République algérienne démocratique et populaire

Ministère de l'enseignement supérieur et de la recherche scientifique

Université Blida 1

Institut d'aéronautique et des études spatiales

Mémoire de fin d'étude

pour l'obtention du diplôme de

Master académique

Domaine : science et technologie

Filière: Aéronautique

Thème:

Etude de faisabilité et d'implantation d'un aérodrome à usage restreint a Tipaza

Préparé par :

Achour Omar

Gasmi Lahasseni abderrahim

Promoteurs:

Dr. Mdm: Benkhedda Amina

Dr. Mr: Lagha mohand

REMERCIEMENTS

La réalisation de ce travail n'a été possible que grâce au concours de plusieurs personnes a qui nous voudrons témoigner toute notre reconnaissance.

Nous adressons toute notre gratitude a notre encadreur Monsieur Guelmaoui Merzak, pour sa patience, sa disponibilité et surtout ses judicieux conseils, qui ont contribué a alimenter notre réflexion, durant notre stage pratique au sein de l'Etablissement National de la Navigation Aérienne.

Nous voudrons aussi remercier Madame Benkhedda Amina et Monsieur Lagha Mohand qui nous ont fourni les outils nécessaires pour réaliser notre mémoire de fin d'étude.

Nous tenons à remercier tout spécialement Monsieur El-Hirtsi Abdellah et Madame Nait slimen Chafika qui nous ont apporté leur support moral et intellectuel tout au long de notre parcours universitaire.

Un grand merci pour Monsieur Kouider Abdelouahed pour sa disponibilité et ses précieux conseils.

Enfin, nous voudrons remercier Monsieur Mouloud Abdessemed pour avoir mis en notre disposition la documentation nécessaire, et qu'il a grandement facilité notre travail.

Nous dédierons ce modeste travail

A la source de nos efforts, nos cher parents et nos petites familles, La famille Achour et la famille GASMI qui ont toujours été la pour nous durant notre parcours universitaire.

A nos chers ami(e)s: Mourad Boudjaba Zian bouzien

mustapha Belghit Islem Moulana ahmed

cherif Benbrahem abderrahmane Djalel hichem

habib Touati abdellah Sahir youcef Ahmed zouaoui

hafik Sefrou wafa Ben Brahim Hadjer Medane

Chahinez Belkacem amina

Liste des tableaux

Liste des figures

Liste des annexes

Résumé

INTRODUCTION GENERALE	1
CHAPITRE I : Généralités	3
I.1 Caractéristiques physique de l'aérodrome	4
I.1.1 Pistes	4
I.1.2 Aires de sécurité d'extrémité de piste (RESA)	9
I.1.3 Voies de circulation.	9
I.1.4 Aires de trafic	12
I.2 Balisage	13
I.2.1 Balisage diurne	13
CHAPITRE II : Etude de faisabilité de l'aérodrome	22
II.1 Introduction	23
II.2 Objectif de l'étude	24
II.3 Collecte des données	24
II.4 Localisation des sites	25
II.5 Aspect météorologique	26
II.5.1 Rose des vents	28
II.5.2 Température de référence	28
II.6 Avion critique	30
II.7 Dilemme des sites	33
II.8 Site arrêté	34
II.9 Orientation de la future piste	34
II.10 Code de référence du futur aérodrome	35
II 11 Altitude de l'aérodrome	35

II.12 Caractéristiques physiques de la futur piste	
II.12.1 Longueur de piste	
II.12.2 largeur de piste	
II.12.3 Pente longitudinale de la piste	
II.13 Type d'exploitation de la piste	
II.14 Aspect dégagement	
II.15 Conclusion	
CHAPITRE III : Etude de l'implantation de l'aérodrome41	
III.1 Introduction	
III.2 Paramètres et résultats obtenus	
III.3 Indicatif d'emplacement	
III.4 Etude des chaussées	
III.4.1 Dimensionnement des chaussées aéronautiques	
III.5 Réhabilitation du site arrêté	
III.5.1 Etablissement du plan de masse	
III.5.1.1 Piste	
III.5.1.2 Voies de circulation	
III.5.1.3 Aire de trafic	
III.5.2 Sauvetage et lutte contre l'incendie	
III.5.2.1 Niveau de protection assurée	
III.5.2.2 Nombre de véhicules de sauvetage et d'incendie	
III.5.2.3 Quantité d'agent d'extincteurs	
III.5.2.4 Equipements spécifiques	
III.5.2.5 Station du SSLI53	
III.5.2.6 Délai d'intervention	
III.5.2.7 Formation du personnel	
III.5.3 Balisages54	

III.5.3.1 Balisage diurne de la piste	54
III.5.3.2 Balisage diurne des voies de circulation	57
III.5.3.3 Balisage diurne des aires du trafic	59
III.6 Conclusion.	61
CONCLUSION GENERALE	62
ANNEXES	
Abréviation	
Références bibliographique	

Liste des tableaux

CHPITRE I

Tableau I.1 : Largeur des pistes	7
Tableau I.2 : Ecart latéral admissible s'appliquant aux voies de circulation	10
Tableau I.3 : Largeur des voies de circulation	10
Tableau I.4 : Largeur des accotements et de la bande aménagée	11
Tableau I.5 :Marge de séparation m _R	12
Tableau I.6 : Dégagement sur les postes de stationnement d'aéronef	13
Tableau I.7 : Nombre et espacement de bande en fonction de la largeur de la piste	15
Tableau I.8 : Emplacement et dimension de la marque de point cible	17
Tableau I.9 : Marge entre les roues extérieures de l'atterrissage principale de l'avion et de l'air de demi-tour	
Tableau I.10 : Dégagement dans les postes de stationnement	20
CHAPITRE II	
Tableau II.1 : Fréquence du vent par direction en pourcentage (%)	27
Tableau II.2 : Fréquence des vitesses (m/s) par classe (%)	27
Tableau II.3 : Les classes de vitesse (m/s)	28
Tableau II.4 : Les directions cardinales	29
Tableau II.5 : Comparaison entre le BeechCraft 1900Det le DHC-8-400 et L'ATR72-21	1231
Tableau II.6 : Caractéristiques du l'ATR72-212	33
Tableau II.7 : Coefficient d'utilisation	34
Tableau II.8 : Longueur corrigé de la piste	36
Tableau II.9 : Largeur de piste	37
Tableau II.10 : Surface d'approche	39
Tableau II.11 : Surface de décollage	40
CHAPITRE III	
Tableau III 1 : Paramètres et résultats obtenus	42

Tableau III.2 : Coefficients d'équivalence selon le type de matériau	
Tableau III.3 : Les différentes couches de la chaussée	
Tableau III.4 : Distances déclarées	
Tableau III.5 : Quantités minimales utilisables d'agents extincteurs53	

Listes des figures

CHAPITRE I

Figure I.1 : Représentation des distances déclarées
Figure I.2:Forme de proportions des lettres et chiffres des marques d'identification de piste.14
Figure I.3 : Marques d'identification de piste
CHAPITRE II
Figue II.1 : Tipaza d'aujourd'hui
Figure II.2 : Localisation du site 1
Figure II.3 : Localisation du site 2
Figure II.4: Rose des vents
Figure II.5: 1'ATR72-21232
CHAPITRE III
Figure III.1 : Espacement aux postes de stationnement
Figure III.2 : Dimensions des marques d'identification de la piste projetée55
Figure III.3 : Marque de point d'attente avant piste55
Figure III.4 : Configuration du balisage diurne de la voie de circulation
Figure III.5 : Marques de point de stationnement60

Listes des annexes

Annexe A: Définitions

Annexe B: Levé topographique

Annexe C: Numéro ACN de certains types d'avions

Annexe D : Plan de masse

Résumé

Sidi-Rached est une petite commune située au nord de l'Algérie, à 1 Km au sud du chef-lieu de la wilaya di Tipaza, comptant 13705 habitants (2014) pour une superficie de 4126.74 Ha

Aujourd'hui, avec l'augmentation des taux d'accroissement des populations, cette commune enregistre un important trafic, notamment routier, mais soufre cependant de l'absence d'infrastructures de transport modernes, en l'occurrence, aérien.

L'implantation d'un aérodrome présentait l'avantage de donner un nouvel essor aux activités sociales et économiques . A cet effet une étude a été entamée en vue de choisir un site répondant le mieux aux critères de faisabilité pour l'implantation d'un taxi aérien dans cette région

Alors, après que notre choix se soit porté sur l'un des sites proposés par la wali de Tipaza, l'étude détaillée des aspects géotechniques, météorologiques et dégagements en terme d'obstacles a fait ressortir que ce site était propice à accueillir notre projet.

Enfin , notre aérodrome à usage restreint a fait ensuite l'objet d'étude d'aménagement d'infrastructures nécessaires à son fonctionnement , en attendant d'autres perspectives d'avenir .

Abstract

Sidi-rached is a small municipality located in the north of Algeria; 1 km south from the capital of the province of Tipaza, counting 13705 inhabitants (2014) in an area of 4126, 74 Ha.

Today; with the increase in population; this municipality records significant traffic; including road traffic; but still is lacking modern transportation infrastructure especially air wise.

The establishment of an aerodrome will give the advantage to economic and social activities; for this purpose; a study was initiated to select a site that best meets the feasibility criteria for the implementation of an air taxi in this region.

Thus, we selected a site among others that were suggested by the Wali of Tipaza, and the detailed study of geotechnical, meteorological and obstacles limitation surfaces revealed that the site was suitable to host our project .finally our restricted aerodrome was subject to an infrastructure development study which is necessary to its running while awaiting further prospects.

ملخص

تعتبر سيدي راشد بلدية صغيرة، تقع شمال الجزائر على مسافة 1 كلم جنوب ولاية تيبازة، بلغ عدد سكان هذه البلدية عام 2014، 13705 نسمة في مساحة تقدر ب 4126،74 هكتار.

في هذا الحين، مع تزايد و ارتفاع معدلات النمو السكاني، فان هذه البادية تسجل حركة هامة خاصة في مجال الطرقات، لكنها من جهة اخرى، تعاني من نقص كبير ان لم يكن غيابا في مجال التجهيز بوسائل النقل الحديثة .

وقد ادى انشاء مطار صغير بهذه البلدية الى اعطاء دفع جديد للنشاط الاقتصادي والاجتماعي ولذلك تم الشروع في دراسة هذا المخطط من اجل اختيار موقع يتناسب مع متطلبات المشروع وهذا بغرض بناء وسيلة نقل جوية في هذه المنطقة .

وعليه وبعد ان وقع الاختيارنا على احد المواقع المقترحة من طرف السيد والي ولاية تيبازة، فان الدراسة المفصلة للمظاهر الجيو تقنية والجوية والتخلص من العقوبات التي كانت تشكل عوائق، كشف ان هذا الموقع ملائم لاستقبال مشروعنا .

وفي الاخير وبالرغم من الاستعمالات المحدودة لمطار هذه البلدية، الا انه كان موضوع دراسة جديدة من اجل اعادة تهيئة حتى يدخل في الخدمة في انتظار افاق مستقبلية اخرى.

Introduction générale

La réglementation algérienne définit la répartition sur le territoire national, de l'ensemble des aérodromes et plateformes aéroportuaires, permettant ainsi un cadre cohérent pour la planification à moyen et long termes de l'implantation des aérodromes et la programmation des équipements aéronautiques.

Concernant les infrastructures aéroportuaires, le plan 2015-2019 prendra en charge les projets non réalisés pendant le plan précédent et s'orientera davantage sur l'extension des pistes et l'augmentation des capacités des aires de stationnement ainsi que sur la construction des aérogares

Le secteur des travaux publics atteindra près de 480 milliards DZD dans divers projets les 5 prochaines années:

- -400 milliards DZD pour la réalisation des routes ;
- -50 milliards DZD pour l'aménagement et la réalisation des ports ;
- -30 milliards DZD pour poursuivre la modernisation et le développement des infrastructures aéroportuaires, où il est prévu l'extension de 3 aéroports et le renforcement de 12 autres.

Il est rappelé que ces infrastructures aéroportuaires jouent un rôle stratégique dans le développement de l'activité économique et sociale du pays, représentant un vecteur essentiel dans le rapprochement des grands centres économiques et dans le désenclavement des régions, compte tenu de la configuration géographique et économique du territoire national.

Les aérodromes a usage restreint sont desservis par des aéronefs de petite capacité, destinés aux vols non réguliers liés jusqu'à ce jour aux activités de transport de fret , de travail aérien et de préformation aéronautique .

Le présent mémoire décrira les différentes parties de notre étude qui a pour but de favoriser des enjeux liés a l'étude de faisabilité et d'implantation d'un aérodrome a usage restreint pour les taxis aériens dans la wilaya de Tipaza

A cet effet , nous avons suivi un stage pratique de deux mois au niveau de l'ENNA (Etablissement National de la Navigation Aérienne) afin d'avoir les documentations ;et de récolter les informations et les données nécessaires a ce travail ,avant de les appliquer sur le terrain .

Ce mémoire se présente en trois (3) chapitres , nous exposerons dans le 1^{er} les principaux éléments théoriques sous tendant notre démarche pratique détaillé par ailleurs dans le document référence en aviation civil internationale (l'annexe 14) , et il convient aussi de donner quelques notions et réglementations sur les caractéristiques physiques d'un aérodrome , le service de sauvetage et lutte contre l'incendie .

Dans le second chapitre nous procéderons au choix du site sur le quel sera implanté notrefuture aérodrome a partir de l'étude météorologique géotechnique et de dégagement en terme d'obstacles ; et au détermination de l'orientation de la piste qui convient le mieux.

Dans le dernier chapitre nous entamerons les moyens de réhabilitation du site arrêté en vue de rendre notre future aérodrome exploitable le jour (a vue) 7J/7J, tout en garantissant un haut degré de sécurité, et assurant aussi une utilisation optimale des ressources pour satisfaire la demande en transport aérien de la région.

Chapitre

Généralités

I.1 Caractéristiques physiques de l'aérodrome

I.1.1 Pistes

Nombre et orientation des pistes

De nombreux facteurs influent sur la détermination de l'orientation, de l'emplacement et du nombre des pistes, en l'occurrence :

- le coefficient d'utilisation, déterminé par le régime des vents.
- l'alignement de la piste, dont dépend l'élaboration de procédures d'approche.

Lorsqu'on implante une nouvelle piste aux instruments, il faut accorder une attention particulière aux zones que les avions sont appelés à survoler lorsqu'ils suivent des procédures d'approche aux instruments et d'approche interrompue, de façon à garantir que les obstacles qui se trouvent dans ces zones, ou d'autres facteurs, ne limiteront pas l'utilisation des avions auxquels la piste est destinée.

Il est recommandé de déterminer l'emplacement et l'orientation des pistes à un aérodrome, lorsque c'est possible, de manière à réduire l'incidence des trajectoires d'arrivée et de départ sur les zones approuvées pour usage résidentiel et autres zones sensibles au bruit à proximité de l'aéroport, et à éviter ainsi de futurs problèmes de bruit [1].

#Choix de la valeur maximale admissible de la composante transversale du vent

Il est recommandé de présumer que, dans les circonstances normales, il n'y aura ni décollage ni atterrissage si la valeur de la composante transversale du vent est supérieure à :

- 37 km/h (20 kt) pour les avions dont la distance de référence est supérieure ou égale à 1 500 m; toutefois lorsqu'on observe assez souvent une faible efficacité de freinage, due à un coefficient de frottement longitudinal insuffisant, il est recommandé d'admettre une composante transversale du vent ne dépassant pas 24 km/h (13 kt);
- 24 km/h (13 kt) pour les avions dont la distance de référence est comprise entre 1 200 m et 1 500 m (non compris);
- 19 km/h (10 kt) pour les avions dont la distance de référence est inférieure à 1 200 m.

#Données du coefficient d'utilisation

Il est recommandé de choisir les données à utiliser dans le calcul du coefficient d'utilisation d'après des statistiques valables sur la répartition des vents et qui devraient porter sur une période aussi longue que possible, de cinq ans au moins. Les observations doivent être effectuées au moins huit fois par jour et à intervalles réguliers [1].

#Emplacement du seuil

Il est recommandé que le seuil de piste soit placé en bout de piste, sauf si certaines considérations relatives à l'exploitation justifient le choix d'un autre emplacement [1].

Longueur réelle des pistes

À l'exception des pistes dotées d'un prolongement d'arrêt et/ou d'un prolongement dégagé, la longueur réelle à donner à une piste principale devrait être suffisante pour répondre aux besoins opérationnels des avions auxquels la piste est destinée et ne devrait pas être inférieure à la plus grande longueur obtenue en appliquant aux vols et aux caractéristiques de performances de ces avions les corrections correspondant aux conditions locales.

Il est nécessaire de prendre en considération les besoins au décollage et à l'atterrissage lorsqu'on détermine la longueur de piste à aménager et lors de la nécessité d'utiliser la piste dans les deux sens.

Parmi les conditions locales qu'il peut être nécessaire de prendre en considération figurent l'altitude, la température, la pente de la piste, l'humidité et les caractéristiques de surface de la piste [2].

Pistes avec prolongements d'arrêt et/ou prolongements dégagés

La décision d'aménager un prolongement d'arrêt et/ou un prolongement dégagé, comme solution de remplacement au problème de l'allongement d'une piste dépendra des caractéristiques physiques de la zone située au-delà de l'extrémité de piste et des spécifications de performances opérationnelles des avions qui utiliseront la piste.

La longueur à donner à la piste, au prolongement d'arrêt et au prolongement dégagé est fonction des performances de décollage des avions, mais aussi de la distance d'atterrissage nécessaire à ces avions pour s'assurer que la piste est assez longue pour l'atterrissage.

La longueur d'un prolongement dégagé ne devrait pas dépasser la moitié de la longueur de roulement utilisable au décollage [2].

Calcul des distances déclarées

L'aménagement de prolongements d'arrêt et de prolongements dégagés ainsi que l'emploi de seuils décalés sur les pistes ont rendu nécessaire d'exprimer de façon précise les différentes distances de pistes applicables à l'atterrissage et au décollage des avions. A cette fin, on utilise l'expression « distances déclarées » pour désigner les quatre distances ci-après qui caractérisent une piste donnée [1] :

• Distance de roulement utilisable au décollage (**TORA**) : longueur de piste déclarée comme étant utilisable et convenant pour le roulement au sol d'un avion au décollage.

- Distance utilisable au décollage (**TODA**): distance de roulement utilisable au décollage, augmentée de la longueur du prolongement dégagé, s'il y lieu.
- Distance utilisable pour l'accélération-arrêt (ASDA): Distance de roulement utilisable au décollage, augmentée de la longueur du prolongement d'arrêt, s'il y en a un.
- Distance utilisable à l'atterrissage (LDA) : Longueur de piste déclarée comme étant utilisable et convenant pour le roulement au sol d'un avion à l'atterrissage.

Si la piste ne comporte ni prolongement d'arrêt, ni prolongement dégagé, le seuil étant lui-même situé à l'extrémité de la piste, les quatre distances déclarées devraient normalement avoir la même longueur que la piste (Figure I.IA).

Si la piste comporte un prolongement dégagé (CWY), la distance TODA comprendra la longueur du prolongement dégagé (Figure I.IB).

Si la piste comporte un prolongement d'arrêt (SWY), l'ASDA comprendra la longueur du prolongement d'arrêt (Figure I.IC).

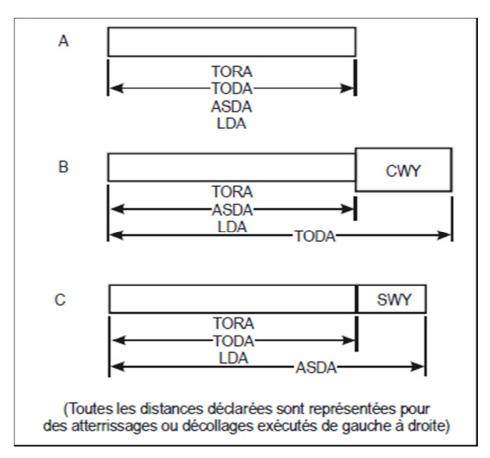


Figure I.1 : Représentation des distances déclarées

Largeur des pistes

Les facteurs ayant une incidence sur la largeur des pistes sont les suivants [2] :

- écart de l'avion par rapport à l'axe de piste au toucher des roues ;
- vent traversier;
- contamination de la surface de la piste (p. ex. pluie, neige, neige fondante ou givre);
- vitesses d'approche;
- visibilité;
- facteurs humains.

Les largeurs de piste indiquées dans le tableau I.1 sont les largeurs minimales jugées nécessaires pour garantir la sécurité de l'exploitation.

	Lettre de code					
Chiffre de code	A	В	С	D	Е	F
1ª	18 m	18 m	23 m	_	_	_
2ª	23 m	23 m	30 m	_	_	-
3	30 m	30 m	30 m	45 m	_	_
4	_	_	45 m	45 m	45 m	60 m
a. La largeur d'une piste avec approche de précision ne devrait pas être inférieure à 30 m lorsque le chiffre de code est 1 ou 2.						

Tableau I.1: Largeurs des pistes

Pentes longitudinales

La pente obtenue en divisant la différence entre les niveaux maximal et minimal le long de l'axe de piste par la longueur de la piste ne devrait pas dépasser [1] :

- 1 % lorsque le chiffre de code est 3 ou 4 ;
- 2 % lorsque le chiffre de code est 1 ou 2.

Surface des pistes

La surface d'une piste sera exempte d'irrégularités qui peuvent nuire au décollage ou à l'atterrissage d'un avion en provoquant des cahots, un tangage ou des vibrations excessives, ou toutes autres difficultés dans la conduite de l'avion [2].

Accotements de piste

Les accotements de piste doivent assurer une transition entre la chaussée pleinement résistante et la bande de piste sans revêtement. Ils permettent de [2]:

- protéger les extrémités latérales de la piste ;
- contribuer à freiner l'érosion du sol par le souffle des réacteurs ;
- atténuer les dommages occasionnés aux réacteurs par des débris.

Bandes de piste

Une piste, ainsi que les prolongements d'arrêt qu'elle comporte éventuellement, sera placée à l'intérieur d'une bande.

Une bande de piste est une zone libre de tout objet risquant de constituer un danger pour les avions. Elle s'étend latéralement sur une distance spécifiée à partir de l'axe de piste, longitudinalement avant le seuil, et au-delà de l'extrémité de piste.

Elle devrait être traitée de façon à ne pas occasionner l'affaissement de l'atterrisseur avant d'un aéronef qui sortirait de la piste [1].

Tout équipement ou toute installation nécessaire à des fins de navigation se trouvant dans la bande devrait être frangible et d'une hauteur aussi réduite que possible.

Longueur : Une bande de piste devrait s'étendre en amont du seuil et au-delà de l'extrémité de la piste ou du prolongement d'arrêt jusqu'à une distance d'au moins [2] :

- 60 m lorsque le chiffre de code est 2, 3 ou 4;
- 60 m lorsque le chiffre de code est 1 et qu'il s'agit d'une piste aux instruments
- 30 m lorsque le chiffre de code est 1 et qu'il s'agit d'une piste à vue.

Largeur: Toute bande à l'intérieur de laquelle s'inscrit une piste avec approche classique devrait s'étendre latéralement, sur toute sa longueur et jusqu'à au moins [1]:

- 150 m lorsque le chiffre de code est 3 ou 4;
- 75 m lorsque le chiffre de code est 1 ou 2 ; de part et d'autre de l'axe de la piste et du prolongement de cet axe.

I.1.2 Aires de sécurité d'extrémité de piste (RESA) :

Les comptes rendus d'accident/incident (ADREP) de l'OACI montrent que les aéronefs qui atterrissent trop court ou trop long subissent d'importants dommages. Pour réduire ces dommages au minimum, il faut aménager une aire supplémentaire au-delà des extrémités de la bande de piste ; celle-ci devrait être libre de tout équipement et de toute installation non frangible. Cette aire supplémentaire sera aménagée lorsque :

- le chiffre de code est 1 ou 2 et que la piste est une piste aux instruments ;
- le chiffre de code est 3 ou 4.

Longueur : Dans la mesure du possible, une aire de sécurité d'extrémité de piste devrait s'étendre à partir de l'extrémité d'une bande de piste sur une distance d'au moins [2] :

- 120 m lorsque le chiffre de code est 1 ou 2;
- 240 m lorsque le chiffre de code est 3 ou 4.

Largeur: La largeur d'une aire de sécurité d'extrémité de piste doit être au moins égale au double de la largeur de la piste correspondante [2].

I.1.3 Voies de circulation :

Les voies de circulation permettent une liaison aussi directe que possible entre les différents points de l'aire de mouvement afin de réduire au maximum le temps de roulage au sol des aéronefs (économie du carburant, gain de temps) [3].

Le flanc extérieur des roues du train princpal de l'avion laisse entre lui et le bord de chaussée une distance respectant la marge de dégagement (dite également écart admissible) e_R donnnée par le tableau I.2.

Code lettre	Dégagement $e_{\scriptscriptstyle R}$
A	1,5 m
\boldsymbol{B}	2,25 m
C	3 m, si la voie de relation est destinée à des avions dont l'empattement est inférieur à 18 m;
	4,5 m, si la voie de relation est destinée à des avions dont l'empattement est égal ou supérieur à 18 m.
D	4,5 m
\boldsymbol{E}	4,5 m
\boldsymbol{F}	4,5 m

Tableau I.2 : Ecart latéral admissible s'appliquant aux voies de circulation

Largeur: il est recommandé que la largeur d'une partie rectiligne de voie de circulation ne soit pas inférieure à la valeur indiquée dans le tableau I.3 [1]:

Lettre de code	Largeur de voie de circulation
\boldsymbol{A}	7,5 m
В	10,5 m
С	15 m si la voie de circulation est destinée aux avions dont l'empattement est inférieur à 18 m;
	18 m si la voie de circulation est destinée aux avions dont l'empattement est égal ou supérieur à 18 m.
D	18 m si la voie de circulation est destinée aux avions dont la largeur hors tout du train principal est inférieure à 9 m;
	23 m si la voie de circulation est destinée aux avions dont la largeur hors tout du train principal est égale ou supérieure à 9 m.
\boldsymbol{E}	23 m
F	25 m

Tableau I.3: Largeur des voies de circulation

#Accotements de voie de circulation

Un accotement est une zone qui borde une surface pourvue d'un revêtement pleine résistance et qui est traitée de façon à constituer une transition entre celui-ci et la surface adjacente. Le but principal d'un accotement de voie de circulation est d'empêcher les projections de pierres ou autres objets d'endommager les réacteurs, de prévenir l'érosion de la zone adjacente à la voie de circulation et d'offrir une surface au passage occasionnel des roues d'un avion.

Un accotement devrait être capable de résister aux charges exercées par les roues du véhicule d'urgence le plus lourd de l'aéroport.

Il est recommandé que les accotements de voies de circulation doivent avoir les largeurs minimales cités dans le tableau I.4.

Code lettre	Largeur minimale d'un accotement	Largeur minimale de la bande		
	a un accotement	aménagée La		
A	4,5 m	16,5 m		
В	7,25 m	25 m		
C	7,5 m	30 ou 33 m (b)		
D	10 m	38 ou 43 m (b)		
E	10,5 m	44 m		
F	17,5 m	60 m		

Tableau I.4 : Largeur des accotements et de la bande aménagée

Bande de voie de circulation

Désignée sous l'appellation de bande aménagée de voie de circulation, la partie d'une voie de circulation comprend la voie de circulation elle-même et les parties traitées de part et d'autre en accotements de façon à éviter les projections ou ingestions de corps étrangers dans les groupes motopropulseurs et à permettre la circulation des véhicules terrestres de maintenance et d'entretien [3].

Elle s'étend de part et d'autre de l'axe de cette voie, sur une largeur assurant une marge de séparation m_R entre tout obstacle extérieur et l'extrémité d'aile de l'appareil critique en circulation [3].

La Marge de séparation m_R doit être aménagée selon le code de l'aérodrome, pour la valeur minimale donnée dans le tableau suivant :

	Code lettre					
	\boldsymbol{A}	В	C	D	E	F
Marges de séparation m_R		7,25 m	7,5 m	10 m	10,5 m	10,5m

Tableau I.5 : Marges de séparation m_R

I.1.4 Aires de trafic :

Il est recommandé que :

- les aérodromes soient pourvus d'aires de trafic lorsque ces aires sont nécessaires pour éviter que les opérations d'embarquement et de débarquement des passagers, des marchandises et de la poste ainsi que les opérations de petit entretien ne gênent pas la circulation d'aérodrome [1].
- la surface totale de l'aire de trafic soit suffisante pour permettre l'acheminement rapide de la circulation d'aérodrome aux périodes de densité maximale prévue [3].
- toute la surface d'une aire de trafic soit capable de supporter la circulation des aéronefs pour lesquels elle a été prévue [3].
- un poste de stationnement d'aéronef assure les dégagements minimaux cités au tableau I.6 entre un aéronef stationné à ce poste et toute construction voisine, tout aéronef stationné à un autre poste et tout autre objet [3] :

Lettre de code	Dégagement
\boldsymbol{A}	3 m
В	3 m
C	4,5 m
D	7,5 m
$\boldsymbol{\mathit{E}}$	7,5 m
F	7,5 m

Tableau I.6 : dégagement sur les postes de stationnement d'aéronef

I.2 Balisage

Le balisage est un dispositif normé d'aide visuelle : il permet au pilote d'un aéronef de bien se situer tant à proximité de l'aérodrome lors des phases d'approche et d'atterrissage que sur un aérodrome lorsqu'il se déplace au sol.

On distingue:

- Le balisage par marques
- Le balisage lumineux

I.2.1 Balisage diurne

Le balisage diurne peut être réalisé soit par des marques soit par des balises et marques sur une piste revêtue ou non revêtue.

Les marques ne font pas saillies sur la surface qui les porte mais sont visibles en vol, tandis que les balises font saillie au-dessus du sol, émergent de la végétation éventuelle et sont visibles pendant le roulement [1].

Marques d'identification de piste

Emploi: les seuils d'une piste avec revêtement porteront des marques d'identification.

Emplacement : les marques d'identification de piste seront placées au seuil de piste.

Caractéristiques :les marques d'identification de piste seront composées d'un nombre de deux chiffres. Dans le cas d'une piste unique, de deux pistes parallèles et de trois pistes parallèles, le nombre de deux chiffres sera le nombre entier le plus proche du dixième de l'azimut magnétique de l'axe de piste mesuré à partir du nord magnétique dans le sens des aiguilles d'une montre pour un observateur regardant dans le sens de l'approche.

Les numéros auront la forme et les proportions indiquées sur la Figure I.2. Les dimensions ne seront pas inférieures à celles qui sont portées sur cette figure [1].

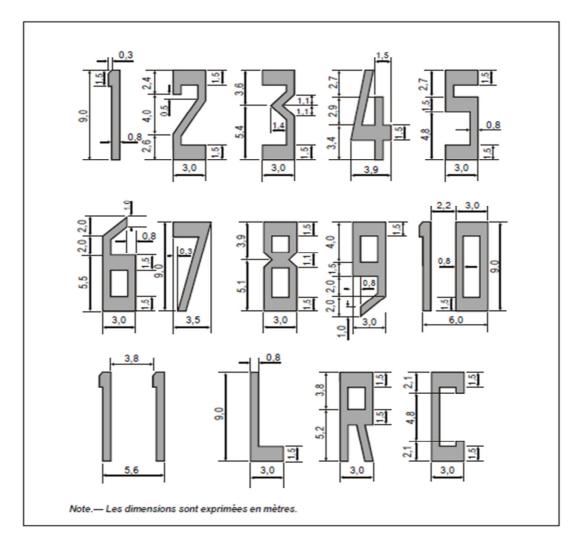


Figure I.2: Forme et proportions des lettres et chiffres des marques d'identification de piste

Marques d'axe de piste

Emploi: les pistes avec revêtement seront dotées de marques d'axe de piste.

Emplacement : des marques d'axe de piste seront disposées le long de l'axe de la piste entre les marques d'identification.

Caractéristiques : les marques d'axe de piste seront constituées d'une ligne de traits uniformément espacés.

La longueur d'un trait et de l'intervalle qui le sépare du trait suivant ne sera pas inférieure à 50 m ni supérieure à 75 m. La longueur de chaque trait sera au moins égale à la longueur de l'intervalle ou à 30 m si la longueur de l'intervalle est inférieure à 30m.

La largeur des traits ne sera pas inférieure à :

- 0,45 m sur les pistes avec approche classique dont le chiffre de code est 3 ou 4
- 0,30 m sur les pistes avec approche classique dont le chiffre de code est 1 ou 2 et sur les pistes à vue [1].

#Marques de seuil

Emploi : des marques de seuil seront disposées sur les pistes aux instruments revêtues, ainsi que sur les pistes à vue revêtues et qui sont destinées au transport aérien commercial international.

Emplacement: les bandes qui marquent le seuil commenceront à 6 m du seuil.

Caractéristiques :les marques de seuil de piste seront constituées d'un ensemble de bandes longitudinales de mêmes dimensions, disposées symétriquement par rapport à l'axe de piste. Le nombre des bandes variera en fonction de la largeur de la piste comme indiqué au tableau I.7[1].

Largeur de piste	2n	а	d	
18 m	4	1,5 m	3 m	
23 m	6	1,5 m	2,5 m	
30 m	8	1,5 m	3 m	
45 m	12	1,7 m	2,1 m	
60 m	16	1,7 m	2,8 m	

Tableau I.7: Nombre et espacement de bandes en fonction de la largeur de la piste

Les marques seront ainsi disposées en (2n) bandes de largeur (a) espacées de (a), sauf au centre où cet espacement est porté à (2a). Les deux bandes extrêmes se trouvent ainsi à une distance (d) du bord de piste, comme indiqué dans la Figure I.3 [1].

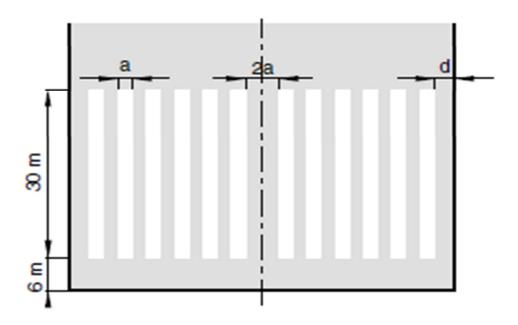


Figure I.3: Marques d'identification de piste

#Marque de point cible :

Emploi : une marque de point cible sera disposée à chaque extrémité d'approche d'une piste aux instruments dont le chiffre de code est 2, 3 ou 4.

Emplacement : la marque de point cible commencera à une distance du seuil au moins égale à la distance indiquée dans la colonne appropriée du Tableau I.8

Caractéristiques: la marque de point cible sera constituée par deux bandes bien visibles. Les dimensions des bandes et l'écartement entre leurs bords intérieurs seront conformes aux indications de la colonne appropriée du Tableau I.8[1].

	Distance utilisable à l'atternissage				
Emplacement et dimensions (1)	Inférieure à 800 m	Égale ou supérieure à 800 m mais inférieure à 1 200 m (3)	Égale ou supérieure à 1 200 m mais inférieure à 2 400 m (4)	Égale ou supérieure à 2 400 m (5)	
Distance entre le seuil et le début de la marque	150 m	250 m	300 m	400 m	
Longueur des bandes ^a	30-45 m	30-45 m	45-60 m	45-60 m	
Largeur des bandes ^a	4 m	6 m	6-10 m ^b	6-10 m ^b	
Écartement ^b entre les bords intérieurs des bandes	6 m ^e	9 m ^c	18-22,5 m	18-22,5 m	

a. La dimension maximale, dans la gamme spécifiée, est destinée à être utilisée lorsqu'il y a lieu d'accroître la visibilité de la marque.

Tableau I.8: Emplacement et dimensions de la marque de point cible

Marques latérales de piste

Emploi : des marques latérales de piste seront disposées entre les deux seuils d'une piste avec revêtement lorsque le contraste entre les bords de la piste et les accotements ou le terrain environnant n'est pas suffisant.

Emplacement : les bandes marques latérales de piste devraient être disposées à 30 m de l'axe de piste.

Caractéristiques : il est recommandé que :

• les marques latérales de piste soient constituées par deux bandes disposées le long des deux bords de la piste, le bord extérieur de chaque bande coïncidant approximativement avec le bord de la piste sauf lorsque celle-ci a une largeur supérieure à 60 m;

b. On peut faire varier l'écartement, à l'intérieur des limites indiquées, de manière à réduire le plus possible la contamination de la marque par les dépôts de caoutchouc.

c. Ces chiffres ont été calculés en fonction de la largeur hors tout du train principal, qui constitue l'élément 2 du code de référence d'aérodrome, au Chapitre 1^{et}, Tableau 1-1.

• les marques latérales de piste aient une largeur totale d'au moins 0,9 m sur les pistes d'une largeur égale ou supérieure à 30 m et d'au moins 0,45 m sur les pistes plus étroites ;

• lorsqu'une aire de demi-tour sur piste est prévue, les marques latérales de piste soient continues entre la piste et l'aire de demi-tour [1].

Marques d'aire de demi-tour sur piste

Emploi : lorsqu'une aire de demi-tour sur piste est prévue, elle sera disposée de manière à assurer un guidage continu afin de permettre aux avions d'effectuer un virage de 180° et de s'aligner sur l'axe de piste.

Emplacement : il est recommandé que :

- la marque d'aire de demi-tour sur piste s'incurve depuis l'axe de piste vers l'aire de demi-tour et que le rayon de la courbe soit compatible avec la capacité de manœuvre et les vitesses de circulation normales des avions auxquels l'aire de demi-tour est destinée. L'angle d'intersection de la marque d'aire de demi-tour avec l'axe de la piste ne devrait pas être supérieur à 30°.
- la marque d'aire de demi-tour sur piste se prolonge en parallèle avec la marque axiale de piste sur une distance d'au moins 60 m au-delà du point de tangence, lorsque le numéro de code de la piste est 3 ou 4, et sur une distance d'au moins 30 m, lorsque le numéro de code de la piste est 1 ou 2.

Caractéristiques : il est recommandé que :

- la courbe permettant aux avions de négocier un virage à 180° soit conçue de manière à ce que l'angle de braquage de la roue avant n'excède pas 45°.
- la marque d'aire de demi-tour sur piste soit conçue de manière que, lorsque le poste de pilotage de l'avion demeure sur la marque d'aire de demi-tour, la marge entre une roue quelconque de l'atterrisseur de l'avion et le bord de l'aire de demi-tour ne soit pas inférieur aux valeurs spécifiées dans le Tableau I.9.

Lettre le code	Marge
Α	1,5 m
В	2,25 m
С	3 m, si l'aire de demi-tour est destinée à des avions dont l'empattement est inférieur à 18 m;
	4,5 m, si l'aire de demi-tour est destinée à des avions dont l'empattement est égal ou supérieur à 18 m;
D	4,5 m
E	4,5 m
F	4,5 m

Tableau I.9 : Marge entre les roues extérieures de l'atterrisseur principal de l'avion et le bord de l'aire de demi-tour

#Marques axiales de voie de circulation

Emploi : ces marques assurent un guidage continu entre l'axe de la piste et les postes de stationnement d'aéronef.

Emplacement : la marque axiale est apposée le long de l'axe de la voie de circulation dans ses parties rectilignes. Dans les courbes, elle prolonge la ligne tracée en partie rectiligne, en demeurant à une distance constante du bord extérieur du virage.

Caractéristiques : une marque axiale de voie de circulation est constituée par une ligne d'une largeur minimale de 0.15m et ininterrompue, sauf lorsqu'elle coupe des marques de point d'attente avant piste ou des marques de point d'attente intermédiaire.

A l'intersection d'une voie de circulation et d'une piste, la marque axiale de la voie de relation est raccordée à celle de la piste et est prolongée parallèlement à celle-ci sur une distance de 30m pour les codes de lettres A,B et C ou de 60m pour les codes de lettres D,E et F, au-delà du point de tangence, la distance entre axes des deux marques étant de 0.90m [3].

#Marque de point d'attente avant piste

Emploi : indication de l'emplacement d'un point d'attente avant piste.

Emplacement : sur les voies de circulation et à certains emplacements déterminés, audelà desquels un aéronef ou un véhicule ne doit pas passer sauf après avoir reçu l'autorisation de l'organisme de contrôle ou, en l'absence de contrôle, assuré lui-même sa sécurité.

Caractéristiques : dans le cas d'un point d'attente simple, la marque de point d'attente doit être apposée à une distance :

du bord de piste au moins égale à :

- 30m pour une piste à vue de longueur inférieure à 1000m;
- 50m pour une piste à vue de longueur égale ou supérieure à 1000m;

de l'axe de piste au moins égale à 75m lorsque la piste est utilisée pour les approches classiques [1].

#Marques de poste de stationnement d'aéronef

Emploi : elles comprennent des lignes de guidage destinées à indiquer la trajectoire à suivre par l'avion et des barres de référence fournissant des indications complémentaires.

Emplacement: il est recommandé que les marques de poste de stationnement d'aéronef disposées sur une aire de trafic avec revêtement et sur un poste de dégivrage/antigivrage soient situées de manière à assurer les dégagements spécifiés dans le tableau I.10, respectivement, lorsque la roue avant suit ces marques.

Lettre de code	Dégagement	
A	3 m	
В	3 m	
\boldsymbol{C}	4,5 m	
D	7,5 m	
$oldsymbol{E}$	7.5 m	
F	7,5 m	

Tableau I.10 : Dégagement dans les postes de stationnement

Caractéristiques : il est recommandé que :

• les marques de poste de stationnement d'aéronef comprennent notamment, selon la configuration de stationnement et en complément des autres aides de stationnement, les éléments suivants :

- une marque d'identification de poste de stationnement,
- une ligne d'entrée,
- une barre de virage,
- une ligne de virage,
- une barre d'alignement,
- une ligne d'arrêt et une ligne de sortie.
- les lignes d'entrée, les lignes de virage et les lignes de sortie soient en principe continues et que leur largeur soit au moins égale à 15 cm.
- le rayon des sections courbes des lignes d'entrée, de virage et de sortie, convienne pour le plus pénalisant des types d'aéronefs auxquels les marques sont destinées.
- s'il y a lieu d'indiquer que les aéronefs doivent circuler dans un seul sens, des pointes de flèche montrant la direction à suivre soient incorporées aux lignes d'entrée et de sortie.
- une barre de virage soit placée perpendiculairement à la ligne d'entrée, au droit du pilote occupant le siège de gauche, au point où doit être amorcé un virage. Cette barre devrait avoir une longueur au moins égale à 6 m et une largeur au moins égale à 15 cm, et comporter une pointe de flèche indiquant le sens du virage.
- une barre d'alignement soit placée de manière à coïncider avec le prolongement de l'axe de l'aéronef, ce dernier étant dans la position de stationnement spécifiée, et de manière à être visible pour le pilote au cours de la phase finale de la manœuvre de stationnement. Cette barre devrait avoir une largeur d'au moins 15 cm.
- une ligne d'arrêt soit placée perpendiculairement à la barre d'alignement, au droit du pilote occupant le siège de gauche, au point d'arrêt prévu. Cette barre devrait avoir une longueur au moins égale à 6 m et une largeur au moins égale à 15 cm [1]

Chapitre II

Etude de faisabilité

II.1 Introduction

Tipaza est une wilaya algérienne située a 70 km a l'ouest de la capitale Alger . dont la présence de la mer , et les reliefs de Chenoua a la région ouest donnent un paysage particulier et d'un intérêt touristique. De nombreux vestiges puniques, romains, chrétiens et musulmans attestent de la richesse de l'histoire de cette région donc cette wilaya dispose d'un potentiel touristique et d'un patrimoine historique important. La cote s'étend sur près de 123 km avec l'existence de 51 plages dont 39 sont ouvertes à la baignade en plus de nombreuses criques, baies, et autres falaises

Offrant d'indéniables possibilités touristiques. Ces secteurs constituent un à tout appréciable pour le développement socio-économique de la wilaya car une affluence Considérable est enregistrée chaque année.

À cet effet, et pour satisfaire les besoins en transport de cette région, la réalisation d'une étude de faisabilité et d'implantation d'un aérodrome à usage spécifique a été envisagée.

Figure II.1: Tipaza aujourd'hui

II.2 Objectif de l'étude :

Ce présent mémoire se propose d'étudier la faisabilité et l'implantation d'un aérodrome à usage spécifique dans la wilaya de Tipaza. Cette dernière souhaite d'une part satisfaire les besoins en transport de la région, et d'autre part, avoir le privilège de localiser ce futur aérodrome sur son territoire afin de tirer parti de ses retombées économiques.

II.3 Collecte des données :

Monsieur le wali de Tipaza a bien voulu nous autoriser à mener notre étude au sein de la wilaya. Il nous a ainsi octroyé deux sites ; site 1 a Sidi Rached non accidenté, et site 2 accidenté se trouve a oued sebt (ouest de la wilaya) . Notre étude portera sur ces derniers pour qu'au final seul sera retenu, celui qui répond le mieux aux critères d'implantation d'un aérodrome.

Cette opération passe par la vérification de plusieurs paramètres essentiels pour assurer son fonctionnement en continu dans le temps, et permettre de garantir une exploitation dans les meilleures conditions de sécurité et de service.

Parmi ces paramètres :

- La topographie, la géotechnique
- La régularité des vents : son étude est importante pour permettre le calcul du coefficient d'utilisation et donc la détermination de l'orientation de la piste [4].
- Les dégagements : il est nécessaire d'établir un plan de servitude aéronautique qui a pour rôle d'éviter que de nouveaux obstacles ne viennent remettre en cause ceux acceptés au moment de leur établissement [4].
- Le risque aviaire: Les risques de collisions entre les aéronefs et les oiseaux constituent un danger non négligeable en raison de la vitesse atteinte des aéronefs et de la vulnérabilité de certaines parties de ces derniers. Les sites aéronautiques sont situés sur des terrains plats et donc généralement dans des zones humides en bordure de fleuve, d'étang ou de rivage maritime. Ces zones sont particulièrement fréquentées par des oiseaux qui y trouvent, en général, un couvert végétal important.

La lutte contre la prolifération des oiseaux se fait par divers moyens :

- » en rompant la chaîne alimentaire;
- » en les effrayant par l'emploi de fumigènes, pétards, émissions de cris de détresse enregistrés, émissions d'ultrasons... [4].
- L'insertion dans l'environnement : on devrait également prendre en considération les incidences de l'aménagement du site retenu en termes de nuisances sonores, d'impact

sur la faune, la flore et les milieux naturels et des problèmes éventuels liés à l'eau, aux déchets....[4].

- L'insertion dans la circulation aérienne: lors de l'étude du choix des sites, il faudrait aussi tenir compte du facteur le plus important qui est la proximité d'autres aérodromes ou de routes ATS [4].

II .4 Localisation des sites :

• SITE 1 est situé a l'est de la wilaya (sidi rached)

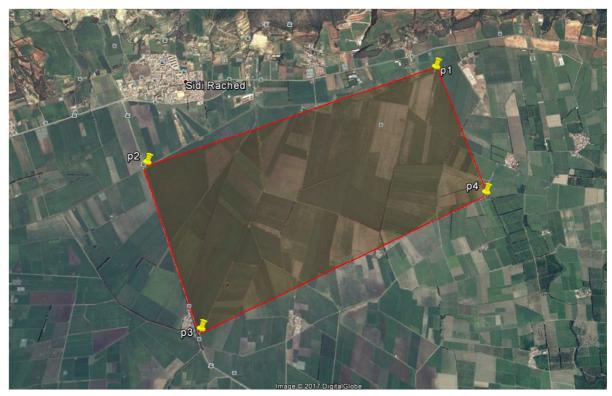


Figure II.2: localisation du site 1

• Coordonnées géographiques du site 1 :

Point 1:36°33'52.65 Nord 2°34'29.47 EST point 2:36°33'1.42 nord 2°31'38.10 Est

Point 3:36°31'41.83 Nord 2°32'14.34 Est point 4: 36°32'50.45 Nord 2°34'59.71 Est

• Périmètre 14089 M

• Superficie:1106 Hectares

p3 site2

• SITE 2:Le site 2 est situé au nord-ouest de la wilaya de tipaza (gouraia)

Figure II.3: localisation du site 2

Coordonnées géographiques du site 2 :

Point 1:36°33'59.45 Nord 1°57'10.27 EST point 2:36°34'5.01 nord

1°56'31.47 Est

Point 3:36°33'50.88 Nord 1°56'25.69 Est point 4: 36°33'43.55 Nord

1°57'3.82 Est

• Périmètre : 2957 M

• Superficie: 48,4 Hectares

II.5 Aspect météorologique :

Les données météorologiques recueillies sont celles qui nous ont été communiquées par l'*Office National* **de la** *Météorologie* (*ONM*) .il nous a permis d'avoir des statistiques fiables afin d'évaluer la régularité des vents.

Les tableaux suivants donnent la fréquence du vent par direction en pourcentages (%) et la fréquence des vitesses (m/s) par classes (%):

								ction	en %								
	N	NNE	NE	ENE				558	5	SSW	SW	M2M	W	WNW	NW	NNW	Calme
ianvier		23.4	2.3	1.7	2.5	3.1	1.9		3.8	3.1	2.2	2.5		10.1	5.5	5.7	8.4
Février		23.4	2,8		1.9	3	2.8		5.3	3	2.3	1.7	5.3	11.1	5.1	6.8	11.7
mars		17.6		2.8	0.9	2.6	3	6.1	5.6	2.6	1.7	2.1	5.6	8.6	4.5	6.7	11
Awril	4.1	16.5	3.2		5.1	2.1	3.5		4.9	2.1	1.8	2.7	4,9	9.6	3.5	6.3	8.4
Mai	4.7	12.7	5.6	3.5	2.3	1.6	4.3	4.19	4	1.6	1.3	1.9	4	6.8	3.6	4.1	15.7
uin	5.3	13.6	8.2	4.3	8.6	2.5	5.5	4.5	3.4	2.5	1.4	1.5	3.4	4.5	2.7	3.8	11
uillet	6.2	13.5	8.3	5.5	11.1	3	3.6	3.9	3	17.6	1.4	2.2	3	3	2.2	3.4	10.5
Acut	6.7	14.4	7.5	3.6	1.1	1.9	3.4	3.75	1.9	16.5	1.8	2	1.9	3.1	2.1	3.5	12.7
entembre	5.5	10.1	5.4	3.4	9.9	4.5	2.5	5.3	4.5	12.7	1.7	1.9	4.5	4.9	120	A	11.5
Octobre	3.2	5.6	4.2	2.5	5.7	5.4	7.7	6.5	5.4	5.8	2.8	2.6	5.4	12	2.5	3.9	113.1
Novembre	2.5	2	2.1	1.9	4.7	4.4	5.6	6.6	6.5	4.4	2.1	2.7	6.5	9.6	13	W	24.7
Décembre	1.6	2.8	2.6	0.9	2.4	4.1	2	6-	5.3	4.1	2.6	2.4	5.3	,42.4	13	C.An	14)
Annuel	4.1	12.9	3.5	3	6.8	5.3	2.8	5.1	4.4	2.9	1.9	2.1	4.4	2.4	X	U	14

Tableau II.1 : Fréquences du vent par direction en pourcentage (%)

	Fréquences des vitesses	(m/s) per classes(%)	1	THE PERSON
	1c=Vc=5	SceVc=10	11<=V<=15	V>-16
Janvier	75.5	21.5	2.3	0.2
Février	70.3	23.7	1.7	0.3
Mars	68.3	20.3	2.2	0.3
Auril	70.8	21.7	1.9	2.2
Mai	62.8	16.9	0.6	0
Juin	69.6	19.1	0.3	0
Jullet	70.6	18.7	0.2	0
Aout	68	19.2	0.2	0
Septembre	62.5	17.3	0.7	0
Octobre	67.7	17.9	1.1	0
Novembre	62.2	21.9	1.7	0
Décembre	63.4	21	1.4	0
Annuel	67.7	19.7	1.1	0

Tableau II.2 : Fréquences des vitesses (m/s) par classe (%)

•Analyse:

Ces données nous permettent de constater que les vents sont plus fréquents entre le mois de janvier et le mois d'Avril par rapport au reste de l'année (vent calme : 8.4% - 11,7%) ; en hiver ils sont généralement faibles à moyens. (Tableau II.2).

	1<=V<=5	6<=V<=10	11<=V<=15	V>=16	Total%
N	2.7	1.9	0.1	0	4.7
NNE	11.3	3.7	0.3	0	15.3
NE	3.6	1.1	0	0	4.7
ENE	2.8	0.2	0	0	3
E	0.3	0.2	0	0	0.5
ESE	1.7	0.4	0	0	2.1
SE	0.3	0.6	0	0	0.9
SSE	3.5	1.6	0	0	5.1
5	2.2	0.4	0	0	3.1
SSW	1.8	0.9	0.1	0	2.8
SW	1.5	0.3	0	0	1.8
WSW	2.7	0.4	0	0	2.1
w	3.6	1.8	0	0	5.4
VINIW	1.8	1.6	0	0	3.4
NEWY	2.8	0.8	0	0	3.6
enewy.	0.8	0.3	0	0	1.1
alme					10.3

Tableau II.3: Les classes de vitesse (m/s)

• II.5.1Rose des vents :

La rose des vents est un moyen de présenter graphiquement les variations du vent sur une période de temps à un endroit précis, afin de se faire une idée précise sur la distribution des vitesses et des directions du vent. On peut la construire à partir des observations météorologiques faites dans une région donnée [5].

Elle comporte principalement les quatre points cardinaux : le Nord, l'Est, le Sud et l'Ouest et secondairement 360 autres, on parle alors de subdivisions de la rose des vents. Cependant les points qui sont régulièrement utilisés sont au nombre de 16. Voici leurs appellations et les degrés auxquels ils correspondent [6] :

• II.5.2 Température de référence :

La température de référence d'un aérodrome est définie comme étant la moyenne mensuelle des températures maximales quotidiennes exprimées en degrés Celsius du mois le plus chaud de l'année [1].

Pour Tipaza , cette température est de $32^{\circ}C$.

	Degrés		Direction
de	à	moyenne	cardinale
348.75°	11.25°	0.0°	N
11.25°	33.75°	22.5°	NNE
33.75°	56.25°	45.0°	NE
56.25°	78.75°	67.5°	ENE
78.75°	101.25°	90.0°	E
101.25°	123.75°	112.5°	ESE
123.75°	146.25°	135.0°	SE
146.25°	168.75°	157.5°	SSE
168.75°	191.25°	180.0°	S
191.25°	213.75°	202.5°	ssw
213.75°	236.25°	225.0°	SW
236.25°	258.75°	247.5°	wsw
258.75°	281.25°	270.0°	w
281.25°	303.75°	292.5°	WNW
303.75°	326.25°	315.0°	NW
326.25°	348.75°	337.5°	NNW

Tableau II.4: les directions cardinales

Le pourcentage du vent correspond à une direction et à une gamme de vitesses données est indiqué par des cercles concentriques de la rose des vents [10] (voir figure II.8).

nous avons tracé la rose des vents à partir des classes de vitesses (m/s) mentionnées au tableau II.3.

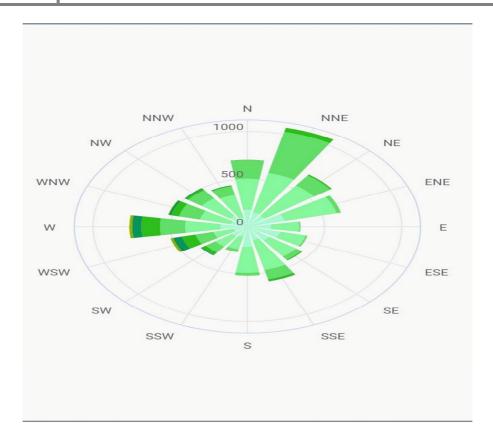


Figure II.4: Rose des vents

En se basant sur le tableau II.1 et la rose des vents, nous avons alors remarqué que les vents dominants viennent du secteur Nord-Nord-est durant les saisons d'automne, d'hiver et de printemps ; sauf en été viennent du secteur sud-ouest et sud-sud-ouest .

La piste de notre future aérodrome doit avoir une orientation telle que 95% des vecteurs vents n'aient pas une composante traversière, selon la distance de référence de l'avion critique, plus grande que celles citées dans l'annexe 14.

II.6 Avion critique:

L'avion critique est l'avion le plus contraignant et le plus pénalisant destiné à desservir le taxi aérien et assurant facilement la liaison avec une destination voulue.

Suite à la demande exprimée par l'ENNA pour l'exploitation du futur aérodrome avec trois types d'avions, BeechCraft 1900D et DHC-8-400 (Q400), et l'ATR72-212 sont efficaces et disponibles en Algérie, ont été sélectionnés et comparés avant de déterminer le plus convenable pour ce type d'aérodrome.

Leurs caractéristiques sont présentées dans le tableau ci-dessous :

Avion	Poids Maxi (kg)	Distance de référence (m)	Voie (m)	Envergure (m)	Disponibilit é en Algérie
BeechCraft 1900D	7688	1140	5.23	17.67	Plusieurs compagnies
DHC-8-400 (Q400)	25855	1128	4.75	28.42	Une companie
ATR-72-212	22000	1205	4.10	27.05	Deux companies

Tableau II.5 : Comparaison entre le BeechCraft 1900D et le DHC-8-400 et l'ATR72-212

Après comparaison des différents paramètres, le choix a été porté sur : l' ATR72-212 (figure II.9).

Pour les raisons suivantes :

- ✓ L'ATR72-212 est plus disponible que le Q400 et le BeechCraft 1900D auprès des compagnies aériennes Algériennes.
- ✓ Un plus grand nombre de place (72-80) et plus grande masse offerte pour le cargo.
- ✓ Cet avion a un grand rayon d'action par rapport aux deux autres et plus puissant.

Figure II.5: 1'ATR72-212

Les caractéristiques principales de l'ATR72-212 sont résumées dans le tableau suivant **[13]** :

Fiche technique de la version ATR 72-212

Capacité en carburant	62501
Capacité en fret	4600 kg
Capacité en passagers	72 Personne(s)
Dimensions	
Envergure	27,05 m
Hauteur	7,65 m
Longueur	27,166 m
Surface alaire	61 m²
Equipage	
Equipage commercial	2 Personne(s)
Equipage technique	2 Personne(s)
Mécanicien(s) navigant(s)	84
Navigateur(s)	<i>₩</i>
Pilote(s)	2 Personne(s)
Radio(s))50
Radio-navigateur(s)	8 7 7
Masses	
Charge marchande	74°
Masse à vide	12500 kg
Masse maximale à l'atterrissage	21850 kg
Masse maximale au décollage	22500 kg
Motorisation	
Moteur(s)	
Turbopropulseur(s)	x2 Pratt & Whitney Canada PW-124B

Tableau II.6 : Caractéristiques de l'ATR72-212

II.7 Dilemme de sites

La récolte des données et renseignements précédemment cités, nous donne une distance de référence de notre avion critique de 1205 m pour une longueur de site 2 est de 1006 m, donc surement c'est pas suffisant en terme de superficie.

Par contre pour le site 1 , avec une longueur de 4000 m , et un espace vraiment bien dégagé des obstacles ,il est même pas traversé par une ligne électrique ,ce qui nous a permis de l'avantager par rapport au site 2 .

II.8 Site arrêté

Après exploitation des données et levée de l'ensemble des contraintes, le site arrêté pour le futur taxi aérien est le site 1 situé a sidi rached.

II.9 Orientation de la future piste

Plusieurs facteurs influent sur le choix de l'implantation et de l'orientation d'une piste et parmi lesquels on peut citer :

Les conditions météorologiques, notamment le vent : D'une manière générale, les pistes sont préférentiellement orientées dans la direction des vents dominants. L'élément le plus important à prendre en compte est le vent *traversier*, terme sous lequel est désignée la composante du vent perpendiculaire à l'axe de la piste. Dans la région de notre étude, les vents du secteur Nord-Nord-est sont dominants durant les saisons d'automne, d'hiver et de printemps, alors qu'en été les vents viennent du secteur Sud-ouest et Sud-Sud Ouest.

Le calcul du *coefficient d'utilisation* de la piste a fait ressortir les valeurs suivantes :

Direction (*)	O	22.5	45	67.5	90	112.5	135	157.5	180	202.5	225	247.5	270	292.5	315	337.5
Cu (%)	91.58	94.48	88.94	\$8.59	85.29	8419	89.69	90.78	91.58	89.12	89.60	89.71	84.23	91.23	89.12	81.12

Tableau II.7: Coefficient d'utilisation

- La géologie et l'aspect géotechnique : les caractéristiques géologiques et géotechniques de la région de notre étude sont tellement idéals alors qu'elles nous ont causé aucun problème pour le choix de l'implantation et de l'orientation de la piste .
- La nature et le volume de circulation aérienne résultant de la proximité d'autres aérodromes (Alger, Chlef).

D'après ces informations, et afin de minimiser l'effet des contraintes environnantes précédemment citées, pendant l'exploitation du notre futur aérodrome, la piste de Sidi Rached a été orientée selon l'axe préférentiel 22.5°/202.5°, et aura donc une numérotation de 02/20.

II.10 Code de référence de l'aérodrome :

Pour un ATR72-212 (avion critique):

- Distance de référence de l'avion 1205m.
- Envergure 27,05m.
- Largeur hors tout du train principal 4.10 m.

D'après ces valeurs et le tableau 1.1 le code de référence de notre aérodrome est 3C.

II.11 Altitude de l'aérodrome :

Après détermination du périmètre de l'aérodrome .il a été possible de procéder à des relèvements d'altitudes ou la future piste est prévue d'être L'altitude maximale que nous avons retenue de la est de 52 m.

II.12 Caractéristique physiques de la piste :

II.12.1 Longueur de la piste :

Avec la méthode qu'on a choisi, on va utiliser trois coefficients de correction qui vont être appliqués a la longueur de base et qui sont appelés par l'emplacement de l'aérodrome ainsi que par les contraintes topographiques de ce dernier.

Ces coefficients de correction sont dans l'ordre :

- Coefficient de correction d'altitude C1=1+N1/100 pour lequel : N1=7*h/300 (h 'altitude de l'aérodrome)
- Coefficient de correction de température C2=1+ N2/100, pour le calcul duquel N2 a pour valeur N2=T-t avec :

T, température de l'aérodrome.

T, température de l'atmosphère type a l'altitude de l'aérodrome.

Ayant pour valeur : $t = 15^{\circ} - 0.0065 * h$.

• Coefficient de pente C3 =1+N3/100, pour le calcul du quel N3 = 10*P. (P = pente moyenne de la piste exprimée en pour-cent)

Considérant, le coefficient global (N): N = C1*C2*C3

La longueur de la piste obtenue en appliquant (N) doit encore être majorée, afin de tenir compte de l'augmentation du frottement de roulement au décollage que de la diminution du glissement au cours de l'accélération, l'arrêt ou a l'atterrissage.

Pour notre piste, et en absence d'indications particulières sur ce point, sa longueur recevra une nouvelle augmentation forfaitaire de 10 %.

La longueur de la piste a été calculée a l'aide des données suivantes :

- » Données de base :
- Avion de référence : ATR72-212
- Longueur de base de la piste (distance de référence) : L₀= 1205 m .
- Température de référence : 32°C.
- Altitude prévue de l'aérodrome 52 m.
- Pente moyenne de la piste 1 %.

» N : correction de la longueur totale N=C1*C2*C3.

APPLICATION:

$$C1 = (1+1,2133/100) = 1,0121$$

$$C2 = (1+17,34/100) = 1,1734$$

$$C3 = (1+10/100) = 1,1$$

RESULTATS:

Longueur de base	C1	C2	СЗ	Longueur corrigée
1205	1,0121	1,1734	1,1	1574

Tableau II.8 : longueur corrigée de la piste

L'augmentation de 10 % fera ainsi :

$$(1574*10)/100 = 157,4$$

$$1574+157,4 = 1731.4 \text{ m}.$$

Au final. la longueur qu'on va prendre donc est de 1800 m.

II.12.2 Largeur de piste :

Chiffre de code	A	В	С	D	Е
1	18m	18m	23m	-	-
2	23m	23m	30m	-	-
3	30m	30m	30m	45m	-
4	-	-	45m	45m	45m

Tableau II.9: largeur de piste

Conformément a l'annexe 14, et selon les informations qui contient le tableau précédent, pour un aérodrome de code 3C la piste aura une largeur de 30 m.

Piste: 1800m x30m

II.12.3 Pente longitudinale de la piste :

La pente longitudinale est obtenue en divisant la différence entre le niveau maximal et le niveau minimal le long de l'axe de piste par la longueur de la piste, et ne devrait pas dépasser 1 %.

Niveau maximal 52 m

Niveau minimal 49 m

P% = (52-49)/1800 = 0.0017 * 100 = 0.17 %.

II.13 Type d'exploitation de la piste :

Le mode d'exploitation de la piste pris en compte dans son stade ultime de développement, détermine, en fonction du chiffre de code, les caractéristiques des servitudes aéronautiques de dégagement.

La piste sera exploitée à vue de jour sur ses 2 sens d'utilisation.

II.14 Aspect dégagement :

Les surfaces de dégagements de notre future piste ont pour objet de définir les hauteurs maximales d'obstacles tolérés sur et autour de l'aérodrome ; elles sont destinées à garantir des manœuvres sûres dans des conditions bien définies[1].Ces surfacesse présentent comme suit

• Surface conique

La surface conique qu'on va tracer a une pente de 5 % et s'élève à partir du bord extérieur de la surface horizontale intérieure, jusqu'à une hauteur de 75 mètres [1].

• Surface horizontale intérieure

La surface horizontale intérieure, dont la côte est fixée à 45m au-dessus de l'altitude de référence de l'aérodrome, s'élève à 97m.

Elle est délimitée par deux demi-circonférences horizontales, centrées chacune par rapport à l'origine des trouées d'atterrissage, de rayon 4000 mètres, et par les tangentes communes à ces deux circonférences [7].

• Surface d'approche :

Pour procéder au tracé de la surface d'approche les données nécessaires sont répertoriées dans le tableau suivant :

Désignations	Caractéristiques		
	Atterrissage QFU 02	Atterrissage QFU 20	
Distance au seuil	60m	60m	
Longueur du bord intérieur	150m	150m	
Divergence	10%	10%	
Première section			
Longueur	3000m	3000m	
Pente	3.33%	3.33%	

Tableau II.10 : Surface d'approche

• Surface de décollage :

Il en sera de même pour la surface de décollage :

Désignations	Caractéristiques	
	Décollage QFU 02	Décollage QFU 20
Longueur du bord intérieur	180m	180m
Distance par rapport a l'extrémité de piste	60m	60m
Divergence	12,5%	12,5%
Largeur Finale	1200m	1200m
Longueur	15000m	15000m
Pente	2 %	2 %

Tableau II.11 : Surface de décollage

• Surface de transition

La surface de transition a une pente de 14,3%

II.15 Conclusion:

Dans ce chapitre on s'est basé sur la collecte et l'analyse de l'ensemble des données nécessaires à l'étude de la faisabilité du futur aérodrome de Sidi Rached. Après l'exploration des deux sites (site 1, site 2) qui ont été mis à notre disposition, le site 1 a finalement été retenu pour l'implantation de notre aérodrome, car répondant aux critères de la réglementation Algérienne en vigueur.

Chapitre III Etude de l'implantation de l'aérodrome

III.1 Introduction:

L'implantation d'un aérodrome passe par plusieurs étapes qui sont basés sur des critères nécessaires a son implantation

Notre future aérodrome se trouve a 2 km nord de la commune sidi-Rached, et afin d'assurer sa rentabilité maximal nous proposons que cet aérodrome va être pris en charge avec un minimum de personnel

III .2 Paramètres et résultats obtenus :

		Valeurs/Remarques
Paramètres /résultats		
Paramètres généraux	Avion de référence	ATR72-212
	Altitude	52m
	Température	32
	Classification de l'aérodrome	3C
	Type d'approche	A vue
	Orientation	02/20
Piste	Longueur	1800m
	Largeur	30m

Tableau III.1: Paramètres et résultats obtenus

III.3 Indicatif d'emplacement :

L'indicatif proposé pour le futur aérodrome est : DATS

D: représente l'Afrique du nord central

A: l'Algérie

Etude de l'implantation de l'aérodrome

T : ville = Tipasa

S: Région = Sidi Rached

III.4 Etude des chaussées :

D'après les informations qu'on a obtenu ; et a l'aide d'un spécialiste en géni-civil on a constaté que les données géotechniques recueillies au niveau de sidi rached sont les mêmes celles concernant la RN67 situé prés de la zone de projet.

La valeur de l'indice CBR (Annexe A), mesurée le long du linéaire de la route nationale 67 jouxtant la zone de projet a été jugée moyenne de l'ordre de neuf (9).

III.4.1 Dimensionnement des chaussées aéronautiques :

Avion de référence : ATR72-212

Poids maximal: 22 tonnes

Coefficient de répartition de la charge : 47,8%

Pression des pneus : q = 0.79 Mpa

CBR = 9

Estimation du trafic : N = 9 mvts/jour

Facteur de pondération pour chaussées : wf = 1

Facteur de pondération pour accotement : 0,5

- Dimensionnement des chaussées centrales

Calcul de la charge réelle :

$$P = 22 \times 0,478 = 10,52t$$

Calcul de la charge réelle pondérée p':

$$P' = p \times wf = 10,52 \times 1 = 10.52t$$

Conversion de p' a p'' (pour 9 mvts/jour)

N = 9 mvts/jour

$$CT = 1.2 - 0.2 \log N = 1.2 - 0.2 \log 9 = 1.009$$

$$P'' = p' / CT = 10,52 / 1,009 = 10,43t$$

Calcul de l'épaisseur réelle totale :

$$e = \sqrt{p'' \times \frac{1}{0.57 \, CBR} - \frac{1}{32 \times q}} = 45 \text{ cm}$$

Dimensionnement des accotements :

Calcul de la charge réelle :

$$P = 22 \times 0,478 = 10,52t$$

Calcul de la charge réelle pondérée p':

$$P' = p \times wf = 10,52 \times 0,5 = 5,26t$$

Conversion de p' a p'' (pour 9 mvts/jour):

N = 9 mvts/jour

$$CT = 1.2 - 0.2 \log N = 1.2 - 0.2 \log 9 = 1.009$$

$$P'' = p' / CT = 5,26 / 1,009 = 5,21t$$

Calcul de l'épaisseur réelle totale :

$$e = \sqrt{p'' \times \frac{1}{0.57 \, CBR} - \frac{1}{32 \times q}} = 31.81 \text{ cm}$$

les épaisseurs réelles sont transformées en épaisseurs équivalentes en utilisant les coefficients d'équivalence d'un matériau.

ces coefficients concernant des matériaux neufs et ils sont définis comme suit :

Etude de l'implantation de l'aérodrome

Matériaux	Coefficient d'équivalence
Béton bitumineux	2
Grave bitume	1,5
Grave concassée	1
Tuf	0,7
TVO	0,5

Tableau III.2 Coefficients d'équivalence selon le type de matériau

En utilisant ces coefficients, on aura les épaisseurs des couches suivantes :

Nature de la Couche	Epaisseur réelle	Coefficient d'équivalence (cm)	Epaisseur équivalente (cm)
Béton bitumineux	10	2	20
Grave bitume	15	1,5	22,5
Tuf	20	0,7	14
Total	45		56,5

Tableau III.3 Différentes couches de la chaussées

III.5 Réhabilitation du site arrêté :

III.5.1 Etablissement du plan de masse :

Nous avons établi ce plan grâce au logiciel « Autocad » afin de présenter l'emplacement du projet, l'implantation et le tracer de la piste ,ainsi que le parking avion .

III.5.1 .1 Piste :

Longueur 1800m

Largeur 30m

De la, nous retenons:

Piste: 1800m x30m

#Accotements de piste :

Conformément a l'annexe 14, nous avons proposé d'aménager des accotements de 7,5m de part et d'autre de la chaussée centrale [2].

Accotement : 7.5m de part et d'autre de la chaussée centrale

#Prolongement d'arrêt de la piste :

Il aura lieu la même largeur que la piste (30m) conformément aux spécifications de l'annexe 14,

avec une longueur de 80m qu'on l'a pu déterminer après plusieurs tests avec le simulateur.

Prolongement d'arrêt : 80mx30m

#Implantation du seuil de piste :

le seuil est situé a l'extrémité de la piste, selon les recommandations de l'annexe 14.

Les cordonnées des seuils ont été déterminées via Google Earth :

Seuil 02 : 36° 32' 42.21 N 2° 33' 28.28 E

Seuil 20 : 36° 32' 40.15 N 2° 33' 23.53 E

#Distances déclarées :

Dans notre étude nous ne prenons en considération que le prolongement d'arrét

Alors:

Etude de l'implantation de l'aérodrome

PISTE = TORA = TODA = LDA = 1800m

Tandis que ASDA = PISTE + SWY = 1800 + 80 = 1880m

Pour la piste projetée 02/20 les valeurs des distances déclarées sont reportées dans le tableau suivant :

Désignation de la piste	TORA (m)	TODA (m)	ASDA (m)	LDA (m)
02	1800	1800	1880	1800
28	1800	1800	1880	1800

Tableau III.4 Distances déclarées

#Bande de piste :

La piste , ainsi que les prolongements d'arrêt et les prolongements dégagés qu'elle peut comporter , est placée a l'intérieur d'une bande dite également « Bande dégagée de piste » [2] .

- Longueur: 1940m
- Largeur : Pour un chiffre de code 3 , nous avons choisi une largeur de 18m de part et d'autre de l'axe de piste et du prolongement de cet axe pour la piste projetée 02/20 .

#Aires de securité d'extrémité de piste (RESA):

- Comme le permet la norme de l'annexe 14, pour un chiffre de code 3, nous avons opté pour une longueur de 240 m.
- Largeur : nous avons proposé une largeur de 60 m.

R.E.S.A :240m x 60m chacune

III.5.1.2 Voies de circulation :

Nous avons prévu d'aménager une seule voie de circulation pour relier l'aire de trafic avec la piste :

Etude de l'implantation de l'aérodrome

a) Largeur minimale 'L' de la voie de circulation = T + 2eR; avec :

T: la largeur hors tout du train principal

er : l'écart latéral

 $L = 4.10 + 2 \times 5.45 = 15 \text{ m}$.

#Accotements de voies de circulation :

Pour un code de lettre 'c' nous avons prévu un accotement de 7,5 m de part et d'autre de la chaussée centrale

#Bande de la voie de circulation :

Selon le tableau (1.15) et pour un code de lettre 'c', la largeur minimale de notre future bande aménagée LBa = $15m + 2 \times 7.5 = 30m$.

Voie de circulation : $105 \text{ m} \times 15 \text{ m}$

Accotements : 7,5 de part et d'autre de la chaussée centrale

III.5.1.3 Aire de trafic :

Des aires de trafic efficace sont essentielles à la sécurité des aéronefs ainsi qu'à l'exploitation des équipements de support au sol, au personnel et passagers autour et aux aires de stationnement [1]

Pour procéder à son dimensionnement (longueur et profondeur), on doit prendre en compte les mesures suivantes [3]:

- ✓ Le nombre de postes de trafic (ou poste de stationnement)
- ✓ Le choix du système de stationnement
- ✓ Le choix du type de stationnement
- ✓ L'espacement entre l'extrémité de l'aile d'un avion et un autre avion ou objet
- ✓ Les dégagements à respecter entre les postes de trafic et les avions en circulation
 - Nombre de poste de stationnement

Etude de l'implantation de l'aérodrome

Rappelons qu'on a estimé que le trafic serait de 9 mouvements par jour. En sachant que :

1 atterrissage ou 1 décollage = 1.5 mouvements

3 atterrissage s + 3 décollages = 9 mouvements

De là, nous prévoyons que le futur taxi aérien va pouvoir accueillir trois avions ATR 72-212; nous retenons alors 3 postes de stationnement.

#Choix du système de stationnement :

Nous présentons la liste exhaustive des différents systèmes de stationnement avant de spécifier celui sur le quel notre choix sera porté :

Système à jetées

Il existe plusieurs variantes de ce système, selon la forme des jetées ; les avions peuvent stationner au niveau des portes d'embarquement , de part et d'autre de la jetée, en configuration oblique , parallèle ou perpendiculaire (frontale) . Lorsqu'il existe une seul jetées , ce système présente la plupart des avantages du système linéaire pour les activités coté piste.

Lorsqu'il y a deux ou plusieurs jetées, il faut veiller à assurer le dégagement nécessaire entre elles [3]

• Système à satellite

Le système à satellite comprend une unité de satellite séparée de l'aérogare et entourée des postes de stationnement d'avions. Habituellement, les passagers accèdent au satellite depuis l'aérogare en empruntant un couloir souterrain ou surélevé, ce qui permet d'obtenir une meilleure utilisation de l'aire de trafic , mais l'accès peut également se faire en surface . Selon la forme du satellite, les avions sont stationnés en configuration radiale ou parallèle, ou dans une configuration différente. Lorsque les avions sont stationnés en configuration radiale, les manœuvres de refoulement s'en trouvent facilitées, mais cela nécessite une plus grande surface d'aire de trafic [3]

• Système à transbordeurs

Ce système peut s'appeler système d'air de trafic dégagée ou éloignée, ou système de transbordeur .étant donné que, pour les avions, l'aire de trafic idéale serait proche de la piste et éloignée des autres structures, ce système présenterait des avantages du point de vue de la maniabilité des avions, comme par exemple une distance totale de roulage plus courte, des manœuvre autonomes plus simples, une grande souplesse et de grandes possibilités d'expansion des aires de trafic. Ce système exige que les passagers, les bagages et le fret

Etude de l'implantation de l'aérodrome

soient transportés sur des distances relativement plus longues, au moyen de transbordeurs (Salon mobiles/autocars) et de chariots, dans les deux sens entre l'aérogare et les postes de stationnement, causant éventuellement des encombrements du coté piste [3]

• Système hybride

Le système hybride représente la combinaison de deux ou plusieurs des systèmes décrit cidessus. Il est assez courant de combiner le système à transbordeur avec l'un des autres systèmes pour les besoin du trafic de pointe. Dans ce cas, les postes de stationnement situé en des points distants de l'aérogare sont souvent appelés aires éloignées ou postes de stationnement éloignés [3]

Après concertation, notre choix a été porté sur : le système simple vu que le futur aérodrome de Sidi-RACHED sera de faible densité de trafic ;

#Choix du type de stationnement :

De même, nous allons passer en revue les différents types de stationnement possibles avant de décider lequel choisir pour notre futur aérodrome :

• Stationnement en oblique de front

Cette configuration est similaire à celle du stationnement nez dedans , sauf que l'avion n'est pas parqué perpendiculaire à l'aérogare(il est en position oblique avant) .

Avantage : cette configuration permet à l'avion d'entrer et de sortir du poste de stationnement avec la poussée de ses moteurs

Inconvénients : cette configuration nécessite une plus grande surface du poste de stationnement que celle de nez dedans et occasionne un plus grand niveau de bruit [3]

• Stationnement parallèle

Cette configuration est la plus facile à réaliser concernant les manœuvres de l'avion

Avantages : Le bruit et le souffle des moteurs sont minimisés puisqu'il n'y a pas de manœuvre étroite dans les virages.

Inconvénients : cette configuration nécessite une plus grande surface au poste de stationnement, notamment le long de la façade de l'aérogare [3]

• Stationnement en oblique de dos

Dans cette configuration, l'avion est stationné avec le nez qui n'est pas orienté vers l'aérogare (il est en position oblique arrière)

Etude de l'implantation de l'aérodrome

Avantage : cette configuration permet à l'avion d'entrer et de sortir du poste de stationnement avec la poussée de ses moteurs

Inconvénient : lors du lâcher des freins au départ du poste, le souffle des moteurs et le bruit sont dirigés vers l'aérogare lorsque l'avion commence sa manœuvre de roulage [3]

• Stationnement nez dedans

Dans cette configuration, l'avion est parqué perpendiculairement au front de l'aérogare, le nez proche du bâtiment. L'avion manœuvre vers le poste de stationnement avec la poussé de ses moteurs. Afin de quitter le poste de stationnement, l'avion doit être repoussé par tracteur sur une distance suffisante et permettre à l'avion de continuer avec la poussé de ses moteurs .

Avantage : superficie réduite pour un avion ; diminution de bruit (poussée réduite des moteurs pendant les virages proches de l'aérogare) ; le souffle des moteurs n'est pas dirigé vers le bâtiments ; facilite l'embarquement/débarquement des passagers (nez de l'avion proche de l'aérogare).

Inconvénient : le matériel de remorquage et les portes à l'arrière de l'avion sont trop éloignés pour une utilisation optimale lors de l'embarquement/débarquement des passagers [3]

❖ Dans notre étude le choix de type de stationnement s'est arrêté sur la **configuration nez dedans** essentiellement parce qu'elle ne requiert qu'une superficie réduite pour n'importe quel envergure d'avion ainsi que pour la diminution de bruit des réacteurs qu'elle offre.

#Espacement entre l'extrémité de l'aile d'un avion et un avion ou objet :

Un poste de stationnement devrait assurer les dégagements minimaux ci-après entre un avion stationné à ce poste et tout avion stationné à un autre poste , tout construction voisine ou tout autre objet fixe [3]

Nous rappelons que l'envergure de notre avion critique est de 27.05 m pour un code de lettre C, nous avons retenu un espacement de 4.5m (c=4.5m)

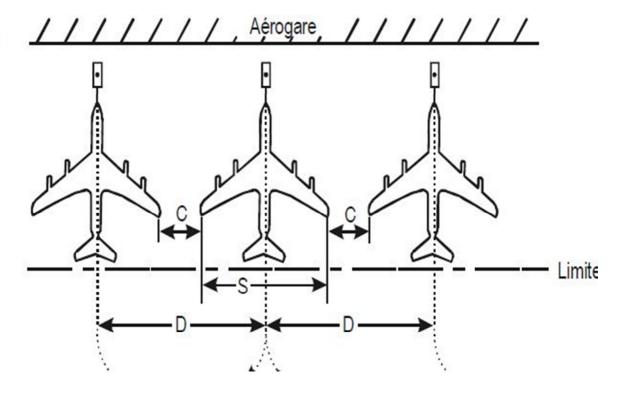


Figure III.1 Espacement aux postes de stationnement

#Les dégagements à respecter entre les postes de trafic et les avions en circulation :

Pour un code de lettre c , les voies d'accès de poste de stationnement et les voies de circulation de l'aire de trafic vont être placées par rapport au poste de stationnement de façon à assurer , entre les axes de ces voies et un avion en stationnement , les distances de séparation ci-dessus :

- 24.5 m entre l'axe d'une voie d'accès de poste de stationnement et un objet ;
- 26.0 m entre l'axe d'une voie de circulation d'aire de trafic et un objet

III.5.2 Sauvetage et lutte contre l'incendie :

Le service de sauvetage et de lutte contre l'incendie représente une pierre angulaire dans la

Gestion de la sécurité de notre futur aérodrome.

III. 5.2.1 Niveau de protection assurée :

Le niveau de protection assuré correspondra à la catégorie d'aérodrome, elle-même déterminée par les caractéristiques de notre avion critique, à savoir :

-La longueur hors tout : 27.166m

-L largeur maximale du fuselage : 2.90m?

Selon le tableau 1.9:

Nous concluons que la catégorie d'aérodrome de sidi-Rached devra : 3

III.5.2.2 Nombre de véhicules de sauvetage et d'incendie :

A partir du tableau 1.11 nous retenons un seul véhicule de sauvetage vu que l'aérodrome ne sera exploité que par 3 aéronefs.

III.5.2.3 Quantité d'agents extincteurs :

A partir du 1.10, on a ploté pour des quantités minimales, mais optimales, d'agents extincteurs :

Catégorie D'aérodrome	Mousse satisfaisant Au niveau B de performance		Agents complémentaires
	EAU (L)	Débit solution De mouse (L/min)	Poudre (KG)
3	1200	900	135

Tableau III.5 : quantités minimales utilisables d'agents extincteurs

III.5.2.4 Equipements spécifiques :

Un équipement adéquat et conforme aux normes a été prévu pour le véhicule de sauvetage sur notre plateforme [8]

III.5.2.5 Station du SSLI:

Cette station doit être assez spacieuse pour abriter le personnel et le véhicule de sauvetage . Elle doit avoir un accès direct vers la piste projetée 20/02 [8]

III.5.2.6 Délai d'intervention :

Deux niveau de délai sont à prévoir sur notre futur aérodrome :

• Un délai d'intervention de deux minutes (2') au maximum pour atteindre quelque point Que ce soit de la piste, dans les conditions optimales de visibilité et d'état de la surface.

Etude de l'implantation de l'aérodrome

• Un délai d'intervention de trois minutes (3') au maximum pour atteindre toute autre partie de l'aire de mouvement, dans les conditions optimales de visibilité Et d'état de la surface.

III. 5.2.7 formation du personnel :

<u>L</u>'Arrêté du 27 journada El Oula 1428 correspondant au 13 juin2007 fixant les épreuves théorique et pratiques en vue de la délivrance du certificat de sauvetage et de sécurité stipule que le personnel doit être soumis a une formation au niveau de l'ENNA et comprenant une partie théorique portant sur sécurité et sauvetage et secourisme en cas de réussite à cette épreuve le candidat dispose de deux ans pour se présenter à l'examen pratique portant sur sécurité et sauvetage ;secourisme et l'exercice en piscine (l'échec à l'épreuve de natation entraine l'élimination du candidat).

Le personnel sera formé de façon à pouvoir exécuter ses taches avec efficacité durant les 2 an précédents l'examen pratique. Le programme de formation comprendra :

- Une formation de base pour pompiers (expérience des accidents de la route souhaitée) :
- Une formation sur les spécifications aéronautique (environnement aéroportuaire, caractéristiques des aéronefs);
- Une formation sur le matériel utilisé (véhicules, moyen de communication, accessoires spécifique) [8]

III.5.3 Balisages:

Le balisage est un dispositif normé permettant un décollage, un atterrissage et une circulation sur la surface en toute sécurité [9].

Notre projet prévoit que le fonctionnement du futur aérodrome s'étalera sur une journée aéronautique (30" après le lever de soleil / 30" avant le coucher de soleil [17]) vu que notre piste est exploitée à vue (Mode VFR). A cet effet nous procédons à l'étude des balisages diurne.

III.5.3.1 balisage diurne de la piste :

La piste projetée 20/02 sera exploité à vue et donc munie d'un balisage diurne selon les spécifications de l'annexe 14 .on prévoit alors :

-une marque d'identification de la piste

- une marque de seuil
- des marques d'axe de piste

- des marques latérales de piste
- -des marques de point de cible
- des marques d'aire de demi-tour de piste.

#Marque d'identification de la piste :

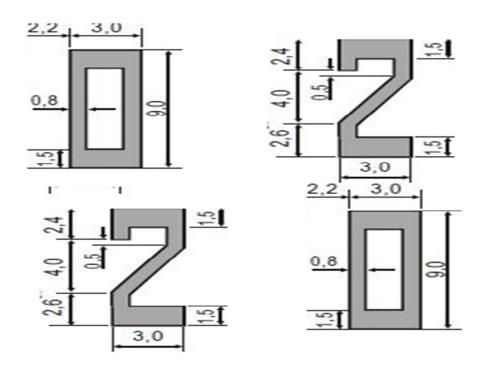


Figure III.2 Dimension des marques d'identification de la piste projetée

#Marques de seuil :

Le traçé des marques de seuil requiert la valeur de la largeur de la piste. A partir de cette dernière nous déterminerons le nombre de bandes, leurs largeurs et l'espacement entre deux bandes consécutives [1].

La largeur de notre piste étant de 30m, nous déduisons à partir du tableau 1.18 que :

- -Le nombre de bandes 2n=8, (n=4)
- -la largeur des bandes : a=1.5m
- L'espacement entre deux bandes consécutives : d=3m
- L'annexe 14 spécifie qu'elles seront placées à 6m du seuil de piste et qu'elles auront une longueur de 30m

Etude de l'implantation de l'aérodrome

#Marques d'axe de piste :

Conformément aux normes de l'annexe 14 les marques d'axe de piste ? Sont constituées par une ligne discontinue de traits, centrés sur l'axe de la piste et vont avoir :

- -Une longueur de traits = 30m
- Un espacement entre les trait = 30m
- Une largeur des traits = 0.3m

#Marques latérales de piste :

Ces marques se présente sous la forme d'une ligne continue tracé entre les deux seuil , le long du bord de piste [1]

Selon les recommandations de l'annexe14, pour une largeur de piste de 30m ces marques doivent avoir une largeur d'au moins 0.9 m; et c'est cette valeur que nous proposons dans notre projet .

#Marque de point cible :

La marque de point cible est constituée d'une paire de marques rectangulaires disposées longitudinalement et symétriquement par rapport à l'axe de piste [1]

La distance utilisable à l'atterrissage étant de 1800m, et selon le tableau 1.19 :

- -La marque de point cible commencera à une distance de seuil de 300m.
- la longueur des bandes sera de 45m; leurs largeurs de 6m
- l'écartement entre les bords intérieurs des bandes sera de 18m.

#Marque d'air de demi-tour de piste :

Comme le permet la règlementation de l'annexe 14 et pour un numéro de code 2 , la marque d'aire de demi-tour sur notre future piste se prolongera en parallèle avec la marque axiale de piste sur une distance de 30 m au-delà du point de tangence . l'angle d'intersection de la marque d'aire de demi-tour avec l'axe de la piste sera de 30 degrés. La marge entre une roue quelconque de l'atterisseur de l'avion et le bord de l'aire de demi-tour sera de 2.25m.

Les marques d'aire de demi-tour de piste sont de couleur jaune.

III.5.3.2 Balisage diurne des voies de circulation :

Les marques des voies de circulation comprennent (figure 3.3, figure 3.4):

- -Les marques axiales;
- Les marques de point d'attente avant piste ;

#Marques axiales de voie de circulation :

Elles seront constituées par une ligne ? Une largeur de 0.15m continue. A l'intersection de notre futur piste , les marques axiales de la voie de circulation sont raccordées aux marques d'axe de piste et sont prolongées parallèlement à celle-ci sur une distance de 30m au-delà du point de tangence .

#Marque de point d'attente avant piste :

Cette marque sera constituée de quatre bandes et disposée perpendiculairement à l'axe de la voie de circulation, en respectant la distance de 50m à partir du bord de la piste [1]

Deux de ces quatre bandes sont continues et les deux autres sont constituées d'élément de 0.90 m de longueur t espacés de 0.90 m (figure 3.3)

SCHÉMA A:

- 4 traits et
- 3 espaces de
- 0,3 m chacun

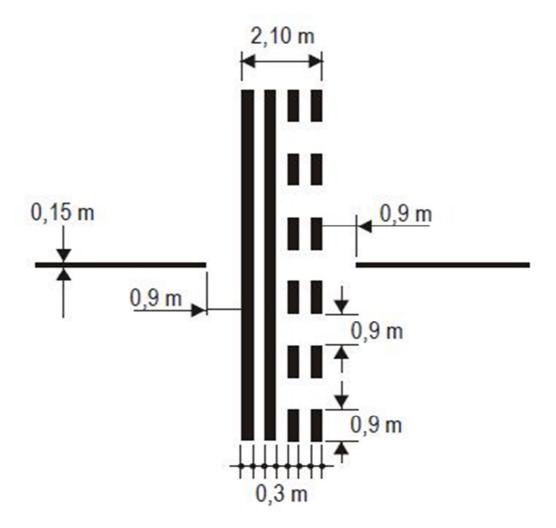


Figure III.3: Marques de point d'attente avant piste

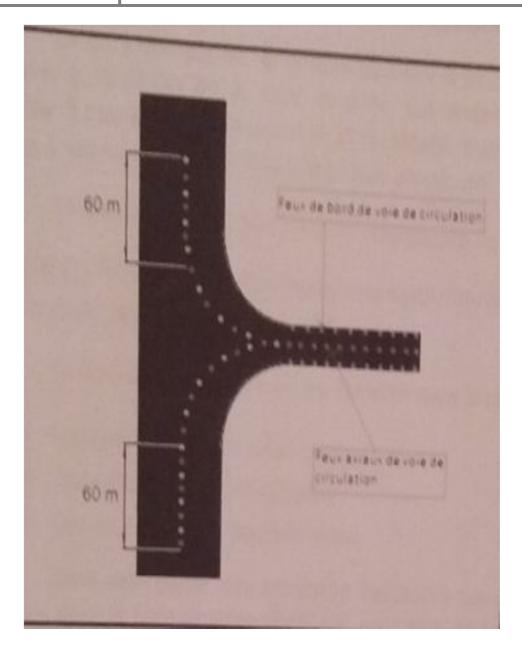


Figure III.4 : Configuration du balisage diurne de la voie de circulation

III.5.3.3Balisage diurne des aires de trafic :

Sur les aires de trafic , les maques des deux postes de stationnement d'aéronef prévus comprendrons des lignes de guidage pour indiquer la trajectoire à suivre par l'aéronef ainsi que des barres de référence (barre de virage , barre d'alignement) pour fournir des indication complémentaires si besoin est . Les lignes de guidage peuvent comprendre (figure 3.12)

- Des lignes d'entrée
- Des lignes de virage
- Des lignes de sortie

Les lignes d'entrée , les de virage et les lignes de sortie seront en principe continues d'une largeur de $15~\mathrm{m}$

La barre de virage sera placée perpendiculairement à la ligne d'entrée, à droite du pilote occupant le siège de gauche, au point ou doit être amorcé un virage [1] . Cette barre sera longue de 6m et large de 0.15m

La barre d'alignement large de 0.15m, sera placée de manière à coïncider avec le prolongement de l'axe de l'aéronef, ce dernier étant dans la position de stationnement spécifiée, et de manière à être visible pour le pilote au cours de la phase finale de la manœuvre de stationnement

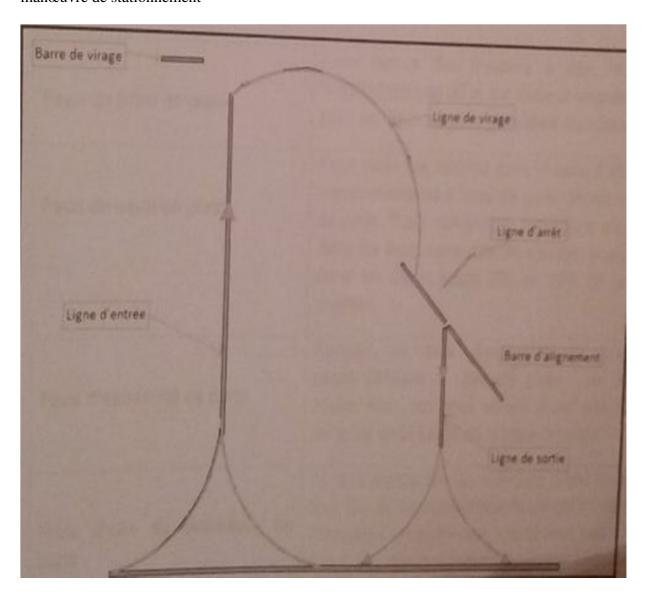


Figure III.5 : Marques de point de stationnement

III.6.conclusion:

Après avoir établir la faisabilité de notre future aérodrome de Sidi Rached; nous avons entamé dans ce présent chapitre les étapes de son implantation.

Tout d'abord l'étude des chaussées aéronautiques nous a permis de conclure que celle de notre site était de type souple .Ensuite l'étude du plan de masse nous a aidé a déterminer les caractéristiques des différentes infrastructures et installations concernant le futur aérodrome et qui sont résumées comme suit :

- Une piste de dimension 1800m × 30m avec accotement de 7,5m de part et d'autre de la chaussée.
- Une voie de circulation de 105 m de longueur et de 15m de largeur avec accotement de 7,5m.
- Deux R.E.S.A $240m \times 60m$ chacune.
- Deux prolongements d'arrêt de 80m × 30m.

Conclusion générale:

Cette étude répondra a la demande qui consiste a la réalisation de notre projet, et aux critères nécessaires pour son implantation , tout en assurant un meilleur degré de sécurité, en minimisant le cout d'investissement, avec un temps de réalisation moins ; en préservant de l'espace pour éventuels futurs réaménagement de l'aérodrome, (extension de piste ; taxiway ; parking ; ... etc.)

Le site arrêté pour le futur aérodrome présente les caractéristiques suivantes :

- Une piste orientée 02/20 de dimensions 1800m ×30m.
- Une voie de circulation de 105 m de longueur et de 15m de largeur avec accotement de 7,5m.
- Trois postes de stationnement pour avion.
- Classification de l'aérodrome en code 3C.
- Un terrain appartient totalement a l'état.

Il est a signaler qu'il faut assurer une quantité d'eau et d'émulseur comme réserve nécessaire pour la réalimentation en cas d'intervention des services de SSLI en cas d'une urgence ; assurer le secours de l'énergie , en garantissant aussi l'avitaillement en carburant durant les horaires d'ouverture .

Un travail complémentaire s'avère essentiel et donnera lieu à des études ultérieures ; si le cout de la mise en service de cet aérodrome aura été rentabilisé de façon satisfaisante,

L'objectif futur serait donc de rendre la piste exploitable aux instruments, 7J/7J et 24H/24H; afin d'ouvrir la porte a un nombre plus conséquent d'aéronefs; et du réaménagement d'une nouvelle aérogare capable de recevoir un nombre plus important de passagers.

ANNEXE A

Définitions

Aérodrome : Surface définie sur terre ou sur l'eau (comprenant , éventuellement , bâtiments, installations et matériel) , destinée à être utilisé e , en totalité ou en partie , pour l'arrivée , le départ et les évolutions des aéronefs à la surface.

Aérodrome à usage restreint : Desservi par des aéronefs de petite capacité , destinés aux vols non réguliers affectés aux activités de transport de fret , de travail aérien et de préformation aéronautique . Les aérodromes à usage restreint comprennent également des aérodromes particuliers ou plate-forme aéroportuaire liées aux activités de recherche d'exploitation pétrolière et minière .

Aérodrome mixte: Aérodrome utilisé en commun par les services de l'aviation civile et les services de l'aviation militaire, conformément à un accord définissant les droits et obligations de chaque partie.

Aérogare : Superstructure servant à la facilitation des transports de passagers et de fret .

Aéronef : Tout appareil qui peut s'élever , se soutenir et circuler dans l'atmosphère grace à des réactions de l'air autre que les réactions de l'air sur la surface de la terre.

Aéronefs civils: Tout aéronefs à l'exclusion des aéronefs d'état.

Aéronef d'etat : Tous aéronefs appartenant à l'état , affrétés ou loués par l'Etat et affectés exclusivement à l'un de ses services .

Aéroport : Ensemble d'installation de transport aérien destiné a faciliter l'arrivée et le depart des aéronefs , à aider la navigation aérienne , à assurer l'embarquement , le débarquement et l'acheminement des voyageurs , des marchandises et du courrier postal transporté par air .

Aire à signaux : Aire d'aérodrome sur laquelle sont disposés des signaux au sol .

Aire d'atterrissage : Partie d'une aire de mouvement destinée à l'atterrissage et au décollage des aéronefs .

Aire de demi-tour sur piste : Aire définie sur un aérodrome terrestre ,contigue à une piste, pour permettre aux avions d'effectuer un virage de 180° sur la piste .

Aire de manœuvre :Partie d'un aérodrome à utiliser pour les décollages , les atterrissages et la circulation des aéronefs à la surface , à l'exclusion des aires de trafic .

Aire de mouvement : Partie d'un aérodrome à utiliser pour les décollages, les atterrissages e la circulation des aéronefs à la surface, et qui comprend l'aire de manœuvre et les aires de trafic.

Aire de sécurité d'extrémité de piste (RESA): Aire symétrique par rapport au prolongement de l'axe de la piste et adjacente à l'extrémité de la bande, qui est destinée principalement à réduire les risques de dommages matériels au cas ou un avion atterrirait trop court ou dépasserait l'extrémité de la piste.

Aire de trafic : Aire définie , sur un aérodrome terrestre , destinée aux aéronefs pendant l'embarquement ou le débarquement des voyageurs , le chargement ou le déchargement de la poste ou du fret , l'avitaillement ou la reprise du carburant , le stationnement ou l'entretien .

Altitude d'un aérodrome : Altitude du point le plus élevé de l'aire de l'atterrissage.

Accotement : Bande de terrain bordant une chaussée et traitée de façon à offrir une surface de raccordement entre cette chaussée et le terrain environnant.

Atterrissage interrompu: Manœuvre d'atterrissage abandonnée de manière inattendue à un point quelconque au-dessous de l'altitude/hauteur de franchissement d'obstacles (OCA /H).

Autorité chargée de l'aviation civile : Administration chargée de l'aviation civile.

Balise: Objet disposé au-dessus du niveau du sol pour indiquer un obstacle ou une limite.

Bande de piste : Aire définie dans laquelle sont compris la piste ainsi que le prolongement d'arrêt, si un tel prolongement est aménagé, et qui est destinée :

- a) A réduire les risque de dommages matériels au cas ou un avion sortirait de la piste.
- b) A assurer la protection des avions qui survolent cette aire au cours des opérations de décollage et d'atterrissage.

Certificat d'aérodrome : Certificat délivrée par l'autorité compétente en vertu des règlements applicables d'exploitation d'un aérodrome.

Circulation aérienne : Ensemble d'aéronefs évoluant en l'air ou au sol sur l'aire de manœuvre d'un aérodrome selon des règles établies.

Codes de référence de l'aérodrome : Un code de référence d'aérodrome (chiffre et lettre de code) choisi à des fins de planification d'aérodrome sera déterminé conformément aux caractéristiques des avion auxquels une installation d'aérodrome est destinée .

Ces critères permettent de déterminer la largeur des pistes et voie de circulation et des accotements, les distances séparant les pistes des voies de circulation, et les distances entre voies de circulation.

Coefficient d'utilisation : Pourcentage de temps pendant lequel l'utilisation d'une piste ou d'un réseau de piste n'est pas restreinte du fait de la composante de vent traversier.

Distances déclarées :

a) Distance de roulement utilisable au décollage (TORA).

Longueur de piste déclarée comme étant utilisable et convenant pour le roulement au sol d'un avion au décollage.

b) Distance utilisable au décollage (TODA).

Distance de roulement utilisable au décollage, augmentée de la longueur du prolongement dégagé, s'il y en a un.

C) Distance utilisable pour l'accélération-arrêt (ASDA).

Distance de roulement utilisable au décollage, augmentée de la longueur du prolongement d'arrêt s'il y en a un.

D) Distance utilisable à l'atterrissage (LDA).

Longueur de piste déclarée comme étant utilisable et convenant pour le roulement au sol d'un avion à l'atterrissage.

Epaisseur équivalente : Le terme « épaisseur équivalente » est utilisé en parlant des chaussées souple ; il désigné le paramètre qui sert de base pour comparer des chaussées ayant des épaisseurs différentes de matériaux dont les caractéristiques de distribution de charge sont différents.

Exploitants:

- Tout personne morale titulaire d'une autorisation d'exploitation de services de transport public ou de travail aérien.
- tout propriétaire inscrit sur la matricule aéronautique.
- -Tout affréteur d'un aéronef qui s'est réservé la conduite technique et la direction de l'équipage pendant la durée de l'affrètement.
- -Tout locataire d'un aéronef sans équipage qui en assure la conduite technique avec un équipage de son choix.

Numéro de classification d'aéronef (ACN) : Nombre qui exprime l'effet relatif d'un aéronef sur une chaussée pour une catégorie type spécifiée du terrain de fondation.

Numéro de classification de chaussée (PCN) : Numéro qui exprime la force portance d'une chaussée pour une exploitation sans restriction.

Obstacle : Tout ou partie d'un objet fixe ou mobile qui est situé sur une aire destinée à la circulation des aéronefs à la surface ou qui fait saillie au-dessus d'une surface définie destinée à protéger les aéronefs en vol.

Plan de masse : est appliquer pour la modernisation et expansions des aéroports existants ainsi que pour la construction de nouveaux aéroports sans tenir compte de leur taille ou de leurs rôles.

Piste : Aire rectangulaire définie, sur un aérodrome terrestre , aménagée afin de servir au décollage et à l'atterrissage des aéronefs .

Piste à vue : Piste destinée aux aéronefs effectuant une approche à vue .

Piste(s) principale(s) : piste(s) utilisé(s) de préférence aux autres toutes les fois que les conditions le permettent.

Point de référence de l'aérodrome : Point déterminant géographiquement l'emplacement d'un aérodrome.

Poste de stationnement d'aéronef : Emplacement désigné sur une aire de trafic, destiné à etre utilisé pour le stationnement d'un aéronef.

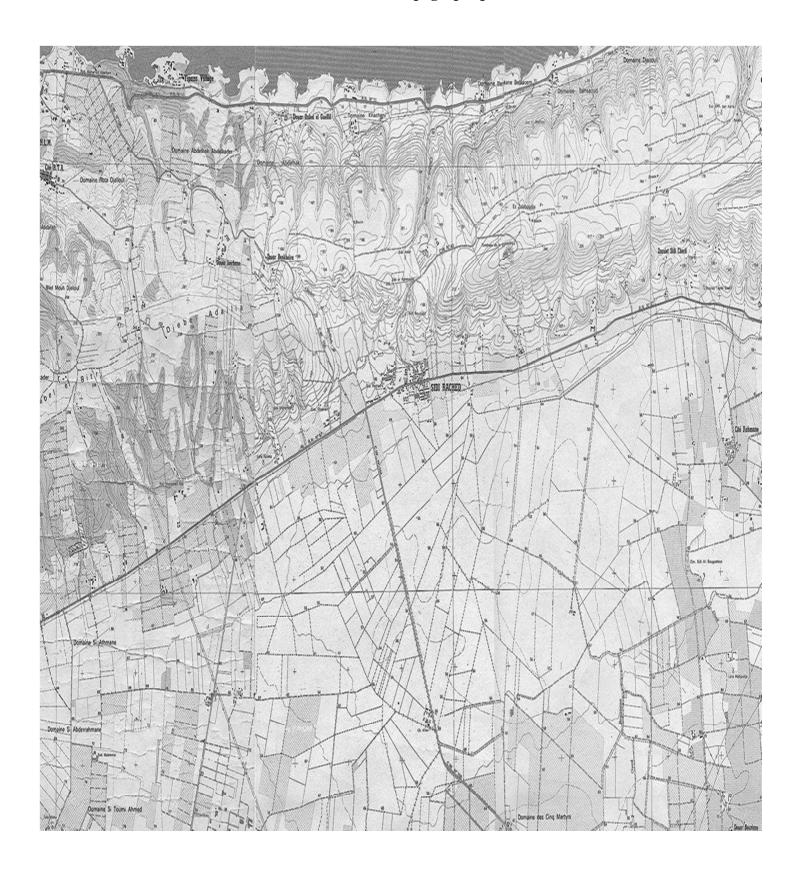
Prolongement d'arrêt : Aire rectangulaire définie au sol à l'extrémité de la distance de roulement utilisable au décollage, aménagée de telle sorte qu'elle constitue une surface convenable sur laquelle un aéronef puisse s'arrêter lorsque le décollage est interrompu.

Prolongement dégagé : Aire rectangulaire définie , au sol ou sur l'eau placé sous le contrôle de l'autorité compétente et choisie de manière à constituer une aire convenable au-dessus de laquelle un avion peut exécuter une partie de la montée initiale jusqu'à une hauteur spécifiée .

Rayon d'action : Est la distance maximum qu'un aéronef peut parcourir en vol avec une certaine quantité de carburant.

Service aériens : Tous service de transport par aéronef , de passagers , de fret et de courrier postal , réguliers ou non réguliers , internationaux ou intérieurs , de travail aérien , d'aviation légère et tous les services aériens privés .

Seuil: Début de la partie de la piste utilisable pour l'atterrissage.


Station météorologique aéronautique : Station désignée pour faire des observations et établir des messages d'observation météorologique destinés à être utilisés en navigation aériennes.

Système de gestion de la sécurité : Approche systémique de la gestion de la sécurité comprenant les structures organisationnelles, responsabilités, politiques et procédures nécessaires.

Voie de circulation : Voie définie, sur un aérodrome terrestre, aménagée pour la circulation à la surface des aéronefs et destinée à assurer la liaison entre deux parties de l'aérodrome, notamment :

- a) Voie d'accès de poste de stationnement d'aéronefs. Partie d'une aire de trafic désignée comme voie de circulation et destinée seulement à permettre l'accès à un poste de stationnement d'aéronef
- b) Voie de circulation d'aire de trafic. Partie d'un réseau de voies de circulation qui est située sur une aire de trafic et destinée à matérialiser un parcours permettant de traverser cette aire.
- c) Voie de sortie rapide. Voie de circulation raccordée à une piste suivant un angle aigu et conçue de façon à permettre à un avion qui atterrit de dégager la piste à une vitesse plus élevée que celle permise par les autres voies de sortie, ce qui permet de réduire au minimum la durée d'occupation de la piste.

Annexe B: Levé topographique

Annexe c Numéro ACN de certains types d'avions

				Fle	xibile Pavem CBR		rades	R	igid Paveme k [MF		des	$rac{S_T}{S_B}$
	Weight	Load on one main	Tire	High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min [kN]	gear	Pressure	A	В	C	D	A	В	C	D	[cm]
	[·J	[%]	[MPa]	15	10	6	3	150	80	40	20	
A300B, B2	1353 840	46.5	1.16	39 21	44 23	54 27	69 36	35 19	43 22	51 26	58 31	89 140
A300B4-200	1627 1236	46.5	1.28	50 35	57 38	69 46	86 60	46 32	56 38	66 45	75 51	89 140
A300B4-200 (Optional Bogie)	1627 1236		1.16	47 33	52 36	64 42	82 56	41 28	49 33	59 40	68 47	
A300B4-600R	1693 1275		1.35	54 37	61 41	74 49	92 64	51 34	61 41	71 48	80 55	
A300B4-600R (Optional Bogie)	1693 1275		1.21	50 35	56 38	69 45	88 60	44 30	54 36	64 43	74 50	
A300C4	1627 1216		1.24	48 33	55 36	67 43	85 57	44 30	53 35	63 42	72 48	
A310-200, 200C	1509 800		1.46	45 20	50 21	61 24	77 32	43 19	51 21	59 25	67 29	
A310-300	1480 1108		1.19	44 30	50 33	61 39	77 52	40 27	48 32	57 38	65 44	
A310-300	1549 1118		1.48	48 31	54 34	65 40	82 53	46 30	55 35	64 41	72 47	
A310-300	1617 1118		1.29	50 31	57 34	69 40	86 53	47 28	56 33	66 39	75 45	
A310-322 SR, BB	1500 1064		1.45	44 29	49 31	60 36	77 48	42 27	50 31	59 37	67 42	
A310-324	1540 800		1.24	44 19	49 20	60 23	77 31	41 18	50 20	59 24	67 28	
A310-325	1608 1100		1.38	48 30	54 32	66 38	84 50	46 27	55 32	64 38	73 44	
A318-100	607 382		0.89	29 17	31 18	35 20	41 23	31 18	34 19	36 21	38 22	
A319-100	632 382		0.89	30 17	32 18	36 19	42 23	31 17	34 19	37 20	39 22	
A319-100	690 382		1.07	35 18	36 18	40 20	46 23	37 18	40 20	42 21	45 23	
A319-100	744 382		1.38	39 18	40 18	45 20	50 23	44 20	46 21	49 22	51 24	

				Fle	xibile Pavem CBR		rades	R	igid Paveme k [MP		des	$rac{S_T}{S_B}$
	Weight	Load on		High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min	one main gear	Tire Pressure	A	В	C	D	A	В	C	D	[cm]
	[kN]	[%]	[MPa]	15	10	6	3	150	80	40	20	
				ĺ				ĺ			1	
A320-100	667		1.21	35	36	40	46	38	41	43	45	
	390			19	19	21	24	30	22	25	25	
A320-200	725 402		1.03	37 19	39	44	50 25	40	43	45 23	48 24	
	402			19	19	21	23	20	21	23	24	
					40			40	4-	40		
A320-200	744 422		1.14	39 20	40 21	45 22	51 26	42 22	45 23	48 25	50 26	
	722			20	21	22	20	22	20	20	20	
4220 200	750		4.44	44	40	47	50	40	40	5 4	50	
A320-200	759 441		1.44	41 22	42 22	47 24	53 28	46 24	49 26	51 27	53 29	
							20		20		20	
A300-200	725		1.22	20	22	26	35	19	23	27	31	
(Optional Bogie)	402		1.22	10	22 10	26 11	35 15	9	23 10	27 12	14	
3/										_		
A320-212 (optional	764		1.22	21	23	28	38	21	24	29	33	
4-Wheel Bogie)	490		1.22	12	13	15	20	11	13	16	18	
<i>2 ,</i>												
A321-100	769		1.28	42	44	49	55	47	50	52	54	
	461		0	23	24	26	30	26	27	29	30	
A321-100	818		1.36	45	48	53	59	51	54	57	59	
	461			23	24	26	30	26	28	29	31	
A321-200	877		1.46	49	52	58	63	56	59	62	64	
	461			23	24	26	30	26	28	29	31	
A330-200	2137		1.34	57	62	72	98	48	56	66	78	
	1650			42	44	50	67	37	40	47	55	
A330-200	2264		1.42	62	67	78	106	53	61	73	85	
	1650			42	45	50	67	37	41	48	55	
A330-300	2088		1.31	55	60	70 50	94	46	54	64	75 54	
	1638			41	44	50	66	36	39	46	54	
A330-300	2137 1657		1.33	57 41	61 44	71 50	96 66	47 37	55 40	65 46	77 54	
	1007			41	44	50	00	31	40	40	54	
4000 000	200:				2.5				22	- .	20	
A330-300	2264 1697		1.42	62 44	68 47	79 53	107 70	54 39	62 43	74 50	86 58	
	1091				71	JJ	70	33	40	50	30	
A240 200	0550		4 20	F0	64	74	00	47	EE	G.E.	76	
A340-200	2559 1657		1.32	56 33	61 35	71 39	96 50	47 31	55 32	65 36	76 42	
	.007								<u>-</u>	00		
V34U 3UU	2706		1.42	62	67	70	106	E2	62	79	85	
A340-200	2706 1697		1.42	35	67 37	78 41	106 53	53 33	62 34	73 39	85 45	
A340-300	2559		1.32	56	61	70	96	47	54	65	76	
A340-300	2559 1706		1.32	34	36	70 40	52	32	33	38	76 44	
											l	
												2
												3

					xibile Paven CBR	[%]			igid Paveme k [MP	a/m]		$\frac{S_T}{S_B}$
Aircraft	Weight Max/Min [kN]	Load on one main gear [%]	Tire Pressure [MPa]	High A 15	Medium B 10	Low C 6	V.Low D	High A 150	Medium B 80	Low C 40	V.Low D 20	[cm]
A340-300	2706 1765		1.42	62 37	68 39	79 44	107 57	54 34	62 36	74 42	86 48	
A340-500, 600	3590 1750		1.42	70 29	76 31	90 34	121 42	60 29	70 28	83 32	97 37	
A380-800 6 Wheel Main Gear)	5514 2758		1.47	71 29	79 31	99 35	136 48	53 25	61 26	76 29	94 34	
A380-800 4 Wheel Wing Gear)	5514 2758		1.47	62 27	68 28	80 31	108 39	55 25	64 26	76 30	88 35	
Antonov AN- 24	207 130		0.42	6 4	8 5	11 6	13 7	8 5	9 5	11 6	11 7	
ntonov AN-124-100	3844 2000		1.03	51 20	60 23	77 27	107 40	35 17	48 18	73 23	100 32	
Antonov AN-225	5884 4500		1.13	63 41	75 48	95 62	132 88	45 30	61 39	89 55	125 75	
ATR 42 (Aerospatiale)	182 110		0.72	9 5	10 5	11 6	13 7	10 6	11 6	12 7	12 7	
ATR 72 (Aerospatiale)	211 125		0.79	11 6	12 6	14 7	15 8	13 7	14 7	14 8	15 8	
Aurora (CP-140) (P-3 Orion)	600 275		1.31	35 14	38 14	42 16	45 18	41 16	43 17	45 18	46 19	
B-52 (Bomber)	2170 1500		1.65	80 49	86 53	97 60	116 72	103 62	114 70	126 77	136 85	
B1-B Bomber (Rockwell)	2123 1400		1.65	77 43	87 47	102 57	121 72	77 43	90 50	102 58	113 65	
B707-120, 120B	1150 700	46.7	1.17	32 17	35 18	42 21	55 27	28 16	34 17	40 20	47 24	86 142
B707-320, 320B, 320C, 420	1484 800	46.7	1.24	45 20	51 22	62 25	78 33	42 19	50 21	59 25	67 29	88 142
B717-100, 200, 300	543 310		1.10	32 16	34 17	38 19	40 22	36 18	38 20	40 21	41 21	
B720, 720B	1045 700	46.4	1.01	28 17	30 18	37 21	49 28	24 15	29 17	35 20	41 24	
B727-100, 100C	756 450	45.2	1.14	41 23	43 23	49 25	54 30	45 24	48 26	51 28	53 29	86 -

				Flexibile Pavement Subgrades CBR [%] High Medium Low V.Low					igid Paveme k [MP		des	$rac{S_T}{S_B}$
	Weight Max/Min	Load on one main	Tire	High A	Medium B	Low C	V.Low D	High A	Medium B	Low C	V.Low D	
Aircraft	[kN]	gear [%]	Pressure [MPa]	15	10	6	3	150	80	40	20	[cm]
B727-200	770 450	46.2	1.15	42 23	44 23	50 25	55 30	47 25	50 26	52 28	54 29	
B727-200 (Advanced)	934 450	46.7	1.19	53 23	57 23	64 26	69 30	60 25	63 26	66 28	69 30	
B727-200F (Advanced)	907 450		1.15	52 23	54 23	61 25	66 30	57 25	60 26	63 28	66 29	
B737-100	445 260	46.2	1.02	23 12	23 12	26 14	30 16	25 13	26 14	28 15	29 16	77 -
B737-200, 200C, Advanced	572 300	46.4	1.26	31 15	32 15	37 16	41 19	35 17	37 18	39 19	41 20	77 -
B737-300	623 325	45.9	1.40	35 16	37 17	41 18	45 21	40 19	42 20	44 21	46 22	
B737-400	670 350		1.28	38 18	40 18	45 20	49 23	43 20	45 21	47 22	49 23	
B737-500	596 320		1.34	33 16	35 16	39 18	43 21	38 18	40 19	42 20	43 21	
B737-600	645 357		1.30	35 18	36 18	40 19	45 22	39 20	41 21	44 22	45 23	
B737-700	690 370		1.39	38 18	40 19	44 20	49 23	43 21	46 22	48 23	50 24	
B737-800	777 406		1.47	44 21	46 21	51 23	56 26	51 24	53 25	56 26	57 27	
B737-900	777 420		1.47	44 21	46 22	51 24	56 28	51 24	53 26	56 27	57 28	
B747-100, 100B, 100SF	3350 1700	23.4	1.55	49 21	54 22	65 25	86 32	46 20	54 22	64 25	73 29	112 147
B747-100SR	2690 1600	24.1	1.04	36 19	38 20	46 22	64 29	29 16	35 18	43 21	50 25	
B747-200B, 200C 200F, 200M	3720 1750	23.1	1.38	55 22	62 23	76 26	98 34	51 20	61 22	72 26	82 30	112 147
B747-300, 300M, 300SR	3720 1760	22.7	1.31	55 22	62 23	76 26	98 34	50 19	60 22	71 25	82 30	
B747-400, 400F, 400M	3905 1800		1.38	59 23	66 24	82 27	105 35	54 20	65 23	77 27	88 31	

				Fle	xibile Pavem CBR				igid Paveme k [MF		des	$rac{S_T}{S_B}$
Aircraft	Weight Max/Min [kN]	Load on one main gear [%]	Tire Pressure [MPa]	High A 15	Medium B 10	Low C 6	V.Low D	High A 150	Medium B 80	Low C 40	V.Low D 20	[cm]
B747-400D (Domestic)	2729 1782		1.04	36 22	39 23	47 26	65 34	30 18	36 20	43 24	51 29	112 147
B747-SP	3127 1500	22.9	1.26	45 18	50 19	61 21	81 28	40 16	48 18	58 21	67 25	110 137
B757-200 Series	1134 570	45.2	1.24	34 14	38 15	47 17	60 23	32 13	39 15	45 18	52 20	86 114
B757-300	1200 640		1.24	36 16	41 17	51 20	64 27	35 15	42 17	49 21	56 24	
B767-200	1410 800	46.3	1.31	39 19	42 20	50 23	68 29	34 18	41 19	48 22	56 26	
B767-200 ER	1726 830	46.3	1.31	50 20	56 21	68 24	90 31	45 18	54 20	64 24	74 27	
B767-300	1566 860	46.3	1.38	44 21	49 22	59 25	79 33	40 19	48 22	57 25	65 29	
B767-300 ER	1784 890		1.38	53 22	59 23	72 26	94 35	48 20	57 23	68 26	78 31	
B777-200	2433 1400		1.38	51 25	58 27	71 31	99 43	40 23	50 23	65 28	81 35	
B777-200 ER	2822 1425		1.38	63 25	71 27	90 32	121 44	53 23	69 25	89 31	108 39	
B777-200 X	3278 1600		1.38	78 29	90 32	114 38	148 53	61 27	80 27	104 34	126 43	
B777-300	2945 1600		1.48	68 30	76 32	97 38	129 53	54 27	69 28	89 35	109 43	
B777-300 X	3190 1600		1.48	76 30	86 32	110 38	143 53	61 27	79 28	101 35	122 43	
BAC-111 Series 400	390 220		0.97	23 11	24 12	27 13	29 15	26 13	27 14	28 14	29 15	
BAC-111 Series 475	440 230	45.0	0.57	23 9	28 11	29 13	32 16	26 11	28 13	29 14	31 14	
BAC-111 Series 500	467 250	45.0	1.10	29 13	31 14	33 16	35 18	33 15	34 16	35 17	36 18	dvostruki kotač
BAe-146-100	376 230		0.84	18 10	20 11	23 12	26 15	21 11	22 12	24 13	25 14	
												6

				Fle	xibile Pavem CBR	ent Subgr	ades	R	igid Paveme k [MP		des	$\frac{S_T}{S_B}$
	Weight	Load on one main	Tire	High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min [kN]	gear [%]	Pressure [MPa]	A 15	B 10	C 6	D 3	A 150	B 80	C 40	D 20	[cm]
BAe-146-200	416 235		0.97	22 11	23 12	26 13	29 15	24 12	26 13	27 14	29 15	
BAe-146-300	436 245		1.10	24 12	25 12	28 14	31 16	27 13	28 14	30 15	31 16	
BAe-ATP	232 140		0.85	12 6	13 7	14 8	16 9	13 7	14 8	15 8	16 9	
Beech 1900C, 1900D	76 56		0.67	3 2	4 3	4 3	5 4	4 3	5 3	5 3	5 4	
Beech 2000 Starship	65 56		0.54	2 2	3 2	4 3	4 4	3	4 3	4 3	4 3	
Beech 35, 36 Series (Bonanza)	16 10		0.28									
Beech 55, 56, 58 Series (Baron)	25 16		0.39									
Beech Jet 400, I00A	73 56		0.86	6 5	7 5	7 5	7 5	6 5	6 5	6 5	7 5	
Beech King Air 100, 200 Series	56 56		0.73	2 2	3 3	3 3	4 4	3	3 3	4 4	4 4	
seech King Air 300, 300C, 350, 350C	67 56		0.73	3 2	3 3	4 3	4 4	4 3	4 3	4 3	4 4	
Beech King Air 90 Series	49 27		0.38									
Beech Queen Air, 55, 70, 80 Series	40 25		0.33									
ombardier BD-700 Global Express)	432 220		1.21	26 11	28 12	30 13	32 15	30 13	31 14	32 15	33 15	
C-141B Starlifter Lockheed)	1553 600		1.31	52 15	60 16	73 18	88 24	51 14	61 16	70 19	78 22	
C-17A Globemaster III)	2602 2000		0.95	54 38	61 42	73 50	94 65	54 41	49 38	57 40	71 48	
C-5A Galaxy	3421		0.73	27	30	35	46	25	28	33	39	
Lockheed)	1500			10	11	12	15	10	11	12	13	
C123K Provider (Fairchild/Republic)	267 180		0.69	20 13	22 15	24 16	25 17	21 14	21 14	22 15	22 15	

				Fle	xibile Pavem CBR		ades	R	igid Paveme k [MP	nt Subgrad a/m]	des	$\frac{S_T}{S_B}$
Aircraft	Weight Max/Min [kN]	Load on one main gear [%]	Tire Pressure [MPa]	High A 15	Medium B 10	Low C 6	V.Low D	High A 150	Medium B 80	Low C 40	V.Low D 20	S_B
Canadair CL-215, 115	196 130		0.55	12 8	15 10	17 11	18 12	14 9	14 10	15 10	15 10	
Canadair CL-41A CT-114 Tutor)	49 24		0.37					 		 	 	
anadair Regional et - 100, 200 Srs	236 135		1.12	13 7	14 7	16 8	17 9	16 8	16 9	17 9	18 9	
Canadair Regional et - 700 Series	335 195		1.24	18 10	19 10	21 11	24 13	21 11	22 12	23 12	24 13	
anadair Regional et - 900, ER Srs	367 215		1.24	20 11	21 11	24 12	26 14	23 12	25 13	26 14	27 14	
Cessna 114B Commander)	15 10		0.35									
essna 152	8 5		0.20									
essna 172 kyhawk)	11 7		0.19									
essna 180 kywagon)	13 8		0.21									
essna 182 kylane)	14 9		0.25									
essna 185 Skywagon)	15 8		0.25									
essna 208 aravan)	36 18		0.60									
essna 210 Centurion)	18 11		0.38									
essna 310	25 16		0.42									
essna 337 kymaster)	21 14		0.38									
essna 401	28 20		0.45									
essna 402C, 14A Chancellor)	31 19		0.48									

				Flexibile Pavement Subgrades CBR [%] High Medium Low V.Low Hi					igid Paveme k [MP			$rac{S_T}{S_B}$
Aircraft	Weight Max/Min	Load on one main gear	Tire Pressure	High A	Medium B	Low C	V.Low D	High A	Medium B	Low C	V.Low D	S_B
Anciait	[kN]	[%]	[MPa]	15	10	6	3	150	80	40	20	[cm]
Cessna 421 (Golden Eagle)	34 22		0.55									
Cessna 441 (Conquest II)	44 26		0.66		 		 					
Cessna 501 (Citation I - Eagle)	56 56		0.69	4 4	5 5	5 5	5 5	5 5	5 5	5 5	5 5	
Cessna 525 (Citation Jet)	47 29		0.68									
Cessna 550 (Citation II)	64 56		0.69	5 4	5 5	6 5	6 5	5 5	5 5	5 5	5 5	
Cessna 550 (Citation Bravo)	67 56		0.69	5 4	6 5	6 5	6 5	5 5	6 5	6 5	6 5	
Cessna 560 (Citation V)	72 56		0.69	5 4	6 5	6 5	7 5	6 5	6 5	6 5	6 5	
Cessna 561 XL (Citation Excel)	90 56		1.05	8 5	8 5	8 5	9 5	8 5	8 5	8 5	8 5	
Cessna 650 (Citation III, VI)	99 56		1.02	6 3	6 3	7 3	7 4	7 3	7 4	7 4	7 4	
Cessna 650 (Citation VII)	104 62		1.16	6 3	7 3	7 4	8 4	7 4	8 4	8 4	8 5	
Cessna 750 (Citation X)	160 96		1.16	10 5	11 6	12 6	12 7	12 6	12 7	13 7	13 7	
Cessna Conquest	45 26		0.59									
Cessna T303 (Crusader)	23 15		0.40									
CF-18	249 110		1.38	21 9	20 9	20 9	20 9	21 9	21 9	21 9	21 9	
Challenger CL 600, 601	192 131		0.90	10 6	11 7	13 8	14 9	12 8	13 8	13 8	14 9	
Challenger CL 600, 601	192 131		1.50	11 7	12 7	13 8	14 9	14 9	14 9	14 9	15 10	
Challenger CL 601-3R	201 131		1.42	12 7	12 7	14 8	14 9	14 9	15 9	15 9	15 9	

				Fle	xibile Paven CBR		rades	R	igid Paveme k [MP		des	$rac{S_T}{S_B}$
	Weight Max/Min	Load on one main	Tire	High A	Medium B	Low C	V.Low D	High A	Medium B	Low C	V.Low D	
Aircraft	[kN]	gear [%]	Pressure [MPa]	15	10	6	3	150	80	40	20	[cm]
Challenger CL 604	212 140		1.42	12 7	13 8	14 9	15 10	15 9	15 10	16 10	16 10	
Concorde	1824 1000	48.0	1.29	65 28	72 31	81 37	97 44	60 27	71 30	81 35	91 41	68 167
Convair 240	190 125		0.64	7 5	9 5	10 6	12 7	9 5	10 6	10 6	11 7	
Convair 340, 440, 540	222 140		0.47	7 4	9 5	11 6	14 8	9 5	10 6	11 7	12 7	
Convair 580	280 150		0.59	11 5	13 6	15 7	19 9	13 6	14 7	16 8	17 8	
Convair 600	210 140		0.73	9 5	10 6	11 7	14 8	10 6	11 7	12 8	13 8	
Convair 640	245 140		0.52	8 4	11 5	12 6	15 8	10 5	12 6	13 7	14 7	
Convair 880	860 400		1.03	27 10	31 10	36 12	44 16	26 9	31 11	36 13	40 14	
Convair 990	1135 600	48.5	1.28	40 17	46 18	53 22	64 28	41 17	47 19	54 23	60 26	
Dassault Falcon 10	84 56		0.93	5 3	5 3	6 4	6 4	6 4	6 4	6 4	6 4	
Dassault Falcon 20	128 75		0.92	8 4	9 4	9 5	10 5	10 5	10 5	10 6	10 6	
Dassault Falcon 50	173 90		0.93	9 4	10 5	12 5	13 6	11 5	12 5	12 6	13 6	
Dassault Falcon 900	202 103		1.30	11 5	12 5	14 6	15 7	14 6	14 7	15 7	15 7	
DC-10-10, 10CF, 15	2037 1035	46.85	1.34	57 25	62 26	74 29	101 37	49 23	58 24	69 28	81 32	137 162
DC-10-20, 20CF, 30CF, 40CF	2485 1640	37.7	1.14	60 36	67 38	81 44	110 61	49 30	59 34	72 41	85 48	137 162
DC-10-30, 30 ER, 40	2593 1220	37.9	1.22	59 24	65 25	79 27	107 35	50 21	59 23	72 26	84 30	137 162
DC-3	147 80	46.8	0.31	7 4	7 4	10 5	12 7	8 4	8 5	9 5	9 5	

				Fle	xibile Paven CBR		rades	R	igid Paveme k [MP		des	$\frac{S_T}{S_B}$
	Weight	Load on one main	Tire	High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min [kN]	gear [%]	Pressure [MPa]	A 15	B 10	C 6	D 3	A 150	B 80	C 40	D 20	[cm]
		[[/0]	[IVIF a]	13 	10	0		130 I	80	40	20	l I
DC-4	335 200	46.75	0.53	12 6	15 8	17 9	21 11	14 7	16 8	17 9	19 10	
DC-6, 6B	480 300		0.73	20 11	23 13	25 14	30 17	22 12	24 14	26 15	28 16	
DC-7 (All Models)	640 400		0.89	34 19	36 20	42 23	46 27	37 21	40 23	42 24	44 26	
DC-8-10, 20 Series	1226 600		1.01	36 15	41 15	49 18	62 23	32 14	39 15	46 17	53 20	
DC-8-43, 55, 61, 71	1470 800	46.5	1.30	47 21	54 23	64 27	79 35	45 20	54 23	63 27	71 31	
DC-8-61F, 63F	1557 1001		1.32	51 28	59 31	69 37	85 47	50 27	59 31	68 37	77 42	
DC-8-62, 62F, 63, 72, 73	1593 800	46.5	1.35	52 21	59 23	70 26	87 34	50 20	59 23	69 27	77 31	81 140
DC-9-10, 15	404 300	46.2	0.93	22 15	23 16	26 18	29 21	24 17	26 18	27 19	28 20	
DC-9-21	445 300	47.15	1.02	25 15	26 16	30 18	32 21	28 17	29 18	31 20	32 20	
DC-9-30, 32	485 300	46.2	1.05	27 15	29 16	33 18	35 21	31 17	32 18	34 19	35 20	dvostruki kotač
DC-9-41, 50, 51	543 300	46.65	1.17	31 15	33 16	37 18	40 20	35 17	37 18	39 19	40 20	
DHC1 Chipmunk	10 7		0.21									
DHC2 Beaver	24 14		0.17									
DHC3 Otter	36 20		0.20									
DHC4 Caribou	130 90		0.28	3 2	3 2	5 3	7 4	4 2	4 3	5 3	6 4	
DHC5 Buffalo	187 115		0.41	6 3	8 4	10 5	12 7	8 4	9 5	10 6	11 6	
DHC6 Twin Otter Series 300	56 56		0.26	3 3	3 3	3 3	5 5	3 3	3 3	3 3	4 4	

				Fle	xibile Pavem CBR		rades	R	igid Paveme k [MP		des	$rac{S_T}{S_B}$
	Weight	Load on	Ti	High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min [kN]	one main gear	Tire Pressure	A	В	C	D	A	В	C	D	[cm]
	[KIN]	[%]	[MPa]	15	10	6	3	150	80	40	20	
DHC7 Dash 7	209 120		0.74	10 5	12 6	13 7	15 8	12 6	13 7	14 7	14 8	
DHC8 Dash 8	147 90		0.44	5 3	6 3	8 4	9 5	6 3	7 4	8 4	8 5	
DHC8 Dash 8 Series 100	154 98		0.90	8 5	8 5	9 5	11 6	9 5	10 6	10 6	11 6	
DHC8 Dash 8 Series 300	183 110		0.80	9 5	9 5	11 6	12 7	10 5	11 6	11 6	12 7	
DHC8 Dash 8 Series 400	279 150		0.90	15 7	16 8	18 8	20 10	17 8	18 9	19 9	20 10	
DHC8 Dash 8 Series 400	279 150		1.42	15 8	16 8	18 8	20 10	18 9	19 9	20 10	21 10	
DHS-2 Conair Firecat	116 80		0.62	8 6	10 7	10 7	11 8	9 6	9 6	10 7	10 7	
Dornier 228 Series	63 56		0.90	5 5	6 5	6 5	6 5	6 5	6 5	6 5	6 5	
Dornier 328 Jet	155 93		1.13	8 4	8 5	10 5	11 6	10 5	10 6	11 6	11 6	
Dornier 328-110 (Turboprop)	138 90		0.80	7 4	7 4	8 5	10 6	8 5	8 5	9 5	9 6	
Dornier SA227, Metro Merlin, Expediter	74 56		0.73	3 2	4 3	4 3	5 4	4 3	5 3	5 4	5 4	
Douglas A-26 Invader	120 90		0.48	7 5	8 6	10 7	11 8	8 6	9 6	9 7	9 7	
Douglas B-26 Invader	156 105		0.48	9 6	11 7	13 9	14 9	10 7	11 7	11 8	12 8	
Embraer EMB-110 (Bandeirante)	59 56		0.62	4 4	5 5	5 5	5 5	5 4	5 4	5 5	5 5	
Embraer EMB-120 (Brasilia)	119 71		0.76	5 3	6 3	7 4	8 4	7 4	7 4	7 4	8 4	
Embraer ERJ-145	217 110		0.90	12 5	13 6	15 6	16 7	14 6	15 7	15 7	16 7	
Fokker 100	452 243		0.94	25 12	27 13	31 14	33 16	28 13	30 14	32 15	33 16	

Aircraft	Weight Max/Min [kN]	Load on one main		Flexibile Pavement Subgrades CBR [%] High Medium Low V.Low				k [MP			α .	
Aircraft				High	Medium	Low	V.Low	High	Medium	Low	V.Low	$rac{S_T}{S_B}$
	[KI 1]	gear	Tire Pressure	A	В	С	D	A	В	С	D	[cm]
		[%]	[MPa]	15	10	6	3	150	80	40	20	
Fokker 50	205 125		0.59	9 5	11 6	13 7	14 8	11 6	12 7	13 7	13 8	
Fokker 60	226 131		0.62	10 5	13 6	14 7	16 9	13 6	14 7	14 8	15 8	
Fokker 70	410 225		0.81	22 10	24 11	27 13	30 15	24 12	26 13	27 13	29 14	
Fokker F27 Friendship	205 120		0.57	9 5	11 5	13 6	14 8	11 6	12 6	13 7	13 7	
Fokker F28 Fellowship	325 175		0.53	14 6	17 8	20 9	23 11	17 8	18 9	20 9	21 10	
Gulfstream II	294 163		1.04	17 8	18 9	20 10	22 11	20 10	21 10	21 11	22 11	
Gulfstream III	312 170		1.21	19 9	20 9	22 10	23 12	22 11	23 11	24 12	24 12	
Gulfstream IV	334 189		1.21	20 10	22 11	24 12	25 13	24 12	25 13	25 13	26 14	
Gulfstream V	405 215		1.37	26 12	28 13	30 14	31 15	31 14	32 15	33 16	33 16	
Hercules C-130, 082, 182, 282, 382	778 360		0.67	29 12	34 14	37 16	43 17	33 14	36 15	39 16	42 18	
Hercules L-100 (Commercial)	693 340		0.74	27 12	30 14	33 15	38 16	30 14	33 15	35 16	38 17	
HS/BAe 125 (All Series to 600)	112 61		0.83	6 3	6 3	7 3	8 4	7 3	7 4	8 4	8 4	
HS/BAe 700	114 62		0.88	6 3	7 3	7 3	8 4	7 4	8 4	8 4	8 4	
HS/BAe 748	227 120		0.51	9 4	11 5	14 6	16 7	11 5	13 6	14 6	14 7	
llyushin IL-18	625 350		0.80	16 7	17 8	21 9	29 12	13 6	16 7	20 9	23 11	
llyushin IL-62, 62M	1648 651	47.0	1.65	52 16	58 17	68 19	83 24	51 18	59 18	68 20	77 22	
llyushin IL-76T	1677 822	23.5	0.64	24 9	27 10	34 12	45 16	29 11	33 13	30 15	34 14	

				Fle	xibile Pavem CBR		rades	Rigid Pavement Subgrades k [MPa/m]				$rac{S_T}{S_B}$
	Weight	Load on		High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min	one main gear	Tire Pressure	A	В	C	D	A	В	C	D	[cm]
Athorait	[kN]	[%]	[MPa]	15	10	6	3	150	80	40	20	[em]
				ĺ				I			i	
Ilyushin IL-76TD	1775		0.66	27	30	37	49	32	35	32	37	
	920			11	12	14	19	13	15	18	16	
Ilyushin IL-86	2054	31.2	0.88	34	36	43	61	26	31	38	46	
	1089			15	16	18	23	13	14	16	19	
Jetstream 31, 32 (BAe)	69 56		0.39	3	4 3	5 4	6 5	4	5 4	5 4	5 4	
(DAC)	30				3	7	3	_	7	7	7	
lotatroom 41 (BAs)	107		0.83	_	_	6	7	6	6	7	7	
Jetstream 41 (BAe)	63		0.03	5 3	5 3	6 3	4	6 3	6 3	4	4	
KC-10 (McDonnell	2593		1.22	59	65	79	107	50	59	72	84	
Douglas)	1800			38	40	46	64	32	36	43	51	
KC-135 Stratotanker	1342		1.38	38	41	49	64	35	41	48	55	
(Boeing)	800			20	21	24	31	19	21	24	28	
L-1011-1 Tristar	1913	47.4	1.35	52	56	66	90	45	52	62	72	132
	1070			26	27	30	38	24	25	29	33	178
L-1011-100, 200 Tristar	2073 1090	46.8	1.35	57 26	63 28	75 31	101 39	49 24	58 26	69 29	81 34	132 178
motal	1090			20	20	31	33	24	20	23	34	170
L-1011-250 Tristar	2269		1.35	64	71	86	114	56	66	79	91	
L-1011-250 Ilistai	1108		1.55	27	28	31	40	25	26	30	35	
L-1011-500 Tristar	2295	46.2	1.35	65	72	87	116	56	67	80	93	132
	1070			26	27	30	38	24	25	29	33	178
Learjet 24F	62		0.79	3	3	4	4	4	4	4	4	
	56			3	3	4	4	3	4	4	4	
Learjet 25D, 25F	69 56		0.79	3	4 3	4 3	5 4	4 3	5 4	5 4	5 4	
	30			3	3	3	4	3	4	4	4	
Learjet 25G	75		0.79	4	4	5	5	5	5	5	5	
Learjet 25G	75 56		0.79	3	4 3	3	4	5 3	5 4	4	5 4	
Learjet 28, 29	69		0.79	3	4	4	5	4	5	5	5	
(Longhorn)	56			3	3	3	4	3	4	4	4	
Learjet 31A, 35A,	83		0.79	4	5	5	6	5	5	6	6	
36A	56			3	3	3	4	3	3	4	4	
Learjet 45	91 59		0.79	5 3	5 3	6 3	7 4	6 3	6 4	6 4	7	
	วิช			٥	3	S	4	3	4	4	4	
Looriet EED, 550	07		4.04		•	7	7	_	7	7	0	
Learjet 55B, 55C	97 58		1.24	6 3	6 3	7 3	7 4	7 4	7 4	7 4	8 4	
					-	-			-	•	•	

					xibile Paven CBR			Rigid Pavement Subgrades k [MPa/m]				$\frac{S_T}{S_B}$
	Weight	Load on one main	Tire	High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min [kN]	gear	Pressure	A	В	C	D	A	В	C	D	[cm]
	[·]	[%]	[MPa]	15	10	6	3	150	80	40	20	
Learjet 60	106		1.24	6	7	7	8	8	Q	8	8	
Learjet 60	62		1.24	3	3	4	4	4	8 4	4	5	
Lockheed 188	503		0.95	27	29	33	36	30	32	34	36	
Electra	255			12	13	14	17	13	14	15	16	
MD-11	2805		1.38	67	74	90	119	58	69	83	96	
וו פווי	1200		1.00	24	25	27	34	22	23	26	30	
MD-81	628 350	47.75	1.14	36 18	38 19	43 21	46 24	41 20	43 21	45 23	47 24	
	330			10	19	۷۱	24	20	21	23	24	
MD-82	670	47.55	1.14	39	41	46	49	43	46	48	50	
	350		1.17	18	18	20	24	20	21	22	24	
MD-83	716 355	47.4	1.14	42 18	45 19	50 21	53 24	47 20	50 22	52 23	54 24	
	333			10	19	۷۱	24	20	22	23	24	
MD-87	628	47.9	1.14	36	38	43	46	41	43	45	47	
2 0.	335			17	18	20	23	19	20	22	23	
MD-88	670 350		1.14	39 18	41 19	46 21	50 24	44 20	46 21	48 23	50 24	
	330			10	19	21	24	20	21	23	24	
MD-90-30	699		1.14	41	43	48	52	46	48	50	52	
	392			20	21	24	27	23	24	26	27	
MD-90-30ER	739 392		1.14	44 20	47 21	52 24	55 27	49 23	52 24	54 26	56 27	
	002											
MD-90-50, 55	772		1.14	46	50	54	57	52	54	57	58	
	410			22	22	25	29	24	26	27	28	
	50		0.40									
Mitsubishi MU-2 Srs	52 32		0.48									
Piper Aerostar	29		0.48									
	20											
Dinas Assaba	24		0.00									
Piper Apache	21 13		0.29									
Piper Archer II, III	12		0.17									
	7											
Piper Arrow III, IV	14		0.21									
i ipei Allow III, IV	8		U.Z I									
Piper Aztec	30		0.42									
	18											
								[
												15
												_ •

					Flexibile Pavement Subgrades CBR [%]			R	$\frac{S_T}{S_B}$			
	Weight	Load on one main	Tire	High	Medium	Low	V.Low	High	k [MP Medium	Low	V.Low	S_B
Aircraft	Max/Min [kN]	gear [%]	Pressure [MPa]	A 15	B 10	C 6	D 3	A 150	B 80	C 40	D 20	[cm]
		<u> </u>	[[[11] [[1]	 	10		J	130 I		10	1 20 1	
Piper Cheyenne I,	41		0.55									
II	23											
Piper Cheyenne III	50		0.69									
	31											
Piper Commanche	21		0.29									
	13											
D: 0.1	0		0.40									
Piper Cub (& Super Cub)	8 5		0.13									
Piper Dakota	14		0.17									
. ipoi banota	8		0.17									
Piper Malibu, Mirage, Meridian	21 14		0.35									
Milage, Meridian	14											
Piper Mojave	33		0.42									
	23											
Piper Navajo	29		0.42									
	18											
Piper Saratoga	16		0.38									
i ipei Garatoga	10		0.50									
Piper Saratoga II	16 11		0.27									
Piper Seminole	17 11		0.25									
Piper Seneca III, V	22		0.38									
	14											
Piper Warrior II,III	11		0.17									
	7											
Saab 2000	226		0.69	11	13	14	16	13	14	15	15	
2442 2000	136		0.00	6	7	7	9	7	8	8	9	
Cook 240 A D	404		0.00		7	0	0		0	0		
Saab 340 A, B	131 81		0.82	6 4	7 4	8 4	9 5	7 4	8 5	8 5	9 5	
Shorts 330	102 66		0.55	6 4	8 5	9 6	9 6	7 5	8 5	8 5	8 5	
Shorts 360	121 77		0.54	7 5	9 6	10 7	11 7	9 6	9 6	9 6	9 6	
	11			3	U	,	1		U	U	U	
								I				
												16

				Flexibile Pavement Subgrades CBR [%]				Rigid Pavement Subgrades k [MPa/m]				$\frac{S_T}{S_B}$
	Weight	Load on		High	Medium	Low	V.Low	High	Medium	Low	V.Low	S_B
Aircraft	Max/Min	one main gear	Tire Pressure	A	В	C	D	A	В	C	D	[cm]
111101411	[kN]	[%]	[MPa]	15	10	6	3	150	80	40	20	[em]
Shorts Sherpa	114 80		0.54	7 5	8 6	10 7	10 7	8 6	8 6	9 6	9 6	
Shorts Skyvan	67 56		0.28	3	3 3	4 4	6 5	4 3	4 3	4 4	4 4	
	36			3	3	4	5	3	3	4	4	
Swearingen SJ 30-2	60 56		1.07	3	3 3	3 3	4 4	4 3	4 4	4 4	4 4	
T-33 Trainer (CT-133)(Lockheed)	54 38		0.42									
(
Transall C-160	500 285		0.38	8 4	10 5	13 6	18 8	10 5	10 6	10 6	13 6	
	203			-	3	U	O		O	O	U	
Trident 3	670	45.5	1.14	26	28	31	36	37	40	42	44	125
	383			13	14	15	18	18	19	21	22	65
Tupolev TU-134	463	45.6	0.59	10	12	15	20	9	11	14	17	
	285			5	6	7	10	5	6	7	8	
Tupolev TU-154	961	45.1	0.93	19	22	28	37	18	24	30	36	
	525			9	9	11	16	7	9	12	15	
Tupolev TU-204,	1096		1.38	31	33	40	53	29	34	40	46	
214, 224, 234	560			14	14	16	20	13	14	16	19	
VC10 Series	1590		1.01	48	54	66	83	41	50	60	69	
VOTO GOTIES	785		1.01	19	21	24	31	18	19	22	26	
				1				l				

Annexe D Plan de masse

Abréviation

<u>PCN</u>: numéro de classification de chaussée<u>ACN</u>: numéro de classification d'aéronef

C: degré Celsius

CBR: Indice portant californien

Cm: centimètre

ft:pied

Km: kilomètre

Km/h: kilomètre par heure

Kt: nœud

m: mètre

max: maximum

CWY: prolongement dégagé

ASDA: distance utilisable pour l'accélération-arrêt

LDA: distance utilisable a l'atterrissage

SWY: prolongement d'arrêt

TODA: distance utilisable au décollage

TORA: distance de roulement utilisable au décollage

RESA: aire de sécurité d'extrémité de piste

s: second

PAPI: indicateur de pente d'approche

Symboles:

= : égal ± : plus ou moins

< : Moins grand que > : plus grand que

° : degré % : pourcentage

REFERENCES BIBLIOGRAPHQUES

- [1] Annexe 14 « Aérodromes » conception et exploitation des aérodromes V1, (juillet 2009).
- [2] Document 9157 « Manuel de conception des aérodromes », piste, partie 1, (2006)
- [3] Document 9157 « Manuel de conception des aérodromes » voies de circulation ; aires de trafic et plates-formes d'attentes de circulation
- [4] Aérodromes ; prise en compte des données locales ; Jocelyne Alvarez ; partie 4 (2008).
- [5] Cours Météorologie Mr Loth Bounatiro .
- [6] Office National de la Météorologie (O.N.M).
- [7] Manuel des services des aérodromes ; partie 6.
- [8] Cours Mr Khoudjet « sauvetage et lutte contre l'incendie » (2016).
- [9] Document 9157 « Manuel de conception des aérodromes » Aides visuelles, partie 4 ; 2004.
- [10] Cours Mr Guelmaoui « les aéroports algériens » ; gestion aéroportuaire, master 2 2017.
- [11] Dr M.Abdessemed ; Maitre de conférences en génie-civil.