UNIVERSITE SAAD DAHLAB DE BLIDA

Faculté de Technologie

Département de mécanique

MEMOIRE DE MAGISTER

Spécialité : Science des matériaux

ETUDE DE LA BOROCARBONITRURATION D'UN ACIER

AU CARBONE ET DES ACIERS AU CHROME:

CARACTERISATION DES COUCHES OBTENUES

Par

Mohamed SIDI MOUSSA

Devant le jury composé de:

N. Bacha M.E. Djeghlal M. Hadji M. Keddam A. Brahimi Professeur, USDB Professeur, E.N.P, Alger Professeur, USDB Professeur, USTHB, Alger Maître de conférence, USDB

Président Examinateur Examinateur Rapporteur Co-rapporteur

ثلاثة أصناف من الفولاذ X30WCrV53 ، وX30WCrV53 أخضعت لمعالجة مرارية-كيميائية (بور-كربون-آزوت) باستعمال طريقة المسحوق، في درجة حرارة ثابتة 5500 وبتغيير زمن المعالجة من 6 إلى 12 ساعة.

جرى فحص العينات المعالجة بالمجهر الضوئي، واختبار الصلادة المجهرية والأشعة السينية، وكذا اختبار التآكل الميكانيكي من أجل صنف الفولاذ 23MCD5 . وجرى قياس سمك الطبقات الناتجة عن طريق التحليل الرقمي الصور المجهرية.

أظهرت الدراسة تحسنا واضحا في الخواص السطحية للعينات المعالجة.

مفاتيح الكلمات: المعالجة الحرارية الكيميائية، الصلادة المجهرية، التآكل الميكانيكي، التحليل الرقمي.

RESUME

Trois nuances d'acier, X200CrMoV12, 23MCD5, et X30WCrV53 ont subit un traitement thermochimique de borocarbonitruration, en utilisant la méthode de la poudre, à une température fixe de 550°C et en variant le temps de 6 à 12 heures.

Les échantillons traités ont été caractérisés par la microscopie optique, le test de microdureté et la diffraction de rayons X. Les épaisseurs des couches obtenues ont été mesurées par analyse d'images. Un test d'usure a été mené pour la nuance d'acier 23MCD5 à l'état traité et non traité.

Les résultats de la caractérisation ont montré une amélioration considérable des propriétés superficielles (dureté et résistance à l'usure) des échantillons traités.

Mots clés: traitement thermochimique, borocarbonitruration, microdureté, traitement d'images.

ABSTRACT

Three grades of steels, X200CrMoV12, 23MCD5, and X30WCrV53, have been borocarbonitrided using the powder method at a fixed temperature of 550°C and a time varying from 6 to 12 hours.

The samples were characterized by optical microscopy, microhardness tests, and X-ray diffraction.

The case depths were measured by image analysis and a wear test was carried out in the 23MCD5 steel grade (treated and non treated).

The results showed a considerable improvement of the treated samples surface properties (hardness and wear resistance).

Keywords: borocarbonitriding, microhardness, image analysis.

REMERCIEMENTS

Je tiens à remercier très chaleureusement Dr. Abdelhalim BRAHIMI, et Pr. KEDDAM pour m'avoir encadré, dirigé, et suivi tout au long de la réalisation de ce travail.

Je remercie très sincèrement Pr. BACHA pour avoir accepté de présider le jury de ce mémoire.

Je remercie vivement Pr. DJEGHLAL, de l'école polytechnique d'EL HARRACH et Pr. HADJI d'avoir accepté d'être les examinateurs de ce mémoire. Je leur exprime toute ma gratitude.

Je remercie mon frère, ami, et collègue à l'I.N.S.F.P de Bougara, M. Ali LAARIBI pour avoir accomplie la tâche pénible de vérifier la grammaire et la syntaxe du document.

En fin je lance un grand merci à tous mes collèges et amis qui m'ont tant soutenu et encouragé, Mohamed, Abderrahmane, Omar, Mourad, Brahim et les autres.

TABLE DES MATIERES

RE	SUME	2		
RE	MERCIEMENTS	4		
TAE	TABLE DES MATIERES			
INT	RODUCTION	10		
1.	LES TRAITEMENTS THERMOCHIMIQUES	12		
	1.1. Généralités	12		
	1.1.1. Notion de diffusion	13		
	1.1.2 Première loi de Fick	13		
	1.1.3 Deuxième loi de Fick	14		
	1.1.4 Loi d'Arrhénius	14		
	1.1.5 La diffusion interstitielle	15		
	1.2. Présentation des traitements thermochimiques les plus répandus	15		
	1.2.1 Cémentation	15		
	1.2.2. Carbonitruration.	17		
	1.2.3. Boruration	21		
	1.3. Généralités sur la nitruration.	27		
	1.3.1. Principe	28		
	1.3.2. Applications	28		
	1.3.3. Modes de traitements de nitruration	30		
	1.3.4. Diagramme Fe-N et nature des couches formées au cours de la			
	nitruration	40		
	1.3.5. Influence des éléments d'alliage	44		
	1.3.6. Test pour déterminer la présence de la couche de combinaison	48		
	1.3.7. Epaisseur de la couche nitrurée	51		
	1.3.8. Les contraintes de compression associées aux traitements de			
	nitruration	51		
	1.3.9. Traitements thermiques préalables	52		
	1.3.10. Alliages nitrurables	54		
	1.3.11. Propriétés des pièces nitrurées	63		
2.	TECHNIQUES ET PROCEDURE EXPERIMENTALE	67		
	2.1. Présentation des matériaux	67		
	2.2. Traitement	67		
	2.3. La technique de la borocarbonitruration	68		
	2.4. Analyse métallographique	71		
	2.4.1. Caractérisation microstructurale	71		
	2.4.2. Préparation métallographique	72		
	2.4.3. Examen au microscope optique	73		
	2.4.4. La microdureté	73		
	2.4.5. Etalonnage des microstructures	76		
	2.4.6. Détermination de l'épaisseur des différentes couches	78		
	2.4.7. Diffraction rayons –X	81		
	2.4.8. Test d'usure	82		
3.	RESULTATS ET INTERPRETATIONS.	85		
	3.1. Micrographies optiques	85		
	3.2. Epaisseurs des couches borocarbonitrurées	89		
	3.3. Profils de microdureté	90		

3.4. Resultats de l'allaisse par DRA	30
3.5. Cinétique de formation des couches	94
3.5.1 Coefficient de diffusion	94
3.5.2 Les courbes épaisseurs temps	96
3.5.3 Le logiciel GRAPHPAD PRISM	97
3.5.4 Les courbes épaisseur- racine carrée du temps10	05
3.6. Influence des éléments d'alliage sur la valeur du coefficient de diffusion. 10	06
3.7. Effet du temps de traitement sur la dureté superficielle des aciers10	07
3.8. Comparaison de duretés entre surface et cœur des aciers traités1	10
3.9. Test d'usure1	10
CONCLUSION	12
APPENDICE A. Liste des symboles1	14
APPENDICE B. Liste des sigles et acronymes1	15
APPENDICE C. Liste des éléments chimiques1	16
APPENDICE D. Intensité de diffraction de l'acier 23MCD51	17
REFERENCES12	23

LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX

Figure 1.1	Etapes principales d'un traitement thermochimique de diffusion	12
Figure 1.2 Figure 1.3	Changement ayant lieu lors des traitements à haute température Petites pièces en acier, borurées en vrac, puis trempées ou trempées et revenues selon l'alliage	. 16 25
Figure 1.4	Têtes de rotor pour production du fil. Utilisées en Industrie textile	.25
Figure 1.5	Disque de broyeur en acier de cémentation cémenté, boruré et	
5	trempé utilisé en industrie alimentaire	.26
Figure 1.6	Denture borurée d'un engrenage à fortes sollicitations	.26
Figure.1.7	Diagramme d'équilibre fer-azote [14]	.27
Figure.1.8	Schémas de la diffusion interstitielle lors de la nitruration gazeuse	.28
Figure.1.9	Une charge de vilebrequins destinés à la nitruration	.29
Figure.1.10	Fraise après nitrocurburation ferritique	. 30
Figure.1.11	Arbres traités par oxynitruration, (à droite), et d'autres	
	non traités (à gauche), tous exposés à la vapeur saline	. 30
Figure.1.12	Schéma d'un four utilisé pour la nitruration gazeuse	. 32
Figure.1.13	Schéma simple d'un modèle de four utilisé pour la nitruration ionique.	. 35
Figure.1.14	Types principaux des fours à nitruration en bain de sel.	. 38
Figure.1.15	Diagramme d'équilibre fer-azote [14]	. 40
Figure.1.16	Structure du nitrure $\gamma' Fe_4 N$ (phase γ')	.41
Figure.1.17	Structure du nitrure ε (Fe ₂ N-Fe ₃ N)	.42
Figure.1.18	Schemas d'une couche nitrurée typique	.43
Figure.1.19	Representation schematique des couches rencontrees en nitruration.	.43
Figure 1.20	Schemas montrant la nucleation des nitrures γ et ϵ dans le fer [41]	.44
Figure.1.21	Couche nitruree typique montrant la couche de combinaison (en	40
Eiguro 1 00	Naul),	.49
Figure 1.22	Drofile de duraté obtenue our un échantillen en opier troité colon	. 50
Figure 1.23	deux modelité event nitruration [22]	51
Figuro 2.1	La poudra utilizée pour la bereezhopitruration	.04 60
Figure 2.1	Caissos formáos utilisáos pour la borocarbonitruration	.00 60
Figure 2.2	Caisses ouvertes utilisées pour la borocarbonitruration	60. 69
Figure 2.0	Une des caisses contenant les échantillons après traitement	.03 70
Figure 2.5	Four à moufle utilisé pour le traitement	.70
Figure 2.6	Le four à moufle affichant la température utilisée pour le traitement	. / 1
1 19010 2.0	(550°C)	71
Figure 2.8	Quelques échantillons enrobés	.72
Figure 2.7	Microduromètre	.74
Figure 2.9	Schéma de lecture sur le microduromètre	.75
Figure 2.10	Microscope optique	.76
Figure 2.11	Etalon du grossissement 100x	.76
Figure 2.12	Etalon du grossissement 200x	.77
Figure 2.13	Etalon du grossissement 500x	.77
Figure 2.14	Etalon du grossissement 1000x	.78
Figure 2.15	Calibrage sur le grossissement 200x	.78
Figure 2.16	Machine utilisée dans le test d'usure	. 83

Figure 2.1	7 Balance de précision utilisée dans le test d'usure	84
Figure 3.1	Micrographie optique d'un échantillon d'acier 23MCD5 traité pour	
	6 heures à la température de 550°C	85
Figure 3.2	Micrographie optique d'un échantillon d'acier 23MCD5 traité pour	
	8 heures à la température de 550°C	85
Figure 3.3	Micrographie optique d'un échantillon d'acier 23MCD5 traité pour	
- : 0.4	10 heures à la température de 550°C	86
Figure 3.4	Micrographie optique d'un echantillon d'acier 23MCD5 traite pour	00
	12 neures a la temperature de 550°C	86
Figure 3.5	Nicrographie optique d'un échantilion d'acier X30VVCrV53 traite pour	07
Eiguro 2.6	Micrographic optique d'un échaptillon d'actor X2000rMo\/12 traité	01
Figure 5.0	nour 6 beures à la température de 550°C	87
Figure 3.7	Micrographie optique d'un échantillon d'acier X200CrMo\/12 traité	07
riguie 0.7	pour 10 heures à la température de 550°C	88
Figure 3.8	Profils de microdureté de l'acier 23MCD5 traité pour les différents	00
i igui e eie	temps à la à la température de 550°C	90
Figure 3.9	Profils de microdureté de l'acier X30WCrV53 traité pour les différents	
5	temps à la température de 550°C	91
Figure 3.1	0 Profils de microdureté de l'acier X200CrMoV12 traité pour les	
-	différents temps à la température de 550°C	91
Figure 3.1	1 Micrographie optique montrant la différence de dureté entre la couche	
	borocarbonitrurée et la sous-couche d'un échantillon traité	92
Figure 3.1	2 Diffractogramme de l'acier 23MCD5 traité pour 12 heures à la	
	température de 550°C	93
Figure 3.1	3 Diffractogramme de l'acier X30WCrV53 traité pour 12 heures à la	~ ~
E '	temperature de 550°C	93
Figure 3.1	4 Diffractogramme de l'acier X200Criviov12 traite pour 12 neures à la	~ 1
Eiguro 2.1	temperature de 550°C	94
Figure 3.1	6 Courbe cinétique de l'acier X30WCrV/53	90
Figure 3.1	7 Courbe cinétique de l'acier X200CrMoV12	90
Figure 3.1	8 Page d'accueil du logiciel GRAPHPAD PRISM	97
Figure 3.1	9 Remplissage des champs de saisie de données	98
Figure 3.2	0 Tracé de la courbe de données avant de réaliser le fit	99
Figure 3.2	1 Définition de l'équation d'analyse utilisée pour le fit.	99
Figure 3.2	2 Tracé de la courbe d'analyse selon l'équation défini	00
Figure 3.2	3 La valeur du coefficient de diffusion calculée et estimation de l'erreur.1	00
Figure 3.2	4 Courbe cinétique de l'acier 23MCD5 avec la courbe correspondante	
-	déterminée par le logiciel GRAPHPAD PRISM1	03
Figure 3.2	5 Courbe cinétique de l'acier X30WCrV53 avec la courbe	
	correspondante déterminée par le logiciel GRAPHPAD PRISM1	04
Figure 3.2	6 Courbe cinétique de l'acier X200CrMoV12 avec la courbe	
	correspondante déterminée par le logiciel GRAPHPAD PRISM1	04
Figure 3.2	7 Courbe épaisseur-racine carrée du temps de l'acier 23MCD51	05
Figure 3.2	8 Courbe épaisseur-racine carrée du temps de l'acier X30WCrV531	05
Figure 3.2	9 Courbe epaisseur-racine carrée du temps de l'acier X200CrMoV121	06
Figure 3.3	U Influence de la teneur en elements d'alliage sur la valeur du	~-
	COEfficient de diffusion	07
rigure 3.3	Durete superficielle en fonction du temps de l'acler 23MCD5	υð

Figure 3.	.32	Dureté superficielle en fonction du temps de l'acier X30WCrV53 10)8
Figure 3.	.33	Dureté superficielle en fonction du temps de l'acier X200CrMoV1210)9
Figure 3.	.34	Duretés comparées entre cœur et surface pour les trois aciers étudiés	10
Figure 3	35	Illustration des résultats du test d'usure effectué pour l'acier	
i igai e ei		23MCD5	11
			• •
Tableau	1.1	Facteur k utilisé pour le calcul de l'épaisseur de la couche nitrurée5	51
l ableau	1.2	Caracteristiques des couches nitrurees pour les differents types	- ~
T - I - I	4.0	d'acters	90
Tableau	1.3	Exemples de gammes realises sur des aciers a outils pour travail a	- 0
Tablaau	4 4	Trola	0C
Tableau	1.4	Composition chimique de base des fontes apres à la hitruration	
Tableau	2.1	Composition chimique des aciers etudies	57
Tableau	3.1	Epaisseurs des couches borocarbonitrurées de l'acier 23MCD5	20
Toblogu	2	Encionaura das souchas baroserbenitruráes de l'acier X20W(Cr)/52	59
Tableau	3.Z	éterminées par analyse d'image	h
Toblogu	22	Engissours des souches boroserbonitrurées de l'acier	90
Tapleau	3.5	2200CrMoV12 détorminées par analyse d'image	n
Tablaau	3 1	Engissour conventionnelle de la couche berecarbenitrurée de l'acier	90
Tableau	5.4	23MCD5 déterminée à partir des profils de microdureté	25
Tablaau	35	Engisseur conventionnelle de la couche borocarbonitrurée de l'acier	50
Tableau	5.5	X30WCr//53 déterminée à partir des profils de microdureté	25
Tableau	36	Enaisseur conventionnelle de la couche borocarbonitrurée de l'acier	50
Tableau	0.0	X200CrMoV12 déterminée à partir des profils de microdureté	26
Tableau	37	Valeurs des coefficients de diffusion déterminées par le logiciel	
Tubleau	0.7	GRAPHPAD PRISM 10)3
Tableau	3.8	Estimation de l'erreur donnée par le logiciel GRAPHPAD PRISM 10)3
Tableau	3.9	Valeurs des coefficients de diffusion déterminées à partir des	
		courbes épaisseur-racine carrée du temps)6
Tableau	3.10	Valeurs des coefficients de diffusion tenant compte des deux	-
		méthodes utilisées10)6
Tableau	3.11	Teneurs en éléments d'alliage pour les trois aciers étudiés et	
		valeurs correspondantes des coefficients de diffusion)6
Tableau	3.12	Dureté superficielle l'acier 23MCD5 au cœur et au différents temps	
		de traitement10)7
Tableau	3.13	Dureté superficielle l'acier X30WCrV53 au cœur et au différents	
		temps de traitement10)7
Tableau	3.14	Dureté superficielle de l'acier X200CrMoV12 au cœur et au	
		différents temps de traitement 10)7
Tableau	3.15	Résultats du test d'usure obtenus pour l'acier 23MCD511	11

INTRODUCTION

Une pièce mécanique doit supporter les sollicitations de service le plus longtemps possible et au moindre coût, c'est la règle de tout concepteur.

Dans de très nombreux cas, ce sont les surfaces des organes de machines qui sont soumises à des sollicitations mécaniques sévères, de natures diverses, frottement, usure, sollicitations de fatigue...etc. il faut alors conférer des propriétés particulières aux couches externes des pièces en leur appliquant des traitements appropriés. Les traitements superficiels ont essentiellement pour objectif de durcir superficiellement le métal, ce qui améliore la résistance à l'usure et au frottement , et de produire un système de contraintes de compression favorable à la tenue des pièces en service, notamment pour celles qui sont sollicitées en fatigue, tout en ayant une structure résiliente et ductile au cœur des pièces, ce qui confère à l'ensemble une combinaison intéressante de propriétés, telles qu'une bonne résistance mécanique et une bonne ténacité.

Les procédés de traitements superficiels se classent en trois grandes catégories :

 les traitements mécaniques, avec déformation plastique du métal localisée en surface.

- les traitements de durcissement par trempe après chauffage superficiel, sans modification de la composition chimique des couches superficielles.

- les traitements thermochimiques, dont l'objet est de modifier la composition chimique des couches superficielles, en vue d'obtenir les caractéristiques désirées, soit directement, soit à l'aide d'un traitement thermique ultérieur.

Pour notre sujet, c'est la troisième catégorie qui nous intéresse, c'est-à-dire les traitements thermochimiques.

Encore, ces traitements sont nombreux : cémentation, boruration, nitruration, ainsi que les dérivées de ces traitements même ; notre étude est sur ce dernier : la nitruration.

La nitruration peut s'appliquer en plusieurs modes que chacun a ses avantages et ses inconvénients, dans ce projet nous avons utilisé un mode qui est peu répandu, la nitruration solide ou en caisse.

Le but de ce présent travail est de voir l'effet du temps de traitement sur la borocarbonitruration des trois nuances d'aciers (23MCD5, X30WCrV53, et

X200CrMoV12) et de caractériser du point de vue métallurgique et mécanique les couches formées après traitement. Ce dernier a été réalisé à la température de 550°C et pour des temps de 6 à 12 heure

Ce mémoire est constitué de trois chapitres :

- un chapitre premier qui est une étude bibliographique sur les traitements thermochimiques en général, et surtout la nitruration, ça inclut les définitions, les propriétés, les natures typiques, les microstructures, et les phases existantes après le traitement.

- un deuxième chapitre comprenant les techniques expérimentales utilisées, le matériel employé, et les méthodes choisies pour le traitement et la caractérisation.

- le troisième chapitre est consacré aux résultats obtenus, ainsi que les interprétations.

Enfin, une conclusion récapitule l'ensemble du travail.

CHAPITRE 1

LES TRAITEMENTS THERMOCHIMIQUES

1.1. Généralités

Un traitement thermochimique est un traitement thermique effectué dans un milieu convenablement choisi pour obtenir une modification de la composition chimique du métal de base, par échange avec ce milieu [1]. Dans le cas de ces traitements, les éléments mis en jeu pour enrichir la couche superficielle du métal sont apportés par des milieux qui peuvent être solides (céments), liquides (bains de sels), ou gazeux. L'opération de diffusion est suivie ou non, selon la nature des éléments apportés, d'un traitement thermique de durcissement par trempe provoquant la transformation de l'austénite en martensite de la couche enrichie.

Il existe différents traitements thermochimiques (de diffusion) selon les éléments apportés à la surface du substrat (carbone et azote en particulier). Dans tous les cas, les mécanismes mis en jeu se décomposent en quatre étapes simultanées [2]:

- Transport de la molécule AX vers l'interface interne de la pièce.
- Dissociation de la molécule AX et libération de l'élément A qui s'absorbe sur l'interface externe.
- Diffusion des atomes *A* dans le substrat (seul les éléments sous forme atomique peuvent diffuser, d'où la nécessité d'une dissociation préalable).
- Eventuellement, diffusion vers l'extérieur d'un élément *B* du substrat pour former une couche de conversion avec l'élément *A* adsorbé.

Figure 1.1 : Etapes principales d'un traitement thermochimique de diffusion.

1.1.1 Notions de diffusion

Les phénomènes de diffusion à l'état solide correspondent à des sauts effectués par les atomes dans les défauts du cristal, sous l'effet de l'agitation thermique.

Alors que les vitesses de migration des molécules dans les gaz ou dans les liquides sont pratiquement visibles à l'échelle macroscopique, il est rare sur un métal de voir, à la température ambiante, l'évolution de ses propriétés par suite d'un phénomène de diffusion.

Ce n'est qu'à haute température, entre $T_{f/2}$ et T_f , T_f étant la température de fusion, que le transport des atomes prend de l'importance à grande distance dans le réseau cristallin. La diffusion est un phénomène important, qui est à la base de tous les traitements thermiques industriels conditionnant les propriétés structurales des matériaux en service [2].

les bases théoriques des phénomènes de diffusion ont été établies par Fick : elles expriment, au même titre qu'un flux de chaleur ou qu'une densité de courant électrique, un flux d'atomes dans une direction donnée du cristal. On est amené ainsi à définir une grandeur physique importante, appelée le coefficient de diffusion. Ce coefficient intervient dans deux lois fondamentales, appelées lois de Fick.

1.1.2. Première loi de Fick :

En présence d'un gradient de concentration (c(x)), il apparaît un flux de matière (J) tendant à équilibrer cette concentration.

$$J = -D\left(\frac{dc}{dx}\right) \tag{1}$$

où:

D: coefficient de diffusion

c: concentration atomique

Le coefficient de diffusion est une caractéristique de mobilité des atomes. Il dépend de la nature des atomes diffusants, de la nature de la matrice et de la température.

Le signe moins indique que, physiquement, le flux d'atomes va en sens inverse du gradient $\partial c/\partial x$.

Cette relation exprime donc, en régime permanent, l'évolution d'un ensemble hétérogène d'atomes mal répartis dans l'espace vers un état d'équilibre plus stable (ensemble homogène). Le coefficient D s'exprime, dans le système MKS, en m² · s⁻¹ ; mais l'usage international conserve l'unité du système CGS : cm² · s⁻¹ . La relation (1) est tout à fait comparable à la loi de propagation de la chaleur (loi de Fourier) ou à l'expression de la densité de courant en fonction d'un champ électrique (loi d'Ohm).

1.1.3. Deuxième loi de Fick :

La variation dans le temps du gradient de concentration entraîne une diminution du flux de matière

La variation de concentration en éléments diffusants (dc/dt) est inversement égale à la variation du flux de matière (dJ/dx)

$$\frac{dc}{dt} = D\left(\frac{d^2c}{dx^2}\right) \qquad \text{(diffusion uni-directionnelle)} \tag{2}$$

1.1.4. Loi d'Arrhénius

Le coefficient de diffusion D est caractéristique d'une mobilité à une température définie. Ce phénomène, lié à l'agitation des atomes, se modifie donc avec la température dans le même sens que la concentration en défauts et l'entropie du système. Il obéit par conséquent, comme tous les phénomènes activés thermiquement, à une relation exponentielle, du type équation de Boltzmann.

Appelée pour l'état solide relation d'Arrhénius, elle s'écrit sous la forme :

$$D = D_0 \exp\left(\frac{-Q}{RT}\right)$$
(3)

où:

Q (eV/mole): R (8,32 J \cdot mol ⁻¹. K⁻¹): T (K): D₀ (cm² \cdot s⁻¹): énergie d'activation du phénomène, constante molaire des gaz, température absolue de diffusion, facteur de fréquence, 1.1.5. La diffusion interstitielle:

la diffusion peut se dérouler par plusieurs mécanismes selon les données chimiques et thermodynamiques des sujets traités, elle peut être interstitielle, lacunaire, ou multilacunaire.

Pour les traitements thermochimiques, c'est souvent la diffusion interstitielle qui a lieu.

Ce mécanisme intéresse des éléments de petits rayons ioniques, placés dans un réseau en position interstitielle. Ce n'est possible qu'avec les éléments ayant un rayon inférieur à 0,1 nm (1Å), comme le carbone, l'azote ou l'hydrogène dans le fer. L'atome interstitiel migre ainsi d'une position interstitielle à une autre position interstitielle sans nécessiter une trop grande déformation du réseau cristallin. A priori, dans ce mécanisme, la présence de lacunes n'est pas indispensable, mais leur présence ne peut évidemment qu'aider la mobilité des atomes. Les coefficients de diffusion d'un élément interstitiel seront donc toujours plus grands que ceux des atomes de la matrice qui les contient (dans un rapport égal à $10^4 - 10^5$).

1.2. Présentation des traitements thermochimiques les plus répandus

1.2.1 Cémentation

La cémentation est un traitement thermochimique auquel est soumis un produit ferreux porté à l'état austénitique pour obtenir un enrichissement superficiel en carbone, élément qui se trouve alors en solution solide dans l'austénite. Le produit ferreux cémenté subit un durcissement par trempe immédiate ou ultérieure.

La surface des pièces est mise en contact avec un milieu susceptible de fournir du carbone libre par une réaction chimique à haute température ; la température de cémentation est choisie supérieure à la température Ac₃ de l'acier, et généralement comprise entre 900 et 1000° C, parce que la faible solubilité du carbone dans la ferrite implique que le traitement s'effectue dans le domaine austénitique. De plus, on peut ainsi, dans la plupart des cas, effectuer le traitement de durcissement par trempe martensitique directement à partir de la température de cémentation.

Figure 1.2 : Changement ayant lieu lors des traitements à haute température Comme c'est le cas de la cémentation

Le but de ce double traitement, diffusion et durcissement par trempe, est d'obtenir à la surface de l'acier une couche de 0,3 à 2mm d'épaisseur à haute teneur en carbone (généralement comprise entre 0,60 et 0,90 %), ayant une structure essentiellement martensitique de grande dureté (pouvant atteindre 700 à 900 HV en surface), présentant des contraintes résiduelles de compression élevées, capable de résister à des sollicitations mécaniques sévères, et reposant sur un cœur ayant une dureté nettement moins élevée (inférieure ou égale à 400 HV environ) et présentant de bonnes caractéristiques de ténacité. Il vise aussi à l'obtention de pièces ne nécessitant pas ou peu de finition. Les différents paramètres métallurgiques sur lesquels il faut jouer pour obtenir ces résultats sont multiples.

Pour les techniques, c'est l'état des agents de carburation qui les détermine.

1.2.1.a) Cémentation en caisse

Les céments solides sont des mélanges à base de matières carbonées aptes à former les gaz ou les espèces carburantes. La cémentation se fait en vase clos pour éviter que les gaz ne s'échappent, d'où le nom de cémentation en caisse donné à ce procédé, peu utilisé actuellement et réservé au traitement de grosses pièces ou série limitées de petites pièces.

1.2.1.b) Cémentation liquide

Les céments liquides sont à base de cyanures ou de ferro-cyanures fondus. Les pièces sont immergées dans le bain de sel fondu à la température choisie pour la réaction chimique et la diffusion.

La cémentation en bain de sel permet un chauffage homogène et une action chimique régulière ; sa mise en œuvre est simple et son coût d'investissement est faible, mais les sels de cyanure utilisés ont des effets polluants.

1.2.1.c) Cémentation gazeuse

La cémentation gazeuse est la plus employée. Elle se fait industriellement à partir d'atmosphères obtenues par instillation et décomposition à chaud de liquides organiques tels que méthanol ou éthanol utilisés purs ou dilués, ou par combustion d'hydrocarbures, atmosphères qui sont caractérisées par leur potentiel carbone [3-6]. Le potentiel carbone d'une atmosphère est défini comme étant la teneur en carbone à la surface d'un échantillon de fer pur en équilibre avec le milieu de cémentation considéré, dans les conditions retenues.

1.2.2. Carbonitruration

La carbonitruration est un traitement d'enrichissement superficiel en carbone avec adition d'azote. La diffusion est toujours suivie de traitements thermiques. On distingue deux types suivant la température du traitement:

1.2.2.a) Carbonitruration à haute température

La carbonitruration est effectuée en phase austénitique, à des températures comprises entre 750 et 880°C. Le durcissement de la couche est obtenu par trempe. C'est le traitement le plus employé.

Dans ce type de traitement les agents de carbonitruration sont liquides ou gazeux. Les céments liquides sont des sels à base de cyanures, cyanates alcalins, carbonates et chlorures alcalins; les carbonates et les chlorures permettent d'abaisser le point de fusion et les chlorures activent le bain. Les réactions qui se produisent peuvent se résumer ainsi:

$$4NaCN + 2O_2 \rightleftharpoons 2Na_2CO_3 + 4(N) + 2(C)$$

Les céments gazeux sont des mélanges de gaz contenant du carbone (hydrocarbures) et de gaz contenant de l'azote (ammoniac); par réaction mutuelle

ces gaz forment de CN et du CNH qui sont des agents à la fois carburants et nitrurants.

Les atomes d'azote, comme les atomes de carbone, entrent en solution solide d'insertion dans l'austénite. L'azote accélère la diffusion de carbone; c'est ainsi que la carbonitruration des aciers mi-durs à 850°C progresse deux fois plus vite que la cémentation des mêmes aciers dans les mêmes conditions.

Le traitement des pièces carbonitrurées peut être réalisé de différentes façons:

- trempe directe à l'huile, éventuellement suivie d'un revenu de détente à 160-180°C,
- trempe étagée: huile chaude/air. Ce traitement réduit les déformations et augmente la ténacité des pièces,
- trempe étagée en bain de sels.

L'examen micrographique d'un acier carbonitruré révèle en général l'existence de trois couches de structure différente:

- une couche superficielle enrichie à la fois en azote et en carbone, donnant après trempe une martensite à l'azote de dureté élevée (800 à 1000 HV).
- Une couche intermédiaire principalement enrichie en carbone.
- Le reste du métal, pratiquement non modifié.

La profondeur respective des différentes couches dépend surtout de la température du traitement de carbonitruration.

L'azote a une action fortement gammagène ; il augmente la stabilité de l'austénite et abaisse donc la vitesse critique de refroidissement pour la formation de martensite: ceci permet l'utilisation d'un fluide de trempe moins énergique et réduit donc de ce fait les risques de déformation des pièces. La présence conjointe de carbone et d'azote entraîne:

- un abaissement des points de transformation à l'équilibre. On notera en particulier que 1% de C et 0,56 % d'azote abaissent la température de l'eutectoîde à 600°C. On voit que l'on peut tirer parti de cette situation puisqu'il est possible de maintenir longtemps la couche enrichie à une température légèrement supérieure à 600°C sans risquer sa transformation, tandis que le reste du métal, dont la composition chimique n'a été que peu ou pas modifiée, peut se transformer en perlite ou perlite + ferrite:
- un abaissement des températures M_s et M_f et il est souvent souhaitable soit de se fixer un taux limite d'austénite résiduelle dans la couche carbonitrurée, ce

qui implique que la somme des teneurs en C et N dans la couche soit ellemême limitée, soit d'effectuer un passage par le froid pour réduire la quantité d'austénite résiduelle dans la couche trempée, ce qui se traduit par une augmentation notable de valeurs de la dureté et des contraintes de compression dans la sous-couche [7]. Toutefois, comme dans le cas de la cémentation, un grenaillage des pièces carbonitrurées qui provoque la transformation plus ou moins complète de l'austénite résiduelle et conduit à une augmentation importante de la dureté et des précontraintes de compression des couches superficielles permet d'améliorer notablement la résistance à la fatigue des pièces [8].

- Un décalage général vers la droite des diagrammes TTT. Dans le cas des aciers alliés, ce décalage permet d'opérer une trempe bainitique étagée du cœur, sans transformation de la couche superficielle qui reste à l'état austénitique et ne se transforme qu'ultérieurement lors de la reprise du refroidissement après maintien isotherme.

On voit ainsi que la présence d'azote accentue la différence de comportement au traitement thermique entre le cœur et la couche carbonitrurée dont la réaction aux transformations est équivalente à celle d'un acier plus fortement allié.

On peut donc utiliser des aciers moins coûteux et surtout choisir entre de nombreuses possibilités de traitements complémentaires capables de conférer les caractéristiques désirées au cœur du métal.

1.2.2.b) Carbonitruration à basse température

La carbonitruration est effectuée à des températures comprises entre 600 et 710°C. Ce procédé est moins utilisé que le précédent.

Théoriquement, elle peut être réalisé entre 592°C, température du palier de l'eutectoïde Fe-N, et la température Ac₁ de l'acier, c'est-à-dire en pratique entre 600 et 710°C. Aux températures inférieures à Ac₁, le cœur de la pièce ne subit pas la transformation $\alpha \rightarrow \gamma$, tandis que, sous une couche de combinaison d'une dizaine de micromètres (généralement de nitrure ou carbonitrure ϵ), la couche enrichie en carbone et azote se transforme en austénite grâce à l'azote. Le durcissement est obtenu par trempe à l'huile et, depuis la surface vers le cœur, la structure comprend donc: une couche de combinaison, une couche de structure martensitique avec de l'austénite résiduelle et la structure initiale de la pièce

modifiée par l'effet de revenu correspondant aux conditions (température et durée) dans lesquelles a été réalisée la carbonitruration. Celle-ci peut être effectuée en bain de sel ou en phase gazeuse, comme la carbonitruration classique. En raison de la basse température du traitement, la cinétique de formation de la couche superficielle est lente et le procédé est peu employé industriellement, bien qu'il semble faire l'objet d'un certain regain d'intérêt [9].

1.2.2.d) Principaux domaines d'utilisation

Ce traitement est recommandé pour les pièces soumises aux sollicitations suivantes [10] :

- fatigue par flexion torsion.
- fatigue superficielle sous charge modérée et à l'usure abrasive.
- La profondeur, fonction de l'usure admissible, doit être au moins deux fois celle du cisaillement maximal. Ce traitement n'est pas spécifique de l'usure adhésive.

Le champ d'application de la carbonitruration sous ses diverses formes de technologie d'application est très large. Les divers procédés offrent l'avantage de pouvoir s'adapter aux petites ou grandes productions de pièces mécaniques en acier au carbone ou alliés. Ils permettent également d'aborder les pièces de précision pour lesquelles il est nécessaire de réduire les déformations dues au traitement.

Nous citerons quelques exemples qui montrent la diversité des pièces traitées, à savoir : gros engrenages pour la marine, vilebrequins de moteurs à combustion (tourillons, manetons) arbres de transmission de force pour les équipements auxiliaires des tracteurs agricoles, mais aussi ; pièces de précision pour l'industrie du matériel de prises de vues (appareils photographiques, caméras), pièces pour machines à coudre, pour appareils ménagers, guides, leviers de vitesses, etc.

1.2.2.e) Formation de la couche carbonitrurée

La carbonitruration peut s'effectuer en milieu liquide ou en milieu gazeux. L'enrichissement en carbone et azote des couches superficielles est le résultat d'une suite de réactions chimiques.

- En milieu liquide, les réactions sont les suivantes :
 - Oxydation du cyanure de sodium par l'oxygène de l'air:

$$2 \text{ NaCN} + O_2 \rightarrow 2 \text{ NaNCO}$$

• Décomposition du cyanate formé:

$$2 \text{ NaNCO} \rightarrow \text{Na}_2 \text{CO}_3 + 2 \text{NaCN} + \text{CO} + 2(\text{N})$$

Réaction de l'oxygène de carbone:

$$2CO \rightarrow CO_2 + C$$

Réaction globale de carbonitruration:

$$4 \operatorname{NaCN} + 3O_2 \rightarrow 2 \operatorname{Na}_2 \operatorname{CO}_3 + 3(\operatorname{C}) + 4(\operatorname{N})$$

- En atmosphère gazeuse, généralement en présence d'ammoniac, la réaction de la décomposition de ce gaz (NH ₃ en N et H ₂) s'ajoute à celles de la cémentation.

Le phénomène de diffusion est le même qu'en cémentation si ce n'est que le cœfficient de diffusion du carbone en présence d'azote est au moins le double.

Lorsque la température augmente, la cémentation devient prépondérante et c'est la nitruration qui prédomine lorsque la température diminue.

Au dessous du point de transformation Ac₁, la ferrite saturée en carbone ne peut laisser diffuser le carbone présent dans l'atmosphère carbonitrurant. Par contre, l'azote, du fait de sa grande solubilité dans la ferrite, diffuse facilement.

Lorsque la saturation est atteinte, la phase austénitique se forme si, toutefois, la température n'est pas inférieure à 591°C correspondant à la température de l'eutectique du diagramme d'équilibre FeN.

1.2.3. Boruration

La boruration est un procédé de diffusion thermochimique. La surface d'une pièce est enrichie en bore à des températures de traitements entre environ 800 et 1000°C. En conséquence directe se forment des couches homogènes de borures.

La dureté élevée, mais également la structure particulière de la couche, produisent une résistance à l'usure extraordinaire.

La boruration provoque une augmentation du volume, qui correspond à environ 25 à 30% de l'épaisseur de la couche. C'est pourquoi, lors du traitement de pièces terminées, il faut les avoir construites légèrement plus petites. La profondeur de rugosité obtenue est d'environ 4 µm.

Après boruration, un polissage au diamant ou au métal dur est possible.

Pour éviter un écaillage, les angles et arêtes doivent avoir un rayon qui soit au moins égal à l'épaisseur de la couche. Afin de réduire les variations

dimensionnelles et les déformations des pièces fortement sollicitées, il est préférable d'effectuer un recuit de détente avant la finition.

En raison de la bonne tenue en température des couches de borure, les pièces de construction peuvent être trempées ou subir une trempe-revenu après boruration. Ce qui permet d'obtenir des pièces avec d'une part une bonne résistance et d'autre part une bonne rigidité. Les aciers de cémentation peuvent être enrichi en carbone pour améliorer l'adhésion de la couche de borures, puis borurés et enfin trempés. En plus de la résistance élevée de la surface, le comportement ductile à cœur est préservé.

Les propriétés principales des couches de borures sont:

- Valeurs de dureté élevées:

- . Alliages ferreux :1600 à 2100 HV
- . Alliages à base de nickel : 2800 HV
- . Titane : jusqu'à 4000 HV

- Adhérence optimale

- Faible tendance à la soudure à froid

- Coefficients de dilatation comparables pour tous les alliages ferreux
- Bonne résistance à la température

L'épaisseur de la couche peut être réglée pendant la durée du traitement. Elle varie de 5 à 10 µm pour des pièces de construction, où il faut diminuer la tendance à la soudure à froid, jusqu'à des valeurs de 300 µm pour les pièces, où une diminution de l'usure est demandée. Le choix du matériau en dépendra. Généralement, l'épaisseur de la couche atteignable diminue si le taux d'alliage augmente.

1.2.3.a) Boruration en milieu gazeux

La boruration en milieu gazeux s'effectue par la décomposition ou la dissociation thermique des composés gazeux de bore. Les composés les plus utilisés dans ces procédés sont le diborane (B_2H_6), les halogénures de bore (BF_3 , BCI_3 ,...), et les composés organiques du bore [(CH_3)₃B, (C_2H_5)₃B,...].

1.2.3.b) Boruration en milieu liquide

Dans un milieu liquide la libération de bore qui se dirige vers la surface de la pièce traitée nécessite la réduction chimique du composé porteur de bore.

Les sels utilisés dans les traitements de boruration conduisent à des couches borurées très épaisses et de bonne qualité de surface.

1.1.3.c) Boruration en milieu solide

On entend par solide : poudre ou pâte ; la boruration dans les poudres est la technique la plus utilisée actuellement en raison de sa simplicité et de la propreté des pièces qu'elle produit. Cette technique consiste à emballer les pièces à traiter dans des caisses en acier remplies de poudre de boruration, puis chauffer ces pièces dans des fours à moufle.

Les pâtes sont utilisées pour la boruration de grosses pièces qui sont difficiles à traiter avec la technique des poudres, et surtout utilisée pour la boruration partielle. Les pièces à borurer sont couvertes de pâte de boruration puis chauffé par induction ou effet Joule.

Les pâtes de boruration se composent de deux constituants : un constituant solide contenant une source riche en bore (carbures de bore, ferrobore, ou bore amorphe), un activateur (cryolite ou fluobore) et un diluant inerte (alumine ou carbures de silicium), et un constituant liquide qui est un liant de nature organique (méthyle cellulose ou nitrocellulose dissoute dans l'acétate de butyle).

1.2.3.e) Formation de la couche Borurée

Les atomes libérés par les milieux de boruration sont absorbés à la surface de la pièce à traiter et entrent en solution solide dans l'acier. Lorsque la solubilité maximale de bore est atteinte, les borocarbures précipitent. Avec l'augmentation de la teneur en bore à la surface, les premiers germes de borures Fe₂B apparaissent sur les joints de grains.

Des duretés très élevées peuvent être obtenues sur tous les aciers, qu'ils soient alliés ou non [11]. Cependant, sur les aciers très alliés, la surface de la couche borurée peut manifester une certaine fragilité avec risque d'écaillage sous l'effet de chocs ou lors de la trempe.

Cette fragilité provient d'une modification dans le développement en profondeur de la zone borurée.

On obtient donc :

- une très grande résistance à l'usure par abrasion.

- une bonne résistance à la corrosion.

1.2.3.f) Applications

Aujourd'hui, la boruration est appliquée dans plusieurs domaines, grâce aux avantages qu'elle offre [12] :

- Moules ou filières à céramique.
- Eléments de moules de fonderie d'alliage légers et d'alliages de zinc.
- Guides fils.
- Pales de ventilateurs.
- Eléments de conduite pour transport pneumatique des grains ou autre matières pulvérulentes ou pour le transport du béton.
- Guides chaînes-scies de tronçonneuses.

Les figures 1.3 à 1.6 montrent quelques pièces borurées.

Figure 1.3 : Petites pièces en acier,borurées en vrac, puis trempées ou trempées et revenues selon l'alliage.

Figure 1.4 : Têtes de rotor borurées utilisées en industrie textile

Figure 1.5 : Disque de broyeur en acier de cémentation cémenté, boruré et trempé utilisé en industrie alimentaire

Figure 1.6 : Denture borurée d'un engrenage à fortes sollicitations

1.3. Généralités sur la nitruration

la nitruration est une méthode thermochimique ferritique de diffusion d'azote naissant à la surface d'aciers et de fontes [13]. La diffusion est basée sur la solubilité de l'azote dans le fer comme illustré sur la figure 1.7.

Figure 1.7 : Diagramme d'équilibre fer-azote [14]

Ce traitement est actuellement celui qui est le plus largement utilisé, notamment dans le domaine de l'outillage de mise en forme à froid et à chaud.

La nitruration est surtout utilisée pour améliorer les propriétés mécaniques superficielles des pièces entièrement usinées, en améliorant notamment :

- La résistance à l'usure par augmentation de la dureté superficielle et la limite élastique par introduction de contraintes résiduelles de compression.
- La résistance d'endurance au grippage par diminution du coefficient de frottement.
- La résistance à la corrosion par modification de la composition chimique superficielle du métal.

Il est possible de nitrurer un grand nombre de matériaux tels que les aciers à outils, les aciers inoxydables, les fontes et les alliages de titane. Toutefois, ce type de traitement présente certains inconvénients :

- La durée élevée du traitement afin d'obtenir des couches profondes.
- La complexité de mise au point des paramètres de traitement.
- La toxicité et le danger des produits employés.

En général, l'épaisseur de la couche nitrurée se situe entre 0.3 et 1 millimètre. La nitruration est recommandée surtout pour les pièces :

- nécessitant une grande résistance à l'usure.
- nécessitant une grande résistance à la corrosion.
- sollicitées par de gros couples.
- soumises à des contraintes de compression en surface.

1.3.1. Principe

La nitruration est un traitement thermochimique dans lequel on fait diffuser de l'azote de la surface vers le cœur de la pièce. La température de traitement est comprise entre 400 et 580°C. Dans le cas des aciers, la pièce subit initialement un traitement thermique de trempe suivi d'un revenu à haute température.

Figure 1.8 : Schémas de la diffusion interstitielle lors de la nitruration gazeuse

La précipitation et la croissance de composés à la surface de la couche de diffusion contribuent à l'amélioration de la résistance à l'usure [15]. Les paramètres à considérer en vue de réaliser un bon traitement de nitruration sont :

- la source d'azote.
- la température.
- le temps.
- la composition chimique de l'acier.

1.3.2. Applications

Selon les sollicitations de services, la nitruration peut être appliquée aux soupapes, engrenages, pignons, guide-fils, clapets, mécanismes de distribution, pistons, cames, rouleaux, vis sans fin, gabarits, etc.

Aussi, on peut nitrurer ou nitrocarburer les tiges de vérins, axes de pistons, culbuteurs, poussoirs, arbres à cames, pièces de suspension hydraulique, vilebrequins [16], chemises de cylindres de moteurs,

la nitruration diminue le cœfficient de frottement de 30% environ [17].

Figure 1.9 : Une charge de vilebrequins destinés à la nitruration

Figure 1.10 : Fraise après nitrocarburation ferritique

Figure 1.11 : Arbres traités par oxynitruration, (à droite), et d'autres non traités (à gauche), tous exposés à la vapeur saline

1.3.3. Modes de traitements de nitruration

1.3.3.a) Nitruration gazeuse

Ça consiste à injecter du gaz ammoniac anhydre dans un four étanche à moufle métallique (four pot ou four cloche) doté d'un brassage parfait de l'atmosphère et d'une précision élevée de la température : $\pm 3^{\circ}$ C.

L'atmosphère est en légère surpression et le débit du gaz dans le four (ou taux de renouvellement), à une température donnée et pour une charge de pièces déterminée, fixe le taux de dissociation de l'ammoniac selon la réaction :

$$2 \text{ NH}_3 \rightarrow \text{N}_2 + 3 \text{H}_2$$

Seule la fraction de gaz non dissociée aura une action nitrurante selon le mécanisme suivant :

Au contact de l'acier la molécule de NH_3 subit un craquage catalytique en NH_2 , NH, N et H :

$$\begin{array}{rrrr} \mathrm{NH}_{3} \rightarrow \mathrm{NH}_{2} + \mathrm{H} \\ \mathrm{NH}_{2} \rightarrow \mathrm{NH} + \mathrm{H} \\ \mathrm{NH}_{} \rightarrow \mathrm{N} + \mathrm{H} \end{array}$$

Une partie de l'azote naissant produit diffuse à la surface de l'acier, tandis qu'une autre partie est désorbée pour reconduire à la formation de la molécule N₂. La diffusion d'azote dans le matériau dépend de la concentration locale en azote atomique.

La phase α étant très rapidement saturée en azote, les phases ϵ ou γ' apparaissent par nucléations localisées.

Les phases ε ou γ' croissent tandis que de l'azote continue à diffuser dans la structure de l'acier. La croissance de ε ou γ' conduit à la formation de la couche de combinaison alors que celle-ci alimente la zone de diffusion :

couche de combinaison / zone de diffusion

$$\epsilon, (\epsilon + \gamma'), \gamma' \longrightarrow \alpha + \gamma', \alpha$$

les phases $\gamma' \Box$ et $\epsilon \Box \Box$ ont une teneur en azote différente, on peut donc concevoir qu'un contrôle précis du potentiel azote ou de l'activité de l'azote de l'atmosphère permette de maîtriser la nature des phases formées.

Le potentiel azote est défini selon la loi d'action de masse de la réaction de dissociation de l'ammoniac.

Un moyen de contrôler l'activité de l'azote de l'atmosphère de nitruration est de mesurer le taux de dissociation de l'atmosphère, soit le pourcentage de NH_3 dissocié et recombiné en molécules N_2 et H_2 ; celui-ci est ajusté par le taux de renouvellement de l'atmosphère du four. Les réglages s'effectuent par une mesure volumique de NH_3 soluble dans l'eau alors que N_2 et H_2 sont insolubles.

Plus le taux de dissociation est faible, plus le pouvoir nitrurant est élevé.

La teneur en NH₃ peut aussi être mesurée directement par analyse d'absorption infrarouge. Il existe également des sondes réalisant des mesures par conductivité ionique ou l'évaluation des variations de la perméabilité magnétique en relation avec la croissance et la structure de la couche de combinaison [18-19].

En plus de la possibilité de réglage du pouvoir nitrurant par variation du taux de renouvellement, il est possible de diluer le gaz NH_3 introduit par de l'azote ou de l'ammoniac craqué (75 % H_2 , 25 % N_2).

Les températures de traitement se situent selon les cycles entre 500 et 600°C, avec des taux de dissociation compris entre 20 et 70 %.

table de préparation de la charge Figure 1.12 : Schéma d'un four utilisé pour la nitruration gazeuse

Bien que la nitruration gazeuse est pratiquée depuis longtemps, et maîtrisée technologiquement par rapport aux autres procédés, son inconvénient majeure est le temps de traitement allant typiquement de 70 à 90 heures, ce qui rend le traitement très coûteux.

1.3.3.b) Nitruration ionique

C'est un procédé de traitement sous plasma à basse température, effectué dans des fours pilotés informatiquement, qui permet de durcir par traitement thermique une pièce entièrement terminée d'usinage. A la différence des nitrurations classiques, gazeuses ou en bains de sel,ce procédé présente une grande adaptabilité et permet de réaliser de différentes configurations de couches nitrurées selon les spécifications désirées.

Le type de four utilisé est une sorte de tube à décharge dans lequel la cathode sert de support pour les pièces à traiter, les parois du four constituant l'anode.

Après la mise en place des pièces sur la cathode, le vide est réalisé dans l'enceinte, puis un gaz réactif est introduit. En ajustant le débit de gaz et le pompage, on crée une basse pression en régime dynamique, comprise généralement entre 130 et 650 Pa.

Une différence de potentiel allant de 300 à 1000 V se crée entre les deux électrodes et le tube s'allume. Un plasma luminescent, composé des ions actifs, se propage aux alentours de la surface des pièces et ces ions positifs sont littéralement « bombardés » sur les pièces placées en cathode (-).

On obtient ainsi :

- un chauffage par dissipation de l'énergie cinétique des ions en énergie calorifique à la surface des pièces,

 - un décapage par pulvérisation cathodique et dans le cas des aciers inoxydables une dépassivation,

- une implantation d'ions dans le métal, fournissant l'azote nécessaire à la formation des nitrures métalliques ; le traitement n'étant pas directionnel, on obtient un durcissement superficiel, uniforme et homogène. La température de traitement est comprise entre 450 et 570°C selon les applications.

Application :

Dans tous les cas de problèmes :

- de frottement
- 🛛 d'usure
- de fatigue
- de corrosion.

Ce procédé est particulièrement recommandé dans le cas de pièces compliquées, aux tolérances sévères, comme par exemple :

- □outillages
- 🗆 matrices, poinçons
- Dimoules d'injection
- outils coupants

- pignons, engrenages
- □organes de machines.

La valeur du produit tension×intensité permet de parler d'une puissance du plasma. Elle est produite à partir d'un générateur du type redresseur de courant à thyristors fournissant un courant continu de quelques centaines de volts avec correction des effets de self et d'impédance de l'ensemble du système générateurfour.

Le problème qui se pose avec ce type d'équipement, en cas d'instabilité de la décharge et de perturbations dues au dégazage du métal et/ou à la présence de polluant sur les surfaces, est qu'il se forme des arcs électriques provoquant des brûlures dues à la concentration de toute l'énergie fournie en un seul point.

Pour cette raison, on utilise des générateurs à coupure d'arc ou à énergie pulsée à haute fréquence (par exemple 800 Hz) créant des coupures et des réallumages du plasma en quelques dizaines de microsecondes. Les microarcs produits participent au décapage et à l'activation des surfaces sans risque de brûlure. La régulation de température des pièces se fait par mesure à partir d'un thermocouple placé dans une pièce ou dans un échantillon témoin ou encore à partir d'une lunette pyrométrique visant la charge. La température de la charge dépend de la densité de puissance dissipée à la surface des pièces disposées dans le réacteur ; le pilotage est réalisé en agissant sur la puissance débitée dans le plasma à partir de la mesure de la puissance de sortie. Les générateurs sont conçus pour avoir une puissance de sortie stabilisée.

Un paramètre sensible sur la stabilité du plasma et son activité est la pression qui règne dans le four. Celle-ci sera contrôlée, régulée et pilotée selon des données expérimentales propres à chaque morphologie de pièce et de charge.

A l'approche de la cathode, les ions vont être fortement accélérés en raison de l'intensité du champ électrique à cet endroit. Les collisions qu'ils subissent avec les éléments neutres peuvent donner lieu à des transferts rapides de la matière. Le plasma est assez sensible à la forme des pièces et notamment aux parties rentrantes et alésages, spécialement s'ils ne sont pas débouchant. Il y a un risque de chauffage excessif, par effet de cathode creuse à l'intérieur de l'alésage si le facteur de forme de la pièce Φ/L est inférieur à une valeur (de l'ordre de 8), qui peut provoquer la fusion des pièces. C'est une des limites du procédé ; selon les
formes des pièces, une préparation est parfois nécessaire : bouchonnage des perçages fins, masquage des rainures... L'action sur la pression permet de stabiliser la répartition du plasma et d'agir sur la susceptibilité d'une pièce à l'effet de forme [20].

Figure 1.13 : Schéma simple d'un modèle de four utilisé pour la nitruration ionique

Les traitements par voie ionique ou gazeuse sont les plus couramment employés. Ils donnent des résultats reproductibles industriellement tout en permettant un pilotage automatique des installations.

Il en existe d'autres procédés moins répandus comme la nitruration par laser à impulsions, pulvérisation par magnétron, et l'implantation de l'azote [21-22].

1.3.3.c) Nitruration à bains de sels

C'est une méthode qui, utilise un liquide minutieusement préparé, à la base, les deux modes de traitement sont semblables, mais l'avantage majeur des bains de sels est l'uniformité de la couche obtenue.

La nitruration à bains de sels utilise des sels contenant un composant riche en azote. Quand la température est élevée, les sels fondent et libèrent l'azote nécessaire pour la diffusion.

Les avantages de la nitruration à bains de sels sont :

- coût relativement réduit.

- matériel nécessitant peu de qualification pour l'opérateur.
- four de dimensions réduites, occupant moins d'espace.
- traitement légèrement moins lent.

Ce traitement est pratiqué aux températures de nitruration 500-550°C, il est possible d'obtenir une réaction de nitruration à partir de la décomposition thermique d'un cyanure alcalin (potassium ou sodium). Dans ce cas, la réaction de nitruration est très lente et ces bains ne sont utilisés que pour la nitruration des aciers à outils, aciers rapides ou autres nuances très alliées pour lesquels ils présentent l'avantage de produire des couches de diffusion très minces à des températures réduites en assurant une excellente propreté des surfaces.

Exemple de compositions :

Leur utilisation tend toutefois à disparaître, étant donné leur forte toxicité et leur très faible réactivité.

Les bains industriellement utilisés sont des bains à base de cyanates et de carbonates aérés par insufflation d'air. L'élément nitrurant est le cyanate CNO⁻ qui se décompose suivant une double réaction de dismutation et d'oxydation :

- réaction de dismutation :

$$4 \text{ CNO}^- \rightarrow \text{CO}_3^{2-} + \text{CO} + 2 \text{ CN}^- + 2 \underset{\downarrow}{\text{N}}$$

- réaction d'oxydation :

$$2\ \mathrm{CNO}^{-} + \mathrm{O_2} \rightarrow \mathrm{CO_3^{2-}} + \mathrm{CO} + 2\ \underbrace{\mathrm{N}}_{\downarrow}$$

L'oxygène est apporté à la surface par l'air ambiant et par l'air comprimé introduit dans les bains. Il s'y ajoute une réaction de carburation par le monoxyde de carbone produit :

$$CO \rightarrow 1/2 O_2 + C_{\downarrow}$$

Cette réaction doit être contrôlée de façon à limiter les teneurs en vapeur d'eau et en ammoniac dans le bain. La vapeur d'eau conduit à une augmentation du pouvoir oxydant du bain avec une tendance à former des oxydes avec les sels, entraînant une pollution du bain et une mauvaise qualité des couches (porosités importantes). L'ammoniac NH₃ augmente le pouvoir nitrurant du bain mais favorise la croissance rapide des couches avec formations de porosités [25]. La couche de combinaison obtenue est majoritairement de structure ε avec éventuellement, en limite de la zone de diffusion, une partie γ ' si le temps de traitement est prolongé (elle correspond à un appauvrissement en azote par diffusion vers le cœur). La composition massique moyenne d'un bain ainsi réglé est la suivante :

CNO ⁻	30	%	à 38 %
CO ₃ ²⁻	18	%	à 20 %
CN ⁻	. 0	%	à 3 %

Ces procédés utilisent le cyanure comme élément de production du cyanate. Ils présentent l'inconvénient majeur d'être à haute teneur en cyanure (de l'ordre de 20 % en masse).

On peut réaliser une nitruration avec un bain de sel riche en soufre sous forme de thiocyanate NCS⁻ assurant un soufre résiduel libre de 0,2 à 0,3 % ; la couche obtenue contient les composés: azote, carbone, soufre (sulfonitrocarbures) et présente, grâce au soufre, des capacités de résistance au grippage supérieures à celles obtenues par les procédés sans soufre.

Toutefois, les couches sont de plus faible épaisseur et moins riches en azote et carbone que les couches obtenues par d'autres procédés.

Figure 1.14 : Types principaux des fours à nitruration en bains de sels. a) et b) chauffé extérieurement. c) et d) chauffé intérieurement

1.3.3.d) Nitruration solide (en caisse)

Contrairement à la nitruration gazeuse qui est connue depuis le début du xx^{ème} siècle, le brevet d'invention de la nitruration solide (en caisse) n'a été obtenu qu'en 1978.

Ce mode de traitement requiert l'enterrement de la pièce métallique à traiter dans la vermiculite ou un autre milieu poreux contenant de l'urée ou un autre agent nitrurant convenable [26].

Pour les modes conventionnels de nitruration, on a besoin d'un équipement spécial et une manipulation spécifique à fin d'obtenir de bons résultats. Ceci n'est pas toujours possible à réaliser. Il est évident que l'idéal est de réduire au maximum l'équipement et le savoir-faire nécessaire pour n'importe quel procédé. L'avantage est donc de nitrurer la pièce métallique sans à avoir recours à un four spécial ou un traiteur très qualifié.

La relation entre l'épaisseur de la couche nitrurée et le temps ainsi que la température est similaire à celle existante aux autres modes de nitruration.

Les milieux considérés convenables comme milieu de nitruration solide sont – entre autre- : vermiculite, charbon de bois granulé, argile poreux granulé, céramique poreux granulé ...etc.

En général, ce sont les matériaux :

- chimiquement inertes.

- ayant un taux d'absorption élevé.

- stables à haute température.

 constitués de particules dont la forme est facilement encaissable et ayant une résistance mécanique suffisante à haute température.

La concentration de l'agent nitrurant est ajustée en fonction de la quantité du milieu nitrurant par unité de surface de la pièce à traiter, ainsi que l'épaisseur la couche nitrurée désirée. Les agents nitrurants peuvent être l'urée (NH₂-CO-NH₂), carbonate de guanidine $[(NH_2)_2CNH]_2H_2CO_3$, diacyanodiamide $[NHC(NH_2)NHCN)]$, et acide cyanurique (HCNO)₃ [59] ou le dichrome nitrure (Cr₂N), Si₃N₄, TiN, et AlN [27].

Le milieu nitrurant est disposé autour de la pièce à nitrurer dans une caisse à couvercle non étanche qui permet le dégagement des gaz mais réduit l'air entrant. Les caisses peuvent être en verre, en céramique, ou en aluminium [28].

La pièce encaissée est chauffée à une température d'au moins 425°C, pour une période de temps permettant la décomposition de l'agent nitrurant, l'azote moléculaire (N₂) est indésirable pour la nitruration solide.

Une température de nitruration entre 500°C et 565°C typique pour les autres modes de nitruration est bien satisfaisante.

Le chauffage peut être produit par n'importe quelle source de chaleur capable d'atteindre les températures requises.

Le temps nécessaire pour la nitruration en caisse varie entre 4 et 24 heures, avec des temps plus longs, une oxydation des surfaces à nitrurer est à craindre.

Les duretés les plus élevées sont obtenues à des températures modérées avec des temps de 8 heures au moins. Il est bien connu que certain alliages, particulièrement ceux contenant du chrome, de l'aluminium, et du molybdène répondent mieux à la nitruration que d'autres. Les variables : temps, température, ainsi que la concentration de l'agent nitrurant doivent être déterminés expérimentalement pour chaque pièce et/ou alliage.

Le milieu nitrurant peut contenir un mélange d'agents nitrurants, ayant une stabilité à la température de nitruration. Après traitement, le milieu nitrurant peut être recyclé et réutilisé après ajustement de sa composition chimique.

En plus de la stabilité thermique, les agents nitrurants ne doivent pas être dangereusement toxiques ou explosifs.

1.3.4. Diagramme Fe-N et nature des couches formées au cours de la nitruration

Figure 1.15 : Diagramme d'équilibre fer-azote [14]

Les modalités d'exécution pratiques de ce traitement, en particulier les températures utilisées qui sont comprises entre 450 et 580 °C, s'interprètent aisément en considérant le diagramme d'équilibre Fe-N (figure 1.15) sur lequel on distingue différent domaines:

- $\pmb{\alpha}$, solution solide interstitielle d'azote dans le fer.

 - γ', nitrure de fer Fe₄N (5,6 à 6,1 % d'azote), de structure cubique à faces centrées, de dureté élevée (environ 800 HV), domaine situé en-dessous de la température eutectoïde de 592 °C,

- ε , nitrure de fer de structure hexagonale compacte de composition allant de Fe₃N à Fe₂N (6 à 11 % d'azote).

Le diagramme d'équilibre Fer-azote-carbone à 570°C montre que le carbone favorise la formation du nitrure **£**, ce qui est souvent mis à profit dans la pratique en associant le carbone à l'azote comme élément réactif par addition d'un agent carboné dans le milieu nitrurant.

Figure 1.16 : Structure du nitrure γ '-Fe₄N (phase γ ') constituée d'une maille du fer c.f.c avec dans l'octaèdre un atome d'azote (quatre atomes de fer et un atome d'azote par maille élémentaire)

Figure 1.17 : Structure du nitrure ϵ (Fe₂N-Fe₃N)

D'autres éléments comme le souffre et l'oxygène peuvent également être ajoutés dans l'agent de nitruration pour leur action sur la cinétique des réactions ainsi que sur la composition et les propriétés des couches.

La nitruration consiste à fixer l'azote à la surface du métal par réaction chimique et à le faire diffuser en phase ferritique, afin qu'il forme avec le fer et les éléments d'alliage de l'acier des zones de GUINIER-PRESTON et des nitrures très fins capables de produire un durcissement de la couche enrichie.

Suivant le procédé de nitruration, les conditions de traitement et la composition chimique de l'acier, les couches nitrurées prennent les principales configurations suivantes (figures 1.18 et 1.19):

- une couche de combinaison superficielle, d'épaisseur faible, jusqu'à 30 µm environ, qui est constituée essentiellement de nitrure γ' ou ϵ : c'est la couche blanche. Suivant la nature du procédé,on peut obtenir une couche de combinaison monophasée γ' ou ϵ ou une couche de combinaison biphasée $\gamma' + \epsilon$

dans le cas de la couche de combinaison à la surface d'une pièce nitrurée, les phases susceptibles d'être présentes sont:

* l'oxyde de fer (Fe₃O₄) en extrême surface,

* le nitrure ϵ (Fe₂N), sous la couche d'oxyde si elle existe

* le nitrure γ' (Fe₄N), sous les deux autres couches, si elles existent

* le fer alpha (Fe α) de la matrice.

- une couche de diffusion , d'épaisseur pouvant aller de 0,05 à 1 mm, qui est sousjacente à la couche de combinaison, ou qui peut être seule à exister. L'azote se dissout dans le fer α et réagit aussi avec certains éléments d'alliage comme : l'aluminium, le molybdène, le chrome, le tungstène, le vanadium, et le silicium, s'ils sont présents.

Tous ces éléments d'alliage forment des nitrures dans l'acier.

L'aire ou se déroule la formation de ces nitrures est appelé : zone de diffusion (figure1.18), l'azote naissant commence immédiatement à réagir avec ces éléments pour former les dits nitrures qui se caractérisent par une dureté élevée, particulièrement ceux de l'aluminium.

La couche de diffusion enrichie en azote, dont la structure dépend du mode de refroidissement peut présenter des structures de recuit ou de trempe. Cette couche, par les contraintes de compression qu'elle génère, accroît d'une façon très sensible la résistance à la fatigue des pièces mécaniques ainsi traitées. Ces contraintes de compression, favorables, sont dues à l'azote en insertion qui déforme le réseau cristallin ferritique ou aux structures de trempe, si le refroidissement a été rapide. L'épaisseur de cette couche de diffusion peut dépasser la valeur indicative de 1 mm citée précédemment.

Figure 1.19 : Représentation schématique des couches rencontrées en nitruration

On a adopté ce modèle [29] tout en sachant que c'est une simplification de la réalité. En effet, la séparation entre les deux phases n'est pas forcément bien nette, car elles peuvent être partiellement mélangées. Elles peuvent également présenter une certaine porosité. Enfin, on détecte parfois la présence de la cémentite (Fe₃C) qui peut provenir du traitement comme des caractéristiques du substrat.

Les nitrures commencent à naître pour la nucléation de γ' à la surface adjacente à la source d'azote. Cette formation va continuer jusqu'à la nucléation de ϵ . On note que la diffusion de l'azote est moins rapide dans la couche de combinaison que dans le substrat (Figure 1.20).

Figure 1.20 : Schémas montrant la nucléation des nitrures γ 'et ϵ dans le fer [30]

1.3. 5. Influence des éléments d'alliage

1.3.5.a) Influence du carbone sur la couche de combinaison

La teneur en carbone a une influence sur le pourcentage de ϵ et γ' dans la couche de combinaison, dans un acier typique de 0,4 % de carbone en masse, les

quantités des phases \mathcal{E} et γ' sont à peu près égales dans une nitruration gazeuse [31], plus la teneur en carbone est élevée, plus il y a formation de phase \mathcal{E} , moins elle est élevée, plus il y a formation de phase γ' .

La teneur en carbone dans l'acier n'a qu'un effet minime sur l'épaisseur de la couche de combinaison. Si l'épaisseur de la couche de combinaison est critique dans l'application de la pièce nitrurée, alors l'acier doit être minutieusement choisi. La couche de combinaison et sa composition peuvent être un avantage ou un inconvénient selon l'application considérée [32].

Le contrôle de la disponibilité de l'azote mène à contrôler l'épaisseur de la couche de combinaison ainsi que sa composition.

La double nitruration est une technique qui peut-être appliquée pour avoir une couche de combinaison mince. Le principe est de réduire la quantité d'azote présente à la surface, et assurer une diffusion rapide par élévation de la température.

1.3.5.b) Influence des éléments d'alliage autre que le carbone

Dans le fer pur (ou l'acier non allié), l'azote qui diffuse en solution solide d'insertion conduit à un très faible durcissement selon l'enrichissement en azote. La solution solide est conservée si le métal est refroidi rapidement à partir de la température de nitruration. Si le refroidissement est lent ou si le métal est soumis à un revenu après trempe, les nitrures précipitent.

Les differents éléments d'alliage ont une influence majeure sur la réalisabilité, et la nature des couches formées après nitruration, et par conséquent, sur les propriétés des pièces traitées.

D'une façon générale la plupart des éléments formant des nitrures vont gêner le développement des couches de combinaison et, pour des matériaux ferreux très alliés, elles ne se développeront pas de manière significative.

L'épaisseur des couches de combinaison réalisées dans des conditions industrielles courantes diminue avec la teneur en éléments d'alliage. La constitution de la couche peut bien entendu être modifiée et des nitrures substitués isomorphe de Fe₄N et Fe₂₋₃N peuvent apparaître du type (Fe, X)₄ (C,N) et (Fe, X)₂₋₃ (C,N) où X désigne l'élément d'alliage. La dureté de ces couches de combinaison « alliées » varient peu dans le cas du nitrure ε (environ 900 HV),

alors que l'on constate de légères différences pour γ' dont la dureté peut évoluer de 600 HV à 1 000 HV avec les éléments d'alliage.

En ce qui concerne la couche de diffusion, si l'élément d'alliage réagit avec l'azote, il peut se produire un durcissement important par formation de zones de Guinier-Preston ou par précipitation de nitrures ou carbonitrures. Le durcissement dépend de l'affinité de l'azote pour l'élément considéré mais aussi, pour une part importante, des paramètres cristallins du précipité formé. Les nitrures hexagonaux précipitent essentiellement sur les défauts du réseau de la ferrite et participent peu au durcissement de la couche de diffusion. Ceux qui possèdent une structure cubique à faces centrées avec un paramètre cristallin voisin de 4,04 × 10^{-10} m précipitent sous forme semi cohérente et peuvent conduire à des durcissements importants. Le nitrure de chrome, proche de ces exigences, est particulièrement efficace ; par contre l'aluminium ne conduit qu'à de faibles duretés.

Ces données sont toutefois profondément bouleversées en présence de plusieurs éléments d'alliage. Des modifications notables des conditions de germination et de croissance des précipités peuvent alors intervenir. Le manganèse semble, dans le cas des alliages industriels, jouer un rôle important. Il modifie l'activité de l'azote dans la ferrite et il forme avec cet élément des zones de Guinier-Preston qui constituent des pré-précipités qui conduisent alors à des durcissements importants ou qui peuvent servir de sites de précipitation. Cette influence expliquerait les hautes duretés obtenues avec l'aluminium dans les aciers et les fontes (il y a toujours du manganèse dans ces alliages) et celles des fontes à haute teneur en silicium. L'action du carbone contenu dans l'acier ou la matrice d'une fonte est complexe et dépend de la forme sous laquelle il se présente. L'azote qui diffuse modifie le potentiel chimique du carbone, l'obligeant à migrer vers le cœur de la pièce ; il va également, se substituer à lui dans certains carbures.

Certains chercheurs [34] signalent que ce mécanisme pourrait conduire à une préprécipitation à partir d'éléments d'alliage initialement combinés au carbone M_3C et qui sont restés libres une fois que le carbone a migré.

La cinétique de formation de la couche de diffusion, quant à elle, dépend : de l'affinité du constituant métallique pour l'azote, de la facilité de germination et croissance du précipité et, bien sûr, de la température de nitruration et de l'apport d'azote.

Pour décrire l'action des éléments d'alliage sur le profil de dureté résultant de ces deux aspects (maximum de dureté et cinétique), on utilise souvent le classement proposé par D.H. Jack et B.J. Lightfoot [34] qui consiste à grouper les éléments en trois grandes classes

selon le type d'interaction avec l'azote :

— les interactions fortes qui se produisent, par exemple, dans le cas d'alliages binaires FeX dont les teneurs en éléments d'addition sont les suivantes : Cr > 5 %, V > 1 %, Ti > 2 %. On obtient alors des profils caractérisés par une dureté constante en surface et une transition avec le cœur très brutale : dès qu'un atome d'élément d'alliage est touché par le front de diffusion de l'azote, il y a durcissement.

— les interactions faibles qui caractérisent le fait qu'une forte sursaturation en azote est nécessaire pour faire apparaître les premiers germes de nitrures. Le durcissement est alors contrôlé par la vitesse de réaction de formation des nitrures.

 les interactions moyennes qui ont un comportement intermédiaire par rapport aux deux cas précédents. On peut alors définir une zone de transition progressive de la dureté.

Des études [36] ont permis de préciser et parfois de modéliser l'action des principaux éléments d'alliage sur les profils de dureté. Les éléments tels le silicium et le carbone, par leur action sur la solubilité de l'azote, ont un effet défavorable sur le maximum de dureté et ont tendance à augmenter la zone de transition citée au paragraphe précédent.

On remarquera également la forte action de la température de traitement sur ces profils.

Il convient d'évoquer le fait que certains éléments d'alliage présents dans les produits ferreux favorisaient l'obtention de couches de diffusion de dureté élevée. Cette constatation a conduit, très tôt dans l'histoire de la nitruration, à la mise au point d'aciers et fontes spécialement adaptés à ce traitement. Or, il se trouve que ces mêmes éléments d'alliage sont souvent ajoutés naturellement aux produits ferreux au cours de la gamme d'élaboration à d'autres fins que la réponse à la nitruration. Ainsi, on ajoute du chrome, du molybdène, du manganèse dans les aciers de construction mécanique, afin d'augmenter leur trempabilité. Par ailleurs les aciers à outils et inoxydables ou réfractaires contiennent des éléments d'alliage en quantités très importantes (supérieures parfois aux teneurs présentes dans les aciers spécifiquement élaborés en vue de la nitruration), afin de garantir certaines propriétés d'emploi.

Cette description montre qu'en marge des produits élaborés spécialement dans le but d'être nitrurés la plupart des aciers et des fontes aptes au traitement thermique sont nitrurables et permettent d'obtenir des performances intéressantes.

Il est à noter que le but du traitement de nitruration n'est pas toujours la réalisation d'une couche de diffusion de haute dureté : le mécanicien cherche parfois à favoriser uniquement la formation d'une couche de combinaison ayant de bonnes propriétés de frottement. Dans ce cas, les éléments d'alliage qui, d'une façon générale, retardent la cinétique de croissance de la couche deviennent superflus (il suffit d'en conserver une quantité juste suffisante pour assurer une dureté de la couche de diffusion permettant d'assurer un soutien de la couche de combinaison). Il n'y a donc pas, contrairement à ce que pourraient laisser penser les expressions « aciers et fontes de nitruration », une solution pré-établie satisfaisante dans tous les cas de nitruration, mais au contraire une large palette de matériaux dont le choix devra être adapté en fonction du problème posé par l'utilisation de la pièce et des moyens de traitement utilisés.

1.3.6. Test pour déterminer la présence de la couche de combinaison

Une goutte de chlorure d'ammonium cuivrique [Cu(NH₄Cl)₂] versée sur la surface d'une pièce nitrurée indique la présence de la couche de combinaison, s'il y a une couche de combinaison présente, la goutte va produire un dépôt de cuivre sur la surface, si la couche de combinaison est absente, il n' y aura pas de dépôt de cuivre.

L'acier au carbone ou même le fer pur peut être nitruré, néanmoins, la couche de combinaison est plus épaisse, l'acier au carbone nitrurée a une dureté typique de 400 à 700HV, pour les aciers alliés la dureté est de 700 à 1000HV.

- si l'acier ne contient pas d'éléments d'alliage ayant une grande affinité pour l'azote, celui-ci est en solution solide d'insertion et, suivant la vitesse de refroidissement qui fait suite à la nitruration, il peut rester en solution si le refroidissement est rapide, ou précipiter plus ou moins complètement sous forme de nitrures de fer s'il est lent, précipitation qui est accompagnée d'un durcissement modéré des couches superficielles (jusqu'à 500 HV, ou plus). Si l'acier contient des éléments ayant une grande affinité pour l'azote, tels que le manganèse, le chrome, le vanadium, l'aluminium, le titane, il y a formation de fins précipités de nitrures et augmentation corrélative très importantes de la dureté des couches superficielles, avec création de précontraintes de compression car la formation des précipités s'accompagne d'une augmentation de volume.

La surface nitrurée des aciers alliés de nitruration peut atteindre des duretés très élevées, de l'ordre de 850 à 1300 HV, alors que la dureté après trempe des aciers les plus durs ne dépasse pas 900 HV. De ce fait, ce traitement est particulièrement recommandé pour toutes les pièces devant présenter une très grande résistance à l'usure et au frottement, en recherchant la formation d'une couche de combinaison monophasée (γ' ou ε).

Figure 1.21 : Couche nitrurée typique montrant la couche de combinaison (en haut), la zone de diffusion (en bas), et le cœur de l'échantillon

La nitruration élève également de façon notable la limite d'endurance des pièces grâce à l'élévation de la dureté superficielle et à l'introduction en surface de contraintes résiduelles de compression. Dans ce cas, une couche de diffusion seule est la plus favorable.

Pour apprécier l'épaisseur de la couche formée au cours du traitement, une profondeur conventionnelle de nitruration est nécessaire; plusieurs considérations sont utilisées pour la définir.

Il est possible d'associer à l'azote, d'autres éléments diffusants tels que le carbone, l'oxygène ou le soufre, pour agir sur la nature et les propriétés des couches formées et élargir ainsi les possibilités de la nitruration, qui devient alors

en fait une nitrocarburation, une oxynitrocarburation ou une sulfocarbonitruration [38].

1.3.7. Epaisseur de la couche nitrurée

L'épaisseur de la couche nitrurée est fonction d'un nombre de facteurs qui sont entre autre :

- le temps.

- la température.

- la disponibilité de l'azote (composition chimique de la source d'azote).
- la composition chimique de l'acier.
- l'état de surface de la pièce.

Une formule à été suggérée aux années 40 basée sur la racine carrée du temps à une température particulière multipliée par un facteur spécifique à la température choisie :

$$e = k \sqrt{t}$$

Où :

e : l'épaisseur de la couche nitrurée (en pouce).

t: le temps de nitruration (en heures).

k : un facteur donné par le tableau 1.1

Température °C	Facteur k(lb.h ⁻¹)
460	0.00150
470	0.00155
475	0.00172
480	0.00195
500	0.00210
510	0.00217
515	0.00230
525	0.00243
540	0.00262

Tableau 1.1 : Facteur k utilisé pour le calcul de l'épaisseur de la couche nitrurée donné en fonction de la température de nitruration.

1.3.8. Les contraintes de compression associées aux traitements de nitruration

Le traitement de nitruration des aciers est plus complexe qu'un traitement de cémentation ou de carbonitruration, en effet, le transfert de l'azote s'accompagne de la croissance de couches de combinaison en surface et de phénomène de

diffusion-précipitation en en phase ferritique dans un acier où sont présents des carbures.

La connaissance des conditions de transfert de la matière, des données thermodynamiques et cinétiques permettent de contrôler tous ces phénomènes ou même de les simuler. Dans la couche dite de diffusion les contraintes de compression sont dues à l'accroissement de volume résultant de la précipitation de nitrures formés avec les éléments d'alliage ayant une forte affinité pour l'azote (Cr, Al, V, Mn, etc.) et partiellement dans certains cas, à l'azote en solution solide dans la ferrite.

Les contraintes de compression dans la couche de diffusion sont la conséquence de la précipitation des nitrures. Le profil des contraintes de compression est fortement dépendant de la température de nitruration qui varie approximativement de 400°C à 580°C. Quelque soit la température de traitement de nitruration, la phase initiale se traduit par des contraintes de compression qui sont maximales en surface.

Pour des températures plus élevées et un accroissement de la durée de traitement, une relaxation partielle des contraintes d'autant plus importante que celles-ci sont élevées et que la résistance de l'acier est faible, apparaît au voisinage de la surface, le maximum de champ de contraintes se déplace vers le cœur et sa valeur diminue.

1.3.9. Traitements thermiques préalables

1.3.9.a) Trempé et revenu

L'état de traitement thermique du matériau sur lequel va être effectuée une nitruration est particulièrement important et, dans beaucoup de cas, il détermine la qualité du produit final. Généralement, la plupart des aciers sont utilisés à l'état trempé revenu et dans ce cas, il est nécessaire que le dernier revenu soit pratiqué à une température supérieure à celle de la nitruration, afin que les caractéristiques du métal de base n'évoluent pas (typiquement 20 à 50°C).

Certains aciers qui présentent un pic de durcissement secondaire lors du revenu (38CrMoV5, X100CrMoV5, X160CrMoV12...) permettent d'obtenir un même niveau de dureté soit en utilisant un durcissement par trempe avec une austénitisation à basse température et un revenu à basse température (inférieure à 300°C), soit en réalisant un cycle comprenant une austénitisation à haute

température et un revenu également à haute température (compatible avec les températures de nitruration). Il sera donc important pour ces nuances de tenir compte des exigences dues à la nitruration dès le stade du traitement dans la masse pour l'obtention de la dureté à coeur. Il faut également tenir compte du fait que les temps de nitruration peuvent être longs et, pour assurer une véritable stabilité des propriétés, on doit raisonner en considérant à la fois le temps et la température de nitruration. On peut utiliser pour cela les nombreuses données publiées à ce sujet pour le revenu. Pour ce faire, on évalue l'équivalence temps-température correspondant au traitement de nitruration que l'on doit pratiquer et l'on compare les valeurs obtenues à celles correspondant aux revenus qui ont été réalisés sur la pièce (voir exemple sur la figure 1.23) ; il est alors possible de prévoir l'importance de l'évolution de la dureté à coeur de la pièce.

L'étude des mécanismes du revenu montre que, au cours des derniers stades, vers les hautes températures de revenu, les éléments d'alliage de l'acier peuvent diffuser ; ils viennent alors participer à la constitution des carbures. De ce fait, ils ne sont plus disponibles lors du traitement de nitruration pour participer au durcissement de la couche nitrurée. Cet effet est surtout sensible pour les aciers peu ou moyennement alliés, et des écarts de durcissement importants peuvent être observés selon l'état d'origine de l'acier.

1.3.9.b) État recuit

On nitrure essentiellement, à l'état recuit, les aciers peu alliés pour lesquels on ne recherche pas particulièrement de caractéristiques de la couche de diffusion. Néanmoins, il arrive parfois exceptionnellement que des aciers alliés soient nitrurés dans cet état. Dans ce cas, la réponse à la nitruration au niveau de la couche de diffusion dépend, comme il a été mentionné pour l'état trempé revenu, de l'engagement des éléments d'alliage dans les carbures. À titre d'exemple, un acier du type X160CrMoV12 nitruré pendant 12 h à 540°C à l'état recuit globulaire poussé peut donner des duretés superficielles de 350 à 500 HV, alors que l'on obtient couramment à l'état trempé revenu des duretés supérieures à 1 000 HV. De même, pour des nuances type 42CrMo4 à l'état recuit, les duretés des couches obtenues dépassent rarement 400 à 500 HV (pour environ 600 à 700 HV à l'état trempé revenu).

Figure 1.23 : Profils de dureté obtenus sur un échantillon en acier 42CrMo4 traité selon deux modalités avant nitruration [40] I- austénitisation à 850°C , trempe et revenu à 680°C II- austénitisation à 850°C , trempe et revenu à 600 °C

1.3.10. Alliages nitrurables

Bien que, théoriquement, on peut nitrurer n'importe quel alliage ferreux, y compris le fer pur, et même quelques alliages non ferreux, on ne peut tirer profit de ce traitement que pour certains alliages dont la composition chimique lui répond bien et dont les propriétés résultantes sont intéressantes.

1.3.10.a) Aciers

On peut séparer les aciers nitrurables en trois familles essentielles:

- les aciers de construction mécanique

- les aciers à outils;

- les aciers inoxydables;

Pour les aciers de construction mécanique on doit distinguer du point de vue de la nitruration deux grandes catégories:

- Aciers de construction non alliés au carbone

Ils sont nitrurés bien souvent à l'état recuit et l'on cherche essentiellement à obtenir une couche de combinaison majoritairement monophasée et assez épaisse (10 à 20 µm). La couche de diffusion est de faible dureté et en pratique on mesure des duretés superficielles qui intègrent les deux couches et qui sont proches de 350 à 500 HV.

On peut également classer dans cette catégorie les nuances pour découpage ou emboutissage (tôles X, Z ou C et tôles à moyen carbone) ainsi que les nuances

pour décolletage S250 ou S300 qui, bien que non destinées aux traitements thermiques, sont couramment nitrurées pour la fabrication de pièces destinées aux industries automobiles.

Pour cette catégorie d'acier, ce sont les nitrocarburations ou nitrurations spéciales qui sont les plus pratiquées : nitrocarburation en bain de sels, nitrocarburation gazeuse, nitruration gazeuse pilotée à fort taux nitrurant, nitruration ionique.

- Aciers de construction faiblement alliés

On peut sur ces nuances, si cela s'avère nécessaire pour l'utilisation de la pièce, adapter le type de couche de combinaison que l'on souhaite en fonction des sollicitations de la pièce. De plus, on dispose d'une large gamme de niveau de dureté de la couche de diffusion selon le choix de la nuance.

			Exemples de	caractéristique	es de	caractéristiq	ues de
		Familles	nuance	la couche o	de	la couche de	
		d'aciers	d'acier	combinaiso	on 	diffusion	
			20222		e(µm)	HV	e(µm)
	faibla	Acier au	2022	5. 0001100	30	200 à 400	50 À
	Taible	carbone	2030	√'· 500 à 750	15	300 a 400	300
			2000	γ. 500 à 750	20	400 à 600	100
			201015	E. 950 at 100	20	400 a 600	à 500
			16MC5	γ': 900 à 1100	10	450 à 650	100 à
				ε : 950 à1100	20		500
		Aciers alliés	38Cr2	γ': 900 à 1100	10	500 à 750	100 à 500
	moyenne		34CrMo4	ε : 950 à1100	20	500 à 800	100 à
Interaction acier- azote				γ': 900 à 1100	10		500
				ε : 950	20		
				γ': 950	10		
	forte	Aciers alliés	30CD12	ε : 950 à110 γ': 950	20 10	800 à 1200	200 à 500
			40CAD6	ε : 950 à1100 γ': 950	20 10	900 à 1400	200 à 500
		Aciers à outils	X38CrMoV5	ε,γ'	20	900 à 1200	15 à 300
			X100CrMoV5	ε,γ'	20	900 à 1400	15 à 150
			X160CrMoV12	ε,γ'	≤1	950 à 1400	15 à 150
		Aciers inoxydables	X30Cr13	-		700 à 1200	15 à 150
			X5CrNi18-10	-		700 à 1200	15 à 150

Tableau1.2: Caractéristiques des couches nitrurées pour les différents types d'aciers

Le tableau 1.2 illustre quelques-unes de ces différentes familles et indique les principales caractéristiques des couches que l'on peut obtenir. On retrouve dans ces données l'influence de l'interaction des éléments d'alliage avec l'azote sur les caractéristiques de dureté de la couche de diffusion évoquée précédemment.

Tous ces aciers sont généralement nitrurés à l'état trempé revenu et l'une des principales limitations d'emploi des nuances proviendra donc de la possibilité d'obtenir les propriétés exigées au cœur de la pièce, en tenant compte du fait que la température de revenu de la nuance doit dépasser de 20 à 50°C celle de la nitruration.

Dans cette famille d'aciers figurent les nuances dites de nitruration (dérivées des nuances américaines Nitralloy); elles sont du type 20CD12, 30CD12, 30CAD6-12, 40CAD6-12, 32CDV9, 32CDV13.

Ce sont les nuances qui apportent le maximum de durcissement au niveau de la couche de diffusion. Leur choix dépend du niveau de dureté superficielle souhaitée (celles contenant de l'aluminium sont les plus performantes) et du niveau de résistance à cœur.

La nuance 32CDV13 est plus spécialement utilisée pour la fabrication de pièces mécaniques fortement sollicitées en fatigue comme les engrenages de transmission sur les rotors d'hélicoptères.

D'autres nuances sont fréquemment utilisées notamment les familles chromemolybdène (42CrMo4), manganèse-vanadium type dispersoïdes (40MV6) [68], manganèse-chrome (20MC5), chrome-molybdène-vanadium (15CDV6). Des nuances ont été récemment étudiées et développées pour la fabrication de pièces en grande série avec, pour objectif, de bonnes caractéristiques de mise en œuvre (usinabilité en particulier) et de bonnes caractéristiques de dureté (supérieure à 1 000 HV) de la couche de diffusion (16MCAV7 et 30MCV7) [66].

Quant aux aciers à outils, ils sont classés, selon le mode de travail de l'outil, en quatre grandes familles.

-Aciers non alliés pour travail à froid

Leur composition chimique est proche de celle des aciers au carbone examinés précédemment. Ils sont le plus souvent utilisés à l'état trempé revenu à basse température (environ 200°C) et de ce fait ils ne se prêtent pas à la nitruration. -Aciers alliés pour travail à froid Ils comportent des nuances proches des aciers de construction 42CrMo4, 35NiCr15...; mais ils sont utilisés en outillage avec des températures de revenu peu favorables à la nitruration (dureté à cœur élevée). D'autres nuances plus spécifiques de ce type d'utilisation peuvent en revanche être nitrurées avec profit, tels les aciers à 5 ou 12 % de chrome. Il faudra alors que le traitement thermique préalable à la nitruration soit adapté et, en particulier, que l'austénitisation soit conduite à une température suffisante pour permettre d'obtenir les caractéristiques désirées à cœur avec des revenus à des températures supérieures à 500-570°C environ (selon le procédé de nitruration utilisé). Le tableau 1.3 donne quelques exemples de traitements de ce type de nuance.

Type d'acier	Traitement préalable à la nitruration	Dureté HRC	Dureté de la couche de diffusion	Epaisseur de la couche de diffusion
X100CrMoV5	Austénitisation à 1000°C et trempe puis 2 revenus à 520°C	56 à 58	850 à 1200 HV	15 à 150 µm
X160CrMoV12	Austénitisation à 1050°C et trempe puis 2 revenus à 550°C	58 à 61	950 à 1300 HV	15 à 150 µm
HS 6-5-2	Austénitisation à 1150°C et trempe puis 2 revenus à 570°C	61 à 63	950 à 1300 HV	10 à 100 µm

Tableau 1.3 : Exemples de gammes réalisés sur des aciers à outils pour travail à froid

-Aciers pour travail à chaud

Dans l'ensemble ils se prêtent bien à la nitruration. Les caractéristiques des couches doivent, pour une nuance donnée, être adaptées avec précision en fonction du type de travail de l'outil, notamment la forge et l'estampage.

-Aciers à coupe rapide

Les températures habituelles de leurs revenus permettent la nitruration sans grand problème. On notera cependant qu'ils deviennent très fragiles par nitruration, cela d'autant plus que l'épaisseur traitée est importante. Les profondeurs des couches de diffusion sont limitées de 0,02 à 0,05 mm pour les outils de coupe et peuvent aller jusqu'à 0,1 mm pour les outils de mise en forme [43] (tableau 1.3).

Pour ces nuances les procédés à fort potentiel nitrurant tels que les bains de sels doivent être maîtrisés pour ne pas développer de couches sensibles à l'écaillage. Dans ce cas, le temps de traitement est de l'ordre de quelques minutes.

Enfin, il convient de signaler en pratique les nuances prétraitées d'outillage qui sont couramment nitrurées (40CrMnMo8, 40NiCrMo16,...).

Pour les aciers inoxydables, la teneur élevée en chrome de cette catégorie favorise l'obtention de duretés élevées après nitruration (1 000 à 1 100HV).

En pratique, et essentiellement pour des raisons économiques (cinétiques lentes de nitruration), on limite les profondeurs nitrurées à des valeurs comprises entre 10 et 300 µm. Le traitement de ces nuances demande beaucoup de précautions, car les températures de traitement peuvent coïncider avec l'apparition de fragilité pour certaines nuances sensibles à ce phénomène [44]. Par ailleurs, dans la quasi-totalité des cas, la nitruration conduit à une détérioration du comportement du matériau vis-à-vis de la corrosion due à la précipitation de nitrures de chrome.

La présence de fortes teneurs en éléments d'alliage de cette catégorie d'acier rend quasi impossible la réalisation de couche de combinaison d'épaisseur notable. En outre, les bonnes propriétés de résistance à la déformation à chaud de ces nuances favorise l'apparition de contraintes résiduelles importantes (difficultés de relaxation en cours de traitement) et parfois l'apparition de fissures ou de décollement de couches. De ce point de vue, les conditions de nitruration et les traitements préalables sont d'une grande importance.

Parmi les familles d'aciers inoxydables qui sont le plus souvent nitrurées, on peut distinguer les suivantes.

-Aciers martensitiques

Les nuances X20 à X40Cr13, X17CrNi16-2 et X105CrMo17 sont nitrurées à l'état trempé revenu ; la précipitation de nitrures de chrome dans la couche de diffusion abaisse notablement les caractéristiques de corrosion. Toutefois ce traitement permet d'obtenir un bon compromis entre résistance à l'usure et résistance à la corrosion.

-Aciers à durcissement par précipitation

Les aciers du type X5CrNiCuNb16-4 réagissent, par rapport à la nitruration, de façon analogue à celle des aciers martensitiques. Avec ces nuances il est

important de prendre en compte l'action possible de la nitruration sur le durcissement par précipitation et d'étudier les gammes en conséquence. Dans certains cas il est possible de réaliser, au cours d'un même traitement, le durcissement par précipitation et la nitruration.

-Aciers austénitiques

Pour cette famille de nuances, deux types de nitruration distincts sont réalisés, le premier est la nitruration classique, c'est-à-dire effectuée dans des conditions telles qu'il se produit au cours du traitement une précipitation de nitrures de chrome qui aura des effets néfastes sur le comportement en corrosion des alliages traités. Ce type de traitement est certainement le plus utilisé actuellement sur ces nuances, car il apporte à bon marché, pour des pièces peu sollicitées du point de vue de la corrosion, de bonnes propriétés de glissement sur des aciers qui en sont particulièrement dépourvus. D'un point de vue métallurgique et pour des températures de traitement inférieures à 600°C, on obtient des couches de structure complexe caractérisées par l'apparition de ferrite.

Le deuxième type est un procédé spécial de nitruration qui permet, en agissant sur la température de traitement (typiquement inférieure à 400°C) et sur l'apport d'azote, d'éviter la précipitation de nitrures de chrome et ainsi de conserver les propriétés de résistance à la corrosion du matériau de base. La structure obtenue consiste en une solution solide austénitique sursaturée en azote dans laquelle les atomes d'azote se répartissent de façon désordonnée sur les sites octaédriques. Cette austénite à l'azote comporte des macles d'origine thermomécanique. Les couches réalisées industriellement ont une épaisseur faible (quelques centièmes de mm).

Les nuances ferritiques et austéno-ferritiques sont également susceptibles d'être nitrurées mais, en pratique, elles sont moins souvent utilisées.

1.3.10.b) Fontes

On distingue généralement les familles de fontes suivantes selon l'état du carbone :

- Fontes à graphite lamellaire FGL ;
- Fontes à graphite sphéroïdal FGS ;
- Fontes à graphite vermiculaire FGV ;
- Fontes malléables FMB et FMN ;

- Fontes blanches.

On admet généralement que toutes les fontes peuvent être nitrurées avec le même type de précaution quant au traitement préalable du matériau. Il va de soi en effet que les fontes dont les propriétés sont obtenues par des traitements à basse température, genre fonte bainitique (360°C environ) ou fonte trempée puis revenue à basses températures (< aux températures de nitruration), sont susceptibles de voir leurs propriétés de base évoluer lors du traitement de nitruration.

Généralement, on préfère, pour la nitruration des fontes à graphite lamellaire, les matrices perlitiques ou à l'état trempé revenu (il faut cependant signaler que, pour les temps longs de nitruration, il existe un risque de décomposition de la perlite par graphitisation dont il faut parfois tenir compte.

Si la fonte n'est pas alliée, seul le bénéfice de la couche de combinaison pourra être obtenu. Compte tenu des teneurs en carbone nominales, on obtient très facilement avec ces matériaux des couches de type ε s'appuyant sur une couche de diffusion quasi inexistante. La dureté typique des couches nitrurées obtenues à 540°C varie de 350 à 560 HV. La forme du graphite doit être la plus fine possible pour obtenir des couches de combinaison suffisamment compactes.

La présence d'éléments d'alliage spéciaux conduisant à une forte interaction avec l'azote favorise généralement la formation de carbures dans la fonte, ce qui limite les possibilités de composition chimique des fontes dites de nitruration aux valeurs indiquées dans le tableau 1.4. Les duretés obtenues dans la couche de diffusion après nitruration de tels alliages sont couramment supérieures à 700 et peuvent atteindre 1000 HV. Des recherches ont montré l'intérêt des fontes ferritiques à haute teneur en silicium contenant du manganèse [45].

Type de fonte	C%	Si%	Al%	Mo%	V%	Ti%	Cr%	Mn%
FGL	2,5 à 3,0	à adapter selon l'épaisse ur	1,5	0,5	0,3	0,1	2	0,6 à 1
FGS	3,6	2	0	0	-	-		0,2
	à	à	à	à			< 0,5	à
	3,8	3	0,15	0,6				0,5
Fontes	1,0		0					-
blanches	à	-	à	< 1	< 0,3	< 0,15	< 3,0	
	2		1					

Tableau 1.4 - Composition chimique de base des fontes aptes à la nitruration

Tous les procédés sont applicables aux fontes. En bain de sels, les couches s'obtiennent facilement, mais elles ont tendance à être poreuses par suite de la dissolution du graphite par les agents chimiques du bain. Il sera nécessaire de veiller à nettoyer de façon efficace le bain dans le cas de traitement en continu de pièces en fonte, de façon à éliminer les impuretés qui contribuent à l'obtention de couches poreuses. De nombreuses applications existent sur les fontes grises lamellaires ou GS, notamment sur les chemises de moteurs à combustion interne. La nitruration gazeuse à 750°C éventuellement modifiée en oxynitruration ou oxycarbonitruration par apport de N₂O, CO₂ permet d'obtenir des couches de combinaison ϵ dans lesquelles le carbone est apporté par le matériau de base.

En nitruration ionique, on peut réaliser le traitement à différentes températures : pour obtenir des couches à tendance γ ' sur des fontes alliées, on travaille vers 480°C; pour les couches ε , on travaille de 550 à 570°C avec éventuellement apport de CH₄ ou de H₂S.

Dans le cas de nitruration ionique des fontes grises, il est souvent nécessaire de mettre en œuvre une phase de pulvérisation cathodique en début de cycle pour extraire les polluants contenus dans les porosités de la surface.

La surface à nitrurer doit être très propre ; le cas contraire, une couche non uniforme est formée, les polluants qui peuvent être en cause sont :

- les fluides de coupes.
- l'huile de graissage.
- les empreintes digitales.
- les peintures.

- la décarburation.

1.3.11. Propriétés des pièces nitrurées

Les traitements de nitruration ou de nitrocarburation apportent, de manière plus ou moins sensible selon les procédés et les matériaux traités, les caractéristiques suivantes :

 dureté superficielle élevée; typiquement: 400 à 700 HV pour les aciers au carbone, 700 à 1000 HV pour les aciers alliés, et 1500 environ pour les aciers inoxydables.

- modification chimique par croissance d'une couche de combinaison ;

- mise en précontrainte de compression de la surface.

Les propriétés qui en résultent sont principalement :

l'augmentation de la résistance à la fatigue, spécialement en présence d'effets
d'entaille et de concentrations de contraintes ;

 l'amélioration de la résistance au grippage, au collage par adhésion et à l'usure par petits débattements, principalement grâce aux propriétés de la couche de combinaison.

- l'augmentation de la résistance à l'abrasion par effet d'augmentation de dureté ;

- l'amélioration de la tenue à la corrosion après postoxydation.

- l'augmentation de la tenue à chaud.

La microstructure réalisée lors du traitement conditionne les propriétés d'utilisation.

1.3.11.a) Fatigue

On constate que la microstructure influe peu vis-à-vis de ce type de sollicitation alors que la macrostructure (épaisseur de la couche de diffusion et résistance à coeur) a une action notable. Pour les aciers de construction, la limite de fatigue augmente avec l'épaisseur nitrurée jusqu'à un maximum (qui se situe vers 0,2-0,3 mm pour les aciers du type 34CrMo4) au-delà duquel on ne constate plus d'amélioration sensible.

De même les caractéristiques de fatigue augmentent avec la résistance à coeur de l'acier (et de la couche de diffusion).

Le choix de ce dernier sera par conséquent déterminant vis-à-vis de cette sollicitation.

Il faut noter que l'amélioration des propriétés de fatigue due à la nitruration est particulièrement importante dans le cas de pièces ou d'éprouvettes entaillées [47].

1.3.11.b) Fatigue superficielle

On remarque que, dans la pratique courante, on réalise par nitruration des épaisseurs de couche relativement faibles vis-à-vis de celles effectuées par cémentation. De ce fait, pour les fortes sollicitations de roulement, c'est le matériau de base qui est sollicité sous la couche traitée. Quelques études réalisées sur des engrenages [48-49] ont montré que l'on pouvait obtenir dans certains cas des tenues équivalentes en roulement à ce que l'on obtient en cémentation, même en utilisant des épaisseurs de traitement plus faibles. Ce bon comportement est attribué soit à une modification des modes de dégradation, soit à l'influence des propriétés de glissement de la nitruration et aux contraintes résiduelles qui ont tendance à diminuer la profondeur du maximum des contraintes de cisaillement dues à la pression de Hertz [51].

1.3.11.c) Frottement

La microstructure prend ici un aspect prépondérant ; la configuration ε offre les meilleures caractéristiques, alors que les couches de diffusion seules et les configurations γ' donnent des résultats nettement inférieurs. Dans le cas de couches biphasées $\gamma' + \varepsilon$, les propriétés de frottement sont intermédiaires et dépendent essentiellement de la proportion des phases en présence (elles s'améliorent avec la quantité de ε) et de la constitution de la couche : mélange intime des deux phases ou stratifications avec couche ε extérieure (cas le plus favorable). Il faut noter que certains auteurs signalent pour des applications particulières une supériorité de la couche γ' sur la couche ε , notamment en hydraulique où l'on recherche l'absence totale d'usure en fonctionnement.

Le rôle des porosités est également très controversé : pour certains [51], elles constituent, dans le cas des frottements lubrifiés, une réserve de lubrifiant qui est favorable aux propriétés de frottement ; alors que d'autres auteurs ont constaté qu'elles disparaissaient rapidement dès les premiers contacts [52].

<u>1.3.11.d) Usure par abrasion</u>

La résistance à l'usure dépend principalement, en première approximation, de la dureté de la couche de diffusion. La nature de la couche de combinaison intervient peu en raison de sa faible épaisseur.

On remarquera que l'augmentation de dureté conduit parfois à des fragilités des couches qui altèrent la tenue à l'usure [53].

1.3.11.e) Tenue à chaud

De par son principe même de durcissement, la nitruration permet d'obtenir des couches qui possèdent une bonne stabilité à chaud jusqu'à des températures qui dépendent, bien sûr, de la nuance d'acier utilisée mais qui sont proches de celles utilisées pour la nitruration.

Cette particularité du traitement de nitruration explique la large utilisation d'outils nitrurés en forge et estampage et, d'une façon générale, en travail à chaud.

Dans ce domaine, il semble que la tenue en usure à chaud soit favorisée par une augmentation de l'épaisseur nitrurée.

En ce qui concerne la fatigue thermique, ainsi que cela a été montré dans une étude due à R. Lévêque [54], la rugosité avant traitement de nitruration, qui conditionne la formation et le type de microfissures qui apparaissent en fonctionnement sous l'effet des sollicitations de service, est d'une grande importance. Par ailleurs la mise en contraintes des couches semble également d'un grand intérêt et explique l'influence parfois considérable de couches de très faible épaisseur.

1.3.11.f) Corrosion

Une caractéristique importante de la nitruration est l'amélioration de la résistance à la corrosion pour les aciers alliés et aussi les aciers au carbone, pour les aciers inoxydables, contrairement, la résistance à la corrosion est réduite.

L'influence de la microstructure des couches nitrurées avec ou sans traitement de postoxydation fait l'objet de nombreuses études [57-58], et il n'y a pas à l'heure actuelle de règles clairement établies ; toutefois les indications suivantes semblent se dégager :

- la constitution de la couche de combinaison est d'une importance capitale : nature des nitrures, épaisseur, répartition des phases

- les couches ϵ sont favorables

— une certaine porosité est également favorable, cela d'autant plus qu'un traitement de postoxydation est réalisé.

CHAPITRE 2

TECHNIQUES ET PROCEDURE EXPERIMENTALE

Dans cette partie, on fait le point sur les différentes techniques expérimentales utilisées lors de la réalisation de ce travail. L'interprétation exacte des différents résultats obtenus lors de cette étude repose sur les mesures correctes et justes provenant des instruments techniques utilisés et des technologies de chaque équipement.

2.1. Présentation des matériaux

L'étude à été faite sur trois nuances d'aciers: 23MCD5(acier de construction faiblement allié), X30WCrV53(acier à outils pour déformation à chaud), et X200CrMoV12 (acier à outils pour déformation à froid).

La composition chimique des nuances en question est donnée par le tableau 2.1:

Elément(%) aciers	С	Cr	Мо	V	Mn	Si
X200CrMoV12	2,05	11,50	0,8	0,5	0,30	0,25
23MCD5	0,23	0,6	0,3	-	1,25	0,25
X30WCrV53	0,30	2,35	-	0,6	0,3	0,22

Tableau 2.1: composition chimique des aciers étudiés.

2.2. Traitement

Les échantillons des différents aciers utilisés ont subit au préalable une trempe à une température adéquate, ont s'est passé du revenu tirant profit d'une étude antérieure [11].

Le traitement préliminaire effectué sur les différents échantillons se résume comme suit :

- Austénitisation dans un four de traitement thermique, la température d'austénitisation calculée suivant l'équation TA = AC_3 ou AC_m + (30 à 50) [64], pour les échantillons faiblement alliés jusqu'à la température de 950°C, et les échantillons fortement alliés jusqu'à la température de 1030°C.

- Le temps de maintien donné par l'équation: [t = l'épaisseur x 1,5], d'après la grande épaisseur, on a choisi le temps de maintien t =30 min.
- Trempe à l'eau pour les échantillons faiblement alliés, et trempe à l'huile pour les échantillons fortement alliés.

2.3. La technique de la borocarbonitruration

Les échantillons ont été nettoyés manuellement à l'aide du papier abrasif. Ce traitement thermochimique est effectué en utilisant une poudre, élaborée à l'académie polytechnique de BIELORUSSIE.

La composition chimique de la poudre utilisée est une propriété intellectuelle du constructeur, mais, d'une façon générale, il est su qu'elle contient des composés riches en carbone, en azote, et en bore ainsi qu'un ou plusieurs activateurs.

Figure 2.1 : La poudre utilisée pour la borocarbonitruration

Les aciers sont placés dans de petites caisses en acier de construction qu'on a fait construire spécialement pour notre expérience, la caisse est fermée sans être étanche avec un couvercle convenable. Pour éliminer tout échappement des gaz de la caisse pendant le traitement de borocarbonitruration, et pour limiter l'infiltration de l'air, on a placé du sable dans les vides entre la caisse et son couvercle. La conception des caisses a été la plus rapprochée possible des recommandations existantes dans la littérature afin de réaliser un traitement réussi.

Figure 2.2 : les caisses fermées utilisées pour la borocarbonitruration

Figure 2.3 : les caisses ouvertes utilisées pour la borocarbonitruration

Figure 2.4 : Une des caisses contenant les échantillons après traitement

On a introduit les caisses dans un four électrique à une température de revenu 550°C pendant des temps de 6, 8, 10, et 12 heures.

La façon dont les traitements ont été réalisés est la suivante :

 On introduit les quatre caisses où chacune d'elles contient les trois nuances d'acier (avec d'autres nuances utilisées pour d'autres études dans le cadre des PFE).

- après 6 heures, on fait sortir la première caisse et la laisser refroidir à l'air libre.

- après 8 heures, on fait sortir la deuxième caisse.

- on fait ainsi pour le reste des caisses pour les temps 10 et 12 heures.

A chaque fois, les pièces sont laissées refroidir, tout en conservant la caisse fermée.

Les traitements ont été effectués dans un four (CARBOLITE CWF 1100) à moufle électrique au laboratoire LSTM (laboratoire des surfaces et traitements des matériaux), au département mécanique, université de Blida.

Figure 2.5 : Le four à moufle utilisé pour les traitements

Figure 2.6 : Le four à moufle affichant la température utilisée pour les traitements (550°C)

2.4. Analyse métallographique

2.4.1. Caractérisation microstructurale

La microscopie optique est l'un des moyens les plus utilisés pour caractériser les épaisseurs des couches traitées superficiellement, à condition que les échantillons soient préparés soigneusement pour une meilleure précision dans les résultats de mesures.

L'examen métallographique de la couche de diffusion n'est rendu possible qu'après préparation et attaque chimique des échantillons.

La préparation métallographique comprend : les opérations de découpage, d'enrobage, de polissage et d'attaque chimique.

2.4.2. Préparation métallographique

2.4.2.a). Le prélèvement des échantillons

Les échantillons sont découpés, de la pièce traitée, à l'aide d'une microtronçonneuse automatique avec disque diamanté. La découpe des échantillons doit être perpendiculaire à la surface de traitement. Le refroidissement de l'échantillon est impératif pour éviter une quelconque modification de la surface traitée.

2.4.2.b) L'enrobage

L'enrobage des échantillons permet d'éviter la détérioration des arrêtes des pièces et d'éviter ainsi des erreurs de mesures de l'épaisseur de la couche obtenue et faciliter la manipulation des échantillons.

Les échantillons sont enrobés dans une poudre en phénolique (résine thermodurcissable), chauffée à une température de 250°C, en appliquant une pression constante sur la résine par le piston de l'enrobeuse pendant quelques minutes, après refroidissement l'enrobage est durci.

Figure 2.7 : Quelques échantillons enrobés

2.4.2.c) Le polissage mécanique

Le polissage mécanique des échantillons est entièrement automatique. Les échantillons sont montés sur un plateau tenu par un bras perpendiculaire et le

polissage s'effectue par différence de vitesse de rotation entre le bras et le plateau supportant le papier abrasif.

Le prépolissage est effectué avec du papier émeri de granulométries successives de : 180, 400, 600 et 1000 sous pression constante. Le prépolissage est utilisé avec aspersion d'eau pour éviter l'échauffement de l'échantillon et éliminer les copeaux et les abrasifs usés.

La finition est réalisée, sous une très faible pression, par un polissage très fin en utilisant une poudre d'alumine en suspension dans l'eau dispersée sur un papier en feutre. La granulométrie utilisée est de 0,05 millimètre.

2.4.2.d) L'attaque chimique des échantillons

L'attaque chimique a été faites pour les trois nuances d'aciers traités avec du Nital, et à une proportion de 4% en volume, ceci a permis de distinguer la couche de diffusion du cœur de l'échantillon.

La zone traitée est rendue visible en essuyant avec du coton, imbibé de la solution, pendant environ une dizaine (10) de secondes la surface polie. L'échantillon est ensuite rincé à l'eau pour arrêter l'attaque.

2.4.3. Examen au microscope optique

L'examen métallographique des échantillons est effectué avec un microscope optique de marque Carl Zeiss type Axio teck 100 (Figure 2.10). Le microscope autorise des grossissements allant jusqu'à 1000x.

Une camera de marque Axio Cam équipe le microscope pour numériser des images observées au M.O à travers une carte d'acquisition incorporée dans un micro-ordinateur (PC).

La camera fournie des images qui peuvent atteindre des résolutions de 1,2 Million de pixels et des grossissements globaux allant jusqu'à 8000 x, en utilisant un objectif de 100x.

2.4.4. La microdureté

Nous avons utilisé pour l'analyse micromécanique, un procédé classique qui est la mesure de la microdureté. La microdureté peut être définie comme la mesure de l'empreinte laissée par un pénétrateur de forme géométrique spécifique sur la surface du matériau testé. Les charges (forces) exercées étant variables suivant la nature du matériau testé entre 1 et 1000 gf et la profondeur de l'empreinte ne dépasse en aucun cas 19 µm.

Le plus souvent, les tests de microdureté se font par les pénétrateurs "knoop" ou Vickers.

Ceux-ci sont de forme conique à base, respectivement, losange pour le premier et carrée pour le second.

La valeur de la dureté Vickers (HV) est le rapport de la charge appliquée ou pénétrateur sur la surface de l'empreinte produite.

$$HV = 2P\sin(\varphi/2)/d^2$$

Avec:

P: Charge appliquée, (kgf)

d: diagonale de l'empreinte (µm).

 φ : angle entre deux faces opposées du pénétrateur , (φ = 136°).

Quant aux mesures de la microdureté, elles ont été réalisées sur les échantillons préparés à l'aide d'un microduromètre de type PRESSI DM2A (Figure 2.8).

Figure 2.8 : microduromètre

Pour suivre l'efficacité des traitements, nous avons mesuré les variations de la microdureté sur les coupes transversales des échantillons borocarbonitrurés. Evidement cette microdureté va dépendre du pourcentage de l'élément diffusant.

La connaissance de la microdureté en fonction de la profondeur nous permet de calculer la profondeur du traitement thermochimique(épaisseur conventionnelle).

En résumé la mesure de la microdureté s'est faite, en effectuant les opérations suivantes :

- Fixer l'échantillon sur la platine, à l'aide d'un bouton de blocage du valet.
- Chercher le plus clair et net endroit de l'échantillon à travers le microscope.
- Placer la charge appliquée pour l'obtention de l'empreinte.
- Mettre l'axe des (x) en coïncidence avec le zéro du tambour gradué.
- Application de la charge (P).
- Ramener l'empreinte obtenue sur l'axe du repère.
- Tourner le tambour jusqu'à ce que l'axe des (y) dépasse l'empreinte.
- Lire le dépassement correspondant sur le tambour (la distance d)
- Enfin, calculer la microdureté VICKERS en utilisant la formule citée précédemment.

Pour notre étude la charge appliquée était de 500g.

La figure 2.9 illustre la procédure d'observation et de mesure de l'empreinte.

Figure 2.9 : Schéma de lecture sur le microduromètre

2.4.5. Etalonnage des microstructures

Figure 2.10 : Microscope optique

Afin de donner aux microstructures une présentation signifiante, des photos d'une règle micrométrique ont été prises, (une pour chaque grossissement, figures 2.11 à 2.14) ceci est dû au problème des différents zoom des trois éléments combinés: l'ordinateur, le microscope, et l'appareil photo. A l'aide du programme PAINT livré avec le système d'exploitation WINDOWS, on a pu mettre une échelle sur les micrographies prises par l'appareil photo du microscope.

Figure 2.11 : Etalon du grossissement 100x

Figure 2.12 : Etalon du grossissement 200x

Figure 2.13 : Etalon du grossissement 500x

Figure 2.14 : Etalon du grossissement 1000x

Figure 2.15 : Calibrage sur le grossissement 200x

2.4.6. Détermination de l'épaisseur des différentes couches

2.4.6.a) Analyse structurale par traitement d'image

La détermination de l'épaisseur d'une couche obtenue par traitement thermochimique est une des opérations les plus délicates vu essentiellement la non uniformité de ses dernières.

L'analyse micrographique est effectuée habituellement sur des coupes métallographiques en raison de l'opacité des milieux étudiés. Elle est basée sur l'emploi d'appareillages d'amplification, tels que les microscopes optiques ou les microscopes électroniques à balayage. L'analyse micrographique de base conduit à une connaissance qualitative des caractéristiques physiques et structurales du matériau observé, telle que la présence d'une phase identifiable par exemple. Dans le cas d'une couche obtenue par traitement thermochimique, ces informations structurales sont très générales et peu d'informations quantitatives sont disponibles pour décrire plus complètement une microstructure, pour notre étude c'est l'épaisseur des couches obtenues qui est la plus intéressante.

2.4.6.b) Calibrage

Le calibrage d'un système de mesure (logiciel d'analyse d'image) est la première étape dans l'analyse quantitative. Ce calibrage permet de corréler l'aire d'un pixel à des dimensions physiques. Pratiquement, la calibration est effectuée en définissant la distance séparant deux pixels non contigus de l'image. Cette opération est réalisée à partir de l'image d'un micromètre étalon numérisée dans des conditions identiques à celles utilisées pour acquérir les images des microstructures à analyser.

Pratiquement, de part l'existence de distorsions au niveau des pixels des caméras, l'étalonnage est à conduire suivant les deux directions principales de l'image (directions x et y). Ces deux relations géométriques sont alors à intégrer dans le logiciel d'analyse d'image. Habituellement, sur des caméras de moyenne gamme, la différence de longueur suivant les deux directions n'excède pas 5%.

2.4.6.c) Détection des objets d'intérêt

La détection des objets d'intérêt est rendu possible par la binarisation de l'image qui permet d'extraire les objets à analyser. La binarisation consiste à segmenter l'image en deux régions distinctes, d'une part la région des objets digitaux affectée de la valeur d'intensité 1, et d'autre part la région de l'arrière-plan affectée à la valeur 0.[46]. Une des approches possibles pour binariser l'image, est la méthode du seuillage que nous avons utilisé.

La mesure de l'épaisseur est, parmi l'ensemble des caractéristiques d'une couche obtenue par traitement thermochimique, celle qui est systématiquement mesurée: elle revêt en effet une importance particulière dans les performances de la surface en service, c'est pourquoi elle figure toujours dans les spécifications à respecter. De plus, l'épaisseur d'une couche obtenue par traitement thermochimique dérive directement du rendement du processus employé. La première étape consiste alors à extraire de l'image de base (en niveaux de gris) les contours de la couche en question, dans ce cas l'agrandissement du microscope doit être défini de manière à visualiser dans le même champ l'ensemble de l'épaisseur. La seconde étape consiste à superposer à l'image binaire des contours de la couche un masque formé d'une succession de lignes équidistantes et parallèles entre elles, orientées perpendiculairement à l'interface couche/substrat, l'analyse d'image consiste principalement en un comptage du nombre de lignes d'interception et de leur longueur totale. Les données sont alors ajustées en retranchant les valeurs relatives aux effets d'anses (petites longueurs).

Ainsi, l'épaisseur moyenne de la couche est définie en divisant la longueur totale des segments par le nombre de segments. Plusieurs champs d'une même couche doivent être ainsi analysés pour déterminer une valeur représentative, un nombre minimal de cinq champs apparaissant nécessaire.

Pour notre étude une application KS-phase d'un logiciel d'analyse d'images KS-Materials de Carl Zeiss est utilisée pour l'estimation de la profondeur de la couche de diffusion.

KS-phase est une application qui permet de calculer le taux de phases (mesure en deux dimensions), en mesurant la fraction d'aire seuillée sur une image 255 niveaux de gris acquise sur un micro-ordinateur.

L'acquisition d'une image, par l'intermédiaire d'une camera, en 255 niveaux de gris est transformée par une opération de seuillage en image binaire (2 couleurs) ou image monochrome.

Le principe de seuillage consiste à faire une transformation point par point du bitmap (matrice qui forme l'image) de l'image en attribuant une valeur « unité » pour les points qui ont un niveau de gris, comprise entre le seuil maximum et le seuil minimum, et une valeur « nulle » pour le reste des pixels comme cité précédemment.

Les micrographies d'analyses sont traitées par un logiciel de traitement d'images adobe Photoshop, pour mettre en évidence les couches en présence, et éviter ainsi des erreurs commises généralement lors de l'opération de seuillage.

<u>2.4.7. Diffraction rayons –X</u>

2.4.7.a) Principe de diffraction des rayons-X

Les radiations X résultent de l'interaction électron-matière. Ce phénomène a été exploité pour caractériser les matériaux. Un échantillon exposé aux radiations X se comporte d'une manière typique.

On constate qu'un rayon incident de longueur d'onde λ et d'un angle d'incidence nul par rapport à l'axe de référence est dévié de sa trajectoire une fois en contact avec l'échantillon, on parle alors de faisceau diffracté. L'angle correspondant à la nouvelle trajectoire du faisceau est l'angle diffracté caractéristique d'un élément ou d'un composé.

Un détecteur de rayon X est placé dans l'espace à une position ne lui permettant de détecter que les radiations diffractées faisant un angle 20 avec le faisceau incident. Ainsi, à chaque orientation θ de l'échantillon par rapport à sa position initiale correspond un faisceau diffracté 20.

Le résultat d'un tel traitement est enregistré sous forme d'un tableau donnant les intensités des faisceaux diffractés avec les angles 20 leur correspondant.

L'angle de diffraction 20 permet de définir le réseau de Bravais des phases et défini les plans cristallographiques responsables de la déviation du faisceau. Ainsi seul l'axe des abscisses (20) ne donne qu'une appréciation qualitative des phases présentes une analyse quantitative nécessite l'introduction du paramètre intensité diffracté.

2.4.7.b) Analyse quantitative des phases

L'intensité diffractée des rayons X dépend de :

- la structure cristalline de la phase.
- le plan cristallographique diffractant (les indices (h,k,l) du plan réticulaire).
- la surface occupée par la phase dans le volume analysé.
- les paramètres instrumentaux.

Pour notre travail le diffractomètre utilisé était X'PERT PRO MPD de la compagnie Philips. Il est composé d'une source de rayons-X, d'une chambre où les échantillons seront déposés et d'un détecteur qui enregistrera l'intensité lumineuse diffractée en fonction de l'angle de diffraction. L'acquisition de données se fera sur ordinateur grâce à un logiciel réalisé en language de programmation graphique. la source de rayons-X est une cible de cuivre bombardée par des électrons. Ces électrons sont émis par un filament de tungstène dans lequel circulera un courant d'intensité de 14 mA et sont ensuite accélérés par un potentiel de 40 KV. Environ 2% des électrons émis contribueront à exciter le cuivre, le reste sera perdu en chaleur. Cela explique que le refroidissement à l'eau doit fonctionner lors des manipulations. En se désexcitant, le cuivre pourra émettre trois longueurs d'onde dans les rayons-X:

La troisième sera filtrée de sorte que seules les deux raies K_{α} frapperont l'échantillon. La raie $K_{\alpha 1}$ est environ deux fois plus intense que la raie $K_{\alpha 2}$. la valeur pondérée est 1.5418 Å. Les mesures par diffraction à Rayons-X exigent une bonne planéité de la surface d'analyse pour une détermination précise des intensités diffractées. Toutefois, en pratique ces surfaces ne sont pas parfaitement planes.

2.4.7.c) Paramètres de mesures

Tension/Intensité du tube: 40 KV/40 mA

Radiation K_{α} du cuivre: 1.54056 Å

Filtre: Nickel

Pas angulaire: 0.02°

Temps de comptage: 1S

Température d'analyse: 25°C.

Les phases existantes sont déterminées en faisant usage des fiches PDF (Powder Diffraction Data) de « International Center For Diffraction Data » et des fiches ASTM (American Society For Testing and Materials).

2.4.8. Test d'usure

Un test d'usure à été effectué afin de comparer la résistance à l'usure avant et après traitement.

L'appareil utilisé à été du type pion-disque (figure 2.16). Vu la forme géométrique nécessaire pour réaliser le test, ce dernier n'a pu être réalisé que sur l'acier 23MCD5.

La charge utilisée était 935g, ce qui provoque des contraintes largement loin des limites élastiques de l'acier, la dureté du pion a été 70 HRC.

Pour calculer la perte de masse, on a utilisé une balance de précision (incertitude $\Delta m = \pm 0.1 \text{ mg}$).

Le test est réalisé comme suit:

- on pèse l'échantillon concerné au moyen de la balance de précision.

- on fixe l'échantillon par les mâchoires de la machine.

- on introduit la charge par la partie supérieure de l'axe portant le pion, et on veille qu'elle soit perpendiculaire à ce dernier.

- on lance le test, le pion frotte la surface de l'échantillon tout en mesurant le temps.

- après écoulement du temps, on nettoie l'échantillon et on le pèse au moyen de la balance de précision.

La différence de masse avant et après le test est ∆m recherchée. Il est à noter que la machine d'usure est dotée d'un chronomètre incorporé, mais n'étant pas opérationnel, on a été contraint d'utiliser un chronomètre manuel pour mesurer le temps.

Figure 2.16 : Machine utilisée dans le test d'usure

Figure 2.17 : Balance de précision utilisée dans le test d'usure

CHAPITRE 3

RESULTATS ET INTERPRETATIONS

3.1. Micrographies optiques

Figure 3.1 : Micrographie optique d'un échantillon d'acier 23MCD5 traité pour 6 heures à la température de 550°C

Figure 3.2 : Micrographie optique d'un échantillon d'acier 23MCD5 traité pour 8 heures à la température de 550°

Figure 3.3 : Micrographie optique d'un échantillon d'acier 23MCD5 traité pour 10 heures à la température de 550°C

Figure 3.4 : Micrographie optique d'un échantillon d'acier 23MCD5 traité pour 12 heures à la température de 550°C

Figure 3.5 : Micrographie optique d'un échantillon d'acier X30WCrV53 traité pour 6 heures à la température de 550°C

Figure 3.6 : Micrographie optique d'un échantillon d'acier X200CrMoV12 traité pour 6 heures à la température de 550°C

Figure 3.7 : Micrographie optique d'un échantillon d'acier X200CrMoV12 traité pour 10 heures à la température de 550°C

Les micrographies optiques (Figures 3.1 à 3.7) montrent l'existence d'une couche nitrurée pour les trois aciers traités, sa nature, sa dureté, et son épaisseur dépend de la composition chimique de l'acier.

Pour l'acier 23MCD5, on constate une couche de combinaison (couche blanche), non attaqué par le nital, claire et uniforme pour la majorité des plages observées, la non uniformité de cette couche dans certains plages s'explique par une certaine rugosité de la surface.

La couche de combinaison pour cet acier est d'une épaisseur allant de 5 à 11 µm pour les différents temps de traitements, l'épaisseur maximale à été atteinte pour un temps de traitement de 12 heures, et à été 11 µm comme cité précédemment.

Sous la couche de combinaison, on constate l'existence d'une zone noircie par le nital, c'est la zone de diffusion, son épaisseur varie entre 134 et 181 µm.

En faisant un grossissement plus fort, en constate l'existence des nitrures dispersés dans la phase ferritique (nitroferrite), les limites de cette zone ne sont pas facilement distinguées, ce qui est commode [60], et l'épaisseur maximale atteinte (181 µm), à été obtenue pour le temps de traitement de 12 heures.

Enfin, le métal de base apparaît sous la zone de diffusion, la différence de l'épaisseur conventionnelle obtenue par les profils de microdureté, et celle obtenue par l'imagerie optique est une conséquence des limites du microscope optique, c'est-à-dire qu'on est on présence d'une sous-couche qui a été le siège d'une diffusion limitée.

Pour l'acier X30WCrV53, la microscopie optique montre une couche de combinaison plus ou moins épaisse, accompagnée d'une minceur dans certains plages, son épaisseur varie entre 21 et 35 µm, son évolution à été très marquée entre les temps de traitements de 10 à 12 heures.

L'épaisseur de la zone de diffusion dans cet acier à été 121 à 182 µm, la différence des rapports entre les épaisseurs de la couche de combinaison et la zone de diffusion pour l'acier X30WCrV53 et l'acier 23MCD5 est très marquée, on peut attribuer ce constat à la présence du vanadium dans le l'acier X30WCrV53 et son absence dans le 23MCD5 [62], ceci pour des teneurs proches en chrome.

Pour l'acier X200CrMoV12, on constate la quasi absence de la couche de combinaison, c'est le résultat évident dû à la forte teneur en éléments d'alliages.

La zone de diffusion est particulièrement claire pour cet acier.

On peut remarquer la dispersion des nitrures dans la zone de diffusion (composés fins) et les carbures dans le métal de base (composés grossiers).

L'épaisseur maximale de la zone de diffusion pour cette nuance acier a été 215 μ m pour le temps de traitement de 12 heures tandis qu'une épaisseur de 96 μ m a été atteinte pour le temps de traitement de 6 heures. On observant l'évolution de l'épaisseur dans le temps, on constate l'augmentation la plus grande (53 μ m) dans l'intervalle de temps de 10 à 12 heures, on s'attendait alors à une épaisseur plus importante pour des temps de traitements supérieurs, c'est-à-dire qu'on est encore loin de la saturation.

3.2. Epaisseurs des couches borocarbonitrurées

zowobo, determinees par analyse a mages						
	Epaisseur de	Epaisseur de la				
Temps (heures)	la couche de	couche de				
	diffusion (µm)	combinaison (µm)				
6	134	5				
8	148	7				
10	164	8				
12	181	11				

Tableau 3.1: Epaisseurs de la couche borocarbonitrurée de l'acier 23MCD5, déterminées par analyse d'images

Xeerrer vee determinede par analyse a magee						
Temps (heures)	Epaisseur de la zone de diffusion (µm)	Epaisseur de la couche de combinaison (µm)				
6	121	20				
8	133	21				
10	148	25				
12	182	31				

Tableau 3.2 : Epaisseurs de la couche borocarbonitrurée de l'acier X30WCrV53 déterminées par analyse d'images

Tableau 3.3 : Epaisseurs des couches borocarbonitrurées de l'acier X200CrMoV12 déterminées par analyse d'images

Temps (heures)	Epaisseur de la zone de diffusion (µm)	Epaisseur de la couche de combinaison (µm)
6	96	-
8	110	-
10	153	-
12	215	-

3.3. Profils de microdureté

Figure 3.8 : Profils de microdureté de l'acier 23MCD5 traité pour les différents temps à la à la température de 550°C

Figure 3.9 : Profils de microdureté de l'acier X30WCrV53 traité pour les différents temps à la à la température de 550°C

Figure 3.10 : Profils de microdureté de l'acier X200CrMoV12 traité pour les différents temps à la à la température de 550°C

sous la zone de diffusion

Figure 3.11 : Micrographie optique montrant la différence de dureté entre la couche nitrurée et la sous-couche d'un échantillon traité

Les figures 3.8 à 3.10 montrent les profils de microdureté pour les trois nuances d'aciers étudiés, la microdureté fonction de l'épaisseur de l'échantillon est toujours décroissante, ceci est évident, vu la présence des nitrures seulement dans partie superficielle de ce dernier et leur absence au cœur du matériau traité.

La figure 3.11 montre l'empreinte laissé par le pénétrateur en diamant du microduromètre sur la couche nitrurée et la sous-couche d'un échantillon traité, le rapport des diamètres du losange, est comparable aux rapports de dureté entre la surface et le cœur.

Pour les trois nuances d'acier on a obtenu toujours une augmentation claire et signifiante de la dureté à la surface après traitement, dans les intervalles typiques de dureté (voir §1.3.6).

La forme des courbes diffère selon la nuance d'acier, les courbes de la nuance X200CrMoV12 sont particulièrement intéressantes, vu la chute brutale de la dureté après un seuil d'épaisseur, ceci est dû à notre avis à la forte teneur en chrome.

Angle 20(?) Figure 3.13 : Diffractogramme de l'acier X30WCrV53 traité pour 6 heures à la température de 550°C

Figure 3.14 : Diffractogramme de l'acier X200CrMoV12 traité pour 6 heures à la température de 550°C

3.5. Cinétique de formation des couches

La cinétique de croissance des couches de diffusion suit la loi parabolique [40-53-63] donnée par la relation:

$$e = \sqrt{Dt}$$

où: e: épaisseur de la couche obtenue par traitement.

D: coefficient de diffusion spécifique pour chaque température

t: temps de traitement.

3.5.1 Coefficient de diffusion

Pour déterminer le coefficient de diffusion on considère l'épaisseur conventionnelle de la couche traité qui n'est pas forcément la même épaisseur déterminée par les méthodes visuelles (échelle microscopique, analyse d'image...etc).

L'épaisseur conventionnelle est considérée comme étant l'épaisseur allant de la surface traitée jusqu'à la profondeur ayant une dureté excédant celle du cœur de 10% [64-65].

Cette grandeur est l'épaisseur allant de la surface traitée jusqu'à la profondeur ayant une dureté excédant celle du cœur de 50 HV pour d'autres références [66-69].

Pour certains auteurs c'est l'épaisseur allant de la surface jusqu'à la profondeur ayant une dureté excédant celle du cœur de 100 HV [20-38].

Enfin certains métallurgistes traiteurs considère cette épaisseur, comme étant l'épaisseur allant de la surface jusqu'à une profondeur ou la dureté est égale à 513HV [30].

Vu le nombre de citations des différentes considérations, on a choisi de considérer l'épaisseur conventionnelle comme étant l'épaisseur allant de la surface traitée jusqu'à la profondeur ayant une dureté supérieur de 50 HV à celle du cœur. En exploitant les profils de microdureté on a obtenue les tables suivantes:

Temps (heures)	Epaisseur (µm)
6	186
8	190
10	211
12	233

 Tableau 3.4 : Epaisseur conventionnelle de la couche borocarbonitrurée de l'acier 23MCD5 déterminée à partir des profils de microdureté.

Tableau 3.5 : Epaisseur conventionnelle de la couche borocarbonitrurée de l'acier X30WCrV53 déterminée à partir des profils de microdureté.

Temps (heures)	Epaisseur (µm)
6	168
8	173
10	181
12	201

Temps (heures)	Epaisseur (µm)
6	141
8	153
10	183
12	203

Tableau 3.6 : Epaisseur conventionnelle de la couche borocarbonitrurée de l'acier X200CrMoV12 déterminée à partir des profils de microdureté.

3.5.2 Les courbes cinétiques

Figure 3.16 : Courbe cinétique de l'acier X30WCrV53

3.5.3 Le logiciel GRAPHPAD PRISM

GRAPHPAD PRISM est un logiciel très puissant conçu pour les ajustements de courbes (curve fitting), l'interpolation, l'extrapolation, ainsi que l'analyse de données et les statistiques.

L'utilisateur à un grand choix quant à l'utilisation de modèle prédéfini, il peut même définir son propre modèle pour trouver la meilleure courbe se rapprochant de ses données représentées sur un repère plan.

GRAPHPAD PRISM utilise les formules et les méthodes d'analyse numérique (GAUSS, NEWTON...etc.) pour trouver le meilleur fit mais en utilisant un nombre énorme d'itérations conduisant à une précision meilleure. Il donne également une estimation de l'erreur et permet à l'utilisateur d'essayer un autre modèle si les résultats paraissent loin des données.

Figure 3.18 : Page d'accueil du logiciel GRAPHPAD PRISM

Pour notre travail on a utilisé une version d'évaluation GRAPHPAD PRISM 5 DEMO.

<u>3.5.3.a) Etapes du calcul du coefficient de diffusion en utilisant le logiciel</u> <u>GRAPHPAD PRISM</u>

- La saisie de données

🕏 Gra	phPad Pri	sm - [Project1	:courl	ie ópais	sseur-temps]	_	_	_		_	_		- 7 X
间 Ele	Edt yew	Insert ⊆hangs	e <u>A</u> nna	nge 👾	ndow <u>H</u> elp								_ 8 X
Prism	File	Sheet	Und	Clpb	oard Analysis	Change	Import	Draw Write		Text		Export Prin	t Send
	1.0	2824	 C1 	- X 🛙) kk	몽대권 지-	1	1 va 🖬 🕅	Q. 🗆 🗸 I		$\times A$	ା _ାରୀ ବି	0.0
- 66C		× ⊹nov•	12.	00	Analyze	iii 🖉 🖉 🖓 🗟 123	252	D. TI	αĂĂΙ	B I ∐ X ²)	反動動量	- 16× 6	22
10 Ga	Family		Tabi	e format:	X	A	B	С	D	E	F	G	H-
80	Data Tables			XY	temps(heures)	épaisseur(cm)	Title	Title	Title	Title	Title	Title	Tit
80	info	epaisseur-tem	1		x	Y	Y	Y	Y	Y	Y	Y	Y
174	O Project i	nfo 1	1	Title		0.0000	~						
-0	Results		2	Title		6 0.0140							
-0	Graphs E2 countro	Analorana kano	3	Title	(8 0.0165	}						1
0	Layouts	epassear-ten	4	Title		0 0.0174							
-			5	Title		2 0.0189	/						
			6	Title		<u> </u>							
			7	Title									
			8	Title									1.1
			9	Title									
			10	Title									
			11	Title									
			12	Title									
			13	Title									
			14	Title									
			15	Title									
			16	Title									
			17	Title									
			18	Title									
			19	Title									
			20	Title								-	
			21	Title									
			22	Title									
			23	Title									
			24	Title									
1			26	Taba									×
	1		3	- 10		24							3
• B		∢ ▶	R a	<i>₽</i> •Ш		courbe épaisseur-ten	105	M Row 27, C	olumn G				66
10	lémarre	7	eminat	_ R	Résidents	5. GraphPad	🖞 Sanstère -	🔁 ebas	(M		FR 🐔	S. 2 2 2	9 16-37

Figure 3.19 : Remplissage des champs de saisie de données

- Le tracé de la courbe cinétique avant analyse

Figure 3.20 : Tracé de la courbe de données avant de réaliser le fit

- Définition de l'équation d'analyse non- linéaire

😓 GraphPad Prism -	[Project1:courbe épaisseur-temps]	_ 6	r ×
	Steel, Unio Opboard Analysis Ohange Arrange Draw Write Text @ 2 2 - O Durawasters: Hostionar Responsion User defined Equation		end - 🎱
Innty Outs Tables Outs Tables Outs Tables No Setup Results Outs dyname Outs dyname Outs dyname Outs dyname Outs dyname Layouts	Equation Rules for Initial Values Default Constraints Transforms to Report		
	(Y=0%)05		
	Clone this equation Edit equation Help Close	6	× 0
👍 démarrer	🖏 Graph Pad Prism - (Pr 🕥 scellsiert de diffusio	R SEREPE:	

Figure 3.21 : Définition de l'équation d'analyse utilisée pour le fit

- Le tracé de la courbe après l'analyse

Figure 3.22 : Tracé de la courbe d'analyse selon l'équation défini

- Résultats et estimation de l'erreur

Ele	Edit Yow	Insert Change	Arran	e <u>₩</u> indow	Help								- 1
risn	File	Sheet	Undo	Cipboard	Analysis	Interpret	Change	Draw	Write		Text	Export	Print Ser
k-]]•∂ 	∠爱2≯· × ☆Nem ·	(il - 12) -	X 6 1	区と 三Anahza 知	*		 □•	να 🖻 🔍 [ΤΠα	A A B / U	X ² X ₂		음 @• 응 문
Ge a	and a			-			A		B	С	D	E	F
20	ata Tables		恤		Nonlin fit		épaisseur/c	m)	Title	Title	Title	Title	Title
7-6	🗋 courbe	épaisseur-temį					Y		Y	Y	Y	Y	Y
0	nfo Bit faceiost is	4.1	1	coefficient o	le diffusion					-			
-	gi Projeccii Iesuits	NO 1	2	Baet-fit valu	ar and a state	-			_	_			
Ξī	Nonlin f	it of courbe épa	3	D	/	- 31	1326,005	1					
0	iraphs		4	Std Error	1	<u> </u>		~					
al	Courbe avoits	epaisseur-temį	5	D		8.6	3516.007			_			
	01000		6	95% Confid	ence Intervals	0.	2016-007						
			7	D	ence interioro	28	91e-005 to 3.37	2e-005		-			
			8	Goodness	of Fit								
			9	Decrees	of Freedom	4				_			
			10	Ra		0.9	964						
			11	Ahsoluti	a Sum of Sauar	8.8	504e-007					1	
			12	Se x	o com or oquar	01	1004538			-			
			13	Number of r	nointe	0.1				-			
			14	Analyze	d.	5				_			
			15	Analyze	•	-				-			
			16										
			17							_			
			18							-			
			19										
			20							-			
			21							_			
			22										
			23						-			-	
			24										
			25							-			
-		2	٢	La al	- I calcali			_	_				_
1 22		< ▶	R 8			nlin fit of cou	rbe épaisseur-temp	Y V	Table of results				۲

Figure 3.23 : La valeur du coefficient de diffusion calculée et estimation de l'erreur

3.5.3.b) Explication des résultats de l'analyse

- L'erreur standard:

GRAPHPAD PRISM calcule l'erreur standard pour les paramètres du modèle choisi (un seul paramètre dans notre cas) en se basant sur les facteurs suivants:

 la dispersion des points de données autour de la courbe quantifiée par la somme des carrés.

 le nombre de points de données, l'erreur étant inversement proportionnelle à ce dernier.

 les valeurs de X choisis (t dans notre cas), l'erreur standard est influencée non seulement par le nombre de points de données, mais aussi par leurs abscisses.

Quelques paramètres sont définit surtout par les premiers valeurs de X, d'autres par les dernières valeurs.

- Intervalle de confiance:

L'intervalle de confiance donne une idée sur la vraie courbe ajustée qui ne peut être connu exactement qu'en ayant une infinité de points. GRAPHPAD PRISM donne l'intervalle qui peut avoir 95% de chance de contenir les points de données. En pratique, si l'intervalle est trop large, alors il vaut mieux procéder à un autre modèle ou bien augmenter le nombre d'expériences. L'intervalle de confiance est calculé à partir de l'erreur standard selon l'équation:

$$M_F - t^* \cdot E_S \dot{a} \quad M_F + t^* \cdot E_S$$

où:

E_S : l'erreur standard.

M_F: le meilleur fit.

t^{*}: un coefficient constant dépendant du degré de liberté.

La somme des carrés:

Notée (ss), c'est la somme des carrées des distances verticales entre les points de données et la courbe du meilleur fit.

On exprime (ss) par l'unité de Y élevée au carré. Le logiciel fait varier les paramètres du modèle pour minimiser (ss).

La somme des carrés est utile pour comparer les différents modèles utilisés pour le même ensemble de données.

- La moyenne quadratique:

C'est la déviation standard des distances verticales entre les points de données et la courbe du meilleur fit.

La moyenne quadratique (S_{y,x}), est calculée à partir de la somme des carrés selon l'équation suivante:

$$s_{y,x} = \sqrt{\frac{ss}{N-P}}$$

où:

ss: la somme des carrés.

N: le nombre de paramètres du modèle.

P: le nombre de points de données.

- Le coefficient de détermination:

Le coefficient de détermination (R²) quantifie la fiabilité du fit. R² est une fraction entre 0,0 et 1,0. une valeur élevée de R² indique que la courbe est proche des points de données.

Quand R² est nul , la courbe du meilleur fit n'est pas mieux qu'une ligne horizontale passant par la moyenne des valeurs de données (Y), dans ce cas-ci, connaître X n'aide pas à prédire Y.

Quand R² est égal à 1, tous les points de données coïncident avec la courbe, si on connaît X, on peut calculer exactement la valeur de Y.

R² est calculé à partir des sommes des carrés (ss). Une autre somme de carrés est calculée à partir de la courbe horizontale passant par la valeur moyenne de Y et appelée (ss_{tot}).

Alors le coefficient de détermination est calculé comme suit:

$$R^2 = 1 - \frac{ss}{ss_{tot}}$$

<u>3.5.3.c) valeurs des coefficients de diffusion déterminées par le logiciel</u> <u>GRAPHPAD PRISM</u>

Tableau 3.7 : valeurs des coefficie	ents de diffusion	déterminées par le logiciel
GRA	PHPAD PRISM	

acier	23MCD5	X30WCrV53	X200CrMoV12
Coefficient de diffusion D(cm ² h ⁻¹)	4,698×10⁻⁵	3,632×10⁻⁵	3,275×10⁻⁵

L'estimation de l'erreur donnée par le logiciel GRAPHPAD PRISM est la suivante:

Tablead 3:0 : Estimation de l'enedi donnée par le legicler GNALTH AD I NIOM							
acier	23MCD5	X30WCrV53	X200CrMoV12				
SE	2,272×10 ⁻⁶	2,406×10 ⁻⁶	9,819×10⁻ ⁷				
R ²	0,9887	0,9786	0,9958				
SS	3,955×10 ⁻⁶	5,738×10 ⁻⁶	1,060×10 ⁻⁶				
S _{y,x}	0,000944	0,001198	0,0005148				

Tableau 3.8 : Estimation de l'erreur donnée par le logiciel GRAPHPAD PRISM

<u>où:</u>

SE: l'erreur standard.

R²: le coefficient de détermination

SS: la somme des carrés.

 $S_{y,x}$: la moyenne quadratique.

3.5.3.d) Les courbes d'analyse déterminées par le logiciel GRAPHPAD PRISM

Figure 3.24 : Courbe cinétique de l'acier 23MCD5 avec la courbe correspondante déterminée par le logiciel GRAPHPAD PRISM

Figure 3.25 : Courbe cinétique de l'acier X30WCrV53 avec la courbe correspondante déterminée par le logiciel GRAPHPAD PRISM

Figure 3.26 : Courbe cinétique de l'acier X200CrMoV12 avec la courbe correspondante déterminée par le logiciel GRAPHPAD PRISM

3.5.4. Les courbes épaisseur- racine carrée du temps

Figure 3.27 : Courbe épaisseur-racine carrée du temps de l'acier 23MCD5

Figure 3.28 : Courbe épaisseur-racine carrée du temps de l'acier X30WCrV53

En se rapportant à la formule citée précédemment : $e = \sqrt{Dt}$ la pente des courbes tracées sera \sqrt{D} , c'est une autre façon de calculer le coefficient de diffusion, on obtient ainsi les résultats suivant:

 Tableau 3.9 : Valeurs des coefficients de diffusion déterminées à partir des courbes épaisseur-racine carrée du temps

acier	23MCD5	X30WCrV53	X200CrMoV12
Coefficient de diffusion D(cm ² h ⁻¹)	4,81×10⁻⁵	3,63×10⁻⁵	3,32×10⁻⁵

Pour tenir compte des deux méthodes et minimiser l'erreur commise, on a choisi de prendre la moyenne entre les résultats (qui sont comparables).

Tableau 3.10 : Valeurs des coefficients de diffusion tenant compte des deuxméthodes utilisées

acier	23MCD5	X30WCrV53	X200CrMoV12
Coefficient de diffusion D (cm ² h ⁻¹)	4,754×10 ⁻⁵	3,691×10 ⁻⁵	3,298×10 ⁻⁵

3.6. Influence des éléments d'alliage sur la valeur du coefficient de diffusion

Tableau 3.11 : Teneurs en éléments d'alliage pour les trois aciers étudiés et valeurs correspondantes des coefficients de diffusion.

acier	∑x _i (%)	D (cm ² h ⁻¹)
23MCD5	2.40	4,754×10 ⁻⁵
X30WCrV53	3.47	3,691×10⁻⁵
X200CrMoV12	13.35	3,298×10⁻⁵

Figure 3.30 : Influence de la teneur en éléments d'alliage sur la valeur du coefficient de diffusion

Le tableau 3.11 montre les résultats des calculs des coefficients de diffusion effectués pour les trois nuances d'aciers étudiés à la température de traitement (550°C), tandis que la figure 3.30 illustre l'influence des éléments d'alliage sur ces coefficients. On remarque bien que la fonction D ($\sum x_i$) est décroissante, confirmant le fait que les éléments d'alliage gênent la diffusion de l'azote en occupant les sites interstitiels entre les atomes de la matrice.

3.7. Effet du temps de traitement sur la dureté superficielle des aciers

Tableau 3.12 : dureté superficielle de l'acier 23MCD5 au cœur et aux différ	ents
temps de traitement.	

temps(heure)	0	6	8	10	12
dureté superficielle (HV)	350	600	715	720	760

Tableau 3.13 : dureté superficielle de l'acier X30WCrV53 au cœur et aux différents temps de traitement.

temps(heure)	0	6	8	10	12
dureté superficielle (HV)	690	1130	1130	1135	1140

Tableau 3.14 : dureté superficielle de l'acier X200CrMoV12 au cœur et aux différents temps de traitement.

temps(heure)	0	6	8	10	12
dureté superficielle (HV)	555	1140	1133	1025	1100

Cet effet peut être illustré par les courbes suivantes:

Figure 3.31 : Dureté superficielle en fonction du temps de l'acier 23MCD5

Figure 3.32 : Dureté superficielle en fonction du temps de l'acier X30WCrV53

Figure 3.33 : Dureté superficielle en fonction du temps de l'acier X200CrMoV12

Les figures 3.31 à 3.33 montrent l'évolution de la dureté superficielle en fonction du temps de traitement.

La dureté à la surface des échantillons traités dépend du temps et de la température [65], cette dernière est choisie fixe (550°C) pour notre étude.

Pour la nuance d'acier 23MCD5 l'évolution est convaincante, la dureté évolue avec le temps, sans présenter une asymptote claire, ceci confirme la courbe cinétique de cette nuance d'acier (figure 3.15), montrant que la saturation n'est pas encore atteinte à 12 heures, on s'attendait alors à une croissance de la couche et une augmentation de la dureté au delà de 12 heures de traitement (ce qui n'a pas été fait expérimentalement).

La dureté de la nuance X30WCrV53 ne semble pas être affecté par le temps de traitement la valeur de 690 HV est vite atteinte pour 6 heures de traitement, l'allure asymptotique de la courbe cinétique de cette nuance (figure 3.16) le confirme.

La nuance X200CrMoV12 présente une courbe cinétique croissante jusqu'au temps de traitement de 8 heures, puis on constate une diminution légère de dureté qui peut être expliquée par un grossissement de précipités [70-71], qui peut être conjugué à la continuité de la diffusion dans une autre région de l'échantillon.

3.8. Comparaison de duretés entre surface et cœur des aciers traités

Figure 3.34 : Duretés comparées entre cœur et surface pour les trois aciers étudiés

3.9. Test d'usure

Le tableau 3.15 ainsi que la figure 3.35 exposent les résultats du test d'usure, mené à l'état non lubrifié pour l'acier 23MCD5.

On remarque l'écart entre les valeurs numériques de la perte de masse entre les échantillons non traités et ceux borocarbonitrurés, ce qui prouve l'efficacité du traitement.

Pour la première ligne du tableau (durée du test: 1 minute), le rapport entre la perte de masse de l'échantillon brut et celui borocarbonitruré est égal à trois environ.

Vu la durée du test et les résultats de la diffraction des rayons-X on attribue ce constat à la nature de la phase ε , présente dans la couche de combinaison qui se caractérise par sa bonne résistance à l'usure.

La deuxième ligne (durée du test: 3 minutes), montre que ce rapport a à peu prés doublé, la couche de combinaison résiste encore à l'arrachement de la matière, la différence entre ces deux rapport peut être expliquée par le chauffage à la surface de l'échantillon brut (le test est effectué sans lubrification) et la dispersion non uniforme des nitrures ε .

Enfin, pour la durée de 6 minutes, la perte de masse est très proche de celle du cœur de l'échantillon trempé revenu, on imagine que le passage de la couche de combinaison vers le cœur a été rapide vu que la zone de diffusion n'a qu'une

résistance modérée à l'usure, l'effet du traitement sur cette propriété se limite à l'extrême surface de l'échantillon.

Les résultats du test d'usure sont les suivants:

	(8 he	ures de traitement)	
		Perte de masse (m	g)
Temps(mn)	échantillon non	échantillon trempé	échantillon
	traité	revenu	borocarbonitruré
1	3,1	2,1	1,3
3	18,0	6,9	2,7
6	30,8	10,2	7,3

Tableau 3.15 : Résultats du test d'usure obtenus pour l'acier 23MCD5

Figure 3.35 : Illustration des résultats du test d'usure effectué pour l'acier 23MCD5

CONCLUSION

On peut tirer les conclusions suivantes de ce présent travail:

- La borocarbonitruration par la méthode des poudres est réalisable pour les nuances d'aciers étudiés. Les couches obtenues sont typiques, mais avec des épaisseurs moindres par rapport aux méthodes classiques (gazeuse, ionique, ou en bains de sels).

Pour déterminer l'épaisseur des couches obtenues, une méthode d'analyse d'image a été utilisée en binarisant les microstructures des échantillons traités et en effectuant un seuillage des couches visibles, puis à l'aide du logiciel KS-phase une moyenne des segments équidistants entre les limites de chaque couche a été calculée, aboutissant ainsi à un résultat précis.

On remarque que les épaisseurs des couches augmentent avec le temps de traitement, pour la nuance 23MCD5, la couche de combinaison varie entre 5 et 11 µm tandis que la zone de diffusion s'étend sur un intervalle de 134 à 181 µm.

La nuance X30WCrV53 a présenté après traitement une couche de combinaison moins uniforme d'une épaisseur de 20 à 31 µm et une zone de diffusion de 121 à 182 µm.

La couche de combinaison a été quasi absente pour la nuance X200CrMoV12, seulement une zone de diffusion d'épaisseur allant de 96 à 125 μ m a été obtenue. La DRX a montré pour les trois nuances d'aciers étudiés que la couche de combinaison est constituée seulement du nitrure ϵ (Fe₂₋₃N), ce qui a été attribué à la composition chimique du substrat, l'élément actif étant seulement l'azote; on peut affirmer que la borocarbonitruration est en fait une nitruration.

 - une augmentation nette de dureté superficielle (sans qu'elle soit très grande) a été constatée pour les trois nuances d'aciers étudiés, l'allure des profils de microdureté dépend fortement des éléments d'alliage, particulièrement de la teneur en carbone.

- le coefficient de diffusion D a été calculé selon la formule conventionnelle $e = \sqrt{Dt}$ pour les trois nuances d'acier étudiés en utilisant le logiciel GRAPHPAD PRISM, les résultats ont montré que la valeur de ce coefficient est inversement proportionnelle à la teneur en éléments d'alliage.

 le test d'usure réalisé sur la nuance 23MCD5 traité et non traité montre que la perte de masse est minime à l'extrême surface, ceci illustre l'effet de la couche de combinaison constitué uniquement du nitrure ε (Fe₂₋₃N).

Des études plus poussées peuvent être menées sur plusieurs axes, notamment pour:

- Des températures plus élevées.
- Des temps de traitement plus étendus.
- Des calculs énergétiques, optimisant le temps et la température de traitements, selon les propriétés ciblées.
- De l'effet du traitement sur la résistance à la corrosion.

APPENDICE A

LISTE DES SYMBOLES

D	: coefficient de diffusion
D_0	: facteur de fréquence
Es	: erreur standard.
HRC	: dureté RockWell
ΗV	:dureté Vickers
I	: intensité d'énergie
M_F	: le meilleur fit.
M_f	: fin de la transformation martensitique
M_{s}	: début de la transformation martensitique
Р	: Charge
Q	:énergie d'activation
R	_: constante molaire des gaz (8,32 J. K ⁻¹ ·mol ⁻¹)
R^2	: coefficient de détermination
$S_{y,x} \\$: moyenne quadratique
Т	: température absolue de diffusion
T_{f}	: température de fusion
Y	: fraction surfacique de phase
С	: concentration atomique
d	: diagonale de l'empreinte
е	: épaisseur de la couche nitrurée
SS	:somme des carrés
t	: temps
ť	: coefficient constant dépendant du degré de liberté.
3	: nitrure Fe ₂₋₃ N
γ'	: nitrure Fe₄N
φ	: angle entre deux faces opposées du pénétrateur
λ	: longueur d'onde
θ	: angle d'incidence

APPENDICE B

LISTE DES SIGLES ET ACRONYMES

- ASTM : american society for testing and materials
- TTT : transformation-temps-température
- ATTT : association technique du traitement thermique
- ASM : american society for metals
- CETIM : centre technique des industries mécanique
- LSTM : laboratoire de surfaces et traitements de matériaux
- PDF : powder diffraction data
- MKS : mètre-kilogramme-seconde
- CGS : centimètre-gramme-seconde
- FGL : fonte à graphite lamellaire
- FGS : fonte à graphite sphéroïdale
- FGV : fonte à graphite vermiculaire
- FMB : fontes malléables à cœur blanc
- FMN : fonte malléable à coeur noir

APPENDICE C

LISTE DES ELEMENTS CHIMIQUES

- Fe : fer
- C : carbone
- N : azote
- Na : sodium
- O : oxygène
- H : hydrogène
- B : bore
- K :potassium
- I : iode
- Cr : chrome
- Si : silicium
- AI : aluminium
- Ti : titane
- W : tungstène
- Cl : chlore
- Mn : manganèse
- V : vanadium
- Mo : molybdène
- Ni : nickel
- S : soufre

APPENDICE D

INTENSITES DE DIFFRACTION DE L'ACIER 23MCD5

(Pour chaque colonne: à gauche, l'intensité de diffraction, à droite, la valeur de 2θ)

0140	20040	2004	04 000	0400	00770	0445	04450			0405	00.040	0074	00000	0404	00070	20004	04.050
2110	20.010	2201	21.390	2130	22.110	2115	24.150	2095	20.000	2125	20.910	20/1	28.290	2184	29.670	2021	31.000
2228	20.030	2213	21.410	2160	22.790	2184	24.170	2121	25.550	1988	26.930	1966	28.310	2124	29.690	2008	31.070
2191	20.050	2169	21.430	2143	22.810	2122	24.190	2140	25.570	2070	26.950	2072	28.330	2044	29.710	2037	31.090
2182	20.070	2158	21450	2179	22830	2126	24210	2051	25 590	2065	26970	2140	28350	2035	29730	2071	31 110
2152	20.000	2155	21.100	2110	22.000	2151	24.220	2104	25.610	2052	20.010	2160	20.000	2000	20.750	2002	21 120
2150	20.050	2150	21.4/0	2110	22.000	2101	24.200	2104	20.010	2000	20.990	2100	20.070	2020	29.750	2022	01.100
2201	20.110	2113	21.490	2180	22.8/0	2109	24.200	2120	20.030	2005	27.010	2100	28.390	2040	29.770	2087	31.150
2090	20.130	2240	21.510	2195	22.890	2095	24.270	2120	25.650	1983	27.030	2074	28.410	2020	29.790	2042	31.170
2193	20.150	2153	21.530	2151	22.910	2109	24.290	2070	25.670	2073	27.050	2092	28.430	2039	29.810	2024	31.190
2215	20 170	2172	21,550	2192	22,930	2040	24,310	2129	25690	2064	27 070	2068	28450	2075	29830	2123	31,210
2244	20.100	2124	21,570	2000	22.050	2104	2/1320	2019	25.710	2015	27,000	2000	28/170	2077	20.950	2001	21 220
2244	20.150	2104	21.5/0	2000	22.500	2104	24.000	2010	20.710	2013	27.000	2000	20.470	4007	29.000	2001	31.2.30
2234	20.210	2143	21.590	2104	22.9/0	2121	24.300	2060	25.730	2141	27.110	2007	28.490	1987	29.8/0	2018	31.250
2240	20.230	2165	21.610	2182	22.990	2157	24.370	1990	25.750	2070	27.130	2135	28.510	2040	29.890	2120	31.270
2226	20.250	2240	21.630	2061	23.010	2119	24.390	2087	25.770	2013	27.150	2058	28.530	2084	29.910	2014	31.290
2158	20.270	2162	21.650	2158	23.030	2146	24,410	2066	25.790	2075	27.170	2068	28.550	2066	29.930	2055	31.310
2003	20,200	2160	21670	2226	23.050	2006	24430	2032	25,810	2057	27 100	2070	28570	2007	20.050	1008	31 330
2000	20.200	2100	21.070	2101	20.000	2100	24.450	2105	20.010	2007	27.100	20/0	20.070	2001	20.000	2050	21 250
21/5	20.310	2100	21.090	2104	23.070	2120	24.400	2120	20.000	2130	27.210	2049	20.090	2004	29.9/0	2000	31.300
2329	20.330	2128	21.710	21/8	23.090	2086	24.470	2094	25.850	2112	27.230	2100	28.610	2027	29.990	2043	31.370
2120	20.350	2130	21.730	2135	23.110	2156	24.490	2062	25.870	2105	27.250	2093	28.630	2005	30.010	2020	31.390
2135	20.370	2223	21.750	2230	23.130	2168	24.510	1997	25.890	2029	27.270	2088	28.650	2064	30.030	1988	31.410
2173	20.390	2213	21.770	2195	23.150	2064	24,530	2118	25.910	2102	27.290	2116	28.670	2016	30.050	2011	31,430
2100	20410	2205	21700	2255	23 170	2122	24550	2182	25030	2015	27310	2026	28,600	2033	30.070	1070	31450
2150	20.420	2120	21.700	22.00	20.170	2122	24.500	1067	25.000	2010	27.010	2100	20.000	2000	20.000	2047	21 /70
2100	20.400	2129	21.010	2219	23.190	2100	24.570	1907	20.900	2000	27.330	2100	20.7 10	2000	30.090	2047	31.470
2231	20450	2112	21.830	2210	23.210	2089	24.590	2122	25.970	2072	27.350	2130	28.730	2024	30.110	2070	31.490
2184	20.470	2158	21.850	2139	23.230	2144	24.610	2062	25.990	1974	27.370	2001	28.750	2088	30.130	2002	31.510
2171	20.490	2162	21.870	2188	23.250	2162	24.630	2136	26.010	2055	27.390	2104	28.770	2006	30.150	2007	31.530
2188	20510	2181	21890	2208	23270	2089	24650	2127	26030	2110	27410	2089	28790	2098	30170	2051	31550
22/2	20.530	2201	21 010	2204	23.200	2080	24670	2150	26.050	2010	27/30	2067	28,810	2012	30.100	2030	31.570
2460	20.000	2201	21.010	2207	20200	2000	24.000	2000	20.000	2013	27.450	2007	20.010	2012	20.100	2000	21.5/0
2108	20.550	2147	21.930	2230	23.310	20/9	24.090	2090	20.070	2003	27.450	2122	28.830	2006	30,210	2009	31.590
2180	20.5/0	2201	21.960	2118	23.330	2142	24.710	2132	26.090	2138	27.470	2063	28.850	2067	30230	1988	31.610
2187	20.590	2220	21.970	2116	23.350	2062	24.730	2069	26.110	2000	27.490	2177	28.870	2068	30.250	2018	31.630
2237	20.610	2167	21.990	2174	23.370	2136	24.750	2041	26.130	2112	27.510	2069	28.890	2034	30.270	2136	31.650
2114	20630	2163	22010	2186	23.390	2138	24770	2152	26150	2152	27,530	2093	28.910	2012	30290	2036	31670
21/17	20,650	2080	22030	2154	23/10	2000	2/1700	2013	26170	2138	27.550	2080	28030	2030	30310	2012	31,600
217/	20.000	2000	22.000	2107	20.400	2000	24.130	2040	20.170	2100	27.500	1005	20.300	2005	20.010	2012	01.000
2194	20.670	2099	22.060	2182	23.430	2041	24.810	2008	20.190	2092	27.570	1995	28.900	2001	30.330	2000	31.710
2105	20.690	2176	22.070	2151	23.450	2058	24.830	2032	26.210	2139	27.590	2165	28.970	2039	30.350	1970	31.730
2191	20.710	2172	22.090	2077	23.470	2103	24.850	2070	26.230	2160	27.610	1954	28.990	2028	30.370	1994	31.750
2229	20.730	2166	22.110	2121	23.490	2066	24.870	2106	26.250	2092	27.630	1990	29.010	2079	30.390	2082	31.770
2181	20750	2166	22 130	2103	23510	1000	24,890	2085	26270	2081	27650	1040	29030	2059	30410	1044	31790
2176	20.770	2006	22.100	21/15	22,520	2068	24.010	2000	26200	2055	27.670	1000	20.000	2000	30/130	2026	21 210
21/0	20.770	2200	22.150	2140	23.300	2000	24.910	2007	20.290	2000	21.010	0000	29.000	2010	00.450	2020	31.010
2080	20.790	2162	22170	2101	23.550	2093	24.930	2115	20.310	2181	27.690	2038	29.070	2024	30.450	1978	31.830
2208	20.810	2124	22.190	2140	23.570	2070	24.950	2169	26.330	2132	27.710	2112	29.090	1979	30.470	2010	31.850
2128	20.830	2209	22.210	2193	23.590	2061	24.970	2075	26.350	2079	27.730	2098	29.110	2042	30.490	2000	31.870
2259	20.850	2215	22.230	2083	23.610	2105	24,990	2094	26.370	2075	27.750	2068	29.130	2014	30.510	2061	31.890
2121	20.870	2179	22250	2156	23630	2077	25010	2121	26390	2135	27770	2035	29150	2066	30530	2075	31 910
2121	20.0/0	21/0	22.200	2000	20.000	2011	20.010	2000	20.000	2100	27.00	2000	20.100	2000	20.550	1011	21.000
2191	20.090	2102	22.2/0	2002	23.000	2000	25.050	2000	20.410	2100	21.190	2004	29.170	2019	30.550	1941	31.930
21/5	20.910	2188	22.290	2130	23.670	2126	25050	2065	26430	2102	27.810	2136	29.190	1987	30.570	2027	31.950
2199	20.930	2149	22.310	2115	23.690	2065	25.070	2181	26.450	2088	27.830	2046	29.210	2065	30.590	1988	31.970
2116	20.950	2212	22.330	2153	23.710	2174	25.090	2008	26.470	2070	27.850	2029	29.230	2026	30.610	1984	31.990
2136	20.970	2149	22.350	2058	23.730	2093	25.110	2049	26.490	2122	27.870	2009	29.250	2062	30.630	2109	32.010
2205	20.000	2121	22370	2140	23750	2057	25130	2028	26510	2061	27,890	2058	29270	2063	30650	2000	32030
2104	21.010	2012	22.010	2150	20.700	2007	25.100	2166	20.010	2001	27.000	2000	20,200	2000	20670	2000	22.000
2104	21.010	2013	22.390	2100	23.770	2002	20.100	2100	20.000	2009	27.910	2009	29,290	2000	30.070	2014	32.000
2240	21.030	2140	22.410	2126	23.790	2086	25.170	2122	26.550	2031	27.930	2064	29.310	2003	30.690	2065	32.070
2106	21.050	2125	22.430	2099	23.810	2030	25.190	2128	26.570	2082	27.950	2129	29.330	2056	30.710	1963	32.090
2173	21.070	2194	22.450	2124	23.830	2076	25.210	2100	26.590	2067	27.970	1981	29.350	2087	30.730	1999	32.110
2065	21.090	2277	22.470	2031	23.850	2182	25.230	1988	26.610	2001	27.990	2145	29.370	2031	30.750	1961	32.130
2228	21 110	2072	22/100	2107	23.870	2074	25250	2068	26.630	2031	28.010	2068	20300	2069	30770	1080	32150
2102	21.110	2107	22510	2126	22,000	20120	25.200	2000	20.000	2001	20.010	2101	20.000	2101	30,700	1000	22 170
2150	21.100	2107	22.010	2130	20.090	2000	25.270	2000	20.000	2014	20.000	2101	29.410	2101	00.750	1990	32.170
2189	21.150	2202	22.530	20/4	23910	2052	25.290	1967	20.670	2036	28.060	2154	29.430	2026	30.810	2035	32.190
2177	21.170	2142	22.550	2118	23.930	2169	25310	2158	26.690	2058	28.070	2284	29450	2082	30.830	2043	32210
2139	21.190	2132	22.570	2140	23.950	2119	25.330	2137	26.710	2110	28.090	2418	29.470	2000	30.850	2107	32.230
2203	21.210	2185	22.590	2120	23.970	2094	25.350	2088	26.730	2115	28.110	2615	29.490	2031	30.870	1946	32.250
2096	21 230	2114	22610	2127	23990	2018	25.370	2216	26750	1997	28 130	2583	29510	2001	30890	1941	32270
2226	21,250	2150	22620	21/5	24,010	2015	25200	2144	26770	2017	28 150	2562	20.520	1050	30.010	2010	32.200
2101	21.200	2100	22.000	2190	24.000	2040	20.000	2052	20.770	2017	20.100	2002	20.00	2050	20.000	1000	22.200
2101	21.2/0	222D	22.000	2124	24.000	2004	20.410	2003	20.790	2013	20.170	2000	29.000	2000	30.930	1908	J∠JIU
2165	21.290	2188	22.670	2119	24.050	2097	25.430	2007	20.810	2083	28.190	2437	295/0	2038	30.950	1956	32330
2191	21.310	2183	22.690	2090	24.070	1997	25.450	2063	26.830	2068	28.210	2366	29.590	1994	30.970	1973	32.350
2149	21.330	2091	22.710	2137	24.090	2115	25.470	2049	26.850	2084	28.230	2381	29.610	2039	30.990	1964	32.370
2269	21.350	2237	22,730	2176	24.110	2161	25.490	2045	26.870	2165	28.250	2352	29.630	1996	31.010	1998	32,390
2118	21,370	2151	22750	2175	24 130	2101	25510	2071	26890	2124	28270	2171	29650	2021	31 030	2021	32410
-10	2.010	-101				-101		-0/1		- 127	-0				0.000		

2004	32,430	2087	33.950	2025	35.470	1992	36.990	2048	38.510	2081	40.030	1978	41.550	2142	43.070	4336	44.590
2024	32450	1958	33,970	2032	35490	2022	37010	1951	38530	1989	40.050	2031	41,570	2019	43090	4619	44610
20/10	32/170	2030	33,000	2000	35,510	1050	37020	2056	39,550	2020	40.070	2114	/1.500	2002	/3 110	5122	11.610
4050	02.400	2000	33.990	2000	30.010	1900	37.000	2000	20.000	2029	40.070	2114	41.000	2002	40.110		44.000
1900	32.490	20/3	34.010	1915	30.030	1890	37.000	2046	38.570	2025	40.090	2120	41.010	2087	43.130	2009	44.000
1963	32.510	2032	34.030	2058	35.550	1950	37.070	2065	38.590	2007	40.110	2041	41.630	2065	43.150	5/63	44.670
1989	32.530	2053	34.050	2125	35.570	2068	37.090	2069	38.610	2015	40.130	2023	41.650	2125	43.170	6101	44.690
1962	32.550	1908	34.070	2035	35.590	2028	37.110	1972	38.630	2016	40.150	2014	41.670	2039	43.190	6549	44.710
2016	32,570	2060	34.090	1983	35.610	2018	37.130	2040	38.650	1952	40.170	1954	41.690	2106	43.210	6388	44,730
1943	32590	2106	34 110	2014	35630	2100	37 150	2053	38670	2051	40 190	2033	41710	2141	43230	6236	44750
2070	22,610	2100	24 120	2014	25,650	105/	27170	2000	20.070	2001	40.240	2000	41720	2000	12 250	6100	44 770
2070	32.010	2100	34.130	2001	30.000	1904	37.170	2000	30.090	2001	40.210	2000	41.750	2009	40.200	0109	44.770
2073	32.630	2091	34.150	2022	35.670	2023	37.190	2007	38.710	2027	40.230	2037	41.750	2141	432/0	5845	44.790
1988	32.650	2039	34.170	1938	35.690	1990	37.210	1958	38.730	1974	40.250	1973	41.770	2135	43.290	5586	44.810
1994	32.670	2091	34.190	1916	35.710	2030	37.230	2067	38.750	2053	40.270	2064	41.790	2049	43.310	5536	44.830
1984	32.690	2158	34,210	2042	35.730	2058	37.250	2056	38.770	1955	40.290	2071	41.810	2038	43.330	4926	44.850
1996	32710	2166	34230	1977	35750	2029	37270	2029	38790	2057	40.310	2145	41830	2117	43350	4762	44870
2020	32730	2150	3/1 250	1078	35,770	1056	37200	2073	38,810	2030	10330	1081	/1.850	2052	13 370	1/10	// 900
2020	22.750	2150	24 270	2017	25700	2005	27210	20/3	20.010	2000	40.250	2002	41 070	2002	42200	2022	44.010
2010	32.730	2075	34.270	2017	30.790	2000	37.310	2097	30.030	2012	40.300	2002	41.0/0	2003	43.390	3933	44.910
2080	32.770	20/6	34.290	1924	35.810	1969	37.330	2010	38.850	2076	40.370	2009	41.890	2087	43410	3503	44.930
2074	32.790	2141	34.310	2034	35.830	2092	37.350	1982	38.870	2016	40.390	1943	41.910	2101	43.430	3015	44.950
2033	32.810	2042	34.330	2074	35.850	2026	37.370	2065	38.890	2041	40.410	2035	41.930	2046	43.450	2917	44.970
2040	32.830	2045	34.350	2013	35.870	2038	37.390	2073	38.910	2099	40.430	2034	41.950	2076	43.470	2717	44.990
2053	32850	2017	34370	2032	35890	2025	37410	2000	38930	2038	40450	2119	41970	2012	43490	2600	45010
2086	32,870	2075	3/1 300	2034	35.010	2005	37/130	2066	38.050	2012	10.100	2002	/1000	21/1	/3510	2/07	15.030
2000	22.0/0	20/5	24 410	2007	25.00	2000	27/50	2000	20.300	2012	40.400	2022	42010	2100	42 520	2401	45.000
2025	32.090	2110	34.410	2102	30.930	2020	37.400	2009	30.9/0	2092	40.490	2009	42.010	2100	40.000	2420	40.000
2006	32.910	2081	34430	2070	35,950	2023	37.470	2014	38,990	2066	40.510	2013	42.030	2070	43.550	2438	45.070
1994	32.930	2056	34.450	2087	35.970	1971	37.490	2102	39.010	2102	40.530	1937	42.050	2131	43.570	2315	45.090
2008	32.950	2160	34.470	2016	35.990	2045	37.510	2021	39.030	1947	40.550	2062	42.070	2040	43.590	2295	45.110
1957	32.970	2075	34,490	2052	36.010	1940	37,530	2068	39.050	2007	40.570	1971	42.090	2074	43.610	2246	45.130
2012	32990	2071	34510	1994	36030	2052	37550	2015	39070	2089	40.590	2046	42110	2159	43630	2282	45150
2121	33.010	2021	3/1530	2077	36.050	2027	37.570	1072	30,000	1097	/0.610	2015	12130	2102	13,650	2113	/5170
1020	22.010	2021	34 550	2011	20.000	1000	37.500	2042	20.110	2020	40,620	2070	42.150	2000	42,670	2110	45 100
1909	33.050	2101	34.500	2029	30.070	1909	37.390	2045	39.110	2009	40.000	2021	42.150	2009	43.070	21/4	45.190
2020	33.060	2094	34.570	2080	36.090	2005	37.610	2073	39.130	2080	40.660	2039	42.170	2018	43.690	21/9	45,210
2026	33.070	1993	34.590	2072	36.110	1970	37.630	2020	39.150	2034	40.670	2048	42.190	2141	43.710	2095	45.230
2056	33.090	2016	34.610	2049	36.130	2028	37.650	1988	39.170	2065	40.690	2015	42.210	2080	43.730	2249	45.250
2024	33.110	2071	34.630	2080	36.150	1969	37.670	2084	39.190	2122	40.710	2034	42.230	2058	43.750	2103	45.270
2059	33 130	2110	34650	2065	36170	2030	37690	2070	39210	1942	40730	2063	42250	2097	43770	2149	45290
1070	33 150	2043	34,670	2080	36100	2056	37710	1001	30,230	2021	40.750	1030	42 270	2101	43700	2052	45310
2065	22 170	2010	24,600	2000	26.210	2000	27720	1007	20.250	2021	40 770	2000	42200	2001	12 010	2100	45 220
2000	33.170	2040	34.090	2120	30,210	2090	37.730	1907	39.230	2009	40.770	2000	42.290	2021	40.010	2100	40.000
2041	33.190	2051	34.710	2072	30.230	1984	37.750	2010	39.270	20/9	40.790	2035	42.310	2090	43.830	2182	45.350
2069	33.210	2091	34.730	2011	36.250	1977	37.770	2057	39.290	2063	40.810	2017	42.330	2098	43.850	2079	45.370
1994	33.230	2085	34.750	2116	36.270	2040	37.790	2074	39.310	2024	40.830	2031	42.350	2112	43.870	2160	45.390
2036	33.250	2087	34.770	2159	36.290	2002	37.810	1996	39.330	1989	40.850	2004	42.370	2096	43.890	2028	45.410
2001	33.270	1999	34.790	1983	36.310	2046	37.830	2064	39.350	2077	40.870	1974	42.390	2068	43.910	2091	45,430
2023	33,290	2036	34,810	1996	36330	2031	37850	2090	39,370	1001	40.890	1041	42410	2066	43930	2095	45450
1006	22 210	2000	3/ 830	2060	36350	2001	37.000	2000	30,200	2066	40.010	2070	12/120	2000	13.050	2000	45.470
2002	22.210	2040	24.050	1001	30.300	20/1	37.000	2010	20,410	2000	40.000	1000	42.400	2012	40.000	204/	40.470
2083	33.330	2025	34.800	1901	30.370	2006	37.890	2030	39.410	2037	40.930	1980	42.450	2140	43.970	2008	45.490
2045	33.350	2048	34.870	2010	36.390	2072	37.910	2003	39.430	2059	40.950	2016	42.470	2051	43.990	2070	45.510
1984	33.370	2064	34.890	1993	36.410	2060	37.930	2133	39.450	2035	40.970	1990	42.490	2092	44.010	2101	45.530
1984	33.390	2066	34.910	2040	36.430	1961	37.950	2044	39.470	1978	40.990	2000	42.510	2094	44.030	2032	45.550
1985	33.410	2045	34.930	2016	36.450	1887	37.970	1966	39.490	2040	41.010	2048	42.530	1980	44.050	2060	45.570
2037	33430	2131	34950	1990	36470	2041	37990	2043	39510	1993	41.030	1994	42550	2011	44070	2022	45590
2078	33.450	2084	34.070	2082	36490	2081	38.010	2021	30,530	2015	41.050	2020	42570	2100	44.000	2127	45610
2010	22/170	2007	24 000	1006	36510	2001	38 030	2100	20,550	2010	41.000	2001	12500	2055	11.000	2014	45630
1000	22 400	2000	25040	2007	26 500	2000	20.000	2007	20.500	2000	41.000	1050	42640	2000	44 400	2011	10.000
1900	33.490	2001	30.010	2027	30.550	2041	30.000	2097	39.570	2010	41.090	1900	42.010	2000	44.130	2091	40.000
1965	33510	20/4	30.030	1996	30.550	2001	38.0/0	2045	39.590	2006	41.110	2026	42.030	2090	44.150	2122	400/0
2097	33.530	2035	35.050	2020	36.570	1998	38.090	2051	39.610	2043	41.130	2055	42.650	2100	44.170	2057	45.690
2097	33.550	2089	35.070	2091	36.590	2021	38.110	2059	39.630	2134	41.150	1998	42.670	2173	44.190	2037	45.710
2068	33.570	2121	35.090	2028	36.610	1979	38.130	2026	39.650	1995	41.170	2025	42.690	2099	44.210	2091	45.730
2025	33.590	2120	35.110	2047	36.630	2016	38.150	2034	39.670	2085	41.190	2033	42,710	2208	44,230	2084	45.750
2020	33610	1933	35130	2054	36650	2096	38170	2077	39,690	2127	41 210	2013	42730	2191	44.250	2073	45770
2102	33 630	1002	35 150	2064	36670	1020	38 100	2000	30,710	2058	/1 230	1008	12750	218/	11.200	20/1	45700
1002	22,650	2052	25 170	2004	20.070	2005	20.130	2003	20,720	1000	41.250	2050	40770	2104	44.000	2071	45.040
1900	33.000	2000	30.170	2094	30.090	2090	30.210	2002	39.730	1900	41.200	2000	42.770	2200	44.290	2112	40.010
2053	33.670	2006	35.190	1994	36.710	2155	38230	2064	39.750	2065	41.2/0	2078	42.790	2235	44.310	2006	45.830
2058	33.690	2039	35210	1974	36730	2020	38.250	2023	39.770	2077	41.290	2054	42.810	2306	44.330	2008	45.850
2090	33.710	2051	35.230	1989	36.750	1939	38.270	2068	39.790	2029	41.310	2045	42.830	2210	44.350	2098	45.870
2066	33.730	1990	35.250	2135	36.770	2122	38.290	1983	39.810	2034	41.330	2038	42.850	2308	44.370	2073	45.890
2111	33.750	1997	35.270	2045	36.790	2011	38.310	1988	39.830	2077	41.350	1981	42.870	2342	44.390	2109	45.910
2033	33770	2057	35290	2004	36810	2018	38330	1983	39850	2035	41 370	2082	42890	2396	44410	2007	45.930
1027	33.700	1002	35 310	1060	36830	2017	38 350	2111	30.870	2010	41 200	2061	42010	2526	11/120	20/11	45050
1007	22 210	2000	35 330	2007	36.050	1077	30.000	1000	30.010	2013	/1 /10	2001	12020	2020	11.100	2000	15.000
1002	20.010	2002	30.330	2021	20.000	19/1	20.3/0	1330	20.020	2007	41.400	2009	42.000	2011	44470	2000	40.9/0
2007	33,830	209	30,300	2004	30.8/0	2030	38390	2024	39.910	1986	41430	2011	42.960	2000	44.4/0	2021	45.990
2045	33850	1960	35.370	2028	36.890	2023	38,410	1949	39.930	2026	41.450	2023	42.970	2812	44.490	2073	46.010
2042	33.870	1979	35.390	2009	36.910	2081	38.430	2067	39.950	2057	41.470	2086	42.990	2844	44.510	2046	46.030
2109	33.890	2003	35.410	1976	36.930	1963	38.450	1978	39.970	2092	41.490	2107	43.010	3039	44.530	2038	46.050
2060	33.910	2039	35.430	2086	36.950	2023	38.470	2025	39.990	2044	41.510	2037	43.030	3500	44.550	2002	46.070
2033	33,930	2048	35450	1998	36970	2013	38490	1985	40.010	2110	41,530	2053	43050	3976	44,570	2007	46090
														55,5			

2074	46 1 10	2079	47630	1987	49150	2025	50670	2021	52 190	2002	53710	2060	55230	2006	56750	2009	58270
2070	46 120	2100	47.000	2012	40.170	2000	50,000	1000	ED 040	1070	52,720	1052	EE 0E0	1042	EC 770	1050	50,000
20/0	40.150	2109	47.000	2012	49.170	2020	50.090	1902	JZ.Z 10	19/2	55.750	1900	30.230	1940	50.770	1909	36290
2049	46.150	1981	47.670	2066	49.190	2033	50.710	1924	52.230	2063	53.750	2015	55.270	1999	56.790	2021	58.310
2074	46 170	2034	47690	1999	49210	2073	50730	1881	52250	1943	53770	1952	55290	2022	56810	2046	58330
2007	46 100	2001	47.740	2001	40.000	2407	E0.7E0	2057	50.070	1000	E2 700	2001	EE 240	1000	50.010	2014	E0 2E0
2097	40.190	2091	47.710	2001	49.230	2107	50.750	2007	52.270	1992	55.790	2001	20.310	1900	00.000	2011	00.000
2059	46.210	2023	47.730	1983	49.250	2025	50.770	1966	52.290	2034	53.810	2072	55.330	1958	56.850	1983	58.370
2064	46230	2095	47750	1947	49270	1942	50790	2053	52310	2043	53830	2084	55350	1955	56870	2025	58390
2004	46.050	20005	47.770	2016	40.000	2077	E0.010	2000	50.000	1000	E2 0E0	1005	EE 270	2017	50.000	2072	E0 440
2084	40.200	2000	47.770	2010	49.290	2077	50.810	2048	52.330	1960	53.850	1985	55.370	2017	00.890	2073	58410
1977	46.270	2122	47.790	1972	49.310	2053	50.830	2072	52.350	2045	53.870	1968	55.390	1965	56.910	1983	58.430
1067	46200	2016	/7810	2018	10330	1012	50,850	2100	52370	1072	53,800	2101	55/110	2000	56030	2017	58/50
1007	40.2.30	2010	47.010	2010	40.000	1012	50.000	2100	52.070	10/2	50.050	2101	50.410	2000	50.500	2017	50.470
1991	46.310	2022	47.830	2011	49.350	1994	50.870	2090	52.390	2017	53.910	1985	55.430	1947	56.950	1949	58.470
2048	46.330	2025	47.850	2032	49.370	2037	50.890	1989	52,410	1948	53.930	1986	55,450	1947	56.970	1963	58,490
2027	46 350	1072	17 970	2112	10.300	2014	50010	2023	52/20	2021	53,050	1062	55 470	2021	56000	2025	59,510
2007	40.000	19/2	47.070	2112	49.090	2044	30.910	2025	32.400	2021	33.900	1900	30,470	2021	30.990	2025	30.510
2037	46.370	2078	47.890	2061	49.410	2060	50.930	2011	52.450	2054	53.970	2033	55.490	1962	57.010	1998	58.530
1992	46.390	1996	47.910	2033	49,430	1966	50.950	1995	52,470	2034	53.990	2095	55.510	2063	57.030	1959	58.550
2026	46 410	2025	47020	2000	40.450	2012	50070	2007	52/00	2040	54.010	1004	55 520	10/11	57050	2001	50 570
2020	40.410	2000	47.900	2000	49.400	2040	50.970	2021	32.480	2049	54.010	1354	30.300	1941	57.000	2001	30.5/0
2069	46.430	2060	47.950	2020	49.470	2052	50.990	2033	52.510	2017	54.030	2061	55.550	2005	57.070	2047	58.590
2048	46450	1991	47,970	1990	49490	2004	51010	2062	52530	2002	54050	2043	55570	2017	57090	1987	58610
1002	46 470	2140	47000	2057	40.510	2024	E1 020	10/0	52550	1002	54.070	2001	55 500	2001	57110	1005	50620
1990	40.470	2149	47.990	2007	49.510	2004	51.050	1949	52.500	1090	54.070	2001	55.590	2001	57.110	1900	30.030
2017	46.490	1972	48.010	2003	49.530	1979	51.050	1986	52.570	1928	54.090	2007	55.610	2053	57.130	1915	58.650
1954	46510	2049	48030	1983	49550	2028	51070	2096	52590	2036	54 110	1923	55630	2039	57 150	1965	58670
2021	46 520	1001	10.000	2042	40.570	20000	51,000	2000	52610	2014	5/ 120	2000	55,650	2000	57170	2002	50,600
2001	40.000	1991	40.000	2042	49.570	2000	51.080	2009	JZ.010	2014	34.130	2009	30.000	2000	57.170	2022	30.090
2015	46.550	2060	48.070	2074	49.590	2080	51.110	1905	52.630	1997	54.150	1939	55.670	2027	57.190	2031	58.710
2015	46570	2037	48090	2042	49610	2043	51 130	2042	52650	2046	54 170	2034	55690	1956	57210	2039	58730
2110	46 500	2010	10 110	2056	10620	2020	E1 1E0	2021	52670	2011	54 100	2047	55 710	2000	57220	2072	E0 7E0
2110	40.090	2019	40.110	2000	49.000	2020	51.150	2001	52.070	2041	54.190	2047	55.710	2000	57.230	2012	36.730
2050	46.610	1956	48.130	2005	49.650	2014	51.170	2007	52.690	1995	54.210	1988	55.730	2068	57.250	2008	58.770
2124	46630	2024	48 150	1961	49670	2012	51 190	2068	52710	1967	54230	2012	55750	1975	57270	2086	58790
2000	10.000	2046	40 170	2007	40,000	2020	E1 010	20000	50,700	2050	E4 0E0	2002	EE 770	20001	57000	2000	E0.040
2029	40.000	2040	40.170	2097	49.090	2009	51.210	2020	52.750	2000	54.250	2000	55.770	2001	57.290	2009	010.00
1980	46.670	2058	48.190	2025	49.710	2036	51.230	2059	52.750	1912	54.270	1906	55.790	1989	57.310	1949	58.830
1978	46690	1962	48210	2054	49730	2034	51250	2020	52770	2039	54290	1994	55810	2003	57330	2042	58850
1001	46 740	2046	40.000	2040	40.750	1001	E1 070	20000	50,700	2000	E4 240	2077	EE 020	2050	57.250	1076	50.000
1901	40.710	2040	40.230	2040	49.750	1901	51.270	2009	52.790	2022	54.510	2011	30.030	2000	57.500	19/0	30.070
1928	46.730	2018	48.250	2010	49.770	1981	51.290	1990	52.810	1933	54.330	2042	55.850	2041	57.370	1992	58.890
2007	46.750	2075	48.270	1949	49.790	1994	51.310	1989	52.830	2086	54.350	1981	55.870	2003	57.390	1985	58.910
1007	46 770	2010	10,000	2004	10.010	2067	E1 220	1000	52.050	2120	54 270	2055	55 900	1061	57/10	2004	50000
1997	40.770	2010	40.2.90	2004	49.010	2007	51.550	1990	32.000	2120	54.570	2000	30.090	1901	57.410	2024	30.900
2095	46.790	1938	48.310	2003	49.830	2118	51.350	2053	52.870	2028	54.390	2016	55.910	2012	57.430	2020	58.950
2014	46.810	2099	48.330	2048	49.850	1991	51.370	1933	52.890	2073	54,410	1987	55.930	1990	57,450	2064	58.970
20/11	16.830	10/10	18350	2003	10.870	2023	51 300	2050	52010	2052	51/30	2070	55,050	1038	57/70	2014	58,000
4007	40.000	0070	40.000	2000	40.000	2020	51.000	2000	52.010	2002	54.450	20/0	50.500	1300	51.400	2011	50.550
1997	46.850	2079	48.370	2051	49.890	2090	51.410	2034	52.930	1946	54.450	1983	55.970	2112	57.490	2018	59.010
2026	46.870	1967	48.390	2077	49.910	2016	51.430	2084	52.950	2027	54.470	1936	55.990	2017	57.510	2052	59.030
2021	16.800	2017	18/10	1021	10030	2000	51/150	2023	52070	2024	51/00	2011	56010	2018	57530	1001	50,050
2004	40.000	2017	40.400	00-4	40.000	2000	51.400	4000	50,000	2027	54.540	2011	50.010	4005	57.500	0040	50.000
2043	46910	2046	48.430	2054	49.950	2112	51.470	1938	52.990	2037	54.510	2018	56.030	1985	57.550	2016	59.070
2041	46.930	1966	48.450	2086	49.970	1981	51.490	2114	53.010	1958	54.530	2005	56.050	1944	57.570	2094	59.090
2060	16050	2070	18170	2073	10,000	2003	51 510	2055	53.030	1060	54 550	2060	56.070	2000	57500	1003	50,110
2000	40.000	2010	40.400	2013	-0.000	2000	51.510	4070	50.000	0004	54.500	4005	50.070	2000	57.550	1300	50.110
2021	46.970	2042	48.490	1999	50.010	2027	51.530	19/8	53.050	2031	54.570	1985	56.090	2013	57.610	20/4	59.130
2051	46.990	2028	48.510	1990	50.030	2068	51.550	2057	53.070	2046	54.590	2060	56.110	2057	57.630	1987	59.150
1976	47010	2135	48,530	2143	50050	2075	51570	2040	53090	2022	54610	2071	56130	2037	57650	1977	59170
000	47,000	20004	40.000	2010	50.000	4000	C1.010	2007	F0 440	0050	54,000	2000	CC 450	0440	07.000	4005	FO 400
2030	47.030	2004	48.500	2045	50.070	1980	51.590	2087	53.110	2003	54.630	2020	00.100	2113	57.070	1995	59.190
2068	47.050	2092	48.570	1951	50.090	2108	51.610	1982	53.130	1912	54.650	2035	56.170	2082	57.690	2013	59.210
2026	47 070	2083	48,590	2037	50110	2053	51630	1967	53 150	2038	54670	1918	56190	2051	57710	1977	59230
2005	47,000	2124	49610	2062	50.120	2050	E1 650	1001	52 170	1077	54,600	2055	56 210	2011	57720	2014	50.250
2000	47.090	2134	40.010	2002	50.150	2000	51.000	1991	33.170	19/1	54.090	2000	50,210	2011	51.150	2014	09200
2028	47.110	2050	48.630	2025	50.150	1959	51.670	1999	53.190	2033	54.710	1896	56.230	1980	57.750	1958	59.270
2126	47 130	2104	48650	2019	50170	2142	51690	2057	53210	2017	54730	2012	56250	2050	57770	2027	59290
2000	47 150	2110	10.000	2017	50.100	2007	51 710	2002	52 220	2020	54 750	2072	56 270	1000	57700	1000	50.210
2000	47.150	2110	40.070	2017	50.190	2007	51.710	2000	33.230	2009	54.750	2012	50.270	1900	51.190	1900	09.510
2068	47.170	2120	48.690	2028	50.210	2015	51.730	2020	53.250	2014	54.770	1954	56.290	1994	57.810	1947	59.330
2084	47 190	2033	48710	2050	50230	1994	51750	2023	53270	1946	54790	2074	56310	2034	57830	1878	59350
2021	47.010	2076	40 700	2000	E0.2E0	2004	E1 770	2000	52.000	20000	E4 010	2100	EC 220	2056	E70E0	1004	50.000
2001	+1.210	20/0	+0.730	2020	50230	2004	51.770	2009	30.290	2000	JH.010	2100	30,330	2000	51.000	1904	33.3/0
2121	47.230	2074	48.750	2071	50.270	2065	51.790	2039	53.310	1981	54.830	1979	56.350	1953	57.870	2007	59.390
2098	47.250	2099	48.770	1955	50.290	1989	51.810	1985	53.330	1962	54.850	2137	56.370	1973	57.890	1966	59.410
1069	47.270	2078	19700	1072	50310	2060	51 930	1050	53 350	2007	54 870	1020	56 300	2003	57010	2052	50/20
1900	41.210	2010	40.750	19/2	50.510	2009	51.000	1909	30.300	2007	54.070	1909	50.580	2005	57.910	2000	39.400
2018	47.290	2052	48.810	1939	50.330	2105	51.850	2032	53.370	2002	54.890	2082	56.410	2031	57.930	2007	59.450
2024	47.310	1994	48.830	1960	50.350	2029	51.870	2033	53.390	2014	54.910	2071	56,430	1977	57.950	1969	59,470
2071	17330	2022	18.850	2010	50370	1082	51 800	2023	53/10	1080	5/1020	1072	56/50	1075	57070	1003	50/00
20/1	47.000	40	40.000	40	50.570	1002	51.000	2020	50.400	1309	54.000	13/2	50.400	13/3		1000	50.400
2132	47.350	19/0	48.8/0	19/5	50.390	1932	51.910	2068	53.430	2034	54.950	2044	50.4/0	2008	57.990	2021	59.510
2057	47.370	1992	48.890	1928	50.410	2007	51.930	2113	53.450	1971	54.970	2041	56.490	2002	58.010	1987	59.530
2015	47 200	1027	48010	1010	50/20	2055	51050	2010	53/70	2024	5/ 000	2050	56510	2007	58020	2020	50.550
20-10	47.440	4070	40,000	0010	50.450	2000	C1.000	2010		2004	54.330	4000	50.010	2001	50.000	4004	
2107	47.410	19/9	48.930	2012	30.450	2003	o1.9/0	2052	JJ.490	2024	20.010	1905	00.550	2018	20,020	1921	59.5/0
2133	47.430	1999	48.950	2034	50.470	2014	51.990	2023	53.510	2033	55.030	2012	56.550	2036	58.070	2020	59.590
1095	47450	2001	48970	2018	50400	1982	52010	2012	53 530	1082	55.050	1006	56570	2036	58000	1072	59610
1004	47 470	2001	40,000	2010	E0 E40	2002	E2000	2000	E2 EF0	2000	EE 070	1000	50.010	1040	E0 440	2000	50.010
1904	47.470	2012	48.990	2011	00.510	2007	52030	2006	23.200	2000	010.00	1969	00000	1942	00.110	2003	05030
2037	47.490	1968	49.010	2047	50.530	2032	52.050	2004	53.570	2066	55.090	2001	56.610	1997	58.130	1961	59.650
2111	47540	2073	49.030	2009	50,550	2043	52,070	1900	53,590	1989	55,110	2043	56.630	2118	58,150	1973	59,670
	4/ 3/0		10050	1004	50.570	1060	52000	2007	53610	2015	55 120	1000	56.650	2004	59 170	2000	50.00
2020	47.510	· X Y X)		1-1-1-1			. V (M)	~ ~ / /	JUUU	2040	30.130	1000	JUUU	2004	JU.1/U	~	79,090
2029	47.510	2029	10.000	0001	50.500	1000	50440	000-	50.000	40.00		0404	50.000	40-0	50 400	4000	
2029 2058	47.510 47.530 47.550	2029 1998	49.070	2066	50.590	1895	52110	2037	53.630	1940	55.150	2131	56.670	1970	58.190	1998	59.710
2029 2058 2102	47.510 47.530 47.550 47.570	2029 1998 2007	49.070 49.090	2066 2014	50.590 50.610	1895 1957	52110 52130	2037 1946	53.630 53.650	1940 1979	55.150 55.170	2131 2032	56.670 56.690	1970 2006	58.190 58.210	1998 2029	59.710 59.730
2029 2058 2102 2043	47.510 47.530 47.550 47.570 47.570	2029 1998 2007 2061	49.070 49.090 49.110	2066 2014	50.590 50.610 50.630	1895 1957 2056	52110 52130 52150	2037 1946	53.630 53.650 53.670	1940 1979 1942	55.150 55.170 55.100	2131 2032 1979	56.670 56.690 56.710	1970 2006 2024	58.190 58.210 58.230	1998 2029	59.710 59.730 59.750
2029 2058 2102 2043	47.510 47.530 47.550 47.570 47.590	2029 1998 2007 2061	49.070 49.090 49.110	2066 2014 1966	50.590 50.610 50.630	1895 1957 2056	52110 52130 52150	2037 1946 1977	53.630 53.650 53.670	1940 1979 1942	55.150 55.170 55.190	2131 2032 1978	56.670 56.690 56.710	1970 2006 2024	58.190 58.210 58.230	1998 2029 1962	59.710 59.730 59.750

2019	59.790	1940	61.310	1969	62.830	2052	64.350	2018	65.870	1997	67.390	2023	68.910	1955	70.430	2022	71.950
1030	59,810	1005	61 330	1088	62,850	2056	64 370	2057	65,800	1050	67410	2028	68030	1083	70450	1006	71 070
1000	50.010	4005	01.000	0000	02.000	2000	04.070	2007	00.000	4005	07.410	40000	00.000	0045	70.400	0050	71.070
1950	59.830	1935	61.350	2019	62.870	2034	64.390	2052	65910	1985	67.430	1920	68.950	2015	/0.4/0	2068	71.990
1977	59.850	1958	61.370	1957	62.890	2042	64.410	2051	65.930	1920	67.450	1968	68.970	2056	70.490	1972	72.010
1050	59,870	2006	61 300	1076	62010	2067	64.430	2080	65,050	2007	67470	1054	68,000	1032	70510	1078	72030
0040	50.070	2000	01.000	0045	02.010	2007	04.450	2000	00.000	2007	07.400	4050	00.000	4050	70.010	0040	72.000
2010	59.890	2031	61410	2015	62.930	2050	64.450	2035	65.970	2018	67.490	1962	69.010	1966	70.530	2018	72.050
2008	59.910	1943	61.430	1996	62.950	2145	64.470	2028	65.990	2017	67.510	2012	69.030	1992	70.550	1971	72.070
2030	50,030	2057	61450	1088	62070	2033	64.490	2000	66.010	2070	67 530	1013	69,050	2065	70570	2022	72000
2000	50.000	2007	01.400	1000	02.070	2000	04.400	2000	00.010	2010	07.000	0004	00.000	2000	70.070	4050	72.000
1927	59.960	2003	61470	1990	62.990	2069	64.510	2036	66.030	1991	67.550	2061	69.070	1969	70.590	1950	72110
2004	59.970	2021	61.490	2064	63.010	2040	64.530	2027	66.050	2072	67.570	2029	69.090	1869	70.610	1996	72.130
10/12	50,000	105/	61 510	2072	63 030	2017	64 550	1003	66.070	1905	67 500	2016	60.110	2100	70630	105/	72150
1072	00.000	0004	01.010	2012	00.000	2071	04.000	0050	00.070	1000	07.000	2010	00.110	2100	70.000	1007	72.100
1985	60.010	2090	61.530	2032	63.060	2034	64.570	2068	66.090	1977	67.610	2067	69.130	2050	70.660	1957	/21/0
2032	60.030	2049	61.550	2014	63.070	2098	64.590	1999	66.110	2061	67.630	1950	69.150	1958	70.670	2010	72.190
2014	60.050	1005	61 570	1084	63.000	2104	64.610	1076	66 130	1053	67650	1053	69,170	1003	70.690	1031	72210
4055	00.000	0000	01.0/0	1004	00.000	2104	04.000	1070	00.100	1000	07.000	0000	00.170	1000	70.000	000	70,000
1965	60.070	2030	61.590	1912	63.110	2083	64.630	19/5	66.150	1970	67.670	2002	69.190	1948	70.710	2035	12.230
2048	60.090	1939	61.610	1964	63.130	2128	64.650	2031	66.170	2017	67.690	2005	69.210	1954	70.730	2058	72.250
2031	60 110	2050	61 630	2050	63 150	2141	64.670	2079	66 100	2008	67710	1052	69,230	1088	70750	2013	72 270
4000	00.110	4000	01.000	2000	00.100	2171	04.000	20/0	00.100	2000	07.700	1002	00200	4000	70.700	4074	70,000
1999	60.130	1990	61.660	2053	63.170	2155	64.690	2020	66.210	2003	67.730	1944	69.250	1962	/0.//0	19/4	72.290
2008	60.150	1911	61.670	1943	63.190	2133	64.710	1989	66.230	2005	67.750	1901	69.270	1951	70.790	2028	72.310
1041	60 170	1963	61.690	2042	63210	2205	64730	1981	66250	1007	67770	1926	69290	2002	70810	1959	72330
4007	00.170	4000	C4 740	4070	~~~~~~	0470	01.700	20000	00.070	4000	07.700	40000	00.040	000	70.000	4054	70.000
1997	00.190	1900	01.710	1972	03.230	21/5	04.750	2000	00.270	1990	07.790	1990	09.310	2025	70.000	1904	72.300
2025	60.210	1956	61.730	1952	63.250	2205	64.770	2002	66.290	1903	67.810	1965	69.330	2013	70.850	2020	72.370
2045	60.230	1977	61.750	2094	63.270	2234	64.790	2000	66.310	2016	67.830	1982	69.350	1971	70.870	1998	72.390
2077	60.250	2026	61 770	2010	63.200	2105	61 810	1020	66 330	2001	67.850	2028	60.370	1068	70,800	1076	72/10
2011	00.200	4007	01.770	4050	00.2.00	2100	04.000	4044	00.000	4005	07.000	4000	00.070	4000	70.000	4057	70.400
1949	60.270	1937	61.790	1950	63.310	2287	64.830	1944	60.350	1995	67.870	1938	69.390	1920	70910	1957	72.430
2026	60.290	1938	61.810	1986	63.330	2316	64.850	2008	66.370	1972	67.890	1955	69.410	1984	70.930	1998	72.450
1042	60310	1060	61.830	1050	63350	2347	64.870	2010	66300	2003	67.010	2030	69430	2003	70.050	2002	72470
0044	00.010	1000	01.000	1000	00.000	2071	04.070	2010	00.000	2000	07.010	2000	00.450	2000	70.000	2002	72.400
2044	60.330	1927	61.850	1923	63.3/0	2330	64.890	2021	66.410	2007	67.930	2023	69.450	2011	/0.9/0	1937	72.490
1993	60.350	1905	61.870	1958	63.390	2230	64.910	1962	66.430	1946	67.950	2022	69.470	2006	70.990	1937	72.510
2066	60.370	2004	61890	2011	63410	2344	64.930	1908	66450	1907	67,970	2001	69490	2069	71.010	2043	72530
2000	60.200	20000	61.000	2045	62.420	20000	64.050	1070	66.470	1001	67000	1005	CO E10	1040	71.000	1000	70.550
2002	00.390	2005	01.910	2040	00.400	2200	04.900	19/3	00.470	1901	07.990	1965	09.510	1942	71.050	1995	72.500
1910	60.410	2016	61.930	1995	63.450	2379	64.970	1962	66.490	1988	68.010	2063	69.530	2004	71.050	1989	72.570
1995	60.430	2003	61.950	2002	63,470	2477	64.990	1940	66.510	1962	68.030	2044	69.550	2043	71.070	1974	72,590
107/	60.450	1020	61.070	2097	63/00	2285	65.010	1072	66 530	1071	68.050	1062	60.570	2014	71.000	1005	72610
19/4	00.400	1900	01.9/0	2007	00.460	2200	00.010	19/0	00.000	19/1	00.000	1902	09.5/0	20++	71.000	1990	72.010
1957	60.470	1983	61.990	1929	63.510	2353	65.030	2020	66.550	1967	68.070	1979	69.590	1965	71.110	2007	72.630
2058	60.490	1942	62.010	2121	63.530	2244	65.050	1871	66.570	1993	68.090	2074	69.610	2010	71.130	1976	72.650
1893	60510	1013	62030	1955	63550	2319	65070	2052	66 590	2046	68 1 1 0	1972	69630	1008	71 150	1962	72670
2004	00.010	4000	02.000	4000	00.000	2010	00.010	2002	00.000	4004	00.110	4054	00.000	4077	74 470	2000	70,000
2024	00.530	1980	62.060	1985	03.5/0	2155	65.090	2008	00.010	1901	68.130	1901	09.000	19/7	/1.1/0	2029	72.090
2088	60.550	2080	62.070	2006	63.590	2293	65.110	2077	66.630	2028	68.150	2052	69.670	2010	71.190	1931	72.710
2088	60570	2043	62090	1927	63610	2211	65130	1962	66650	1995	68 170	1993	69690	1967	71210	1989	72730
2057	60.500	10/0	62 1 10	2024	63,630	2172	65 150	1000	66,670	2041	69 100	2058	60,710	1070	71 220	2027	72750
2007	00.080	1949	02.110	2024	03.030	21/2	00.100	1920	00.070	2041	00.190	2000	09.7 10	19/9	71230	2007	12.150
1973	60.610	1978	62.130	1953	63.650	2247	65.170	1975	66.690	2030	68.210	1965	69.730	1967	71.250	1961	72.770
2021	60.630	1937	62.150	1980	63.670	2255	65.190	2033	66.710	1959	68.230	1995	69.750	2015	71.270	1944	72,790
1083	60.650	1088	62 170	2059	63600	2145	65210	2063	66730	1022	68.250	1030	69770	1050	71 200	2020	72810
4007	00.000	4000	02.170	4000	00.000	2150	00.210	2000	00.750	1022	00.200	4050	00.7700	4004	71.2.00	4000	72.010
1937	60.670	1962	62.190	1982	63.710	2231	65.230	2069	66.750	1950	68.270	1966	69.790	1994	71.310	1969	72.830
2011	60.690	1935	62.210	1909	63.730	2083	65.250	1957	66.770	2004	68.290	1990	69.810	2023	71.330	1950	72.850
1976	60710	2034	62230	1952	63750	2097	65270	1952	66790	2032	68.310	1987	69830	2019	71350	1965	72870
2057	60.700	1005	62.200	2044	63.770	2116	GE 200	2014	60.100	2005	60.000	1010	CO 0E0	1007	74.070	2010	70,000
2007	00.730	1900	02.200	2041	03.770	2110	00.290	2014	00.010	2005	00.330	1910	09.000	1997	11.5/0	2019	12.090
1940	60.750	1992	62.270	2040	63.790	2181	65.310	1947	66.830	1953	68.350	2008	69.870	2065	71.390	1989	72.910
1983	60.770	1934	62.290	2066	63.810	2081	65.330	2018	66.850	1971	68.370	1976	69.890	2023	71,410	1937	72,930
2073	60.700	2024	62310	1072	63,830	2066	65 350	1003	66.870	2053	68 300	2014	60.010	1060	71/130	1063	72050
2013	00.730		02.010	10/2	00.000	2000	00.000	1000	00.070	2000	00.000	2077	00.010	1300	71.400	1000	72.300
1971	60.810	2051	62.330	1986	63.850	2018	65.370	1995	66.890	1996	68.410	1983	69.930	1995	71.450	1950	/2.9/0
2004	60.830	1953	62.350	2006	63.870	2077	65.390	1991	66.910	2001	68.430	2015	69.950	1983	71.470	1994	72.990
2021	60.850	2012	62,370	1935	63890	2034	65410	2078	66930	2031	68450	1929	69.970	1902	71490	1974	73010
1022	60.970	1002	62.200	2004	63,010	2014	65/30	1071	66,050	100/	69/170	1011	60,000	1061	71 510	10/12	73 020
1902	00.070	1992	02.000	2024	00.910	2014	00.400	19/1	00.500	1004	00.4/0	1944	09.990	1901	71.510	1940	75.000
2115	60.890	1922	62.410	2032	63.930	2026	65450	1984	66.970	2017	68.490	2023	/0.010	1999	/1.530	1981	73.060
2034	60.910	1896	62.430	2001	63.950	2019	65.470	1991	66.990	2010	68.510	2074	70.030	2037	71.550	2016	73.070
2128	60,930	2008	62450	1975	63970	2030	65490	1979	67.010	2030	68 530	2015	70.050	1004	71570	2012	73.090
2027	CO.050	1040	60.470	1001	62,000	2000	CE E10	2046	67.000	2000	CO EEO	1000	70.000	1074	71.500	1000	70.000
2057	00.900	1942	02.470	1901	00.990	2025	010.00	2040	67.050	2114	00.000	1902	10.070	19/4	/ 1.590	1990	75.110
2010	60.970	2042	62.490	2042	64.010	1952	65.530	1891	67.050	1992	68.570	1995	70.090	1995	71.610	1956	73.130
1931	60.990	2029	62.510	2050	64.030	2054	65.550	1943	67.070	1982	68.590	2012	70.110	1967	71.630	2068	73.150
2076	61 010	2037	62 530	10/11	64.050	1006	65 570	2001	67.000	2051	68.610	1063	70130	1000	71650	1077	73 170
2010	01.010	2001	02.000	0004	04.000	1000	00.010	2001	01.000	4055	00.010	4050	70.100	1000	74.070	4000	70.170
2015	01.030	2004	02.550	2024	04.070	19/6	09.590	2043	07.110	1965	00.030	1908	70.150	1948	/1.6/0	1926	73.190
1953	61.050	2039	62.570	2052	64.090	2050	65.610	2002	67.130	1989	68.650	2082	70.170	1961	71.690	2039	73.210
2007	61.070	2016	62.590	2044	64110	2087	65630	1985	67 150	2007	68670	1980	70 190	1952	71710	1957	73230
2017	61000	2025	62610	1067	6/1 120	2020	65,650	10/1	67 170	2002	68,600	1057	70.210	1015	71 720	1012	73.250
2017	01.000	2000	02.010	100/	04.100	2000	00.000	1341	07.170	2000	00.090	1307	70210	1910	71.730		70200
1984	61.110	1958	62.630	1958	64.150	2035	65.670	2047	67.190	1917	68./10	1985	/0230	1888	/1./50	2032	73270
2102	61.130	1898	62.650	2014	64.170	2029	65.690	1958	67.210	1939	68.730	2037	70.250	2023	71.770	1964	73.290
2006	61 150	2023	62670	2000	64 190	2015	65710	1090	67230	2013	68750	1963	70270	2014	71790	1020	73310
1005	61 170	1000	62600	2110	61 210	1070	65 720	1000	67 250	1050	60 770	2010	70.200	2005	71 010	1070	72 220
1900	01.1/0	1903	02.090	ZIIÖ	04210	19/0	00.730	1900	01.200	1908	00.770	2010	10.290	2020	11010	19/2	13.330
1971	61.190	1985	62.710	2007	64.230	2000	65.750	2092	67.270	1938	68.790	2028	/0.310	1965	/1.830	1948	/3.350
1951	61.210	2025	62.730	2090	64.250	2007	65.770	2057	67.290	2037	68.810	2007	70.330	1989	71.850	1908	73.370
2065	61 230	2004	62750	2025	64.270	2000	65700	2082	67310	2062	68.830	2036	70350	2006	71870	1032	73300
2000	61 050	2004	60770	2020	6100	1004	65.040	10002	67000	4007	60 000	2000	70.000	1000	71.000	2000	72 440
2029	01.200	2008	02.170	2003	04290	1904	010.00	1900	01.330	1967	00.000	2016	10.3/0	1990	11.090	2028	13410
1992	61.270	2007	62.790	2017	64.310	1969	65.830	2012	67.350	1967	68.870	2009	70.390	1978	71.910	2006	73.430
1055	61 290	2013	62810	2009	64.330	1966	65850	2039	67,370	1941	68,890	1935	70410	1877	71,930	1995	73450
1300	01.200	2010	0-010	2000	0.000	1000	00.000	2000	01.010		00.000	1000	10.110	1011	1 1.000	1000	10.100

1943	73.470	1984	74.990	1948	76.510	1984	78.030	1967	79.550	1944	81.070	2287	82.590	1985	84.110	1993	85.630
2015	73490	2019	75010	2034	76530	1964	78.050	1933	79570	1917	81.090	2218	82610	1970	84 130	1975	85650
2010	70.100	2010	70.010	0405	70.000	00-4	70.070	4040	70,000	4000	01.000	0400	00.000	2040	04450	2014	00.000
2014	73.510	2040	75.030	2105	/0.550	2001	78.070	1843	79.590	1935	81.110	2180	82.030	2042	84.150	2041	80.070
1946	73.530	1952	75.050	1921	76.570	1968	78.090	1996	79.610	2014	81.130	2213	82.650	2027	84.170	1973	85.690
1085	73550	1030	75070	2122	76590	1071	78 1 1 0	2006	79630	2032	81 150	2144	82670	2023	84 100	1034	85710
4070	70.000	4000	70.070	4047	70.000	4070	70.110	4040	70.000	2002	01.100	2111	00000	4070	04.040	2000	05.700
19/9	73.570	1909	75.090	1947	10.010	19/3	78.130	1940	79.000	2049	81.170	2102	82.090	19/5	84Z10	2005	85.730
2004	73.590	2060	75.110	1908	76.630	2024	78.150	2016	79.670	1953	81.190	2190	82.710	1956	84.230	2004	85.750
1084	73610	1080	75130	1080	76650	1000	78 170	2026	70,600	2003	81 210	2162	82730	1007	84.250	1083	85770
1007	70.010	1000	70.100	1000	70.000	0000	70.170	2020	70.000	2000	01.210	2102	02.700	1007	04200	1000	00.770
1965	73.630	1991	75.150	2041	/6.6/0	2033	78.190	2023	/9./10	1991	81.230	2068	82.750	1994	84.270	2010	85.790
1967	73.650	1938	75.170	1996	76.690	1956	78.210	2000	79.730	1996	81.250	2045	82,770	2014	84,290	1914	85.810
1000	73.670	1020	75 100	1073	76710	2020	78 220	1073	70,750	1011	81 270	2006	82700	1066	Q/ 310	2063	85.830
1990	13.0/0	1900	75.190	19/5	10.110	2020	70.2.50	19/5	19.150	1944	01.270	2080	02.790	1900	04.510	2000	00.000
2019	73.690	1944	75.210	2065	76.730	2000	78.250	2050	79.770	2005	81.290	2087	82.810	1962	84.330	1947	85.850
1923	73710	1962	75230	2012	76750	1963	78270	1979	79790	1945	81 310	2017	82830	1949	84350	2032	85870
1000	70,700	1000	75 050	1005	76 770	1000	70.000	2000	70.040	2002	01 220	2050	00.050	2046	04 270	1000	05 000
1900	13.130	1900	15,250	1900	10.110	1995	10.290	2000	79.010	2005	01.330	2000	02.000	2040	04.370	1902	00.090
2026	73.750	2035	75270	1985	76.790	2006	78.310	1973	79.830	1989	81.350	1971	82.870	1985	84.390	1979	85.910
2071	73770	2102	75290	2054	76810	1881	78.330	1939	79850	1993	81,370	2101	82890	1957	84410	2026	85930
20001	73,700	2001	75.240	1000	76.020	2010	70.050	1000	70.070	1000	01 200	2016	02010	2000	04 420	1077	05.050
2001	73.790	2001	10.010	1909	70.000	2010	10.300	1900	19.010	1902	01.590	2010	02.910	2000	04.400	19/1	00.900
1985	73.810	2011	75.330	2044	76.850	2010	78.370	1931	79.890	1985	81.410	1966	82.930	1972	84.450	2063	85.970
2064	73830	1999	75350	1986	76870	1980	78.390	2046	79910	1923	81430	1993	82.950	1972	84470	2000	85,990
2001	70.000	4000	70.000	1000	70.000	4004	70.440	2010	70.010	1020	01.400	20054	00070	4004	04.400	2000	00.000
2000	73.000	1900	15.570	1900	70.090	1994	/0.410	2000	79.900	19/9	01.400	2004	02.9/0	1901	04.490	2000	00.010
1942	73.870	1970	75.390	1947	76.910	1992	78.430	2073	79.950	2047	81.470	2008	82.990	1958	84.510	1894	86.030
1931	73890	1995	75410	2017	76930	1973	78450	1879	79,970	1954	81490	1999	83010	2033	84,530	2076	86050
1050	72.010	2000	75 420	2020	70.050	1000	70 470	2004	70,000	1001	01 510	1000	02,020	2007	04 550	1040	00.070
1900	73.910	2002	75.450	2050	70.900	1900	/0.4/0	2004	79.990	1994	01.510	1990	00.000	2027	04.000	1940	00.070
2001	73.930	1940	75.450	1975	76.970	2014	78.490	1988	80.010	2098	81.530	2008	83.050	1933	84.570	2046	86.090
2062	73950	1967	75470	1924	76990	2032	78510	1988	80.030	2052	81 550	2017	83070	1978	84 590	1960	86110
2010	72.070	2015	75 400	1050	77.010	1000	70.520	2074	00.000	2044	01.000	20024	00.010	1000	04 640	1000	00.110
2010	13.9/0	2015	75.490	1909	77.010	1992	70.000	20/4	00.000	2041	01.5/0	2004	00.090	1900	04.010	1900	00.130
2077	73.990	2041	75.510	2010	77.030	1985	78.550	1973	80.070	2037	81.590	1972	83.110	1972	84.630	2030	86.150
2046	74.010	1086	75530	1008	77.050	1882	78570	2024	80.000	1000	81 610	2057	83 130	2013	84.650	1808	86170
4000	74.000	2000	75.000	4000	77.070	0404	70.070	4004	00.000	0440	01.010	2007	00.100	4000	04.000	4074	00.170
1899	74.030	2039	/5.500	1939	11.0/0	2104	78.590	1901	80.110	2113	81.030	2023	83.150	1962	84.670	1971	80.190
2039	74.050	1969	75.570	2009	77.090	1981	78.610	1985	80.130	2004	81.650	2015	83.170	2068	84.690	1976	86.210
1936	74.070	2006	75.590	1976	77 1 10	1999	78630	2072	80 150	1979	81670	2034	83 190	1930	84710	1984	86230
1000	74.000	1050	75.610	2010	77 120	2012	70.000	1076	00.100	2000	01.000	1042	00.100	2004	04.700	1001	00.200
1904	74.090	1900	75.010	2012	11.130	2013	70.000	19/0	00.170	2092	01.090	1942	00,210	2004	04.730	1900	00200
1971	74.110	2019	75.630	1991	77.150	2023	78.670	1972	80.190	2107	81.710	2002	83.230	1994	84.750	1977	86.270
1935	74 130	1955	75650	2052	77 170	2022	78690	1994	80210	2070	81730	2031	83250	1975	84770	1973	86290
1072	74 150	1050	75.670	2070	77 100	2011	70 710	2010	00.220	2006	01 750	2002	02 270	1000	0/700	2020	06 210
19/5	74.150	1500	13.070	2019	77.190	2011	70.710	2010	00.250	2020	01.750	2000	00.270	1099	04.750	2000	00.510
1959	74.170	1992	75.690	2023	77.210	1985	78.730	1875	80.250	2141	81.770	1993	83.290	1991	84.810	1914	86.330
2032	74.190	1992	75.710	1972	77.230	2038	78,750	1966	80.270	2078	81,790	1913	83.310	2097	84.830	2037	86.350
2007	74 210	1062	75 720	2002	77.250	2010	70 770	2015	00.000	2005	01 010	1001	02 220	2004	01 050	2002	06 270
2021	74.210	1902	15.150	2022	11250	2019	10.110	2015	00.230	2080	01.010	1301	00.000	2024	04.000	2002	00.5/0
1943	/4.230	2011	/5./50	2010	112/0	2047	/8./90	1949	80.310	2064	81.830	2060	83.350	1993	84.870	1913	86.390
1980	74.250	1983	75.770	1974	77.290	1984	78.810	1942	80.330	2061	81.850	2002	83.370	1976	84.890	1969	86.410
1067	7/ 270	2030	75700	2013	77310	2000	78.830	2016	80.350	2006	81 870	2060	83.300	1060	8/1010	2008	86/130
1307	74.270	2005	13.130	2013	<u>11.510</u>	2000	70.000	2010	00.000	2050	01.070	2005	00.000	1300	04.010	2000	00.400
1979	/4:290	2015	/5.810	1992	77.330	2004	78.850	1961	80.370	2092	81.890	1943	83.410	1935	84.930	2036	86.450
2002	74.310	1991	75.830	1870	77.350	1944	78.870	1975	80.390	2078	81,910	1970	83,430	2024	84.950	1974	86.470
2074	7/ 330	2010	75.950	2015	77370	1097	79,900	2015	90/110	2100	<u>81 020</u>	2066	83 /60	2007	8/ 070	1055	86/00
2014	74.500	2019	75.000	2040	11.5/0	1907	70.090	2015	00.410	2100	01.500	2000	00.400	2021	04.970	1900	00.450
1901	74.350	1977	/5.8/0	1985	77.390	1956	78.910	19/1	80.430	2009	81.950	1986	83.470	2049	84.990	1989	86.510
1945	74.370	1943	75.890	2032	77.410	2079	78.930	2000	80.450	2181	81.970	1955	83.490	1932	85.010	2047	86.530
1020	7/ 300	2071	75010	100/	77/30	2055	78050	1058	80/170	2101	81 000	2002	83.510	2020	85.030	10/10	86550
1020	74.000	20/1	75.010	0004	77,450	2000	70.000	0057	00.400	2101	01.000	2002	00.010	2020	00.000	0004	00.000
1966	74.410	2052	75.930	2024	77.450	1984	18.970	2057	80.490	2198	82.010	2006	83.530	2024	85.050	2004	80.570
1972	74.430	2009	75.950	2010	77.470	2002	78.990	1968	80.510	2207	82.030	2033	83.550	1910	85.070	1990	86.590
1993	74450	2010	75970	2018	77490	2020	79010	2037	80,530	2222	82,050	2003	83,570	2032	85090	2013	86610
0000	74.470	4000	75.000	4000	77.400	2020	70.010	2007	00.000	0044	02.000	2000	00.070	2002	00.000	4050	00.010
2003	74.470	1928	75.990	1903	11.510	2023	79.030	2004	80.550	2314	82.070	2020	83.590	2006	85.110	1900	80.030
2001	74.490	2043	76.010	2033	77.530	1975	79.050	2076	80.570	2356	82.090	1987	83.610	1958	85.130	1999	86.650
1970	74,510	2039	76030	2017	77,550	2000	79070	2002	80,590	2358	82 1 1 0	2007	83630	2010	85 150	1967	86670
1075	74 520	1041	70.050	1000	77570	1044	70,000	1040	00.610	2404	02 120	20001	02.000	2000	05 170	1072	00.000
19/5	74.000	1941	70.000	1999	11.5/0	1941	79.090	1940	00.010	2401	02.130	2001	00.000	2000	00.170	19/3	00.090
1957	74.550	1996	76.070	1904	77.590	2002	79.110	1919	80.630	2524	82.150	1935	83.670	1889	85.190	1862	86.710
1940	74570	2023	76090	2018	77610	1946	79130	2058	80650	2420	82 170	1986	83690	2013	85210	2050	86730
2000	74,500	2020	76110	10/6	77620	2004	70.150	1062	80.670	2/16	82100	1022	83710	1021	85.220	2000	86750
2000	74.000	2005	70.110	1040	11.000	2004	73.150	1302	00.070	2410	02.130	1302	00.7 10	1001	00200	2000	00.750
1990	74.610	1950	/6.130	2005	77.650	1959	/9.1/0	2012	80.690	2447	82.210	2101	83.730	1990	85250	1949	86.770
2031	74.630	2040	76.150	1927	77.670	1975	79.190	1926	80.710	2457	82.230	1995	83.750	2025	85.270	1913	86.790
2012	74 650	2050	76170	1060	77600	2000	70.210	1022	90 720	2614	82.250	2014	93 770	2014	85200	1001	96,910
2013	74.000	2000	70.170	1909	11.050	2000	79.210	1900	00.750	2014	02.2.0	2011	00.770	2014	00290	1901	00.010
1985	/4.6/0	1950	/6.190	2020	//./10	2005	79.230	1966	80.750	2429	82.270	1969	83.790	1938	85.310	1984	86.830
2072	74.690	2037	76.210	1963	77.730	2003	79.250	1970	80.770	2566	82.290	1948	83.810	1981	85.330	1960	86.850
1070	74710	2011	76230	1082	77750	2014	79270	2070	80.700	2514	82310	1046	83.830	1066	85350	1011	86870
2040	74700	4004	76050	~~~~		4040	70.000	1000	00.130	2014	00.000	10-00	0000	4000	05.000	0004	0.0.0
2049	14.130	1981	/6.250	20//	11.110	1948	79.290	1969	90.810	2480	82.330	1996	හ.හර	1965	ठ ാ .3/U	2034	00.090
1990	74.750	1962	76.270	2007	77.790	2025	79.310	2074	80.830	2532	82.350	1964	83.870	1993	85.390	1969	86.910
1987	74770	2017	76290	1980	77810	2020	79330	2004	80.850	2438	82,370	2013	83.890	2062	85410	2030	86920
1074	74 700	4040	76.040	400-	77000	2020	70.000	4004	00070	2400	00000	~~~~	02.040	4070	05 400	2000	00.000
19/4	/4./90	1910	10.310	1925	11.000	2090	19.300	1964	00.8/0	2409	02.390	2006	0.910	19/8	00400	20/5	00.900
1970	74.810	1942	76.330	1985	77.850	2000	79.370	1947	80.890	2421	82.410	1971	83.930	1990	85.450	2140	86.970
1919	74830	1936	76350	2027	77870	1971	79.390	2027	80.910	2438	82430	1008	83.950	2027	85470	1927	86.990
2000	7/ 050	2004	76 270	1000	77000	1074	70 440	2017	20.000	2420	82 AEO	2050	02070	2002	QE 100	2004	Q7040
2009	14.000	2001	10.3/0	1909	11.090	19/4	13410	2017	00.900	2400	02.400	2002	00.9/0	2000	00490	2001	01.010
1994	74.870	2013	76.390	1920	77.910	1990	79.430	1924	80.950	2446	82.470	2023	83.990	1932	85.510	1970	87.030
1999	74.890	2047	76,410	2032	77,930	2068	79.450	1962	80,970	2366	82,490	1968	84,010	2010	85.530	2059	87.050
2024	7/ 010	1056	76/20	1000	77050	1061	70/170	1052	80.000	2401	82 510	2020	8/1020	2004	QE EEO	1000	87070
2004	74.910	1900	70.400	1002	77.500	1001	134/0	1900	00.550	2401	02.010	2000	04.000	2024	0.000	1990	07.070
2015	74.930	2041	/6.450	2005	11.970	1929	79.490	20/4	81.010	23/7	82.530	1982	84.060	2009	85.570	1968	87.090
1965	74.950	1931	76.470	1979	77.990	1947	79.510	2073	81.030	2306	82.550	1979	84.070	1999	85.590	1969	87.110
1065	74070	1012	76400	1028	78010	2027	70520	1070	81.050	2256	82570	10/15	84.000	1096	85610	100/	87120
1000	1-1.010	1012	0.000	1000	10.010		,	1010	01.000	~~~~0	0.010	1070	0.000	1000	0.010		01.100

1980	87.150	2018	87.550	2001	87.950	2031	88.350	2000	88.750	2019	89.150	1985	89.550	2003	89.950	1957	90.350
2070	87.170	2048	87.570	1962	87.970	1906	88.370	2001	88.770	1933	89.170	2039	89.570	1984	89.970	1990	90.370
2024	87.190	2156	87.590	1963	87.990	2053	88.390	2048	88.790	2007	89.190	1967	89.590	1958	89.990	1968	90.390
2027	87.210	2064	87.610	1979	88.010	1952	88.410	1963	88.810	1958	89.210	2048	89.610	1938	90.010	1990	90.410
1939	87.230	1996	87.630	2025	88.030	1946	88.430	2028	88.830	1967	89.230	1987	89.630	1961	90.030	1913	90.430
1936	87.250	2044	87.650	1989	88.050	1953	88.450	1953	88.850	1927	89.250	2037	89.650	1958	90.050	2004	90.450
1980	87.270	2014	87.670	1967	88.070	2006	88.470	2017	88.870	1962	89.270	2016	89.670	1911	90.070	1931	90.470
1958	87.290	2098	87.690	2017	88.090	2028	88.490	1953	88.890	1968	89.290	2024	89.690	1978	90.090	1953	90.490
1996	87.310	2033	87.710	1986	88.110	1893	88.510	1981	88.910	1998	89.310	2026	89.710	1956	90.110	2015	90.510
1941	87.330	1985	87.730	1951	88.130	1983	88.530	1970	88.930	2051	89.330	2010	89.730	1953	90.130	1897	90.530
1993	87.350	1967	87.750	1967	88.150	1949	88.550	2030	88.950	1967	89.350	1946	89.750	1971	90.150	2065	90.550
1962	87.370	2029	87.770	1989	88.170	2027	88.570	1885	88.970	1937	89.370	2035	89.770	1961	90.170	2023	90.570
2015	87.390	2085	87.790	1936	88.190	1991	88.590	1958	88.990	1917	89.390	1957	89.790	1951	90.190	1973	90.590
2050	87.410	1990	87.810	1950	88.210	1969	88.610	2048	89.010	1962	89.410	2040	89.810	1917	90.210	1927	90.610
1988	87.430	1992	87.830	2070	88.230	1930	88.630	2029	89.030	2024	89.430	1911	89.830	1982	90.230	1914	90.630
1960	87.450	1956	87.850	1938	88.250	1961	88.650	2019	89.050	2020	89.450	2013	89.850	1988	90.250	1978	90.650
2044	87.470	1946	87.870	1944	88.270	1875	88.670	1883	89.070	1956	89.470	1983	89.870	2018	90.270	1920	90.670
1940	87.490	1979	87.890	1952	88.290	1938	88.690	2011	89.090	2020	89.490	2002	89.890	1972	90.290	1973	90.690
1977	87.510	1986	87.910	2032	88.310	1944	88.710	2059	89.110	1992	89.510	2013	89.910	1951	90.310	2035	90.710
1950	87.530	2009	87.930	2014	88.330	1933	88.730	1974	89.130	1999	89.530	2015	89.930	1990	90.330		

REFERENCES

- 1. Pomey ,J., " Précontraintes et durcissements superficiels ", Techniques de l'ingénieur, M 1180 M 1184.
- 2. Guiraldenq, P., "Diffusion dans les métaux", Techniques de l'ingénieur, M 55.
- 3. Baume, J., "Le potentiel carbone", Traitement thermique, nº 174, (1983) ,17.
- 4. Pourprix, Y., "Potentiel d'équilibre et potentiel cinétique", Traitement thermique, n°168, (1982), 39-41.
- 5. Ghiglione, D., Convert, F., et Tournier, C., "Obtention des propriétés d'emploi des pièces cémentées par la maîtrise du profil carbone", Traitement thermique, n° 165, (1982), 31-34.
- Clement, B., "Mise en œuvre expérimentale de la mesure du potentiel carbone à l'aide de la sonde à oxygène", Traitement thermique, n° 200, (1986), 31-34.
- Diament, A., El Haik, R., Lafont, R., et Wyss, R., "Tenue en fatigue superficielle des couches carbonitrurées et cémentées en relation avec la répartition des contraintes résiduelles et les modifications du réseau cristallin apparaissant en cours de fatigue", Traitement thermique, n° 87,(1974), 87-97.
- 8. Leclerc,C., Thriet,G., Chateauneuf, P., et Meunier, G., "Renforcement par grenaillage de précontrainte de la pignonnerie automobile", ATTT 91, Internationaux de France du traitement thermique, Toulouse, (Juin 1991), 221-234.
- 9. Le Strat, F., Clement, B., Leroy, J., et Baudry, G. "Optimisation des aciers et traitements pour pignonnerie", ATTT 90, Internationaux de France du traitement thermique, Le mans, (Septembre 1990), 299-305.
- 10. Barralis, J., Maeder, J., <u>Précis de métallurgie</u>, Nathan, 1983.
- 11. Mridha, S., Khan, A.A., "The effect of process variables on the hardness of nitrided 3% chromium steel", Journal of material processing technology, n^o 201, (2008), 325.
- 12. Leveque, R., "Traitement thermique des aciers à outils", Technique de l'ingénieur M1135 M1137.
- 13. Machlet, A., U.S Patent, n^o 1.092.925, 24/06/1913.

- 14. Pye, D., "Nitriding techniques and methods", steel heat treatment handbook, (1997), 721-764.
- 15. Dulcy, J., Gantois, M., "Mécanismes de transfert appliqués aux traitements thermochimiques", Traitement thermique, n° 368, (2006), 31-45.
- 16. Pourprix, I., "Choix du traitement thermique des matériaux ferreux pour l'automobile", Technique de l'ingénieur, M1405.
- 17. Margerie, J.C., "traitement thermique des fontes", Technique de l'ingénieur, M1145.
- 18. Hoffman, R., Weisson, K.H., "le rôle des sondes à oxygènes dans la nitruration et la nitrocarburation", Traitement thermique, n° 267, (1993).
- 19. Böhmer,S., Spies,H.J., Berg,H.J., Zimdars, H., "Oxygen probes for controlling nitriding and nitrocarburising atmospheres", Surface engineering, V.10, n°2, (1994), 129-135.
- 20. Ghiglione, D., Leroux, C., Tournier, C., "Nitruration, nitrocarburation, et dérivés" Technique de l'ingénieur, M1227.
- 21. Wang, J., Zhang,G., Sun, J., Bao,Y., Zhuang, L., Wen, H., "Low temperature nitriding of medium carbon steel", Vacuum, n° 80, (2006), 856.
- Abboud, J. H., Fidel, A.F., Benyounis, K.Y., "Surface nitriding of Ti-6Al-4V alloy with a high power CO₂ laser", Optics and laser technology n^o 40, (2008),405.
- Inal, O.T., Ozbaysal, K., Metin, E.S., Pehlinvanturk, N.Y., "A review of plasma surface modification process, parameters, and microstructural characterization", la 2^{ème} conférence internationale sur la nitruration ionique/cémentation, Cincinnati, Oh, USA, 1989.
- 24. Habireche, M., <u>Amélioration de la longévité et du comportement</u> <u>mécanique d'un acier à outil pour travail à froid</u>, mémoire de magister, USDB, 2008.
- 25. Stickels, C.A., US Patent 4119444, 10/10/1978.
- 26. Li, K.Y., Xiang, Z.D., "Increasing surface hardness of austenitic steels by pack nitriding process", Surface and coating technology, n^o 204, (2010), 2268-2272.
- 27. Davis, J.R., <u>Surface hardening of steels: understanding the basis</u>, ASM International, Ohio, 2002.

- 29. Jack, K.H., "Nitriding", Conférence sur les traitements thermiques, The metals society, londres, 1973.
- 30. Pye, D., <u>Practical nitriding and ferritic nitrocarburizing</u>, ASM International, Ohio, 2003.
- 31. Lampman, S., <u>Surface Hardening of Steels</u>, ASM International, V.4, 1991.
- 32. Bell, T. Birch, B.J., Korotchenko, V., et PEVANS, S., "Controlled nitriding in ammonia- hydrogen mixtures", Heat treatment, 1973, The metals society.
- 33. Amrani, S., Mettidji, M., <u>Substitution du traitement de cémentation de</u> <u>l'acier</u> <u>17CrNiMo6 par le traitement de borocarbonitruration</u>, Thèse de PFE, USDB, 2008.
- 34. Ligntfoot, B.J., Jack, D.H., "Kinetics of nitriding without white layer formation" Heat treatment, n^o 73, (1975), 59-65.
- 35. Hammou, M., Bettahar, A., <u>L'influence du pourcentage de chrome sur</u> la structure et les caractéristiques des couches borocarbonitrurées des aciers alliés, Thèse de PFE, USDB, 2008.
- Confente, M., Michel, H., Pourprix, Y., "Mise au point d'aciers économiques aptes à la nitruration" Traitement thermique, nº 197, (1985), 67-72.
- 37. T., Spalvis, "Advances and directions of ion nitriding/carburizing", la 2^{ème} conférence internationale sur la nitruration ionique/cémentation, Cincinnati, Oh, USA, 1989.
- Constant, A., Henry, G., Charbonnier, J.C., <u>Principes de base des</u> <u>traitements thermiques, thermomécaniques et thermochimiques des</u> <u>aciers</u>, PYC, (1991), lvry-sur-Seine, France, 328 – 330.
- 39. Azouani, O., <u>Caractérisation microstructurale et micromécanique des</u> <u>couches borocarbonitrurées des aciers Z200CDV12 et 23MCD5</u>, Thèse de PFE, USDB, 2008.
- 40. Salvi, B., Pittion, B., Pailleux, A., "Les nitrurations : choix du procédé en fonction de l'application", Journée ATTT, Paris, 1993.
- 41. Zeghni, A.E., Hashmi ,M.S.J., "The effect of coating and nitriding on the wear behaviour of tool steels", Journal of materials processing technology, n° 155, (2004), 1918-1922.

- 42. Syla, N., Schreiber, G., Oettel, H., Dilot., "Experimental study of the nitriding layer by steel 17CrMoV10", Journal of engineering and applied sciences, n° 3, (2008), 754-757.
- Michel, H., Mathieu, R., Pailleux, A., Peyre, J.P., Pourprix, Y., Leveque, R., "Nitruration ionique des aciers rapides", Traitement thermique, n° 176, (1983), 25-29.
- 44. Colombé, M., "aciers inoxydables" Technique de l'ingénieur, M320.
- 45. Bezier, A., "Contribution à l'étude de la nitruration ionique des fontes ductiles", Traitement thermique, n° 247, (1991).
- 46. Montavon, G., "Analyse structurale par traitement d'image" Communication privée, université de Limoges, France.
- 47. Tarrazona, A., "La nitruration gazeuse", Traitement thermique, nº 68, (1972).
- 48. Boire, M., Chaize , C., "engrenages cémentés ou nitrurés ? ", congrès mondial des engrenages, Paris, 1972.
- 49. Pittion, B., "l'avenir métallurgique des engrenages", Journée ATTT, Aix-En-Provence, France, 1972.
- 50. Sinha, A.K., <u>Boriding</u>, ASM International, V.4, 1990.
- 51. HEF, <u>Manuel industriel de l'usure et du grippage</u>, Edition Science et industrie, 1973.
- 52. Mongis, J., Peyre, J.P., Duchateau, D., Michel, H., Leroy, C., Konkolyt., "Tenue à la corrosion des couches nitrurées parachevées par oxydation", Journée ATTT, Paris, 1993.
- 53. Dubus, A., Peyre, J.P., "Traitement ionique des outillages et engrenage", Rapport CETIM, 1980.
- 54. Leveque, R., "Traitements superficiels des aciers à outils", Techniques de l'ingénieur, M 1135.
- 55. Thibault, S., <u>Modifications des propriétés phisico-chimiques et de la</u> <u>microstructure de l'aluminium après nitruration par implantation d'ions</u> <u>multichargés</u>, Thèse de Doctorat, université de Caen, Basse-Normandie, France, 2009.
- 56. Oubabas, N., <u>Etude comparative entre le traitement de nitruration et de borocarbonitruration</u>, Mémoire de magister, Ecole nationale polytechnique, 2008.

- 57. Biestek, M., Czelusniak, A., Iwanow, J., Korwin, M. Liliental, W., Tacikowski, J., "Optimization of corrosion and wear properties of steel component surfaces by controlled gas nitriding", 12th International corrosion congress, Houston, Texas, 1993.
- 58. Torchane, L., Bilger, P., Dulcy, J., Michel, H., "Oxynitruration", Compte rendu de la commission CETIM, Traitement thermique et thermomécanique, 1994.
- 59. Edenhofer, B., "Physical and metallurgical aspects of ion nitriding", Heat Treatment metallugy, 2, (1974), 23-28.
- 60. Ueda, N., Mizukoshi, T., Demizu, K., Sone, T., Ikenaga, A., Kawamoto, M., "Boriding of nickel by the powder method", Surface and coating technology, n^o 126, (2000), 25-30.
- 61. Mongis, J., Peyre, J.P., Tournier, C., "Nitruration des aciers à dispersoïdes", Traitement thermique, n° 178, (1983).
- 62. Riofano, R.M, Casteletti, L.C., Canale, L.C., Totten, G.E., "Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding", Wear n^o 265, (2008), 58.
- Matiasovsky, K., Chrenkova, Paucirova, M., Fellner, P., Makyta, M., "Electrochemical and thermochemical boriding in molten salts", Surface Coating Technology, nº 35, (1988), 133.
- Leite, M.V., Figueroa, C.A., Corujeira Gallo, S., Rovani, A.C., Basso, R.L.O., Mei, P.R., Baumvol, I.J.R., Sinatora, A., - "Wear mechanisms and microstructure of pulsed plasma nitrided AISI H13 tool steel", Wear, n^o 269, (2010), 466–472.
- 65. Sirin, S.Y., Sirin, K., Kaluc, E., "Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel", Materials Characterization, n° 59, (2008) , 351 358).
- Zhang, J., Lu, L., Cui, G., Shen, X., Yi, H., Zhang, W., "Effect of process temperature on the microstructure and properties of gas oxynitrocarburized 35CrMo alloy steel", Materials and Design, n^o 31, (2010), 2654–2658.
- 67. Wen, D.C., "Erosion and wear behavior of nitrocarburized DC53 tool steel", Wear n° 268, (2010), 629–636.
- 68. Japanese Industrial Standard JISG0562-93, <u>Method of Measuring</u> <u>Nitrided Case Depth for Iron and Steel</u>, 1993.
- Shetty, K., Kumar, S., Rao, P., "Effect of ion nitriding on the microstructure and properties of Maraging steel (250 Grade)", Surface & Coatings Technology, n^o 203, (2009), 1530–1536.

- 70. Karamis, MB., Staines, AM., "An evaluation of the response of 722M24 steel to high-temperature plasma nitriding treatments", Heat treatment metallurgy, 1989, 3, 79-82).
- 71. Staines, A.M., "Trends in plasma-assisted surface engineering processes", Heat treatment metallurgy, 4, (1990), 85-92.