.6 Data Analysis

Data analysis is consisted of a couple of processes that come in the following order: collecting,
analyzing, interpretating and visualizing data in a manner to discover and extract important
insights to help conclude effective and smarter business decisions. All the hefty work happens in
this big data component called Analysis.
There are several methods and techniques to accomplish the analysis and also taking in con-
sideration of the industry and the aim of the analysis. The main purpose of data analysis is to
find meaning in data. The process of data analysis uses analytical and logical reasoning to gain
information from the data.
A basic example of Data analysis that we use in our day-to-day life without even realizing it
would be, when it comes to taking any decision, we usually find ourselves thinking about our
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past experiences and how the results turned out, we also try to predict what would happen in
the future if we made a certain decision. For that, we gather memories, past experience or our
thoughts of the future. All of this is nothing but analyzing our past or future and based upon that
we make a decision. Basically, that is same thing analyst does for business purposes, it is called
Data Analysis. After collecting, ingesting and preparing raw data, the next step it to pass this
data through several tools to shape it into actionable insights.

2.6.6.1 Techniques and Methods of Data Analysis

Below is list of the major and popular types of analysis on big data:text, statistical, descriptive,
diagnostic, predictive and prescriptive.

• Text Analysis:Text Analysis or Data Mining both mean the same thing. Data analysis
has allowed us to discover patterns and trends throughout large sets of data throughout
the usage of data mining tools or databases. In general, it provides a way to extract and
examine the data, later on deriving patterns and trends and finally interpret the data.

• Statistical Analysis:This type of analysis allows us to answer “what happened?” questions
by using data from the past in the form of dashboards. Statistical Analysis comes with
the collection, analysis, interpretation, presentation, and modeling of data. There are two
categories inside statistical analysis: Descriptive and inferential analysis.

• Diagnostic Analysis:Clarifies why a problem is happening. Big data allows analytics to
take a deep dive into certain information’s and indicators to explain why specific actions
didn’t give out the anticipated results.

• Predictive Analysis:Based on historical data, highlighting patterns and evaluating routes
of relevant metrics it can predict and estimate future efforts and making it more reliable.

• Prescriptive Analysis:Takes predictive analytics to a whole new other level by highlight-
ing the best future efforts. Prescriptive analytics allows businesses to decide how to put
their best foot forward and that’s by modifying inputs and changing actions.Different
actions will give off different results, and prescriptive analytics helps decision makers to
implement the best procedures.

Just as the ETL layer is evolving, so is the analysis layer. We can now discover insights
impossible to reach by human analysis.

2.6.6.2 Data Analysis Tools

With the aid of data analysis tools, users have the ability to process and control data, discover
patterns and trends and analyze the associations between data sets. Below is a list of tools used
for data analysis.
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Apache Spark
It is one of the most powerful, influential and most used open-source big data analytics tools. It
has become easy to build parallel apps since it offers over 80 high level operators.

Features:

• Ability to Integrate with Hadoop and Existing Hadoop Data.

• It is one of the open-source big data analytics tools that provides built-in APIs in Java,
Scala, or Python. Spark combines libraries including SQL, Data-Frames, MiLB for
machine learning and spark streaming.

• It runs on Hadoop, Apache Mesos, Standalone or in the cloud.

R-programming
It is a language that provides a wide variety of statistical test, it that can be used for both
computing and graphics plus big data analysis.

Features:

• Effective data handling and storage facility.

• Provides a list of operators for calculations on arrays and matrices.

• It offers graphical services for data analysis which display either on-screen or on hardcopy.

Talend
It is a big data analytics software that simplifies, automates big data integration, master manage-
ment and also check the quality of data.

Features:

• Extremely quick to extract value for big data projects.

• Simplify ETL and ELT for big data.

• The usage of MapReduce and Spark is simplified by generating native code.

• Smarter data quality with machine learning and natural language processing.

2.6.7 Consumption

The final big data component includes presenting the information in a readable and understand-
able format to the end-user in this case it is the executives and decision-makers. This can appear
in forms of tables, advanced visualizations and even single numbers if requested. Visualizations
come in the form of real-time dashboards, charts, graphs and so on.
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2.7 Conclusion

The chapter contains an overview of current big data technologies as well as its ecosystem. The
overview specifically included the importance of big data and the challenges that tag along
with it. Rather than presenting a broad overview of the ecosystems, we focused on the detailed
descriptions of individual technologies that were provided. ELT/ETL approaches were also
presented and explained completely.

It can be concluded that data passes through multiple check points during its life cycle. Since the
beginning of it getting extracted from the source, passing through the ingestion pipeline, then
applying some alterations through ELT and data analysis and being directed to the consumption
layer to be manipulated again. In order to greet massive data with many formats and at great
speed, the big data world is always on the hunt for new technologies to support its incoming data.

It can also be concluded that there is a strong need to increase the maturity of storage technologies
so that they fulfil future requirements and lead to a wider adoption. Technologies similar to
Hadoop have had an enormous impact on big data. Since HDFS has the capability to store all
types of data (Structured, Unstructured & Semi-structured) in huge chunks and provide full
security, many companies have chosen it as a storage unit for their data. In addition, tools
are were presented in this chapter concerning data analysis have also changed the way data
is presented. Like said, data without value isn’t of much use to us, that’s why applying data
analysis on it and extracting hidden tools can help any company making the correct decisions
and developing the overall outcome.

With the birth of new formats of data, it is not possible to mine and process this mountain
of data with traditional tools, so we use big data pipelines to help us ingest, process, analyze,
and visualize these tremendous amounts of data.
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Chapter 3

Data Lakes

Presented in this chapter is a quick introduction to swiftly become integrated into

this matter. We have discussed the importance and the characteristics of Data Lakes. We

have answered questions: How to get value from a DL? What are the principals of DL? What

technologies are presented in a DL? Finally, we have compared Data Lakes to Data Warehouses

and ended the chapter with a conclusion to summarize everything included in this chapter.

3.1 Introduction

A Data Lake is a place to store and hold enormous volumes of raw data in its natural format
until it is needed[9]. It is a centralized repository that allows you to store all your structured
and unstructured data at any measure. You can store your data as-is, without having to first
structure the data, and run different types of analytics—from dashboards and visualizations to
big data processing, real-time analytics, and machine learning to guide better decisions. While a
hierarchical data warehouse stores data in files or folders, a data lake uses a flat architecture to
store data. Each data element in a lake is given a unique identifier or address and tagged with a
set of extended metadata tags.
A few specific properties of a data lake:

• All data is loaded from source systems. No data is turned away.

• Data is stored at the leaf level in an untransformed or nearly untransformed state.

• Data is transformed and schema is applied to fulfill the needs of analysis.
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3.2 Importance of Data Lake

Following up recent research, it has been concluded that businesses are seeing volume growth of
their data that surpasses 50 % per year. Additionally, these businesses are juggling an average of
33 different data sources which are used for analysis. As data volumes, varieties, and velocities
increase, the ability to firmly store, process and manage that data becomes more problematic over
time. A data lake architecture has proven its values and characteristics allowing organizations to
overcome these challenges by offering a centralized repository that lets the storage of business
data no matter the volume, variety, or velocity at which it is created. Many analytical workloads
are being served by this single repository such as visualizations and dashboards, machine learning
and beyond.

Figure 3.1: Illustration of Data Lake components[16]

3.3 Characteristics of a Data Lake

Figure 3.1 above is a representation of the fundamental Data Lake characteristics. Underneath is
a list that includes the important features of a lake.

• It provides diverse analytics capabilities, including batch processing, stream computing,
interactive analytics, and machine learning, along with job scheduling and management
capabilities.[11]

• The main principal of a data lake is the centralization of its data. The benefits that come
from centralization would include it being easier to govern, manage and innovate data sets.

• It can store massive amounts of data of all types, including structured, semi-structured,
and unstructured data.
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• A data lake delivers sufficient data storage to store all of the data of an enterprise or
organization.

• A DL provides full metadata to manage all types of data-related elements, including data
sources, data formats, connection information, data schemas etc.[18]

• A data lake provides full capabilities for data retrieval and publishing. It supports a wide
variety of data sources.

• A data lake provides big data capabilities, including the great storage space and scalability
needed to process data on a large scale.

3.4 Extracting Value from a Data Lake

The main ability of a DL is to store data of unknown value, for almost small cost. This historical
data can be used to train machine learning models and answer questions in the future.
Nevertheless, for an organization to extract the most value out of a data lake is to use it as an
engine for innovation. By making data access simpler, faster and more efficient for users and
simplifying testing with different processing technologies, businesses can discover new insights
that fire up competitive gain.

3.5 Principles of Data Lake Storage

High scalability
A data lake’s main aim is to store centralized data for an entire company hence it must be
capable of weighty scaling without running into limitation issues.

High durability
The prime repository of enterprise data, an extremely high durability of the storage layer
permits for brilliant data strength without needing to pay for extreme high-availability
designs.

Structured, unstructured and semi-structured data
A data lakes main design consideration is the capability to store data of all types in a single
repository. Example XML, Text, JSON, CSV etc.

Independence from fixed schema
Applying schema on read as many times needed for each consumption objective is only
accomplished if the core storage does not demand a fixed schema. Schema development is
common in the big data era.
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Cost Effective
Systems now have the ability to quickly scale as data grows because open source is
basically free. Handling numerous formats of data and data models, parallel with suitable
compression methods, are beneficial to avoid cost evolution exponentially. AWS, Google
and Azure all offer object storage technologies. e.g., S3, Blob storage, ADLS etc.

3.6 Data Lake Technology

Data lake technology is being developed by a growing number of vendors who invest in Hadoop-
related components, Google, Cloud Platform, Amazon Cloud and Microsoft Azure.[18] Taking a
look at Figure 3.2 in this image are the common data lake technologies are represented: Hadoop,
Spark, Hive, etc.

Figure 3.2: Data lake technology [31]

3.6.1 Storage

The basis of any Data Lake implementation is physical storage. The fundamental storage layer
is used for the primary data assets which typically holds raw and/or lightly processed data.
Processing data without taking in consideration it’s form, size and quantity while its coming
in streaming or in batches comes with its challenges concerning the storage infrastructure.
The Hadoop Distributed File System (HDFS) has become popular for on-premises Data Lakes
because it is reasonably low-priced and appropriate for batch processing workloads by Hadoop
tools like MapReduce.

3.6.2 Data Sources

When it comes to selecting a data source for a Data Lake it is extremely important to know where
data is coming from to help enrich analytical insights on a business statement. This is a couple
of different data sources that can data be ingested into a Data Lake:

• Web content – social media platforms similar to Facebook, Twitter, Snapchat and Linked-
In accumulate enormous amounts of data. This sort of data varies from structured to
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un-structured data such as texts, images or videos that is used to study user’s performance,
business profiles, content and campaigns.

• Geographical details – data streaming from location data such as maps and geo-positioning
systems (GPS).

• OLAP systems and relations data – stores structured data from relational database and it
can be ingested directly into a data lake.

• Data management systems – semi-structured data such as documents and text files that are
associated with business entity. These can be manipulated to fit in a structured format.

3.6.3 Data Ingestion

Data ingestion framework is about moving data and especially the unstructured data. This
framework works by capturing data from numerous data sources and ingests it into a Data Lake.
The data ingestion framework keeps the Data Lake consistent with the data changes at the source
systems, making it a single station of enterprise data.[26]

3.6.4 Data Profiling Integration

The value of our data is determined on how well we profile it. Since data is stored in its original
format, we have faced a data ingestion problem another issue would be that poorly managed
data is costing companies a lot of time and money going to waste. Before a data scientist can
extract results and begin the analysis phase, data must be profiled to be able to understand the
structure, quality and the schema of the data itself. The following step that would be applied is
schema-on-read or schema-on-write depending on the data format.

• Schema-on-read: We upload the data as it arrives without applying any transformations.
This schema has fast data ingestion since it doesn’t follow any internal schema. This
means that it’s just copying and moving files. This schema is more flexible and dynamic
when it comes to big, unstructured data or schemas that are frequently changing. would
be from the raw data we can extract important data then later on transform it in a way to
allow correlation with other data.
As fun as schema-on-read sounds it has its cons. Since the data doesn’t go through strict
ETL transformations it is vulnerable to missing or invalid data and having duplicates.

• Schema-on-write: This schema is tightly bound to relational database, this includes
schemas, table creation and data ingestion. This means that data cannot be uploaded
unless the tables and schemas have been created and configured. Additionally, the most
time-consuming task when working on relational database would be the ETL work. A
framework such as Hadoop does not require schema-on-write for unstructured data.
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3.6.5 Processing

The data extraction process is accomplished by implementing the following stages that are
completed by a data scientist

1. The data must be prepared to avoid any challenges that come with ingestion it.

2. Data analytics or machine learning have to applied.

3. Establishing results for consumption layer.

Frameworks that allow to parallelize and scale processing jobs are Hadoop MapReduce paradigm,
Apache-Spark that allow batch or stream-based processing. In general, MapReduce based
solutions are useful for batch processing and for analytics that are not real time or near real-time.
A couple of operations a data scientist might consider executing when it comes to the three steps
that were mentioned about would be: data profiling, filtering, data cleaning,data mining and so
on.

3.6.6 Data Governance

Dumping data into a Hadoop platform won’t automatically speed up your analytical efforts.
Data Lakes if not monitored they have high risks of them turning in to “data swaps” The lack of
control on data may put in risk data pipelines, quality, structure, sources, and the results of data.
A governed Data Lake means that it holds clean, relevant data, structured and unstructured
sources than can effortlessly be found, accessed, managed and secured. Full protection and
reliability are the two main features your data must be offered by the platform it exists on.
So,data that flows in to the lake must be cleaned, classified and secured.

3.7 Data Lake VS Data Warehouse

• Data Lake stores all data not taking in consideration of the source and its structure whereas
Data Warehouse stores data in measurable metrics with their attributes.

• Data Lake outlines the schema after data is stored however Data Warehouse defines the
schema before data is stored.

• Data Lake uses the ELT (Extract Load Transform) process while the Data Warehouse uses
ETL (Extract Transform Load) process.

• Data lake captures all kinds of data in their original form from various source systems
whereas DW captured structured data and organizes them in schemas that are specifically
defined for DW purposes.
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• Data storing in big data technologies are relatively inexpensive then storing data in a data
warehouse.

3.8 Conclusion

A Data Lake is a storage repository that can store great amount of structured, semi-structured,
and unstructured data. The main objective of building a Data Lake is to offer a raw view of data.
In chapter four, we stated all the important aspects of a DL, its principals and how to extracted
value from a Lake. in addition, we mentioned the major components of a DL Architecture: Data
Ingestion, Data storage, Data Governance, Data Security, Data Analysis, etc.

So, the design of Data Lake should be driven by what is available instead of what is required.
Data Lake reduces long-term cost of ownership and allows economic storage of files. The major
risk of data lakes is security and access control. Sometimes data can be placed into a lake without
any oversight, as some of the data may have privacy and regulatory need.

In summary, getting the right platform, loading it with the right data, and organizing and
setting it up for self-service with skills and needs-appropriate interface are the keys to creating a
successful Data Lake.
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Chapter 4

Data Ingestion

We began chapter four with an introduction to dive in to the fine details of data

ingestion. Here we have presented a detailed definition of data ingestion, the challenges that

come with it, its architecture and its parameters. Since in our thesis project we will be creating

and manipulating data pipelines, we have presented all the required information concerning

data pipelines. Immediately, we have a structured description of the CDC procedure. Finally, we

have listed all the essential and highly used tools to ingest data into a DL. Finally, we closed this

chapter with a conclusion.

4.1 Introduction

It is no doubt that a Data Lake is built up in various components and that’s what make it an
enormous and complex ecosystem. For our thesis project, we’ve selected a precise segment
from this vast ecosystem and have decided to break it down and examine it thoroughly. The
fragment we’ve decided to break down is Data Ingestion. The framework is about moving data
and especially the unstructured data. Data ingestion is also about collecting information from
multiple sources and putting it somewhere it can be accessed. This process is the beginning of
the Data Pipeline.[19]
Data ingestion problem handles numerous volumes, speeds and formats of data. Like mentioned
in the previous chapters, this data can flow in batches or streams. Traditionally the data ingestion
processes were frequently discussed through ETL tools via created pipelines, but this process is
slow and not time-sensitive.
The quality of your ingestion process certainly determines the quality of your data. In simpler
words, ingest your data incorrectly you’ll end up with valueless data, misleading analysis results
thus ending in jeopardizing the value of your data all together. On the other hand, if you ingest
your data correctly and take in full consideration the data preparation stage automatically your
data arrives in the Data Lake on time, with the correct fidelity and ready for data wrangling and
analytic use.
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The ingestion framework consists of two components, data collector and integrator. Data collector
is responsible for collecting or pulling the data from a data source and transporting it to the data
pipeline. It is a layer when components are broken so that analytical capabilities may begin.
Data Integrator is accountable for ingesting the data into the Data Lake. The data collector and
integrator components can be flexible as per the big data technology stack when it comes to the
implementation of the two. As mentioned in the previous chapter, data can be ingested either in
real-time or batch mode. Real-time mode means that the usage of the “Change Data Capture”
(CDC) framework is applied. The transaction logs that are being replicated in the data lake are
being read by the CDC framework.

4.2 Data Ingestion Challenges

There are a few challenges that can impact the data ingestion layer’s pipeline[12]:

• Guaranteeing the legitimacy of the data so that it follows the accurate format is necessary.
The difficult relationship between data quality and business needs exists. When data
becomes tremendously vast, the task becomes costly and this is where mistakes happen.

• The processes of data ingestion can be fragmented and this can lead to duplicates. This
will surely lead to results which overlap and data drifting due to different departments
dealing with problems in their own personal manner and devices. If the source data is
poorly managed and documented it may result in difficulty trying to bend data managed
by third parties to your personal benefits.

• If the future of the ingestion pipeline is not considered, including the validation of data,
which is often a neglected it can result having issues connecting with external systems.
This can cause delays, increase costs and frustrate end users.
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4.3 Architecture of Big Data for Ingesting data

The Architecture of Big Data is consisted of 6 unique layers, which secures the flow of the data
and also helps design the data pipeline with the various requirements of either the batch or stream
processing system. Below, Figure 4.1 represents a precisely structured image displaying how the
architecture of big data sits when ingesting data. The arrows in that image describe how data is
flowing in and out from different layers. In addition, we’ve briefly explained what each layer is
responsible for and their main tasks.[8]

Figure 4.1: Architecture of Big Data Ingestion [25]

4.3.1 Data Ingestion Layer

This is the layer where all the data is arriving from numerous sources to begin its transformation.
In other words, data is placed into bulks and ordered in a way to make data flow effortlessly into
the other layers.

• Batch ingestion
Since data sets are massive, its most likely that data must be processed in batches or chunks
to be able to filter, aggregate and prepare data for the next step, analysis. The main steps of
these jobs involve reading data from source files, processing them and writing the output
to new files. Options include running custom MapReduce jobs in Hadoop cluster, or using
Scala, Python and Java programs in Spark cluster, Hive etc.

• Real-time ingestion
If data is flowing continuously, it means the solution includes real-time sources. Auto-
matically the architecture must contain a way to capture and store real-time messages for
stream processing. So, incoming messages are dropped directly into a folder ready to be
processed in a simple data store. Options include Azure Event Hubs, Azure IoT Hubs,
and Kafka. For real-time ingestion mode, a change data capture (CDC) system can suffice
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the ingestion requirements. The change data capture framework reads the changes from
transaction logs and are replicated in the Data Lake.

4.3.2 Data Collector Layer

In this Layer, the data components are broken down so that the analysis can be applied. This
layer is also focused on how to transport the data from the ingestion layer to the rest of the data
pipeline and further into the layers.

4.3.3 Data Processing Layer

The main focus in this layer is to specialize in the data pipeline process. After receiving all the
data from the previous layers, it is now time to process the new established data. In this layer,
the destination of data is clarified, the data flow is classified and the first stages of analysis may
happen.

4.3.4 Data Storage Layer

One of the main challenges of storage is when the size of the data you are dealing with becomes
extremely large. An obvious solution to this problem would be data ingestion patterns and there
are plenty more solution. The main question asked in this layer “where to store such large data
efficiently?”.

4.3.5 Data Query Layer

Active analytic processing takes place in this particular layer. The aim of this layer is to collect
the data value and transform it in a manner to make it useful for the upcoming layer.

4.3.6 Data Visualization Layer

The presentation layer is perhaps the most significant and important tiers. The data pipeline
users may feel the value of data. The foremost purpose is to grab the full attention of people and
present the results in an understandable, comprehensible and readable manner.
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4.4 Data Ingestion Parameters

Data ingestion has three essential parameters.

4.4.1 Data Lineage

It determines the life cycle of data – its purpose to display the full data flow, from the beginning
to end. Data lineage is a procedure that consists of understanding, tracking and visualizing data
as it comes in from data sources all the way to the consumption layer. All the modifications and
transformations that data underwent is included. It also includes how, what and why the data
was transformed. Data lineage permits businesses to:

• Keep tab on the mistakes in data processes.

• Uses process modifications with minor risk.

• Completes system migrations with assurance.

• Combines data discovery with a complete understanding of metadata, to create a data
mapping framework.

• Data lineage assures users that their data is arriving from a secure source, transforms it in
a suitable manner and loads it into the specified location. Since strategic decisions rely on
precise information then it’s no doubt that data lineage is a vital role for them.

• Data becomes practically unbearable or very expensive and time consuming to verify if
the data processes isn’t being tracked accurately.

4.4.2 Data Velocity

It takes in consideration the speed at which data flows from numerous sources such as web clicks,
machines, networks, media sites, social media. This measure can either be enormous or constant.

4.4.3 Data Frequency

It defines how regularly we ingest a certain data-set or the rate in which data is being created.
Data can be processed in real-team which is continuous ingestion or batch which indicates
ingestion in specific time intervals. In the real-time, data is transformed directly. While, in batch
processing, first data is deposited in batches and then moved.

• Data Size: It indicates the volume of data which is created from several sources. Whether
it’s the normal or maximum size of block in a one ingestion procedure.

• Data Format: Data can come in countless formats. So, incoming data must be determined
whether the data flow’s format is either structured, semi-structured or unstructured.
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4.5 Data Pipeline

A source, processing steps and a destination are the three elements that make up a data pipeline.
In various data pipelines, the end point or destination may be called a sink. Using data pipeline
has allowed the flow of data from applications to data warehouses, from Data Lakes to analytics
database etc. A simple example, data pipeline on many occasions may share the same source and
destination since data pipelines are mainly concerned about modifying the data set. In simple
words, between point A and point B, any data that is processed between those two points, rest
assured that there is an existing pipeline. A data pipeline is a system that helps filter data and
formats it to more efficiently helpful insights without any extra irrelevant data points. Data
ingestion, storage or analysis all can take place in a data pipeline. The main aim throughout
the usage of data pipeline is to offer precise data, to make it easier to report, analyze and use.
Since pipelines offer reduced data noise, tailored, organized data and provide only information
required to accomplish goals, these advantages clear out blurry visions to business intelligence
and enterprises. Data pipeline is consisted of multiple steps which aid in moving raw data from
the source to the destinations. A source might be for example a data base whereas the destination
can be typically a Lake or Warehouse.

4.6 Data Pipeline Elements

According to Figure 4.2, these are the main components of a typical data pipeline and how large
data sets are prepared by them ready for analysis.

Source
Data pipelines extract data from these places. These sources can be anything from RDBMS,
social media and even IoT device sensors.

Figure 4.2: Architecture of Data Pipeline [31]

Destination
This is the final stop for data pipelines, this is where all the data is dropped after is has
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been extracted. The destination can be either a Data Lake or a Data Warehouse. Data is
stored in these places waiting for analysis.

Dataflow
While data is traveling from the source to the destination, data undergoes many transfor-
mations. This movement of data is called data flow. ETL is the one of the most common
data flow approaches.

Processing
Processing includes extracting data from the source and transporting it to the destination.
How data flow is implemented is decided by the processing component of a data. For
example, choosing between batch or stream processing when extracting data.

Workflow
Workflow handles the sequencing and the order of jobs in a data pipeline and their reliance
on each other. Reliance and sequencing both decide when a data pipeline runs.

Monitoring
Anything that needs to be perfected needs constant monitoring. In the data pipeline the
monotorization is done to assure the accuracy of data and monitor any data loss. If not
being well monitored we can lead to lose of data and even worse scenario concluding
incorrect results. A pipeline is in fact monitored for speed, efficiency and mostly when the
data is growing

4.7 Data Ingestion Tools

4.7.1 Apache Sqoop

Sqoop is a tool that aims to transfer data between HDFS (Hadoop storage) and relational database
servers.
Sqoop uses MapReduce jobs to import and export the data. Data import and export provides
parallel operation as well as fault tolerance.
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Sqoop Architecture
SQL has designed all the existing Database Management Systems by its standard. Yet, every
DBMS is different with respect to dialect to some degree. Due to this variance, many issues
have been imposed when it comes to transferring data across the systems. This is where Sqoop
connectors save the day and overcome these challenges. Sqoop connectors have facilitated
the data transfer between Sqoop, Hadoop and external storages. Sqoop has connectors for
collaborating with MySQL, PostgreSQL, Oracle, SQL Server, and DB2. All these connectors
have the ability to interact with its connected DBMS[4].
Figure 4.3 is a simple illustration to display how Sqoop connectors create pipelines between the
data source and target destination.

Figure 4.3: Architecture of SQOOP [6]
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1. Sqoop Import tool
To simplify the procedure of the import tool, it’s done in two steps as shown in Figure 4.4.

a) Sqoop self-reflects the database to collect the essential metadata for the data being
imported

b) Sqoop submits the mappers to the Hadoop cluster. This is the specific procedure that
ensures the data transfer using the metadata taken in the previous step.

HDFS directory carries all the data imported from RDBMS. There alternative HDFS
directory such as Hive, HBase etc. Originally, all imported files are separated by commas
and new line indicate record separator.

Figure 4.4: Sqoop import tool [3]
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2. Sqoop Export tool

The Sqoop export works in the same manner as the import tool. The aim of this tool is to
export the data set from HDFS back in to the relational databases.
The Sqoop Export tool exports the set of files from the Hadoop Distributed File System
back to the Relational Database.
Export is completed in two steps as displayed in Figure 4.5.

a) The first step is to retrieve the metadata information from the database, in this case
HDFS.

b) Second step to transporting data.

Figure 4.5: Sqoop export tool[1]

Connectors
As mentioned before, Sqoop uses connectors to facilitate the connectivity with external systems
and the utilization of import and export tools. After a connection has been installed, Sqoop is
able to use these plugins to effectively transfer data between Hadoop and the external system.
Other than that, Sqoop has given the chance to other companies to develop their own connectors
that can be plugged into Sqoop for their personal benefits.
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4.7.2 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform used by thousands of
companies for high-performance data pipelines, streaming analytics, data integration, and
mission-critical applications. It uses a "distributed, Partitioned and Replicated Commit Log
Service ". The data streams are partitioned and distributed over a cluster of machines, permitting
data streams larger than the capacity of a single machine to be stored without any disruption.[4]

Kafka Architecture
Kafka can be used as a cluster on multiple servers, where the cluster store record streams under
different categories known as topics. Each record has a key value and is used for two types of
application:

1. To build data streaming pipelines that move data between systems and applications.

2. To build application that react and transform the incoming data streams.

Kafka provides five APIs (Application Programming Interface) which are essential for its design:

• Producer API: Allows applications to publish streams of records to one or more topics.

• Consumer API: Permits applications to contribute to one or more topics and process.
records to them.

• Streams API: Allows applications to act as stream processors, by absorbing input streams
from multiple topics and releasing altered data to multiple topics.

• Connector API: For building and running of reusable producers or consumers so that
Kafka topics can be connected to existing data applications/systems.

• Admin API: For managing and reviewing the topics, brokers and other Kafka objects.

Kafka topics
All Kafka records are prearranged into topics. Producer applications are responsible to write
data to topics whereas consumer applications are responsible to read from topics.

Partitioning
In a cluster, topics are separated into partitions, and the partitions are replicated across brokers.
All messages that hold similar key will be sent to the same partition. Apache Kafka has no limit
on the number of partitions that can be created.
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Kafka brokers
Since Kafka is a distributed data infrastructure, a broker is a node that can be replicated on a
network so the collection of all these nodes works together as a single Kafka cluster. Kafka
brokers are deliberately kept very simple. They are accountable for writing new events to
partitions, executing reads on existing partitions, and duplicating partitions between them.

Replication
In Apache Kafka, in the partition layer is where replication is implemented. Each topic owns a
configurable replication factor that determines how many of these copies will exist in the cluster
in total.

Kafka Consumers
The consumer is an external application that reads messages from Kafka topics and are allowed to
read from any offset point they choose and does some work with them like filtering, aggregating,
or enriching them with other information sources.

4.7.3 Fluentd Data Collector

For a unified logging layer exists and open-source data collector known as Fluentd. It permits
the action to unify data collection and consumer for improved usage and comprehension of data.
Many organizations use Fluentd and Fluent Bit to collect, process, and transport their data from
cloud infrastructure, network devices, Kubernetes, and plenty other sources.

Fluentd functionality
Fluentd scraps logs from a specified set of sources, processes them by changing into a structured
data format and then sends them to other services like Elasticsearch, object storage etc. The
following steps explain how Fluentd work:

1. Fluentd extracts data from many data sources.

2. Transforms data format in to structured data and tags it.

3. Based on matching tag, it forwards the data to numerous destinations.

Fluentd Architecture
The most popular architectures: Forwarders and Aggregators, Side car / Agent deployment and
Network device aggregator.

1. Forwarder and Aggregator: Deploying in forwarder/aggregator pattern is one of the
most popular patterns for Fluentd/Fluent Bit. A lightweight instance deployed on edge,
generally where data is created, such as Kubernetes nodes or virtual machines. Slight
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processing is done by these forwarders and then use the forward protocol to send data to
a much heavier instance of Fluentd or Fluent Bit. The filtering and processing are done
by the aggregator which is the heavier instance before routing to the appropriate backend(s).

The Table 4.1, below represents the pros and cons of using a Forwarder and Aggregator in
Fluentd architecture.

Advantages Disadvantages

• Minimal usage of resource on the edge
devices

• Aggregator is scalable

• Easy to add more backends

• Required stable and reliable resources
for an aggregation instance

Table 4.1: Aggregator Advantages and Disadvantages

2. Sidecar / Agent deployment: This model uses deploying Fluentd and Fluent Bit on edge
which is similar to the forwarder deployment. The only difference is that data isn’t sent to
an aggregator, instead it’s sent directly to the back end. This method is efficient if there is
one single back end needed to send data to and is used by cloud giants such as Microsoft,
Google, and Amazon.

Table 4.2, below represents the benefits and inconveniences of using a Sidecar and Agent
deployment in Fluentd architecture.

Advantages Disadvantages

• No aggregator is required.

• Difficult to modify configuration across
a fleet of agents (E.g., adding another
backendor processing)

• Difficult to increase end destinations if
required

Table 4.2: Sidecar Advantages and Disadvantages
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3. Network Device / Syslog aggregator: Both Fluentd and Fluent Bit are Cloud Native
Computing Foundation (CNCF) projects. Syslog is one of the most commonly used input
that is included in Fluentd and Fluent Bit. Users that intent to capture all the logs and route
to security-focused back ends, deploy pure aggregators to do it. These aggregators can
also contain logic to redact specific messages or process messages in a more practical way
for security applications in end destinations.

Table 4.3, below represents the advantages and disadvantages of using Network Sevice/
Syslg aggregator in Fluentd architecture.

Advantages Disadvantages

• No agents required; Primarily read from
Syslog.

• Add processing after data is sent, such
as IP redaction, and scale independently.

• More processing might be required de-
pending on the input.

• Troubleshooting might be more involved
with black-box network devices

Table 4.3: Network Device Advantages and Disadvantages

4.7.4 Data Integrator

4.7.4.1 Change Data Capture (CDC)

Change data capture keeps tabs on modifications that occur in data sources and automati-
cally transfers those changes to a target dataset.[5]

• CDC is often used to replicate data between databases in real-time.

• CDC instantly and automatically syncs databases as soon as the data source changes
and constantly tracks changes in a source database.

• Uses stream processing to ensure instant changes.

Figure 4.6: Architecture of CDC approach [32]
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CDC is an approach to data integration that is based on the examination, capturing
and delivery of the change to data source. Rendering to Figure 4.6 that represents the
architecture of CDC, it works by capturing alterations that have been created in a database
level of the rows and proceeds on by replicating them to another place, database or data
store. CDC pipelines can be useful for data replication, such as to a Data Warehouse or for
ETL jobs..
In a modern data architecture, we can endlessly ingest CDC data into Data Lake in the aid
of data pipeline. CDC can support the analysis of streaming logged data. Indulging large
amounts of data in to Data Lakes can sometimes causes congestion problems and the most
common solution would be the help of CDC. CDC just updates the changes to the Data
Lake. For the record, numerous establishments have used DL’s over ETL platforms as the
Data Lake environment is less expensive.
The most problematic part of the Data Lake is preserving it with current data. CDC
can help to save computing and network costs, especially in the case of cloud targets.
With support for technologies like Apache Spark for real-time processing, CDC is the
underlying technology for driving advanced real-time analytics.

Steps to load data from source to destination

a) Database Dump
Database dump is a simple solution that can be used when we export database with
petite sizes and later on import them to new data marts, lakes or warehouses.

b) Change Data Capture (CDC)
CDC comes in when we reach a certain size where SQL dump is no longer the
suitable solution in meeting our data needs . CDC will only capture the change in the
data. It is a highly efficient technology for reading the changes made to a data source
and applying those to the destination. CDC records, writes, deletes and updates
events. It copies numerous tables in their complete format from a source database
into the ultimate database [5].

Types of Change Data Capture techniques
CDC can be placed into two categories[17]:

a) Query Based
At the source, the execution of SQL statements is obligatory. The implementation of
CDC, involves an impact on the performance of the source from which the data is
extracted, this requires performing an I/O operation to the database by traversing an
entire table.

b) Log Based
The CDC process approach involves reading log files of the source database to
identify the data that is being created, modified, or deleted from the source into the
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target Data Warehouse. There are many techniques to manage change data capture
processes. The top techniques are: timestamp, triggers, snapshot and log-based
technique.

4.7.4.2 SAS Data Integrator Server

SAS Data Management
SAS Data Integration Server is a configurable and comprehensive solution that can com-
plete a extensive variety of data integration necessities. It can:

• Access all data sources.

• Extract, cleanse, transform, aggregate, load and manage data.

• Import and export metadata functions, and build/execute ETL and ELT process flows.

• Support data warehousing, migration, synchronization, federation and provisioning
initiatives.

• Support both batch-oriented and real-time master data management solutions.

• Create reusable data integration services in support of service-oriented architectures
and data governance.

The transformation of Big Data into large opportunity with data integration, data gover-
nance, event stream processing and data quality technologies is all made possible with
data management technology from SAS.

How SAS data management works
If data is collected automatically, it must be managed. As the volumes, formats and sources
of data grow, the importance of real-time processing grows too, and the top priority should
always be good data managing data. Below is a list the fundamental technologies of data
management.

• Data access: It’s the capacity to access information from any source. Important data
exist in several places such as text files, databases, emails, data lakes, web pages and
social media feeds. Excellent access technology allows you to extract useful data
from any type of data storage mechanism or format that’s available.

• Data integration: It’s a process that combines different types of data to display
integrated results. Through data integration tools, we can generate and automate
steps to do those ETL and ELT procedures. The results of this is to benefit us to
reach better decisions.

• Data quality: Data quality is about guaranteeing that the data is precise and practical
for the requirements for which it is envisioned for. Data that is unfinished or does not
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match its purpose will not be dependable which leads to problems throughout the
organization and expensive mistakes.

Superior connectivity and data access with SAS
SAS comes with many benefits when it comes to its vast connectivity system such as
providing connectivity that is available for both batch and real time to more data sources
on more platforms. Also, file reader and writer are accessible for HDFS and supports
Hadoop’s MapReduce. Lastly, a consistent data definition across all data sources are
provided due to the complete and shared metadata environment.

4.8 Conclusion

In conclusion, although data ingestion is not a simple process in writing and can be costly
in establishing its infrastructure and maintenance over time, a well-written data ingestion
process can help a company make decisions and improve business processes. In addition,
this process makes it easier to work with a large number of information sources and allows
easy access for engineers and analysts alike.
In Chapter four, we have recognized the architecture to ingest massive data. Also, the
parameters of data ingestion. Correspondingly, we discussed the elements that compose
data pipelines and finished off with a broad explanation of CDC approach and all the
popular tools to ingest data, altogether displayed in a rational manner.
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Chapter 5

Data Ingestion Solutions

The purpose of the information presented in this chapter it solemnly aimed to

present all the genuine data ingestion solutions that were well-deserved to be presented.

We’ve mentioned solutions such as: Apache Spark, Gobblin, Marmaray, Lambda. We’ve

talked about their different architectures and pipeline and how they ingest data in different

manners. At the end of this chapter, we’ve compared the different solutions, listed the

missing elements in their frameworks, selected the approach we chosen to adopt and

locked this chapter with a conclusion.

5.1 Apache Spark

Apache Spark is an extremely fast cluster computing technology. It is based on Hadoop
MapReduce. Spark is built to cover workloads such as batch applications, iterative
algorithms, interactive queries and streaming.
Spark can be defined as a data processing framework that has the ability to rapidly perform
tasks on massive sets of data. It can also process data tasks whether on a single or numerous
computers. The key to the big data and machine learning world is based on these two
qualities.

5.1.1 Features of Apache Spark

Apache Spark holds the following features.

• Speed SRun workloads 100x faster in memory, and 10 times faster when running
on disk.

• Supports multiple languages -allows the developers to write applications in Java,
Scala, R or Python.
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• Advanced Analytics Spark not only supports ‘Map’ and ‘Reduce’. It also supports
SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.

5.1.2 Ingesting Data from Files with Apache Spark

Below, we will explain what happens behind the scenes while ingesting files through
Apache Spark. The example we will be explaining is the ingestion of a CSV file[21].

a) Figure 5.1 describe the first step in every spark application: connect to a Spark master
and get a Spark session. For every Spark application, the first operation is to connect
to the Spark master and get a Spark session.

Figure 5.1: Connection between the Master and Session [22]

b) Figure 5.2 illustrate the next step: Ingestion. You need to ask Spark to load the data
contained in CSV file. With all this said, masters recognize and rely on slaves or
workers. In this illustration, you have three workers.

Figure 5.2: Workers [22]
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Tasks are being generated based on the accessible resources. The slaves may create
numerous tasks and allocate a memory partition to the task. The diagram above
represents the running tasks that are with green dots, in contrast with tasks that are
not running have a red dot.
Each task remains reading a chunk of the CSV file and the ingestion is done in rows
and is stored in dedicated partition

Figure 5.3: Ingestion procedure [22]

c) Lastly, Figure 5.3 above confirms that the ingestion is now taking place, each task is
now loading some records into its own memory partition. You can also see the purple
box which contains the records after the ingestion has been done. After the data has
been loaded, the next step would be to process the records.
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5.2 Apache Gobblin

Apache Gobblin is an integrated and generic data ingestion framework for Hadoop and it
is one of the newest LinkedIn open-source product [23]. Gobblin’s purpose is to unravel
this problem by creating a centralized data ingestion framework that aims to facilitate and
support the data ingestion from different data sources.

5.2.1 Challenges

Just with any approach Gobblin faces some challenges which are in the following list:

• The integration of differs source: Gobblin has managed to provide a large variety of
adapters which are commonly used for data sources such as MySQL, Kafka, S3 and
Google analytics, etc.

• Processing paradigm: The framework has managed to support standalone and scalable
platforms, taking in consideration Hadoop and Yarn. The ability to run ingestion in
batches or in streaming is all possible throughout the integration of Yarn.

• Extensibility: Since Gobblin has offered out-of-the-box adapters with the framework,
it has become possible for data pipeline developers to integrate these adaptors and
make it interpretable for other developers in the community.

• Self-service: standalone mode and flow deployment has permitted data pipeline
developers to compose data ingestion and modifications in a self-serviced approach
and test it locally.

5.2.2 Benefits

• Auto scalability

• Fault tolerance

• Data quality assurance

• Extensibility

• Handling data model evolution

5.2.3 Gobblin’s Logical Data Pipeline

According to Figure 5.4 this is a graphical presentation of Gobblin’s data pipeline to ingest
data. Underneath are the definitions and roles of each component of this pipeline.

• Source and Extractor
At the beginning of the job flow, a Gobblin job uses an adapter that connects to a
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data source and Gobblin. A source is responsible for splitting the data ingestion work
into chunks and also to create an extractor for each work unit. An extractor, connects
to the data source and extracts data that is required.

• Converter
A converter is the core construct for data transformation it is also responsible for
converting both schema and data records when data is being pulled.

• Quality checker
As the name suggests, is responsible for data quality checking. So, it determines
whether the extracted data is suitable and can be published.

• Data Writer
A writer is held responsible for writing data records to the sink it is connected to.
The data can be published to numerous sinks such as HDFS, S3, Kafka etc.

• Data Publisher
A data publisher is responsible for publishing the data extracted from a Gobblin job.

Figure 5.4: Gobblin’s logical data pipelines [7]
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5.3 Marmaray

Many of the fundamental building blocks and abstractions for Marmaray’s design were
inspired by Gobblin, a similar project developed at LinkedIn. Marmaray is a framework
that supports the ingestion from any source and disperse to any sink. It is a plugin-based
framework built on top of Hadoop ecosystem.

5.3.1 Benefits

• Produce quality schematized data through our schema management library and
services.

• Ingest data from multiple data stores into our Hadoop data lake via Marmaray
ingestion.

• Build pipelines using Uber’s internal workflow orchestration service to crunch and
process the ingested data as well as store and calculate business metrics based on this
data in Hive.

• Serve the processed results from Hive to an online data store where internal customers
can query the data and get near-instantaneous results via Marmaray dispersal.

5.3.2 High-Level Architecture

Figure 5.5 is the architecture diagram displays all the essential blocks that allow Marmaray
the easy flow of jobs and add extensions to support new sources and sinks.

Figure 5.5: High-level Architecture of Marmaray [15]
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Avro Payload
Avro Payload is the central component of Marmaray’s architecture. Its where all the
relevant metadata for data processing necessities is held.
Combining Avro data and running it on top of Spark’s architecture offers us the ability to
take advantage of Spark.
It’s necessary that the ingestion sources have converters defines from their schema to Avro
format in order to achieve “any-source to any-sink”.
To help understand how Avro Payload functions, Figure 5.6 is an illustration that presents
the process.

Figure 5.6: Avro Payload Process [15]

Data Converters
Earlier, data converters have been brought up. So, data converters aid data ingestion and
dispersal jobs to achieve transformations from the data source to guarantee it is in the
suitable format before writing the data to the targeted sink.

Error Tables
The intention behind error tables are to allow easy debugging of jobs and discard records
that do not have suitable schema.

Work Unit Calculator
The Work Unit Calculator task is to calculate the total of data to process. At a very high
level, the Calculator will inspect input source and the formerly used storage and then
proceed to calculate the following work unit. For example, a Work Unit could be Offset
Ranges for Kafka or a collection of HDFS files for Hive/HDFS source.
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Metadata Manager
Metadata manager are responsible to ensure that Marmaray jobs have a persistent store to
store job level metadata information. If recent execution of the job is successful, a job can
effortlessly update its state during the execution and replace the old state. If that’s not the
case, no modifications to the state are accepted.
The illustration below presented in Figure 5.7 provides an image description of the Meta-
data Manager. Compromised in this figure, are essential elements of metadata manager:
Storage, Manager and DAG components.

Figure 5.7: Metadata Manager [15]

Fork Operator
The aim of the Fork Operator is to split the input stream of records into multiple output
streams.

ISource and ISink
The ISource holds all the required information from the source data for the suitable
demanded work units. ISink holds all the essential information on the procedure to write
to the sink.
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5.4 Lambda

The Lambda Architecture is a deployment model for data processing designed for Big
Data systems that involve data processing in near real-time. After ingesting data from
thousands of IoT devices, it is then defined as a Big Data problem that needs to be solved.
A technique is offered by the Lambda Architecture which is: building a single system that
process near real- time streaming data and also provide the capacity to store and batch
processed data using old data processing techniques[20].
The main components of Lambda Architecture are displayed in Figure 5.8

Figure 5.8: Lambda Architecture Components [33]

5.4.1 Lambda’s Architecture

Data Sources
Data can be attained from numerous sources that can be compromised in this Architecture
for data analysis. Apache Kafka works as an intermediator that can serve data in batch and
speed layer of the Lambda Architecture.

Batch Layer
To prepare for indexing, all the data flowing into the system comes in batches and is saved
in this specific component. Frequently, simple CSV format files are used. The HDFS is
regularly used in order to ingest data as well as storing the data in a cost-effective way.

Serving Layer
In this component, the indexation of the newest batches occurs here to make queries
more achievable by end users. Minimizing the time to index the data set is accomplished
working in parallelized manner and this the most important obligation in this layer.
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Speed Layer
This next layer balances the serving layer and that’s by indexing the latest added data that
are not completely indexed by the serving layer. This consists of both the data that is
actually getting indexed by the serving layer and plus the new data flowing in after the
actual indexing job started.

Query
The main responsibility of this component is to submit the end user queries to the serving
and speed layer and joining the results. By accomplishing this task, it offers the end users
a comprehensive query on all the data, compromising the newly added data and this offers
a near real-time analytics system.

5.4.2 Principles of Lambda Architecture

• Fault-tolerant
The main part of the Lambda pattern would be it is hardware, software and human
fault tolerant. Lambda is designed to handle big data, therefore any of these errors can
be an expensive issue to recover from. There is no place for data loss and corruption
in this pattern due to the vastness of data. Another important component is human
fault tolerance. Typical operational mistakes are the most common errors in everyday
operations. The following mistake are the bugs that make their way into the systems
over time. Therefore, the systems must be designed to deliver to and address these
characteristics.

• Immutable Data
The data should be stored in a raw format from the different source systems. The
most crucial aspect is that data stored should be immutable. Data being immutable
makes the system in general simpler and more manageable. This means that it
shouldn’t be converted or transformed indicating it is in its natural and raw format.
By making it immutable, it handles errors created by human. To provide to important
fast processing and performance, the data is often stored in a denormalized format.

• Re-computation
Hence raw data is always accessible in the Data Lake, the possibility to cater to new
necessities by running functions on the raw data is always available. Also, the data is
stored in a schema-less structure due to relating data to a schema result in its own
issue of re-computation, development and maintenance issues.
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5.4.3 Advantages and Disadvantages of Lambda

Table 5.1 underneath displays the benefits and inconveniences of using a Lambda architec-
ture.

Advantages Disadvantages

• Batch layer of Lambda architecture man-
ages historical data with the fault tol-
erant distributed storage which ensures
low possibility of errors even if which
is not beneficial in certain the system
crashes.

• It is a good balance of speed and relia-
bility.

• Fault tolerant and scalable architecture
for data processing.

• It can result in coding overhead due to
involvement of comprehensive process-
ing.

• Re-processes every batch cycle which is
not beneficial in certain scenarios.

• A data modeled with Lambda architec-
ture is difficult to migrate or reorganize.

Table 5.1: Advantages and Disadvantages of Lmbda

5.5 Comparing different Ingestion Approaches

After examining the popular data ingestion solution, we created a table to present the
various differences between the solutions. Take a look at Table 5.2.
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Criteria Apache Spark Gobblin Lambda Marmaray

Latest sta-
ble release 3.0.0 0.15.0 2.0

Built and designed
by Hadoop Platform
team

Primary
written in Scala Java Java Java

License GPLv3(copyleft
license)

Open source Open source Open source

Basic
nature

Works well for in-
gesting the data from
any source and load
it to Hadoop, Spark
mainly designs for big
data, data science. It
work with the stream-
ing data, has various
Machine learning li-
brary, can work on
structured and unstruc-
tured data

Works well for in-
gesting the data from
any source and load
it to Hadoop also dis-
tribute the ingested
data from Hadoop to
various sinks

Works well for
extracting data
in a defined
range from a
data source and
writing data to
a sink such as
HDFS

Designed to process
huge amounts of
data it uses batch
processing to pro-
vide complete and
accurate views of
batch data simulta-
neously using real-
time stream process-
ing to provide on-
line views of the
data

Integrate
data Both(ETL/ELT) ETL ETL ETL

Type of
data

Both (Stream and
Batch )

Both(Stream and
Batch)

Both (Stream
and Batch)

Both (Batch and
Stream)

Streaming YES YES YES YES
Written
data for-
mat

Parquet, JSON JSON JSON JSON

Extent of
ingestion Local and Distance Local Distance Local

Type of
loading Event driven Event driven Event driven Event driven

Supported
data for-
mat

Structured Semi-
Structured Unstruc-
tured and Binary

Structured Semi-
Structured Unstruc-
tured and Binary

Structured
Semi-
Structured
Unstructured
and Binary

Structured Semi-
Structured Un-
structured and
Binary

Link to
HDFS Connected Connected Connected Connected

Fault toler-
ance Strong tolerance Strong tolerance

Strong toler-
ance

medium tolerance

Notable
users

Netflix, Yahoo, and
eBay

Lorand Bendig
Yahoo, Netflix
and Linked-IN

Uber and Michelan-
gelo machine learn-
ing

Table 5.2: Comparison Table
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After analyzing the different architectures, we managed to collect in a short period of
time, we came to a decision that all previous solutions do in fact have the ability to ingest
large and heterogeneous data in to a Data Lake. But after investigating their architectures
intensively, component by component, we came to a realization that all these data ingestion
frameworks were missing an essential component. What these frameworks do is, collect
and extract data from the source. After that, in one data pipeline they begin to ingest
data directly into Hadoop not once taking in consideration the organization or keeping
everything in order. Right after that, they continue to load the data in to the chosen Lake
and it slowly turning in to a chaotic mess of unorganized data.
These solutions haven’t given any thought of the organization of the ingestion nor the
data lake itself. By not precisely structuring the data pipelines before the ingestion occurs,
they’re just loading data in a disordered manner. By doing so, they are placing the Data
Lake at an extremely elevated risk for it transforming into a swamp of data. A data swamp
is essential data stored without organization and precise metadata to make retrieval easy.
Unfortunately, a Data Lake can become a wasteland of data without clear organization. In
many cases, copies of data or irrelevant data are gathered and dumped into storage.
Retrieving the data and then transforming data for analytics becomes a chore. This means
if certain people are looking for specific data, they won’t locate it. It happens quickly once
companies convert to this storage method using ELT but do not clearly outline how to use
it and what the outcome should be for it.

5.6 Conclusion

During our intensive research in search of a data ingestion framework to implement and
append our features in order to enhance the overall procedure, we came a cross numerous
solutions. The solutions that stood out for us were; Apache Spark, Gobblin, Marmaray
and Lambda.
After comparing the solutions, taking in consideration our required needs to complete this
thesis project, we came to a conclusion that we wanted to conquer Apache Spark as our
foundation framework to ingest our numerous formatted data.
Apache Spark has realized fast evolution over the past years, becoming the most operative
data processing and AI engine in enterprises today due to its speed, ease of use, and
sophisticated analytics. Spark joins data and AI by simplifying data preparation at a
massive scale across various sources.

81



PART 3

Contributions
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Chapter 6

Suggested Data Ingestion
Approach

In this chapter, we will present the roles within the framework of this thesis

work to understand the process of big data ingestion in to a Data Lake environment. The

information provided in this section: After introducing Apache Spark, we will explain why

we have decided to implement and develop Spark as our data ingestion solution instead of

the rest of the others that were available. In addition, a complete and thorough explanation

about the added features that have been appended and how it will enhance the overall

ingestion process.

6.1 Introduction

In the previous chapter, we explained in depth how Apache Spark ingests data into the
Data Lake. A detailed explanation on how the masters and slaves work together in order
to partition the data and load them into our sink (Hadoop).
Putting this complete architecture under the microscope, it is obvious that this setup can
ingest structured, unstructured and semi-structured data, in batches or real-time streaming
data. All of this can be stored in Hadoop’s storage system as our Data Lake. Thus, resulting
us in understanding that all types of data that are extracted from the source are directly
sent in a single data pipeline and stored in the Data Lake. Even after it is stored in the
Lake, there is no complete understanding of the data that is being ingested. Due to this
reason we decided to add our own personalized touch to this architecture by implementing
our own Data Classifier and Data Visualizer. After some intense research, we decided that
these two elements were missing in this setup.
Our contribution to this architecture would be adding two new bricks to this setup. One
before ingestion and that would be the Data Classifier and another after the ingestion is
completed and that would be the Data Visualizer. The aim is to manage to classify the
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flowing data before it is stored in our Data Lake and visualize it after to gain a better
understanding of the data within.

6.2 Improvements to Apache Spark’s Approach

We have presented our motives to why we chose Data Classifier and Visualizer as elements
that will improve Apache Spark’s ingestion framework throughout this simple example. In
addition, a brief explanation on Sparks framework is also clarified.
The example that is displayed in Figure 6.1 below, is a graphical explanation of Apache
Spark being incorporated in the ingestion of data. The first step during any ingestion
framework, is to collect data from the source. In this case, we have all types of file formats
that include: CSV, JSON, XML, etc. These files are then channeled into Spark and are
broken up the data into chunks, called partitions. A partition is a collection of rows that sit
on one physical machine in our cluster. A Data Frame’s partitions represent how the data
is physically distributed across your cluster of machines during execution.
After data is ingested by Apache Spark, then follows the next step which is the transforma-
tion of data. Any transformation that is applied on the data would be immutable meaning
they cannot be changed once created. Since we are dealing with Data Lakes, we will not be
applying any modifications to our data sets and this to guard the original raw format of the
data. The alterations that will be applied are minimal, light and will not have any impact
on the data itself. These modifications will only be applied when we need to manipulate
the data in to the data pipelines, so they can facilitate the flow of data from the data source,
through Spark and into Hadoop

Figure 6.1: Apache Spark Ingestion Framework [22]
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Next, the data is directly stored AS IS format into the Data Lake through one data pipeline.
This means data will be loaded randomly into Hadoop without being placed into defined
categories. The whole Lake will be undefined and be an ultimate mess and this risks
the DL turning into a swamp. Due to this reason, we decided to implement a Data
Classifier/Categorizer. We created separate data pipelines according to the formats of files.
Basically, if we had five different formats that are ingested, we would create five separate
pipelines in order to neatly ingest them and keep the Lake organized without touching the
original format of files.
Finally, the data is stored in the Lake, Sparks framework is completed. This means anyone
who wishes to understand what the DL is compromised wouldn’t have a vivid image of
the datasets due to the fact the human brain comprehends data that is neatly presented
whether it is graphs, tables or pie charts. Spark doesn’t implement Data Visualization to
its framework and this is the reason why we decided to implement our second data brick
that is Data Visualizer in to Apache Sparks Framework to enhance the clients experience
when it comes to understanding the data within the Data Lake.

Figure 6.2: Apache Spark Work

Figure 6.2 above is a basic architecture on how Apache Spark ingests data. If looking
closer at the architect, data is being extracted from the source and place in one pipeline,
sent through Spark. After the data is partitioned into various clusters, it is then sent down
one single data pipeline ready to be ingested. Lastly, it is loaded in the lake. Taking a
closer look at the lake, you will notice that the ingestion has been completed in a random
manner and the data is dispersed chaotically. If the first phase of the data ingestion is
completed in a non-organized technique, this means the rest of the operations will follow
this mess. Resulting in the lake turning into a total clutter, no control or order, making it
difficult for the end user to locate data, traceability of data will become a challenge and
major risk of the data lake turning into a swamp.
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Figure 6.3: New Architecture adding the Classifier

Figure 6.3 above is the representation of our new architecture displaying our essential
element. Our new added fragment to Apache Sparks framework is the data classifier. If
you look at the architecture, and compare it with the old architecture and will see a huge
difference when fixating on the overall organization of the lake.

The old approach extracted data from the source through one single pipeline, whereas our
new approach, works by extracting from the source and passing the data through a classifier.
The classifier then proceeds to place the data into distinct and specific categories ready
to be parsed into Spark through designated data pipelines. In addition, the old approach
ingests data through one pipeline and then are randomly appended to the lake in unordered
method. This technique will place the lake in enormous risk of it slowly transforming into
wasteland of data thus making it time consuming to locating data, traceability will be a
massive challenge and just nightmare of an experience for the end-user. In contrast, our
new approach ingests data in specified data, what that means that the data is placed in
categories according to their format and they continue to be loaded in defined categories
into the lake. Take a look at figure 6.3, you can see the lake, each category contains a
specific format of files. So, not only are we organizing the data before the ingestion has
begun, we are also organizing the data after it has been loaded into the lake. Resulting
in a total order of the lake, less time consuming when searching for location of data and
traceability has become more effective .
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6.3 Data Classifier

A general definition of a data classifier would be that it is a process of organizing data into
numerous categories that benefits the security and the overall usage of data. The foremost
determination of a data classifier’s process is to make your data effortlessly locatable
and retrievable without needing to examine it again. As the previous definition suggests,
the classifier aims to make it easier to find data throughout the usage of tagging which
is found in metadata properties. To save storage costs and time to backup, this process
has the ability to find and delete duplicated data. The process of classifying data isn’t
a task that can be completed overnight. It requires full attention to the smallest details
and precise inspection. Data classification has numerous approaches and methods in
the preparation and repository of data. Most of the time, these methods are applied on
unstructured data that arrive in bulks from organizations and usually is an enormously
tough task to manage. Figure 6.2 is a simplified illustration to facilitate understanding how
a data classifier operates.

Figure 6.4: Data Classifier

6.3.1 Importance of Data Classification

Possessing a thorough understanding of the type of data we store and the location is the
principal key into keeping your data’s organization secure. The procedure to classify is to
recognize and allocate pre-determined layers of sensitivity to different types of information.
Classified Data is naturally categorized as either public or private. Public data can be read
by anyone, anywhere and anytime and includes data such as birth certificates, marriage
certificates, criminal records, etc. On the other hand, private data is data that can only
be accessed through approval, and this includes Personally Identifiable Information (PII),
Protected Health Information (PHI), etc.

87



6.3.2 Benefits of Data Classification

Most companies don’t have knowledge to whereas the location of their highly sensitive
data or how to accurately protect it. It has always been a tough problem to overcome
since it’s difficult to keep data secure, private and in compliance. By planning a data
classification program, companies now have a huge advantage.

a) Support regulatory compliance: A data classifier aids in determining to find where
data is located in the company, guarantees that suitable security controls are placed
correctly. Data classification also ensures that the data is traceable and easy to find.
The benefits that come with it are:

• Guarantees that sensitive data is managed and used correctly for different regu-
lations, such as medical, credit card, and personally information.

• Helps in the capacity to uphold day-to-day compliance with all related rules,
regulations, and privacy laws.

• Ability to retrieve specific information with a precise timeframe, which helps
meet newer compliance rules.

• Expands the chance to pass compliance audits.

b) Increases business operation productivity and decreases business risks: Data clas-
sification has the capacity to ensure companies that they’re data is successfully
protected, stored and managed from the day it is created until its destroyed. These
are the advantages that come with it:

• Delivers better understanding and control over the data that establishments hold
and share.

• Access is allowed more affectively and data usage is protected.

• Managing risks is now easier and that’s by helping enterprises evaluate the value
of their data and the effect of it being misplaced, stolen or altered.
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6.4 Data Visualization

Data visualization is the graphical representation of data. By using visual elements like
charts, graphs, and maps, data visualization tools provide an accessible way to see and
understand trends, outliers, and patterns in data. The main goal of data visualization is to
make it easier to identify patterns, trends and outliers in large data sets. Data visualization
is the practice of translating information into a visual context, such as a map or graph, to
make data easier for the human brain to understand and pull insights from.
In the world of Big Data, data visualization tools and technologies are essential to analyze
massive amounts of information and make data-driven decisions. To get a better under-
standing of the different manners to visualize data, we’ve presented Figure 6.3 to reach the
objective.[3]

Figure 6.5: Data visualisation[24]

6.4.1 Importance of Data Visualization

The practice of data visualization can benefit businesses recognize which aspects affect
customer behavior; locate areas that require to be enhanced; make data more memorable
for investors; comprehend when and where to place specific products; and predict sales
volumes.[1]
Additional benefits of data visualization:

• the capability to absorb information rapidly, improve understandings and make
quicker decisions.

• an amplified understanding of the following steps that must be taken to improve the
company.
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• an improved capacity to preserve the customers interest with data they can compre-
hend.

• an easy distribution of information that increases the opportunity to share insights
with everyone involved.

• an increased ability to act on findings rapidly and, thus, accomplish success with
greater rapidity and fewer mistakes.

6.4.2 Benefits of Data Visualization

Data visualization aids decision makers in numerous ways to improve data insights
especially when it comes to considering business strategies and goals. The following
are reasons why data visualization is extremely beneficial:

Quick action
The human brain comprehends visuals effortlessly compared to table reports. Data
visualizations permit decision makers to be informed quickly of new data insights
and take required actions for business growth.

Identifying patterns
Big volumes of data can offer many opportunities for insights when we envision
them. Visualization allows business users to recognize relationships between the
data, providing greater meaning to it.

Finding errors
identifying any errors in the data is simplified through visualization.

Understanding the story
The main purpose of the dashboard is storytelling. By designing your graphics in a
meaningful way, you aid the audience understand the story in a single glance.

Grasping the latest trends
Discovering the latest trends in your business to provide quality products and identify
problems before they arise is now possible when visualizing your data.
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6.5 Adapting the Classifier and Visualizer in to

Sparks Framework

As mentioned earlier, we’ve decided to implement the Data Classifier and Data Visualizer.
The following steps describe the procedure of classifying the data.

a) Extracting numerous formats of files
We limited the number of formats to ingest: CSV, JSON, SQL and TEXT files.
We began by selecting numerous of files that we were required to ingest. CSV file
contains data that was related to the corona virus. Such as number of people caught
the virus, number of deaths and number of recovered cases. JSON file holds data
related to Math test results in America, from grades to 6-10. Students from different
ethnicities were tested (White, Black, Asian and Hispanic). These files contained
various tests, test results and the difficulty of the math test. SQL files holds data con-
cerning students in university, ID, specialty, year, age and cycle. TEXT files contains
information concerning Big Data, latest technologies and techniques concerning this
domain.

b) Classifying the files
During this vital step, we created distinct data pipelines for each file format. We
took advantage of Spark Sessions to complete the classification. For example, when
working with a CSV file we created a spark session specifically for files with .csv
extensions. So, any file that ended with .csv would be sent down this specific pipeline
and ingested in Hadoop. You might be thinking “What if the file wasn’t in CSV
format?”. Well with our data classifier we weren’t entirely basing our classification
based on the extension of the file. We are in fact entering the file and verifying
line by line that indeed the format of inside the file matches the extension from the
outside. To test our theory that our classifier works from inside and outside the file,
we created a file that contained data in JSON format however the extension was
.csv. After classifying our selected file, we were faced with numerous errors and the
reason for that because the file that had JSON data inside and had a csv extension
couldn’t be sent down the CSV pipeline since the inside did not match the outside.
This proves that our classifier enters our file, scans the data comprised in this file,
compares whether the data inside matched the extension of the file and finally sends
it down the correct data pipeline.
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c) Data Ingestion
After the classification is completed, data is now being sent down specific pipelines
in a neat and orderly manner. The end point of these data pipelines would also be
considered their final destination and that is our Data Lake in this case we used
Hadoop. Our initial data is being sent down these pipelines without any alterations
happening to the actual data itself. We are guarding the raw data in AS IS format.
We did apply some light transformations but it hasn’t impacted the information
compromised. The purpose of these transformations was to manipulate the data to
send them down the data pipelines.
Not only have we established complete order while classifying our files, we’ve also
established total organization even when loading in to Hadoop. Each file has been
loaded in a nominated folder according to its formats. Example: if a csv folder after
it was classified got sent down a specific pipeline, it will also be loaded in a specific
segment in Hadoop.
The motivation behind organizing also the storage system was to eliminate the risk
of the Data Lake slowly transforming into a swamp of data. The number one factor
to as why Data Lakes turn into swamps is due to the fact that data is being loaded
and stored in any random free space in the Lake. This also makes it an annoyance for
the client to search and find their required data, which leads to forgotten and unused
data, which brings us back to the Lake turning into a swamp.

d) Data visualization
Last step of this framework is to visualize the data that is now stored in Hadoop. Way
before we decided to implement this feature, we had a tough time understanding our
data. We placed ourselves in the clients’ shoes. Clients are ordinary people; they
don’t have the skills nor the ability to fully comprehend what’s inside the Lake. This
is the reason that pushed us to add this feature in order to enhance Sparks ingestion
framework. With this new touch, we managed to display our CSV, JSON, SQL and
TEXT files in a well-presented manner and that is through the usage of bar graphs,
line graphs, pie charts. We also applied some text classification to our TEXT files
and presented the final result in tables.
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6.6 Conclusion

Spark has gone through fast evolution over the past couple of years, becoming the most
operative data processing and AI engine in enterprises today due to its speed, ease of use,
and sophisticated analytics. This data ingestion solution seemed too good to be true. After
placing it under the microscope, we found some unclarified dark spots in the framework
that needed enhancement.

Data classification was the first to be noted down as an improvement. Before ingesting our
data, we precisely created data pipelines to categories our data and organize it into specific
bulks. On the other hand, we weren’t only organizing our data before ingesting it, we were
also organizing it after it was ingested. The data that was being loaded into Hadoop was
likewise rationally structured according to the various data pipelines.
Data visualization was the second aspect to our contribution. After ingesting the data into
our Lake, we applied a visualizer to the data in order to describe and present the data in an
understandable manner to the ordinary human being.

Throughout this chapter, we clarified the various aspects we’ve decided to improve to
Apache Sparks ingestion procedure. We thoroughly defined and explained the two added
features which are: Data Classifier/Categorizer and Data Visualizer. We also provided
the importance and benefits of both these elements. Then we described how we managed
to adapt these features to the overall framework and how they ameliorated the ingestion
procedure.

To conclude, a Data Lake must remain coherent and hold a certain value. By applying the
classifier, we have organized the data into categories and preserving the data in it raw state.
Moreover, the Visualizer’s purpose is to tell the story of the Data Lake and stay up to date
of the data inside of it.
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Chapter 7

Implementation and Evaluation

7.1 Introduction

In the course of this chapter, we began be defining our new architecture after integrating
our two new elements. We presented the trajectory of data that it takes [1] Extraction, [2]
Classification, [3] Ingestion, [4] Storing and [5] Visualization. Next, we presented our
newly implemented interface that reflects our theory. We placed it to the text and offered
all the possible circumstances an end-user will face by using our interface. The screenshots
provided present all the different aspects of our interface. Afterwards, we moved on to the
steps we took to install, configure and integrate the two environments: Apache Spark and
Hadoop. Finally, we closed this chapter with a conclusion to summarize everything in this
chapter.
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7.2 Architecture

In the previous chapters, we clarified all the different aspects on Apache Sparks architecture
and the way it ingests data from the source and into the sink throughout its pipeline. After
putting the light on the two elements that we decided that will boost the overall ingestion
framework. We now would like to describe the overall new data ingestion architecture.
This architecture goes numerous stages: Extraction, Classification, Ingestion and Data
Visualization.We’ve visualized our new architecture in Figure 7.1 below.

Figure 7.1: New Adapted Architecture

7.2.1 Extraction

The first step in the framework is extracting the data from various data sources. The first
set of data we retrieved was from MySQL. The database called “Classic Models” holds
numerous tables that concerns the number of car sales, the client’s information and data
that concerns the purchasing of cars. The second set of data is information that concerns
number of people effected by the corona virus, number of deaths and recovered cases.
This information was stored in CSV format. Third set of data is in JSON format and it is
math test results in America according to the ethnicity, grade and age of students. The last
data source is a knowledgably article that concerns the world of Big Data, technologies
and new solutions.
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7.2.2 Classification

As explained in the previous chapter, the classification procedure happens right before the
ingestion phase. This procedure is essentially the creation of different pipelines according
to the number of formats of files. The motivated of this segment is to classify the format
of files by comparing the inside of the file whether or not it matches with the extension of
the file. Right after classifying the files, the data is ready for ingestion.

7.2.3 Ingestion

This segment has been completed through the manipulation of Spark Session. After
creating various data pipelines according to the format of files, we were ready to load data
in to our Data Lake. As revealed previously, the technology we have selected as our Data
Lake is HDFS (Hadoop Distributed File Storage). After the classification of our files was
successful, we operated Apache Spark to ingest and load data into Hadoop in organized
categories.

7.2.4 Visualization

To successfully and entirely append this element to the overall ingestion framework, we
worked with specific libraries in PyCharm IDE to display bar and line graphs, tables
and pie charts. The libraries that were used to visualize our data were: Pandas, Numpy,
Matplotib, Seaborn and Codecs. These libraries were precisely created and shaped to
simplify and facilitate the process to visualize data. These libraries are known to be used
in Jupyter Notebook. However, we discovered that it was made possible to manipulate in
PyCharm IDE.
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7.3 Interface

According to Figure 7.2 is the first thing that appears when you run the app. A simple
interface, that shows a toolbar from above, a text box on the left side and four progress
bars on the right.

Figure 7.2: The interface

Underneath are the steps to take to manipulate the interface to get it starting.

a) First step is to extract the data. Before any action can take part, is it necessary for the
client to open the File in the toolbar. In the dropdown menu, the user will be face
with two elements: Available Formats and Folder Location. Taking a look at Figure
7.3, is an image displaying the tool bar in our interface.

i. Available Formats: This element displays the file formats this framework is
capable of ingesting. This component was specifically created to inform the end
user that the following file formats are possible to ingest.

ii. Folder Location: This segment allows the end user to select numerous Folders
that they wish to ingest. We created this component in the aim to provide
freedom to the user to freely select folders all over their machine. We could’ve
facilitated our job by determine a specific folder to place their data and limit
their selection. However, we gave users the ultimate freedom to select folders
no matter where they’re found.
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Figure 7.3: Menu Bar

After the user has clicked on “Folder Location”, a pop up appears, that allows them
to select a specific directory.You can clearly notice the pop up in Figure 7.4. The
files that are found in the directory or folder that’ve been selected, are the same files
that will be ingested later on.

Figure 7.4: Extract Sources

When the user has decided which folder to use and has completed the selection. In
Figure 7.5 as displayed in the textbox, a table will appear that holds two columns.
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The first column displays the name of the file and the second column displays the
format of the file.

Figure 7.5: Selected Folders

We displayed the contents of the selected folders in a text box in the aim of providing
the user with the files and the formats they desire to ingest. This presentation is
another way to allow the client to confirm these are the files they want to load for the
second and last time.

b) Second step is where the role of file classification makes an appearance. If you glance
over to Figure 7.6, the user will come across the second segment of the toolbar which
is “Tools”. Here the user can decide how they would like to operate the data.

Figure 7.6: Classification tool bar
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This is where our contribution to the ingestion framework is presented. After the
client has selected their anticipated folder, the source code we implemented begins
by classifying the files according to their extension. After the files has now places in
designated categories, then the classifier enters the file and proceeds to read through
the data line by line to confirm that in fact the file is in the correct format.
During the classification, you can notice the progress bars below advancing. This is
displaying the progress of the classification that is happening behind the curtains. As
you can see, the categorization is completed format after format. This means the files
are being sent all at once and pass-through check points. Then each file falls into its
designated category. The question we would like to make clear is “Why didn’t the
classification of formats work in parallelism?”. We know Spark is popular for its
work in parallelism, we wanted to implement this feature in to our work, but due to
the fact that our machines were not efficient enough to handle the stress.

So instead, we worked our classifier, format by format and classified them in a
non-paralleled manner. The image below displays how the advancement of each
classifier occurred.
Figure 7.7, displays the advancement of our data pipeline while they’re in full swing.

Figure 7.7: Classification Progress
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The message box that appears and is displayed in Figure 7.8 underneath is designed
to inform the user that the categorization is accomplished and that the files have been
effortlessly parsed through a classifier and have been placed in nominated categories.

Figure 7.8: Message Box:Classifications complete
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c) The third stage of this framework is: Data Ingestion. After neatly organizing our files
into rationally categorized segments in the aim of gaining order of the system, it is
now time to ingest. Before beginning any type of ingestion, a message box appears to
notify the user that they’re establishing connection to Hadoop to commence loading
the data.
Figure 7.9 underneaths shows the message box

Figure 7.9: Message Box:Connected to Hadoop
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On top of Spark’s framework, as mentioned earlier, we generated numerous data
pipelines according to the number of formats. These various pipelines continue the
flow of data and transport them into Hadoop. We maintain our goal to keep the Data
Lake organized and we do so by ingesting the files according to their formats. Each
format has a specific folder in Hadoop. This signifies that the order and organization
is kept on top of the game in the DL. Example: All CSV, SQL, TEXT and JSON files
were stored in their folders named CSV, SQL, TEXT and JSON.
After the ingestion is completed, a message box that is showed in Figure 7.10
underneath is a way to inform the client that the ingestion is completed.

Figure 7.10: Ingestion complete
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As explained before, the files are stored in the Data Lake according to the format of
the files. Figure 7.11, is a representation of the Lake in Hadoop to present how the
files were ingested. This is our strategic idea to ingest and load the data and keep the
Data Lake organized and remove any potential risk of it transforming into a swamp.

Figure 7.11: Data Lake in Hadoop

By organizing our Data Lake in to explicit categories, we have also simplified the
users experience when exploring the DL to extract their required information. It has
become less time consuming and less efforts required to do so.

d) The fourth and last stage of this framework: Data Visualization. If the user has a slight
doubt of the data within the files, they have the choice to visualize and display in a
manner that is more descriptive a comprehendible.Figure 7.12 underneath, displays
where the user must select in order to visualize their data.

Figure 7.12: Visualization Tool Bar

105



Underneath are the graphs and pie charts that describe the contents of a couple of csv
files. As displayed in figure 7.13 below, the csv files hold data that concerns the number of
infected people by the corona virus, the number of death rates and the number of recovered
cases. The graph below illustrates the number of mortality rate of the corona virus over a
period of time.

Figure 7.13: Number of mortality rate of the corona virus over a period of time
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The bar graph and pie chart in figure 7.14 both display the number of Corona confirmed
cases around the world.

Figure 7.14: Number of Corona confirmed cases around the world
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In addition, the graph in Figure 7.15 is to visualize the data in a JSON file. The data below
represents the number of students tested in a math test according to their ethnicity (Asian,
Black, Hispanic and White).

Figure 7.15: Number of students tested in a math test

Another example of our data visualization. Underneath is Figure 7.16 and it is a description
of our SQL file. The data presented below describes the average salaries of employees
dating from 2003 to 2005.

Figure 7.16: The average salaries of employees
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7.4 Implementation tools

The main characters in this ingestion scenario were Apache Spark and Hadoop. These two
environments are known to be massive, hefty and difficult to install, hence they both have
numerous configurations to be completed and a whole different story to integrate the two
together. Underneath are the following steps we took to accomplish this tough challenge.

Step1:Download java8 In ubuntu terminal:
Figure 7.17 & Figure 7.18 is what was showed in ubuntu terminal to check and complete
java installation:

a) Update the package index: Sudo apt update

b) To install java8: Sudo apt install oracle-java8-installer

c) Check the java version: Java -version

Figure 7.17: Java version

d) Install the JDK: Sudo apt install default-jdk

e) To check: javac -version

Figure 7.18: Javac version

Step2:Add user for Hadoop environment

a) Add a Hadoop system user using below command:

b) Sudo addgroup Hadoop

c) Sudo adduser –ingroup hadoop hadoopusr

Step3:Configure SSH

a) sudo apt-get install openssh-server openssh-client

b) ssh-keygen -t rsa

c) cat /.ssh/id-rsa.pub » /.ssh/authorized-keys

d) To verify the installation of ssh: ssh localhost
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Step4: Download Hadoop

a) Visit the Apache Hadoop website and download hadoop2.8.5 version.

b) Go to where Hadoop was installed and run this command to extract the file:Sudo tar
xzf Hadoop-2.8.5.tar.gz

c) Rename hadoop-2.8.5 as Hadoop: Sudo mv hadoop2.8.5 hadoop

d) Give the privilege: Sudo chown -R hadoopusr:Hadoop Hadoop

Figure 7.19 is the result we received after verifying that HDFS was successfully installed
alongside of it the version.

Figure 7.19: Hadoop version

Step5: Configure Hadoop
Figure 7.20, are all the paths we’ve added to the /.bashrc file

a) Add all the paths /.bashrc file

Figure 7.20: Bashrc file
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Figure 7.21, Figure 7.22, Figure 7.23 presents the configuration of the Name node,
Data Node, MapReduce and Hadoop tmp files.

b) Enter /usr/local/Hadoop/ and modify all the xml files

Figure 7.21: Configure Namenode and Datanode

Figure 7.22: Configure MapReduce

Figure 7.23: Configure Hadoop tm
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c) $ HADOOP-HOME/bin/hdfs name node -format

d) Start Hadoop single node cluster using below command: Start-all.sh

e) To confirm everything is working: Jps
Figure 7.24 is a command to use in ubuntu to versify that Hadoop is running correctly.

Figure 7.24: Jps command

f) Figure 7.25 is the page that appears after typing “Localhost50070” on a navigator
in order to confirm Hadoop has been successfully downloaded, configurated and is
operating

Figure 7.25: HADOOP on Navigator

g) Stopping Hadoop: stop-all.sh
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Step8:Install Spark

a) Sudo apt-get install git

b) Next, go to https://spark.apache.org/downloads.html and download a pre-built for
Hadoop 2.7 version

c) Extract the file: Tar xvf spark-2.0.2-bin-hadoop2.7.tgz

d) Cd spark-2.0.2-bin-hadoop2.7.tgz

e) Cd bin

f) spark-submit –version
Figure 7.26 displays that spark is installed and is operating correctly.

Figure 7.26: Spark version

g) Figure 7.27 is a window that appears when typing on a navigator “localhost4040’ in
order to confirm Spark has been successfully downloaded and configurated:

Figure 7.27: Spark on navigator
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7.5 Conclusion

Throughout this chapter, our aim was to shine light on our contributions that were de-
veloped to enhance the data ingestion procedure. We started off by explaining our new
data ingestion architecture and clarified where and how our new added elements were
integrated in the framework. We described all the steps included in the new architect [1]
Data Extraction, [2] Data Classification, [3] Data Ingestion and [4] Data Visualization.
We then proceeded to explain our freshly created interface in order to bring life to our
theory and integrate the Categorizer and Visualizer. We deeply explained the steps an
end-user would go through and the results they will witness. Lastly, we illuminated the
steps we took to install, configure and integrate the large framework, both Apache Spark
and Hadoop. We mentioned only these two since they were large, time consuming and
extremely difficult to setup.
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Chapter 8

General Conclusion

8.1 Conclusion

This thesis report is aimed to treat a defined segment from Data Lake and that is the Data
Ingestion of various formats of data. Since data arrives in to a DL in different varieties,
unorganized and complicated to comprehend. It was our main objective to integrate new
approaches to enhance the overall procedure.

The first segment of this paper contains all the fundamental information that concerns this
topic. We started of by chapter one which contains information about another data storing
system known as Data Warehouse. We began by explaining how DW operates. How it
extracts, cleanses, transforms then loads data. We then moved on to describe the different
type of existing warehouses, different schemas that are used and its overall architecture.
We deeply defined how OLAP and OLTP are used and manipulated in a DW. Finally, listed
all the benefits and inconveniences of using this type of data storage.
In chapter two, we explained what makes data so big (Volume, Variety, Veracity, Velocity
and Value). We later on listed the challenges and benefits that follow big data. Lastly, a
detailed illumination on the Big Data’s ecosystem. Throughout chapter three, we went in
depth of the Data Lake storage system. We listed the importance, characteristics, extracting
value and the philosophy of a DL. Next, we clarified the different technologies that are used
in a Lake such as Storage, Data Source, Data Ingestion, Data profiling, Processing and
Data governance. We described both ETL and ELT processes and provided the differences
amongst the two. To close this chapter, we compared both Data Lake and Warehouse and
listed their differences.
The last chapter of this segment is Data Ingestion. Since we know there are various
components of DL, we made it clear that we will be zooming into the overall Data Lake
architecture and working on the Data Ingestion segment only. All through this chapter,
we systematically managed to illuminate the architecture of the ingestion process. We
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placed down all the layers included (Data Collector, Processing, Storage, Query and
Visualization). We jotted down the different parameters of the ingestion operation (Data
Lineage, Velocity and Frequency). A broad definition of data pipelines was included, also
the CDC (Change Data Capture) procedure. To finish off this chapter, two popular tools
were mentioned: Apache Sqoop and Kafka.

The second segment holds all the related work related to our thesis project. Throughout
chapter five we provided our research on plenty data ingestion solutions: Apache Spark,
Apache Gobblin, Marmaray and Lambda. Each and every single solution includes and
explanation of its architecture and the different operations it takes to completed their data
ingestion. We provided the challenges of each data ingestion solutions we managed to find
and their distinct data pipelines to ingest data. We then proceeded to compare the solutions
and placed those 92comparisons in a structured table. In the conclusion, we made it clear
that we’ve adopted Apache Spark to integrate our new contributions and ameliorate the
overall ingestion framework.

The last segment of our report is the contributions fragment. In the course of this chapter,
we made clear all the elements we’ve came to conclusion that will enhance and boot
Spark’s data ingestion framework. After methodical research, we found out the framework
was missing essential components. We provided a strategical explanation on how our two
added modules (data categorization & visualizer) will improve and enhance the ingestion
operation after being integrated in to Apache Sparks architecture. We then put into words
and well-defined what is a data classifier and visualizer, their importance and benefits. Next,
we explained how attaching these two modules will impact Sparks ingestion framework in
total. Following, we provided multiple screenshots concerning our developed interface.
We described all the different scenarios a user can confront during his interface experience.
We went to full length to describe the following steps; Extraction, Classification, Ingestion,
Storing and Visualization. Each and every single step was attached a screenshot of the
interface to help understand the overall concept.

To answer the question why we chose to work on this topic. Out of all the environments,
we chose to work on the ingestion of heterogeneous data in a Data Lake environment. Data
Lakes have essentially become the base of every large company, just because they offer
simpler and flexible options to scale when working with massive and varied data. The other
reason to as why we chose the data ingestion fragment is because, many companies have
dealt with many issues from data being generated from various data sources. Here data
ingestion main role is to consolidate data and storing it in the Lake. By using the correct
data ingestion tools, major organizations can extract, load and transform data for personal
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use. Data Lakes were the proposed solutions regarding the limitations that came with
Data Warehouses. Since they use ELT tools, the processing of data is less time consuming
when comparing to Data Warehouse. In addition, the number one challenge when it comes
working with Data Lakes, is extracting and slightly prepossessing the data before ingesting
it into the Lake. Scientist have complained that it’s one of the major challenging aspects
when working in a Data Lake.

After examining all the possible solutions of data ingestion, we came down to the four most
used approaches which are: Apache Spark, Apache Gobblin, Marmaray and Lambda. The
data ingestion approaches all possess the ability to ingest large data that is arriving from
multiple data source at different velocity. However, they all share the same inconveniences.
The cons of these approaches is that they all ingest and load data in a messy manner. If
helplessly continuing to use these approaches that have horrible organization methods,
the Data Lake is at risk of it turning into a swamp, making it more time consuming when
locating data, losing its complete value and integrity and just overall making it a horrible
experience for users.

In the frame of our thesis project, we strongly believe that our contribution has ameliorated
the overall ingestion operation of various data formats. Our new appended approach has
developed Apache Spark ingestion procedure in general. It is true, Spark does have the
ability to ingest data. However, it performs the ingestion in an unorganized and chaotic
manner. As brought up earlier, if using Sparks framework as it is, the Data Lake has a high
risk of it turning into an ocean or a swamp of data. We implemented a data categorizor
before ingesting the data. To simply put in words, the classifier works on organising the
data before its sent down to be ingested and also organises the actual Data Lake itself.
To summarise, we’ve reduced the risk of the Lake turning to a swamp of data, made it
easier to locate data. Meaning now its less time consuming when extracting data. Guarded
the value and integrity of the Lake and just overall enhanced the users experience when
using it. Another element we added to our new approach is the data visualizer. This
element helps the end user to visualize data, understand the story, pick up on trends and
new insights, take better decisions, analyse the data and detect any errors. So when placing
the old and new approach together, it is without doubt that our new approach has solved
the limitations that were discovered in the old approach.
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8.2 Future Work

Concerning our work, it is no doubt that the framework has a lot more developing to
be integrate in to, just like any other work. The work that we achieved was to treat a
small aspect in the overall Data Lake ecosystem and that is Data Ingestion. We zoomed
into the ingestion component and treated an aspect of it an that is the classification and
categorization of data. we do believe that our work still has a lot of improvements that can
be applied to, and the list below are the future work we plan to integrate.

- Parallelization:
When taking a look in the third section of this report and reading deeply. You can see
that our data classifiers were created in an unapparelled manner. Even though we are
working on Apache Spark environment which is generally popular for its paralleliza-
tion. The reason why we didn’t implement this aspect was due to the reason that our
machines weren’t sufficient enough to handle Spark working all the data pipeline
in parallel of each other. By implement this aspect in the future, it will ameliorate
the overall ingestions framework by excelling it into becoming less time consuming.
Working all the data pipeline will save us a lot more time compared to launching
the pipeline one by one, then continuing to ingest the categorized data one by one also.

- Big Data Semantics:
A quick definition of Data Semantics, it refers to the “meaning and meaningful
use of data”. For our future work we plan to achieve implementing this element
in to our new data ingestion solutions. An example how this component would be
implemented; for instance, a user would like to write an article that concerns “Natural
Disasters” and would like to extract any information that is linked to that topic in
their Data Lake. How we plan to implement it is the user begins to type in a couple
of keyworks related to their required research, then we proceed to collect all the
different files that are in relation of those keywords. Whether the data was found in
text, csv, photos, videos, json files. All of them would be collected and presented
to the user to complete their research. We plan to create relationships or gateways
between all the data that fundamentally exists in the Data Lake. Since the storage
system of a Lake is immensely vast, searching for data will become a tough challenge
for users. By integrating this in the future, it will help in searching the Lake, corner
by corner and extracting data. Creating relationships between data will help unify
the Data Lake.

We do wish to implement this feature after the data has been ingested into the Lake.
Big data semantics will be integrated and applied to the Lake itself, in order to extract
all the data that is related to a certain topic.
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-Metadata:
Metadata is data that describes other data. In information technology, the prefix meta
means “an underlying definition or description.” So, metadata describes whatever
piece of data it’s connected to whether that data is video, a photograph, web pages,
content or spreadsheets. To realize maximum value from our data lake, we must
be able to ensure data quality and reliability, and democratize access to data. We
aim making it faster for users to identify the data they want to use. All of this
critical functionality is dependent on putting in place a robust, scalable framework
that captures and manages metadata. Metadata is truly the key to a successful
next-generation data architecture.
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