
UNIVERSITE DE BLIDA - BLIDA 1
Faculté des Sciences

Département d’Informatique

THESE DE DOCTORAT

en Informatique

Spécialité : Génie des Systèmes Informatiques

CONCEPTION DE SYSTEME EMBARQUE BASÉE SUR LES

CONCEPTS DE L'ARCHITECTURE LOGICIELLE

Par

Abdelhakim BAOUYA

Devant le jury composé de :

H. ABED Professeur, U. de BLIDA PRÉSIDENT

N. BOUSTIA Maître de conférences, U. de BLIDA EXAMINATEUR

N. BENBLIDIA Professeur, U. de BLIDA EXAMINATEUR

D. BENNOUAR Maître de conférences, U.de BOUIRA DIRECTEUR DE THÈSE

O. AIT MOHAMED Professeur, U. de CANADA CODIRECTEUR DE THÈSE

W.HIDOUCI Professeur, E.S.I., ALGER INVITE

Blida, Avril 2016

UNIVERSITY OF BLIDA - BLIDA 1

ABSTRACT

Embedded Systems Design based On the Concepts of Software Architecture

by Abdelhakim BAOUYA

Today’s systems are constructed from a set of interconnected components to pro-

duce a behavior including one or more tasks. The constraints imposed on such

systems in terms of functionality, reliability, cost and Time-to-Market are very strict.

Unfortunately, their development is becoming a hard process. Thus, in one side the

applications are becoming more complex especially for real-time embedded sys-

tems, in other side, the Market demand for high-quality systems is becoming a big

challenge. Recently, formal validation of computer systems are emerging especially

to predict the system behavior and ensure its correctness before the implementation.

The aim of this thesis is to provide a practical and formal framework that enables

probabilistic assessment and functional requirements verification on a system mod-

eled by SysML internal blocks diagrams. Our main contribution is a novel approach

to automatically verify probabilistic system behavior under time constraints based

on their functional requirement. The design verification is based on Probabilistic

Model Checking. To handle the deployment process, our approach allows automatic

deployment-space exploration that maximizes the system-life duration with respect

to the hardware platform characteristics. To demonstrate the effectiveness of our

approach, we apply our methodology on academia as well as on automotive case

studies. . . .

Keywords: Software Architecture; Model Checking; SysML; Temporal Logic; Em-

bedded Systems; Real-Time

-1

 - -

 .
 .

 .
 .
.

UNIVERSITY BLIDA - BLIDA 1

RESUME

Conception de systèmes embarqués basée sur les concepts de l’architecture

logicielle

par Abdelhakim BAOUYA

Aujourd’hui, les systèmes sont construits à partir d’un ensemble de composants

interconnectés pour produire un comportement incluant une ou plusieurs tâches.

Les contraintes imposées à ces systèmes en termes de fonctionnalité, de fiabilité,

de coût et de délais de mise sur le marché sont très stricts. Malheureusement,

leurs développement devient un processus difficile, parceque les applications em-

barquées a temps réel sont de plus en plus complexes et la demande pour des

systèmes de haute qualité est en train de devenir un grand défi. Récemment, la

validation formelle a pu répondre aux contraintes des developpeurs afin de prédire

le comportement du système et garantir son exactitude avant sa mise en œuvre.

L’objectif de cette thèse est de fournir un framework formel qui permet l’évaluation

probabiliste et la vérification des exigences fonctionnelles sur un système modélisé

par SysML internal blocks diagrams. Notre principale contribution est de fournir une

nouvelle approche pour vérifier automatiquement le comportement des systèmes

probabilistes sous contraintes temporelles en fonction de leurs exigences fonction-

nelles. La vérification de la conception est basée sur les techniques de vérification

des modèles probabilistes dont les propriétés sont exprimées en logique temporelle.

Aussi, notre approche permet l’exploration automatique de l’espace de déploiement

qui maximise la durée de vie du système on considérant les caractéristiques de

la plate-forme matérielle. Pour démontrer l’efficacité de notre approche, nous ap-

pliquons cette méthode sur un exemple académique et aussi sur les systèmes au-

tomobiles. . . .

Mots clés: Architecture logicielle; Vérification formelle; SysML; Logique temporelle;

Systèmes embarqués; Temps réel

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my advisors Dr. Djamal

Bennouar, Dr. Otmane Ait Mohamed and Dr. Samir Ouchani, you have been a

tremendous mentor for me. I would like to thank you for encouraging my research

and for allowing me to grow as a research scientist. Your advice on both research as

well as on my career have been priceless. I would also like to thank my committee

members, professor Abed Hafida, professor Boustia Nahrimane, professor Benblidia

Nadjia and professor Hidouci Walid for serving as my committee members even at

hardship. I also want to thank you for letting my defense be an enjoyable moment,

and for your brilliant comments and suggestions, thanks to you.

A special thanks to my family. Words cannot express how grateful I am to my mother,

and father for all of the sacrifices that you’ve made on my behalf. Your prayer for me

was what sustained me thus far. I would also like to thank all of my friends who

supported me in writing, and incented me to strive towards my goal.

. . .

TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS 2

TABLE OF CONTENTS 3

LIST OF FIGURES 4

LIST OF TABLES 5

INTRODUCTION .. 6

0.1 Problem statement . 9

0.2 Objectives . 9

0.3 Proposed methodology . 10

0.4 Thesis contributions . 12

1 BACKGROUND. . 13

1.1 Introduction . 13

1.2 Transition system . 13

1.2.1 Probabilistic systems . 14

1.2.2 Timed probabilistic systems . 15

1.3 Software Architecture . 18

1.4 SysML Behavioral Diagrams . 22

1.4.1 Sequence diagrams . 23

1.4.2 State machine diagrams . 23

1.4.3 Activity diagrams . 24

1.5 System Requirements Specification 24

1.5.1 Temporal Logic . 25

1.5.2 Probabilistic Temporal Logic . 26

1.6 Verification Approaches . 29

1.6.1 Non-Probabilistic verification 29

1.6.2 Probabilistic Verification . 29

1.7 Probabilistic Verification Tools . 32

1.8 Conclusion . 34

2 A QUANTITATIVE VERIFICATION FRAMEWORK OF SYSML ACTIVITY DIA-

GRAMS UNDER TIME CONSTRAINTS 35

2.1 Introduction . 35

2.2 Related work . 36

2.2.1 Comparison . 38

2.3 Preliminaries . 39

2.3.1 SysML Activity Diagram . 39

2.3.1.1 Actions Execution . 41

2.3.1.2 Time Expression using SysML/MARTE 42

2.4 SysML activity diagram formalization 44

2.4.1 SysML activity diagrams syntax 44

2.5 PRISM formalization . 50

2.5.1 PRISM Syntax . 52

2.5.2 PRISM semantics . 52

2.6 The verification approach . 54

2.7 The transformation soundness . 59

2.8 Implementation and experimental results 62

2.9 Conclusion . 65

3 RELIABILITY ANALYSIS BASED PROBABILISTIC MODEL CHECKING TO OP-

TIMIZE SOFTWARE DEPLOYMENT IN EMBEDDED SYSTEMS. 67

3.1 Introduction . 67

3.2 Embedded Software Deployment . 68

3.3 Automotive Control Systems . 69

3.3.1 Adaptive Cruise Control . 70

3.3.2 Anti lock Brake System . 71

3.4 Related Work . 71

3.4.1 Comparison . 73

3.5 SysML Diagrams . 74

3.5.1 SysML Internal Blocks Diagram 74

3.5.2 Linking Behavior to Blocks Using Partitions 77

3.6 The Deployment Problem . 78

3.6.1 Deployment Quality Measure 79

3.7 Experimental Results . 80

3.7.1 Evaluation . 83

3.8 Conclusion . 86

CONCLUSION 87

APPENDIX 90

A. ABBREVIATIONS . 90

91REFERENCES

LIST OF FIGURES

Figure 1 Traditional Software Design Life Cycle [1] 7

Figure 2 Methodology for software design and deployment 11

Figure 1.1 CSMA station . 19

Figure 1.2 SaveCCM component model . 21

Figure 2.1 A sub set of SysML activity diagram artifacts 41

Figure 2.2 Digital camera activity diagram design 43

Figure 2.3 Syntax of Timing Activity Calculus (TAC). 49

Figure 2.4 The Syntax of PRISM Probabilistic Timed Automata 51

Figure 2.5 The Transformation Soundness. 59

Figure 2.6 The Verification of PCTL Properties on the Digital Camera 63

Figure 2.7 The abstract SysML activity diagram for Property 4. 63

Figure 2.8 The abstraction effects on Digital Camera Activity diagram. 65

Figure 3.1 Adaptive Cruise Control System . 70

Figure 3.2 Example of interface . 77

Figure 3.3 Example of Software Components . 77

Figure 3.4 Example of Hardware Components 77

Figure 3.5 Example of activity allocation to blocks 78

Figure 3.6 Adaptive Cruise Control (Right) and Anti-lock Brake System (Left) . . 81

Figure 3.7 Hardware topology . 82

Figure 3.8 Activity diagram for Adaptive Cruise Control 82

Figure 3.9 Activity diagram for Anti-lock Brake System (Left) 82

Figure 3.10 ABS Reliability . 83

Figure 3.11 ACC Reliability . 83

LIST OF TABLES

Table 1.1 Comparison of Component Models . 22

Table 1.2 Model Checkers vs. Supported Formal Models 33

Table 2.1 Comparison with the Existing Works 40

Table 2.2 TAC Terms of SysML Activity Diagram Artifacts. 46

Table 2.3 Verification results for Property 2.4 . 64

Table 3.1 Comparison with the existing approaches 75

Table 3.2 Parameters of buses and processors 81

Table 3.3 Allocation results . 83

INTRODUCTION

In System Engineering, SysML (System Modeling Language)is a standard language

[2] developed by the Object Management Group (OMG) and the International Coun-

cil on Systems Engineering (INCOSE). SysML is widely used for specification, anal-

ysis, design and verification of a broad range of complex systems (e.g. Hardware,

software, information work flow). SysML reuses a subset of UML2 artifacts (Uni-

fied Modeling Language) [3] and provides additional extensions to specify require-

ments such as probability and components deployment. Behavioral specification

is achieved in SysML using three diagrams: State Machine, Communication and

Activity Diagram. Particularly, SysML activity diagrams is used to model system be-

haviors. In addition, systems’ composition is supported by the call behavior and

send/receive artifacts.

Constraints on software development in terms of functionality, performance, reliabil-

ity and time to market are becoming more stringent. Therefore, software develop-

ment reveals several challenges. Indeed, if in one side applications are becoming

increasingly complex, in the other side the market pressure for rapid deployment of

these systems makes designs a challenge. One major challenge in software de-

velopment process is to advance errors detection at early stages of life cycles. Re-

searchers at the National Institute of Standards and Technology (NIST) attest: about

50 percent of software development budgets go to testing, yet flaws in software still

7

cost the U.S. economy $59.5 billion annually [4]. It has been shown in Fig.1 [1] that

the cost of system repairing during the maintenance in software development life

cycle is approximately 67%. Therefore, acceleration of verification and maintenance

process at preliminary design is extremely beneficial as compared to fixing them at

the testing phase.

FIGURE 1: Traditional Software Design Life Cycle [1]

Recently, formal verification methods have become essential tools for developing

safety-critical systems, for whose behavioral correctness is a main concern. These

methods require a mathematical expertise for specifying what the system ought to

do and verifying it with respect to the requirements. There are mainly two ways for

doing formal verification: Theorem proving and model checking.

Theorem proving needs to be performed by people with skills (Experts) in order to

solve the problem. In addition, this approach needs a precise description of the prob-

lem written in logical form and the user needs to think carefully about the problem

with deeper understanding in order to produce an appropriate formulation. However,

there are significant implementations of this approach such as HOL [5], Coq [6].

Model checking is popular formal verification approach in software and hardware in-

dustry. For instance, SLAM [7] which is a Microsoft research project uses a model

checking to verify device drivers are conformed to their Application Programming

Interface (API) specification. According to [8], Model Checking is automatic and

usually very fast. The user does not need to construct a correctness proof. If the

8

specification is not satisfied, the Model Checker will produce a counterexample ex-

ecution trace that shows why the specification does not hold. In addition, temporal

Logics can easily express many of the properties that are needed for reasoning.

This verification method focuses on either qualitative or quantitative properties [9].

The qualitative properties assert that certain event will happen surely or not. The

quantitative properties are based on the probability or expectation of a certain event

(e.g. the probability of the system failure in the next t time units is 0.85). Probabilis-

tic model checking is an effective technique to verify probabilistically the satisfiability

of a given property. In this thesis we use PRISM language for probabilistic model

checker [10] where the properties can be expressed in Probabilistic Computation

tree logic (PCTL) or in Continuous-stochastic logic (CSL). Note that the properties

prescribe what the system should do, and what it should not do, whereas the model

description addresses how the system behaves.

Owing to the fact that it is never enough to just ensure the functional correctness

of a given system, ensuring the software deployment (i.e. currently known as parti-

tioning) is a real challenge. The process consists in distribution of a software com-

ponents on different physical locations with respect to the requirements. The core

of the process is based on the functional correctness of the composed activity dia-

grams of the interacting components by taking into account the the physical compo-

nent’s failure at early design life cycles. Layali et al. [11] assert that hardware faults

have a negative impacts on the programs (i.e. software).

It is extremely important to provide a mechanism employing quantitative techniques

for deployment evaluation of software based on their design models. In this the-

sis, we address the issue of functional assessment of software/systems modeled in

SysML activity diagrams. The goal is to gauge how well a product is meeting its

functional requirements. Since we use model-checking technique, temporal logic is

used to express functional properties.

9

0.1 Problem statement

Current research initiatives focus mainly on qualitative model checking of SysML to

ensure the correctness of systems functionality. Most of the proposed approaches

are intended to verify the probabilistic or the timed system behavior[12], [13], [14],

[15], [16], [17], [18]. Furthermore, software-deployment is rarely checked in UML

and SysML behavioral diagrams. Since SysML is a young modeling language that

extends UML with system features, only few related works exist. Herein, this thesis

aims at investigating and answering two fundamental questions:

1. How to verify and evaluate the functional properties in SysML activity diagrams

under time constraints?

2. How to choose the best deployment configuration using probabilistic model

checking?

0.2 Objectives

The main goal of this thesis is to check and to quantify the functionality of proba-

bilistic systems at design level by taking into account the system architecture and

its functional constraints. Thus, we propose a SysML language for components and

behavior specification. In addition, we use MARTE profile to specify the hardware

and the real-time characteristics. The objectives of this thesis are summarized as

follows:

1. Providing an efficient verification framework to evaluate the functional correct-

ness of probabilistic systems modeled in SysML under time constraints,

2. Demonstrating the efficiency of model checking in deployment-space explo-

ration where activity diagrams are partitioned on the software components.

10

0.3 Proposed methodology

This section describes our framework to specify and to verify the functionality of

systems modeled by using SysML blocks and activity diagrams. Our proposed

framework targets systems composed of hardware and software components. Fur-

thermore, it automatically evaluates the reliability of systems at the design level by

verifying the distributed activity diagram on the different software components (i.e.

Blocks). The output of the software components are annotated with probabilities that

are extracted from the hardware platform characteristics. The proposed framework

depicted in Fig.2 is based on model checking, and it develops three main concepts:

extracting the individual reliability of the hardware platform, extracting the semantics

of the studied diagrams, coding the semantics in Prism input language and verifying

the satisfiability of the reliability properties.

The SysML activity diagrams is used to specify the behavior of the studied system.

The language allows the allocations of the artifacts on different software components

(i.e. Partitions) where the interactions is modeled by transition lines that can cross

the partition canvas. In addition, when two software components are distributed on

different processors the cross lines are annotated with probability values.

For verification, we extract the formal semantics of SysML activity diagrams. This

helps to encode easily diagrams into the input language of the PRISM model checker.

To ensure the correctness of our proposed approach, we prove the soundness of

model to model in the framework.

11

FIGURE 2: Methodology for software design and deployment

12

0.4 Thesis contributions

The main contributions of this thesis are:

1. Probabilistic and timed verification framework. We propose a practical and

formal framework to specify and to verify the timed and probabilistic systems

modeled by SysML activity diagrams,

2. Formal semantics of SysML activity diagrams under time constraints. We

formalize SysML activity diagrams enhanced with probability and time by giving

an adequate meaning that can be supported by the existing model checking

tools. As we study behavioral diagrams, we developed a calculus based on the

structural operational semantics.

3. Formal semantics of probabilistic and timed automata in PRISM language.

We formalize PRISM model by providing a syntax and the operational seman-

tics that support the main operators of PRISM.

4. Mapping soundness proof. Our verification mechanism uses PRISM as ver-

ification tool. It encodes the semantics of SysML activity diagrams under time

constraints in the input language of PRISM. We prove the soundness of the

verification by showing that our encoding preserves the satisfiability of the ex-

isting properties.

5. Software deployment. We propose SysML internal blocks diagrams to spec-

ify the architecture of software components and its deployment with activity

diagrams that express the functional behavior. The original model is enriched

with sub set of real-time characteristics.

CHAPTER 1

BACKGROUND

1.1 Introduction

System-level design and verification is two steps procedure starting from modeling,

ending on verification. The first step consists on design view interpreted in formal

language with associated behavior that rules the system operations. The original

design needs to be converted to other formalism acceptable by model checker tools.

Modeling is accompanied with a set of designer requirements that need to be verified

for decision making. These requirements are expressed in temporal logic. The

verification process starts by exploring different paths (sequence of states) to check

if the requirements are held else, a counterexample is produced prohibiting system

failures.

14

1.2 Transition system

Models of systems describe their behavior in an accurate and an unambiguous way.

They are mostly expressed using finite-state automata, consisting of a finite set of

states and a set of transitions. Mainly, we cite: Markov Decision Processes [10],

Probabilistic Timed Automata (PTA)[39], Continuous Time Markov Chains (CTMC)

[20] and Contin-uous Time Markov Decision Processes (CTMDP)[20]. Next, we

define Probabilistic and Timed-Probabilistic systems, then we introduce the system-

level modeling language used in our approach.

1.2.1 Probabilistic systems

Probabilistic Transition Systems [9] is a version of transition systems (automata) that

support the probabilistic decision. Precisely, a probabilistic automata (PA) that

exhibits both probabilistic and nondeterministic features. Definition 2.1 illustrates a

PA where Dist(S) denotes the set of convex distributions over S and µ = [..., si → pi,

...] is a distribution in Dist(S) that assigns a probability pi to a state si.

Definition 2.1 (Probabilistic Automaton). A probabilistic automaton is a tuple M =

(s, S, L,
∑
, δ), where:

• s is an initial state, such that s ∈ S,

• S is a finite set of states,

• L: S → 2AP is a labeling function that assigns each state to a set of atomic

propositions taken from the set of atomic propositions (AP),

•
∑

is a finite set of actions,

15

• δ : S ×
∑
→ Dist(S) is a probabilistic transition function assigning for each

s ∈ S and α ∈
∑

a probabilistic distribution µ ∈ Dist(S).

1.2.2 Timed probabilistic systems

Timed Probabilistic Systems [39] are an extended version of probabilistic transition

system that support the time and probabilistic decision. More specifically, Probabilis-

tic Timed Automata (PTA) is a Probabilistic Automata equipped with a finite set of

real-valued clock variables called clocks. Conditions on the values of the clocks are

used as enabling transition conditions (i.e., guards) of actions: only if the condition

is fulfilled t he a ction i s e nabled a nd c apable o f b eing t aken; o therwise, t he action

is disabled. Conditions which depend on clock values are called clock constraints

which are used to limit the amount of time that may be spent in a given location. The

following definition prescribes how constraints over clocks are defined.

Definition 2.2 (Clock C onstraint). A clock constraint over set X of clocks is by the

following grammar

g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g

where c ∈ N and x ∈ X . Let CC(X) denotes the set of clock constraints over X.

A Probabilistic Timed Automata (PTA) is a Probabilistic Automata with clock vari-

ables. The clocks are used to formulate the real-time assumptions on system be-

havior. An edge in a PTA is labeled with a guard (when is it allowed to take an

edge?), an action (what is performed when taking the edge?), and a set of clocks

(which clocks are to be reset?). A state is equipped with an invariant that constrains

the amount of time that may be spent in that location. The formal definition is:

16

Definition 2.3 Probabilistic Timed Automata (PTA). PTA is a tuple M = <s, S, X,

Act, Inv, Prob , L >, where:

• s is an initial state, such that s ∈ S ,

• S is a finite set of states,

• X is a set of clocks,

• Act is a set of actions,

• Inv :S → CC(X) is an invariant condition, imposes restrictions on the allowable

values of clock variable,

• Prob: S × Act → Dist(2x × S) is a probabilistic transition function assigning

for each s ∈ S and α ∈ Act a probabilistic distribution µ ∈ Dist(2x × S).

• L : S → 2AP is a labeling function mapping for each state a set of atomic

propositions.

Transitions (Edges) in PTA are labeled with tuple (g, α) where g is the clock constraint

of the PTA, α is an action. The intuitive interpretation of s g,α−−→p s
′ is that the PTA can

move from state s to state s′ when clock constraint g holds. Besides, when moving

from state s to s′, any clock will be reset to zero and action α is performed according

to the distribution µ ∈ Dist(2x × S). Function Inv assigns to each state a state

invariant that specifies how long the PTA may stay there (maximum elapsing time).

For state s, Inv (s) constrains the amount of time that may be spent in s.

A location in PTA [39] is a pair (s, ϑ) ∈ R≥0 such that for a set X of clocks, ϑ is a clock

valuation with ϑ : X → R≥0, assigning to each clock x ∈ X its current value ϑ(x).

In any location (s, ϑ), either a certain amount of time ts ∈ R≥0 elapses, or an action

α ∈ Act is performed. If time elapses, the choice of ts requires that the invariant Inv

remains continuously satisfied w hile t ime p asses i .e.ϑ(ts) |= I nv(s). T he resulting

location after this transition is (s, ϑ + ts). In the case where an action is performed,

an action α can only be chosen if it is enabled i.e. when clock constraint g holds,

17

ϑ(ts) |= g. Once an enabled action α is chosen, a set of clocks will be reset to

zero and a successor location are selected at random, according to the distribution

µ(s,ϑ+ts) ∈ Prob(s, α).

There are two possible ways in which a PTA [39] can proceed by taking a

transition in the PTA (Action transition) or by letting time progress while remains in a

state (Delay transition):

• Action transition : (s, ϑ)
α→ (s′, ϑ′) if the following conditions hold:

(a) there is a transition s g,α−−→p s
′ ts ∈ R

(b) ϑ+ ts |= g

(c) ϑ′ = (v + ts′)[X := 0]

(d) ϑ+ ts |= Inv(s)

• Delay transition : (s, ϑ)
d→ (s, ϑ+ d), d ∈ R

(e) if ϑ+ d |= Inv(s)

For a transition that corresponds to (a) traversing a transition s g,α−−→p s
′ in PTA it must

hold that (b) ϑ satisfies the clock constraint g (ensuring the transition is enabled),

and (c) the new clock valuation in s′ is reset, should (d) satisfy the state invariant of

s (ϑ + ts � Inv(s)). To remain in the same state (e) if the location invariant remains

true while time progresses.

A reward structure are defined at the level of PTA equivalently referred to as costs or

prices using a pair r = (rS, rAct), where rS : S→ R≥0 is a function assigning to each

state the rate at which rewards are accumulated as time passes in that location and

rAct : S × Act → R≥0 is a function assigning the reward of executing each action in

each state.

Definition 3 (Parallel composition of PTAs).

The parallel composition of PTAs M1 = (s1, S1, X1, Act1, inv1, P rob1, L1),M2 = (s2,

18

S2, X2, Act2, inv2, P rob2, L2) is the PTA M= M1||M2 = (s1 × s2, S1 × S2, X1 ∪

X2,Act1 ∪ Act2, inv, Prob, L(s1) ∪ L(s2)): where P rob(S1 × S2, Act1 ∪ Act2) is the set

of transitions, such that that one of the following requirements is met [39].

1. s1
t1,α−−→ µ(s1,ϑ+t1), s2

t2,α−−→ µ(s2,ϑ+t2), and α ∈ Act1 ∩ Act2 , t1 ∈ X1, t2 ∈ X2,

2. s1
t1,α−−→ µ(s1,ϑ+t1), µ(s2,∅) = [s2 7→ 1], and α ∈ Act1 \ Act2, t1 ∈ X1,

3. µ(s1,∅) = [s1 7→ 1] , s2
t2,α−−→ µ(s2,ϑ+t2), and α ∈ Act2 \ Act1, t2 ∈ X2.

If PTA Mi has associated with rewards structure (ris, r
i
Act), then the reward structure

of r=(rs, rAct) for M1||M2 :

1. ris(s1, s2) = r1
s(s1) + r2

s(s2), rAct((s1, s2), α) = r1
Act(s1, α) + r2

Act(s2, α), and α ∈

Act1 ∩ Act2

2. rAct((s1, s2), α) = r1
Act(s1, α), and α ∈ Act1 \ Act2

3. rAct((s1, s2), α) = r2
Act(s2, α), and α ∈ Act2 \ Act1

As example, we present in Fig.1.1 the probabilistic timed automata of selected be-

havior in CSMA-CD Protocol [10] designed for networks with a single channel and

specifies the behavior of stations with the aim of minimizing simultaneous use of

the channel (data collision). The probabilistic timed automaton representing a single

station is given below. λ to the time to send a data packet. The actions in each node

are described by sendi, endi and busyi. each transition depends on the clock node

constraints xi.

19

FIGURE 1.1: CSMA station

1.3 Software Architecture

Software product is a combination of a set of procedures, modules and objects

that provides some functionality. For the sake of being precise; architecture is

defined to give some organization of different elements of the software. There-

fore, it is essential that the software product be designed to address the full set

of functional behaviors that must be exhibited by the final product. The software

architecture represents the decomposition of requirements into the functions and

subfunctions that are necessary to provide the specified behavior and performance

characteristics [19]. This decomposition follows different styles established by the

software researchers community and cited by Garlan et al. [20]:

� Module style: A module is an implementation unit that provides a coherent

set of responsibilities. A module might take a form of a class or a collection

of classes. Each module has a set of properties express the informations

associated with modules. Mainly relations are based on compositions.

� Component-and-connector (C&C) style: A component is one of the principal

20

processing units of the executing system. Component might be services, pro-

cesses, class, object, server, client. A connector is the interaction mechanism

among components. Connectors includes call communication protocols such

as remote method invocation. Connector is a component with communication

as behavior.

� Allocation style : Describes the mapping of software units to elements of en-

vironment in which software is developed or executed. For example: mapping

the software in C language to the Micro-blaze Processor on field-programmable

gate arrays (FPGAs). The goal of allocation style is to compare the properties

of the software elements with properties provided by the environment to deter-

mine whether the allocation will be successful or not[21].

In our methodology, the concepts of system modeling are based on Component-

and-connector (C&C) and Allocation styles. Components represent the principal

computational elements that are presents at runtime. Components have interfaces

called ports. A Port defines a specific point of interactions of a component with the

rest of the assembly (i.e. a set of components). The example in Fig.1.2 show the

internal and external representation of component following SaveCCM component

model [22] where the main observed elements: 1)A delegation port that maps the in-

ternal port to the external port, 2) SaveCCM standard component, 3) linking required

to provided interface (i.e. Attachment), 4) A wrapper component which is a kind of

an envelope, 5) event port which is a kind of a port that mainly support boolean

types. We note that the component model has its proper formal notation referred as

Architecture Description languages (ADLs), it provides graphical and textual repre-

sentation. ADLs are generally defined with their underling semantic and grammar

for automation in case of architecture analysis. In case of C&C and allocation styles

the automated tool can extract the relevant informations from software components

(i.e. Tasks) such as minimum and maximum execution time with processors charac-

teristics to establish a best tasks scheduling.

21

FIGURE 1.2: SaveCCM component model

Now, we surround the existing component models that allow us to represent the

architecture of our assembly. The best existing work that surveys the component

model was established by Hošek et al. [23]. We refer to [23] to surveys the recent

works. AUTOSAR (Automotive Open System Architecture) [24] dedicated for the au-

tomotive industry, AUTOSAR distinguishes atomic software components, represent-

ing pieces of functionality, and compositions, representing logical interconnection of

components. An atomic component is limited to one electronic control unit (ECU).

However, real-time properties are not clearly specified. Pin Component technology

was dedicated [25] to design and implement predictable real-time software with sup-

port for the UML state-charts semantic. Each Pin component consists of a container

and a custom code. Real-time features are provided via a support of an under-

lying external commercial environment. SaveCCM [22] dedicated for automotive

embedded system specification. Three kinds of component exists basic component,

switches (i.e. connector role) and assemblies (i.e. a set of component) with support

for the timed state-charts semantic. BIP component model (behavior, interaction,

priority) was principally dedicated for modeling real time embedded software. The

BIP model [26] uses connectors to specify possible interactions between compo-

nents and priorities to select among possible interactions with support for the state-

charts semantic. Architecture Analysis and Description language (AADL) language

[27] dedicated firstly for the avionic industry. AADL allows the specification of the

software and the hardware component. The software components are thread, data,

22

TABLE 1.1: Comparison of Component Models

Component Model Behavior Extendability
SaveCCM Timed State Chart
PIN UML State Charts
AUTOSAR
BIP State Charts
AADL Modes, Behavior Annex

√

SysML Activity, Sequence, State machine
√

subprograms and hardware covers the physical platform such as processor, buses

and memory. The behavior is expressed through modes and ”behavior annex“ which

is a kind of state chart. However, for extendability; the user need to define its proper

grammar. In literature we found a lot of methodologies based on UML for compo-

nent specification such as MoPCoM co-design methodology [28], ENOSYS[29] and

COMPLEX[30] due to its extendability based on the MARTE profile standard. Sys-

tem Modeling Language (SysML) [2] reuses a set of UML diagrams (Component

diagrams, class diagrams) with additional properties to express probability and al-

locations and it is strongly recommended since its support three forms of behavior

specification: (State machine diagram, Activity diagram and Sequence diagram) in

addition to there compositions. To sum up, Table.1.1 compares the surveyed com-

ponent model based on their behavior expressibility and extendability. We observe

that SysML component model is more expressive than the other component-based

Models.

1.4 SysML Behavioral Diagrams

In this section, we explore the SysML behavioral diagrams. The diagrams consid-

ered are: Sequence, State Machine and Activity behavioral diagrams.

23

1.4.1 Sequence diagrams

Sequence diagrams [31] describe the interactions within a system (i.e. an instance

of the block that owns the interaction) using communicating entities. An interaction

is a communication based on the exchange of messages in the form of operation

calls or signals arranged in a temporal order. The principal structural feature of an

interaction is the lifeline. A lifeline represents the relevant lifetime of the interac-

tion’s owning block where message is a communication type between two lifelines.

The Diagrams offer possibility to model accurately the message exchange using the

asynchronous and synchronous messages using control structure (loop and condi-

tions). In addition, time can be represented explicitly on sequence diagrams (time

and duration observation).

1.4.2 State machine diagrams

The UML 2 state machine diagram is reused by SysML specification [31]. State

machine are used to describe the state-dependent behavior of a block throughout its

life cycle in terms of its states and the transitions between them. State machines are

normally owned by blocks and execute within the context of an instance of that block.

The states in any one region are exclusive; that is, when the region is active, exactly

its initial pseudostate become active. When a state is entered, an (optional) entry

behavior (e.g., an activity) is executed. Similarly on exit, an optional exit behavior is

executed. While in a state, a state machine can execute a do behavior. A region also

normally has a final state that, when active, signifies that the region has completed.

Change of state is effected by transitions that connect a source state to a target

state. Transitions are defined by triggers, guards, and effects. The trigger indicates

an event that can cause a transition from the source state, the guard is evaluated

in order to test whether the transition is valid, and the effect is a behavior executed

24

once the transition is triggered. Triggers may be based on a variety of events such

as the expiration of a timer, or the receipt of a signal. In addition to initial and final

pseudostate, control nodes supports a junction, choice, join, fork, terminate and

history pseudostate node.

1.4.3 Activity diagrams

In SysML, an activity is a formalism for describing behavior that specifies the trans-

formation of inputs to outputs through a controlled sequence of actions [31]. The

activity diagram is the primary representation for modeling flow-based behavior in

SysML. Moreover, UML activity diagrams [32] can capture the behavior of a pro-

cess or system in a wide variety of domains for use cases detailing computational,

business, and other workflow processes as well as modeling in general. An activity

may be composed of a set of actions coordinated sequentially and/or concurrently.

Furthermore, the activity may also involve synchronization and/or branching. These

features can be enabled by using control nodes including fork, join, decision, and

merge. Activity diagram is essentially employed for verification and described in

Chapter 2.

1.5 System Requirements Specification

This section introduces (propositional) temporal logic ; a logical formalism that is

suited for specifying requirements. The syntax and semantics of linear temporal

logic are defined. Two commonly used temporal logics are Computation Tree Logic

(CTL) and Linear Temporal Logic (LTL) . LTL is called linear, because the qualitative

notion of time is path-based and viewed to be linear: at each moment of time there is

25

only one possible successor state and thus each time moment has a unique possible

future [9]. Whereas in CTL the qualitative notion of time is state-based and it is

possible to quantify over the paths departing from a given state [9].

1.5.1 Temporal Logic

Time in temporal logic is not explicitly mentioned. CTL [33] is an important branch-

ing temporal logic that is sufficiently expressive for the formulation of an important

set of system properties. Branching time refers to the fact that at each moment

there may be several different possible futures. Thus, the future is nondeterministic

as any of these paths can be considered as the future path. The temporal operators

in branching temporal logic allow the expression of properties of some or all com-

putations that start in a state. To that end, it supports an existential path quantifier

(denoted ∃) and a universal path quantifier (denoted ∀). The second temporal op-

erators that reason over states, where X means “next state” and U means “until”.

CTL state formulae over the set AP of atomic proposition are formed according to

the following grammar:

ϕ ::= true | ap |ϕ ∧ ϕ |¬ϕ | ∀ψ | ∃ψ

where ap ranges over a countable set of atomic formulas. CTL path formulae are

formed according to the following grammar:

ψ ::= Xϕ | ϕ1 ∪ ϕ2

where ϕ, ϕ1 and ϕ2 are state formulae. Contrarily to CTL, LTL has no path quantifiers

such as ∀ and ∃. However, LTL has same operators as CTL such as X “next state”

26

and U “until”. The syntax for LTL is expressed in BNF as follows [9]:

ϕ ::= true | ap |ϕ ∧ ϕ |¬ϕ | Xϕ | ϕ1 ∪ ϕ2

where ap is any atomic proposition. An LTL formula is evaluated on a single path, or

on a set of paths. A formula f holds on a set of paths if it holds on every path in the

set [?].

1.5.2 Probabilistic Temporal Logic

To verify probabilistic systems, we present a temporal logic for the formal specifi-

cation of quantitative properties of PA and PTAs. The basis for this is the temporal

logic PCTL [10] [34], a probabilistic extension of the logic CTL [33] which has been

proposed for specifying properties of both PAs [35] and discrete-time Markov chains

[36]. The syntax of temporal logic is given by the following grammar:

ϕ :: =true | ap |ϕ ∧ ϕ |¬ϕ | P./p[ψ] | Rr
./q[ρ],

ψ :: = ϕ ∪≤k ϕ | ϕ ∪ ϕ ,

ρ :: = I=k | C≤k | F ϕ

Where ”ap” is an atomic proposition, P is a probabilistic operator and R is a reward.

Operator P./p[ψ] means that the probability of path formula ψ being true always sat-

isfies the bound on p, p ∈ [0, 1]. Rr
./q[ρ] means that the expected value of reward

function ρ on reward structure r meets the bound ./ q, q ∈ Q. ”on”∈ <,≤, >,≥. ”∧”

represents the conjunction operator and ”¬ ” is the negation operator. Two paths for-

mulas are included bound until ϕ1∪ϕ2 and time-bound until ϕ1∪≤k ϕ2 . Bound until

means that a state satisfying ϕ2 is eventually reached and that, at every time-instant

27

prior to that, ϕ1 is satisfied. The time-bounded variant has the same meaning, where

the occurrence of ϕ2 occur within time k. The reward operator I=k refers to the re-

ward of the current state at time instant k, C≤k refers to the total reward accumulated

up until time point k, and F ϕ to the total reward accumulated until a state satisfying

ϕ is reached, e.g:

- Rtime
max =?[F success] : “What is the expected reward accumulated before the

system successfully terminates?”.

- Pmin =?[true ∪≤100 Complete] : The minimum probability of the system even-

tually completing its execution successfully after 100 time units?”.

Other useful operators can be derived such as:

• true ≡ ¬false

• ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

• ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2

• ϕ1 ⇐⇒ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

• Future: Fϕ ≡ true ∪ ϕ or F≤k ≡ true ∪≤k ϕ and k > 0.

• Generally: Gϕ ≡ ¬(F¬ϕ) or G≤kϕ ≡ ¬(F≤k¬ϕ) and k ≥ 0.

• P≥p[Gϕ] = P≤1−p[F¬ϕ].

Let P is PTA and [[P]]=(S, s, T, Act, lab, StepP) its semantics where S is a set

of states, s is the initial state, T is a set of clocks, lab is a labeling function and

StepP : S × Act −→ Dist(2x × S) is a probabilistic transition function and let r

denotes the reward structure over [[P]] corresponding to the reward structure over

P. The satisfaction relation of a PCTL formula [37]is denoted by ”�” and defined as

follows where (s, ϑ) is a location and Path is a sequence of states:

• s, ϑ � true is always satisfied,

• s, ϑ � ap⇐⇒ ap ∈ L(s) and L is a labeling function,

28

• s, ϑ � ϕ1 ∧ ϕ2 ⇐⇒ s, ϑ � ϕ1 ∧ s, ϑ � ϕ2,

• s, ϑ � ¬ϕ⇐⇒ s, ϑ 2 ϕ,

• s, ϑ � P./p[ψ]⇐⇒ Probσ[[P]](π ∈ Paths,ϑ|π � ψ) ./ p, for all σ ∈ Adv[[P]],

• s, ϑ � Rr
./q[ρ]⇐⇒ Expσ[[P]](rew(r, ρ)) ./ q, for all σ ∈ Adv[[P]].

Where for any finite path π of[[P]]:

• π � ϕ1 U≤kϕ2 ⇐⇒ There is a position (i, t) of π such that π(i) + t � ϕ2and

durπ(i) + t ≤ k and π(j) + t′ � ϕ1 ∨ ϕ2 for all positions (j, t′) ≺ (i, t) of π ,

• π � ϕ1 U ϕ2 ⇐⇒ There is a position (i, t) of π such that π(i) + t � ϕ2 and

π(j) + t′ � ϕ1 ∨ ϕ2 for all positions (j, t′) ≺ (i, t) of π.

For reward structure r=(rS, rAct) over [[P]], the random variable rew(r, ρ) over infinite

paths of [[P]] is defined as follows:

rew(r, I≤k)(π) = rS(π(jk)),

rew(r, C≤k)(π) =
∑jk−1

i=0 r(π, i) + (k − durπ(jk)).rS(π(jk)),

rew(r, Fϕ)(π) =


∑jφ−1

i=0 r(π, i) + tφ.rS(π(jφ)) if(jφ, tφ) exists,

∞ otherwise

where j0 = 0, jk = max {i | durπ(i) < k} for k > 0 and, when it exists, (jφ, tφ) is the

minimum position under the ordering ≺ such that π(jφ) + tφ � φ.

29

1.6 Verification Approaches

In this section, we present the verification approaches needed for both non-probabilistic

and probabilistic systems.

1.6.1 Non-Probabilistic verification

For a transition system M, the verification procedure determines the subset of states

from S with respect to a property ϕ of the logic presented in Section 1.5.1 ,i.e., de-

termining Sat(ϕ) = def{s ∈ S|s |= ϕ}, where S is the set of states. As an example,

Algorithm 1 returns the set of states that satisfies the CTL formula ∃[ϕ1∪ϕ2]. First, it

looks for the states that satisfy the formula ϕ2. Then, it searches backward for states

satisfying the formula ϕ1 [9].

Algorithm 1 [9] Computation of the satisfaction sets of CTL property = ∃[ϕ1∪ϕ2].
Input : Transition system M and CTL property = ∃[ϕ1 ∪ ϕ2]
Output : T a set of state satisfying ϕ

1 T := Sat(ϕ2); (* compute the greatest fixed point *)
2 While { s ∈ T | Post(s) ∩ T = ∅} 6= ∅ do
3 let s ∈ {s ∈ T | Post(s) ∩ T = ∅};
4 T := T \ {s};
5 end do;
6 return T ;

1.6.2 Probabilistic Verification

In this section, we present the computation technique used in symbolic model checker

PRISM [10]. In our work, the model checking methodology is based on probabilistic

timed Automata. The technique is based on:

30

• Digital clocks based on MDP,

• Abstraction refinement with stochastic games.

To show that, we select PTA defined in Definition 2.2 as a special formalism of prob-

abilistic timed automata that exhibits both probabilistic and nondeterministic behav-

iors. To reason formally about MDPs (PTA based digital clocks), we need a proba-

bilistic space over it. And, as it is a nondeterministic behavior, the adversary notion

is introduced to decide which action should be chosen in any state of the MDP. In

general, the choice is made depending on the history execution of the MDP. The

Definition 2.4 describes the adversary function.

Definition 2.4 (Adversary). An adversary of an MDP M = (S, s, αM , δM , L) is a

function σ : FPathM → Dist(αM) that maps every finite path of a system into a

distribution, where:

• FPathM is a finite set of states,

• Dist(αM) is a labeled function assigning to each state of the automaton the

set of atomic propositions that are true in that state.

Probabilistic reachability refers to the minimum/maximum probability with which a

given set of states of a probabilistic system (T ⊆ S) can be reached from a particular

state (s). To this end, reachs (T) is the set of paths that start from s and contain a

state from T, and IPathM ,s defines the infinite paths starting from a state s in M.

reachs (T) = {π ∈ IPathM, s|π(i) ∈ Tandi ∈ N}

where i is the (countable) set of all finite paths from s ending in T, and each element

of this union is measurable through three ways: value iteration, the linear program-

ming problem or policy iteration [?]. This is equivalent to computing the probabilistic

bounds of the reached paths:

31

Pmin
M,s (reachs(T)) = Infs∈AdvMProbs

σ
M,s(s, ψ)

Pmax
M,s (reachs(T)) = Sups∈AdvMProbs

σ
M,s(s, ψ)

Digital clocks restricts the standard continuous-time semantics of a PTA so that only

time transitions of duration 1 occur. This means that clocks take only integer, rather

than real values. Using this fact, and knowing there is a maximal constant cx to

which each clock x is compared in PTA M and property ϕ, we can again build and

analyse a finite-state MDP. The digital clock semantics of M and ϕ is defined as for

the standard semantics, except that the rule for time transitions restricts durations

to 1, and each clock x can increase to at most V(x) + 1. Formally, the digital clock

semantics of a PTA M is defined as:

There are two possible ways in which a PTA based digital clock can proceed by tak-

ing a transition Or by letting time progress while remains in a state (Delay transition):

• Action transition : (s, ϑ)
α→ (s′, ϑ′) if the following conditions hold:

(a) there is a transition s g,α−−→p s
′ ts ∈ R

(b) ϑ+ 1 |= g

(c) ϑ′ = (v + ts′)[X := 0]

(d) ϑ+ 1 |= Inv(s)

• Delay transition : (s, ϑ)
1→ (s, ϑ+ 1), d ∈ R

(e) if ϑ+ 1 |= Inv(s)

The second model checking technique we discuss for PTAs is abstraction refine-

ment using stochastic games [38]. This approach uses the game-based notion of

abstraction. This approach [37]is to build an abstraction of a large or infinite-state

MDP based on a finite partition of its state space. Abstractions take the form of

32

stochastic two-player games, a generalization of MDPs in which there are two dis-

tinct types of nondeterminism, each controlled by a separate player. This technique

is adapted by an algorithm to compute exact (minimum or maximum) reachability

probabilities for PTAs. First, a reachability graph is constructed, based on a suc-

cessor operation that returns the set of states that can be reached by performing

an action and then letting time pass. The abstraction is repeatedly analyzed and

refined until the exact required probabilities are obtained.

1.7 Probabilistic Verification Tools

In this section we compare existing probabilistic model checkers. Our selection was

based on two main features: the kind of models that they can support, and the

temporal logic that they use to specify properties.

According to Table.1.2 we compare the well known used tools for embedded sys-

tems verification. Through our research, we found that PRISM is mainly used for

verification because it is not only endowed with all verification techniques but due

to its scalability. We have shown that the tool recently apply two methods for de-

sign abstraction namely Stochastic Games and Digital Clock. In addition, the mod-

els can be described using the PRISM language as discrete-time Markov chains,

continuous-time Markov chains, Markov decision processes (MDPs) or probabilistic

timed automata (PTA) and we can see here that PRISM is a complete tool,

3
3

TABLE 1.2: Model Checkers vs. Supported Formal Models

Tool CTMC PTA PA TA State Explosion

Fortuna [40] Maximum

Probability

√

Digital Clock

NuSMV [41] Programmable Clock

ProLog [42] Digital Clock

ProbLog [43] Digital

Clock

√

Digital Clock

UPPAAL [44]
√

MRMC [20]
√

Modest [45]
√ √ √ √

PRISM
√ √ √ √

Stochastic Games/Digital Clock

34

1.8 Conclusion

In this chapter, we introduced the concepts used in software architecture and we

provided a comparison between the well known component models. In addition, we

provided the main concepts for system behavioral verification needed for the rest of

the thesis. Also, we presented a comparison between the existing semantic models,

temporal logics, the verification techniques, and the existing verification tools. In the

next chapter, we propose a model-checking based methodology for the verification

of SysML activity diagrams under time constraints.

CHAPTER 2

A QUANTITATIVE VERIFICATION

FRAMEWORK OF SYSML ACTIVITY

DIAGRAMS UNDER TIME CONSTRAINTS

2.1 Introduction

Time-constrained and probabilistic verification approaches has gained a great im-

portance in system behavior validation including avionic, transport risk assessment,

automotive systems and industrial process controllers. They enable the evaluation of

system behavior according to the design requirements and ensure their correctness

before any implementation. Due to the difficulty of analyzing, modeling and verify-

ing these large scale systems, we introduce a novel verification framework based

on PRISM probabilistic model checker that takes the SysML activity diagram under

time constraints as input and produce their equivalent timed probabilistic automata

that is expressed in PRISM language. To check the functional correctness of the

system under test, the properties are expressed in PCTL temporal logic. To prove

the soundness of our mapping approach, we capture the underlying semantics of

36

both SysML activity diagrams and their generated PRISM code. We found that the

timed probabilistic equivalence relation between both semantics preserve the satis-

faction of the system requirements. We present digital camera as a case study to

illustrate the applicability of the proposed approach and to demonstrate its efficiency

by analyzing performability properties.

2.2 Related work

In this section, we provide the state-of-the-art related to the verification of behavioral

models then we contrast them to our proposed approach.

Ermeson et al.[12],[13] use SysML language and MARTE UML Profile (Modeling and

Analysis of Real-Time and Embedded systems) to specify ERTSs (Embedded Real-

time Systems) constraints such as execution time and energy [39]. They map only

the states and the transitions into ETPN (Time Petri Net with Energy constraints).

Their approach is restricted to a subset of artifacts with control flow (data flow is

missed). Michal and Marian[14] propose a verification and simulation of UML state

machine. For this purpose, two mapping mechanisms were defined. The first con-

sists on mapping the original model to Petri Network (PN) for verification according

to the requirements. When the requirements are satisfied, the second mapping

occurs to generate VHDL or Verilog description for simulation. The data on each

transition is considered as a trigger for a new state. The formalization is restricted

on Petri Networks. Huang et al.[40] and Knorreck et al.[41] propose a verification

of SysML State Machine Diagram by extending the model with MARTE [39] to ex-

press the execution time. The tool has as input the state machine diagram and as

output Timed Automata (TA) expressed in UPPAAL syntax [42]. UPPAAL uses CTL

(Computational Tree Logic) properties to check if the model is satisfied with liveness

and safety properties. In [43], Akerholm et al. define a mapping rules that takes as

37

input a SaveCCM component Model [22] and extracts different tasks. The results

are encoded in UPPAAL Syntax. Cafe et al.[15] develop a framework that maps the

SysML diagrams describing the heterogeneous system (hardware and software) to

SystemC language. The inputs are a set of SysML diagrams such as block diagram,

parametric diagram and behavioral diagram (e.g. Activity or state machine diagram).

The result is simulated to check the satisfaction of timing and functional requirement.

In [44], the simulation based verification is based on Simulink [45] but timing veri-

fication is done by UPPAAL. In [46], Yan et al. use real-time model checking tool

UPPAAL to find the possible best throughput and response time of activity diagram

extended by MARTE annotations. However, The mapping rules concern a subset

of activity diagrams artifacts and did not include a call behavior or sub activities.

Lasnier et al.[27] develop a framework for automatic generation of embedded real

time applications in C/C++/ADA. The input is AADL language (Architecture Analy-

sis and design Language) [47] with typed software components (e.g. threads, data)

and hardware components (e.g. processor, bus, memory). In addition, The design

model is enriched with time execution properties (e.g. computation time, priority,

deadline and scheduling algorithms) [48]. A scheduling tool is used for timing es-

timation and C/C++/ADA code is generated for simulation. Yosr et al.[16] propose

a probabilistic verification of SysML activity diagram where the execution time of

actions are represented as constraints (i.e. A note artifact in SysML Activity dia-

gram). The diagram is translated to its corresponding Discrete-Time Markov chain

(DTMC) and use PRISM model-checker for performance evaluation using PCTL.

The approach is restricted on a sub set of SysML activity diagram constructs with

control flow (data flow is missed). However, the mapping soundness was not proved.

Debbabi et al.[49] translate SysML activity diagrams into the input language of the

probabilistic model-checker PRISM. The authors present the algorithm implement-

ing the translation of SysML activity diagrams into Markov Decision Process (MDP)

supported by PRISM model-checker. The mapping approach is limited to only the

control flow artifacts without including objects and time except in [50] where ob-

jects are included. AccordingOuchani et al.[18], The selected artifacts have been

38

formalized and a verification algorithm has been proposed for mapping these arti-

facts to PRISM language. The transformation result is a probabilistic automata to

be checked by PRISM. The mapping approach is sound but the approach is lim-

ited to only the control flow artifacts without including object and time. Grobelna

et al.[51] present an approach to verify the correctness of UML activity diagrams

for logic controller specification especially for embedded systems design. The au-

thors formalize the activity diagram using rule-based logic model [52]. The result

model is mapped to NuSMV[53] in order to to verify system model against behav-

ioral properties expressed in Linear Temporal Logic (LTL) formulas to detects some

errors. When system is error free, the transformation of logical model into synthe-

sizable model in VHDL language. The same approach is done on state machine

diagram by Rodriguez et al.[54]. However, the soundness of the approach was not

proved as in [55] and [56]. Anuarul et al.[57] introduce a methodology based on

probabilistic model checking to analyze the dependability and performability proper-

ties of safety-critical systems especially in aerospace applications. Starting from a

high-level description of a model, a Continuous-Time Markov Chains (CTMC) is con-

structed from the Control Data Flow Graph (CDFG) with different sets of available

components and their possible failures, fault recovery and repairs in the radiation en-

vironment. The methodology is based on PRISM model checker tool to model and

evaluate dependability, performability and area trade-offs between available design

options using PCTL.

2.2.1 Comparison

As a summary, in Table.2.1 we compare our framework to the existing works by

taking into consideration five criteria: SysML language, time constraints, data work-

flow, formalization, soundness and automation. The SysML criteria shows if an

approach covers the probabilistic systems. The time Constraint criteria shows if the

39

approach includes the time specification at the design level. The data workflow cri-

teria indicates if data objects exist at specification level. The formalization criteria

confirms if the approach presents a semantics and formalizes the studied diagrams.

The soundness feature shows if the mapping soundness of the studied approach is

proved. The automation criteria checks if the presented approach provides a tool.

From the comparison, we observe that only few works formalize the behavioral di-

agrams, including data workflow and time constraint at the specification level. Our

works has for objective to support: data workflow, time constraints, and formalize the

SysML activity diagram. In addition, we implement a tool that allows the automatic

verification.

2.3 Preliminaries

2.3.1 SysML Activity Diagram

SysML Activity diagram is a graph-based diagram where activity nodes are con-

nected by activity edges. The activity diagrams is a primary representation for mod-

eling flow based behavior in [2]. Fig.2.1 shows the set of interesting artifacts used for

verification in our framework. The artifacts consist of activity nodes, activity edges,

activity control and constraints. Activity nodes have three types: activity invocation,

objects and control nodes. Activity invocation includes action, call behavior, send/re-

ceive signals (objects). Activity control includes: flow initial, flow final, activity final,

fork, merge and join node. Activity edge includes: control flow and object flow. Ob-

ject flow can connect the output pin of one action to the input pin of next action to

enable the passage of tokens. Control flow provides additional constraints on when

and in which order the action within an activity will be executed. A control token

on an incoming control flow enables the execution of an action and offers a control

40

TA
B

LE
2.

1:
C

om
pa

ris
on

w
ith

th
e

E
xi

st
in

g
W

or
ks

A
pp

ro
ac

h
S

ys
M

L
Ti

m
e

C
on

st
ra

in
t

D
at

a
w

or
kfl

ow
Fo

rm
al

iz
at

io
n

S
ou

nd
ne

ss
A

ut
om

at
io

n
[5

5]
,[

51
],

[5
4]

.
√

[5
0]

.
√

√
√

√

[2
7]

,[
43

],
[1

2]
,[

13
],

[4
1]

.
√

√

[5
7]

,[
56

],
[4

4]
,[

46
].

√
√

[1
8]

.
√

√
√

√

[4
0]

,[
16

].
√

√
√

[1
5]

,[
49

].
√

√

O
ur

√
√

√
√

√
√

41

token on outgoing control flow when action completes its execution. Control nodes

such as join, fork, merge, decision, initial and final are used to control the routing

of control token over edges and specify the sequence of actions (concurrency, syn-

chronization). In addition, the constraints can be used as SysML notes stereotyped

with ”Local Post Condition” and ”Local Pre Condition”. Next, we define the rules for

actions to begin and end execution during the activity workflow and we show the

expression manner of time in activity diagram.

FIGURE 2.1: A sub set of SysML activity diagram artifacts

2.3.1.1 Actions Execution

The following rules [31] describe the requirements for actions to begin and end exe-

cution during the activity workflow:

a. The action owned by the activity must be executed.

b. The action is executed if the number of tokens at each required input pins is

equal or greater than its lower multiplicity bound.

c. The action is executed if a token is available in each of the action’s incoming

control flow.

42

d. Once these perquisites are met, the action will start executing and tokens at

its input pins are available for consumption.

2.3.1.2 Time Expression using SysML/MARTE

[31], [16] and [32] provide a manner to add the time constraints to actions with

specialized form of constraint that can be used to specify the time duration of an

action’s execution. The constraint is shown using standard constraint notation: a

note attached to the action which is constrained (see Fig.2.2). However, annotation

of time constraints on top of SysML activity diagrams is not clearly defined in the

standard [2].

According to OMG SysML [2] the actions can be triggered using wait time action

artifact (Time Event). Wait time action artifact becomes enabled when control token

arrives on its incoming control flow and the precedent action has finished. If the time

event specified by execution time elapses then it completes immediately and offer

token to its outgoing control flow, else waits for that time event to occur. If the Time

event has not an incoming edge then it becomes enabled as soon as the activity

begins executing.

MARTE is a new UML profile s tandardized b y t he O MG [39] a ims t o r eplace the

UML profile S PT (Profile fo r Sc hedulability, Pe rformance an d Ti me) MA RTE was

defined to make quantitative predictions regarding real-time and embedded features

of systems taking account both hardware and software characteristics. The core

concepts are design and analysis parts. The design parts are used to model real

time embedded systems. On the other hand, the analysis parts provide facilities to

support the resources analysis such as execution time, energy and memory usage.

In our thesis, we use execution time for quantitative verification.

43

Fig.2.2 illustrates how the probability value is specified on the outgoing edges of the

decision nodes testing their corresponding guards. In addition, the time is specified

using MARTE profile with the stereotype� resourceUsage�.

The action TurnOn requires exactly 2 units of time to terminate; Action AutoFocus

terminates within the interval]1,2[, The action TakePicture’ execution time is negli-

gible. To model probabilistic systems, the probabilities are assigned to edges em-

anating from decision nodes where the assigned values should sum up to 1. For

instance, the decision node testing the guard memFull has the following semantic

interpretation: the probability is equal to 0.2 that the outcome of the decision node

will be (memFull=true) and the corresponding edge traversed.

FIGURE 2.2: Digital camera activity diagram design

44

2.4 SysML activity diagram formalization

In this section, we formalize SysML activity diagram with extended artifacts by pro-

viding an adequate calculus.

2.4.1 SysML activity diagrams syntax

Based on textual specification of SysML [2] we formalize the SysML activity diagram

by developing its Calculus : Timing Activity Calculus (TAC). In Table.2.2, each SysML

artifact is represented and described formally by its related TAC term. The TAC terms

in Fig.2.3 extends NuAC defined by [32] and enhanced by [18] adding the time and

data. In this calculus we distinguish between two syntactic concepts: Marked and

Unmarked terms. A marked term are activity diagrams with tokens. The unmarked

terms correspond to the static structure of the activity diagram. A marked term

denotes the configuration of diagram in the workflow process.

To support tokens we augment the ”Over bar” operator with integer value n such

that the N n denotes the term N marked with n tokens with the convention that

N 1 = N and N 0 = N . Multiple tokens can be observed when the loop encompass

a fork in its body. Furthermore, we use a prefix label “l :” for each node to uniquely

reference it in the case of a backward flow connection. Particularly, labels are useful

for connecting multiple incoming flows towards merge and join nodes. Let L be a

collection of labels ranged over by l; l0; l1,.. and N be any node (except initial) in the

activity diagram. We write l :N to denote a l-labeled activity node N . It is important

to note that nodes with multiple incoming edges (e.g. join and merge) are visited as

many times as they have incoming edges. Thus, as a syntactic convention we use

only a label (i.e. l) to express a TAC term if its related node is encountered already.

45

We denote by D(A, g,N ,N) and D(A, p, g,N ,N) to express a non-probabilistic and

a probabilistic decision, respectively. For the workflow observation on SysML activity

diagrams, we use structural operational semantics [58] and [59] to formally describe

how the computation steps of TAC atomic terms take place. We define Act as the set

of actions labeling the transitions (i.e. the alphabet of TAC, to be distinguished from

action nodes in activity diagrams). An element α is the label of the executing action

node or x(y) inputs an object name on x and stores it in y. An element t is the time

for action transition and p be probability values such that p ∈]0, 1[. The general form

of a transition is A t,α−→p A
′. The probability value specifies the likelihood of a given

transition to occur and it is denoted by P (A, t, α,A′). The case of p = 1 presents

a non-probabilistic transition and it is denoted simply by A
t,α−→ A′. For simplicity,

we denote by A[N] to specify N as a sub-term of A and by |A| to denote a term A

without tokens. For the call behavior case of a ↑ N , we denote A[a ↑ N] by A ↑a N .

In the sequel, we describe the operational semantic rules of the TAC calculus.

1. INT-1 l : i � N l→1 l : i � N This axiom introduces the execution of A by

putting a token on i .

2. INT-2 l : i� N l→1 l : i � N This axiom propagates the token in the marked

term i into its outgoing N .

3. ACT-1 ∀n > 0,m ≥ 0 l : am� N
n l→1 l : am+1 � N

n−1

This axiom propagates

the token from the global marked term to a.

4. ACT-2 am+1 � N
n t,α→1 l : am� N

n
This axiom propagates the token from the

marked term a to N .

5. ACT-3 N
b(y)−−→N ′

l:am�N
n b(y)−−→1l:am�N ′

n
The derivation rule ACT-3 illustrates the evolution

of term am� N n when α = b(y) inputs a name on b and stores it in y.

6. EXP-1 l : EX(p,N1,N2)
n l′→p l : EX(p,N1,N2)

n−1
EXP-1 derivation rule prop-

agates the token from the global marked term to N1 with probability p .

46

TABLE 2.2: TAC Terms of SysML Activity Diagram Artifacts.

Artifacts TAC terms Description

l : i� N Initial node is activated when a diagram is invoked.

l : � Activity final node stops the diagram’ execution.

l : ⊗ Flow final node kills its related path’ execution.

l : a?v� N Receive node is used to receive a signal/object.

l : a!v� N Send node is used to send a signal/object.

l : a� N Action node defines an atomic action.

l : a ↑ B � N Call behavior node invokes a new behavior.

l : R ↑ A� N Region node invokes a sub actions behavior.

l :
D(A, p, g,N1,N2)

Decision node with a call behavior A, a convex distribution
{p, 1− p} and guarded edges {g,¬g}.

l : M(x)� N Merge node specifies the continuation and x = {x1, x2} is a set
of input flows.

l : J(x)� N Join node presents the synchronization where x = {x1, x2} is a
set of input pins.

l : F (N1,N2)
Fork node models the concurrency that begins multiple parallel
control threads.

l : Ex(p,N1,N2)
InterruptibleActivityRegion invokes a sub behavior that can be in-
terrupted with probability=1-p.

7. BEH-0 ∀n > 0 l : a ↑ An� N l→1 l : a ↑ An−1 � N This axiom propagates the

token from the global marked term to a.

8. BEH-1 A=l′:i�NA′=l′:i�N
l:a↑An�N l→1l:a↑A′n−1�N

BEH-1 axiom introduces the execution of the be-

havior A related to a.

9. BEH-2 A[l′:�]
l′→1|A|

l:a↑An�N l′→1l:a↑|A|n�N
The derivation rule BEH-2 finishes the execution of

a call behavior and moves the token to the succeeding term N .

10. BEH-3 At,α→pA′

l:a↑An�N t,α→pl:a↑A′n�N
The derivation rules BEH-3 and BEH-4 present the

effect on a ↑ An when A or N executes an action a with a probability p.

11. BEH-4 N t,α→1N ′

l:a↑An�N t,α→pl:a↑An�N ′

47

12. FRK-1 ∀n > 0 l : F (N1,N2)
l→1 l : F (N1,N2) The FRK-1 axiom shows the

multiplicity of the arriving tokens according to the outgoing sub-terms

13. FRK-2 N1
t,α→N ′1

l:F (N1,N2)
t,α→ l:F (N ′1,N2)

The FRK-2 derivation rule illustrates the changes on

a fork term when its outgoing execute an action.

14. DEC-1 ∀n > 0 l : D(g,N1,N2)
n g,α→ l : D(g,N1,N2)

n−1
The axiom DEC-1 de-

scribes a non-probabilistic decision where a token flows through the edge sat-

isfying its guard.

15. DEC-2 ∀n > 0 l : D(p, g,N1,N2)
n g,α→p l : D(p, g,N1,N2)

n−1
The axiom DEC-2

describes a probabilistic decision where a token flows through the edge satis-

fying its guard with probability p.

16. DEC-3 A=l:i�NA′=l′:i�N
l:D(A,p,g,N1,N2)

n l→1l:D(A′,p,g,N1,N2)
n−1 DEC-3 axiom shows a transition of prob-

ability one to initiate an invoked behavior.

17. DEC-4 A[l′:�]
l′→1|A|

l:D(A,p,g,N1,N2)
ng,l′→ pl:D(|A|,p,g,N1,N2)

n DEC-4 derivation rule shows the termi-

nation of a behavior with a transition of probability one and how a token can

flow from a behavior call execution to a guarded path with a probability value .

18. DEC-5 N1
t,α→N ′1

l:D(A,p,g,N1,N2)
nt,α→ l:D(A′,p,g,N ′1,N2)

n DEC-5 shows the evolution of a decision

term when one of its behavior has been changed under time t.

19. MRG-1 l : N � l′ : M(x, y)
n l→ l : N � l′ : M(x, y)

n
MRG-1 is a transition with

a probability of value 1 to put a token coming from the sub-term N on a merge

labeled by l.

20. MRG-2 l : l′ : M(x, y)� N
n l→ l : l′ : M(x, y)� N

n
MRG-2 is a transition with

a probability of value 1 to present a token flowing from a merge labeled by l to

the sub-term N .

21. MRG-3 l : A[l′ : M(x, y) � N , lx]
l→ l : A[l′ : M(x, y) � N , lx] MRG-3 shows

the merge enabled when token arrived atone of its pins

48

22. MRG-4 N t,α→N ′

l:M(x,y)�Nnt,α→ l:M(x,y)�N ′n
The derivation rules MRG-4 presents the sub-

sequence of l : M(x, y)� N when N executes an action α with a probability

p.

23. JOIN-1 l : N � l′ : J(x, y)
n l→ l : N � l′ : J(x, y)

n
JOIN-1 represents a transi-

tion with a probability of value 1 to activate the pin x in a join labeled by l

24. JOIN-2 l : l : J(x, y)� N
n τ→ l : l : J(x, y)� N

n
JOIN-2 represents a transi-

tion with a probability of value 1 to move a token in join to the sub-term N

25. JOIN-3 l : A[l′ : J(x, y)� N , lx]
τ→ l : A[l′ : J(x, y)� N , lx] JOIN-3 shows the

join input enabled when token arrived at one of its pins

26. JOIN-4 N t,α→N ′

l:J(x,y)�Nnt,α→ l:J(x,y)�N ′n
The derivation rule JON-4 presents the subse-

quence of l : J(x, y)� N when N executes an action a with a probability p.

27. SND l : a!v
n
� N l→ l : a!v

n−1
� N SND describes the evolution of the token

after sending an object v.

28. FFIN A[l : ⊗]
l→ A[l : ⊗] This axiom states that if the sub-term l : ⊗ is reached

inA then a transition of probability one is enabled to produce a term describing

the termination of a flow.

29. AFIN A[l : �]
l→ |A| This axiom states that if the sub-term l : � is reached

then no action is taken later by destroying all tokens.

30. PRG N t,α→N ′

A[N]
t,α→A[N ′]

PRG derivation rules preserve the evolution when a sub-term

N evolves to N ’ by executing the action α with a probability p under time t.

The semantics of SysML activity diagrams expressed using A is the result of the de-

fined inference rules. The semantics can be described in terms of PTA as stipulated

by Definition 3.1.

49

A ::= ε | l : i
n
� N

N ::= N | l : F (N ,N) | l : Ex(A, p,N ,N) | l : D(A, p, g,N ,N) | On � N | l :
�| l : ⊗
O ::= aB | R ↑ A | j(x1, x2) |M(x1, x2)
B ::=↑ A | !v | ?v | ε

FIGURE 2.3: Syntax of Timing Activity Calculus (TAC).

Definition 3.1 (TAC-PTA). A Probabilistic timed automata of TAC term A is the tuple

MA = <s, S, X, Act, Inv, Prob , L >, where:

• s is an initial state, such that L(s) =
{
l : i� N

}
,

• S is a finite set of states reachable from s, such that, S =
{
si:0≤i≤n|L(si) =

{
N
}}

• X is a set of clocks,

• Act is a set of actions including three types: label of the executing action node,

x(y) inputs an object name on x and stores it in y ,

• Inv :S → CC(X) is an invariant condition (i.e. Constraints over clocks X),

• Prob: S × Act → Dist(2x × S) is a probabilistic transition function assigning

for each s ∈ S and α ∈ Act a probabilistic distribution µ where:

– For each S’ ⊆ S and t ∈ X such that S’=
{
si : 0 ≤ i ≤ n : s

t,α→pi si

}
,

each transition s
t,α→pi si satisfies one TAC semantic rule and µ(S ′, ϑ) =∑n

i=0 pi =
∑n

i=0 µ(si, ϑ+ t) = 1 .

– For each transition s t,α→1 s
′′ satisfies one TAC semantic rule and µ(S ′′, ϑ+

t) = 1

• L : S→ 2[[L]] is a labeling function where: [[L]] = {true, false}.

50

2.5 PRISM formalization

In this section, our formalization focus on probabilistic timed automata (PTA) that

extends the standard probabilistic automata (PA) considered as appropriate seman-

tic model for SysML Activity Diagram [60]. The PRISM model checker supports the

PTA with ability to model real-time behavior by adding real-valued clocks (i.e. clocks

variable) which increases with time and can be reset (i.e. updated).

A Timed Probabilistic System (TPS) that represents a PRISM program (P) is com-

posed of a set of ”m” modules (m > 0). The state of each module is defined by the

evaluation of its local variables VL. The global state of the system is defined as the

union of the evaluation of local and global variables: V=VL ∪ VG. The behavior of

each module is described as a set of statements in the form of:

[a]g → p1 : u1..+ pn : un

Where a is an (optional)action labeling the command, the g is a predicate consists

of boolean, integer and clock variables and propositional logic operators. p is a

probability. The update u is a set of evaluated variables expressed as conjunction

of assignments (V ′j = valj)&..&(V ′k = valk) where Vj ∈ VL ∪ VG and valj are values

evaluated via expressions denoted by ”eval” eval: V→ R∪{True, False}. The formal

definition of a command is given in Definition 3.2.

Definition 3.2 A PRISM command is a tuple c = < a, g, u >, where:

• ”a” is an action label.

• ”g” is a predicate over V.

• ”u” = {(pi, ui)} ∃m > 1, i < m, 0 > pi > 1,
∑m

i pi = 1 and u = {(v,eval(v)) : v ∈ Vl}.

51

P ::= PTA < variables >< eval >< modules >< system >

< variables >
::= ε | < KindOfV ariables > v :< V ariableType > initinit(v);<
variables >

< KindOfV ariables > ::= ε | Global
< V ariableType > ::= bool | int | clock | double | [min, ..,max]

< Modules >
::= modulename < variables >< ModuleInvaraint ><
ModuleBehavior > endModule

< ModuleInvaraint > ::= invariant < InvariantSet > endinvriant
< InvariantSet > ::= (g => Inv) | (g => Inv)& < InvariantSet >
< ModuleBehavior > ::= ε | [a] : g −→< update >;< ModuleBehavior >
< update > ::= < p >:< eval >; | < p >:< eval > + < update >
< eval > ::= (v′ = eval(V)) | (v′ = eval(V))& < eval >
< p > ::= ε | p :
< system > ::= system < AlgebraExpression > endSystem
< AlgebraExpression > ::= ε | name CSPExpr name;< AlgebraExpression >

FIGURE 2.4: The Syntax of PRISM Probabilistic Timed Automata

The set of commands are associated with modules that are parts of a system and it

definition is given in Definition 3.3.

Definition 3.3 A PRISM module is tuple M = < Vl, Il, Inv, C>, where:

• Vl is a set of local variable associated with a module,

• Inv is a time constraint of the form vl on d/ on∈ {≤,≥} and d ∈ N,

• Il is the initial value of Vl.

• C= {ci, 0 < i ≤ k}is a set of commands that define the module behavior.

To describe the composition between different modules, PRISM uses CSP commu-

nication sequential process operators [61] such as Synchronization, Interleaving,

Parallel Interface, Hiding and Renaming. Definition 3.4 provides a formal definition

of PRISM system.

Definition 3.4 A PRISM system is tuple P = <V, I, exp, M, CSPexp>, where:

• V = Vg
∐m

(i=1) Vli is the union of a set local and global variables.

• Ig is initial values of global variables.

• exp is a set of global logic operators.

• M is a set of modules composing a System.

• CSPexp is CSP algebraic expression.

52

2.5.1 PRISM Syntax

The syntax of PRISM PTA is defined by the BNF grammar presented in Fig.2.4. To

clarify the syntax we define the following:

• [min...max] is a range of values such that min,max ∈ N and min < max,

• p ∈]0, 1[is a probability value,

• eval is an evaluation expression that can be composed of the following opera-

tors: +,−; ∗, /, <,<=, >,>=, !, |,=>, g?a : b,

• val ∈ R ∪ {true, false} is a value given by the function eval,

• v is a string describing a variable (v ∈ V) and init(v) is its initial value,

• name is a string describing the module name. For the module i; name is

denoted by Mi,

• Invariant impose restrictions on the allowable values of clock variable,

• CSPexp is a CSP expression composed of the following operators

||,|| |,|[a, b, ..]|,/ {a, b, ..} , and {a← b, c← d, ...}.

2.5.2 PRISM semantics

The probabilistic timed automata of a PRISM program P is based on the atomic

semantics of a command “c” denoted by [[c]]. The latter is a set of transitions defined

as follows: [[c]] = {(s, a, µ)|s |= g} where µ is a distribution over S such that µ(s, ϑ +

vt) = {|0 ≤ pi ≤ 1, v ∈ V, s′(v) = eval(V)|}.

53

Definition 3.5 stipulates the formal definition of PRISM probabilistic timed automata

denoted by MP . The states of MP take the form 〈V 1, ..., V n, eval〉. The stepwise

behavior of MP is described by the operational semantic rules provided as follows:

1. INIT 〈Vi, init(Vi)〉 → 〈Vi([[init(Vi)]]),−〉INIT initializes variables. For a module

Mi, init returns the initial value of the local variable vi ∈ Vi.

2. LOOP 〈Vi,−〉 → 〈Vi〉 This axiom presents a loop in a state without changing

variables’ evaluations. It can be applied to avoid a deadlock.

3. UPDATE 〈Vi, v′i = eval(V)〉 → 〈Vi([[vi]])〉 UPDATE axiom describes the execu-

tion of a simple assignment for a given variable vi. Its evaluation is updated in

Vi of Mi .

4. CNJ-UPD
〈
V, v′i = eval(V) ∧ v′j = eval(V)

〉
→ 〈V ([[vi]], [[vj]])〉 CNJ-UPD imple-

ments the conjunction of a set of assignments.

5. PRB-UPD1 〈Vi, p : v′i = eval(V)〉 →p 〈Vi([[vi]])〉 0 < p < 1 .

6. PRB-UPD2
〈
V, p : v′i = eval(V) ∧ v′j = eval(V)

〉
→p 〈V ([[vi]], [[vj]])〉 0 < p < 1

PRB-UPD1 and PRB-UPD2 describe probabilistic updates.

7. ENB-CMD1 V |=g,Inv(V)
〈V,M([a]g→pi:ui)〉→µ ENB-CMD1 enables the execution of a proba-

bilistic command.

8. ENB-CMD2 V |=g,Inv(V) V 2g′,Inv′(V)

〈V,[a]g→u;[a′]g′→u′〉 a→〈V ([[u]]),[a′]g′→u′〉
ENB-CMD2 enables the execution

of a command in a module.

9. ENB-CMD3 V |=g,Inv(V) V �g′,Inv′(V)

〈V,[a]g→u;[a′]g′→u′〉 a→〈V ([[u]]),[a′]g′→u′〉
. ENB-CMD3 solves the nondeter-

minism in a module by following a policy.

10. SYNC 〈Vi,ci〉
a→µi 〈Vj ,cj〉

a→µj
〈Vi∪Vj ,Mi||Mj〉

a→µi.µj
SYNC derivation rule permits the synchronization be-

tween modules on a given action a.

11. INTERL 〈Vi,Mi(ci)〉
aj→µ

〈V,Mi|| |Mj〉
aj→µ

INTERL derivation rule describes the interleaving be-

tween modules.

54

Definition 3.5 (PRISM-PTA). A Probabilistic timed automata of PRISM program p is

the tuple Mp = <si, S, X, Act, Inv, Prob , L >, where:

• si is an initial state, such that L(si) = [[init(Vi)]] ,

• S is a finite set of states reachable from si, such that, S = {si:0≤i≤n|L(si) ∈ {AP}}

• X is a set of PRISM clocks variables,

• Act is a finite set of actions,

• Inv : imposes restrictions on the allowable values of clock variable,

• Prob: S × Act → Dist(2x × S) is a probabilistic transition function assigning

for each s ∈ S and a ∈ Act a probabilistic distribution µ where: For each s ∈

S, v ∈ V is a PRISM variable, a ∈ Act and vt ∈ V is a clock variable such that

s(v, vt)
a→ µ(v,ϑ+vt) , ϑ+ vt � Inv(v) and s(v, vt) � g.

• L : S→ 2AP is a labeling function that assigns for each state a set of valuated

propositions.

2.6 The verification approach

This section describes the transformation of SysML activity diagrams A into a PTA

written in PRISM input language. Algorithm.1 illustrates the transformation algorithm

T that takes A as input and returns its PRISM code by PrismCode. The diagram

A is visited using a depth-first search procedure (DFS) and the algorithm’s output

produces PRISM synchronized modules.

First, the initial node is pushed into the stack of nodes denoted by Nodes (line 7).

While the stack is not empty (line 8−29), the algorithm pops a node from the stack

into the current node denoted by cNode (line 9). The current node is added into the

55

Algorithm 1 Transformation Algorithm T of SysML Activity Diagrams into PRISM Code.
Input : SysML Activity diagram A
Output : PRISM Code

1 Nodes : Stack;
2 cNode, fNode as Node;
3 nNodes, vNodes List_Of_Node;
4 maxDuration, minDuration : Integer;
5 action as Action;
6 ProcedureT(A)
7 Nodes.push(init); J Push the initial node ∈ A
8 While Nodes.notEmpty()
9 cNode:= Nodes.pop(); J Pull out the first node

10 If(cNode not in vNode)
11 Then
12 vNodes.add(cNode); J The current is considered as visited
13 nNodes:=cNode.Successors();J Store the successors in buffer list
14
15 if(cNode.hasDuration()) J set Invariant
16 Then
17 maxDuration:= cNode.maxDuration();
18 PrismCode.add(φ(cNode,maxDuration));
19 End if
20
21 minDuration:= cNode.minDuration();
22 PrismCode.add(Γ(cNode,nNodes,minDuration,action));
23 End if
24
25 For all(n in nNodes)
26 Then Nodes.add(n); J Add the successors to the stack
27 End For
28 nNodes.clear(); J Empty the buffer list and search ends
29 End While
30
31 End Procedure T
32

list vNode of visited nodes (line 12) if it is not already visited (line 10). PrismCode

is constructed by calling the function Γ and φ. The first has four arguments which

are the current node, its successors, the minimum duration and action type (line

22). The second has two arguments which are the current node and the maximum

duration to impose the maximal clocks supported by the state (line 18). The explored

successors are pushed into the stack nodes (line 25−27). The algorithm terminates

when all nodes are visited.

The function Γ presented in Listing.2.1 and Listing.2.2 produces the appropriate

PRISM command for each TAC term. The action label of a command is the label of

56

its related term “n”. The guard of this command depends on how the term is acti-

vated and minimal clock valuation. The flag related to the term is its label l that is

initialized to false except for the initial node it is true which conforms to the premise

of the TAC rule “INIT-1”. The updates of the command deactivate the propositions

of the term, activate that ones related to its successors, reset the clock variable of

its successors and assign an object values to its successors inputs pins. For a term

n ∈ A, we define three useful functions are: L(n); S(Ai), and E(Ai) that return the

label of a term n, the initial and the final terms of the diagram Ai, respectively. For

example, the call behavior action “l : a ↑ Ai” (line 25) produces two commands (line

29), and it calls the function Γ’ (line 56). The first command in (line 29) synchronizes

with the first command in (line 60) produced by the function Γ’ in the action l from

the diagram A. Similarly, the second command in (line 29) synchronizes with the

command of (line 64) in the action L(E(Ai)) from the diagram Ai. The first synchro-

nization represents the TAC rule BH-1 where the second represents the rule BH-2.

The function Γ’ is similar to the function Γ except for the initial and the final nodes

as shown in (line 58) and (line 62), respectively. The region behavior calls the sub

actions within the region in the iterative manner Listing.2.2 (line 3). After each exe-

cution an object is produced, the number of execution has the size of the collection in

the output. Due to the unsupported collection type in PRISM we use the the simple

object type integer, double. Thanks for prism renaming ability, we can rename the

sub module name end its variables to produce multiple objects. At the end of Region

execution, multiple parallel commands are synchronized and objects are assigned

Listing.2.2 (line 7). The region is interrupted Listing.2.2 (Line 10), including accept

event actions in the region, when a token traverses an interrupting edge. At this

point the interrupting token has left the region and is not terminated Listing.2.2 (Line

31). The φ function Listing.2.2 (line 37- 42) associate with each action the maximum

integer number supported by the clock variable (i.e. clock invariant). The gener-

ated PRISM fragment of each diagram Ai is bounded by two PRISM primitives: the

module head “ModuleAi”, and the module termination “endmodule”.

57

1 Γ : A −→ P
2 Γ(A) = ∀n ∈ A , L(n = (i)) = true , L(n 6= (i)) = false

3 l : i � N =⇒
4 in
5 {

[l]l −→ (l′ = false)&(L(N)′ = true);
}
∪ Γ(L(N))

6 end
7 l : M(x, y) � N =⇒
8 in
9 {

[lx]lx −→ (l′x = false)&(L(N)′ = true);
}
∪
{

[ly]ly −→ (l′y = false)&(L(N)′ = true);
}
∪Γ(L(N))

10 end
11 l : J(x, y) � N =⇒
12 in
13

{
[l]lx ∧ ly −→ (l′y = false)&(l′x = false)&(L(N)′ = true);

}
∪ Γ(L(N))

14 end
15 l : F (N1,N2) =⇒
16 in
17 {

[l]l −→ (l′ = false)&(L(N1)′ = true)&(L(N2)′ = true);
}
∪ Γ(L(N1)) ∪ Γ(L(N2))

18 end
19 l : D(A, p, g,N1,N2) =⇒
20 in
21 {

[l]l→ p : (l′ = false)&(lg)′ = true) + 1− p : (l′ = false)&(l¬g)′ = true);
}
∪ Γ(L(N1)) ∪ Γ(L(N2))

22 ∪
{

[lg]lg ∧ g → (l′g = false)&(L(N1)′ = true)
}
∪
{

[l¬g]l¬g ∧ ¬g → (l′¬g = false)&(L(N2)′ = true)
}

23 end
24
25 l : a ↑ Ai

α
� N , case(α) of

26
27 b(y), for z ∈ Ai =⇒
28 in
29 {

[l]l −→ (l′ = false);
}
∪
{
[L(E(Ai))]E(Ai) −→ (l′ = false)&(y′ = z)&(L(N)′ = true);

}
∪ Γ′(Ai) ∪ Γ(L(N))

30 end
31 otherwise

32 in
33 {

[l]l −→ (l′ = false);
}
∪
{
[L(E(Ai))]E(Ai) −→ (l′ = false)&(L(N)′ = true);

}
∪ Γ′(Ai)

34 end
35
36 l : � =⇒
37 in
38 [l]→ &l∈L(l′ = false);

39 end
40
41 l : ⊗ =⇒
42 in
43 [l]→ (l′ = false);

44 end
45
46 l : a

t>c,α
� N , case(α) of

47 b(y), for z ∈ a,=⇒
48 in
49 {

[lbz]l&(t > c) −→ (l′ = false)&(y′ = z)&(L(N)′ = true);
}
∪ Γ(L(N))

50 end
51 otherwise

52 in
53 {

[lα]l&(t > c) −→ (l′α = false)&(L(N)′ = true);
}
∪ Γ(L(N))

54 end
55
56 Γ′ : A → P
57 Γ′(Ai) = ∀m ∈ A , L(m) = false

58 l : i � N =⇒
59 in
60 {

[l]l −→ (L(S(Ai))
′ = true);

} {
[L(S(Ai))]L(S(Ai)) −→ (L(N)′ = true);

}
∪ Γ(L(N))

61 end
62 l : � =⇒
63 in
64 {

[L(E(Ai))]L(E(Ai)) −→ (L(E(Ai))′ = false);
}

65 end
66 otherwise Γ(A)

67

LISTING 2.1: Generating PRISM Commands Function-Part1

58

1 Γ′ : A → P
2
3 l : R ↑ Aj

α
� N , case(α) of

4
5 b(yj), for zj1, zj2,zjsize ∈ Aj =⇒
6 in
7 {[l]l −→ (l′ = false); } ∪

{
[L(E(Aj))]E(Aj) −→ (l′ = false)&j1..jsize(y

′
j = zj)&(L(N)′ = true);

}
8 ∪Γ′′(Aj) ∪ Γ(L(N))
9 end

10 l : Ex(p,NExcp,N2) =⇒
11 in
12

{
[l]l −→ p : (l′ = false)&(L(N2)′ = true) + 1− p : (l′ = false)&(L(NExcp)′ = true);

}
∪

13 Γ(L(N2)) ∪ Γ(L(NExcp))
14 end
15
16 Γ′′ : A → P
17 Γ′′(Aj) = ∀m ∈ A , L(m) = false
18 l : a� N =⇒
19 in
20 {[l]l −→ (L(S(Aj))

′ = true); } {[L(S(Aj))]L(S(Aj)) −→ (L(N)′ = true); } ∪ Γ(L(N))
21 end
22
23 l : a� E(Aj) =⇒
24 in
25
26 {[l]l −→ (l′ = false)&(L(E(Aj))′ = true); }
27 {[L(E(Aj))]L(E(Aj)) −→ (L(E(Aj))′ = false); }
28 end
29
30
31 lExcp : a?v� N =⇒ / / Except ion handl ing f o r l i n e 10
32 in
33

{
[lExcp]lExcp −→ (l′Excp = false)&(L(N)′ = true);

}
∪ Γ(L(N))

34 end
35
36
37 φ : A → P
38 φ(A) = ∀m ∈ A , tl c lock v a r i a b l e , cl i n t e g e r constant
39 l : a� N =⇒
40 in
41 {(l = true) =⇒ (tl <= cl)&φ(N)}
42 end
43

LISTING 2.2: Generating PRISM Commands Function-Part2

59

2.7 The transformation soundness

Our aim is to prove the soundness of the transformation algorithm Γ by showing

that the proposed algorithm preserves the satisfiability of PCTL properties. Let A

be a TAC term and MA is its corresponding PTA constructed by the TAC operational

semantics denoted by S such that S(A) = MA. For the program P resulting after

transformation rules, Let Mp its corresponding PTA constructed by PRISM opera-

tional semantics denoted S ′ such that S ′(P) = Mp. As illustrated in Fig.2.5, proving

the soundness of Γ algorithm is to find the adequate relation R between MA and

MP .

FIGURE 2.5: The Transformation Soundness.

To define the relation MARMP , we have to establish a step by step correspondence

between MA and MP . First, we introduce the notion of the timed probabilistic bisim-

ulation relation [62] [63] in definition 3.7 and 3.8.This relation is based on the prob-

abilistic equivalence relation R defined in Definition 3.6 where δ/R denotes the quo-

tient space of δ with respect to R and ≡R is the lifting of R to a probabilistic space.

Definition 3.6 (The equivalence ≡R). If R is an equivalence on δ, then the induced

equivalence ≡R on Dist(δ × 2x) is given by: µ≡Rµ
′ iff µ(δ, ϑ+ d) ≡R µ(δ, ϑ+ d′).

Definition 3.7 (Timed Probabilistic Bisimulation Relation). A binary relation R over

the set of states of PTAs is timed bisimulation iff whenever s1Rs2, α is an action and

d is a delay:

60

• if s1
d,α→ µ(s1, ϑ+ d) there is a transition s2

d′,α→ µ(s2, ϑ+ d’), such that s1Rs2. The

delay d can be different from d’ ;

• two states s, s’ are time probabilistic bisimilar, written s ∼ s′, iff there is a timed

probabilistic bisimulation related to them.

Definition 3.8 (Timed Probabilistic Bisimulation of PTAs). Probabilistic Timed au-

tomata A1 and A2 are timed probabilistic bisimilar denoted (A ∼ A′) iff their initial

states in the union of the probabilistic timed transition systems T(A1)and T(A2) gen-

erated by A1 and A2are timed probabilistic bisimilar.

For our proof, we stipulate herein the mapping relation R denoted by MARMP be-

tween a TAC term A and its corresponding PRISM term P.

Definition 3.9 (Mapping relation). The relation MARMP between a TAC term A and

a PRISM term P such that Γ(A) = P is a timed probabilistic bisimulation relation.

Finally, proving that Γ is sound means showing the existence of a timed probabilistic

bisimulation between MA and MP .

Lemma1 (Soundness). The mapping algorithm Γ is sound, i.e. MA ∼MP .

Proof 1: We prove MA ∼ MP by following a structural induction on TAC terms and

their related PRISM terms. For that, let s1, s
′
1 ∈ SA and s2, s

′
2 ∈ SP . We distinguish

the following cases where L(s) takes different values:

1. L(s1) = l : x � N such as x = {i,a} =⇒ ∃s1
d,α−−→1 s′1, L(s1’)= l : x � N .

For L(s2) = Γ(L(s1)), we have L(s2)=〈L(x),¬L(N)〉 then ∃s2
d′,α−−→1 s′2 where

L(s′2) = 〈¬L(x), L(N)〉.

2. L(s1) = l : x� N such as x = {a!v,a?v} =⇒ ∃s1
α−→1 s

′
1, L(s1’)= l : x� N . For

L(s2) = Γ(L(s1)), we have L(s2)=〈L(x),¬L(N)〉 then ∃s2
α−→1 s

′
2 where L(s′2) =

61

〈¬L(x), L(N)〉.

3. L(s1) = l : D(g1,N1,N2)
n

then ∃s1
g1,α−−→1 s′1, L(s1’)= l : D(g1,N1,N2)

n−1
. For

L(s2) = Γ(L(s1)), we have L(s2)=〈l,¬lN1 ,¬lN2〉 then ∃s2
g1,α−−→1 s

′
2 where L(s′2) =

〈¬l, lN1 ,¬lN2〉.

4. L(s1) = l : � then ∃s1
α−→1 s

′
1, L(s1’)= l : �. For L(s2) = Γ(L(s1)), we have L(s2)=〈l〉

then ∃s2
α−→1 s

′
2 where ∀li ∈ L : L(s′2) = 〈¬li〉.

5. L(s1) = l : ⊗ then ∃s1
α−→1 s

′
1, L(s1’)= l : ⊗. For L(s2) = Γ(L(s1)), we have L(s2)=〈l〉

then ∃s2
α−→1 s

′
2 where L(s′2) = 〈¬l〉.

From the obtained results, we found that µ(s1, ϑ+ d) = µ(s2, ϑ+ d′) = 1 then s1 ∼ s2.

In addition, the unique initial state of MA is always corresponding to the unique initial

state in MP . By studying all TAC terms, we find that MA ∼ MP , which confirms that

Lemma 1 holds.

In the following, we show that the mapping relation preserves the satisfiability of

PCTL properties. This means, if a PCTL property is satisfied in the resulting model

by a mapped function Γ then it is satisfied by the original one.

Proposition 1 (PCTL preservation). For two PTAs MA and MP such that Γ(A) = P

where MA ∼MP . For a PCTL property φ, then: (MA � φ)⇐⇒ (MP � φ).

Proof 2. The preservation of PCTL properties is proved by induction on the PCTL

structure and its semantics. Since MA ∼ MP and by relying to the semantics of

each PCTL operator ζ ∈ {U, U≤k, I=k, C≤k, F, P./p , R./q}, we find that (MA � ζ)⇐⇒

(MP � ζ) which means: (MA � φ)⇐⇒ (MP � φ)

62

2.8 Implementation and experimental results

In this section, we apply our verification framework on Digital camera case study

[32]. The related SysML activity diagrams are modeled on Topcased2 then mapped

into Prism code via our Java implementation. Listing.2.3 shows a simplified code

for the Digital Camera module. In the purpose of providing experimental results

demonstrating the efficiency and the validity of our approach, we verify four system

functional requirements. They are expressed in PCTL as follows:

1. The maximum probability value that the TakePicture action should not be acti-

vated if either the memory is full memFull=true or the AutoFocus action is still

ongoing. T is a constant value referring to the time bound

Pmax =?[F≤T (memFull|AutoFocus)&TakeP icture] (2.1)

2. The maximum probability to complete all tasks after turning on the camera. T

is a constant value referring to the time bound

Pmax =?[F≤TFinal] (2.2)

3. The minimum expected time that the TurnOff action should be activated after

turning on the camera.

R {”time”}min =?[F (TurnOff)] (2.3)

The verification results of the above two properties are done using an i7 CPU 2.67GHz

with 8.0GB of RAM and shown in Fig.2.6. For different values of time “T”, Fig.2.6a

shows that the verification result for property 1 converges to 0.6 after 4 time units.

Fig.2.6b shows that the verification result for property 2 converges to 0.916 after 6

63

(A) Property1 (B) Property2

FIGURE 2.6: The Verification of PCTL Properties on the Digital Camera

time units. For the third property, the minimum reward or minimum expected time

that the TurnOff action should be activated after turning on the camera is equal to

3.448 time units.

FIGURE 2.7: The abstract SysML activity diagram for Property 4.

64

TABLE 2.3: Verification results for Property 2.4

Time
Interval

Concrete model Abstract model ResultsTv Tc Tv Tc
1 0.03 1.554 0.0026 1.059 0
2 0.186 1.535 0.154 1.068 0.18
3 0.465 1.551 0.401 1.077 0.26
4 0.678 1.567 0.58 0.839 0.679
5 0.946 1.544 0.716 0.928 0.679
6 0.812 1.728 0.757 0.965 0.476
7 0.847 1.54 0.543 0.788 0.476
8 0.7 1.368 0.555 0.767 0.476
9 0.694 1.285 0.495 0.779 0.476
10 0.032 1.303 0.01 1.007 0

Now, we want to verify the abstraction effects over SysML Activity diagram described

above Fig.2.2 to cope with state explosion problem when we check the property

Pmax =?[F≤TTakeP icture] (2.4)

For this purpose we apply the algorithm and rules defined by [64]. This abstrac-

tion approach depends on the activity diagram and the PCTL properties as input

and produces an abstracted model. However, the abstraction rules do not focus on

time constraints. To take the advantages of the algorithm we hide the state (Activ-

ity Action) that does not appear in PCTL property proposition set such as: Flash,

TurnOff, FinalFlow and Fork2 except those are constrained. The result is shown in

Fig.2.7 and Table.2.3 presents its different verification results in function of time in-

terval T. To evaluate the verification cost, we measure the time required for verifying

a given property, denoted by Tv and time required to construct the model denoted

by Tc. The results are depicted in Fig.2.8. The number of states and transitions for

the concrete model are 9364 states and 23653 transitions, respectively and 4580

states, 12221 transitions for the abstracted model. As conclusion, we notice that the

abstraction rules preserves the results while verification and construction time are

optimized.

65

(A) Verification Time (B) Construction Time

FIGURE 2.8: The abstraction effects on Digital Camera Activity diagram.

2.9 Conclusion

In this chapter, we presented a formal verification approach of systems modeled by

using SysML activity diagram. The proposed approach use SysML activity diagram

with time annotations using MARTE profile to evaluate the system behavior at dif-

ferent periods of time. The approach consists on capturing the activity diagram with

time features as probabilistic timed automata supported by PRISM language. We

proposed a calculus dedicated to SysML Activity diagrams that captures precisely

the underlying semantics. In addition, we formalized PRISM language and showing

its semantics. Moreover, we proved the soundness of our proposed approach by

defining the relation between the semantics of the mapped diagrams and the result-

ing PRISM models. By this relation, we proved the preservation of the satisfiability

of PCTL properties. We applied our approach on a simple case study: digital Cam-

era where time and probability were evaluated. In the next chapter, we propose

a deployment based probabilistic model checking to verify the embedded software

against the reliability property.

66

1 pta
2 module Activity1
3 Initial : bool init true;
4 TurnOn : bool init false;
5 Fork1 : bool init false;
6 Fork2 : bool init false;
7 AutoFocus : bool init false;
8 charged : bool init false;
9

10 x1 : clock;
11 x2 : clock;
12 x3 : clock;
13 x4 : clock;
14 x5 : clock;
15 invariant (TurnOn =true => x1<=2)& (ChargeFlash =true => x4<=4) &
16 (AutoFocus =true => x3<=2) &(DetLight =true => x2<=1) &
17 (WriteMem =true => x5<=3) endinvariant
18
19 [Initial] Initial -> (Initial’=false) & (TurnOn’=true) & (x1’=0);
20 [TurnOn] TurnOn & x1>=2 -> (TurnOn’=false) & (Fork1’=true);
21
22 [Fork1] Fork1 -> (Fork1’=false) & (DetLight’=true) & (AutoFocus’=true) &
23 (D3’=true) & (x2’=0) & (x3’=0);
24 [D3] D3 -> 0.3 : (charged’=true) & (D3’=false)
25 + 0.7 :(Notcharged’=true) & (D3’=false);
26 [] charged=true -> (charged’=false) & (M21’=true);
27 [] Notcharged=true -> (Notcharged’=false) & (ChargeFlash’=true) & (x4’=0);
28 [ChargeFlash] ChargeFlash&x4>=2 -> (ChargeFlash’=false) & (M22’=true);
29 ..
30 [J1] J1=true -> (J1’=false) & (Fork2’=true);
31 [Fork2] Fork2 -> (Fork2’=false) & (Flash’=true) & (M31’=true);
32 [Flash] Flash -> (Flash’=false) & (FinalFlow’=true);
33 [FinalFlow] FinalFlow -> (FinalFlow’=false);
34 [J2] J2=true -> (J2’=false) & (M32’=true);
35 [M31] M31=true -> (M31’=false) & (TakePicture’=true);
36 [M32] M32=true -> (M32’=false) & (TakePicture’=true);
37 [TakePicture] TakePicture -> (TakePicture’=false) & (WriteMem’=true) & (x5’=0);
38
39 [WriteMem] WriteMem&x5>=2 -> (WriteMem’=false) & (M12’=true);
40 [Final] Final -> (Initial’=false)& (TurnOn’=false)& (Fork1’=false)&
41 (Fork2’=false)& (AutoFocus’=false)& (charged’=false)&
42
43 endmodule
44
45 rewards "time"
46 true : 1;
47 endrewards

LISTING 2.3: Digital Camera PRISM code fragment

CHAPTER 3

RELIABILITY ANALYSIS BASED

PROBABILISTIC MODEL CHECKING TO

OPTIMIZE SOFTWARE DEPLOYMENT IN

EMBEDDED SYSTEMS

3.1 Introduction

Embedded systems is a mixture of software and hardware components that span a

wide range from a small platform of sensors and actuators to a distributed systems

consisting in lot of interacting nodes. Recently, software parts gain more impor-

tance in designing of such systems- it implements the complex system functional-

ity and its deployments is very hard, laborious and time-consuming. To efficiently

exploit the physical platforms in the software development process, we introduce

a novel approach for deployment decision making based on PRISM probabilistic

model checker that takes the software components and the physical platform to pro-

duce different configurations. To check the best one, the configuration should satisfy

68

reliability properties that are expressed in PCTL temporal logic. We present auto-

motive control system as case study to illustrate the applicability of the proposed

approach.

3.2 Embedded Software Deployment

Software deployment is a complex procedure known to be NP hard [65], the process

consists in distribution of a software components on different physical locations with

respect to the requirements. The term component refers to an operational unit or

modules consisting on a set of operations where the assembled components repre-

sent the system. Note that the component-based development approach is a proven

concept for managing complexity [22], and has been used also in Embedded Sys-

tem and in Software development for a while [30]. In case of software-hardware

deployment, we have to distinguish two set of components; hardware and software

communicating using a proper interface. [66] and [67] give a state of the art related

to the deployment concepts and existed strategies in deployment-space exploration.

Reliability is one of the quality attributes for the achievement of the deployment with

minimum failures. This issue is addressed by [68] for service-oriented deployment

based on reliability assessment called DISNIX with proper OS to deploy a hetero-

geneous components (i.e. services) in a network of machines. In our approach, we

want to optimize the deployment with system configuration reliability as respected

threshold (i.e. mapping of software component to hardware host).

Recently, formal methods have become essential tools for developing safety-critical

69

systems, where its behavioral correctness is a main concern. These methods re-

quire a mathematical expertise for specifying what the system ought to do and ver-

ifying it with respect to the requirements. One of the interesting method is a Proba-

bilistic Model Checking [9].

This chapter investigates the use of probabilistic model checking during the de-

sign process, with the goal of automatic deployment-space exploration. To guide

the search for an optimal deployment, the specification (i.e. Architectural view) is

transformed into PRISM input language as Probabilistic-Timed Automata (PTA) or

in Markov-Decision Process MDP model that allows estimation by checking a prob-

abilistic property that expresses the reliability. Fig.2 in chapter.2 depicts the differ-

ent steps for the deployment-space exploration. The specification consists on the

SysML internal blocks diagram (IBD) of both software and hardware components

enriched with MARTE features (Modeling and Analysis of Real-Time and Embed-

ded systems) [39] to express some software and hardware characteristics. The

second step consists on Reliability extraction from different hardware components

to annotate the SysML activity diagrams with probabilities. To illustrate the use of

transformations in this process, we study the deployment of automotive control sys-

tem with respect to some constraints that represent the deployment restrictions.

3.3 Automotive Control Systems

Many cities are more and more overcrowded which lead to the growing accidents

and unpredicted emergencies. In response to that, the engineers have to open a

ways to improve the transportation safety. In this respect, several innovative and

cost-effective solution are emerging to simplify our daily-life so-called Automotive

Control Systems (ACS). The evolution of Automotive Control Systems is enabled

by recent advances in computing and sensing technologies as well as advances

70

in estimation and control theory. The Automotive Control Systems are the active

safety functions [69] that encompass all features intended to prevent accidents. The

main active functions that are studied in our chapter are: Anti-lock Brake (ABS) and

Adaptive-Cruise Control (ACC) Subsystems.

3.3.1 Adaptive Cruise Control

ACC (Adaptive Cruise Control) [69] simplifies the task of driving a car because it

relieves the driver of the mentally demanding task of keeping a check on the car’s

speed. The main function of ACC is keeping the speed constant at the setting se-

lected by the driver (i.e. Absence of vehicle in front). In Fig.3.1, if the vehicle in front

is traveling at a constant speed, a car fitted with ACC will follow it at the same speed

and a virtually constant distance. That is because the distance between the two

vehicles is at least within a broad speed range. Here the speed change is automatic

without the need for driver intervention.

FIGURE 3.1: Adaptive Cruise Control System

71

3.3.2 Anti lock Brake System

Wheels of a vehicle may lock up under braking due to wet or slippery road surfaces

then the vehicle become uncontrollable and leave the road. The anti-lock braking

system (ABS) detects if one or more wheels are about to lock up under braking and

if so, makes sure that the brake pressure remains constant or is reduced. As a con-

sequence, the vehicle can be braked or stopped quickly and safely. The electronic

core unit processes the informations received from the brake paddle according to

defined mathematical procedures. The results of those calculations are inputs to the

emergency stop detection (see Section 3.7).

3.4 Related Work

In this section, we depict the recent works related to the deployment-space explo-

ration optimization, partitioning and allocation then we compare them with our pro-

posed approach.

Meedeniya et al. [70] present an approach for reliability optimization in case of soft-

ware deployment. The authors propose a hardware and software constraints (i.e.

physical failures, software workload, deployment restrictions) that are considered as

inputs for the reliability function. The approach uses Genetic Algorithms (GA) [71] to

optimize the reliability function and applied it on automotive systems. This approach

is dedicated to be integrated as framework for AADL language (Architecture Analy-

sis and design Language) [47] but, the authors did not explain how they integrated

it in the top of language like extended properties since AADL support it. In addi-

tion, the authors does not explain how the algorithm is applied on specification as

72

in [72]. The same approach is depicted in [73] to find software-to-hardware assign-

ments that maximize the reliability of the system with respect to constraints. These

constraints include memory, physical platform failure and communication between

software components. The deployment-space exploration is based on Ant Colony

Optimization (ACO) combined with constraint programming (CP). Herrera et al.[30]

present the COMPLEX approach for hardware/software partitioning and allocation

to specific physical platform (i.e. software and hardware). The design level is based

on UML component diagram with additional annotation to specify a deployment-

space allocation (DSE). However, the authors do not provide any information about

algorithm or strategy applied. do Nascimento et al.[74] present a framework for

hardware/software code generation based on Model-Driven Engineering (MDE) pro-

posed by the Object Management Group (OMG). The approach starts from UML

class and sequence diagrams annotated using MARTE profile. For design-space

exploration, the authors propose a model-to-model transformation to abstract the

architectural specification. The generated model is considered as input for H-SPEX

DSE tool [75]. The core of the tool is based on Ant Colony Optimization. However,

the authors do not provide any information about the optimization strategy that is hid-

den from the user. Etienne et al.[29] present ENOSYS design flow for the Modeling

and Synthesis of Embedded Systems. The approach consists of four consecutive

steps respectively named Modeling, Synthesis, Source Code Optimization and De-

sign Space Exploration. The modeling step is based on UML Composite diagrams

(i.e. Components representations) with the core behavior using state machine or

activity diagrams. The composite diagram is enriched with set of annotations using

MARTE profile to express the software and hardware components and allocations.

Automatic partitioning of the system into software and hardware components occurs

when software code is generated and executed to obtain performance, area and

early power figures. The process is executed until the required constraints are met.

The disadvantages of the approach is the process of exploration based on code level

instead on design level that leads to errors and time consuming. In [76], the process

is a same as [29] where decision is made at synthesis level. Besnard et al.[77]

73

present a verification and validation framework of embedded software using AADL

and its behavioral annex. The specification is based on AADL language(Architecture

Analysis and design Language) [47] and Simulink [45] for functional behavior. The

authors implemented a systematic translation into the multi-clocked synchronous

semantics of the Signal data-flow language [78] that enables timing analysis in case

of Multiprocessor partitioning with respect to timing constraints. However, the ap-

proach soundness is not proved. Nath and Datta[79] address a partitioning of JPEG

encoder (i.e. applied for obtaining high quality output from continuous-tone images)

into software and hardware components. The approach is based on multi-objectives

optimization taking account mainly the execution time, the memory requirement, the

power consumption and the software modules that must be equal to the number of

processors. The process is based on genetic algorithm. However, the authors do

not explain how the hardware and software component are specified at early stage

of the design.

3.4.1 Comparison

As a summary, in Table.3.1 we compare our framework to the existing works by

taking consideration six criteria: The specification language, the addressed prob-

lem, the applied algorithm, formalization, soundness and automation. The Specifi-

cation criteria shows if the design is based on clear user view (i.e.Languages and

Models). The second criteria focus on the decision problem (i.e. deployment and

partitioning) that the authors want to solve. Applied algorithm criteria indicates the

procedure used to solve the decision problem. Formalization criteria confirms if the

approach presents a semantics and formalizes the studied diagrams. Soundness

feature shows if the mapping of the studied approach is proved. Automation criteria

checks if the presented approach provides a tool. From the comparison, we observe

74

that only few works formalize the specification diagrams, including the model check-

ing as decision tool for deployment case. Our work has for objective to support:

component-based specification using SysML/MARTE formalizing the SysML behav-

ior diagram (chapter.2). In addition, we implement the tool that allows the automatic

deployment decision.

3.5 SysML Diagrams

The system specification described in this chapter is characterized by following a

component-oriented approach [80] for the deployment of software components. In

component-based approach, the system is built by the composition of multiples

blocks (i.e. components) interacting with each others through a well defined in-

terfaces. Blocks provide and require services to function correctly. These services

are reported in the interfaces that are implemented by the components. In addition,

the specification of behavior is based on activity diagrams (chapter.2).

3.5.1 SysML Internal Blocks Diagram

The block [31] is the fundamental modular unit for describing system structure in

SysML. It can define a type of logical or physical entity (e.g., a system); a hardware,

software. Blocks are often used to describe reusable components that can be used

in many systems. Internal block diagram (IBD) has a relationship to the Blocks

diagram, it expresses aspects of a system’s structure that complements the aspects

conveyed on blocks diagrams. An IBD conveys how the blocks must be assembled

to create a valid instance. It also shows how an instance of that block must be

connected to external entities to create a valid instance of the system as a whole

75

TA
B

LE
3.

1:
C

om
pa

ris
on

w
ith

th
e

ex
is

tin
g

ap
pr

oa
ch

es

A
pp

ro
ac

h
S

pe
ci

fic
at

io
n

P
ro

bl
em

A
lg

or
ith

m
Fo

rm
al

iz
at

io
n

S
ou

nd
ne

ss
A

ut
om

at
io

n
[3

0]
U

M
L/

M
A

R
TE

P
ar

tit
io

ni
ng

√

[7
3]

D
ep

lo
ym

en
t

A
nt

C
ol

on
y

O
pt

im
is

at
io

n
√

[7
0]

D
ep

lo
ym

en
t

G
en

et
ic

A
lg

or
ith

m
√

[7
4]

U
M

L/
M

A
R

TE
D

ep
lo

ym
en

t
A

nt
C

ol
on

y
O

pt
im

is
at

io
n

√
√

[7
2]

A
llo

ca
tio

n
G

en
et

ic
A

lg
or

ith
m

[2
9]

U
M

L/
M

A
R

TE
P

ar
tit

io
ni

ng
√

[7
7]

A
A

D
L/

S
im

ul
in

k
A

llo
ca

tio
n

S
ch

ed
ul

in
g

A
lg

or
ith

m
√

[7
9]

P
ar

tit
io

ni
ng

G
en

et
ic

A
lg

or
ith

m
√

[7
6]

U
M

L/
M

A
R

TE
D

ep
lo

ym
en

t
√

O
ur

S
ys

M
L/

M
A

R
TE

D
ep

lo
ym

en
t

M
od

el
C

he
ck

in
g

√
√

√

76

[81]. Additionally, When the blocks are defined and designed, they are endowed

with behavior to express the core operations of implemented interfaces. There are

three main behavioral formalisms in SysML: activity, state machines and interaction

diagrams.

The system under design is specified by a SysML IBD before starting the deploy-

ment. The graphical notations of SysML helps designers for the specification of

embedded systems in easy way. However, the description needs a relevant infor-

mation about the type of the blocks containing the system such as software and

hardware blocks. Thus, we use MARTE profile [39].

The interfaces can be modeled using MARTE stereotype “Client-Server port” in-

cluded in the sub-profile Generic Component Model (GCM) (See Fig.3.2). Software

components are modeled by the MARTE stereotype “RtUnit” included in the MARTE

sub profile High-Level Application Modeling (HLAM). The isMain attribute denote

the main application. In this case, the main attribute has to include the function

that acts as trigger for complete application execution. Each RtUnit component in

Fig.3.3 represents a thread and executed by the processor. The attribute memory-

Size can be added to express the amount of static memory requires for each soft-

ware component. We use the MARTE stereotype “allocate” to assign the software

components to the processors. The application components are interconnected

by means of connectors that represent the communicating channels. Communi-

cations are established through ports that embody the provided/required interfaces

of each hardware-software component. The software component connectors can

be annotated by MARTE stereotype “CommunicationStep” with attribute msgSize

to refer to the size of messages exchanged between the components included in

the MARTE sub profile Generic Quantitative Analysis Modeling(GQAM). Hardware

components communicate through a bus. The bus represents a connector com-

ponent that is stereotyped using MARTE “HW Media” from sub profile Hardware

77

Resource Modeling (HRM). In addition, more attributes can be added for analysis

such as throughput using sub profile GQAM. The processor is the main component

in the hardware board stereotyped using MARTE “HW Processor” from sub profile

HRM (See Fig.3.4) and some attributes can be added like mips that characterizes

the throughput. Processors can be annotated by“ExecutionHost” from GQAM with

attribute memorySize to express the processor capacity. Finally, to annotate each

hardware components with probability of success and failure of data transmission,

we use “GaStep” from GQAM with attribute prob. In our chapter,prob represent the

success of execution (i.e. Reliability). Posadas et al.[76] present depicts the main

features used to specify the embedded systems.

FIGURE 3.2: Example of interface

FIGURE 3.3: Example of Software Components

FIGURE 3.4: Example of Hardware Components

3.5.2 Linking Behavior to Blocks Using Partitions

A set of activity diagram artifacts in Chapter.2 can be grouped into an activity parti-

tion (also known as a swimlane) [31] that is used to indicate responsibility for execu-

tion of those nodes. A typical case is when an activity partition represents a block

and indicates that any behaviors invoked by call actions in that partition are the re-

sponsibility of the block. Activity partitions are depicted as rectangular symbols that

78

physically encompass the action symbols and other activity nodes within the parti-

tion (the so-called “swimlan” notation). In our chapter, we link each sub set of actions

to each blocks that are part of the blocks (BD) and internal blocks diagrams (IBD).

The figure in 3.5 presents an example where different activity artifacts are allocated

to three blocks. The transition crossing the blocks can be annotated with probability

that is derived from hardware properties.

FIGURE 3.5: Example of activity allocation to blocks

3.6 The Deployment Problem

The deployment optimization consists on automatically explores the states space of

possible allocations of software components to hardware components according to

the constraints addressed in this section, and returns the set of near-optimal candidates.

79

To evaluate a single deployment we use some specification metrics defined in [70]

for the software and the platform architecture in addition to the reliability of each

physical components (e.g. Processor, Bus).

The constraints established in this section corresponds to the components type. For

instance, the processor representation corresponds to the << HwProcessor >> or

<< ComputingRessource >> annotations.

3.6.1 Deployment Quality Measure

The quality metric of the approach depends on the reliability of physical hardware

(Processors and buses). The software failures are not considered in the approach.

We consider that the software failures do not influence the optimization process then

they are abstracted.

The reliability of each processor allows populating our design model with probabil-

ities ; means that the activity diagram is characterized by reliability on associated

interrupting edges of the partitioned diagram.

The objective of the chapter is to find the best Deployment Configuration Candidate

that satisfy the requirement in term of reliability. The best deployment configura-

tion consist on the exploration of all candidates that maximizes the life duration and

postpone the system failure. Here, the process is called: Reconfiguration [82]. The

semantics of configuration can be described in terms of PTA or MDP as stipulated

in previous chapter.2 where the definition is:

Definition 4.1 (Reconfiguration). Reconfigurations are denoted by transitions M α→

80

M′ meaning that the execution of α on the configuration M produces a new con-

figuration M′. The action α consists on software components redeployment and

probabilities redefinition.

We can now define a deployment plan as a sequence of reconfiguration actions from

one deployment to another.

Definition 4.2 (Deployment problem). A deployment problem consists on a se-

quence of reconfigurations to find the suitable one Mi according to the requirement

(i.e. PCTL properties) M0
α0→p0 M1

α1→p1 ...
αm−1→ pm−1 Mm, for 0 ≤ i ≤m.

3.7 Experimental Results

In order to implement our methodology for deployment-space exploration, an Eclipse

plug-in has been developed. The graphical tool used for creating SysML/MARTE

models is Eclipse TopCased. After the generation of the corresponding XML file of

the main design, The plug-in parses the document and generates multiple(s) PRISM

code in MDP or PTA model in order to check the configuration against the PCTL

property. Finally, the plug-in returns a message for the close-configuration that satis-

fies our requirements. Our approach is illustrated on the case study of an embedded

automotive control system designed according to [70]. The objective of the optimiza-

tion is to maximize the life duration and postpone the system failure. To assess the

performance of model checking on automotive systems, two software components

are deployed on dedicated hardware architecture namely the Anti-lock Brake Sys-

tem (ABS) and Adaptive Cruise Control (ACC). In our specification we simplify the

design in order to not clutter the content.

Hardware Architecture: The hardware architecture used for the case study consists

of four processors and three buses connecting the processors together, see Fig.3.7.

81

TABLE 3.2: Parameters of buses and processors

Hardware Reliability [%]
PR 0 80
PR 1 70
PR 2 90
PR 3 60
Bus 0 82.3
Bus 1 72.99
Bus 2 88.06

Table.3.2 contains the Reliability parameters of each processor and buses. We refer

to PR as processors.

FIGURE 3.6: Adaptive Cruise Control (Right) and Anti-lock Brake System (Left)

Anti-lock Brake System (ABS): used in modern cars to minimize hazards asso-

ciated with skidding and loss of control due to locked wheel during braking. The

software architecture of the ABS is depicted in Fig.3.6(Left) and Fig.3.8(Associated

Activity diagram) (components 0-7). The ABS Main unit is the major decision unit

regarding the braking levels for individual wheels, while Load Compensator unit as-

sists with computing adjustment factors from wheel load sensor inputs. Compo-

nents 4-7 represent transceiver software components associated with each wheel,

and communicate with sensors and brake actuators. Brake Paddle is the software

82

FIGURE 3.7: Hardware topology
FIGURE 3.8: Activity diagram for

Adaptive Cruise Control

FIGURE 3.9: Activity diagram for Anti-lock Brake System (Left)

83

component that reads from the Paddle Sensor and sends the data to the emergency

stop detection software module.

TABLE 3.3: Allocation results

Hardware Components
PR 0 4,6,11,9,7
PR 1 2,5,1
PR 2 3,0
PR 3 8,10

Adaptive Cruise Control (ACC): The aim of this component is to avoid crashes

by reducing speed once the slower vehicle in front is detected. The main soft-

ware components used by ACC are components 8-11 as depicted in Fig.3.6 (Right)

and Fig.3.9(Associated Activity diagram). Service initialization is possible at Object

Recognition software that communicates with sensors. Speed Limit, Mode Switch

and Brake Paddle contributes to triggering of the service. The captured data are

processed by the ACC Main Unit and Human Machine Interface to communicate

with actuators.

3.7.1 Evaluation

FIGURE 3.10: ABS Reliability FIGURE 3.11: ACC Reliability

Despite the low number of components and states (i.e.PRISM states) generated

after mapping, the deployment-space exploration took 14000 seconds which is ap-

proximately two hours and a half. Our plug-in records each result of checked model

84

1 mdp
2 const double P1;
3 const double P2;
4 const double P3;
5 const double P4;
6 module ACC
7 Initial : bool init true;
8 Object_Recognition: bool init false;
9 Speed_Interprestation:bool init false;

10 Velocity_Change : bool init false;
11 Send_Value : bool init false;
12 Final: bool init false;
13
14 Proc_Fail: bool init false;
15
16
17 D1: bool init false;
18 D2: bool init false;
19
20
21 M11: bool init false;
22 M12: bool init false;
23 M1: bool init false;
24 [Initial] Initial -> (Initial’=false)&(M11’=true);
25 [M11]M11 -> (M11’=false)&(M1’=true);
26 [M12]M12 -> (M12’=false)&(M1’=true);
27 [M1]M1 -> (M1’=false)&(Object_Recognition’=true);
28 [Object_Recognition] Object_Recognition -> 1.0:(D1’=true)&
29 (Object_Recognition’=false);
30
31 [D1] D1 -> P1:(M21’=true)& (D1’=false)+(1-P1):(Block1_Fail’=true)&(D1’=false);
32 [Block1_Fail] Block1_Fail-> (Block1_Fail’=false)& (M12’=true);
33 [Speed_Interpretation]Speed_Interpretation -> 1.0:(SpeedInterprestation’=false)
34 &(D2’=true);
35 [D2] D2 -> P2:(M31’=true)& (D2’=false)+(1-P2):(Block2_Fail’=true)&(D2’=false);
36 [Block2_Fail] Block2_Fail-> (Block2_Fail’=false)& (M22’=true);
37 [Velocity_Change] Velocity_Change -> 1.0:(Velocity_Change’=false)&
38 (D3’=true);
39 [D3] D3 -> P3:(M41’=true)& (D3’=false)+(1-P3):(Block3_Fail’=true)&(D3’=false);
40 [Block3_Fail] Block3_Fail-> (Block3_Fail’=false)& (M32’=true);
41 [Send_Value] Send_Value -> 1.0:(Send_Value’=false)&(D4’=true);
42 [D4] D4 -> P4:(Final’=true)& (D4’=false)+(1-P4):(Block3_Fail’=true)&(D4’=false);
43 [Block4_Fail] Block4_Fail-> (Block4_Fail’=false)& (M42’=true);
44 endmodule
45 label "ProcFail" = Block1_Fail|Block2_Fail|Block3_Fail|Block4_Fail;

LISTING 3.1: ACC PRISM code fragment

85

to get the minimum probability of each configuration candidates. During this process

65792 candidates was explored and performed on i7 CPU 2.67GHz with 8.0GB of

RAM. The Listing.3.1 shows the PRISM code that can be parametrized using the

constants values. The constant values are filled with our plug-in during the model

checking process.

Reliability property to analyze ACC and ABS system using PRISM is; the probability

that a ACC and ABS will need to be replaced by a new one in 129600 time steps:

Pmin =?[F ≤ T (“Proc Fail”)], T = 129600

Proc Fail = true asserts that the processor is in failing state. We labeled our PRSIM

code with the label ProcFail that corresponds to the failing state of each block:

label“Proc Fail” = Block1 Fail|Block2 Fail|Block3 Fail|Block4 Fail

The analysis results of reliability property obtained from PRISM are as follows: The

result of the property in case of ACC is shown in Fig.3.10; the result of property

in case of ABS is shown in Fig.3.11. To choose the best deployment; we have to

maximize the life duration (i.e. After 129600 time steps) and postpone the system

failure. In Table.3.3, we show the best software deployment candidate relative to the

probabilistic results. The acceptable deployment in Fig.3.10 shows that the proces-

sor failure occurs after 129600 time steps with probability near to 64.16% where the

acceptable deployment in Fig.3.11, the processor failure occurs after 129600 time

steps with probability near to 63.12%. The cases where the blocks deployed on one

processor are not considered in our approach.

86

3.8 Conclusion

In this chapter, we presented a case study for Multiprocessing deployment of Com-

ponent based Architecture for embedded systems in automotive domain. The ap-

proach is based on Blocks/IBD diagrams for component organization with behavior

expressed by SysML activity diagram. The approach consists on capturing the dif-

ferent deployment candidates in PRISM language. The near-optimal deployment is

selected when the reliability property is satisfied especially when system failure is

postpone in time. Compared to the existing works, which use Meta-heuristic algo-

rithms , our approach leverages probabilistic modeling thus allowing the assessment

of properties formally expressed in probabilistic temporal logic.

CONCLUSION

In this thesis, we presented a formal verification approach of systems modeled by

using SysML activity diagrams. The objective is to alleviate errors and failures that

can emerge in system design-flow in order to reduce the cost of maintenance and

repairing as soon as possible from the implementation. The proposed approach use

SysML activity diagram with time annotations using MARTE profile to evaluate the

system behavior at different periods of time. Compared to Grobelna et al.[51], which

use NuSMV[53] for state reachability in activity diagram, our approach leverages

probabilistic and timed modeling, allowing the assessment of properties expressed

in probabilistic temporal logic. With respect to Ouchani et al.[18] which use a proba-

bilistic model to check the SysML activity diagram with difficulty to predict the system

behavior due to the static description, we employ a probabilistic and timed model

capturing system governed by time constraints. Moreover, in contrast to Marinescu

et al.[44], which use C programs as component behavior; only components (without

extracting C behavior) are mapped to UPPAAL that result in difficulties to evaluate

accurately the system (the core behavior is hidden), our approach make decisions

at specification level using SysML activity diagram.

88

To deal with the partitioning problem, we presented a deployment-exploration ap-

proach of embedded software modeled by using SysML internal blocks diagram

(IBD). The first objective is to validate a deployment in case of hardware failures

that generally emerge at the implementation level. The proposed approach uses

SysML internal blocks diagram with additional real time system annotations using

MARTE profile. Compared to Meedeniya et al.[70] and Thiruvady et al.[73], which

use genetic algorithms, our approach leverages probabilistic modeling thus allow-

ing the assessment of properties formally expressed in probabilistic temporal logic.

With respect to Besnard et al.[77] which use a scheduling algorithm for software

partitioning to check the AADL Language results in difficulty to obtain a good par-

titions due to the constraints limited to time, we employ a probabilistic and timed

model capturing system governed by hardware and software constraints (i.e. time

and probability). Moreover, in contrast to Etienne et al.[29], which is based on code

generated for performance estimations, area and early power figures. Our approach

extracts the relevant informations directly from the specification and mapped the

behavior to PRISM for model checking.

The research contribution of this work consists on capturing the activity diagrams

with time and probability features as probabilistic timed automata supported by

PRISM language. We proposed a calculus dedicated to SysML Activity diagrams

that captures precisely the underlying semantics. In addition, we formalized PRISM

language and showing its semantics. Moreover, we proved the soundness of our

proposed approach by defining the relation between the semantics of the mapped

diagrams and the resulting PRISM models. By this relation, we proved the preser-

vation of the satisfiability of PCTL properties. We have shown the effectiveness of

our approach in realistic case study: Embedded automotive control system where

its behavior is evaluated.

The practical advantages of the proposed approach in the context of deployment,

89

consists on providing key decision for the acceptable configuration via probabilistic

model checking. In addition, the results of our approach using PRISM can be plotted

as graphs that can be inspected for interpretations and anomalies detection. The

limitations of the proposed approach relate to the size of the state-space associated

with a corresponding model.

Future work
The presented work can be extended by investigating several directions. First, our

approach can be extended to support more system features such as energy and

support more diagrams such as timing and sequence diagrams. Concerning the

specification part of the framework, the requirements could be expressed in dedi-

cated diagram such as requirement diagrams of SysML. Also, we desire to build a

strategy to develop a platform for system of systems (SoS). For verification-time min-

imization part, three direction can be followed; either to develop a new verification

algorithm based on powerful engine or explore the statistical model checking which

proved its usefulness or develop a new abstraction algorithm that minimizes the con-

structed graph model. In case of deployment, not only reliability could be handled

but also availability and maintainability requirements of embedded systems. In ad-

dition, low level view could be generated automatically from our original model at

high abstraction view into C/C++/SystemC with a precise hardware characteristics

for validation and accurate estimations on real-time system behavior. Finally, more

complex systems could be validated by our framework.

ABBREVIATIONS

BNF Backus-Naur Form

CTL Computation Tree Logic

CTMC Continuous Time Markov Chains

DTMC Discrete Time Markov Chains

ERTS Embedded Real-time System

INCOSE International Council on Systems Engineering

LTL Linear Temporal Logic

MDP Markov Decision Processes

MARTE Modeling and Analysis of Real-Time and Embedded systems

NuAC New Activity Calculus

OMG Object Management Group

PCTL Probabilistic Computation Tree Logic

PRISM PRobabilistIc Symbolic Model checker

PA Probabilistic Automata

PTA Probabilistic Timed Automata

PN Petri Nets

SPN Stochastic Petri Nets

SysML Systems Modeling Language

UML Unified Modeling Language

90

Appendix A

REFERENCES

1. Vaclav R ajlich. “ software e volution a nd m aintenance”. I n P roceedings o f

the o n Future of Software Engineering, FOSE 2014, New York, NY, U

SA, 2014. ISBN 9 78-1-4503-2865-4. (2014), 133–144

2. OMG Systems Modeling Language (Object Management Group SysML). O. M.

Group (Ed.), 2012 .

3. OMG Unified Modeling Language: Superstructure 2.1.2.Object Management

Group. O. M. Group (Ed.), 2007 .

4. U.S Dept of Commerce. Free nist software tool boosts detection of

soft-warebugs .http://2010-2014.commerce.gov/blog/2010/11/09/

free-nist-software-tool-boosts-detection-software-bugs,

2010 .

5. Brigitte Pientka. Proof pearl: The power of higher-order encodings in the

logical framework lf . In Klaus Schneider and Jens Brandt, editors, Theorem

Proving in Higher Order Logics, volume 4732 of Lecture Notes in

Computer Science, pages . Springer Berlin Heidelberg, 2007. ISBN

978-3-540-74590-7. (2001),

6. Yves Bertot and Pierre Cast´eran. Interactive Theorem Proving and

Program Development. Coq’Art: The Calculus of Inductive Constructions .

Springer, 2004 .

91

92

94

19. Norman Gethin, Parker David, and Sproston Jeremy. Model checking for prob-

abilistic timed automata . Formal Methods in System Design ISSN 0925-9856.

doi: 10.1007/s10703-012-0177-x .

20. Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,

and David N. Jansen. The ins and outs of the probabilistic model checker

mrmc . Performance Evaluation, 2 90–104.

21. Richard Schmidt. Section 1. software engineering fundamentals . In Richard F.

Schmidt, editor, Software Engineering. Morgan Kaufmann, Bosto . ISBN

978-0-12-407768-3.

22. David Garlan, Felix Bachmann, James Ivers, Judith Stafford, Len Bass, Paul

Clements, and Paulo Merson. Documenting Software Architectures: Views and

Beyond . Addison-Wesley Professional, 2nd edition, 2010 .

95

pages 21–36. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-13237-7. doi:

10.1007/978-3-642-13238-4 2 .

26. Galib Krdzalic and Alexander Driss. Software architecture without autosar.

Auto Tech Review. ISSN 2250-3390. doi: 10.1365/s40112-014-0593-y

.

27. Scott Hissam, James Ivers, Daniel Plakosh, and Kurt Wallnau. Pin compo-

nent technology (v1.0) and its c interface. Technical Report CMU/SEI-2005-TN-

001, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,

2005 .

28.

29.

30. Vidal Jorgiano, de Lamotte Florent, Gogniat Guy, Soulard Philippe, and Diguet

Jean-Philippe. A co-design approach for embedded system modeling and

code generation with uml and marte. In Design, Automation Test in Europe

Conference Exhibition, 2009. DATE ’09., pages 226–231, April 2009. doi:

10.1109/DATE.2009.5090662.

31. Brosse Etienne, Quadri Imran Rafiq, Sadovykh Andrey, Ieromnimon Frank,

Kritharidis Dimitrios, Catrou Rafael, and Sarlotte Michel. Enosys fp7 eu project:

96

An integrated modeling and synthesis flow for embedded systems design. In Re-

configurable Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th In-

ternational Workshop on, pages 1–5, July 2012. doi: 10.1109/ReCoSoC.2012.

6322880.

32. Fernando Herrera, Héctor Posadas, Pablo Peñil, Eugenio Villar, Francisco Fer-

rero, Raúl Valencia, and Gianluca Palermo. The {COMPLEX} methodology

for uml/marte modeling and design space exploration of embedded systems.

Journal of Systems Architecture, 60(1):55 – 78, 2014. ISSN 1383-7621. doi:

http://dx.doi.org/10.1016/j.sysarc.2013.10.003.

33. Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML:

Systems Modeling Language. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 2008. ISBN 0123743796, 9780080558363, 9780123743794.

34. Mourad Debbabi, Fawzi Hassane, Yosr Jarraya, Andrei Soeanu, and Luay

Alawneh. Verification and Validation in Systems Engineering: Assessing UM-

L/SysML Design Models. Springer-Verlag New York, Inc., New York, NY, USA,

1st edition, 2010. ISBN 3642152279, 9783642152276.

35. Clarke Edmund and E. Allen Emerson. “design and synthesis of synchronization

skeletons using branching-time temporal logic”. In Logic of Programs, Work-

shop, pages 52–71, London, UK, UK, 1982. Springer-Verlag. ISBN 3-540-

11212-X.

36. Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston. Per-

formance analysis of probabilistic timed automata using digital clocks. In

Kim Guldstrand Larsen and Peter Niebert, editors, Formal Modeling and Anal-

ysis of Timed Systems, volume 2791 of Lecture Notes in Computer Science,

pages 105–120. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-21671-1.

doi: 10.1007/978-3-540-40903-8 9.

97

37. Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nonde-

terministic systems. In P.S. Thiagarajan, editor, Foundations of Software Tech-

nology and Theoretical Computer Science, volume 1026 of Lecture Notes in

Computer Science, pages 499–513. Springer Berlin Heidelberg, 1995. ISBN

978-3-540-60692-5. doi: 10.1007/3-540-60692-0 70.

38. Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reli-

ability. Formal Aspects of Computing, 6(5):512–535, 1994. ISSN 0934-5043.

doi: 10.1007/BF01211866.

39. Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. A

game based abstraction-refinement framework for markov decision processes.

Formal Methods in System Design, 36(3):246–280, 2010. ISSN 0925-9856. doi:

10.1007/s10703-010-0097-6.

40. Jasper Berendsen, Taolue Chen, and David N. Jansen. Theory and Applica-

tions of Models of Computation: 6th Annual Conference, TAMC 2009, Chang-

sha, China, May 18-22, 2009. Proceedings, chapter Undecidability of Cost-

Bounded Reachability in Priced Probabilistic Timed Automata, pages 128–137.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-02017-9.

doi: 10.1007/978-3-642-02017-9 16. URL http://dx.doi.org/10.1007/

978-3-642-02017-9_16.

41. Alessandro Cimatti, Clarke Edmund, Fausto Giunchiglia, and Marco Roveri.

Nusmv: A new symbolic model verifier. In Proceedings of the 11th Interna-

tional Conference on Computer Aided Verification, CAV ’99, pages 495–499,

London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66202-2.

42. Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-

Prolog. Theory and Practice of Logic Programming, 12(1-2):67–96, 2012. ISSN

1471-0684.

98

43. Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming concepts.

Machine Learning, 100(1):5–47, 2015.

44. Gerd Behrmann, Alexandre David, and KimG. Larsen. A tutorial on uppaal. In

Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design

of Real-Time Systems, volume 3185 of Lecture Notes in Computer Science,

pages 200–236. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-23068-7.

doi: 10.1007/978-3-540-30080-9 7.

45. Arnd Hartmanns. Modest – a unified language for quantitative models. In FDL,

pages 44–51, September 2012.

46. Frédéric Mallet and Robert de Simone. Marte: A profile for rt/e systems mod-

eling, analysis–and simulation? In Proceedings of the 1st International Confer-

ence on Simulation Tools and Techniques for Communications, Networks and

Systems & Workshops, Simutools ’08, pages 43:1–43:8, ICST, Brussels, Bel-

gium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering). ISBN 978-963-9799-20-2.

47. Xiaopu Huang, Qingqing Sun, Jiangwei Li, and Tian Zhang. Mde-based ver-

ification of sysml state machine diagram by uppaal. In Yuyu Yuan, Xu Wu,

and Yueming Lu, editors, Trustworthy Computing and Services, volume 320

of Communications in Computer and Information Science, pages 490–497.

Springer Berlin Heidelberg, 2013. ISBN 978-3-642-35794-7. doi: 10.1007/

978-3-642-35795-4 62.

48. Daniel Knorreck, Ludovic Apvrille, and Pierre de Saqui-Sannes. Tepe: A sysml

language for time-constrained property modeling and formal verification. SIG-

SOFT Softw. Eng. Notes, 36(1):1–8, January 2011. ISSN 0163-5948. doi:

10.1145/1921532.1921556.

99

49. Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John

Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The save ap-

proach to component-based development of vehicular systems. J. Syst. Softw.,

80(5):655–667, May 2007. ISSN 0164-1212. doi: 10.1016/j.jss.2006.08.016.

50. Raluca Marinescu, Henrik Kaijser, Marius Mikucionis, Cristina Seceleanu, Hen-

rik Lonn, and Alexandre David. Analyzing industrial architectural models by

simulation and model-checking . In Cyrille Artho and Peter Csaba ˜A–lveczky,

editors, Formal Techniques for Safety-Critical Systems, volume 476 of Com-

munications in Computer and Information Science, pages 189–205. Springer

International Publishing, 2015. ISBN 978-3-319-17580-5. doi: 10.1007/

978-3-319-17581-2 13.

51. Simulink Link. Simulink. http://www.mathworks.com/simulink.

52. Gaogao Yan, Xue-Yang Zhu, Rongjie Yan, and Guangyuan Li. F ormal

through-put and response time analysis of marte models . In Stephan Merz

and Jun Pang, editors, Formal Methods and Software Engineering, volume

8829 of Lec-ture Notes in Computer Science, pages 430–445. Springer

InternationalPub-lishing, 2014.ISBN978-3-319-11736-2.

53. Peter Feiler. Model-based validation of safety-critical embedded systems .

In Aerospace Conference, 2010 IEEE, pages 1–10, March 2010. doi:

10.1109/AERO.2010.5446809.

54. Singhoff Frank, Legrand J´erˆome, Nana Laurent Tchamnda, and Marc´e Lionel.

Cheddar: A flexible real time scheduling framework . Ada Lett., XXIV(4):1–8,

November 2004. ISSN 1094-3641. doi: 10.1145/1046191.1032298.

55. Mourad Debbabi, Fawzi Hassa¨ıne, Yosr Jarraya, Andrei Soeanu, and Luay

Alawneh. Probabilistic model checking of sysml activity diagrams . In

Verification and Validation in Systems Engineering, pages 153–166. Springer

Berlin Heidel-berg, 2010. ISBN 978-3-642-15227-6. doi:

10.1007/978-3-642-15228-3 9.

100

56. Ouchani Samir, Jarraya Yosr, and Ait Mohamed Otmane. Model-based

systems security quantification . In Privacy, Security and Trust (PST), 2011

Ninth Annual International Conference on, pages 142–149, July 2011.

57. Iwona Grobelna, Micha? Grobelny, and Marian Adamski. Model checking

of uml activity diagrams in logic controllers design . In Wojciech Zamojski,

Jacek Mazurkiewicz, Jaros?aw Sugier, Tomasz Walkowiak, and Janusz

Kacprzyk, edi-tors, Proceedings of the Ninth International Conference on

Dependability and Complex Systems DepCoS-RELCOMEX. June 30 ? July

4, 2014, Brunow, Poland, volume 286 of Advances in Intelligent Systems and

Computing, pages 233–242. Springer International Publishing, 2014. ISBN

978-3-319-07012-4.

58. Iwona Grobelna. Formal verification of logic controller specification by

means of model checking . Lecture Notes in Control and Computer Science.

Springer International Publishing, 2013.

59. RicardoJ. Rodriguez, LarsAke Fredlund, Anngel Herranz, and Julio Marino.

Execution and verification of uml state machines with erlang . In Dimitra Gi-

annakopoulou and Gwen SalaÃn, editors, Software Engineering and Formal

Methods, volume 8702 of Lecture Notes in Computer Science, pages 284–

289. Springer International Publishing, 2014. ISBN 978-3-319-10430-0. doi:

10.1007/978-3-319-10431-7 22.

60. Shuang Liu, Yang Liu, Jun Sun, Manchun Zheng, Bimlesh Wadhwa, and

Jin Song Dong. Usmmc: A self-contained model checker for uml state

ma-chines . In Proceedings of the 2013 9th Joint Meeting on Foundations of

Soft-ware Engineering, ESEC/FSE 2013, pages 623–626, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2237-9. doi: 10.1145/2491411.2494595.

61. Thomas Noll. Safety, dependability and performance analysis of aerospace sys-

tems. In Cyrille Artho and Peter Csaba Ölveczky, editors, Formal Techniques for

101

Safety-Critical Systems, volume 476 of Communications in Computer and Infor-

mation Science, pages 17–31. Springer International Publishing, 2015. ISBN

978-3-319-17580-5. doi: 10.1007/978-3-319-17581-2 2.

62. Hoque Khaza Anuarul, Ait Mohamed Otmane, Savaria Yvon, and Thibeault

Claude. Early analysis of soft error effects for aerospace applications

using probabilistic model checking . In Cyrille Artho and Peter Csaba ¨Olveczky,

editors, Formal Techniques for Safety-Critical Systems, volume 419 of

Communications in Computer and Information Science, pages 54–70. Springer

International Pub-lishing, 2014. ISBN 978-3-319-05415-5.

63. Robin Milner. C ommunicating and Mobile Systems: The -calculus . Cam-

bridge University Press, New York, NY, USA, 1999. ISBN 0-521-65869-1.

64. Gethin Norman, Catuscia Palamidessi, David Parker, and Peng Wu. Model

checking the probabilistic π-calculus . In Proc. 4th International Conference on

Quantitative Evaluation of Systems (QEST’07), pages 169–178. IEEE Computer

Society, 2007.

65. Samir Ouchani, Ait Mohamed Otmane, and Debbabi Mourad. A probabilistic

ver-ification framework of sysml activity diagrams . In Intelligent Software

Methodolo-gies, Tools and Techniques (SoMeT), 2013 IEEE 12th International

Conference on, pages 165–170, Sept 2013.

66. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc.,

Up-per Saddle River, NJ, USA, 1985. ISBN 0-13-153271-5.

67. Mordechai Ben-Menachem. Reactive systems: Modelling, specification and

verification ; is written by l. aceto, et al; and published by cambridge university

press; distributed by cambridge university press; © 2007, (hardback),

isbn 978- 0-521-87546-2, pp. 300. SIGSOFT Softw. Eng. Notes, 35(4):34–35,

July 2010. ISSN 0163-5948. doi: 10.1145/1811226.1811243.

102

68. Roberto Segala. A compositional trace-based semantics for probabilistic

automata . In Insup Lee and ScottA. Smolka, editors, CONCUR ’95:

Con-currency Theory, volume 962 of Lecture Notes in Computer Science,

pages 234–248. Springer Berlin Heidelberg, 1995. ISBN

978-3-540-60218-7. doi: 10.1007/3-540-60218-6 17.

69. Samir Ouchani, Otmane A¨ıt Mohamed, and Mourad Debbabi. A property-

based abstraction framework for sysml activity diagrams . Know.-Based Syst., .

ISSN 0950-7051 .

70. Garey Michael and Johnson David. “Computers and Intractability: A Guide to

the Theory of NP-Completeness”. W. H. Freeman & Co., New York, NY, USA,

1979. ISBN 0716710447.

71. Jean-Paul Arcangeli, Raja Boujbel, and S´ebastien Leriche. Automatic

deploy-ment of distributed software systems: Definitions and state of the

art . Jour-nal of Systems and Software, 103(0):198 – 218, 2015. ISSN

0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2015.01.040.

72. T. Saxena and G. Karsai. A meta-framework for design space exploration .

In Engineering of Computer Based Systems (ECBS), 2011 18th IEEE

International Conference and Workshops on, 71–80.

73. Sander van der Burg and Eelco Dolstra. Disnix: A toolset for distributed

deployment. Science of Computer Programming , ISSN 0167- 6423. doi:

http://dx.doi.org/10.1016/j.scico.2012.03.006. Experimental Software and

Toolkits (EST 4): A special issue of the Workshop on Academic Software

Development Tools and Techniques (WASDeTT-3 2010) .

74. Bernhard Mattes. Occupant protection systems. In Konrad Reif, editor, Brakes,

Brake Control and Driver Assistance Systems , Bosch Professional

Automotive

103

Information, pages 162–179. Springer Fachmedien Wiesbaden, 2014. ISBN

978-3-658-03977-6. doi: 10.1007/978-3-658-03978-3 14.

75. Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske.

Reliability-driven deployment optimization for embedded systems . Journal

of Systems and Software, 84(5):835 – 846, 2011. ISSN 0164-1212. doi:

http: //dx.doi.org/10.1016/j.jss.2011.01.004.

76. Melanie Mitchell and Melanie Mitchell. An Introduction to Genetic

Algorithms . MIT Press, Cambridge, MA, USA, 1998. ISBN 0-262-13316-4.

77. Gookhyun Kim, Jinhee Park, and Jongmoon Baik. An effective approach to

identifying optimal software reliability allocation with consideration of multiple

constraints . In Computer and Information Science (ICIS), 2012 IEEE/ACIS 11th

International Conference on, 541–546

78. Dhananjay Thiruvady, I. Moser, Aldeida Aleti, and Asef Nazari. Constraint pro-

gramming and ant colony system for the component deployment problem . Pro-

cedia Computer Science, 29(0):1937 – 1947, 2014. ISSN 1877-0509. doi:

http://dx.doi.org/10.1016/j.procs.2014.05.178. 2014 International Conference

on Computational Science

79. Francisco Assis Moreira do Nascimento, Oliveira, and Fl´avioRech Wagner. A

model-driven engineering framework for embedded systems design . Innova-

tions in Systems and Software Engineering,

80. Marcio Oliveira, Eduardo Bri˜ao, and Fl´avio Nascimento, Franciscoand

Wagner. Model driven engineering for mpsoc design space exploration. In

Proceedings of the 20th Annual Conference on Integrated Circuits and Systems

Design, SBCCI ’07, New York, NY, USA ACM. ISBN 978-1-59593-816-9.

.

,

(2013),

 , (2002)

 (2010)

105

87. Tudor Lascu, Jacopo Mauro, and Gianluigi Zavattaro. A utomatic compo-

nent deployment in the presence of circular dependencies . In Jos´e Luiz

Fi-adeiro, Zhiming Liu, and Jinyun Xue, editors, Formal Aspects of

Component Software, volume 8348 of Lecture Notes in Computer Science.

Springer International Publishing. ISBN 978-3-319-07601-0.

	p1main
	p3main

