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Abstract

The complexity and diversity of the methods used in neuroimaging constitute areas of innovation
and discovery in science with new algorithms and new methods for the collection and analysis
of brain images. They continue to open up new avenues for understanding the brain; how
it is structurally and functionally organized, how it develops, and its measurements relate to
knowledge, behavior, and even genetics.

The analysis of brain images allows for a deep understanding of cognitive tasks and the
disease process. In particular, the analysis of anatomical MRIs in the field of computational
anatomy, which is interested in the modeling of aspects relating to the structure of the brain.
The processing and manipulation of functional images cover modeling the causal relationships
over time of functional data, which involves testing functional and connectivity hypotheses. The
analysis of MRI images then consists of collecting and analyzing structural connectivity. The
modeling of the interactions and the connectivity between the regions of the brain often calls
upon the mapping mechanism and graphical calculation tools. Brain mapping approaches are
increasingly used on different spatial and temporal scales. In order to understand the organization
of the human brain, it becomes necessary to integrate and combine the different information
modalities in order to develop a multimodal model of the brain. Atlases are a topographical
means of integrating this information into a meaningful form.

In this thesis, the aim is to propose an approach based on graphs, in order to represent
the different structures of the brain as well as the connectivity between them in the form of
a network. It also involves adapting the analysis methods using mapping techniques between
graphs. The use of graphs as a model to represent spatial and temporal information contained in
brain images appears to be widespread in the field of functional/structural analysis of the brain
and computational anatomy. The graph representation also seems suitable for the construction
of 3D graphic models for multidimensional visual analysis of the brain. However, the algorithms
for processing, learning, identification, clustering, etc..., which are often based on computational
intelligence techniques, prove to be very expensive because of the complexity of the matching
graph which constitutes a routine of the basis for the mapping mechanism in these algorithms.
The other aim of this thesis is to propose calculation tools that optimize the different algorithms
thanks to parallelization/distribution mechanisms on high performance computing virtual machines
in order to reduce the complexity of the mapping operation in the graphs ( by graph matching).

Key words:
Graph Matching, Functional Brain Analysis, Structural Brain Analysis, Digital Brain Atlas,
MRI, fMRI, Neural Networks, Brain Regions, Graphical Visualization, Clustering, Graph Mining,
Non-Invasive Exploration.
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Résumé

La complexité et la diversité des méthodes utilisées en neuroimagerie, constituent des domaines
d’innovation et de découverte en science avec de nouveaux algorithmes et de nouvelles méthodes
pour la collecte, l’analyse des images du cerveau. Elles continuent d’ouvrir de nouvelles perspectives
pour la compréhension du cerveau ; comment il est organisé structurellement et fonctionnellement,
comment il se développe et sont reliées ses mesures à la connaissance, au comportement, et
même à la génétique. L’analyse des images du cerveau permettent une compréhension profonde
des tâches cognitives et du processus de maladie. En particulier, l’analyse des IRM anatomiques
du domaine de l’anatomie computationnelle, qui s’intéresse à la modélisation des aspects relatif
à la structure du cerveau. Le traitement et la manipulation des images fonctionnelles couvrent
la modélisation des relations causales dans le temps des données fonctionnelles, qui consiste
à tester des hypothèses fonctionnelles et de connectivité. L’analyse des images IRM consiste
alors à collecter et analyser la connectivité structurelle. La modélisation des interactions et la
connectivité entre les régions du cerveau fait souvent appel au mécanisme de mappinget à des
outils de calcul graphique. Les approches de mapping du cerveau sont de plus en plus utilisées
selon les différentes échelles spatiales et temporelles. Afin d’appréhender l’organisation du
cerveau humain, il devient nécessaire d’intégrer et combiner les différentes modalités d’information
afin d’élaborer un modèle multimodal du cerveau. Les atlas constituent un moyen topographique
d’intégrer ces informations sous forme significative.

Dans cette thèse, il s’agit de proposer une approche basée sur les graphes, afin de représenter
les différentes structures du cerveau ainsi que la connectivité entre elles sous forme d’un réseau.
Il s’agit également d’adapter les méthodes d’analyse à l’aide des techniques de mapping entre
graphes. L’utilisation des graphes comme modèle de représentation des informations spatiales
et temporelles contenues dans des images du cerveau semble très répandue dans le domaine de
l’analyse fonctionnelle/structurelle du cerveau et de l’anatomie computationnelle.La représentation
en graphe semble également adaptée pour la construction de modèles graphiques 3D pour une
analyse visuelle multidimensionnelle du cerveau. Cependant, les algorithmes de traitement,
d’apprentissage, d’identification, de clustering . . . , lesquels sont souvent basés sur des techniques
d’intelligence computationnelle, s’avèrent très coûteux à cause de la complexité du graphe
matching qui constitue une routine de base pour le mécanisme de mapping dans ces algorithmes.
Dans ce travail, il s’agit de proposer des outils de calcul qui optimisent les différents algorithmes
grâce à des mécanismes de parallélisation/distribution sur des machines virtuelles de calcul haute
performance afin de réduire la complexité de l’opération de mapping dans les graphes (de graph
mathching).

Mots clés: Graphe Matching, Analyse Fonctionnelle du Cerveau, Analyse Structrelle du
Cerveau, Atlas Numérique du Cerveau, Images IRM, Image IRMf, Réseaux Neuronaux, Régions
Cérébrales, Visualisation Graphique, Clustering, Graphe Mining, Exploration non Invasive.
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General Introduction

The human brain is more complex than any other known structure in the universe. The study
of the human brain has been one of the challenges of neuroimaging /neuroscience and still is.
Evidence of this is the large number of papers that have been published during the last years to
study brain structure and function. The brain is the center of the central nervous system and it
centralizes the control over the other organs of the body and contains about 100 billion neurons
and 1000 billion glial cells, the adult brain weighs between 1250 and 1450 g. It is composed
of neurons and glia, cells that provide support to the neurons. Neurons’ signal is transmitted
by electrical impulses along their axons in the form of electrochemical pulses called action
potentials. They communicate with other cells via synapses, membrane-to-membrane structures
that permit to pass an electrical or chemical signal between the cells. Neuron bodies together
with capillary blood vessels form gray matter tissue and neuron axons form white matter tissue.
Gray matter is associated with processing and cognition.

Neuroimaging is the discipline that deals with the in vivo depiction of anatomy and function
of the central nervous system in health and disease, it was considered the domain of radiologists
with a specific interest in the nervous system. It produces images of the brain by noninvasive
techniques in order to understand the brain structures and functions, the relationship between
brain activity in certain brain areas and specific mental functions and diagnosis of various
neurological diseases of the brain. This thesis focuses on two complementary technologies;
magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI).

Structural Magnetic Resonance Imaging (MRI) is today one of the most widely used and
versatile medical imaging modalities. MRI is nowadays the reference tool for the diagnosis and
the investigation of neurological diseases, including the investigation of trauma and disease-
related brain changes for some considerable time. It is based on the physical phenomenon of
nuclear magnetic resonance (NMR). The main advantages of MRI are that it is noninvasive, it
does not use any harmful radiation, it produces truly 3D images of high-resolution, and it offers
contrast mechanisms for imaging many kinds of tissues and tissue properties which is especially
useful for soft tissues. It, therefore, meets the criteria for structural analysis well.

Functional Magnetic Resonance Imaging (fMRI) is a powerful brain imaging modality, it
allows us to better understand how the brain work by recording with very little intrusion the
brain activity of an active human subject with a good time (1s) and spatial resolution (1mm).
fMRI measures the changes induced by cerebral activity. The most widely used fMRI modality
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is BOLD for blood oxygen level dependent and, as the name indicates, it reflects the changes
in oxygen concentration in the blood. When there is brain activity, oxygen is consumed and its
concentration in the blood decreases; then there is an inflow of oxygenated blood to replenish the
tissue, increasing blood oxygen concentration. Deoxygenated blood causes magnetic distortions
that can be measured by an MRI scanner. The field of fMRI is becoming data-intensive, as the
number of publicly available studies is constantly growing, and as several acquisition campaigns
on large cohorts have provided tens of thousand hours of brain records.

Graphs are a powerful and universal tool widely used in information processing. Numerous
methods for graph analysis have been developed. In particular, graph representations are extremely
useful in image processing and understanding. A graph is a set of elements, called nodes, and
a set of links, called edges, linking together a subset of nodes by pairs. This representation of
information can be applied in a wide range of domains, going from transportation with for
example the complex network of airline routes (where the nodes represent the airports and
the edges the direct flight routes between two airports) to sociology (friendship, professional
relationship), biology (protein interactions, epidemic spreading) and many more. Complex
networks have also found applications in neuroimaging and neuroscience. Indeed, the brain
can be regarded as a network, where nodes represent brain regions, and edges represent the
anatomical or functional connections between brain regions. Recent research has shown that
graph-theory based complex network analysis provides a powerful framework for examining the
topological properties of brain networks. Graph theory has drawn a lot of attention in the field
of brain MRI/fMRI analysis during the last decade, mainly due to the abundance of tools that it
provides to explore the interactions of elements in a complex graph like the brain. In these fields,
the construction of a representative brain graph for each individual is critical for further analysis.
Additionally, graph matching is an essential step for inference and classification analyses on
brain graphs. Graph matching is the process of finding a correspondence between the nodes and
the edges of two or more graphs that satisfies some (more or less stringent) constraints ensuring
that similar substructures in one graph are mapped to similar substructures in the others. In
realistic applications, the matching is done by comparing the model graph which is stored in a
file and an input graph that is given at the run time.

Organization of The Manuscript

The aim of this thesis is to give a compact insight to the state-of-the-art of the brain MRI/fMRI
analysis by using graph matching in a parallel and distributed approach including the necessary
introduction to the principles of MRI/fMRI and graph theory.

In the first chapter, we introduce the general goals and the type of data that were studied
in this thesis. This is useful to understand the various directions that we took. An overview
of brain anatomy and magnetic resonance imaging is provided, we started by providing some
insight into the human brain structure and function. Then, we introduced the principles of
nuclear magnetic resonance (NMR) and its properties. Next, we briefly introduced the magnetic
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resonance imaging (MRI) method; how to get the signal, the image contrast and some artifacts
can be generated by a wide variety of factors resulting from the scanner hardware itself. Finally,
we introduced functional magnetic resonance imaging (fMRI) and we summarize the existing
neuroimaging techniques, focusing on the ones that are going to be used in the context of this
thesis (BOLD fMRI).

In the second chapter, we described some of the most common MRI steps normally applied
to raw MR images in order to improve their quality (Preprocessing) and the main approaches to
MRI analysis of the brain.

In the third chapter, we presented a brief overview of the most common classical methods
used for the preprocessing and analysis of fMRI in both task data and resting-state data.

In the fourth chapter, we provided an overview of graph matching, we focused on three main
components. Firstly, an introduction to graph theory, we mainly concentrate on the fundamental
concepts. Secondly, an overview of graph matching and the most important methods used.
Thirdly, we provided some methods based on graph matching techniques that may be successfully
applied to neuroimaging data for understanding the brain structure or its structural and functional
connectivity.

The human brain cortex is very complex structure containing folds (gyri) and fissures (sulci).
The sulcus is one of the most important features in order to know the different functions areas
of the brain. The exact identification of sulci on the human brain using MRI images is helpful in
many studies and applications related to brain diseases and human behavior. Automatic labeling
of cortical sulci with all this complexity and inter-subject variability is considered non-trivial
task. In the fifth chapter, we proposed a new graph-based approach of automatic labeling of
cortical sulci with parallel and distributed algorithms using graph matching and generalized
median graph. The generalized median graph of a set of graphs is a way to represent a set of
graphs by a comprehensive graph that minimizes the sum of the distances to all graphs. We used
a dataset of MRI images weighted in T1 and with voxel dimensions of 1mm3. Our dataset is
grouped into two sets, the first one is the training set used for the construction of the generalized
median graph and the second set is used for the evaluation of the performance of the proposed
approach. In order to describe the sulci, we used the characteristics of shape, orientation, and
location. The estimation measures are used to evaluate the automatic labeling accuracy for each
sulcus by each test subject are the true positive rate (TPR), false-positive rate (FPR), and the
similarity index (SI). Our method achieves an average SI = 0.796 for the normal graph match
algorithm and SI = 0.802 for the parallel graph match algorithm compared to other methods. The
results that we obtained prove that our approach is accurate and acceptable in this field which
uses graph matching for automatic labeling of cortical sulci.

In the sixth chapter, we proposed a study where its purpose is to apply graph convolutional
networks (GCNs) for feature extraction and classification of patients with autism spectrum
disorder (ASD). The number of people with (ASD) increases every year and poses a threat to the
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life and future of many children which makes this study very important. We used the resting-
state fMRI data from a large multi-site dataset called Autism Brain Imaging Data Exchange
I (ABIDE I) to validate our proposed approach. Based on functional connectivity (FC), we
represented the brain through a complex network where the regions of the brain represent
the nodes in the network and the correlation coefficient between two regions represents the
weight of the edge connects them. The data were preprocessed, and we constructed a functional
connectivity graph for each subject by parcellation of the whole brain into 392 distinct regions
using the (CC400) atlas. The graph measures were then calculated and used as features for both
nodes and edges to classify these subjects by graph convolutional networks classifier proposed
in this study. The results we achieved in our experiments were with accuracy of 70% to identify
patients with autism spectrum disorder from healthy individuals, which proved the accuracy and
robustness of our approach in classifying brain diseases.

Publications

• Graph Matching and Generalized Median Graph for Automatic Annotation of Cortical
Sulci [5]

• Graph matching approach and generalized median graph for automatic labeling of cortical
sulci with parallel and distributed algorithms [6]

• Graph Convolutional Networks and Functional Connectivity for Identification of Autism
Spectrum Disorder [7]
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Chapter 1

Overview of Brain Anatomy and Magnetic
Resonance Imaging

1.1 Introduction

The study of the human brain has been an important focus of attention in science since the 19th
century and still is. This is demonstrated by the large number of initiatives that have been created
during the last years to study brain function, this allowed neuroscientists to significantly improve
the study of the human brain. In this chapter, we introduce an overview of brain anatomy and
magnetic resonance imaging. We will start by providing some insight into human brain structure
and function. Then, we will introduce the principles of nuclear magnetic resonance (NMR) and
its properties. Next, we briefly introduce the magnetic resonance imaging (MRI) method; how
to get the signal, the image contrast and some artifacts can be generated by a wide variety of
factors resulting from the scanner hardware itself. Finally, we introduce the functional magnetic
resonance imaging (fMRI) and we summarize the existing neuroimaging techniques, focusing
on the ones that are going to be used in the context of this thesis (BOLD fMRI).

1.2 The Nervous System

The nervous system is the system responsible for sensations, thinking and the control of our
body. To accomplish these functions, it collects sensory information from the whole body and
transmits it through the nerves to the spinal cord and the brain. These can respond immediately to
sensory information and send signals back to the muscles or internal organs, causing a response
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called motor response. The nervous system is divided into two major sections : the central
nervous system (CNS) and the peripheral nervous system (PNS), Figure1 1.1.

FIGURE 1.1: The central and peripheral nervous systems 1.

1.2.1 The Central Nervous System

The central nervous system is the set of nerve centers that are responsible for ensuring the proper
functioning of the various centers of regulation. All the sensitive information arrives and all the
motor information leaves. Anatomically, it consists of the brain and spinal cord.

The Brain

The brain is the largest part of the central nervous system which is the center of thinking and
memory and monitoring the various vital processes in the human body. The brain contains about
100 billion neurons and 1000 billion glial cells, the adult brain weighs between 1250 and 1450
g. The brain consists of three gross divisions, the cerebrum, the brain stem, and the cerebellum,
Figure 1.2.

1. The cerebrum : is the large gray part located at the top of the brain which houses the
highest cognitive functions and the place where consciousness arises and the ability to
do different things such as speech, learning and organizing the movements of the body.
It consists essentially of two hemispheres, the left hemisphere and the right hemisphere
separated by a groove is known as the longitudinal fissure. The surface tissue of the

1Basic Brain Anatomy 94170_02_6272.indd
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FIGURE 1.2: Brain sections : the cerebrum, the brain stem, and the cerebellum 1.

cerebrum is known as the cerebral cortex which has two parts, the gray matter (GM) and
the white matter (WM), Figure 2 1.3.

(a) The gray matter (GM) : is responsible for the processing and regulating of information
within the nervous system. It is present in the cortex and some subcortical structures
such as the cerebellum, thalamus, basal ganglia, and the spinal cord. The cerebral
cortex is a very complex structure containing gyri (singular: gyrus) and sulci (singular:
sulcus) that are the most important features in order to know the location, structures,
and different functions of many other areas of the brain, Figure 1.3. The basal
ganglia are a group of brain neurons located deep in the cerebral cortex, which runs
certain vital functions such as movement and fine-tuning the activity of brain circuits,
as well as memory.

(b) The white matter (WM) : is located in the inner part of the brain, which is responsible
for the transmission of impulses from one area of the brain to another, Figure 1.3. It
consists of links called Axons, which covered by a protein layer called the Myelin to
protect signals transmitted from interference and noise.

(c) The axon : makes the white matter looks white and there are three kinds of axons.
The association fibers are axons connecting the cerebral cortex regions in the same
cerebral hemisphere of the brain. The commissural fibers are axons connecting the
cerebral cortex regions in the two hemispheres of the brain. The projection fibers are
axons connecting the brain to the spinal cord.

(d) The major cerebral lobes : the cerebrum consists of two cerebral hemispheres
where each cerebral hemisphere performs specific functions in the body. The right
cerebral hemisphere is responsible for processing the sensory information coming

2www.mayfieldclinic.com/pe-anatbrain.htm
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FIGURE 1.3: The cortex contains gray matter, white matter, gyrus, and sulcus.

up from the left side of the body and controlling the movement in it, and the same
role is done by the left hemisphere with the right side of the body. Each cerebral
hemisphere is subdivided into four lobes: the frontal, parietal, temporal, and occipital
lobes, Figure 1.4. Each cerebral lobe in each cerebral hemisphere houses various
major functions of the brain and specializes in certain functions, Figure3 1.5.

2. The brain stem : is the region of the brain that connects the cerebrum with the spinal
cord, which consists of the midbrain, medulla oblongata, and the pons, Figure 1.2. The
brain stem houses many of the control centers for vital body functions such as breathing,
swallowing, heart rate, blood pressure, consciousness, and whether one is awake or sleepy.

3. The cerebellum : is known as a small brain because it is similar to the brain and has two
hemispheres like it, which is located at the back of the brain, underlying the occipital and
temporal lobes of the cerebral cortex, Figure 1.2. The cerebellum receives information
from the sensory systems, the spinal cord, and other parts of the brain and then regulates
motor movements. It performs several functions related to movement and coordination,
including maintaining balance and posture, coordination of movement, motor learning and
has some role in thinking.

4. The cerebral meninges : are three layers of protective tissue surrounding the brain and
separates the brain from the skull. The dura mater envelopes the brain and spinal cord as
well as protects the brain from displacement. The pia mater is the innermost layer of the
meninges and adhere closely to the brain. The arachnoid mater is the middle layer of the
meninges that plays a major role in the distribution of blood to the cerebral cortex.

The Spinal Cord

The spinal cord consists of bundles of nerve fibers that are mainly made up of white matter and
gray matter, which begins at the end of the brain stem and continues down almost to the bottom

3Credit: Nucleus Medical Art, Inc./Getty Images. http://dana.org
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FIGURE 1.4: Diagram of the lateral view of the human brain1.

FIGURE 1.5: Main functional and anatomical areas of the brain.

of the spine in the form of a cylinder. The spinal cord transfers the sensory impulses coming
from the body to the brain and transmits the motor impulses from the brain to the body.
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1.2.2 The Peripheral Nervous System

The peripheral nervous system (PNS) consists of the nerves that connect the central nervous
system (CNS) to the rest of the body, allowing the brain and spinal cord to receive and transmit
sensory and motor information to other parts of the body which allow us to respond and react
to the stimuli that come from our environment, Figure 1.1. The PNS consists of 12 pairs of
cranial nerves and 31 pairs of spinal nerves. The cranial nerves are nerves attached to the brain
stem with the head, neck, and face, which are primarily responsible for their sensory and motor
functions. The spinal nerves transmit sensory and motor information between the spinal cord
and the rest of the body, which contributes to control of the rest of the body that is not reached
by the cranial nerves.

1.2.3 The Nerve Cells

The brain is made up of billions of nerve cells, which is consists of two basic cells types. The
neurons and the glial cells.

The Neuron

Neurons are cells responsible for communication and integration into the nervous system, which
transmit information to other nerve cells, muscle or gland cells by electrical stimulation. Typically,
neurons have three basic parts, Figure4 1.6.

1. The cell body (soma) : consists of a membrane surrounding the cytoplasm and the
nucleus of the cell inside. It is responsible for most of the protein and energy production
of the cell to drive activities, it also carries the genetic information of the neuron and
maintains its structure. The soma is generally circular but there are other forms such as
the pyramid shape and can be classified according to their shape.

2. The dendrites : are branch-like structures extending away from the cell body, which
receive information from other neurons and transmit that information to the soma.

3. The axon : is a tube-like structure and it is the transmitting part of the neuron that carries
information from the cell body to other neurons.

4www.simple.wikipedia.org/wiki/Neuron
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FIGURE 1.6: The basic structural elements of a neuron.

The Glial Cell

Glial cells playing a supporting role of neurons, where ensuring the isolation of nerve tissue,
metabolic functions, skeletal support and protection from foreign bodies in case of injury. They
also play an active role in the transmission of nerve impulses, accelerating nerve conduction by
acting as an insulating sheath for certain axons. Indeed, there are many more glial cells in the
brain than there are neurons, the most important types of glial cells are Microglia, Astrocytes,
Oligodendrocytes, and Ependymal.

1.3 Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance is a technique that was discovered independently by Felix Bloch
and Edward Purcell in 1946 [8] [9], they were both awarded the Nobel prize for Physics in
1952 for the discovery. The principle of magnetic resonance is when we placed a particle in an
external magnetic field can be excited by absorbing photons and return back to the equilibrium
state after some time with releasing the absorbed photons, by release photons we can obtain
information about the physical and chemical properties of the exciting elements [10].

1.3.1 Spin

The atoms consist of three fundamental particles: electrons that have a negative charge and are
located in the orbits surrounding the nucleus. Protons have a positive charge, and neutrons have
no charge, both protons and neutrons are located in the nucleus of the atom. Nuclei with unpaired
protons or neutrons have a positive charge and generate a property called angular momentum or
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spin. The spin produces a nuclear magnetic moment and the nuclei behave as a small magnetic
dipole with a random orientation in space.

1.3.2 Net Magnetization

The spin is considered as a small magnetic and has a magnetic moment vector of equal magnitude.
It can be positive and negative and are randomly oriented in all directions. Spins of opposite
signs cancel out. The vector of these spin vectors produces a zero-sum; that is, no net magnetization
is observed.

When an external magnetic field B0 (oriented in the z-direction) is applied, each spin aligns
parallel or anti-parallel to the direction of the applied field and begin to rotate perpendicular
to, or precess about, the magnetic field B0. The anti-parallel state has higher energy than the
parallel state. Slightly greater number of spins align along that B0 direction, and therefore, the
vector sum of all the spin vectors is greater than zero and is aligned along the +z-direction, the
direction of B0, that vector is called the net magnetization vector M0, Figure 1.7.

The net magnetization vector M0 is the summation of all the magnetic moments or spins.

FIGURE 1.7: Spin behavior in an external magnetic field. (a) The spins initially
oriented randomly in space. (b) become aligned either parallel or anti-parallel to
an externally applied magnetic field B0. (c) The net magnetization vector M0 in

the equilibrium state.

1.3.3 Radio-frequency Excitation

The spins can switch from the lower energy state to the higher energy state by transmitting
a radio-frequency pulse (RF pulse) at the resonance frequency energy is added to the system.
During the pulse, the protons absorb a portion of this energy at a particular frequency. The
particular frequency absorbed is proportional to the magnetic field B0. When the spins switch
to the higher energy state by photon absorption, which causes M0 to rotate away from its
equilibrium orientation. The net magnetization will be composed of the longitudinal component
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MZ which is aligned with the orientation of the main magnetic field B0, and the transversal
part MT that refers to the magnetization in the plane perpendicular to the longitudinal direction,
Figure 1.8.

FIGURE 1.8: When a radio-frequency pulse is applied at the appropriate
frequency, the spins absorb it and M0 rotates into the transverse plane.

1.3.4 Relaxation

When the radio-frequency pulse is turned off, the protons immediately begin to realign themselves
and return to their original equilibrium orientation. Some of the energy absorbed by the spins
from the applied radio-frequency pulse is lost to its surroundings in constant times called relaxation
times. There are two relaxation times can be measured, known as T1 (spin-lattice) and T2 (spin-
spin). While both times measure the spontaneous energy transfer by an excited proton, they
differ in the final disposition of the energy [11], Figure 5 1.9.

T1 Relaxation: describes the decay constant for the net magnetization vector MZ recovers to
its equilibrium state in the direction of B0. The magnetization recovers to 63% of its equilibrium
value after one time constant T1.

T2 Relaxation: describes the decay constant for the net magnetization vector MT recovers
to its initial magnetization at time zero. The transverse magnetization vector drops to 37% of its
original magnitude after one time constant T2.

5www.radiologycafe.com
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FIGURE 1.9: Relaxation of the net magnetization vector after excitation by radio-
frequency pulse. (a) T1 relaxation. (b) T2 relaxation.

1.4 Principles of Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is a non-invasive imaging technology that produces three-dimensional
detailed anatomical images. It is often used for disease detection, diagnosis, and treatment
monitoring. It is based on the physical phenomenon of nuclear magnetic resonance (NMR).
The first developments in Magnetic Resonance Imaging were in 1973 by Paul Lauterbur [12].
Richard Ernst introduced an improved method of image acquisition in 1975 [13], which is used
until today. The first images of humans were made in 1979. Today, MRI has become a major
technique of modern medical imaging in order to investigate the anatomy and physiology of the
body, and to detect pathologies including tumors, inflammation, neurological conditions such as
stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among
others. MRI primarily focus on the hydrogen atoms, because living tissue consists mostly of
water and fat which contain many hydrogen atoms and, therefore, most atoms in the human
body are hydrogen atoms.

In this section, we describe the main technique for producing MRI and image acquired
imperfections by MRI. For more information, refer to [11] [14].
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1.4.1 Gradient Fields

Gradient magnetic fields are used primarily for localization of the MR signal, these magnetic
fields are much weaker than B0 and oriented linearly across the x, y, or z-direction, Figure 6

1.10. In the presence of a gradient field, each proton will resonate at a unique frequency that
depends on its exact position within the gradient field [11]. During the acquisition, the current
in the gradient coils is switched on and off rapidly, causing, in turn, quick changes in amplitude
and polarity of the gradient magnetic fields in order to encode the spatial position of the NMR
signal. The MR image is simply a frequency and phase map of the protons generated by unique
magnetic fields at each point throughout the image. Paul Lauterbur and Sir Peter Mansfield
discovered this idea of using the gradient fields to spatially locate the protons and separate the
signal from different parts of the body. They received the Nobel prize in Medicine for this
accomplishment in 2003.

FIGURE 1.10: Applying the gradient magnetic fields on the z-axis. The gradient
was represented by two triangles joined at the top of the image, which has two
components, the positive component added to B0 and the negative component

subtracted from B0.

Slice Selection

The initial step in MRI is the localization of the radio-frequency pulse excitation to a region
of space, which is accomplished through the location of the axial slice within the object being
imaged. This is known as slice selection. The way this is done is by applying a one-dimensional,

6www.imaios.com
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linear magnetic field gradient during the period that the radio-frequency pulse is applied so that
the resonance frequency of the spins becomes linearly dependent on the spatial position, Figure 7

1.11. The gradient direction (x, y, z or a combination) determines the slice orientation while the
gradient amplitude together with certain radio-frequency pulse characteristics determine both
the slice thickness and slice position.

FIGURE 1.11: Magnetic field gradient applied in the z-direction causes the
resonant frequencies to vary by a few thousand Hz from slice to slice.

Free Induction Decay (FID)

After the RF pulse turned off, the protons immediately begin to re-radiate the absorbed energy,
the signal we detect is called a Free Induction Decay (FID). The free induction decay ( FID) is
a damped oscillation at the resonance frequency recorded when the net magnetization is tipped
into the transverse plane 8. The amplitude of the FID signal becomes smaller over time as
net magnetization returns to equilibrium. The FID contains all of the information in the NMR
spectrum, but it is difficult for us to discern the information in this format. Fourier transformation
of the FID, a time domain signal, produces the frequency domain NMR spectrum. The resonance
frequencies of the signals in the transformed spectrum correspond to the frequency of oscillations
in the FID 9.

7www.mriquestions.com
8www.mriquestions.com
9www.libretexts.org
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K-space

The k-space is usually a grid of raw data represents the locations of the acquired signals which
have been encoded with frequency and phase encoding along the x, and y directions of the
form(Kx, Ky). The k-space represents the spatial frequency information in two or three dimensions
of an object [15] [16]. The relationship between k-space data and image data is the Fourier
transformation [17] [18] [19] [20]. The individual points (Kx, Ky) in k-space do not correspond
one-to-one with individual pixels (x,y) in the image. Each k-space point contains spatial frequency
and phase information about every pixel in the final image. Conversely, each pixel in the image
maps to every point in k-space. The k-space representation of the MR image is therefore akin to
the diffraction patterns generated by x-ray crystallography, optics, or holography, Figure10 1.12.

FIGURE 1.12: Each point in k-space maps to every point in the image, and vice-
versa.

1.4.2 Image Contrast

The contrast in most MRI is more complex and is influenced by several characteristics of tissues
and other materials. Actually, MRI image contrast is a mixture of several parameters, which can
be classified into intrinsic and extrinsic parameters. Intrinsic parameters relate directly to the
tissue. Extrinsic parameters relate to the physical characteristics of the imager and the details
of the pulse sequence used for imaging. The control of the imaging pulse sequence allows
one contrast mechanism to be emphasized while the others are minimized. The ability to choose
different contrast mechanisms by tailoring the appropriate pulse sequence and choosing the right
pulse sequence parameters is what gives MRI its tremendous flexibility.

There are two principal timing variables: repetition time (TR) and echo time (TE), where
the variations in the value of TR and TE have an important effect on the control of image
contrast characteristics , Figure 1.13. Repetition time (TR) measured in ms, is the time between

10www.mriquestions.com
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successive RF excitation pulses applied to a given volume of tissue. Echo time (TE) measured
in ms, is the time between the excitation pulse and the echo (signal maximum).

Short values of TR and TE are common in images exhibiting T1 contrast (T1-Weighted
Image). Long values of TR and TE are common in images exhibiting T2 contrast (T2-Weighted
Image). Long TR values and short TE values are common for density weighted contrast (Proton
Density Weighted Image).

FIGURE 1.13: Image contrast and the effect of repetition time and echo time.

Contrast Agents

In MRI, some areas of the body, adjacent tissues have similar MRI appearance, and contrast
agents are needed for adequate differentiation. Contrast agents are chemical substances used
in magnetic resonance imaging (MRI) scans. When injected into the body, contrast agents
enhances and improves the quality of the MRI images as well as to help in the diagnosis of
pathologies, such as tumors and infection, Figure11 1.14.

1.4.3 Artifacts

Artifacts in MRI can be generated by a wide variety of factors resulting from the MR scanner
hardware itself, the interaction of the patient with the hardware, or poorly optimized measurement
sequences [21]. The knowledge of the artifacts and their sources is extremely important in order

11www.aappublications.org
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FIGURE 1.14: Effect of contrast agent on images: Left image, no contrast agent
present. Right image, contrast agent present. Signal increase due to the presence

of the agent.

to avoid false diagnoses and to learn how to eliminate them [22]. Some of the most important
artifacts are described below.

Motion Artifacts

Motion is one of the most common artifacts in MR imaging, causing either ghost images or
diffuse image noise in the phase-encoding direction [23]. Motion artifacts occur as a result
of the movement of the tissue during the data acquisition period, caused by breathing, cardiac
movement, patient’s movement, which create ghost artifacts [22], Figure 1.15. They can be
reduced by patient immobilization, cardiac/respiratory gating, signal suppression of the tissue
causing the artifact, saturation bands, or drugs that slow down the intestinal peristalsis. One can
also reduce motion artifacts by using echo planar imaging, a very fast MR imaging technique
[24].

FIGURE 1.15: Motion artifacts in brain MRI due to head movement during the
examination. Left: motion corrupted image. Middle: less motion. Right: no

motion image.
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Aliasing Artifacts

The techniques used for spatial localization assign a unique frequency and phase to each location
within the image. These are determined by the acquisition matrix and the desired field of view
in the phase encoding and readout directions. Aliasing artifacts occur when tissue outside the
chosen field of view [11]. One can eliminate them by increasing the field of view [23].

Chemical Shift Artifacts

Chemical shift artifacts occur as dark or bright bands at the lipid-water interface and are seen
especially in case of fluid-filled structures surrounded by fat. These artifacts arise due to the
difference in water and fat resonate at different frequencies [25]. MRI systems usually adjust
their reference frequency to that of water, with the result that where localization depends on
frequency, as in slice selection or frequency encoded readout, the fat signal will be spatially
displaced from the water signal, effectively producing a shifted image. This can result in areas
of signal void or brighter signal, owing to the overlap of water and fat signals in the readout
direction [14].

1.5 Principles of Functional Magnetic Resonance Imaging
(fMRI)

Functional magnetic resonance imaging (fMRI) is a widely used method for functional brain
imaging and has become a standard tool for mapping the working brain activation patterns, both
in health and in disease. It is non-invasive and allows to better understand how the brain works by
recording with very little intrusion the brain activity of an active human or animal subject with
a good time (1s) and spatial resolution (1mm3). fMRI simultaneously models the spatial and
temporal patterns of brain functional networks (4D). The brain can be imagined as a set of (3D)
cubes in the fMRI, where each cube is called as voxel and represents the three spatial dimensions
(X, Y, Z). Time is the fourth dimension and is called the time-series, each voxel has its own time-
series. It may be used to examine the brain’s functional anatomy, (determine which parts of the
brain are handling critical functions), evaluate the effects of a stroke or other diseases, or to
guide brain treatment. fMRI may detect abnormalities within the brain that cannot be found
with other imaging techniques. fMRI is based on the same technology as magnetic resonance
imaging (MRI). It uses a strong magnetic field and radio waves to create detailed images of the
body. But instead of creating images of organs and tissues like MRI, fMRI looks at blood flow
in the brain to detect areas of activity. The fMRI technique was invented in 1990 by a group at
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Bell Laboratories led by Seiji Ogawa [26] [27]. A startling amount of progress has been made
in the few years since then. In this section, we will briefly discuss the principles of fMRI.

1.5.1 Functional Neuroimaging Modalities

Nowadays, there are several functional brain imaging methods [28]. Each of these modalities
makes it possible to study brain structures, as well as their function. Some of the most commonly
used functional imaging techniques are sensitive to indirect changes in blood oxygenation or
measure direct or indirect electrical activity. Therefore, the selection of a functional brain
imaging modality depends on the experimental hypothesis that one wants to test. Different
modalities have different trade-offs in terms of spatial and temporal resolution, Figure 1.16,
[29]. In this subsection, we will discuss briefly some of the main functional neuroimaging
modalities available today.

FIGURE 1.16: Spatial and temporal resolutions of the different modalities
commonly used for functional imaging. fMRI is a non-invasive technique that
gives a spatial resolution of 1 to 3 milliliters with a temporal resolution of 1 to 3

seconds.

Electroencephalography (EEG)

The EEG measures electrical activity on the scalp. It represents direct measures of neural
activity. In particular, scalp recorded EEG has been used extensively in research, clinical
neurophysiology, and practice. EEG can determine changes in brain activity that might be
useful in diagnosing brain disorders, especially epilepsy or another seizure disorder, EEG also
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can identify the causes of other problems, such as sleep disorders and changes in behavior. It
has a high temporal resolution but a poor spatial resolution compared to other modalities such
as fMRI.

Invasive versions of EEG improve spatial resolution by placing electrodes on the exposed
surface of the brain to record electrical activity from the cerebral cortex as Electrocorticography
(ECoG) imaging or by using depth electrodes localized with a stereotactic technique as Stereotactic
EEG (sEEG) imaging.

Magnetoencephalography (MEG)

MEG is a non-invasive technique that measures the magnetic field induced by neural electrical
activity. The synchronized currents in neurons create magnetic fields that can be detected using
very sensitive magnetometers and gradiometers. Although the EEG and the MEG are produced
by the same physiological process, the MEG displays an improved spatial resolution compared
to EEG, due to the fact that the magnetic fields are less deformed than the electric fields by the
skull and the scalp.

Positron Emission Tomography (PET)

PET is a type of nuclear medicine procedure based on the detection of radioactive tracers
introduced in the body of the subject. PET is actually a combination of nuclear medicine and
biochemical analysis. It can provide detailed information about biochemical or physiological
processes with a precise anatomical context. This scan used mostly in patients with brain or
heart conditions and cancer, it can sometimes detect disease before it shows up on other imaging
tests.

Single Photon Emission Computed Tomography (SPECT)

SPECT is a noninvasive nuclear imaging test. It uses radioactive tracers that are injected into
the blood to produce pictures of the body. It can be used for functional brain imaging by using a
specific tracer. Doctors use SPECT to help diagnose seizures, stroke, stress fractures, infections,
coronary artery, and tumors in the spine.
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Near-Infrared Spectroscopy (nIRS)

nIRS is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum
to non-invasively probe the concentration and oxygenation of hemoglobin in the brain, muscle,
and other tissues and is used e.g. to detect changes induced by brain activity, injury, or disease.

Functional Magnetic Resonance Imaging (FMRI)

fMRI techniques are now a primary tool for basic studies of the organization of the working
human brain. The primary form of fMRI measures the oxygen change in blood flow. This is
known as the Blood oxygen level-dependent (BOLD) contrast, which is indirectly related to
brain activity. Other increasingly popular fMRI method is arterial spin labeling (ASL), which
uses arterial water as a tracer to measure cerebral blood flow. In this work, we focus on BOLD
functional MRI modalities.

1.5.2 Blood Oxygen Level Dependent (BOLD) Signal

The working brain requires a continuous supply of glucose and oxygen (O2), which must be
supplied by cerebral blood flow (CBF). The human brain receives approximately 15% of the total
cardiac output of blood and yet accounts for only 2% of the total body weight [30]. During brain
activity, the energy consumption is increased and so is oxygen consumption, and this metabolic
activity is implicitly related to oxygen consumption. We can indirectly measure neural activity
by acquiring a signal depending on local metabolic demands (oxygenation consumption) of
active neurons. This is the core concept behind the Blood Oxygen Level Dependent signal [26]
[31].

FIGURE 1.17: The BOLD signal measures the ratio between oxy and deoxy-
hemoglobin in the blood. This ratio changes during brain activity.

Cerebral blood flow needs hemoglobin, a protein present in blood cells that has the ability to
bind oxygen. The Blood Oxygen Level Dependent (BOLD) signal measures the ratio between
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oxygenated and deoxygenated hemoglobin, Figure 1.17 [32]. Both hemoglobin states have
different magnetic properties and produce different local changes in magnetic susceptibility
where oxyhemoglobin has no unpaired electrons and is weakly diamagnetic. When oxygen is
released to form deoxyhemoglobin, 4 unpaired electrons are exposed at each iron center, causing
the molecule to become strongly paramagnetic, Figure12 1.18. The presence of deoxyhemoglobin
in the blood (less than 2% in arterial blood to greater than 40% in venous blood) modifies the
magnetic resonance signal of the protons of the water molecules surrounding the blood vessels.
The difference of magnetic susceptibility between the blood vessel and the surrounding tissues
creates inhomogeneities in the magnetic field that are quantified by the magnetic resonance
scanner [27].

FIGURE 1.18: Deoxyhemoglobin is strongly paramagnetic due to 4 unpaired
electrons at each iron center.

1.5.3 Resting-State fMRI

Resting-state fMRI was first described by Biswal et al in 1995 [33] and has since then been
widely used in fMRI analysis for various neurologic, neurosurgical, and psychiatric disorders
[34]. rs-fMRI does not require subjects to perform a task or respond to stimuli. Subjects are
asked to rest in the scanner a few minutes with their eyes closed or staring at a fixed point
while whole-brain BOLD data is collected; as it is cheap to acquire and contains much intrinsic
information about brain functioning.

12http://mriquestions.com/
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Rs-fMRI has permitted the discovery of at least 20 distinct patterns of brain connections
called resting-state networks (RSNs). These networks have provided significant insights into
the cognitive organization of the brain in health and disease. The functional network which has
been the most studied by resting-state fMRI is the default mode network. This network has been
shown to be spontaneously activated without stimulation and linked with mind wandering [35].
The functional networks uncovered from resting-state data have been used for neurosurgical
planning [36]. It has also been used to identify bio-markers for certain diseases: epileptogenic
networks in epileptic patients, Alzheimer disease, Parkinson disease, Autism spectrum disorder,
distinguish patients with mild cognitive impairment from controls, patients with disorders of
consciousness and psychiatric [37].

1.5.4 Task-based fMRI

Task-based functional magnetic resonance imaging (t-fMRI) is a non-invasive technique has
been well established for mapping brain activation and network activities when individuals are
asked to perform a given task. It has been a powerful tool to study functional networks and
cognitive behaviors of the human brain. t-fMRI has significantly advanced our knowledge of
brain regions and networks that are functionally involved in specific cognitive or perceptive
tasks [38].

1.6 Conclusion

In this first chapter, we have presented the principal structures of the human brain. We have
then presented the principle of nuclear magnetic resonance. Next, we briefly introduced both
magnetic resonance imaging and functional magnetic resonance imaging, in so far as it allows us
to understand the basic anatomical and functional features of the brain and how to use magnetic
resonance in order to take structural and functional images of the brain to complete our thesis.
In the next two chapters, we will present the main approaches for MRI and fMRI analyses.
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Chapter 2

Brain MRI Analysis

2.1 Introduction

Magnetic resonance imaging is today one of the most widely used and versatile medical imaging
modalities. Currently, several technical developments have made it possible to derive quantitative
measurements from these data. In this chapter, we will describe some of the most common MRI
steps normally applied to raw MR images in order to improve their quality (Preprocessing) and
the methods used in the analysis process.

2.2 Brain MRI Preprocessing

MRI images are normally affected by different types of artifacts that must be minimized before
applying any analysis process in order to improve the expected results.

2.2.1 Conversion to NIFTI

Most medical imaging devices store images in variations of the complicated DICOM format.
DICOM is too complex and is missing attributes useful for neuroimaging. For this reason and
in the first step, MR images are converted to the commonly used format of the Neuroimaging
Informatics Technology Initiative (NIfTI) [39]. The NIfTI makes up for DICOM shortcomings
and was designed for scientific analysis of brain images. The format is simple, compact, versatile
and follows the Talairach/MNI coordinate system. Many scientific tools expect medical images
to be stored in the simpler NIfTI format.
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2.2.2 Denoising

The visual quality of magnetic resonance images plays an important role in accuracy of clinical
diagnosis which can be seriously degraded by existing noise during the acquisition process [40].
The aim of MRI denoising step is that of reducing the noise power while maintaining the original
resolution of the useful features and is an important MRI preprocessing step used for the analysis
process, Figure 2.1 [41].

FIGURE 2.1: Left: original noisy T1-weighted image. Right: denoised image
using a filter.

Despite the MRI noise can be effectively reduced by simply averaging several acquisitions
directly into the scanner, but this technique significantly increases the acquisition time. A variety
of techniques have been presented in the literature on denoising MR images and each technique
has its own assumptions, advantages, and limitations which can be grouped based on filtering
approach, transform approach and statistical approach. Figure 2.2 gives an overview of various
methods for denoising MR images presented in the literature [40].

2.2.3 Co-register

Co-registering an MRI is the process of mapping different images into the same coordinate
system so equivalent points of the different images share the same location in a standard space
as MNI space or atlas [41]. Co-registration is necessary in order to be able to compare or
integrate data from multiple sources or to apply some analysis pipeline and is most widely used
to standardize images and measurements to brain atlases [42]. It can be useful to correct for
motion, differences in sequence measurements, and sequence localization disagreements when
selecting regions of interest [43].
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FIGURE 2.2: Classification of MRI denoising method.

2.2.4 Bias Correction

Magnetic resonance images often exhibit non-uniformities of image intensity resulting from
magnetic field variations rather than anatomical differences and this non-uniformity of image
intensity is known as a bias field. These variations are often seen as a signal gain change
that varies slowly spatially. This can result in white matter measurements in one part of the
image with the same intensity as gray matter measurements elsewhere and it can lead to serious
misclassifications by intensity-based segmentation algorithms that assume a uniform intensity.

Bias correction refers to a procedure to estimate the bias field from the measured image so
that its effect can be eliminated, Figure 2.3 [44]. These artifacts often caused by the imperfection
of imaging devices or by magnetic susceptibility changes at the boundaries between anatomical
tissue and air. There are two main types of methods for bias correction: prospective and
retrospective methods [45].

2.2.5 Skull Stripping

Skull stripping in brain MRI is an essential step to analyze images of the brain where non-brain
tissues such as the skull, scalp, and dura are removed from images of the brain, Figure 2.4.
It is also a very important preprocessing step, which ensures better segmentation and assures
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FIGURE 2.3: Bias-correction results on an MRI image. Left: original images.
Middle: estimated bias fields. Right: the bias-corrected.

accurate diagnosis of brain diseases and the probability of misclassification of abnormal tissues
is also reduced [46].

FIGURE 2.4: Result of skull stripping.

2.2.6 Intensity Normalization

Intensity normalization plays an important role in normalizing the tissue intensity ranges on
which most automatic image analysis methods base their distributional assumptions. During
acquisition, MR images do not share similar intensities across scanners. Even within the same
scanner and setting, there is variability in the intensity patterns of the acquired images on
different sessions [41]. This intensity variability will greatly undermine the performance of
subsequent MRI processing, and it is significantly difficult to obtain quantitative measures
directly from the data. Most simple approaches to normalized MR intensities rely on the use
of histogram matching techniques, which is the transformation of an image so that its histogram
matches a specified histogram [47] [48].
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2.2.7 Extraction of Cerebral Hemispheres

Extraction of Cerebral Hemispheres refers to the extraction of the left and right cerebral, which
is an important step in many different analyses of the brain, Figure 2.5. It is needed to separate
the hemispheres for volumetric and morphological analysis. It also contains many important
interhemispheric structures [49].

FIGURE 2.5: Result of the extraction of the cerebral hemispheres.

2.2.8 Tissue Segmentation

Tissue segmentation of the brain MRI consists of the assignment of a tissue type to each voxel
of the MRI scan. Generally, the brain tissue segmented into one of the three main tissue types
that are the gray matter (GM), the white matter (WM) and the cerebrospinal fluid (CSF), Figure
2.6.

The brain has a particularly complex structure and its precise tissue segmentation is very
important for describing anatomical phenotypes and individual variations. Measuring how
diseases affect the shape and size of the structures that make up the brain. Obtaining morphometric
biomarkers for the diagnosis, prognosis, and disease monitoring. Assign anatomical locations at
functional activations. There are various segmentation approaches been developed and reported
in the literature. An overview of the most popular methods commonly used for brain MRI tissue
segmentation in [50].
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FIGURE 2.6: Brain tissue segmentation. Left: the original T1-MRI. Right: the
result of tissue segmentation.

2.2.9 Surface Atlas Registration

The human cerebral cortex is placed in a highly folded leaf, most of the cortical surface area
buried in folds and folding patterns considerably variable across subjects. To study cortical
structure and function, we need to register the cortical surface as an atlas, Figure 2.7 for
providing the common spaces for quantitative comparison of subjects and group analysis of
functional data, in order to compensate for differences in position, size, and shape of brain
structures across individuals.

FIGURE 2.7: Surface atlas registration where green indicates a gyrus and red
indicates a sulcus.

2.2.10 Reconstruction of Cortical Surfaces

Reconstruction of cortical surfaces from magnetic resonance images is an important means to
study the structure and function of the brain cortex, Figure 2.8. It is also an important step in
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quantitative analysis of the human brain structure, we can mention, analysis of cortical folding
patterns, brain morphometry, and in cortical thickness studies. The cortical surface model
must be geometrically accurate and topologically correct in order to provide valid and accurate
quantitative measures of brain structure [51]. There has been a significant effort towards the
development of methods for the reconstruction of the cortical surface. Most of these methods
are either voxel-based or deformation-based [52].

FIGURE 2.8: Result of cortical surface reconstruction.

2.3 Brain MRI Analysis

Magnetic resonance imaging (MRI) has become a powerful diagnostic tool by providing high-
quality images, thanks to new advances in technology [53]. The strength of MRI lies in the
excellent anatomical details it provides as well as the high soft-tissue contrast and the possibility
of enhancing different tissue types using different acquisition protocols. Automatic diagnostic
tools aid in the diagnosis by providing quantitative measures of morphology, function, and other
biomarkers in different tissues. This is due to the difficulty of diagnosing some pathologies with
the human eye because of their limited ability to detect the heterogeneous intrinsic properties of
certain tissues. In this section, we will present the main approaches to MRI analysis of the brain.

2.3.1 Regions Of Interest (ROIs)

The thin outer layer of the brain cerebrum is of particular interest due to its vital role in cognition,
vision, and perception. It is arranged in areas based on criteria such as cytoarchitecture, functional
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specialization or axonal connectivity. Parceling the cortex into such areas and characterizing
their interaction is the key to provide biomarkers that can be used to study the neurobiology of
various diseases and understanding how the brain works.

There are two types of methods for ROIs definition: Manual ROIs definition is still considered
the gold standard in many applications, but it is difficult to perform for the whole cortex because
it consumes a lot of time and requires a high level of anatomical expertise. Automatic or semi-
automatic methods of ROIs definition have been developed to parcellate cortical surfaces into
ROIs automatically or semi-automatically. Those methods are useful for large-scale studies
because they do not require significant manual intervention. Approaches used clustering based
on local regional statistics [54], supervised techniques [55], approaches use a cortical surface-
based feature to find surface correspondence as sulci [56], Conventional approaches [57]. In
other research, you will discover that researchers are using the parcellation that refers to parceling
the cortical surface into sub-regions, Figure 2.9. Cortical surface parcellation helps to establish
relationships by classifying brain tissue and cortex into different functional regions.

FIGURE 2.9: Cortical surface parcellation with Freesurfer software.

2.3.2 Gyri and Sulci Labeling

The cerebral cortex of the human brain is highly complicated and folds itself into gyri and sulci
during brain development. A precise description of the anatomy of the brain makes it possible
to understand its structure and functioning. It is crucial for possible surgical interventions and
brain diseases predicted. Automated labeling of the cerebral gyri on the cerebral surface is
a fundamental work for helping us to diagnose cerebral diseases, Polymicrogyria [58], Brain
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atrophy [59], and Alzheimer’s disease [60]. The changes in sulci width or depth can be related
to changes in the cortical gray matter or white matter volumes. Therefor, studying sulci shape
is very important to intervene before some diseases occur as Alzheimer’s disease and mild
cognitive impairment [61], also it is helpful in many studies and applications related to brain
diseases, human behavior and allowed to distinguish different functional areas of the brain [62],
Figure 1 2.10.

FIGURE 2.10: Example of sulci labeling.

2.3.3 Feature Extraction and Selection

The brain MRI features are the characteristics of the whole or a part of the brain which contains
the maximum information needed to analyze the brain images. Feature extraction methodologies
are applied to extract the most prominent features from the image that represents the different
classes of objects. The objective behind feature extraction is reducing the original data by
computing certain properties or features that differentiate one input pattern from another. There
are various types of features such as shape-based (circularity, irregularity, area, perimeter, shape
Index, etc), color-based (mean, variance, standard variance, median intensity, skewness, kurtosis,
etc) and texture-based feature (contrast, correlation, entropy, energy, homogeneity, cluster shade,
sum of square variance), etc [63]. Texture analysis is an important parameter of human visual
perception and machine learning systems. It is used effectively to improve the accuracy of the
diagnosis system by selecting prominent features. Texture analysis and its statistical features
were stated in [64] [65].

1http://brainvisa.info/web/index.html



31

Feature Selection:

is a process applied for selecting appropriate features from all extracted features for building
robust learning models by removing most irrelevant and redundant features from the data. Feature
selection helps improve the performance of learning models by: Alleviating the effect of the
curse of dimensionality, Enhancing generalization capability, Speeding up the learning process
and Improving model interpretability [63].

2.3.4 Prediction and Classification

In recent years, machine learning and deep learning have shown record-shattering performance
in a variety of computer vision problems, such as visual object recognition, detection and
segmentation. These methods have also been utilized in the medical image analysis domain,
Figure 2.11 [66]. Generally, studies of machine learning and deep learning are applied in
medical image analysis for disease prediction, diagnosis, and prediction of treatment response
[67].

FIGURE 2.11: Number of publications per year in IEEE-Xplore containing “deep
learning” and “medical imaging” keywords from 2010 to 2017. (Queried: June

6th, 2017).

We now mention some work related to the use of prediction and classification in the three
categories previously. Predicting the onset or progression of the disease: Use machine learning
and deep learning methods to predict disease risk have been developed in various fields of
medicine [68] [69]. Used machine learning models to predict the onset of Alzheimer’s disease or
the conversion from mild cognitive impairment to Alzheimer’s disease [70] [71]. Predict the first
onset of major depression in adolescence [72]. Diagnosis: or classification is the most widely
and frequently applied area of machine learning and deep learning studies in brain MRI analysis.
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Brain tumor classification methods [73] [74] [75] [76]. Parkinson’s disease and Progressive
Supranuclear Palsy [77]. Schizophrenia [78]. Brain lesions [79] [80]. Predicting treatment
response: predicting the treatment of major depressive disorder [81]. Prediction of individual
response to electroconvulsive therapy [82].

2.3.5 Voxel-Based Morphometry Analysis

The human brain structure is in a state of constant change and adaptation. This may be driven
either by normal developmental or aging processes or by the effects of learning, training, and
new occurrences in daily life [83]. The identification of structural changes in the brain on
magnetic resonance imaging (MRI) scans is increasingly important in the study of neurological
and psychiatric diseases [84] [85] [86] [87] [88]. Traditional techniques for identifying structural
changes in brain MRI are based on the visual assessment by experienced radiologists and manual
measurements of structures of interest. However, automated techniques have been developed to
allow these structural changes to be assessed on large sets of subjects without the need for time-
consuming manual measurements or subjective visual assessments. Voxel-based morphometry
is one of those automated techniques that has been gaining popularity since its introduction [89]
[90], Figure 2.12 [91].

Voxel-based morphometry of MRI data comprises segmentation into gray matter, white
matter, and cerebrospinal fluid partitions, anatomical standardization of all the images to the
same stereotactic space using linear affine transformation and further non-linear warping, smoothing
and finally performing a statistical analysis. The output from the method is a statistical parametric
map. It has become a common tool for computational brain anatomy studies. It allows a
comprehensive measurement of structural differences within a group or across groups, not just
in specific structures, but throughout the entire brain [87] [92] [90]. Statistical analysis is based
on the General Linear Model (GLM) to identify regions of gray/white matter concentration that
are significantly related to the particular effects understudy, and residual variability applied to
each voxel independently. Standard parametric statistical procedures are used to test hypotheses
that are expressed as linear functions of the GLM estimated regression parameters [89].

2.3.6 Texture Analysis

Although MRI offers excellent anatomic details due to its high soft-tissue contrast and the
possibility to enhance different types of tissues using different acquisition protocols. However,
the diagnosis of some pathologies remains difficult due to the limited ability of the human eye
to detect the heterogeneous intrinsic properties of certain tissues and a wrong diagnosis can
lead to improper patient treatment. In order to assist the radiologist in the diagnosis, there are
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FIGURE 2.12: Voxel-based morphometry maps displaying reduced grey matter
density in posterior cortical atrophy (PCA) patients. Colour bar indicates T-values

of statistically significant voxels.

numerous tools and approaches providing quantitative measurements of morphology, function
and other biomarkers in different tissues. Texture analysis is one such significant tool in medical
applications. It has gained attention in the past years and has become an important tool in the
computer-assisted diagnostic process [53] [93].

The texture of images refers to the spatial arrangement of patterns that provides the visual
appearance of coarseness, randomness, smoothness, etc. It consists of the calculation in digitized
images of mathematical parameters characteristic of the texture, using the data of each pixel in
all regions of interest. The analysis of texture parameters is a useful way of increasing the
information obtainable from medical images and have been used as input parameters in machine
learning approaches for human tissue classification, discrimination between different types of
tumors [94] [95], classification of diseases like Alzheimer’s [96] or Friedreich ataxia [97], brain
segmentation [98] [99]. There are two main types of texture analysis: statistical methods and
structural methods [100]. The structural methods represent the texture by the primitives and their
related rules. The advantage of these methods is that they provide a good symbolic description
of the image. Statistical methods study relationships between one pixel and its neighborhood.
They are used in order to characterize fine structures with no apparent regularity: the higher the
order of the structure, the higher must be the number of pixels considered. So, the texture is
described by the statistical distribution of gray levels. These methods normally achieve higher
discrimination indexes than structural and are the most widely used methods in medical imaging
[101].

2.3.7 Structural Connectivity

Significant advances in multi-modal magnetic resonance imaging techniques, analysis, and modeling
have been made to investigate brain changes or group differences. Gray matter areas are responsible
for information processing and are physically interconnected via axonal pathways in the white
matter, thus producing functional networks of sub-cortical areas associated with specific tasks.
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The brain can be modeled as a network where the nodes represent the sub-cortical gray matter
areas and the edge model relationships (connectivity) between the nodes [102] [103]. A network
whose edges are characterized by properties related to white matter pathways is defined as
a structural network or structural connectivity. The combination of MRI with other types of
medical images as fMRI and diffusion MRI (DMRI) has been conducted to improve our understanding
of brain mechanisms, and interactions between structural and functional networks [104] [105].
Using MRI and DMRI for producing a structural connectivity network in which the nodes are
represented by the regions of interest and the number of tractography between a pair of regions
represents the edges, Figure 2.13 [106].

FIGURE 2.13: (a) Extraction of regions of interest. (b) Measure the number
of tractography between a pair of regions to produce a structural connectivity

network.

2.4 Conclusion

MRI analysis has become a powerful tool in the diagnosis of brain diseases. Improvements
in image measurement and preprocessing can, therefore, have a significant impact on clinical
diagnosis, image analysis, and computer-assisted diagnosis. Thus, in this chapter, we have
presented the preprocessing steps and methods of analysis that will be used to draw conclusions
from MRI experiments in the following chapters.
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Chapter 3

Brain fMRI Analysis

3.1 Introduction

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive tool for defining
activity in the healthy and diseased human brain, used in several domains, for example, Neuroimaging,
Neuroscience, Neurology, Psychology, and Psychiatry. fMRI can provide high-quality visualization
of the location of activity in the brain resulting from sensory stimulation or cognitive function.
It, therefore, allows the study of how the healthy brain functions, how it is affected by different
diseases, how it attempts to recover after damage and how drugs can modulate the activity or
post-damage recovery. After the fMRI experiment has been designed and implemented, the
resulting data must be passed through several analysis steps before we can get results related to
the activity of different brain regions during performing specific tasks. In this chapter, we will
give a brief overview of the most commonly used preprocessing and analysis methods.

3.2 Brain fMRI Preprocessing

Preprocessing is necessary in fMRI analysis in order to take raw data from the scanner and
prepare it for the analysis step. The purpose of the preprocessing is to remove various kinds
of artifacts in the data, and to condition the data, in order to maximize the sensitivity of later
statistical analysis, and also, in some situations, to increase the statistical validity. This section
describes the various preprocessing steps which occur prior to the statistical analysis step.
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3.2.1 Image Reconstruction

After converting k-space data into images, we sometimes get problematic data as scanner artifacts.
We must therefore first check if the data is not corrupted by artifacts such as spikes or incomplete
brain coverage, ensuring no missing regions and correct any distortion. Then fMR images are
converted to the commonly used format of the Neuroimaging Informatics Technology Initiative
(NIfTI). Note: The brain is a 3D object and is represented as a group of cubes (3D) in fMRI, each
cube being called voxel. Thus, the fMR image has a voxel image (3D image) and a temporal
dimension ( Time series). That is why fMRI data is 4D data.

3.2.2 Motion Correction

People always move in the scanner even with padding around the head, there is still some
motion, this leads to reduces the statistical significance of the activation maps and increases the
prevalence of false activation, Figure 3.1. Motion correction is, therefore, an essential tool for
successful fMRI data analysis [107]. Need each voxel to correspond to a consistent anatomical
point for each point in time, that is mean to find a common orientation for all images within
a given session and resampling the original data to this reference orientation. This is usually
achieved by performing a separate 3D image registration of each image in the series with a
chosen reference image, can use either one original volume, mean of several, standard space
image, etc. The major component of motion is due to the rigid movement of the head in the
scanner. For more detail on physiological noise, see [108] [109].

FIGURE 3.1: Motion affects the statistical analysis, reduces the statistical
significance of the activation maps and increases the prevalence of false activation.

Left: without motion correction. Right: with motion correction.

3.2.3 Slice Timing Correction

Functional volumes are normally acquired slice-by-slice. The slices are not acquired at the same
time, each slice is scanned at a slightly different time over the repetition time (TR) [110]. The
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timing in all voxels is not the same, if this change in timing is not properly taken into account,
the timing of the stimulus and the response will not be matched and, therefore, the statistical
analysis will not be able to adjust the model with optimal accuracy, Figure 3.2 [111]. Slice
timing correction aims to correct differences in timing across different slices in the image to fit a
uniform model on the whole brain by adjusting the voxel time series so that a common reference
timing exists for all voxels. The reference time is often chosen as that corresponding to the first
slice. The temporal consistency is usually achieved by shifting the time series of values slightly
forward or backward in time and then applying some form of interpolation. We must know the
slice order and the repetition time. Slice timing correction methods can not correct for spatial
variability within the slice for that ideally, a combined approach to both slice timing and motion
correction is required [112].

FIGURE 3.2: The slice-timing problem: the same signal sampled at different
offsets produces signals that are not alike. (A) Five adjacent slices acquired with
interleaved acquisition all sample the same underlying bold signal. (B) Without
correction, reconstruction yields five different signals despite having the same

underlying shape.

3.2.4 Spatial Normalization

The brain of each individual subject is different in size and shape. Such structural variability
of brains imposes obstacles on intersubject brain function studies in how to determine regional
correspondence from brain to brain despite their divergence. To perform the group analysis, one
has to align each brain into a common space (coregistration or normalization). In coregistration,
the fMRI data (time series) are overlaid on the subject’s own anatomic brain images [113]. In
normalization, the fMRI data (time series) are warped onto a generic brain template, Figure
1 3.3, [114]. A reference anatomical template used for fMRI registration is the Montreal
Neurological Institute (MNI).

1Adapted from Chris Rorden : www.mriquestions.com
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FIGURE 3.3: Normalization warps fMRI data from one or more subjects into a
common anatomic template.

3.2.5 Spatial Smoothing

The noise is the unavoidable random variations in the intensity of the image that are present even
when no stimulation is applied and any reduction of random noise in the image will improve the
ability of a statistical technique to detect true activation. The use of spatial smoothing increases
the signal-to-noise-ratio (SNR), by reducing undesired noise. The signal-to-noise ratio is a
measure used in science and engineering that compares the level of the desired signal to the
level of background noise. Spatial smoothing means that each voxel intensity is replaced by a
weighted average of neighboring intensities. This has the effect of a low pass filter meaning
that high frequencies of the signal are removed from the data while enhancing low frequencies.
The result is that it improves the SNR but will reduce the resolution of each image, Figure
3.4. It is, therefore, necessary to find a balance between the improvement of the SNR and the
maintenance of the resolution of the functional image. The most common method of carrying
out spatial smoothing is to convolve each volume with a Gaussian filter. The width of this filter
usually expressed in millimeter ( mm) determines the extent of the blurring that takes place. The
full-width-half-maximum (FWHM) for fMRI images is most common.

FIGURE 3.4: The effect of different smoothing kernels. from left to right: no
Smoothing, 4 mm FWHM, 6 mm FWHM and 8 mm FWHM.



39

3.2.6 Temporal Filtering

Time series from each voxel of fMRI data often contains signal drifts, which is thought to be
caused by physiological noise (cardiac cycle, breathing) as well as by physical (scanner-related)
noise. If not taken into account, these signal drifts reduce substantially the power of statistical
data analysis. They also invalidate event-related averaging, which assumes stationary time
courses, i.e. time courses with a constant signal level. The main point of temporal filtering is
to remove unwanted components of a time series (removal of high frequencies, low frequencies
or both) without damaging the signal of interest. High-pass filtering and Low-pass filtering
attempts to remove respectively all slowly varying unwanted signals and high-frequency noise
in each voxel’s time series, Figure 3.5.

FIGURE 3.5: An example of how to remove unwanted components of a time
series. High-pass filtering and Low-pass filtering.

3.2.7 Intensity Normalization

The variations of Intensity in fMRI data are caused by scanner-related artifacts, noise, and partial
volume effects. Intensity normalization of fMRI scans has been a very useful preprocessing
step, especially when conducting across subject fMRI studies. It attempts to rescale the mean
intensity of the fMRI signal in order to compensate for variations of global signal both within
sessions and between sessions.
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3.3 Statistical Analysis of the fMRI Data

The purpose of fMRI analysis is to detect, in a robust, sensitive and valid way, the parts of the
brain that show increased intensity at the points in time when stimulation has been applied to
locate brain regions activated by a certain task, determine distributed networks that correspond
to brain function and make predictions about psychological or disease states. The statistical
analysis is carried out to determine which voxels are activated by the stimulation. In this section,
we give a very brief overview of different approaches to obtaining activation maps.

3.3.1 Hemodynamic Response Function (HRF)

The brain consumes the oxygen transported by the hemoglobin and turns oxyhemoglobin into
deoxyhemoglobin. Performing a cognitive task causes an oversupply of the oxygenated blood
in the active region, and results in a decrease of deoxyhemoglobin. The oversupply process is
called the hemodynamic response and enables to relate the oxygenation level to neural activity
[115] [116]. The primary goal of fMRI research is to use the information provided by the BOLD
signal to make conclusions about the underlying unobserved neuronal activation. Therefore, the
construction of the hemodynamic response function (HRF) of the signal response to an external
stimulus is the essential step in the statistical analysis of fMRI data for identifying activation
regions [117].

The BOLD signal does not increase instantaneously after the stimulus presentation nor does
it return to baseline immediately after the stimulus ends. Instead, the BOLD signal peaks
approximately 5 seconds after stimulation, and is followed by an undershoot that lasts as long
as 30 seconds. The HRF typically demonstrates a small initial dip, followed by a tall peak, and
then a variable post-stimulus undershoot, Figure 2 3.6. Glover [118] proposed to define the HRF
as a sum of two gamma probability density functions, where the first gamma probability density
function models the shape of the initial stimulus-response and the second gamma probability
density functions models the undershoot :

h(t) =
tα1−1β

α1
1 e−β1t

γ(α1)
− c

tα2−1β
α2
2 e−β2t

γ(α2)
(3.1)

where γ is the gamma function and α1, α2, β1, β2 control the shape and scale, respectively,
and c determines the ratio of the response to undershoot.

2www.mriquestions.com
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FIGURE 3.6: BOLD Hemodynamic Response Function (HRF) following a single
brief stimulus.

3.3.2 Analysis of Task fMRI Data

The fMRI task has been widely used for the detection of brain activation and brain network
analysis. The fMRI experiment uses sensory stimuli to induce the participant to perform a
behavioral task while BOLD contrast images are acquired for a fixed duration of a few minutes.
These stimuli can be visual, auditory or other forms depending on the desired behavioral manipulation.
Then, the time-series data are compared against a hypothesized model of neural function based
upon the cognitive task being performed. Through statistical inference, the hypothesis can be
accepted or rejected for each voxel, in the end, a map of the brain regions that respond to the
task is constructed [119], Figure 3.7.

Correlation Analysis

Correlation approach was one of the earliest techniques applied to task-based fMRI studies in
the 1990s. Since we know that the BOLD response is mediated by blood flow, it is possible to
improve the detection of activation by examining the temporal synchrony between each voxel’s
time series and the predicted response of the experiment derived by convolving the task control
boxcar waveform with a canonical HRF [120]. The choice of an appropriate reference predicted
is vital for the success of this technique in finding activation. The degree of temporal synchrony
between two-time series X and Y can be expressed by the correlation coefficient (r) calculated
as :

r =
∑(xi− X̄)(yi− Ȳ )√

∑(xi− X̄)2 ∑(yi− Ȳ )2
(3.2)
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FIGURE 3.7: Task-based fMRI experiment acquires a time series of images while
the participant performs cognitive manipulation that causes a change between
brain states A and B. The functional map depicts those regions that were more
metabolically activated in state A than B, using a statistical test to demonstrate

significant signal differences in each voxel.

Where Y is the time course of the fMRI signal from a single voxel while X is the expected
hemodynamic response to a task or stimulus. X̄ and Ȳ denote the means of X and Y. When r = 0
implies no correlation, r = 1 perfect correlation, and r = -1 perfect anti-correlation. Correlation
analysis can be used for resting-state fMRI (rs-fMRI), where X and Y are the signals from two
different voxels or brain regions, and the higher r-values reflect greater connectivity between
pairs of areas and assist in neural network modeling, Figure 3 3.8.

The General Linear Model GLM

The General Linear Model (GLM) has been classically used for statistical analysis of BOLD
fMRI to examine the temporal synchrony between experimental observations and the predicted
responses [121]. It makes use of the knowledge of the hemodynamic response function and
linear time-invariant assumption to model the observed BOLD signal and at the end yields
statistical parametric maps that are used to test for region-specific effects relative to a given
hypothesis. Before going into further details about GLM, we define the design matrix X as the
temporal effects that can be observed in the fMRI data. The columns in the design matrix consist
of the convolution of the HRF by the occurrence of stimuli presentation in the experimental
design, as well as confounding variables and filters (i.e. motion, respiratory cycle, cardiac
rhythm fluctuations, and low-frequency signals). The relationship between each signal of a voxel

3www.mriquestions.com
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FIGURE 3.8: Correlation graph for pairs of 30 different brain regions in rs-fMRI
experiment.

yi and its predicted response for a stimulus can be written as a linear regression yi = xiβ + εi,
where β is the calculated slope of the line and εi is the calculated error (or residual) distance, and
we have actually produced n separate equations, where n is the number of data points acquired
for each time interval i. Matrix algebra allows us to condense this set of equations into a more
manageable form. We do this by defining Y, X, and ε as column vectors, each containing a list
of individual measured or calculated values, Figure 3.9 [122] [123] [119]. The GLM in its basic
form can be expressed as:

Y = Xβ + ε (3.3)

In short, the GLM is that Y (the fMRI signal measured by a single voxel as a function of time)
can be expressed as the sum of one or more experimental design variables X, each multiplied
by a weighting factor β , plus random error ε . The aim of any GLM experiment is to provide an
estimate of the model parameter β and, most usually, to draw inference about these estimates.

Second Level Analysis

Analysis of fMRI datasets typically consists of a two-level model. The first-level analysis detects
the activation of each individual subject for a contrast of interest while second-level analysis
localizes common activation among multiple subjects [124]. Multiple subjects are studied to
obtain second-level analysis, and common activation among these subjects specify a group map
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FIGURE 3.9: Depiction of the GLM model for an imaginary voxel with time-series
Y predicted by a design matrix X including 10 effects (three regressors of interest
– e.g., tasks A, B, C – and seven nuisance regressors – e.g., six motion parameters

and one linear drift) of unknown amplitude βi, and an error term.

[125]. One of the key issues in the second-level analysis is the scope of the inferences that can
be validly drawn from aggregate statistics [122].

Hypothesis Testing

In cognitive neuroscience, researchers design experiments to test whether a brain region shows
more activity for a particular condition than for others (e.g. it responds to a condition A and
not B). When the subject is performing a specified motor or cognitive task or receiving a
given sensory stimulus. The image series must then be analyzed in order to detect the voxels
which show significant responses to the activation–baseline pattern. In this section, we take
the two-condition blocked design (experimental vs. control) and we want to identify voxels
actively involved in the imposed task, i.e., voxels whose temporal behaviors differ significantly
between the experimental and control conditions. Specifically, we test the research hypothesis
H1: experimental condition 6= control condition, against its null hypothesis H0: experimental
condition = control condition. There are parametric and non-parametric tests. The parametric
tests (t-test and F-test) assume a known probability distribution for the distribution parameter
that is under consideration. Non-parametric tests (Wilcoxon signed-rank test) do not assume a
known form of this probability distribution although they might require some regularity conditions
on the distribution such as symmetry.

Let c be the linear combination of the experimental conditions that are of particular interest;
it is also called a functional contrast, c is a vector ∈ RK . For each voxel j, the noise can be
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modeled as a Gaussian white noise with zero mean and variance δ 2
j . Assuming the gaussian

noise with variance δ 2
j and full column rank of X, the best-unbiased estimator of β is :

β̂ = X+Y = β +X+
ε (3.4)

where X+ denotes the moore-Penrose pseudo inverse of X, and X+ε is also Gaussian with zero
mean. For each voxel j ∈ [n], the null hypothesis H0 : cT β j = 0, the difference is due to chance;
the alternative hypothesis corresponds to H1 : cT β j 6= 0. After fitting the GLM, we have:

cT
β j = cT

β̂ j− cT X+
ε j (3.5)

Then, we can use several statistical test, we often consider:

1. z-test:
z =

cT β

δ
√

cT (XT X)−1c
(3.6)

2. t-test:
In general, we do not know the noise variance δ 2 that may vary from voxel to voxel.
Therefore, z can not be computed, and we have to estimate it to δ̂ . In t-test, assumes that
the measured time-series at each voxel consists of a known activation signal in Gaussian
white noise [126]. the t-test given as follows :

t =
cT β̂

δ̂
√

cT (XT X)−1c
(3.7)

3. F-test:
F-test is the optimal solution when the measured data are modeled to consist of an unknown
activation signal that lies in a known lower-dimensional subspace of the measurement
space with added Gaussian white noise [126]. The F-test can be seen as a generalization of
the one-sample t-test to several groups, instead of testing that a given contrast is significantly
different from zero, we will test that a set of contrasts are all simultaneously different
from zero. In this case, the contrast c is a matrix with k columns describing the possible
linear combinations to be tested. For example, using a model with four parameters to
test whether all of them are equal to 0, H0 :β1 = β2 = β3 = β4 = 0, one would specify
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a contrast of the form c = I, where I is the identity matrix of size 4× 4. For an arbitrary
contrast c, the F-test for this test is given by

F =
Tr(cββ T cT )

δ 2Tr(cT (XT X)−1c)
(3.8)

4. p-value:
Colors on fMRI maps represent brain regions or voxels where statistically significant
levels of activation or correlation are thought to have occurred. After the calculation of
test statistic (t-, F- or z-test) for each voxel or brain region from the fMRI data. Under
the null hypothesis (H0) that no true activation has occurred, a p-value can be determined,
representing the probability of observing samples at least as favorable to the alternative
hypothesis as the current samples. We can set an arbitrary significance level (e.g. 5%
or 1%), which controls the number of false positives, whenever the p-value is less than
the arbitrary preselected level of significance, we conclude the measurement is unlikely
to have occurred by chance and classify the voxel as activated or correlated, Figure 3.10
[127].

FIGURE 3.10: Visualization of the voxels selected by thresholding the p-values
for the visual contrast at different thresholds (0.05 and 0.01).

5. Wilcoxon signed-rank test:
The Wilcoxon signed-rank test can be used to asses whether two population means differ.
That is, given the samples {x1, ..,x2} and {y1, ..,y2}, we would like to test the following
hypothesis H0 : x̄ = ȳ, H1 : x̄ 6= ȳ, where x̄ and ȳ are the samples mean.
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Correction for Multiple Comparisons

Applying the previously explained statistical tests independently we get brain maps (statistical
parametric maps or SPM), then if we attempt to identify active voxels for example across
100,000 voxels under the significance level α = 0.05, ∼ 5000 voxels may be falsely classified
as active by random chance under the null hypothesis. We have to measure the false positive
errors over the whole image and correct these false-positive errors, this problem is referred to as
the multiple testing problem and it is a critical issue in fMRI data analysis, several approaches
have been proposed, see [128] for a review. Basically, there are two measures of false-positive
risk: the family-wise error rate and the false discovery rate.

1. Family-Wise Error Rate (FWER):
FWER is the probability of considering active voxels that are truly inactive. We can
apply different corrections of the significance level: Bonferroni correction assumes that
all voxels are independent, and corrects the significance level by dividing it by the number
of tests performed. This method becomes conservative when there is a strong correlation
between tests. Due to the smoothness of fMRI data, Bonferroni is conservative and has
little power to detect true effects. Random field theory considers that a smooth statistical
map has a lower probability of exceeding a threshold by chance. This threshold is chosen
to control the probability of maximum above a given threshold [129]. Resampling methods
use the data to obtain empirical null distributions of interest [130]. The most common
resampling techniques are permutation tests and bootstrap. They are accurate, but computationally
demanding. A comparative review can be found in [131].

2. False Discovery Rate (FDR):
It is the expected proportion of false positives among detected activation [131]. In [132]
authors proposed a procedure consists of an adaptive Bonferroni correction that applies a
different correction depending on the significance of the voxel.

Inter-subject Analysis

The previous approaches discussed focused on identifying task activation in a single subject.
However, an fMRI study typically recruits several or many subjects in order to probe biodiversity
and generalize across a population or disease state. Therefore, we need to combine results across
subjects to better test the experimental hypothesis. There are a variety of statistical methods for
combining results across sessions or subjects, to either create a single result for a group of
subjects or to compare different groups of subjects. These methods include fixed-effect analysis
and random-effect analysis [119].



48

The fixed-effect analysis is to combine the time points of all the examined subjects in a
single time series and perform single-subject level analysis. The temporal combination of each
subject’s data can improve the detection power by either increasing the degrees of freedom or
reducing intra-subject variations. However, due to this assumption, the result of the fixed-effect
analysis is very sensitive to outliers within the recruited subjects (subjects with extreme task
responses). Consequently, the conclusions are restricted to the specific subjects scanned within
the study, and may not generalize to a larger population.

The random-effect analysis is more commonly applied in fMRI studies nowadays. This
analysis assumes that each subject is drawn from a large population of subjects and that his
response represents an independent sample from the overall distribution of task effects. The
random-effect analysis is performed in two stages. In the first stage, summary statistics regarding
task activation from each individual subject is analyzed independently. In the second stage, the
distribution of summary statistics derived from the first stage is tested for significance. If intra-
subject variations in the first stage are carried up to the second stage, this analysis can also be
referred to as mixed-effect analysis [133].

3.3.3 Analysis of Resting State fMRI Data

The resting-state functional magnetic resonance imaging (rs-fMRI) technique has gained advantages
over other functional magnetic resonance imaging (fMRI) techniques due to its ease in signal
acquisition and does not require subjects to perform a task or respond to stimuli. Subjects
merely lie in the scanner for 5-10 minutes with their eyes closed or staring at a fixed point while
whole-brain BOLD data is collected [134]. It has permitted the discovery of at least 20 distinct
patterns of brain connections called resting-state networks (RSNs), Figure 3.11 [135]. The most
important include the default mode network (DMN) which is the most active at rest, involved
with introspection and mind-wandering. Also networks for visual and auditory processing,
executive control, dorsal attention, and salience (identification of unusual/remarkable events).
These networks have provided significant insights into the cognitive organization of the brain
in health and disease. In this section, we provide a discussion of rs-fMRI analysis techniques.
The approaches of rs-fMRI can be broadly divided into 2 types: functional segregation and
functional integration [136] [137].

Functional Segregation Methods for Identifying Neural Networks

Functional segregation divides the brain into regions according to their specific functions and is
mainly used for brain mapping [136]. The Amplitude of Low-Frequency Fluctuations (ALFF)
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FIGURE 3.11: Some important resting-state networks (RSNs) and their
corresponding node regions.

and regional homogeneity (ReHo) are methods commonly used in functional segregation assessments
[34].

1. ALFF Analysis:
The Amplitude of low-frequency fluctuation (ALFF) was introduced as a measure the
total power within the frequency range between 0.01 and 0.1 Hz and considered as an
effective approach to detect the regional intensity of spontaneous fluctuations and to reflect
spontaneous brain activity of the brain in the BOLD signal of the rs-fMRI [138] [139],
Figure 3.12 [34]. Fractional-ALFF is a variant that measures the power within the
low-frequency range (0.01–0.1 Hz) divided by the total power in the entire detectable
frequency range and represents the relative contribution of the low-frequency oscillations
that can improve the sensitivity and specificity for the detection of spontaneous brain
activities by surpassing the physiological noise, especially in perivascular, periventricular
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and periaqueductal regions [140]. ALFF has already been applied to patient studies
including attention deficit hyperactivity disorder [141] and early Alzheimer’s disease [142]
and its advantage lies in the simplicity of the analysis without any underlying hypothesis
[143].

FIGURE 3.12: Results of ALFF and ReHo studies. Both ALFF and ReHo results
reflect regional neural activities. ALFF is focused on measuring the strength of
the activity, while ReHo is more specific for coherence and centrality of regional

activity. T indicates peak intensity.

2. Regional Homogeneity Analysis:
ReHo is a voxel-wise measure of the synchronization of the time-series of a given voxel
and its adjacent neighboring voxels, Figure 3.12. This measure is calculated by the
Kendall coefficient of concordance of the BOLD time-series [144]. The ReHo algorithm
was based on the hypothesis that intrinsic brain activity is manifested by clusters of voxels
rather than single voxels [145]. It requires no a priori definition of ROIs and can provide
information about the local or regional activity of regions throughout the brain and has
been applied to different diseases [146] [147]. ReHo is usually calculated within a low-
frequency range, typically between 0.01 Hz and 0.1 Hz. It can be subdivided into different
frequency bands. Lower frequency (0.01 – 0.04 Hz) ReHo is more sensitive to cortical
activity [148].

Functional Integration Methods for Identifying Neural Networks

Recently, much research has focused on large-scale networks in the brain and investigating
their functional significance. They are most commonly extracted by functional connectivity
(FC) analyses of fMRI data which measures the degree of synchrony of the BOLD time-series
between different brain regions using one of the functional integration Methods. The connectivity
may result from a direct anatomical connection or an indirect path through a mediating region, or
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may not have a known anatomical correlation [149]. Functional integration is the study of how
brain regions work together to process information and affect responses. It is commonly used
computational methods include functional connectivity density analysis, seed-based analysis,
independent component analysis (ICA), principal component analysis (PCA) and clustering
analysis.

1. Functional Connectivity Density Analysis (FCD):
Functional connectivity density (FCD) analysis measures the BOLD time-series correlation
between each voxel and all other voxels within the brain and attempts to identify the
highly connected functional hubs [150]. The analysis of FCD does not require any model
assumptions to be made and it may reveal the importance of functional brain connectivity
hubs, but it does not indicate which regions are connected. The voxel with a higher
FCD value indicates that it is functionally connected to numerous other brain voxels,
and suggests that this voxel plays a more important role in brain information processing
than those voxels with lower FCD values. Through functional connectivity density (FCD)
mapping of voxels across the whole brain, short-range and long-range FCD can be measured
separately, which leads to the measurement of all brain functional information. The
short-range FCD may reflect the regional plasticity of functional connectivity around
this voxel. The long-range FCD is the product of the global FCD minus [151] [152].
The exploration of abnormal changes in FCD has been widely used in several diseases,
including Alzheimer’s disease [153], Parkinson’s disease [154] and depression [155].

2. Seed Based Analysis:
One of the most common approaches to exploring functional connectivity in the brain is
to analyze seed-based functional connectivity (ROI-based functional connectivity). This
requires first creating seed regions (seed voxel) of the brain (voxel, cluster or region of
interest), then depending on the time series of the seed regions, connectivity is calculated
as the correlation of time series for all others voxels in the brain by one of these metrics (eg,
the cross-correlation coefficient, partial correlations, multiple regressions, and synchronization
likelihood) [156] [157]. Two regions are functionally connected if the time series of
their activity is highly correlated, which means that they are likely to communicate and
share information. The result of the seed-based functional connectivity analysis can be
visualized using a connectivity matrix to show how well its time series correlates between
seed regions within the brain. The main disadvantage of seed-based functional connectivity
analysis is its dependence on the selection of seed regions, which makes it vulnerable to
bias [34]. There is no golden standard method for seed regions selection.

3. Independent Component Analysis (ICA):
ICA is a mathematical technique that maximizes statistical independence between its
components, used to identify unknown independent source signals which have been linearly
mixed together. For example, ICA methods could be used to extract the voice of singers



52

and musical instruments from recorded songs without prior knowledge of their sources or
locations. For rs-fMRI data, ICA uses multivariate decomposition to separate the BOLD
signal into several independent functional networks in the form of spatial maps, which
are temporally correlated [158] [159]. These functional networks represent distinct RSNs,
Figure 4 3.13. ICA can be used for task-fMRI in combination with GLM approaches
but has found its most common use for rs-fMRI data analysis. Compared with seed-
based method, ICA can be performed without any prior assumptions (knowledge of the
experimental task or shape of the hemodynamic response function), except the selection
of the number of independent components to identify.

The basic of the ICA algorithm is to construct a matrix (Y) such that each column represents
a single voxel time course, and each row represents an fMRI signal at a certain time point
(observed data) [160]. That is Y is a T ×N matrix where T is the number of time points,
and N is the number of voxels, where we assume T < N. After some preprocessing to
normalize means and variances, Y is decomposed into the product of two matrices (A and
S):

Y = AS (3.9)

Where A is a T ×T matrix of time courses and S is a T ×N matrix of spatial components.
A function f (eg, Mutual information, Negentropy and a summary of a finite number
of higher-order moments) should be chosen to be an empirical estimate of the statistical
dependence between the rows of S. In practice, find the matrix A which minimizes f(S). On
an anatomic image, the resulting independent component signals can then be color-coded
and overlaid.

4. Principal Component Analysis (PCA):
PCA is a technique for individualizing important modes of variation of high-dimensional
data in the form of a set of orthogonal directions in space [161]. It is used to extract
features and as a technique for data dimension reduction, widely used in the fields of
image and signal processing, medical imaging and pattern recognition. PCA works by
constructing a sequence of orthogonal linear combinations of the original variables, called
the principal components (PC), that have maximum variance. The associated vectors of
coefficients of the linear combinations are the PC loadings [162]. The dimensionality of
the data is also most often reduced by discarding the principal components with the lowest
variance [163]. The number of important principal components that must be preserved can
be determined by studying their contribution to the explanation of the total variance or by
using a model selection criterion [164] [165]. PCA as a linear statistical technique can not
accurately describe non-linear structures, so kernel principal component analysis (KPCA)
has been proposed as a non-linear extension of PCA [166].

4www.mriquestions.com
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FIGURE 3.13: Spatial ICA separates signals from visual cortex into three
components.

5. Clustering Analysis:
Clustering analysis approach aims to parcellate the brain into different clusters on the basis
of a collection of relevant features such that similarity within clusters is higher than the
similarity between clusters. A distance metric is used to group a set of voxels or ROIs into
the same cluster according to the similarity in their BOLD time courses. Obviously, if the
cluster number is correctly chosen, voxels belonging to the same functional network will
fall within the same cluster. Several approaches have been proposed in the literature for
clustering analysis of rs-fMRI data, Figure 3.14 [167]: K-means [168], c-means [169],
hierarchical clustering (Ward’s clustering) [170] [171], spectral-based clustering [172],
and graph-based clustering [173].

FIGURE 3.14: The result of three clustering algorithms (K-means, Ward, and
spectral) that parcel the brain into 500 parcels.
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3.3.4 Advanced fMRI Analyses

In this section, we review some advanced fMRI analyses approaches that have been computationally
informed in this way.

Graph Analysis

Graph theoretical method has been used in the mathematical representation and study of complex
networks such as the brain network, which is based on the description of a pairwise relation
between nodes. In neuroimaging and neuroscience, graph theory is applied to establish mathematical
models of complex network functions within the human brain. Graph theory provides a theoretic
framework to represent the whole brain as a brain network and analyzing its topology [174]. This
network has associations and connections between various regions and subregions in the brain
and can be defined as a graph G (V, E) [175], where nodes (V) may represent voxels or ROIs.
For example, the Automated Anatomical Labeling (AAL) atlas divides the whole brain into 116
distinct brain structures (90 cortical and subcortical regions and 26 cerebellar regions). It has
been widely used for neuroanatomic labeling of brain structures in functional imaging [176].
For each region, the representative time course in each region was obtained by averaging the
time series across all voxels in the region. Then, the weight of each edge (e ∈ E) in the brain
network was computed based on the correlation coefficient between time series from all pairs of
regions, Figure 3.14. Here are some of the key topological metrics for graph analysis: (1) Node
degree, (2) Characteristic path length, (3) Centrality, (4) Clustering coefficient, (5) Modularity.

FIGURE 3.15: Representation of the brain as a graph where the regions are
obtained on the basis of the anatomical parcellation defined by AAL, there are
116 regions (red dots). The lines represent the functional connections between

these regions.
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Multivariate Analysis

The most common approaches to analyze fMRI data are approaches that analyze each voxel’s
time series or region independently (univariate analysis) such as the standard GLM. Unlike
univariate approaches, multivoxel pattern analysis (MVPA) considers spatial patterns of activity
over ensembles of voxels to evaluate the correlation and recover what information they represent
collectively, rather than proceeding on a voxel-by-voxel basis. Figure 3.16 provides a simple
explanation of the difference between univariate and multivariate approaches [177]. MVPA
has been used in fMRI to extract information from spatially distributed activation patterns,
which could go undetected in conventional univariate analysis. Generally, MVPA has two
distinct methods. The first method uses classifiers from machine learning to learn a mapping
between multi-voxel brain states and cognitive state information. Classifier-based MVPA is the
most common method of interpreting internal cognitive states trial-by-trial steps, such as what
participant is attending to, thinking about or remembering. The second method examines the
similarity structure of multi-voxel patterns and uses information from this similarity structure to
draw conclusions about which information is expressed in these patterns [178][179].

FIGURE 3.16: This simple figure describes the difference between univariate and
multivariate analytic strategies: a hypothetical 3-dimensional data set is displayed
in this illustration. On the left side, there is no correlation between the 3 variables
plotted. On the right side in contrast, one can see a major source of variance
indicating a positive correlation between all three voxels. A univariate analysis that
just considered mean values on a voxel-by-voxel basis could not tell any difference
between these two scenarios. Multivariate analysis, in contrast, identifies the major
sources of variance in the data (red arrow) before proceeding to construct neural

activation patterns form these sources.

Real-Time Analysis

In the standard fMRI analysis approach, fMRI data are collected first after the experiment
then preprocessed and analyzed offline over hours, days, weeks or months. Recent progress
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in computer hardware and software makes it possible to perform an analysis of fMRI data and
to access results while the subject is inside the scanner, which has led to an interest in the
real-time analysis of fMRI data. Real-time fMRI analysis involves the online measurement
of a subject’s neural activity, indirectly, through the measurement of the BOLD signal. It is
performed by reading, analyzing and visualizing the hemodynamic brain signals in real-time
during a continuous experiment [180]. One of the most common uses is to try to influence
the participant through feedback on their brain activity (neurofeedback). Neurofeedback is a
type of biofeedback in which neural activity is measured, and a visual, an auditory or another
representation of this activity is presented to the participant in real-time to train him to increase
or decrease activity in a region of the brain underlying some cognitive process or disorder,
Figure 5 3.17 [181]. Neurofeedback experiments showing that humans could self-control
electroencephalographic signals in real-time [182]. Such findings led to the development of
the field of brain-machine interfaces, also known as brain-computer interfaces [183], in which
individuals aim to control external devices directly instead of neural substrates.

FIGURE 3.17: Overview of a real-time fMRI based neurofeedback system that
comprises the following subsystems. (A) Participant in the MRI scanner. (B)
Signal acquisition (fMRI data). (C) Online analysis and computation of the
neurofeedback based on the BOLD response. (D) Visual feedback via the scanner

projection system.

5The real-time fMRI system presented in this figure was developed at the Institute of Medical Psychology and
Behavioral Neurobiology, University of Tübingen, Germany.
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Model-Based Analysis

In model-based fMRI analysis, a model describing the hypothesized cognitive processes underlying
the behavior concerned is generated. After that, the information coming from that model which
simulates the process of interest is compared with fMRI data, showing which brain areas show
activation patterns that are consistent with the process of interest [184]. Typically, the generated
model has one or more parameters. These parameters must be adjusted to fully define the model,
which is generally achieved by fitting them to the observed behavior [185]. Models for adjusting
these parameters (e.g, reinforcement learning, decision theory, Bayesian inference and game
theory) have seen increasing use as tools to develop precise hypotheses about the underlying
computations [178]. This approach has proved to be very successful in fMRI analysis and
allows researchers to go beyond localizing model variables in the brain. When their localize
is known, these signals can be interpreted in later experiments and used to estimate parameters
independently of behavior.

3.4 Functional Connectivity Analysis

The human brain is a complex network of a large number of different brain regions that each
have their own task and function, but are functionally and structurally interconnected regions.
Brain function is not only the result of activity in different specialized and isolated brain regions
but also the result of interactions between brain regions [186]. Interactions between brain
regions are likely to play a key role in complex cognitive processes, making the examination
of functional connectivity in the human brain very important and providing important new
information on the core organization of the human brain. Functional connectivity (FC) is defined
as the temporal correlation between the time series of different brain regions, reflecting the level
of functional communication between regions. More generally, functional connectivity between
two given regions is considered in terms of the temporal coherence or correlation between the
oscillatory firing rate of neuronal assemblies [187]. Analysis of functional connectivity can be
carried out at the level of the individual voxels or at the level of regions of interest (ROIs).
Methods for functional connectivity analysis are always based on some measure related to the
correlation between two or more fMRI time series. The results of functional connectivity are
usually represented by a matrix called the connectivity matrix, which is typically estimated
using the correlation between time series, where each cell in the connectivity matrix contains a
correlation coefficient that crosses the correlation between two regions of the brain, Figure 3.18.
Functional connectivity studies have been extensively applied to analyze the pathophysiology
of neurodegenerative disorders [188], such as Alzheimer’s Disease [189], Parkinson’s disease
[190], Dementia [191], Schizophrenia [192], and Autism [193].
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FIGURE 3.18: Construction of the functional connectivity matrix by the
correlation between time series was extracted from brain regions [1].

3.5 Classification and Prediction in fMRI Analysis

Brain functional imaging data, especially fMRI data, have been using to reflect functional
integration of the brain by detecting changes associated with blood flow. Cerebral blood flow
and neuronal activation were coupled and when an area of the brain was in use, blood flow to
that region increases. The identification of the active regions allowed us to understand how the
healthy brain functions, and in an increasing number of studies, it was applied to understand
which brain function was affected by a particular disease [194]. In the last few years, there has
been growing interest in the use of machine learning and deep learning for analyzing fMRI data
in order to classify or predict diseases, behaviors, diagnosis of cognitive disorders and mapping
of functional brain regions [195] [196] [197]. A growing number of studies have shown that
both machine learning and deep learning can be used to extract exciting new information from
neuroimaging data [198].

FMRI data analysis is highly interdisciplinary, majorly influenced by fields such as machine
learning, signal processing, and theory of graphs. Machine learning approaches provide a rich
characterization of fMRI data, often in a data-driven manner. It is widely used neuroimaging
studies, the study of functional connectivity with rs-fMRI is a major focus in this area which has
been applied in many fields, Figure 3.19 [199]. Deep learning approaches are successful when
there are large amounts of data available for training. Under controlled conditions, most typical
studies of neuroimaging have collected data from only tens to hundreds of subjects to identify
slight differences between different states, for example in [196], the authors proposed a deep
neural network to analyze t-fMRI, Figure 3.20.

There are many different classifiers that have been used for prediction, whether linear or
non-linear, sparse or non-sparse, require or do not require prior selection of features (supervised
learning or unsupervised learning). Supervised learning methods in fMRI focus on classifying
patients versus controls, or predicting diseases and guiding treatments, on the other hand, unsupervised
learning methods are mainly focused on understanding the functional organization of the healthy
brain and its dynamics. A taxonomy of supervised learning and unsupervised learning methods
used for rs-fMRI analysis was listed by [199] as shown in Figure 3.21. For deep learning
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FIGURE 3.19: Applications of machine learning methods in rs-fMRI.

FIGURE 3.20: A proposed deep neural network for analyzing t-fMRI where the
model t-fMRI scans as input and provides labeled task classes as output.

methods that have been widely used in the study of neuroscience, a brief overview of deep
learning methods to process fMRI data can be found in [197].

Feature selection is the process of reducing the number of input variables, removing noisy,
redundant or irrelevant features that contribute most to your prediction variable or output that
interests you. Having irrelevant features in your data can decrease the accuracy of the models
and make your model learn based on irrelevant features. Methods of feature selection in t-fMRI
are generally not suited for rs-fMRI, for this reason, we must choose the appropriate method
according to the type of fMRI and the purpose of the process.

Functional connectivity is the most common feature representation of rs-fMRI analysis.
It is assumed to be stationary over the scanning time (usually several minutes), and static
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FIGURE 3.21: A taxonomy of supervised learning and unsupervised learning
methods used for rs-fMRI analysis.

functional connectivity approaches were used in most previous fMRI studies. Until recently,
researches have shown that brain functional connectivity as dynamic over time can be effective
in uncovering disorders of normal human brain disease [200]. The main functional connectivity
analysis methods and possible connectivity features used for classification/prediction problems
were summarized in Figure 3.22 [198]. Figure 3.23 shows a general illustration of the pipeline
used in rs-fMRI functional connectivity-based predictive models [201].

FIGURE 3.22: The key methods for functional connectivity analysis and possible
connectivity features used for classification/prediction problems.
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FIGURE 3.23: A general pipeline for rs-fMRI functional connectivity-based
prediction with three main steps: 1) Definition of brain regions (ROIs) from rest-
fMRI images or using already defined reference atlases, 2) building the functional
connectivity matrix from time-series signals extracted from these ROIs for every
subject and 3) comparisons of functional connectivity matrices across subjects

using machine learning algorithms.

3.6 Conclusion

In recent years, functional magnetic resonance imaging (fMRI) has become a hot topic within
the fields of neuroscience and neuroimaging, as its spatial resolution makes it suitable to study
the functional structure of the brain, map different sensor, motor and cognitive functions to
specific regions in the brain. To get information from the brain by fMRI, researchers design
experiments to test whether or not there is a difference in a hypothesized brain region. Usually,
this consists of fitting a model followed by statistical inference. In this chapter, we have reviewed
the essential steps for working on fMRI. Where we presented the preprocessing steps to prepare
the data for the analysis step, then the main statistical analysis methods for both t-fMRI and rs-
fMRI, we then presented a complete overview of the current state of the art of advanced methods
of fMRI analysis, functional connectivity analysis and machine learning in fMRI analysis. The
different methods of analysis are complementary and the application of several methods to the
same dataset may produce better results compared to the application of a single method alone.
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Chapter 4

Graph Matching for Brain MRI and fMRI
Analysis

4.1 Introduction

Graphs are a powerful and universal tool widely used in information processing. Numerous
methods for graph analysis have been developed. In particular, graph representations are extremely
useful in image processing and understanding. In this chapter, we provide an overview of graph
matching, we focused on three main components. Firstly, an introduction to graph theory, we
mainly concentrate on the fundamental concepts. Secondly, an overview of graph matching and
the most important methods used. Thirdly, we provide some methods based on graph matching
techniques that may be successfully applied to neuroimaging data for understanding the brain
structure or its structural and functional connectivity.

4.2 Graph Theory Basics

Graph theory is originated with the problem of Königsberg Bridge, in 1735. This problem leads
to the Eulerian Graph concept. Euler studied the problem of Königsberg Bridge and established
a structure to resolve the problem called the Eulerian graph. The paper written by Leonhard
Euler on Königsberg’s Seven Bridges, and published in 1736, is considered to be the first paper
in graph theory history. The field has exploded since Euler resolved this very first problem
in Graph Theory, becoming one of the most important areas of applied mathematics we are
currently studying. Graph Theory is generally a branch of Combinatorics but is closely related
to Applied Mathematics, Optimization Theory, and Computer Science. In this section, we will
discuss some basic definitions of graph theory.
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Graph: a graph (G) is a mathematical abstraction that is useful for solving many kinds of
problems. Fundamentally, a graph consists of a set of vertices (V), and a set of edges or links
(E), where an edge is something that connects two vertices (u,v ∈ V) in the graph. Therefore G
=(V,E). |V | and |E| are the number of vertices and edges of the graph respectively.

We call a graph G an undirected graph when edges have no orientation. The edge (u,v) is
identical to the edge (v,u), i.e., they are not ordered pairs. In directed graphs, elements of E are
ordered pairs, means (u,v) distinct from (v,u). Directed edges are called arcs. Directed graphs
often called digraphs.

For a graph G=(V, E), we have the following terminologies1 [202]:

1. Edges that have the same end vertices are parallel.

2. An edge of the form (v,v) is a loop.

3. A graph is simple if it has no parallel edges or loops.

4. A graph with no edges (i.e. E is empty) is empty.

5. A graph with no vertices (i.e. V and E are empty) is a null graph.

6. A graph with only one vertex is trivial.

7. Edges are adjacent if they share a common end vertex.

8. Two vertices u and v are adjacent if they are connected by an edge, in other words, (u,v)
is an edge.

9. The degree of the vertex v, written as d(v), is the number of edges with v as an end vertex.
By convention, we count a loop twice and parallel edges contribute separately.

10. A pendant vertex is a vertex whose degree is 1.

11. An edge that has a pendant vertex as an end vertex is a pendant edge.

12. An isolated vertex is a vertex whose degree is 0.

13. Connected graph and Disconnected Graph: A graph G =(V, E) is said to be connected
if there exists at least one path between every pair of vertices in G. Otherwise, G is
disconnected.

14. Regular graph: In a graph if all vertices have same degree (incident edges) k than it is
called a regular graph.

1GRAPH THEORY: by Keijo Ruohonen
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15. Complete graph: A simple graph G =(V, E) with n mutually adjacent vertices is called
a complete graph G and it is denoted by Kn or a simple graph G =(V, E) in which every
vertex in mutually adjacent to all other vertices is called a complete graph G.

16. Cycle graph: A simple graph G =(V, E) with n vertices (n≥ 3) called a cycle graph where
vertices connected in a closed chain.

17. Wheel graph: A wheel graph G =(V, E) with n vertices (n≥ 4), is a simple graph which
can be obtained from the cycle graph Cn−1 by adding a new vertex (as a hub), which is
adjacent to all vertices of Cn−1.

18. Cyclic and acyclic graph: A graph G =(V, E) has at least one Cycle is called cyclic graph
and a graph has no cycle is called Acyclic graph.

19. Bipartite graph: A simple graph G =(V, E) is Bipartite if we may partition its vertex set
V to disjoining sets U and V such that there are no edges between U and V. We say that
(U, V) is a Bipartition of G.

20. Complete bipartite graph: A bipartite graph G =(V, E) with vertex partition U, V is
known as a complete bipartite graph if every vertex in U is adjacent to every vertex in V.

21. Weighted Graph: A weighted graph is a graph where its vertices, edges or both are given
a numerical weight.

22. Path: A path is a simple graph whose vertices can be ordered so that two vertices are
adjacent if and only if they are consecutive in the list.

23. Simple path: Simple path is a path in which all the vertices are distinct.

24. Tree: An undirected connected graph T is called tree if there are no cycles in it. There is
exactly one simple path between any vertices u and v.

25. Vertex coloring: An assignment of colors to the vertices of a graph G so that no two
adjacent vertices of G have the same color is called vertex coloring of a graph G.

26. Eulerian Path, Eulerian cycle, and Euler graph: An Eulerian path is a path in a graph
that visits every edge exactly once. An Eulerian cycle is an Eulerian path that starts and
ends on the same vertex. An Eulerian graph is a graph containing an Eulerian cycle that
contains all edge of the graph. i.e if we can draw the graph on a plain paper without
repeating any edge or letting the pen.

27. Hamiltonian path, hamiltonian cycle, and Hamiltonian graph: A Hamiltonian path is
a path that visits each vertex of the graph exactly once. A hamiltonian cycle is a cycle
that visits each vertex exactly once. A graph called Hamiltonian graph if there exists a
Hamiltonian cycle which contains all vertices of the graph.
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4.2.1 Graph Representations

Graph representation is a technique used to store graphs in a computer memory. To represent
a graph, we just need a set of vertices, and for each vertex, the neighbors of the vertex. If
the graph is weighted, the weight will be assigned to each edge. There are different ways to
optimally represent a graph, depending on the density of its edges, type of operations to be
performed and ease of use.

Adjacency Matrix

Adjacency Matrix A is a binary matrix of size V ×V where V is the number of vertices in a
graph. If there is an edge from a vertex i to vertex j, then the corresponding element of A,
ai j = 1, otherwise ai j = 0, Figure 4.1. If there is a weighted graph then instead of 1s and 0s, we
can store the weight of the edge.

FIGURE 4.1: Adjacency matrix example. left: Undirected graph. Right: Directed
graph.

Incidence Matrix

Incidence matrix B is a matrix of size |V | × |E|. For undirected graphs, the entries of B are:
bi j = 1, if vertex i incident to edge j otherwise 0. For directed graphs: bi j = 1, if edge j is (k, i).
bi j = −1, if edge j is (i,k) otherwise 0, Figure 4.2.
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FIGURE 4.2: Examples of incidence matrix for undirected graphs and directed
graphs.

Adjacency List

Adjacency list is an array of size |V | where for each vertex in the graph, we maintain the list of
its neighbors. It means, every vertex of the graph contains a list of its adjacent vertices (The i-th
array element is a list of the vertices adjacent to i), Figure 4.3. Similarly, an edge list stores the
vertex pairs incident to each edge.

FIGURE 4.3: Example of an adjacency list.

4.3 Graph Matching

Graph matching is the process of finding a correspondence between the nodes and the edges
of two or more graphs that satisfies some (more or less stringent) constraints ensuring that
similar substructures in one graph are mapped to similar substructures in the others. In realistic
applications, the matching is done by comparing the model graph which is stored in a file and
an input graph that is given at the run time. Computing the similarity of two graphs is typically
exponential in the number of nodes of the two graphs involved. In this section, we will present
an overview of the algorithms that have been proposed and used for the graph matching problem.
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4.3.1 Problem Statement

We can state the graph matching problem as follows: Given two graphs G1 = (V1,E1) and
G2 = (V2,E2), generally, the task of correspondence matching is to find a mapping f : V1 −→V2

such that (u,v) ∈ E1 iff ( f (u), f (v)) ∈ E2. When such a mapping f exists and |V 1|= |V 2|, this
is called an isomorphism, and G2 is said to be isomorphic to G1. This type of problems is said
to be the exact graph matching. When the number of vertices is different in both the two graphs
|V 1| 6= |V 2|, this means that it is not possible to find an isomorphism between the two graphs to
be matched, so this type of problems is said to be the inexact graph matching.

Graph matching computations can be broadly classified into two groups. In the first group
of methods, the outcome of the computation is a single similarity score between two graphs G1

and G2, typically normalized in the range [0,1]. This similarity score indicates how similar two
graphs G1 and G2 are in their entirety. In this group, the methods are based on the principle that
two graphs are similar if they share many vertices and/or edges. In nodes ranking, the similarity
of two graphs is based on the similarity of the ranking of their nodes, as quantified by a rank
correlation method. In the second group of methods, the outcome of the computations is a set
of numbers xi j, representing the similarity of each vertex i in the first graph to every vertex j in
the second graph. This notion of node wise similarity can be extended to edge-wise similarity,
or to similarity of small subgraphs in the two graphs. This second class of methods reflects a
finer-grained notion of graph similarity. Also, we have divided the matching methods into two
broad categories: the first contains exact matching methods that require a strict correspondence
among the two graphs being matched or at least among their subparts. The second category
defines inexact matching methods, where a matching can occur even if the two graphs being
compared are structurally different to some extent.

4.3.2 Exact Graph Matching

In exact graph matching, the objective is to determine the mapping between the nodes of two
graphs must be edge-preserving in the sense that if two nodes in the first graph are linked by an
edge, they are mapped to two nodes in the second graph that is linked by an edge as well, the
mapping must be bijective [203]. That is, a one-to-one correspondence must be found between
each node of the first graph and each node of the second graph. The identical between the two
graphs in terms of nodes and edges leads to the graph isomorphism problem. Two graphs, G1
and G2, are isomorphic if there is a one-to-one correspondence between the vertices of G1 and
those of G2 with the property that the number of edges joining any two vertices of G1 is equal
to the number of edges joining the corresponding vertices of G2, Figure 4.4.
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FIGURE 4.4: Example of isomorphic graphs.

The graph isomorphism problem is of considerable practical importance and also of theoretical
interest because it lies in the complexity class NP, but it is not known whether it lies in P or NP-
complete. See [204] for more details. Checking whether two Graphs are isomorphic or not
is an old and interesting computational problem. The simplest, but the inefficient approach
for checking two graphs G1 and G2, each with vertices v is making all the permutation of the
nodes and see if it is edge-preserving bijection or not. Obviously, this solution takes O(v2v!)
time, where v is the number of vertices of the graph. Even for smaller values of v the problem
becomes intractable because of this enormous time complexity.

The graph isomorphism problem for a general case is a hard problem, many works have
been done for special families of graphs or by imposing certain restrictions on the underlying
graphs where it is possible to derive algorithms of polynomial-time complexity. Polynomial-
time algorithms were found for trees in [205] [206], low-order polynomial-time methods [207]
[208], polynomially bounded method for the isomorphism detection of graphs with bounded
valence [209], planar graphs [208], graphs with bounded genus [210], graphs with bounded
eigenvalue multiplicity [211], graphs with bounded degree [209], graphs with bounded color
class size [212], permutation graphs [213], quadratic-time algorithms [214].

An extended method of graph isomorphism is the subgraph isomorphism where we have to
detect if a smaller graph is present in a larger graph. A subgraph isomorphism from G1 to G2
exists if there exists a subgraph G⊆G2 such that there is a graph isomorphism between G1 and
G. Subgraph isomorphism can also be determined by the graph isomorphism method mentioned
above. Subgraph isomorphism is considered to belong to the class of NP-complete problems.
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4.3.3 Inexact Graph Matching

In graph representations of real-world problems, it is often the case that graphs from the same
class differ due to several causes: Intrinsic pattern variability, noise in the acquisition phase, the
existence of non-deterministic elements in the processing steps leading to the graph representation,
are among the possible reasons for having actual graphs that differ somewhat from their ideal
models. Hence, the graph matching process needs to take structural errors into account and must
be tolerant. It must accommodate the differences by relaxing, to some extent, the constraints that
define the matching type. Even when no deformation is expected, this can be useful. Several
methods of achieving this goal will be discussed in this section.

Graph Edit Distance

Graph edit distance (GED) is one of the most flexible graph matching approaches since it
can compare any kind of labeled graph given an appropriate cost function. It is defined as
the minimum cost of an edit path transforming one graph into another, where an edit path
is a sequence of edit operations. Generally, these edit operations are substitutions, deletions,
and insertions of nodes and edges [215]. A cost function assigns a cost to each of these edit
operations, Figure 4.5.

FIGURE 4.5: Graph edit distance example. Transforming graph G1 (right) into
graph G2 (left) where: 1- delete edge e1 delete node n1. 2- delete edge e2 insert
edge e4. 3- insert node n2 insert edge e3. We suppose that the cost of edit
operations: Deletion and insertion of both edges and nodes = 1. Substitution of
both edges and nodes = 0. We have 6 operations so the cost of GED(G1,G2) = 6.

The problem of measuring the dissimilarity of two graphs is then equivalent to the problem
of finding the edit path that models the structural difference of two graphs in the least costly
way. Consequently, the graph edit distance of two graphs is defined by the minimum cost edit
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path from the first to the second graph. Given two graphs G1 and G2, let c(f) denote the cost of
edit path f. The edit distance of G1 and G2 can be defined by

GED(G1,G2) = minall edit paths f f rom G1 to G2 c( f ) (4.1)

If the two graphs under consideration are very similar, it can be assumed that only minor
edit operations are required to transform the first into the second graph, which results in a low-
cost optimal edit path. In this case, the resulting edit distance will be small. Conversely, if the
two graphs differ significantly, every edit path will necessarily include strong modifications and
hence result in high costs [216].

Graphs are flexible and can be large and complex, in the case of modeling complex patterns
and objects, the exact computing of GED becomes difficult and intractable in practice due to
its exponential time complexity. Computing graph edit distance is known to be an NP-hard
problem [217], research has mainly focused on heuristics. In the literature, both exact and
heuristics methods can be found. In the exact methods, the GED problem was addressed by
exact methods based on mathematical programming, and more specifically by Mixed Integer
Linear Program formulations. In [218], the authors have proposed two Mixed Integer Linear
Program formulations (F1 and F2) to solve the GED problem. F1 simply minimizes the cost
of assigning the vertices plus the cost of assigning the edges. F2 is a reformulation of F1
with a reduced number of variables and constraints, another method that ignored the attributes
of edges in [219]. Regarding heuristics methods, researchers have designed fast heuristics to
solve the problem and provide good quality solutions. Methods proposed were particularly
triggered by the algorithms of the bipartite graph edit distance that present in [220] and [217].
The main advantage of these algorithms is that it is fast and can solve large and hard instances
in a short amount of time. The problem turned into the linear sum assignment problem with
error correction (LSAPE), by computing a special cost assignment matrix for the vertices sets
of the two graphs. In [221], the authors proposed an innovative approach to deal with the GED
problem. It introduces a new heuristic called Local Branching (LocBra), which is an adapted
version of the general local branching metaheuristic originally proposed by [222]. Two other
heuristics Integer Projected Fixed Point (IPFP) and Graduate Non-Convexity and Concavity
Procedure (GNCCP) have proposed by [223]. Both are adapted to operate over a Quadratic
Assignment Problem that models the GED problem. The heuristics aim at approximating the
quadratic objective function to compute a solution and then improve it by applying projection
methods.

Graph Distance Based on mcs and MCS

A common subgraph of G1 and G2, cs(G1,G2), is a graph G, such that there exist subgraph
isomorphisms from G to G1 and from G to G2. We call G a maximum common subgraph of
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G1 and G2, mcs(G1,G2), if there exists no other common subgraph of G1 and G2 that has more
nodes than G. A maximum common subgraph of two graphs represents the maximal part of both
graphs that is identical. Note that, in general, the maximum common subgraph is not uniquely
defined, that is, there may be more than one common subgraph with a maximal number of nodes.

A popular metric for the similarity of two graphs is the size of their mcs, which is most
frequently defined as the largest graph isomorphic to some induced subgraph in each of them.
Detection of the maximum common subgraph of two given graphs is a well-known problem
and it is NP-complete problems. A significant number of mcs detection algorithms have been
proposed in the literature, but still are not clear how the behavior of these algorithms varies as
the type and the size of the graphs to be matched changes from an application to another. Clique-
based methods are the most widely used in the literature. These depend on finding a maximum
clique in the association graph [224] [225]. Intuitively speaking, the larger a maximum common
subgraph of two graphs is, the more similar are the two graphs. This observation leads to graph
dissimilarity measures that are able to cope with structural errors. In [226], the authors have
introduced such a distance measure:

dmcs(G1,G2) = 1− |mcs(G1,G2)|
max{|G1|, |G2|}

(4.2)

As shown, dmcs produces a value in [0,1]. Also, as we mentioned earlier, the mcs of two
graphs is not uniquely defined, which means the dmcs distance too. If two graphs are isomorphic,
their dmcs distance is 0; if two graphs have no part in common, their dmcs distance is 1.

A second distance measure which has been proposed in [227], based on the idea of graph
union, where we dived the size of mcs by the size of the union of the two graphs minus the size
of mcs. This distance measure behaves similarly to dmcs. The motivation of using graph union
in the denominator is to allow for changes in the smaller graph to exert some influence over the
distance measure, which does not happen with dmcs. This measure was also demonstrated to be
a metric and creates distance values in [0, 1], [216].

dUG(G1,G2) = 1− |mcs(G1,G2)|
|G1|+ |G2|− |mcs(G1,G2)|

(4.3)

A similar distance measure [228] which is not normalized to the interval [0, 1] is

dmcs1(G1,G2) = |G1|+ |G2|−2|mcs(G1,G2)| (4.4)

A common supergraph of G1 and G2, cs(G1,G2), is a graph G, such that there exist subgraph
isomorphisms from G to G1 and from G to G2. We call G a minimum common supergraph of G1

and G2, MCS(G1,G2), if there exists no other common supergraph of G1 and G2 that has less
nodes than G. The minimum common supergraph of two graphs, G1 and G2 , is defined as the
smallest graph that includes, as subgraphs, both G1 and G2. It is shown that minimum common
supergraph computation can be solved by means of maximum common subgraph computation.
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Algorithms known from the literature show that for a certain class of cost functions, the concept
of graph edit distance is closely related to the minimum common supergraph.

In [229], the authors have proposed a distance measure based on both the maximum common
subgraph and the minimum common supergraph

dMCSmcs(G1,G2) = |MCS(G1,G2)|− |mcs(G1,G2)| (4.5)

We can also create a version of this distance measure which is normalized to [0, 1] as follows:

dMCSmcsN(G1,G2) = 1− |mcs(G1,G2)|
|MCS(G1,G2)|

(4.6)

If two graphs are identical, then both their maximum common subgraph and minimum
common supergraph are the same as the original graphs and |G1| = |G2| = |MCS(G1,G2)| =
|mcs(G1,G2)|, which leads to dMCSmcs(G1,G2) = 0. As the graphs become more dissimilar, the
size of the maximum common subgraph decreases, while the size of the minimum supergraph
increases. This in turn leads to increasing values of dMCSmcs(G1,G2).

4.3.4 Similarity Scores Between Nodes

In this approach, we construct a similarity matrix M to indicate the compatibility of nodes in
the two graphs being matched, where element Mi j denotes the similarity of node i in the first
graph to node j in the second graph, depends on the specific measure of node similarity that
differ along many dimensions, for example, the topological scope of the measure. The goal is
to identify one or multiple possible mappings between the nodes of the input graphs and, for
each mapping, the corresponding set of conserved edges, this problem is also known as graph
alignment problem. Corresponding to these conserved edges, there exists a mapping between
the nodes of the graphs. Constraints can be imposed on M so that each node from the first
graph must be mapped to a single node in the second graph. Such a representation and the
algorithms applied to it for determining graph matching are straightforward; however, they can
require generating all the permutations of possible node matchings over the matrix. To improve
time complexity, we can instead attempt to approximate the optimal solution by finding good
suboptimal solutions. This problem can be formulated in various ways, depending on the kind of
input (pairwise vs multiple matching) and the scope of node mapping desired. Local measures
define similarity on the basis of the neighborhood of nodes. Global measures define similarity
based on network connectivity patterns over the entire graph.
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IsoRank Algorithm

The key problem that IsoRank algorithm targets is identifying the node mappings between two
graphs; the input consists of a similarity measure between the nodes of the two graphs. These
similarity scores (e.g., BLAST similarity scores, synteny-based scoring, functional similarity)
may be defined only for some node-pairs. Given the inputs, we construct an eigenvalue problem
whose solution leads to a mapping between the nodes. From this mapping, the set of conserved
edges can be easily computed.

The algorithm works in two stages. It first associates a score with each possible match
between nodes of the two graphs. Let Ri j be the score for the nodes pair (i, j) where i is from
graph G1 and j is from graph G2. Given graph and sequence data, we construct an eigenvalue
problem and solve it to compute R (the vector of all Ri j). The eigenvalue problem explicitly
models the trade-off between the twin objectives of high graph overlap and high sequence
similarity between mapped node-pairs. The second stage constructs the mapping for the global
measures by extracting from R high scoring, pairwise, mutually-consistent matches. To compute
the functional similarity score Ri j, we pursue the intuition that (i, j) is a good match if i and j’s
respective neighbors also match well with each other. The intuition is to set up a system of
constraints, where we compute the neighborhood scores in a recursive fashion. The equations
needed to compute R can be found in [230] and [231].

Hyperlink-Induced Topic Search (HITS) Algorithm

HITS algorithm is also known as hubs and authorities, it is a link analysis algorithm that rates
web pages, developed by Jon Kleinberg [232]. In [233], the authors proposed a new algorithm
inspired by HITS, where they construct a matrix X of dimensions |VB|×|VA| between two graphs
GA and GB, which is initialized to all 1’s. The following iterative procedure is then applied:

X ← BXAT +BT XA (4.7)

Where xi j expresses how similar vertex j in GA is to vertex i in GB, we say that xi j is their
similarity score. A and B are adjacency matrices of the graphs. After a number of iterations, the
matrix X is converged to a new matrix different from the initial matrix.

PageRank Inspired Algorithm

Singh et al. [231] propose an iterative procedure of the form:

X ← αB̃XÃT +(1−α)H (4.8)
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Where H is the matrix corresponding to the elemental similarity score between node i ∈VB

and j ∈VA. Successive iterates scale topological similarity and elemental similarity of nodes by
factors α ≤ 1 and 1−α , respectively. Matrix Ã is the normalized version of the matrix AT ; We
get it by the following equation :

Ãi j =
a ji

∑
N
i=1 a ji

(4.9)

The topological similarity component in this equation αB̃XÃT has an interesting interpretation
along the lines of the score transport metaphor, see Figure 4.6 .

FIGURE 4.6: An example 3×4 similarity matrix X (bottom center) between B̃ and
ÃT under their respective graphs GB and GA (at top left and top right respectively)
exactly as in B̃XÃT . Node 2 “pulls” the total score of its two neighbors; however
there are 4 ways of doing this (2nd row of B̃ multiplied with each of the 4 columns
in X gives a row vector y() with 4 elements). This corresponds to the fact that node
2’s neighbors are implicitly linked with each of the 4 nodes in the other graph (i.e.,
for possible matchings). However, the X21 entry will finally be updated only by
y(2) and y(3) weighted contributions, because only nodes 2 and 3 happen to be
neighbors of node 1 ∈ VA (“pushing” their contributions to it). The weights will
are 1

2 and 1
3 , because in turn nodes 2 and 3 have 2 and 3 neighbors, respectively.

Network Similarity Decomposition (NSD)

Network Similarity Decomposition (NSD) is a highly efficient algorithm for Page-Rank-based
topological similarity computations. It works by un-coupling and decomposing similarity computations.
In addition to significant improvements in computational cost (orders of magnitude), NSD
supports a rich-query set efficiently, generates execution traces that can be used to identify
patterns that contribute significantly to topological similarity scores and is highly amenable to
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parallel implementation. It also supports parameters that can be tuned for the desired model,
as well as performance requirements [234]. NSD adopts the approach proposed in [231]. It
dramatically reduces the cost of these computations. Furthermore, it provides execution traces
that can be used to interpret topological similarity scores by identifying link patterns that significantly
contribute to topological similarity.

NSD starts by expanding The equation 4.8, and without loss of generality, we use H as the
initial condition X (0), and after t iterations, X (t) takes the form:

X (t) = (1−α)
t−1

∑
k=0

α
kB̃kH(ÃT )k +α

t B̃tH(ÃT )t (4.10)

The fact is that Singular Value Decomposition (SVD) is only one of the alternatives for
decomposing H into a sum of outer products for a given number, s, of vector pairs. Such a
decomposition can generally be expressed as:

H =
s

∑
i=1

wizT
i (4.11)

After substituting equation 4.11 in equation 4.10 we get the following :

X (t)
i = (1−α)

t−1

∑
k=0

α
kw(k)

i z(k)
T

i +α
tw(t)

i z(t)
T

i (4.12)

and:

X (t) =
s

∑
i=1

X (t)
i (4.13)

Note that the decomposition happens along sets of paths of successively larger length k.
However, their contributions are damped because of the (1−α)αk factor with α ∈ [0,1]. In
this context, w(k)

i = B̃kwi, and z(k)i = Ãkzi. Here, s is simply the number of components used.
The process mentioned above is outlined in Algorithm 1. The second step of the algorithm uses
a maximum weight bipartite matching algorithm to find the best matching pairs of vertices in
graphs GA and GB based on the similarity scores X computed in the first step.
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Algorithm 1 NSD: Calculate X (n)

1: given A,B,{wi,zi|i = 1, ...,s},α and n;
2: compute Ã, B̃;
3: for i = 1 To s do
4: w(0)

i ← wi;
5: z(0)i ← zi;
6: for k = 1 To n do

7: w(k)
i ← B̃w(k−1)

i ;
8: z(k)i ← Ãz(k−1)

i ;
end

9: zero X (n)
i ;

10: for k = 1 To n -1 do

11: X (n)
i ← X (n)

i +αkw(k)
i z(k)

T

i ;
end

12: X (n)
i ← (1−α)X (n)

i +αnw(n)
i z(n)

T

i ;
end

13: X (n)← ∑
s
i=1 X (n)

i ;

4.3.5 Parallel Algorithms for Graph Matching

Parallel computing has been successfully used to handle time-consuming operations. In the
graph matching, the computation methods mainly focused on the combinatorial methods aimed
at identifying subgraph isomorphisms or maximum cliques by used different parallel platforms.

In [235], The authors proposed a highly efficient and scalable parallel formulation based
on the network similarity decomposition where the new formulation accelerates the computing
of NSD. This acceleration has been shown to yield orders of magnitude improvement in serial
runtime, depending on the size of the networks. We provide an overview of NSD acceleration
in chapter 5, Section 5.3.

In [236], a parallel algorithm for exact graph edit distance (GED) computation is proposed.
This method based on a branch-and-bound algorithm coupled with a load balancing strategy.
Parallel threads run a branch-and-bound algorithm to explore the solution space and to discard
misleading partial solutions. The key idea of this algorithm is that a parallel execution can help
to converge faster to the optimal solution. This method is very generic and can be applied to
directed or undirected fully attributed graphs (i.e., with attributes on both vertices and edges). By
limiting the run time, this exact method provides (sub)optimal solutions and becomes an efficient
upper bound approximation of GED. The authors provided a complete comparative study where
6 exact and approximate GED algorithms were compared on a set of 4 graph datasets. By
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considering both the quality of the proposed solutions and the speed of the algorithm, they show
that their proposal is a good choice when a fast decision is required as in a classification context
or when the time is less a matter but a precise solution is required as in image registration.

GPUs with massively parallel processing architectures have been successfully leveraged for
fundamental graph operations on large graphs, among them are graph matching. In [237], the
authors proposed a GPU-efficient subgraph isomorphism algorithm using the Gunrock graph
analytic framework, GSM (Gunrock Subgraph Matching), to compute graph matching on GPUs.
In this algorithm, they make the following contributions: They designed a subgraph matching
approach using breadth-first search as the core operation. They focused on the problem of
memory capacity, optimizing their algorithm to generate as few intermediate results as possible
by limiting the memory usage linear to matched subgraphs; and they achieved best-of-class
performance on a variety of datasets and scenarios when compared to prior CPU and GPU
algorithms. Another algorithm based on GPU is proposed in [238], where authors proposed a
fine-grained shared-memory parallel algorithm for generating greedy matchings of undirected
graphs. This algorithm was inspired by the parallel graph coarsening algorithm discussed in
[239] and follows a paradigm similar to that of the auction algorithm for bipartite graphs, but
applying to general greedy matchings in arbitrary undirected graphs.

There are some other efforts aimed at parallel graph matching. In [240], the authors computed
histograms of the spectra of the weighted Laplacians of the subgraphs induced around each
vertex up to a number of shortest path lengths. These serve as vertex signatures that can drive
matching at the next stage implementing a seed-and-extend strategy that is sequential; however,
computing signatures is parallelizable. In [241], two methods, Matching Relaxation (MR) and
Belief Propagation (BP) are used to compute the similarity matrix, followed by 1/2-approximate
matching, are parallelized for a shared memory platform.

4.4 Graph Matching for Brain MRI/FMRI Analysis

Neuroimaging techniques have recently become one of the most influential tools to detect structural
and functional brain abnormalities. The brain can be regarded as a network Figure 4.7, where
nodes represent brain regions, and edges represent the anatomical or functional connections
between brain regions [174] [175]. Recent research has shown that graph-theory based complex
network analysis provides a powerful framework for examining the topological properties of
brain networks [242]. In this section, we presented two main points. The first: how to represent
MRI and fMRI data by a graph. The second: how to use graph matching for brain MRI and
fMRI analysis.



78

FIGURE 4.7: The brain represented as a network: image obtained from
MR connectomics. (Provided by Patric Hagmann, CHUV-UNIL, Lausanne,

Switzerland).

4.4.1 Representing Brain MRI/FMRI Data by Graphs

MRI Data

• Nodes: (vertices) denoting neural elements (neurons or brain regions). Parcellation of the
cerebral cortex is the widely used approach for defining nodes for brain graphs [102].

• Edges: are defined by the inter-regional correlations of the cortical thickness or volume
MRI measurements estimated in groups of subjects and characterized by properties related
to the white matter pathways (indicate the presence of an anatomical path between those
regions).

fMRI Data

• Nodes: stand for different brain regions (e.g. parcellated areas or recording sites), there
are several approaches to define brain nodes in fMRI data. The most commonly used
approach is to use a fixed anatomical atlas [243]. Using single voxels directly as brain
nodes was the earliest approach for graph analysis [244]. Approaches to aggregate voxels
into nodes as voxel-based modalities [245] and independent component analysis (ICA)[246].

• Edges: In fMRI, the links of a brain graph are given by evaluating the similarity between
two brain signals, through FC measures. Several approaches have been developed in the
last decade to measure FC based on various concepts from signal processing to autoregressive



79

modeling and information theory. Each method has its own specifications but essentially
they all apply to a set of signals X1(t)...XN(t) recorded from N different brain nodes,
where N ≥ 2, and give, for each pair of nodes i and j, the magnitude of the statistical
interaction between their activities. These magnitudes represent the weighted links wi j of
the brain graph [175].

Topological Metrics

The comparison of brain graphs in terms of topological metrics is often achieved by comparing
theoretical reference graphs produced by simulation models or by comparing the collection of
brain graphs, either between specific experimental conditions or different populations. Recently,
several empirical studies on structural and functional brain networks have contained small-world
architectures. Discovering that brain networks are small-world networks is only the first step
towards a comprehensive understanding of how these networks are structurally organized and
how they generate complex dynamics.

Topological properties of brain networks can be derived at the large scale of the whole brain,
at the intermediate-scale of several regions of the brain, or locally, at the small-scale of single
regions, i.e. metrics on single nodes. A vast number of graph metrics do exist to extract
topological properties [103] [247]. In practice, graph metrics (or indices) such as clustering
coefficient, path length and efficiency measures are often used to characterize the ‘small-world’
properties of brain networks [248] [249]. Centrality metrics such as degree, betweenness,
closeness and eigenvector centrality are used to identify the crucial areas within the network.
Community structure analysis, which detects the groups of regions more densely connected
between themselves than expected by chance, is also essential for understanding brain network
organization and topology [103].

Graph Matching in Application

Graph theory has drawn a lot of attention in the field of Neuroimaging and Neuroscience during
the last decade, mainly due to the abundance of tools that provides to explore the interactions of
elements in a complex graph like the brain. In these fields, the construction of a representative
brain graph for each individual is critical for further analysis. Additionally, graph matching is
an essential step for inference and classification analyses on brain graphs.

Among the researches which used the graph matching with the brain MRI, there is the
labeling of the brain sulci. In [250], the authors proposed a quantitative method for automatically
comparing and analyzing the sulcal pattern between individuals twin using a graph matching
approach, where the sulcal pattern was represented as a graph structure with sulcal pits as
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nodes. The similarity between graphs was computed with a spectral-based matching algorithm
by using the geometric features of nodes (3D position, depth, and area) and their relationship. In
particular, they exploited the feature of graph topology (the number of edges and the paths
between nodes) to highlight the interrelated arrangement and patterning of sulcal folds. In
[251], the authors put forward two optimization methods for graph matching and compare
them in the context of brain sulcus identification. The first approach is based on a constraint
search in a neighborhood; the second uses a genetic algorithm for optimization. In [252], the
authors introduced a sulcus identification algorithm based on a genetic algorithm for solving the
problem of graph matching using shape, orientation, location, and neighborhood information.
In [253], the authors proposed a multi-view framework to identify the correspondence of 3-
hinge cortical landmarks across subjects, in which all gyral hinges within a subject are taken
as a system and its structural and functional connective networks are used as inputs. The
effectiveness of this framework is demonstrated by cross-subject consistency of anatomical,
structural connective and functional metrics. In [254], the authors proposed a novel group-wise
graph matching framework, to which they fed structural connective matrices among gyral hinges
from all subjects. The correspondence estimated by this framework is demonstrated by cross-
subject consistency of both structural connective and functional profiles.

Recent years have seen the evolution of connectomics, the study of brain connectivity, in
which structural and functional connectivity of the brain are modeled as graphs of interconnected
regions with weighted edges representing the strength of connectivity. The problem of finding
(dis)similarities between structural and functional connectomes can be considered as an instance
of the graph matching problem [203]. In [255], the authors proposed a multimodal connectomics
paradigm using graph matching to measure similarity between structural and functional connectomes.
They investigated the traffic pattern that best describes the structure-function relationship in the
brain, and how structure-function relationships determine the interactions among large-scale
functional systems. In [256], A novel method is proposed to match functional connectivity
patterns represented by graphs for spatial registration of fMRI data. The proposed method
adopts a graph representation to characterize functional connectivity information among all
voxels in fMRI data of each subject, then detects spatial correspondence between subjects using
graph matching. To integrate information of both functional connectivity strength and spatial
relations, the graph representation of functional connectivity information of fMRI data models
each voxel as one graph node and connects each pair of graph nodes with an edge-weighted by
their functional connectivity strength measure, estimated as correlation coefficient between their
functional signals. To make the graph matching computationally feasible, an iterative matching
strategy with stochastic resampling is proposed to match graphs of spatially distributed local
functional connectivity patterns and subsequently to drive the image registration iteratively. In
[257], based on a graph matching based approach, the authors proposed a measure to quantify
how dissimilar a traumatic brain injury patient is relative to healthy subjects using their structural
and functional connectomes.
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4.5 Conclusion

In this chapter, we have given an overview of graph matching, we started by describing the
base concepts of graph theory, then we talked about both exact and inexact graph matching
methods. Particularly, the concept of inexact graph matching provides us a means of measuring
the similarity of graphs and thus lays the foundation of using the versatile and flexible tool of
graphs in case-based reasoning in dealing with complex networks as brain networks. Next, we
discussed the methods used for representing brain MRI/fMRI data by graphs and some works
that used these types of data with graph matching approaches. To conclude, we should keep
in mind that the human brain is a complex system that can represent it by a complex network,
and graph matching has successfully been applied to various problems in neuroimaging and
neuroscience.
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Chapter 5

Graph Matching Approach and
Generalized Median Graph for Automatic
Labeling of Cortical Sulci with Parallel
and Distributed Algorithms

5.1 Introduction

Recently, there has been a major progress in the use of medical imaging techniques such as
magnetic resonance imaging (MRI) in the study and treatment of many diseases, especially in
neuroimaging has contributed a lot both in the medical domain and in neurology field. The
external surface of the brain is a thin layer composed of gray matter called cerebral cortex, it is
highly convoluted and consists of many convoluted folds called gyri separated by spaces called
sulci. The sulcus is very important where we are allowed to distinguish different functional areas
of the brain [62].

Recognition of cortical sulci in MRI images is a hard problem which requires anatomical
expertise and it is a time consuming because these structures have very complex geometry
and variation in their shape from an individual to another. This difficulty is related to several
things, including the difference in the location, extent, orientation, and morphology of the sulci,
sometimes the sulci are intertwined [252]. Various approaches have been proposed to tackle this
challenging problem. Each approach is based on some a priori knowledge generally low level
descriptors about cortical sulci and recognition strategy.

Graph is a powerful tool for pattern representation and recognition in various fields. The
primary advantage of graph-based representation is that it can represent patterns and relationships
among data easily. The graph matching techniques have been successfully applied to many
areas, such as biology and biomedicine, biometric identification [258] [259] [260], document
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processing [261], 2D and 3D image analysis [262][263] [264] [265], and video analysis [266]
[267] [268]. The concepts of generalized median graphs have a great potential for applications,
e.g. in clustering or classification , chemistry, molecular biology, and handwriting recognition
[269] [270] [271].

In this work, we proposed an approach based on a graph representation with graph matching
framework and generalized median graph for automatic labeling of cortical sulci with parallel
algorithms.

In the following sections, we introduce: In Section 2, we have presented a state of the art
on the labeling of cortical sulci. In Section 3, we have presented our approach: characteristics
of the sulcal segments, representation of cortical sulci by a graph, distance between the graphs,
generalized median graphs and graph matching problem. In Section 4, we have presented our
experiments. At the end, we terminate with some conclusions and possible future research lines.

5.2 Overview of Recognition and Labeling of Cortical Sulci
Approaches

In this section, we have presented an overview on the approaches of automatic image annotation.

5.2.1 Morphometric Based Approach

This approach based on recalibration of deformable atlases, its principle consists in the recalibration
of a deformable atlas where all the anatomical structures have been labeled manually by an
expert [272], [273].

These approaches are simple and they have demonstrated a successful identification of some
major sulci but modeling the variability of structures are limited, convergence not guaranteed
[274].

5.2.2 Statistical Based Approach

Several alternative approaches have been proposed in which the sulci are matched with models
from a training database based on characteristics such as the shape, the location or structure. We
present below a few approaches based on this paradigm.

In [275], the authors have based on a nearest neighbor algorithm to define the classes of
the sulcal region using anatomical landmarks such as gyri as a features. In [276], the authors
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proposed a markovian framework to recognize sulci in which they have used the probabilistic
Statistical Parametric Anatomy Map (SPAM) model as the prior information about sulci locations
that returns the probability of presence of each sulcus at a given 3D location and the SVR
algorithm to learn shapes and local sulci scheme. In [277], the authors proposed a method to
automatically label sulcal basins that employs a model contains both a volumetric description
of the mean shape and possible variations in the location of each sulcal basin obtained from
the set of training images. In [278], a technique has been proposed for automatically assigning
a neuroanatomical label to both sulci and gyri. In this procedure, they have used probabilistic
information about their spatial distribution estimated from a manually labeled training set.

Statistical model-based approaches are frequently used in this context because it is simple
to implement and they rely on strong mathematical theories that allow to well represent the
interindividual variability [274].

5.2.3 Graph Based Approach

These approaches are very powerful for anatomical structures presenting high interindividual
variability where the sulci are represented by nodes and the edges represent the relationships
between them and they contain all the necessary information to identify the cortical structures.

In [279], the authors presented an approach to associate labels of sulci from a brain atlas
to individual brains. All information related to topologically and geometry of the cortical
sulci is saved in a topology graph, so that each node contains the location and size of the
associated sulcus and the associated edges contain connectivity information between the sulci.
The mapping is performed by matching between the topology graphs for both atlas brain and
individual brain candidate. In [280], the authors presented an approach for joint sulci identification
on cortical surfaces by using graphs models and boosting techniques incorporate shape priors of
major sulci and their Markovian relations, where the sulci are represented by nodes in the graph
model and detect the sulci jointly via the solution of an inference problem on graph models.
In [252], the authors proposed a graph-based approach for the automatic identification of major
sulci where each subject is represented by a graph describing the sulci by their shape, orientation
and location. The identification is formulated as a graph matching problem between a model
graph describing the sulcal characteristics and their neighborhood relations and a candidate
graph composed of sulcal segments obtained from the test subject. In [274], the authors proposed
a hybrid approach based on a graph representation coupling high-level knowledge with low
level knowledge in graph matching framework based on local search algorithm and followed
by a paradigm of ontology for representation high level knowledge about sulci and their spatial
relations, where as low-level knowledge consists of graph model.
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The advantage of this approach is its rich structural context representation of sulcal segments
including location, orientation and shape because the relative position of sulci is highly invariant
and using neighborhood relationships is very advantageous for identification [252].

5.3 Method

The objective is automatic labeling the cortical sulci localized in any MRI examination therefore
we followed a general approach which several steps according to Figure 5.1, that was proposed
in [2]. The steps begin by reconstruction of cortical surface and segmenting sulcal segments
from cortical surface until sulcus recognition.

FIGURE 5.1: The general approach proposed for sulci recognition. After detection
of the building blocks of the folding pattern from a negative mold of the brain, the
sulci of the standard nomenclature are reassembled according to a model inferred

from a learning database [2].

We proposed a new approach of automatic labeling of cortical sulci that consists of several
steps, Figure 5.2. The first, a model graph representation was constructed from a training
dataset of MRI brain images where a neuroanatomist manually labeled sulci in the training
cases that were obtained automatically from surface segmentation. The second, the relationships
between neighboring sulci were also extracted from the training set. The third, all information
is represented as a model graph in which each node contains the attribute descriptors of a
sulcus and edges indicate neighborhood relationships between sulci. The fourth, from the
previous results of manual annotation, we build a similar graph from the candidate subject,
sulcal segments, and their neighborhood relationships. Finally, a graph matching algorithm is
applied to determine the labels of graph candidate from the modal graph.
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FIGURE 5.2: Our approach for automatic labeling of cortical sulci.

5.3.1 Characteristics of the sulcal segments

We used the methods implemented in the Brainvisa software (http://www.brainvisa.info),
with this tool, all of the cortical folds are represented as a sets of voxels. Thus we get a very
detailed description of the sulci incorporating all the folds and tertiary the more variable, Figure
5.3 [2].

We chosen the location, orientation, and shape as the characteristics that describe a sulcal
segment [251]. The sulcus is found in a relatively constant region of the cortical surface, so
location is critical for the identification task. Location with orientation information are reliable

http://www.brainvisa.info
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for each sulcus [281] [282]. In order to describe the characteristics of the shape that is also an
important factor in the description of the sulcal segments, we used the geometric moment to
describe the sulcus shape [283], then we put all these characteristics in a characteristic vector as
follow V = (v1,v2,...,vn).

FIGURE 5.3: Characteristics that describe a sulcal segment like length (red), depth
(yellow), surface area (blue) or average span between its walls (right).

5.3.2 Graph Representation

Several pre-processing steps are necessary before creating a graphical representation, tissue
segmentation [284], extraction of cerebral hemispheres [285], reconstruction of cortical surfaces
[285] [286] [287], sulci segmentation [287] [288]. The procedure briefly described and illustrated
in Figure 5.4. The sulcal segments are represented by nodes in the graph and the edges represent
the relationships between them and include all the information necessary to identify the cortical
structures, Figure 5.5. This higher level representation leads to more efficiency in the annotation
process and is very powerful for anatomical structures with high inter-individual variability.

5.3.3 Definitions and Notation

Let L be a finite alphabet of labels for nodes and edges respectively (LV and LE). A graph G
is defined by G = (V,E,µ ,ξ ), where (V) is the set of nodes, (E⊆ V×V) is the set of edges, (µ
: V −→ LV ) is the node labelling function, (ξ : E −→ LE) is the edge labelling function. The
number of nodes of a graph G is denoted by |G|. If V = ∅ , then G is called the empty graph.

A common supergraph G of two graphs G1 and G2 is minimum MCS(G1,G2) if all other
common supergraphs of G1 and G2 have at least |G| vertices.
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FIGURE 5.4: The cortical sulci extraction procedure. (1) Preparation of the
subject (manual positioning of the anterior and posterior commissures). (2) Bias
corrected. (3) Analysis of the histogram. (4) Brain segmentation. (5) Separation
of hemispheres. (6) G/w classification. (7,8) Reconstruction of cortical surfaces.

FIGURE 5.5: Representation of the left hemisphere of the brain by a graph where
the nodes represent the descriptors of each sulcus and the edges represent the

relations between them.

A common subgraph G of two graphs G1 and G2 is maximum mcs(G1,G2) if all other
common subgraphs of G1 and G2 have at most |G| vertices.

Distance between the graphs

When we use graph-based representations in applications to represent objects, we need a measure
of the dissimilarity between graphs to identify the objects that belong to the same class but
have a different graphical representation. Several exact and approximate algorithms have been
presented in the past related to the computation of the distance between two graphs, one of them
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the graph edit distance [228] [289] [290]. Other distance between graphs in [229] [291] [292].
In this work, we have used one of these distances based on the maximum common subgraph and
minimum common supergraph given in [293], the distance between two graphs that we have
used is :

d(G1,G2) = (|G1|+ |G2|)− (2×|mcs(G1,G2)|)

= (2×|MCS(G1,G2)|)− (|G1|+ |G2|)

= |MCS(G1,G2)|− |mcs(G1,G2)|

(5.1)

The proof of validation and the application of this equation is given in [293]. In the rest of
the chapter we will use this equation to measure the distance between two graphs.

5.3.4 Generalized Median Graph

The generalized median graph is a very useful tool to represent a set of graphs by a single graph.
Let U be the set of all graphs defined over the alphabet L. Given S a set of graphs, S ={ G1; G2,
. . . , Gn } ⊆ U. We can define the generalized median graph Ḡ of a set of graphs S such that
G∈U by :

Ḡ = argminG∈U

n

∑
i=1

d(G,Gi) (5.2)

Notice that Ḡ minimizes the sum of its distances to all graphs in S and Ḡ is not necessarily a
member of S, as there can be more than one Ḡ, [294],[271].

The computation of the generalized median graph is related to the complexity of the distance
function and the size of the search space U. As a consequence, in real applications, we need to
use approximate methods to solve the generalized median graph problem in a reasonable time
because the exact algorithms can not treat the large graphs. The exact algorithms are limited
to small problems. On the contrary, approximate methods have usually used some types of
heuristics in order to reduce the complexity of the calculation of the distance between graphs
and the size of the search space, respectively. Some exact algorithms and approximate for the
calculation of the generalized median graph have been developed up to now include greedy [295]
and genetic algorithms [294]. An exact algorithm with 25 nodes [296] [297]. Other approaches
based on graph embeddings [298] [299] [300].

We used a heuristic to solve the generalized median graph problem. The heuristic that we
used is obtained by removing the nodes (v) of the minimum common supergraph MCS(S) one by
one in the decreasing order of the estimates d(MCS(S)(−v),S). The heuristic relies on removing
a node whenever that can improve the current solution.
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A heuristic algorithm called greedy adaptive proposed by [271], can be derived from this
algorithm. The principle of this algorithm is every time we remove a node from the current
solution and we recalculate all estimates each time, the next node we will delete should improve
the current solution after removing it. The algorithm stops when we examine all the candidate
nodes or when there is no improvement in the current solution. The pseudo-code for this
algorithm is presented in Algorithm.2.

Algorithm 2 Greedy-Adaptive
1: Set CurrentSolution←MinSup(S);
2: Set CurrentSOD← SOD(MinSup(S),S);
3: Let Candidates be the vertex set of CurrentSolution;
4: Compute the estimate SOD ( MinSup(S)(−v),S) for each vertex v of MinSup(S);
5: while Candidates 6= ∅ do
6: u← argmin(SOD(CurrentSolution(−v),S) : v ∈ Candidates;
7: Let Solution be the graph obtained by removing vertex u from CurrentSolution;
8: if SOD(Solution,S) < SOD(CurrentSolution,S) then

9: CurrentSOD← SOD(Solution,S);
10: CurrentSolution← Solution;

end
11: Candidates← Candidates \ {u};
12: Update SOD(CurrentSolution(−v),S), for each vertex v of CurrentSolution;

end
13: Return CurrentSolution;

5.3.5 Graph Matching Problem

Graph matching is a technique to identify related nodes between two distinct graphs. The result
is a matching between the nodes of each graph such that a node can only be matched to a single
node in the opposite graph.

The graph matching problem between two graphs can be formulated as an NP-hard computational
[301], and it can be broadly classified into local or global measures of cost. In local graph
matching the result is a single similarity score. This similarity score indicates how similar two
graphs GA, GB are in their entirety [302] [303] [304] [231]. In contrast, global graph matching
relies on a matrix of elements Xi j, representing the similarity of each node i in the first graph to
every node j in the second graph. This second class of methods reflects a more accurate concept
of graph matching [305] [306] [231]. The methodology of graph matching has its roots in the
domains of ontology alignment [307]. Protein-protein network analysis [308] [231]. Object
recognition [203]. PageRank [309] [310]. IsoRank algorithm [231]. Graph kernel approach
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[311]. Determining molecular similarity [312]. Anomaly detection [313]. Social network de-
anonymization [314]. Multimodal network alignment [315]. Large-Scale graph [240] [316]
[317].

There have been some recent efforts aimed at parallel graph matching [318] [241] [319]
[238] [320] [321]

In [231], the authors proposed IsoRank approach which consists of two steps. The first step,
a similarity score matrix X is constructed between two graphs GB and GA, where element xi j

denotes the similarity of node i in the first graph to node j in the second graph. The number of
nodes per graph is m and n, respectively (m ≤ n). Step two, based on the similarity matrix X,
we apply a node matching algorithm selects pairs of nodes, one from each graph, optimizing an
aggregate similarity score measure.

Terminologies

We represent a graph by GA = (VA, EA). VA and EA denote the set of nodes and the set of edges
of GA respectively and A its adjacency matrix, where ai j = 1 if node i has a connection with
node j and zero otherwise. Matrix Ã is the normalized version of the matrix AT ; We get it by the
following equation :

Ãi j =
a ji

∑
N
i=1 a ji

(5.3)

wher N = | VA | for nonzero rows j of A and zero otherwise. According to [231] , we can
transform the similarity matrix X into a bipartite graph G = (VA, VB, E), where E ⊆ VA × VB.
Each row i represents a vertex in VA, and each column j a vertex in VB. A non-zero entry xi j in
the matrix represents a weight of the edge (i, j) ∈ E. A subset M⊆ E in a bipartite graph is called
a matching if no pair of edges of M are incident to the same vertex, [235].

5.3.6 Network Similarity Decomposition (NSD)

We used Network Similarity Decomposition (NSD) in the case of parallel that has proposed in
[235] for the construction of the similarity matrix. According to [231] the IsoRank iteration
kernel is the form :

X ← αB̃XÃT +(1−α)H (5.4)
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Where H is the matrix of distances between nodes of two graphs, these distances are calculated
from the characteristics that we extracted in section 3.1, where the focus is on the topological
connectivity because it does not appear in the first part of The equation 5.4. The factor α ∈ [0,
1] is a coefficient that indicates the contribution of the topological component in the process of
calculating the similarity matrix X.

We used the Euclidean distance between the nodes characteristics vectors to construct the
matrix H, where each element :

hi j = d(nodei,node j) =
1√

∑
n
k=1(V nodeik−V node jk)2

(5.5)

V nodeik, V node jk : are the vectors of characteristics of node i and node j, n : is the number
of characteristics, If the two vectors are corresponding then hi j = 1.

In [235], they proposed an acceleration technique called Network Similarity Decomposition
(NSD), NSD adopts the approach of IsoRank to reduce the temporal and spatial complexity
resulting from triple matrix product in equation 5.4. Steps to calculate the similarity matrix by
(NSD) is briefly described as follows where we use H as the initial condition X (0), and after t
iterations, X (t) takes the form :

X (t) = (1−α)
t−1

∑
k=0

α
kB̃kH(ÃT )k +α

t B̃tH(ÃT )t (5.6)

Using Singular Value Decomposition (SVD) or Non-negative Matrix Factorization (NMF)
[322], we can decompose matrix H into a set of s vector, that can be expressed as:

H =
s

∑
i=1

wizT
i (5.7)

After substituting equation 5.7 in equation 5.6 we get the following :

X (t) =
s

∑
i=1

X (t)
i (5.8)

Where :

X (t)
i = (1−α)

t−1

∑
k=0

α
kw(k)

i z(k)
T

i +α
tw(t)

i z(t)
T

i (5.9)

and wi
(k) = B̃kwi, zi

(k) = Ãkzi. This formulation provides the basis for the NSD method. For
more details on NSD, including the derivation of the associated expressions, see [319].

We used a generic approach for NSD parallelization proposed by [235]. The pseudo-code
for the parallel NSD algorithm is presented in Algorithm 3.
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Algorithm 3 Parallel NSD
1: Root (lines 2 - 11) and (r,u) worker process in the p×q grid(lines 12 - 18 )
2: compute Ã,B̃;
3: for i = 1 To s do
4: w(0)

i ← wi, z(0)i ← zi;
5: for k = 1 To n do

6: w(k)
i ← B̃ w(k−1)

i ;
7: z(k)i ← Ã z(k−1)

i ;
end
end

8: for i = 1 To s, k = 0 To n do
9: Partition w(k)

i in p fragments, w(k)
i,1 , ... ,w(k)

i,p ;

10: Partition z(k)i in q fragments, z(k)i,1 , ... ,z(k)i,q ;

end

11: Send to every process (r,u) in the process grid p×q its corresponding w(k)
i,r , z(k)i,u fragments,

∀i = 1, ... ,s, k = 0, ... ,n (r = 1, ... ,p, u = 1, ... ,q);
12: Receive corresponding w(k)

i,r , z(k)i,u , ∀i = 1, ... ,s, k = 0, ... ,n from the root process;
13: for i = 1 To s do
14: zero X (n)

i,ru ;
15: for k = 0 To n-1 do

16: X (n)
i,ru ← X (n)

i,ru + αk w(k)
i,r z(k)i,u

T ;

end

17: X (n)
i,ru ← (1 - α ) X (n)

i,ru + αn w(n)
i,r z(n)i,u

T ;

end

18: X (n)
ru ← ∑

s
i=1X (n)

i,ru ;

5.3.7 Graph Matching Algorithm

Graph Matching Algorithm

We proposed an algorithm based on the similarity matrix X, such that for each node of graph
GA, we choose the best similar node from graph GB. This means that we will choose the highest
possible value in each row and column of the similarity matrix, such that a node can only be
matched to a single node in the opposite graph. Where a node i of graph GA matched to a node j
of graph GB, the node i get the label of the node j. In practice, we choose a value of the similarity
matrix which is the maximum value in the row and it is the maximum value in the column at the
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same time for each two nodes matched together, then we change the values of the corresponding
column and the corresponding row to zero and so with the rest, Algorithm 4.

Algorithm 4 Graph Matching Algorithm
1: Input : Xn : similarity matrix , L : list of all nodes;
2: Output: Matching M;
3: M = ∅;
4: C← copy(Xn);
5: while L 6= ∅ do
6: i, j← choose index of the maximum value in the rows and columns of C;
7: M[i, j]← 1;
8: C[i, ]← 0;
9: C[, j]← 0;

10: L← L/ {node i};
end

11: Return M;

Parallel Graph Matching Algorithm

To parallelize the calculations, we proposed an algorithm for the parallel computation of a
matching M (M is initially empty) between two graphs GA = (VA, EA) and GB = (VB, EB) is based
on the concept of the similarity matrix, Figure 5.6. The algorithm starts with the similarity
matrix entry distributed among the processors and for each row i there is one dedicated owner
of that row. Each processor then operates in synchronized rounds where first performs a local
version of the sequential algorithm followed by communication.

Mi j =

1 if i ∈VA and j ∈VB / Xi j = max(Xik),k = 1...|GB|

0 otherwise.

Where X is the similarity matrix.
The general principle is for each node of graph GA we choose the best similar node of graph

GB, this means that we choose the highest possible value in each row and column of the similarity
matrix, as a mapping of each node of graph GA to a unique node of graph GB, see Algorithm 5.
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FIGURE 5.6: Example explains the graph matching between two graphs,
each node has its own characteristics, B1 (labelB1, locationB1, orientationB1,
momentInvariantsB1), A1 (locationA1, orientationA1, momentInvariantsA1), the
node A1 corresponds to the node B1 therefore the node A1 takes the node label

B1.

Algorithm 5 Parallel Graph Matching
1: Input : Xn : similarity matrix , L : list of all nodes, P : number of processes;
2: Output: Matching M;
3: M = ∅;
4: C← copy(Xn);
5: distribute the list of nodes L on P processes;
6: for each processes Pk do
7: while Lk 6= ∅ do

8: i, j← choose index of the maximum value in the rows and columns of C;
9: lock

10: M[i, j]← 1;
11: C[i, ]←−1;
12: C[, j]←−1;
13: endlock
14: Lk ← Lk/ {node i};

end
end

15: Return M
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5.4 Experimental Results

We used a dataset of MRI images weighted in T1 and with voxel dimensions of
1×1×1 mm3. The dataset is available online ( http://jerlab.psych.sc.edu/

NeurodevelopmentalMRIDatabase/). A fuller description of the rationale and characteristics
of the dataset may be found in [323]. This dataset contains healthy subjects of adults to evaluate
our method. Our dataset is grouped into two sets, the first one is the training set used for the
construction of the generalized median graph, and the second set is used for the evaluation of the
performance of the proposed approach. In this work, we focus on the recognition of the insula
(INS), the central (CS), postcentral (PTS), precentral (PCS), superior temporal (STS), callosal
(CLS), cingulate (CIs), superior frontal (SFS) and inferior frontal sulcus (IFS). These nine sulci
are well-defined and comprise the major sulci on the lateral and medial cortical surfaces [252].
A neuroanatomist manually labeled these sulci to build the generalized median graph. We used
estimation measures to evaluate the automatic labeling accuracy for each sulcus by each test
subject that are the true positive rate (TPR), false positive rate (FPR) and the similarity index
(SI) such that :

T PR =
T P

T P+FN
(5.10)

FPR =
FP

FP+T N
(5.11)

SI =
2T P

2T P+FP+FN
(5.12)

Where TP corresponds to the number of vertices of a specific sulcus that were correctly labeled
by our algorithm. FN is the number of vertices that belong to this sulcus but were unlabeled. FP
is the number of vertices falsely labeled as this sulcus and TN is the number of vertices that do
not belong to this sulcus and are unlabeled. We chose the parameter α used in similarity matrix
construction is set to 0.85 (recall that α is the fraction of the similarity score that comes from the
topological similarity; the rest comes from the elemental similarity), the number of iterations n
= 200 and s = 10.

A quantitative comparison with other sulcus identification methods is highly desirable but
not easily accomplished. Sulci were represented by very different representations that lead to
different quality measures [252]. We compared our recognition results for those sulci (9 sulci
) that were studied with some methods. Behnke et al [275], the probabilistic atlas method as
proposed by [324] and a graph-based approach proposed by [252]. Behnke et al studied only
five sulci, so we have compared the five common sulci with our method. The results of the

http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/
http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/


97

three methods were obtained in [252]. The average TPR, FPR, and SI using features (location,
orientation and moment invariants) are tabulated in Table.1 (NGMA = Normal graph match
algorithm ) and (PGMA = Parallel graph match algorithm) for each sulcus. Our method achieves
an average SI = 0.796 for the normal graph match algorithm and SI = 0.802 for the parallel graph
match algorithm compared to other methods.

TABLE 5.1: Recognition results for our method (NGMA = Graph match
algorithm, PGMA = Parallel graph match algorithm), Behnke ’s method,
Probabilistic atlas and Graph-based approach : central sulcus (CS), insula (INS),
superior temporal sulcus (STS), superior frontal sulcus (SFS), cingulate sulcus
(CIS), postcentral sulcus (PTS), precentral sulcus (PCS), callosal sulcus(CLS) and

inferior frontal sulcus (IFS).

- NGMA PGMA Behnke ’s method Probabilistic atlas graph-based approach
sulci TPR FPR SI TPR FPR SI TPR FPR SI TPR FPR SI TPR FPR SI
CS 86 22 0.83 89.7 61.3 0.81 100 05.8 / 94.1 0.2 0.94 94.5 02 0.94
INS 83 28 0.76 90 65.3 0.78 92.0 06.0 / 88.9 0.6 0.89 90.0 0.6 0.90
STS 84 25 0.79 90 62.6 0.80 83.6 12.9 / 85.0 0.6 0.85 88.9 0.5 0.87
SFS 83.5 23 0.81 90.3 62.3 0.80 72.8 29.7 / 59.4 0.4 0.61 85.0 0.4 0.80
CIS 82 26 0.78 90.4 63.3 0.79 74.7 02.1 / 85.1 0.6 0.85 91.5 0.7 0.88
PTS 81 28 0.74 89.3 62.3 0.79 / / / 71.0 0.4 0.72 87.3 0.7 0.81
PCS 83 31 0.73 91 62.3 0.81 / / / 47.9 0.6 0.52 79.9 0.5 0.80
CLS 84.5 29 0.77 90.4 60.3 0.81 / / / 54.0 0.02 0.55 93.7 0.1 0.95
IFS 98 08 0.95 90.4 61 0.82 / / / 56.7 0.4 0.56 74.5 0.7 0.7
Avg 85 24 0.796 90.16 62.3 0.802 86.6 11.3 / 71.3 0.4 0.72 87.2 0.5 0.85

In Figure 5.7, we examined a comparison between the various estimated measurement
values that we used (TP, FP, TN, FN, TPR, FPR, SI) for the central sulcus (CS). To further
provide a visual impression of the identification results, we include identification results for a
subject in Figure 5.8, and Figure 5.9, which are selected randomly from the subjects of the test.

FIGURE 5.7: A random subject from the subjects of the test by parallel
graph match algorithm (PGMA). (a) the values (TP,FP,TN,FN), (b) the values

(TPR,FPR,SI), for central sulcus (CS).

In this work, we used several computer tools necessary to implement and test our approach.
The Brainvisa tool is an open-source framework so that it allows to use of all the libraries
implemented and to deploy new processing easily (segmentation and reconstruction of the mesh
of the cortical surface). Anatomist (open source) offers tools to visualize the volumes of the
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FIGURE 5.8: Automatic identification result for a subject by parallel graph
matching algorithm (PGMA) (a).

brain from all angles of 3D images and manual annotation of cortical sulci (http://www.
brainvisa.info). Mayavi package (http://mayavi.sourceforge.net/) for 3-dimensional
visualization. The algorithms are implemented using Python Language and simulated by
multithreaded programming.

5.5 Conclusion

We introduced the generalized median graph and graph matching strategy for automatic labeling
of brain sulci with parallel and distributed solutions that uses prior statistical information about
location, orientation, shape and neighborhood structure. These features are verified as effective
for characterizing sulci. Labeling is recast as a graph matching problem between a model graph
of sulcal features and their neighborhood relationships and a candidate graph composed of sulcal
segments obtained in a specific dataset. The problem is solved using the generalized median
graph (model graph) to represent the graphs of the training set and the graph matching to match
the model graph and the candidate graph. To validate our method we used the similarity index
that represents how well the automatically recognized region matches with expert identified
sulci to guarantee an objective validation, manual labeling and segment splitting were performed
independently and without referencing automatically splitting results.

http://www.brainvisa.info
http://www.brainvisa.info
http://mayavi.sourceforge.net/
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FIGURE 5.9: Automatic identification result for a subject by parallel graph
matching algorithm (PGMA) (b).

Our approach is an initial attempt to combine these approaches and a resulting average
similarity index of (SI = 0.802) is very encouraging. Our aim is to develop a system of automatic
labeling of cortical sulci to improve the understanding of the structural organization of the human
brain to help neuroscientists in their work.
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Chapter 6

Graph Convolutional Networks and
Functional Connectivity for Identification
of Autism Spectrum Disorder

6.1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder of the brain characterized
by socio-communicative impairments, social skills, imagination, stereotypic behaviors, and
altered sensory processing [325], it affects 2.24% of children aged 3 to 17 years in the United
States [326]. Early diagnosis of autistic individuals is considered very important and has been
shown to improve the quality of life for children with ASD and their families [327]. In any
case, it is not always easy to make a diagnosis of ASD. There is no lab test for it, so specialists
depend on the behaviors of young children and listening to the concerns of their parents. There
are many symptoms for ASD, some people with ASD have severe mental disabilities, others are
exceptionally intelligent and ready to live independently.

The combination of machine learning (ML) algorithms and neuroimaging techniques have
recently become one of the most influential tools in the detection of structural and functional
brain abnormalities, and machine learning algorithms can be trained to aid in ASD diagnosis
[328]. The aim of our study was to classify individuals with ASD and control individuals
based on functional connectivity using resting-state functional magnetic resonance imaging (rs-
fMRI) data. We used a large brain imaging collection data, the Autism Brain Imaging Data
Exchange I (ABIDE I) and one of the graphs deep learning methods: graph convolutional
networks (GCNs). Recent researches have demonstrated that graph-theory based complex
network analysis provides a powerful framework for examining the topological properties
of brain networks, where nodes represent brain regions and edges represent the functional
connections between brain regions [329] [174].
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The challenge of this study was to demonstrate the effectiveness of using graph convolutional
networks (GCNs) and functional connectivity with a large multi-site dataset, such as ABIDE I,
for discrimination of autism patients and healthy controls.

The rest of the chapter is organized as follows: we overview the related work in Section
2. Section 3 presents our approach; a brief description of the dataset we have used, graph
convolutional networks, and the method used to classify subjects. In Section 4, we present the
results and experiments that we have obtained. Concluding remarks, discussion, and avenues
for future work are presented in Section 5.

6.2 Neuroimaging and Machine-learning for Disease
Prediction

Machine learning in Neuroimaging using fMRI has been the subject of many studies in recent
years and has achieved great success in diagnosing many structural or psychological brain
diseases which makes it an important domain in the study of the human brain and understanding
its behavior. With the availability of data sources, researchers have been encouraged to use deep
learning methods in their research and the automatic diagnosis of brain diseases now provides
many encouraging results for a realistic application to diagnose patients. The classification of
patients with Alzheimer’s disease [330] [331] [332] [333], Schizophrenia [334] [335] [336],
Major Depression [337] [338], Borderline personality disorder [339], Social anxiety disorder
[340], Antisocial personality disorder [341].

The related studies with our study which applied machine learning algorithms to autism
spectrum disorder (ASD) and used ABIDE dataset also achieved very good results in the
classification process of patients with ASD and healthy control subjects. We can refer to the
following papers.

In [342], the authors presented a thorough evaluation of a generic framework that leverages
both imaging and non-imaging information and can be used for brain analysis in large
populations. This framework exploits Graph Convolutional Networks (GCNs) and involves
representing populations as a sparse graph, where its nodes are associated with imaging-based
feature vectors, while phenotypic information is integrated as edge weights. In [4], the authors
proposed a novel 3D convolutional neural networks (CNN) approach which takes advantage of
the full-resolution 3D spatial structure of rs-fMRI data and fits non-linear predictive models to
overcome the limitations of traditional machine learning models for connectomes that often
rely on region-based summary statistics and/or linear models. In [343], they applied deep
learning algorithms to identify autism spectrum disorder (ASD) patients from a large brain
imaging dataset, based solely on the patient’s brain activation patterns. In [344], the authors
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FIGURE 6.1: Our proposed approach where: 1- We used rs-fMRI data. 2-
Parcellation of rs-fMRI data by CC400 atlas. 3- Extract the time series from
brain regions. 4- Construction of the functional connectivity matrix. 5- build the
functional connectivity graph. 6- Extract the topological metrics from the graph.
7- Using GCNs with topological metrics to create new relevant features. 8- using

a voting classifier model to classify patients with ASD.

investigated pipelines that extract the most predictive biomarkers from the data, these pipelines
build participant-specific connectomes from functionally-defined brain areas. Other articles
use a limited number of subjects or focus on a specific age group or region, as in [345]
where conditional random forest and random forest were used. In [346], they introduce a new
biomarker extraction pipeline for ASD that relies on the use of graph theoretical metrics of
fMRI-based functional connectivity to inform a support vector machine (SVM). In [347], they
used machine learning to model the functional connectivity entropy relationship across cortical
and subcortical resting-state networks (RSNs). In [348], they developed a deep transfer learning
neural network (DTL-NN) framework for enhancing the classification of whole brain functional
connectivity patterns. In [349], they utilized deep belief networks (DBNs), they used only 185
individuals ranging in age from 5 to 10 years.

6.3 Materials and Methods

We proposed a new approach to classify patients with autism spectrum disorder (ASD) that
contain several steps, Fig.6.1. In the following subsections, we described each step in detail.
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6.3.1 Dataset

Our study was accomplished using rs-fMRI data from the Autism Brain Imaging Data Exchange
(ABIDE I) (http://fcon_1000.projects.nitrc.org/indi/abide/). ABIDE I is a multi-
site consortium collected from 17 international sites. It is available for the scientific community
and sharing resting state functional magnetic resonance imaging (rs-fMRI), anatomical and
phenotypic information for each patient. The database consists of 539 from individuals with
ASD (Autism Spectrum Disorder) and 573 from typical controls (ages 7-64 years, median 14.7
years across groups), for more information [343].

6.3.2 Data Preprocessing

The Preprocessed Connectomes Project (PCP) was used for getting preprocessed rs-fMRI data
(DPARSF) which released preprocessed versions of ABIDE-I using several pipelines [350]. The
pipeline of preprocessed rs-fMRI data performs slice time corrected, motion corrected, spatial
smoothing, normalization and registration to a template space (MNI152). The signal noise was
removed by motion parameters, CompCor with 5 components, applied a global signal regression
and band pass filtering (0.01–0.1 Hz). In our experiments, we used ABIDE I multiple sites and
the subject data that passed the quality assessment for all raters. The final size of the dataset we
used is 774 subjects, comprising 379 subjects with ASD and 395 typical controls.

6.3.3 Extracting ROIs Time Series and Connectivity Matrix from an Atlas

ROIs (Region Of Interest) were extracted by using Craddock 400 (CC400) atlas which has
(392) regions, then we extracted the mean time series for each region per each subject. From
the time series that were extracted previously, we construct the functional connectivity matrix.
The functional connectivity matrix is typically estimated using the correlation between time
series, where each cell in the connectivity matrix contains a correlation coefficient which
crosses of the correlation between two regions of the brain. We used Nilearn module for
extracting ROIs, time series, and construction of the functional connectivity matrix. Nilearn
is a Python module for fast and easy statistical learning on NeuroImaging data (https:
//nilearn.github.io/). The functional connectivity matrix is always fully connected and
thus most probably contain spurious connections (i.e. false positives) that do not have a true
neurobiological origin. Therefore, we had to use proportional thresholding of the functional
connectivity matrix to reduce the number of edges and select only the significant edges using
PyNets module. PyNets is a Fully-Automated Workflow for Reproducible Ensemble Graph
Analysis of Functional and Structural Connectomes (https://pynets.readthedocs.io/).

http://fcon_1000.projects.nitrc.org/indi/abide/
https://nilearn.github.io/
https://nilearn.github.io/
https://pynets.readthedocs.io/
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FIGURE 6.2: Left: Zachary’s karate club network, colors denote communities
obtained via modularity-based clustering. Right: Embeddings obtained from an
untrained 3-layer GCN model with random weights applied to the karate club

network. more details in [3].

Functional connectomes are commonly analyzed as sparse graphs, constructed by thresholding
cross-correlations between regional neurophysiological signals. Thresholding generally retains
the strongest edges (correlations), either by retaining edges surpassing a given absolute weight
or by constraining the edge density [351] [352].

6.3.4 Graph Convolutional Networks

In the real world, there are several important datasets come in the form of graphs or networks like
the World Wide Web, citation network, social networks, knowledge graphs, protein-interaction
networks, bioinformatics, urban computing, and cyber-security, ... etc, so graph classification is
an important problem in these fields but the problem with that is that graphs have a very complex
structure which makes using machine learning or deep learning a challenging problem.

Graph convolutional networks (GCNs) are a powerful tool for machine learning on graphs
when the data represented in the form of graphs. A good example of this is Zachary’s karate club
network which contains 34 nodes, connected by 154 (undirected and unweighted) edges [353].
Every node is labeled by one of four classes, obtained via modularity-based clustering [354], as
illustrated in Fig.6.2. This simple example of GCNs provides insights into how the GCNs model
can make use of the graph structure to learn embeddings that are useful for a classification
task. Many papers have recently been published on the use of (GCNs) in many fields. Some
papers focus to use specialized architectures for specific problems [355] [356] [357] [358] [359]
[360] [361] [362] [363]. Some other papers tried to generalizing convolutional neural networks
(CNNs) on graphs [364] [365] [366] [367]. A general graph representation learning framework
for learning deep node and edge representations from large graphs [368]. In [3], the authors
proposed a scalable approach for semi-supervised learning on graph structured data that is based
on an efficient variant of convolutional neural networks which operate directly on graphs.
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classification with graph convolutional networks

Before we go deeper into machine learning on (GCNs) let us define some notations used
throughout this chapter. We represent a graph by G = (V, E), V and E denote the set of nodes and
the set of edges of G respectively and A its adjacency matrix, as a note we consider undirected
graphs. Denote by D the diagonal node degree matrix and XN×M is the feature matrix of the
nodes (N is the number of nodes and M is the number of input features).

The graph convolutional networks classifier takes as input a set of graphs, then perform
several operations as feature extraction, re-representation and in the end, gives us the class of
each graph.

A naive approach to graph convolutional networks classification is to take the adjacency
matrix A and feature matrix X, then concatenate them and feed them into deep neural networks.
But the problem with that is that a huge number of parameters and needs to be re-trained if the
number of nodes changes.

The model for learning a (GCNs) in each hidden layer can be written as :

H(l+1) = f (H(l),A) (6.1)

where H(l) denotes the l(th) layer in the network and H(0) = X, f is a propagation rule.
In [3], they proposed a simplification of this model so that the convolution becomes :

H(l+1) = δ (D̃−
1
2 ÃD̃−

1
2 H(l)W (l)) (6.2)

where Ã = A+ IN is a re-normalization trick of adjacency matrix in which we add a self-
connection to each node of the graph and IN is the identity matrix. D̃ is the diagonal node degree
matrix of Ã. W (l) is a weight matrix for the l(th) neural network layer. We will use this equation
in the rest of this chapter.

6.3.5 Functional Connectivity Graph and Feature Selection

According to the functional connectivity matrix previously, we construct a functional
connectivity graph, where the regions extracted from the cerebral atlas are represented by nodes
in the graph and the correlation coefficient between two regions representing the weight of the
edge that connects them.

Recent research has shown that graph theory based complex network analysis provides a
powerful framework for examining the topological properties of brain networks, where nodes
represent brain regions, and edges represent the functional connections between brain regions
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[242] [174] [103] [369] [339]. Topological properties of brain networks can be derived at the
large-scale of the whole brain, i.e. metrics on the entire graph; at the intermediate scale of several
regions of the brain. It follows that the selection of the topological metrics is an important step
that requires great attention. Depending on the nature of the neuroimaging experiment, the
functional connections, and the thresholding method, some graph indices can result in being
more appropriate than other ones [175].

In this study, we selected only six features for nodes (Betweenness Centrality, Clustering
Coefficient, Squares Clustering Coefficient, Closeness Centrality, Eigenvector Centrality,
Degree Centrality). The feature matrix for each subject becomes X392×6, where each column
contains one of the features we have chosen. We also chose one kind of features for edges
(Edge Betweenness Centrality) and we represent it in the form of a matrix EBC392×392 where
ebci j 6= 0 if node (i) has a connection with node (j) and zero otherwise. In the end, we got the
feature matrix C392×6 of each subject that was calculated using our proposed equation :

C = D̃−1× Ã×FCM×EBC×X (6.3)

where FCM392×392 is the functional connectivity matrix.

There may be significant differences in the mean functional connectivity between groups, as
this can lead to differences that do not necessarily relate to topological reorganization but are
due to underlying differences in connectivity strength [352] [351]. In Fig.6.3, we kept the five
relevant features of the matrix C, and then showed them. where the x-axis represents the five
feature categories per subject (the number of columns in the C matrix), the y-axis represents the
392-regions features for the five feature categories (C-matrix height), and the z-axis represents
the functional connectivity values for every region in each of the feature categories. It also
showed how our method can clearly separate two individuals, one is with ASD and the other is
healthy. But the problem is that the subjects still intertwined. Some subjects with ASD have a
high value of the feature matrix C, and others have less value as well as healthy subjects. This
makes the classification process complex and therefore we will need an assistant classifier to
complete the process.

6.3.6 Classification Method

In this study, we proposed a new method to classify our subjects. The graph convolutional
networks approach was used for feature extraction but for the final classification we have to
combine it with another classifier. We noted that the graph convolutional networks are a helpful
method for feature extraction, Fig.6.3, which helped us in the classification process, and on the
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FIGURE 6.3: The features of matrix C which calculated by equation.3 of two
subjects, where the red color indicates the individual with ASD and the blue color
indicates the typical control. We note that the subjects are differentiated two by
two but the problem with that is that it is difficult to separate them into two groups

because of the overlap.

basis of this differentiation between the features of the studied subjects, we chose the voting
classifier as a classifier in this study.

The voting classifier model combines multiple different models (multi-classifiers) into a
single model, which is stronger than any of the individual models alone. It has demonstrated
significant performance in enhancing the accuracy of predictions, It has been applied to a number
of areas and impressive results have been achieved. In this paper, we used the voting classifier
based on majority voting [370], which has been used majorly for prediction as the output of
the classifier is the label with the highest number of votes from the base classifiers[370] [371].
The collection of basic classifiers we used in this study are: support vector machine (SVM),
random forest and logistic regression classifier. We used python language and Scikit-learn
library (https://scikit-learn.org) to implement this classifier.

We noticed that the extracted features (matrix C, Fig.6.3) were in the form of separate lines
and each line containing N (number of nodes, here N = 392) points, so we had (392×5) features
at last, to reduce the dimensionality of the output features representations we used the average
of each line (5 features), then we generated a new feature matrix consisting of all polynomial
combinations of the features. In the end, we got 21 features that we used with the majority
voting classifier.

6.3.7 Parallel Method

Parallel programming is one of the common methods of intensive computing, big data, and
complex problems to accelerate up calculations. One of the advantages of this method lies
in our ability to perform parallel calculations. We calculated the matrix C of each subject

https://scikit-learn.org
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TABLE 6.1: Performance of different classifiers for classification of Autism
Spectrum Disorder (ASD). Ridge Regression (Ridge), Support Vector Machine
(SVM), Fully Connected Architecture (FCN), BrainNet Convolutional Neural
Networks (BrainNet), 3D convolutional neural networks (3D-CNN) [4], and Graph

Convolutional Networks (GCN).

- Ridge SVM FCN BrainNet 3D-CNN GCN
accuracy % 70.2 69.4 71.0 71.3 71.7 70.0

independently and in parallel with other subjects before the start of the final classification
process.

6.4 Results

In this study, we carried out two kinds of analysis based on the functional connectivity graph.
Firstly, a graph convolutional networks approach was performed to extract the features of the
healthy control group and patients with ASD. Secondly, a machine learning classifier was
performed to classify subjects. We used the voting classifier and the best results we got after
the multi-step training were (accuracy 70%, sensitivity 60%, specificity 80%). A comparison
was effected between our approach and other approaches using (CC400) atlas and (ABIDE I)
dataset as us, to validate the results we obtained and show that the method we have proposed
by relying on graph convolutional networks is valid to be a competitive method for other
methods in this area. The results are shown in Table.6.1. The results of other approaches can
be obtained in [4]. The approaches that we compared our approach with them are: (Ridge
Regression, Support Vector Machine, Fully Connected Architecture, BrainNet Convolutional
Neural Networks, 3D convolutional neural networks) for more information about them see [4].
It has also been implemented the 3D convolution neural networks approach for CC200 atlas
and it achieved an accuracy of 71.2%, [4]. In [343], they used the CC200 atlas too with deep
learning (autoencoders) and they achieved a mean accuracy of 70%. In [342], the authors used
an approach based on graph convolutional networks and they achieved an accuracy of 70.4%.
In [344], the authors used an approach based on deriving reproducible biomarkers and they
achieved an accuracy of 67%.

Experiments presented in this work were carried out using the High Performance Computing
Platform IBNBADIS (http://www.ibnbadis.cerist.dz) provided by the Research Center
on Scientific and Technical Information - CERIST (Algeria).

http://www.ibnbadis.cerist.dz
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6.5 Discussion

In this study, we analyzed functional connectivity to identify autism spectrum disorders (ASD)
using graph convolutional networks. In addition, we used a complex network analysis based
on graph theory to characterize the global and regional topology in the networks of brain
connectivity, which showed its ability to make a clear distinction between patients with ASD
and healthy control subjects. The novelty of this study is using topological metrics and GCNs
to create new relevant features of graphs that are helpful in the classification tasks.

This method can be executed in parallel and using all methods and tools of intensive
computing or GPU and allows using many features to describe different brain regions and their
connectivity or to describe the nodes and edges in the functional connectivity graph.

Although this is an efficient method, the calculation of the C matrix takes a long time
(approximately 20 minutes for one subject). Its weakness lies in the complex calculations
required for feature extraction as well as the complex network of functional connectivity graph
that contains a large number of nodes and edges.

We used the Networkx package that does not deal with GPU, this has slowed down
calculations and can be improved by using an efficient tool for graph theory calculations that
allows manipulation of the GPU and using parallel algorithms.

6.6 Conclusion

In this study, we applied the graph convolutional networks (GCNs) and complex network
measures on the resting-state fMRI data, where we used functional connectivity to classify
patients with autism spectrum disorder (ASD) from the normal subjects. The dataset that was
used by us in this study was (ABIDE I) with multi-site subjects. The results showed that graph
convolutional networks are significantly more robust and accurate for classifying brain diseases
as (ASD). The proposed approach in this study classified patients with ASD and normal subjects
with accuracy of 70%. In addition, our experiments support and encourage us to generalize our
proposed approach in this study to other brain diseases and develop this approach where we can
adapt it with deep learning classifiers.
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Chapter 7

Conclusion and Perspectives

MRI and fMRI are one of the most important medical imaging modalities. The main advantages
of MRI and fMRI are high image quality, various tissue-contrast mechanisms, and the fact that
are noninvasive and do not produce any harmful radiation. Analyzing the brain MRI and fMRI
data is crucial to better understand the pathological mechanisms of complex brain diseases. In
this context, graph theory is a powerful approach for the analysis of the brain network. Using the
graph matching techniques, combined with powerful parallel and distributed algorithms, open
new perspectives for the neuroimaging field.

In Chapters 1 to 4, we introduced an overview of brain anatomy, the main classical methods
for preprocessing and analyzing both structural/functional magnetic resonance imaging of the
brain and an overview of graph matching for analyzing brain network.

In this thesis, we developed two new approaches (chapters 5 and 6) for both MRI/fMRI
analysis, which open new perspectives for taking advantage of the amount of data that is now
available.

In the first approach (chapter 5), we introduced the generalized median graph and graph
matching strategy for automatic labeling of brain sulci with parallel and distributed solutions that
uses prior statistical information about location, orientation, shape, and neighborhood structure.
Labeling is recast as a graph matching problem between a model graph of sulcal features and
their neighborhood relationships and a candidate graph composed of sulcal. This approach was
an initial attempt to combine these approaches and the result was very encouraging. In general,
this work shows the path to future study that might try various topologies of structural brain
networks, and to combine different modalities.

In the second approach (chapter 6), we applied the graph convolutional networks (GCNs)
and complex network measures on the resting-state fMRI data, where we based on functional
connectivity to classify patients with autism spectrum disorder (ASD) from the normal subjects.
The results showed that graph convolutional networks are significantly more robust and accurate
for classifying brain diseases as (ASD). In addition, our experiments support and encourage us to
generalize our proposed approach in this study to other brain diseases and develop this approach
where we can adapt it with deep learning classifiers.
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A number of software contributions have been performed within the context of this thesis.
All produced code was written in Python, using a combination of Brainvisa, Anatomist, Mayavi,
Scikit-learn, Nilearn, PyNets for experiment design, efficient routine writing and model design,
respectively. Software references are provided in the main section of this thesis.
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[257] Yusuf Osmanlıoğlu, Jacob A Alappatt, Drew Parker, Junghoon Kim, and Ragini Verma.
A graph based similarity measure for assessing altered connectivity in traumatic brain
injury. In International MICCAI Brainlesion Workshop, pages 189–198. Springer, 2018.

[258] Kuo-Chin Fan, Cheng-Wen Liu, and Yuan-Kai Wang. A fuzzy bipartite weighted graph
matching approach to fingerprint verification. In Systems, Man, and Cybernetics, 1998.
1998 IEEE International Conference on, volume 5, pages 4363–4368. IEEE, 1998.

[259] Pengyu Hong, Roy Wang, and Thomas Huang. Learning patterns from images
by combining soft decisions and hard decisions. In Computer Vision and Pattern
Recognition, 2000. Proceedings. IEEE Conference on, volume 1, pages 78–83. IEEE,
2000.



135

[260] Martin Lades, Jan C Vorbruggen, Joachim Buhmann, Jörg Lange, Christoph Von
Der Malsburg, Rolf P Wurtz, and Wolfgang Konen. Distortion invariant object recognition
in the dynamic link architecture. IEEE Transactions on computers, 42(3):300–311, 1993.

[261] Ponnuthurai N Suganthan and Hong Yan. Recognition of handprinted chinese characters
by constrained graph matching. Image and Vision Computing, 16(3):191–201, 1998.

[262] Andrea Torsello and Edwin R Hancock. Computing approximate tree edit distance using
relaxation labeling. Pattern Recognition Letters, 24(8):1089–1097, 2003.

[263] Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. Efficient matching and indexing
of graph models in content-based retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(10):1089–1105, 2001.

[264] Francesc Serratosa, Xavier CortéS, and Albert Solé-Ribalta. Component retrieval based
on a database of graphs for hand-written electronic-scheme digitalisation. Expert Systems
with Applications, 40(7):2493–2502, 2013.

[265] Stefan Fischer, Kaspar Gilomen, and Horst Bunke. Identification of diatoms by grid
graph matching. Structural, Syntactic, and Statistical Pattern Recognition, pages 335–
370, 2002.

[266] Kim Shearer, Horst Bunke, and Svetha Venkatesh. Video indexing and similarity
retrieval by largest common subgraph detection using decision trees. Pattern Recognition,
34(5):1075–1091, 2001.

[267] Pasquale Foggia, Gennaro Percannella, and Mario Vento. Graph matching and learning
in pattern recognition in the last 10 years. International Journal of Pattern Recognition
and Artificial Intelligence, 28(01):1450001, 2014.

[268] Mario Vento. A long trip in the charming world of graphs for pattern recognition. Pattern
Recognition, 48(2):291–301, 2015.

[269] Lopamudra Mukherjee, Vikas Singh, Jiming Peng, Jinhui Xu, Michael J Zeitz, and
Ronald Berezney. Generalized median graphs: Theory and applications. In Computer
Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8. IEEE,
2007.

[270] Lopamudra Mukherjee, Vikas Singh, Jiming Peng, Jinhui Xu, Michael J Zeitz, and
Ronald Berezney. Generalized median graphs and applications. Journal of Combinatorial
Optimization, 17(1):21–44, 2009.

[271] Leonardo M Musmanno and Celso C Ribeiro. Heuristics for the generalized median
graph problem. European Journal of Operational Research, 254(2):371–384, 2016.



136

[272] Stephanie Sandor and Richard Leahy. Surface-based labeling of cortical anatomy using a
deformable atlas. IEEE transactions on medical imaging, 16(1):41–54, 1997.

[273] Sylvain Jaume, Benoît Macq, and Simon K Warfield. Labeling the brain surface using
a deformable multiresolution mesh. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 451–458. Springer, 2002.

[274] Belaggoune Mohamed, Oukid Saliha, and Benblidia Nadjia. Ontology driven graph
matching approach for automatic labeling brain cortical sulci. IT4OD, page 162, 2014.

[275] Kirsten Judith Behnke, Maryam E Rettmann, Dzung L Pham, Dinggang Shen, Susan M
Resnick, Christos Davatzikos, and Jerry L Prince. Automatic classification of sulcal
regions of the human brain cortex using pattern recognition. In Medical Imaging 2003:
Image Processing, volume 5032, pages 1499–1511. International Society for Optics and
Photonics, 2003.

[276] Matthieu Perrot, Denis Riviere, and Jean-Francois Mangin. Identifying cortical sulci from
localization, shape and local organization. In Biomedical Imaging: From Nano to Macro,
2008. ISBI 2008. 5th IEEE International Symposium on, pages 420–423. IEEE, 2008.

[277] Gabriele Lohmann and D Yves von Cramon. Automatic labelling of the human cortical
surface using sulcal basins. Medical image analysis, 4(3):179–188, 2000.

[278] Bruce Fischl, André Van Der Kouwe, Christophe Destrieux, Eric Halgren, Florent
Ségonne, David H Salat, Evelina Busa, Larry J Seidman, Jill Goldstein, David Kennedy,
et al. Automatically parcellating the human cerebral cortex. Cerebral cortex, 14(1):11–
22, 2004.

[279] Fabien Vivodtzev, Lars Linsen, Bernd Hamann, Kenneth Joy, and Bruno Olshausen.
Brain mapping using topology graphs obtained by surface segmentation. Scientific
Visualization: The Visual Extraction of Knowledge from Data, pages 35–48, 2006.

[280] Yonggang Shi, Zhuowen Tu, Allan L Reiss, Rebecca A Dutton, Agatha D Lee, Albert M
Galaburda, Ivo Dinov, Paul M Thompson, and Arthur W Toga. Joint sulci detection
using graphical models and boosted priors. In Biennial International Conference on
Information Processing in Medical Imaging, pages 98–109. Springer, 2007.

[281] J-F Mangin, Fabrice Poupon, Édouard Duchesnay, Denis Rivière, Arnaud Cachia,
D Louis Collins, Alan C Evans, and Jean Régis. Brain morphometry using 3d moment
invariants. Medical Image Analysis, 8(3):187–196, 2004.

[282] Zhuowen Tu, Songfeng Zheng, Alan L Yuille, Allan L Reiss, Rebecca A Dutton,
Agatha D Lee, Albert M Galaburda, Ivo Dinov, Paul M Thompson, and Arthur W Toga.



137

Automated extraction of the cortical sulci based on a supervised learning approach. IEEE
Transactions on Medical Imaging, 26(4):541–552, 2007.

[283] C-H Lo and H-S Don. 3-d moment forms: their construction and application to object
identification and positioning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(10):1053–1064, 1989.

[284] Sergi Valverde, Arnau Oliver, Eloy Roura, Sandra González-Villà, Deborah Pareto,
Joan C Vilanova, Lluís Ramió-Torrentà, Àlex Rovira, and Xavier Lladó. Automated
tissue segmentation of mr brain images in the presence of white matter lesions. Medical
image analysis, 35:446–457, 2017.

[285] F Kruggel. Techniques in analyzing the neocortical fine-structure. Medical Imaging
Systems, 5:255–279, 2005.

[286] Paolo Cignoni, Fabio Ganovelli, Claudio Montani, and Roberto Scopigno. Reconstruction
of topologically correct and adaptive trilinear isosurfaces. Computers & Graphics,
24(3):399–418, 2000.

[287] Faguo Yang and Frithjof Kruggel. Automatic segmentation of human brain sulci. Medical
Image Analysis, 12(4):442–451, 2008.

[288] Yong Zhou, Paul M Thompson, and Arthur W Toga. Extracting and representing the
cortical sulci. IEEE Computer Graphics and Applications, 19(3):49–55, 1999.

[289] Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. On the minimum common supergraph
of two graphs. Computing, 65(1):13–25, 2000.

[290] Miquel Ferrer, Ernest Valveny, and Francesc Serratosa. Median graphs: A genetic
approach based on new theoretical properties. Pattern Recognition, 42(9):2003–2012,
2009.

[291] Michel Neuhaus and Horst Bunke. A quadratic programming approach to the graph edit
distance problem. In GbRPR, pages 92–102. Springer, 2007.

[292] Adam Schenker, Abraham Kandel, Horst Bunke, and Mark Last. Graph-theoretic
techniques for web content mining, volume 62. World Scientific, 2005.

[293] Xiaoyi Jiang, Andreas Munger, and Horst Bunke. An median graphs: properties,
algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(10):1144–1151, 2001.

[294] Miquel Ferrer, Ernest Valveny, and Francesc Serratosa. Median graphs: A genetic
approach based on new theoretical properties. Pattern Recognition, 42(9):2003–2012,
2009.



138

[295] Adel Hlaoui and Shengrui Wang. A new median graph algorithm. Graph based
representations in pattern recognition, pages 225–234, 2003.

[296] Miquel Ferrer Sumsi. Theory and Algorithms on the Median Graph: application
to Graph-Based Classification and Clustering. PhD thesis, Universitat Autònoma de
Barcelona, 2008.

[297] Miquel Ferrer, Ernest Valveny, and Francesc Serratosa. Median graph: A new
exact algorithm using a distance based on the maximum common subgraph. Pattern
Recognition Letters, 30(5):579–588, 2009.

[298] Miquel Ferrer, Ernest Valveny, Francesc Serratosa, Kaspar Riesen, and Horst Bunke. An
approximate algorithm for median graph computation using graph embedding. In Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1–4. IEEE, 2008.

[299] Miquel Ferrer, Ernest Valveny, Francesc Serratosa, Kaspar Riesen, and Horst Bunke.
Generalized median graph computation by means of graph embedding in vector spaces.
Pattern Recognition, 43(4):1642–1655, 2010.

[300] Nicola Rebagliati, Albert Solé-Ribalta, Marcello Pelillo, and Francesc Serratosa. On the
relation between the common labelling and the median graph. Structural, Syntactic, and
Statistical Pattern Recognition, pages 107–115, 2012.

[301] Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph
matching. IEEE Transactions on pattern analysis and machine intelligence, 18(4):377–
388, 1996.

[302] Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. Web graph similarity
for anomaly detection. Journal of Internet Services and Applications, 1(1):19–30, 2010.

[303] Brian P Kelley, Bingbing Yuan, Fran Lewitter, Roded Sharan, Brent R Stockwell, and
Trey Ideker. Pathblast: a tool for alignment of protein interaction networks. Nucleic
acids research, 32(suppl_2):W83–W88, 2004.

[304] Mehmet Koyutürk, Yohan Kim, Umut Topkara, Shankar Subramaniam, Wojciech
Szpankowski, and Ananth Grama. Pairwise alignment of protein interaction networks.
Journal of Computational Biology, 13(2):182–199, 2006.
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