

UNIVERSITÉ DE BLIDA 1
Faculté des Sciences

Département d’Informatique

DOCTORAL THESIS
Option: Génie des Systèmes Informatiques

PLANNING AND DERIVATION OF PRODUCTS IN SOFTWARE

PRODUCT LINE BASED ON SOFTWARE ARCHITECTURE

by
LAHIANI Nesrine

In front of a jury composed of:

Nadjia Benblidia Professor, U.Blida1 President

Narhimene Boustia Associate Professor, U.Blida1 Examiner

Nacim Chikhi Associate Professor, U.Blida1 Examiner

Walid Hidouci Professor, ESI Algiers Examiner

Djamal Bennouar Professor, U.Bouira Supervisor

Blida, February 2019

 ABSTRACT

Companies are more and more forced to customize their software products for

completely different customers. In practice they often clone an existing system and

adapt it to the customer's needs. In such scenarios software product lines promise

benefits, for example, reduced maintenance effort, improved quality, and

customizability. However, introducing new development processes into a

company is risky and might not pay off . The other advantage is that this fairly

recent software development paradigm allows companies to create efficiently a

variety of complicated products with a short lead-time. This thesis focuses on

product planning and derivation, which is the process of creating individual products

(members) during application engineering using shared product family artifact.

Firstly, we propose to apply Model-Driven Engineering techniques to provide a

systematization of the Domain Engineering therefore to enable the automation of

the Application Engineering. Model-driven techniques commonly rely on the use of

metamodeling as a means to automate model-to-text and model-to-model

transformations. In this work, we use ATL as a model-to-model transformation

language and Acceleo as a model-to-text transformation language.

Secondly, due to the fact that a generalization relation may also exist between

product lines. We propose a new structure to represent a composite software

product line that allows members of the composition to communicate and interact

with each other. The hierarchical structure proposed is based on inheritance that

provides an easily understandable representation. The aim of the representation is

to derive multiple products using a simple but practical method.

Finally, we illustrate the application of our approaches in various case studies in

the context of e-Government Product Lines, from the feature model of each different

product line to the final application. By applying the proposed approach, it becomes

feasible to derive a number of applications in a specific domain.

Keywords: Software Product Line, Product Derivation, Multi Software Product

Lines, Software Architecture

 ملخص

ياجات العملاء. في الممارسة العملية غالبا ما يستنسخ البرنامج ويكيف لاحتو . مختلفة لزبائنهالشركات لتخصيص برمجيات اضطر ت
تحسين نوعية ونةجهود الصيا تقليص :إنتاج البرمجيات لها فوائد عدة، على سبيل المثال في مثل هذه السيناريوهات خطوط

عادة ايذ القديمة لتنف الأنظمةيتم إعادة هندسة ذيلنهج الاستخراجي، والوالتخصيص. في معظم الحالات يتم تطبيق ا
 بالمخاطر وقد لا يؤتي ثماره. الاستخدام. ومع ذلك فإن إدخال عمليات إنمائية جديدة في الشركة أمر محفوف

ات بين هندسة مجيولتفادي تنفيذ برنامج واحد، برزت خطوط منتجات البرمجيات كنهج إنمائي هام. ويجمع خط إنتاج البر
البرمجيات وإعادة استخدام البرمجيات لبناء أنظمة معقدة وعالية الجودة. الميزة الأخرى هي أن هذا النموذج تطوير البرمجيات

 قصيرة. في مدةمجموعة متنوعة من المنتجات المعقدة تصميم يسمح للشركات الحديثة
 هي عملية إنشاء المنتجات الفردية)الأعضاء(خلال هندسة.تركز هذه الأطروحة على تخطيط المنتجات واشتقاقها، و

ت أولا، نقترح تطبيق تقنيات هندسة نموذجية لتوفير نظام من هندسة المجال وبالتالي تمكين أتمتة هندسة التطبيقات. تعتمد التقنيا
 نموذج. في هذا ج إلى نص ونموذج إلىالتي تعتمد على النماذج عادة على استخدام ميتامودلينغ كوسيلة لأتمتة التحولات من نموذ

كلغة التحول نموذج إلى نص. كلتا اللغتين تستند إلى قواعد، Acceleoكلغة تحول نموذج إلى نموذج ATL العمل، نستخدم
 مما يبسط كل من مهمة استخراج المعلومات من ملف يمثل نموذجا ومهمة تحويل هذه المعلومات.

ح التعميم أيضا بين خطوط الإنتاج. نقترح هيكلا جديدا لتمثيل خط منتج مركب البرمجيات التي تسمثانيا، بما انه تجود علاقة
لأعضاء التواصل والتفاعل مع بعضها البعض. ويستند الهيكل الهرمي المقترح إلى الميراث الذي يوفر تمثيلا يسهل فهمه. والهدف

 بسيطة ولكنها عملية.من التمثيل هو استخلاص منتجات متعددة باستخدام طريقة
نوضح تطبيق نهجنا في مختلف دراسات الحالة في سياق خطوط المنتجات الحكومة الإلكترونية، من نموذج ميزة من كل خط
إنتاج مختلفة إلى التطبيق النهائي. ومن خلال تطبيق النهج المقترح، يصبح من الممكن استخلاص عدد من التطبيقات في مجال

 معين.

 .: خط برمجيات الانتاج، اشتقاق المنتج، تعدد خطوط برمجيات المنتج، هندسة البرمجياتئيسيةالكلمات الر

RÉSUMÉ

 Les entreprises sont de plus en plus obligées à personnaliser leurs produits

logiciels pour des clients complètement différents. En pratique, ils clonent souvent

un système existant et l'adaptent aux besoins du client. Dans de tels scénarios, les

lignes de produits logiciels promettent des avantages, par exemple, une réduction

de l'effort de maintenance, une qualité améliorée et une personnalisation.

Cependant, l'introduction de nouveaux processus de développement dans une

entreprise est risquée et pourrait ne pas compenser. L'autre avantage est que ce

paradigme de développement de logiciels assez récent permet aux entreprises de

créer efficacement une variété de produits compliqués avec un court délai. Cette

thèse se concentre sur la planification et la dérivation des produits, qui est le

processus de création de produits individuels (membres) lors de l'ingénierie des

applications en utilisant des artefacts familiaux de produits partagés.

Tout d'abord, nous proposons d'appliquer les techniques d'ingénierie par les

modèles (IDM) pour assurer une systématisation de 1er sous processus «l'ingénierie

de domaine » afin de permettre l'automatisation de 2ème sous processus « la

dérivation des produits». Les techniques axées sur les modèles reposent

généralement sur l'utilisation du métamodèle comme moyen d'automatiser les

transformations de modèle à texte et de modèle à modèle. Dans ce travail, nous

utilisons ATL comme langage de transformation modèle-modèle et Acceleo comme

langue de transformation modèle-texte.

Ensuite, du fait qu'une relation de généralisation peut également exister entre les

lignes de produits. Nous proposons une nouvelle structure pour représenter une

ligne de produits logiciels composites qui permet aux membres de la composition

de communiquer et d'interagir les uns avec les autres. La structure hiérarchique

proposée est basée sur l'héritage qui fournit une représentation facilement

compréhensible. Le but de la représentation est de dériver de multiples produits en

utilisant une méthode simple mais pratique.

Enfin, nous illustrons l'application de nos approches dans diverses études de cas

dans le contexte des lignes de produits e-gouvernement , du modèle caractéristique

de chaque ligne de produits différente à celle de l'application finale. En appliquant

l'approche proposée, il devient possible de dériver un certain nombre d'applications

dans un domaine spécifique

Mots-clés: Ligne de produits logiciels, Dérivation de produits, Multiple Lignes de

produits logiciels, Architecture logicielle.

ACKNOWLEDGEMENTS

This thesis would not have been completed without the help of others. I would

like to take this opportunity to express my gratitude towards them and acknowledge

them.

Thanks to Allah for giving me this opportunity, the strength and the patience to

complete my dissertation finally, after all the challenges and difficulties.

Next, all my gratitude goes to my advisor Pr. Djamal BENNOUAR. Working under

your direction during all these years has been a great experience. Thanks for your

guidance, your advice, your time and specially for being patient enough. In general,

thank you for always having the right words and the good ideas to keep me

motivated and in the good direction to get to the end of this research. It was an honor

having Pr. Bennouar, an authority in the domains of software engineering and

software product lines to be my advisor.

I am grateful to the jury members Pr. Nadjia BENBLIDIA, Pr. Walid HIDOUCI, Dr.

Narhimene BOUSTIA and Dr. Nacim CHIKHI for having accepted to serve on my

examination board and for the time they have invested in reading and evaluating

this thesis.

Finally, I want to thank my family. First of all my parents, I would not be here

without you. Thank you mom for supporting me all these years, for taking care of

me .And to you dad, I know you would be proud of what we have achieved. Then of

course, my brother and my sisters. I also would like to express my warmest and

deepest appreciation to my husband, for his patience, assistance, continuous

support and understanding in everything I done.; thank you all.

CONTENTS

ABSTRACT

ACKNOWLEDJEMENT

1 INTRODUCTION ... 11

1.1 Problem Statement and Research Goals .. 12

1.2 Statement of the Contributions .. 13

1.3 Dissertation Roadmap ... 13

 2 WHAT IS SOFTWARE PRODUCT LINES? ... 16

2.1 Introduction... 16

2.2 Traditional Software Reuse vs. Software Product Line ... 16

 2.3 What is Software Product Lines? .. 17

2.4 Chapter Summary .. 22

3 PRODUCT DERIVATION... 23

3.1 Introduction... 23

3.2 Product Derivation In SPL ... 23

3.3 The Challenges and Difficulties ... 25

3. 4 Overview of Product Derivation Approaches.. 26

3.5 Evaluation Framework ... 29

3.6 Analysis and Discussion .. 31

3.7 Chapter Summary .. 35

4 COMPONENT-BASED SOFTWARE DEVELOPMENT .. 36

4.1 Introduction... 36

4.2 Component-Based Development .. 36

4.3 Current Software Component Models ... 40

4.4 Chapter summary... 50

5 MODEL-DRIVEN PRODUCT DERIVATION APPROACH .. 51

5.1 Introduction... 51

5.2 Our Production Planning .. 51

5.3 Model-Driven Software Product Line ... 53

5.4 Our Model-Driven Product Derivation Approach ... 55

5.5 Related Work ... 63

5.6 Chapter Summary .. 65

6 COMPOSITE SOFTWARE PRODUCT LINES CASE STUDY ... 66

6.1 Introduction... 66

6.2 Inheritance and Hierarchical Spls .. 67

6.3 Modeling Features in IHPL .. 69

6.4 Product Derivation Process for IHPL ... 70

6.5 Validation Case Study .. 73

6.6 Results and Discussion .. 82

6.7 Related Work ... 83

6.8 Chapter Summary .. 84

7 CONCLUSION ... 86

7.1 Summary of the Dissertation ... 86

7.2 Research Contributions ... 87

7.3 Perspectives ... 87

A LIST OF ABREVIATIONS AND ACRONYMS .. 89

REFERENCES ... 90

LIST OF FIGURES

Figure 2.1 The software product line engineering 19

Figure 2.2 e-Shop Feature Model 22

Figure 3.1 SPLE processes.The upper white vertical arrows represent the

product derivation process of selecting and customizing

reusable assets during application engineering.

24

Figure 4.1 Component Interfaces and Facets 41

Figure 4.2 Koala Component 43

Figure 4.3 A Fractal Component. 45

Figure 4.4 The IASA Component Model 47

Figure 4.5 The main graphic notations used by IASA 47

Figure 4.6 The UML 2 Component representation 50

Figure 4.7 Required Interfaces in UML 2 50

Figure 4.8 Components with Ports in UML 2 50

Figure 5.1 Production Planning 51

Figure 5.2 Combination of MDE and SPL 54

Figure 5.3 Overview of our approach 55

Figure 5.4 UML metamodel for feature models 56

Figure 5.5 Example of for e-Health Feature Model 57

Figure 5.6 UML metamodel for Component models 58

Figure 5.7 Feature Configuration Model for e-Health product Line 60

Figure 5.8 Excerpt of Model Transformation Rules 61

Figure 5.9 Process of features-architecture mapping 62

Figure 6.1 Simple Software Product Line 67

Figure 6.2 Hierarchical and Inheritance SPLs 68

Figure 6.3 Generating composition model for IHPL. 70

Figure 6.4 Transformation Models Process 71

Figure 6.5 Feature Model for e-Learning applications 74

Figure 6.6 Generic Feature Model for e-APC applications 75

Figure 6.7 Feature Model for e-Health applications 76

Figure 6.8 Feature Model for e-Meeting Applications 77

Figure 6.9 Composition Model of e-Government applications 78

Figure 6.10 Feature Configuration Model for e-APC product Line 79

Figure 6.11 Feature Configuration Model for e-Meeting product Line 79

Figure 6.12 Feature Configuration Model for e-Meeting product Line 80

Figure 6.13 Component Model for e-Health product Line applications 81

Figure 6.14 Component model for the e-learning Application SPL case

study

81

LIST OF TABLES

Table 3.1 The categories and the framework elements for Characterization and

Comparison of product derivation Approaches
30

Table 3.2 Analysis and comparison of Product Derivation Approaches

Table 5.1 Comparison Framework for product derivation methods
70

Table 5.2 Comparison of our approach with the Related Work
71

Table 6.1 number of features and configuration for e-Applications

91

64

32

82

65

11

CHAPTER1

INTRODUCTION

This chapter presents the context, motivation, objectives and scope of this work, as well

as the thesis contributions.

The notion of software product lines (SPL) has received attention during the 1990s, and

has proven itself in a large number of organizations. A software product line is a set of

software- satisfying the specific needs of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed way [1]. In a software

product line context, software products are developed in two phases, i.e. a domain

engineering process and an application engineering process. Domain engineering

involves, amongst others, identifying commonalities and differences between product

line members and implementing a set of shared software artifacts (e.g. components

or classes) in such a way that the commonalities can be exploited economically,

while at the same time the ability to vary the products is preserved. During application

engineering individual products are derived from the product line, i.e. constructed using a

subset of the shared software artifacts. If necessary, additional or replacement product

specific assets may be created.

The process of creating these individual products during application engineering is

known as Product Derivation. It is the process of constructing a product from a product line

of software assets that is developed using shared product family artifact [2]. In a product

line organization, the use of an effective product derivation process can help to ensure the

return on investments required to develop the platform assets [3]. Product derivation is

hence the focus of this dissertation, which reports on our work of investigating the state-of-

the-art in this field and provides two industrials case studies which detail empirical

evidences on how product derivation is performed in a real organization environment.

Product Derivation is the key activity in application engineering. In this context, this thesis

proposes a model-driven product derivation approach based on Model-Driven Engineering

principles [4, 5]. It addresses the construction of a concrete product from the product line,

which includes the derivation of application artifacts from domain artifacts, for instance

the derivation of Application Requirements from Domain Requirements, the derivation

12

of the Application Architecture from the Domain Architecture and the derivation of

Application Components from Domain Components. Our big challenge is to produce

adapted transformation programs to contain rules able to derive products with the desired

user choices.

The remainder of this chapter describes the focus of this dissertation and starts by

identifying the problems that motivate this research and our research goals in Section 1.1.

Next, Section 1.2 explains the contributions described in this dissertation. In Section 1.3,

we give a brief introduction to each of the chapters of the document. Finally, we list in

Section 1.4 the publications made during the development of our work.

1.1 Problem Statement and Research Goals

The determination of the core assets of a software product line with the similarities and

variability associated with this core represent a very important and strategic step in the

process of implementing an SPL. Product planning and SPL in the derivation of product

today seem not to have reached the highest degree of maturity hardware product lines

(automotive, electronics).The heterogeneity of production plans would lead to a difficulty of

building and composite product line severely limit interoperability. Also, the informal form of

production plans, despite their accuracy for manipulating the human actors of SPL, makes

it difficult to interpret in the context of automatic processing. However, product lines face a

significant number of challenges.

These problems may be summarized in five points:

 How to specify a production strategy for an SPL?

 How to manage multiple and heterogeneous feature Models?

 How to define a generic and automatic derivation approach for SPL that best

conform to stakeholders’ wishes?

 How to structure, model and derive product from a composite SPls?

 How can several SPLs that belong to the same domain interact with each other?

To answers the questions asked above, this thesis focuses on reviewing current product

derivation approaches, identifying their inadequacies and proposing more effective

solutions. The integration of the concepts of software architecture and model-driven

engineering in the process of raising the maturity level of planning and derivation is another

aspect to be explored in the context of this work. The basic concepts of software

architecture, namely component, connector and configuration concepts and model-driven

engineering, should play an important role in the process of obtaining method, tools and

13

model that would make the approaches more effective Product scheduling and derivation

specification and would increase the rate of automation of the derivation process.

The main objectives of this dissertation are summarized next:

 Plan a formal strategy for production in SPL.

 The integration of the concepts of software architecture and model-driven

engineering in the process of raising the level of maturity of the planning and

derivation.

 The introduction and support of component concept in Core Assets.

 Generic and automatic product derivation approach for SPL.

 Modeling composite SPLs and managing multiple feature modes.

1.2 Statement of the Contributions

As a result of this dissertation, the following contributions can be highlighted:

• An analysis of the state-of-the-art of product derivation approaches: This work

presents an overview of related works and a framework to compare and classify Product

Derivation approaches. Also, we give a review on current component-based software

architecture approaches.

• Model-Driven product derivation approach: we apply Model-Driven Engineering

techniques to provide a systematization of the Domain Engineering therefore to enable the

automation of the Application Engineering. Model-driven techniques commonly rely on the

use of metamodeling as a means to automate model-to-text and model-to-model

transformations.

• Composite software product lines case study: a new structure to represent a

composite software product line that allows members of the composition to communicate

and interact with each other. The hierarchical structure proposed is based on inheritance

that provides an easily understandable representation. The aim of the representation is to

derive multiple products using a simple but practical method.

1.3 Dissertation Roadmap

The dissertation is divided in four parts. While this introductory chapter is part of the first

part, the second one encloses the State of Art. The third part presents the contribution of

this dissertation. Finally, the last part includes the conclusions and perspectives of this

14

dissertation. Below, we present an overview of the chapters that compose the different

parts.

 Chapter 2 presents an overview on software product line engineering, its principles,

foundations, architecture and adoption models;

 Chapter 3 depicts a survey on product derivation;

 Chapter 4 depicts a systematic review on component-based software architecture

representing the current state-of-the-art in the area;

 Chapter 5 presents the proposed approach to derive product from an SPL based on

the principals of MDA;

 Chapter 6 presents a new structure to represent a composite SPLs, to achieve the

objectives and validate our results using an example that is a part of a composite e-

Government Product Lines;

 Chapter 7 presents some concluding remarks about this work, its related work, and

directions for future work.

1.4 Publications

We present below the list of research publications related to the work done while developing

the approach described in this dissertation.

International Journal

 Lahiani, N., & Bennouar, D. A DSL-based approach to Product Derivation for

Software Product Line. Acta Informatica Pragensia, 138-143. (2016). DOI:

10.18267/j.aip.90

 Lahiani, N., & Bennouar,D. A Brief Survey on Product Derivation Methods in

Software Product. mediterranean telecommunication journal, Vol. 8, No 1 (2017).

 Lahiani, N., & Bennouar,D. Using inheritance to represent Hierarchical Software

Product Lines. Electronic Government an International Journal. (2018). DOI:

10.1504/EG.2018.10015523

 Lahiani, N., & Bennouar,D. On the use of model transformation for the automation

of product derivation process in SPL. Acta Universitatis Sapientiae, Informatica,

43−57 (2018). DOI: 10.2478/ausi-2018-0003

International Conferences

 Lahiani, N., & Bennouar, D, An MDA Based Derivation process for Software Product

Lines, International Arab Conference on Information Technology (Acit2014), Oman,

2014.

15

 Lahiani, N., & Bennouar, D. Mapping Feature to IASA Architecture to derive product

in Software product Line, International Conference on Advanced Communication

Systems and Signal Processing (ICOSIP), Tlemcen, 2015.

 Lahiani, N., & Bennouar, D, A Model Driven Approach to Derive e-Learning

Applications in Software Product Line, In the proceeding of Proceedings of the

International Conference on Intelligent Information Processing, Security and

Advanced Communication, Batna,2015. Doi:10.1145/2816839.2816850

16

CHAPTER2

WHAT IS SOFTWARE PRODUCT LINES?

2.1 Introduction

In this chapter, we discuss different domains and concepts applied in our proposal,

including Software Product Line. The objective of this chapter is not to present an in-depth

description of all the existing approaches and technologies surrounding these concerns, but

to give a brief introduction to these concerns, used throughout the dissertation. This

introduction aims at providing a better understanding of the background and context in

which our work takes place, as well as the terminology and concepts presented in the next

chapters.

The chapter is structured as follows; we present the main concepts of software product

line engineering. Section 2.2 presents traditional software reuse vs. software product line.

Section 2.3 describes the principles of SPL. Finally, Section 2.4 summarizes the ideas

presented in this chapter.

2.2 Traditional Software Reuse vs. Software Product Line

Both traditional software development and software product line can rely on reuse of the

assets. However, in traditional software development, reuse is not planned and traced.

Despite the fact that, it may have reusable algorithms, components, methods used in the

development which are stored in a repository, it can be longer to find and adapt a reusable

asset from that repository than implementing a new functionality to the system.

Contrary to traditional software development, software product lines plan, manage

and ensure reuse of assets. Decisions are made deliberately in a systematic way with a

strategy. In addition to what has been said, according to the Software Engineering

Institute’s Framework 5.0 “When we speak of software product lines, we don't mean”

 fortuitous, small grained reuse

 Single system development with reuse

 just component-based or service-based development

 just a reconfigurable architecture

 releases and versions of single products

 just a set of technical standards

17

2.3 What is Software Product Lines?

There exist several models of software development processes, e.g., the V-model, the

spiral model or the incremental model. Each of these models describes the different tasks

or activities that take place during the process, required to build the final software. For

instance, a traditional development process usually starts with the analysis of the

customer’s requirements, followed by several phases such as planning, implementation,

testing and deployment. The aim of these processes is to develop one single software

system at a time. By contrast, software product line engineering aims at building several

similar software systems from a set of common elements.

A Software Product Lines can be defined as “is a set of software-intensive systems that

share a common, managed set of features satisfying the specific needs of a particular

market segment or mission and are developed from a common set of core assets in a

prescribed way” [1]. It captures the commonalities between a set of products while providing

for the differences between different instances of the product.

2.3.1 Principles and Benefits

Several benefits motivate the use of product line engineering to develop software

systems. According to [6], the main motivations are:

 Reduction of development costs: An essential reason for introducing product line

engineering is the reduction of costs [6]. When artifacts are reused in several

different kinds of systems from the platform, rather than being developed from

scratch to each product, implying in cost reduction. Thus, the fundamental idea of

product lines is that it takes a family perspective instead of a single product

perspective, which enables large scale reuse across the family members [7];

 Quality improvements: The product line adoption has also high influence on the

quality of the resulting software [6] Since each product is resulted from a set of tested

and reviewed assets, the number of defects expected to each new product can be

considerably lower and consequently the quality level can be increased;

 Reduction of time-to-market: Several products are developed from a common set

of assets, leading to significant reductions in both the development costs and time-

to-market for individual products. However, product line engineering demands for a

higher upfront investment, if compared to single-systems engineering, hence, the

initial time-to-market may be higher since, in order to build the reusable platform it

is necessary a long and dedicated time to the core assets development;

18

 Benefits for the customers: In a software product line, the products may be

customized to specific customers in a simpler way, since variations among products

are defined in anticipation, so that a same artifact may attend to different customer

needs. Thus, customer can purchase products that fit their individual needs and

wishes;

 Reduction of maintenance and evolution costs: When artifacts of the platform are

changed (e.g. for the purpose of error correction) or new artifacts are added into it,

these changes are propagated to all products derived from the platform. It usually

leads to a simpler and cheaper maintenance and evolution, if compared to maintain

and evolve a bunch of single products in a separate way;

 Improved cost estimation: When the reusable core assets are developed, the cost

estimations for products from the product line are straightforward and do not include

many risks. Consequently, the platform provides a sound basis for cost estimation.

2.3.2 Software Product Line Processes

Software product line engineering relies on a fundamental distinction of development for

reuse and development with reuse as shown in Figure 2.1. In domain engineering

(development for reuse) a basis is provided for the actual development of the individual

products. As opposed to many traditional reuse approaches that focus on core assets, the

product line infrastructure encompasses all assets that are relevant throughout the software

development life-cycle [8].

19

Figure 2.1: The software product line engineering framework.

Domain engineering focuses on the development of reusable assets that provide the

necessary range of variability. As domain engineering continues as long as the product line

exists, the underlying software development approach must be able to cope with long-term,

highly complex system development.

According to [8] the activities within domain engineering are as follows:

 Product management: this activity aims to define the products that will constitute the

product line as a whole. In particular, it aims at identifying the major commonalities

and variabilities among the products. The major output of this activity is the product

roadmap.

 Domain requirements engineering: this activity starts with the product roadmap and

aims at a comprehensive analysis of the requirements for the various products in

the product line. It captures these requirements, identifies commonalities and

variabilities and constructs an initial variability model, which supports the further

development steps.

 Domain design: starting from the requirements model, this activity aims at

developing the product line architecture (or reference architecture).

 Domain realisation: this activity encompasses detailed design and implementation

of the reusable software components. At this stage the planned variability which has

20

been expressed as a requirement must be realized with adequate implementation

mechanisms.

 Domain testing: this aims at validating the generic, reusable components that were

implemented as a result of the previous activity. Domain testing is much more

difficult than testing in a single system context, mainly for two reasons: the

implemented variability must be taken into account and there is no specific product

which provides an integration context. In addition, domain testing also generates

reusable test assets that can be reused in application testing.

As a result domain engineering sets up the common product line infrastructure, including

all required variability.

Application engineering focuses on the development of the individual systems on top of

the platform. As a large part of development effort and complexity is moved to domain

engineering, this activity – and thus the underlying life-cycle model – will usually be

profoundly different as it will not need to cope with so much complexity and the development

will not span so much time. On the other hand, application engineering is directly involved

with the customer and thus will often need to deal with much more rapid changes. As a

consequence, a life-cycle model that is able to cope rapidly with changes is required.

According to [8] application engineering consists of the following activities:

• Application Requirements Engineering: This aims at identifying the specific

requirements for an individual product. As opposed to single system

requirements engineering, this starts from the existing commonalities and

variabilities. It is thus the goal of this activity to stay as close as possible to the

existing product line infrastructure.

• Application Design: This activity derives an instance of the reference

architecture, which conforms to the requirements identified in the previous step.

On top of this product-specific adaptations are built. Thus, as far as reusable

components are concerned, the architecture is consistent with the reference

architecture, enabling plug-and-play reuse.

• Application Realisation: Based on the available requirements and architecture,

the final implementation of the product is developed. This includes reuse and

configuration of existing components as well as building new components

corresponding to product-specific functionality.

21

• Application Testing: In this step, the final product is validated against the

application requirements. Similar to the previous steps, this builds on reusable

assets from the corresponding domain activity.

While the details of the integration of domain engineering and application engineering

will strongly depend on the situation, it is important to keep the two apart in terms of different

types of activities that are typically performed with different quality criteria and objectives in

mind.

2.3.3 Feature Modeling

When managing variability in a product line, Linden, F. at al. in [8] distinguish three main

types:

1. Commonality: a characteristic (functionality or non-functional) can be common to all

products in the product line. We call this a commonality. This is then implemented

as part of the platform.

2. Variability: a characteristic may be common to some products, but not to all. It must

then be explicitly modeled as a possible variability and must be implemented in a

way that allows having it in selected products only.

3. Product-specific: a characteristic may be part of only one product – at least for the

foreseeable future. Such specialties are often not required by the market per se, but

are due to the concerns of individual customers. While these variabilities will not be

integrated into the platform, the platform must be able to support them.

Feature modeling is a well-known technique for representing the concepts of a software

domain. In fact, systematic reuse and domain driven approaches, such as Software Product

Lines [1] and Generative Programming [9] rely on some kind of feature based notation.

Perhaps for that reason, several notations for feature modeling have emerged since it

was introduced by [10]. Besides that, they are often used to represent which products

belong to the SPL scope. In order to do that, a feature model describes the relevant features

(or concepts) of a domain and details the constraints among those features. A valid member

of an SPL satisfies all constraints defined in the corresponding feature model. For instance,

consider the feature model of the eShop Product Line depicted in Figure 2.2. Note that it

follows a tree-like notation where the parent-child relationships are categorized as:

 Mandatory relationships represent that whenever a parent feature is selected, the

child feature must also be selected. The Payment feature on Figure 2.2 is

mandatory.

22

 Optional relationships mean that a parent feature does not imply the child feature.

The Search feature is optional.

 Inclusive or relationships define that at least one child of a parent feature must be

select. For instance, a product might be configured with different payment methods.

 Alternative or relationships define that one, and only one child of a parent feature

must be selected. For instance, only one of the available security options might be

available for a given product.

Besides the parent-child relationships, feature models also have global constraints, such

as (CreditCard implies High), stating that if the feature Credit Card is selected, High Security

is also selected.

Figure 2.2: e-Shop Feature Model.

2.4 Chapter Summary

In this chapter, we have briefly introduced on software product line concepts. It included

fundamental aspects of software product lines and some of motivations for applying it as a

suitable software development strategy, highlighting its economic benefits that can be

achieved across the large scale and planned reuse of family members. It is exactly these

production economies that make software product lines attractive [1].

Next, we will present an overview on the product derivation area discussing their

fundamental concepts and challenges. Besides, we present six product derivation methods

and a comparison framework.

23

CHAPTER 3

PRODUCT DERIVATION

3.1 Introduction

Product Derivation (PD) is one of the central activities in Software Product Lines [11].

The PD is the process of constructing a product from a product line of software assets that

is developed using shared product family artifacts [2]. In a product line organization, the use

of an effective product derivation process can help to ensure the return of investment

required to develop the platform assets [12]. Unfortunately, the existing product derivation

approaches and tools have developed with different goals, for different purposes, and in

different domains. Some approaches apply model-driven development techniques; while

others boil down to a collection of guidelines or, in many cases, they provide a high-level

methodology or process framework[12].The fact is that, although there are a considerable

number of approaches, which consider product derivation, still there are many challenges

to be overcome within product derivation field.

The remainder of this chapter is structured as follows: Section 3.2 provides background

knowledge on product derivation. The challenges and difficulties are presented in Section

3.3. Then, the five product derivation methods are briefly presented in Section 3.4. Section

3.5 we introduce a comparative framework for evaluating product derivation methods and

then are compared against the framework in Section 3.6. Section 3.7 summarizes the ideas

presented in this chapter.

3.2 PRODUCT DERIVATION IN SPL

Rather than describing a single software system, the model of a software product line

(SPL) describes the set of products in the same domain. This is done by distinguishing

elements shared by all the products of the line, and elements that may vary from one

product to another.

Software products are developed, in the context of product line engineering, according

to two separate processes, namely domain engineering and application engineering. The

former is dedicated to core asset development while the latter is aimed at yielding products.

24

We focus in this thesis at application engineering known also as product derivation (PD).

PD has been defined in many different ways, McGregor in [13] defines it by “Product

derivation is the focus of a software product line organization and its exact form contributes

heavily to the achievement of targeted goals”.

Deelstra et al. in [2] define product derivation by, “A product is said to be derived from a

product family if it is developed using shared product family artifacts. The term product

derivation therefore refers to the complete process of constructing a product from product

family software assets”.

Figure 3.1 : SPLE processes.The upper white vertical arrows represent the product

derivation process of selecting and customizing reusable assets during application

engineering.

Figure 3.1 depicts a high-level application engineering process. The upper white vertical

arrows represent the product derivation process of selecting and customizing reusable

assets during application engineering. The lower white arrows indicate deployment activities

necessary to arrive at a final product (e.g., deploying and integrating new components

developed to address customer requirements with the existing derived components).

25

A well-defined domain engineering associated with a systematic product derivation

process, where adequate tools support the activities can lead to automatic generation of

products. On the other hand, even with all of these attributes, in many cases, the additional

developments are necessary, since that, in practice, many requirements are not accounted

for in the shared product family artefacts and can only be accommodated by adaptation of

existing components and assets or even new development [14]. Thus, an effective product

derivation approach must also consider those cases. Much of the SPL research to date has

been focused on the domain engineering activities in a way that application engineers can

derive the products with greater ease.

However, there are few research dedicated to the product derivation process [12]. In the

same way, there are only few reports available about how the software development

organizations derive their products from a product lines. These and other difficulties and

challenges are discussed in next sections.

3.3 The Challenges and Difficulties

Deelstra et al. affirms “there is a lack of methodological support for application

engineering and, consequently, organizations fail to exploit the full benefits of software

product families” [2]. Rabiser et al. identified that in comparison with the great amount of

research results on domain engineering activities, only few approaches and tools are

available for product derivation. Much of the SPL research to date has been focused more

on how to scope, define, and develop product lines rather than on how to effectively utilize

them [15]. These issues demonstrate the real necessity of more researches on product

derivation field.

Despite the importance of product derivation, there are difficulties associated with the

process. Hotz et al. describes it as “slow and error prone, even if no new development is

involved” [16]. Griss identifies the inherent complexity and the coordination required in the

derivation process by affirming that “. . . as a product is defined by selecting a group of

features, a carefully coordinated and complicated mixture of parts of different components

are involved” [17]. Therefore, the derivation of individual products from shared assets is still

a time-consuming and expensive activity in many organizations [2] Rabiser et al. enforce

this point when they claim “guidance and support are needed to increase efficiency and to

deal with the complexity of product derivation” [15].

According to Rabiser et al., the area of product derivation is still considered immature

[15]. Existing approaches do not give detailed information on the strategies for product

26

customization, resolving variability, and database model derivation. Besides, the existing

studies provide few details on the required steps, techniques and practices to a product

derivation process. Additionally, there is little support for the derivation process

3. 4 Overview of Product Derivation Approaches

We first provide a brief overview of the six selected approaches and then show the results

of our analysis and comparison in Section 3.5 based on the adapted evaluation framework

introduced in Section 3.4.

PuLSE-I. PulSE (Product Line Software Engineering) is a full life-cycle product line [18]; it

is centred on three main elements: the deployment phase, the technical components and

the support components.

PulSE (Product Line Software Engineering) is a full life-cycle product line [14]; it is

centered on three main elements: the deployment phase, the technical components and

the support components.

The PuLSE-I is the application engineering process of PuLSE, it is centered on the

instantiation of the product line infrastructure (the I in PuLSE-I stands for instantiation) [19].

PuLSE-I details how a single product can be built efficiently from the reusable product

line infrastructure built during the other PuLSE activities. The trigger of PuLSE-I is a

customer or the management having a product request that can be satisfied by the product

line (i.e., the requested product is potentially in the scope of the product line).

Method Process. The method is divided into five main areas of activity, or phases:

 Plan for the product line instance (the product): Determine whether all

characteristics of the required product are covered by the product line.

 Create project plan: Define what is product-specific and what can be fulfilled by the

product line.

 Instantiate and validate product line model: Incrementally resolve decisions

defined in the product line model (representing variation points).

 Instantiate and validate reference architecture: Instantiate variability to derive an

‘‘intermediate architecture’’ from the product line, validate, and then modify if

necessary.

 Product construction: Lower level design, implementation, and testing based on

reusable assets.

DREAM. Kim et al. in [20] proposed a methodology called DREAM a practical product line

methodology stands for DRamatically Effective Application development Methodology.

DREAM adopts the key activities of SPL and model transformation feature of MDA. The

27

methodology allows semi-automatically development of a large number of applications that

vary on behaviour and implementation platform.

However, Kim et al. do not give any details about models used during phases nor the

transformation tool. Moreover, a high level description of the activities and no guidance is

provided on how the approach could be applied.

Method Process. The process consists of 9 phases, and each phase produced various

artifacts with different characteristics. The derivation process starts after three phases of

framework engineering; it used the model created during framework engineering.

 Application Requirement Analysis.

 Application Specific Design.

 Framework Instantiation.

 Model Integration.

 Application Detailed Design.

 Application Implementation.

KobrA. The KobrA method stands for Komponentenbasierte Anwendungsentwicklung that

is German for “component-based application development” [21]. The approach has been

developed by Fraunhofer Institute for Experimental Software Engineering (IESE) [22].

KobrA integrates two approaches component-based and software product line into a

unified approach. It designed for modeling architecture, for developing both single and

family system and to support a model driven architecture (MDA).

KobrA and PuLSE have a relationship between their activities which made KobrA an

object-oriented customization of the PuLSE method. The approach does not provide any

semi-automatic product derivation does not provide a process support, neither a support for

the development of a specific product.

Method Process. Application engineering uses the framework built during framework

engineering to construct specific applications in the domain covered by the framework. The

application engineering process is split into two primary steps:

 Context realization instantiation: It starts when the software development

organization has established an initial contact to a potential customer who is

interested in a software system in the domain of one of the organization's

frameworks. The outputs of this process are the context decisions and a concrete

realization of the application's context.

28

 Framework instantiation: It starts when the application context realization is

(partially) created and thus also the context decisions (partially) exist. The context

decisions are used to initially instantiate the generic.

COVAMOF. Deelstra et al in [2] developed an approach called COVAMOF (Configuration

in Industrial Product Families VAriability Modeling Framework).

COVAMOF is supported by a tool-suite, called COVAMOF- VS This tool-suite is

implemented as a combination of Add-Ins for Microsoft Visual Studio .NET. It is designed

for creating variability models of a product family, and using these models for configuration

of individual products. It provides variation point and dependency views on variability

models and allows defining, configuring, and realizing products following the COVAMOF

derivation process.

Method Process. The COVAMOF derivation process is an instance of the generic

derivation process except it does not focus on the difference between the initial and iterative

phase, but it divided the process into four main steps as presented in [23]:

 Product definition: Defining customer and product name.

 Product configuration: Binding of variation points based on customer

requirements.

 Product realisation: Tool-based translation of the configuration of the variability

model to a configuration of an executable product.

 Product testing: Determining whether the product meets the customer

requirements and deciding whether an additional iteration (product

configuration/realisation/testing) is required.

Pro-PD. Through a series of research phases using sources in industry and academia,

O’Leary in [3] has developed a process reference model for product derivation (Pro-PD) in

Lero (the Irish Software Engineering Research Center) with a specific goal defining a

process reference model for product derivation as a foundation for situation-specific process

approaches to product derivation.

Method Process. Pro-PD is structured around five essential activities: Initiate project,

identify and refine requirements, derive the product, develop the product, test the product,

and management and assessment. Each of these activities contains roles, tasks and

artefacts used to derive products from a software product line. Tasks are units of works that

consume or produce one or more products, Pro PD groups related tasks into activities, each

29

activity has a specific goal, inputs and outputs. These tasks roles are assigned to human

activity

DOPLERUCon. (Decision-Oriented Product Line Engineering for effective Reuse: User-

centered Configuration) has been developed by Mag. Rick Rabiser in [24] at Christian

Doppler Laboratory for Automated Software Engineering. It is a tool-supported approach

for product configuration with capabilities for adapting and augmenting variability models to

guide sales people and application engineers through product derivation. Particular

emphasis lies on support for requirements acquisition and management. The approach also

aims to make variability models accessible to "non-technicians" such as sales people or

customers to fully exploit the benefits of PLE.

Method Process. DOPLERUCon process contains six different activities: (1) Domain expert

prepare product configuration by creating the derivation model. (2) Users defined in the

derivation model perform the actual product configuration by taking decisions visible to

them. (3) In parallel, they capture arising product-specific requirements. (4) Based on these

requirements developers conduct additional development. (5) Finally, engineers integrate

new developments with the selected and customized product and deploy it for the customer.

3.5 Evaluation Framework

An evaluation framework is introduced in Table 3.1. To evaluate each approach we

identify a set of criteria. We start the evaluation from the element of the problem situation,

i.e. the approach context (input requirement and output product of the method). The second

category is the problem solving process, i.e. what does the method itself contain (process,

artifacts, tool...). The last category brings the two previous categories together through self-

evaluation to evaluate the method output.

The goal of our evaluation is to provide an overview of current product derivation in SPL

and find out if - and how - the methods differ from their each other. With various questions

this study tries to address, e.g. maturity, practicality and scope of the methods to find

differences. On the other hand the goal was to study if the methods really have what it takes

to call them a derivation method. These elements were considered in the category of

'contents' by questioning if the methods satisfy the definition of a method. Framework

elements were refined to cover features special for product line methods (e.g. modeling

variability).

We briefly define each element framework next:

30

 Requirement specification: customer’s requirements must be specified

before using it as input, the specification could be textual, model…

 Final Product: the product at the end of the process could be an executable

application, a hardware …

 Method Process: the activities that must be followed to derive a product that

meets customer’s requirements.

 Artifacts: During the derivation process each method produces a set of

artifacts (reference architecture, test, documents...).

 Tool used: some sub-process need tools as eclipse or to model UML.

 Modelling variability is to efficiently describe more than one variant of a

system. Variability can be expressed in stand-alone models, such as feature

diagrams.

 Method maturity validates a method by a case study that could be industrial

or academic show how the method is mature or not.

A more complete summary of this section is given in Table 3.1.

Table 3.1: The categories and the framework elements for Characterization and

Comparison of product derivation methods.

Framework element Description

Requirement specification What is the trigger of the approach?

Final Product What is expected at the end?

Method Process What are the activities needed to derive a product?

Artifacts What are the artifacts created and used during

derivation process?

Tool used What are the tools supporting the method?

Modeling variability What kind of model does the approach use to modeling

variability?

Method maturity Has the method been validated in practical industrial

cases?

Framework element Description

Next we present the six product derivation methods and how this framework can be used

to compare each method against a criterion.

31

3.6 Analysis and Discussion

The purpose of this discussion is to offer guidelines related to the selection of the most

suitable method for product derivation. We selected six approaches for a product derivation

in software product line, not to rate which one is the best but to characterize, to compare

and to see how they differentiate and resemble. The purpose of this discussion is to analyse

the results obtained.

We summarize the results of our analysis and comparison of PuLSE-I, DREAM, KobrA,

Pro-PD, and DOPLERUCon using the evaluation framework first introduced in Section 4 as it

is shown in Table 3.2.

Some observations are evident first the context of the approaches; for specific goal, we

can identify in all approaches a collective goal, which is “satisfy customer’s needs”. Then

same for the input we can observe that to start the process each method needs “customer’s

requirements” which is almost the same for all methods, it’s differ in the format e.g. Pro-PD

translates this requirement before using it. Likewise the output of each approach is almost

the same which is the final product that meets customer's requirements.

Moreover, the contents of the approaches, at this stage we can see how the approaches

differ even though the goal is the same, but no method is similar to another. Some are

abstract and difficult to apply e.g. dream that did not give any guidance or process support,

moreover any details about tools used during the process.

The last criterion was validation, Pulse-I and Dream do not give any details about how

they validate their processes. For the others, they have been validated in practical industrial

case studies, academic or both as DOPLERUCon did.

Finally, in practice how to know which method is the most suitable this is not the purpose

of our research, but to select the right one each criterion must fits with problem context.

32

Table 3.2: Analysis and comparison of Product Derivation Approaches.

Approaches Framework Element

 How does the method specify customer’s requirements?

PuLSE-I- A detailed project plan that considers the set of characteristics upon which the
customer (or the marketing) and the developers have agreed. Each required
characteristic is specified by a detailed description of how it will be supported.

DREAM Translated customer requirement created based on customer requirements and
a glossary.

KobrA Decision models are used to capture the variabilities within applications in the
product line.

COVAMOF The engineer creates a new Product entity in the variability model. The properties
of Product entities are the customer, a unique name for the product, and variation
points that have been bound for the product

Pro-PD Translate the Customer Requirements into the internal organisational language.
The Product Analyst used a customer terminology Glossary

DOPLERUCon Domain experts create a derivation model which can have a name, description,
and purpose. It is further on used to present decisions in the variability model to
decision-makers during product configuration, to store their decisions, and to
capture product-specific requirements.

What are we expected at the end?

PuLSE-I- The delivery process depends on the market size, For the mass market, the
system must first be packaged together with an installation guide to enable any
customer to install it at his/her machine. For small markets, like for individual
systems for single customers, the system is installed by the developers at the
customer’s site.

DREAM Produce executable application code and associated implementations.

KobrA The final results are the application decisions consisting of the context decisions
and the Komponent hierarchy decisions, together with the application realization
and the application tree.

COVAMOF A configuration of an executable product that satisfies all customer requirements.

Pro-PD Product Release that satisfy all customer requirement.

DOPLERUCon Product delivered and/or to be installed for the customer

What are the artifacts created and used during derivation process?

PuLSE-I- Project plan

Domain decision model instance

33

Architecture decision model instance

Low level configuration

Code

Test results

DREAM Application Analysis Model

Application Specific Design

Instantiated Framework

Integrated Application Model

Detailed Design Model

Application Code

KobrA Context decisions

Instance of generic Komponent hierarchy

COVAMOF Product entity

XML-based feature models

C++/C# source files

Pro-PD Two different kind of artifact:

Software artifact.

Documentation artifact.

DOPLERUCon Derivation model

Code source files

Specific–asset

What are the tools supporting the method?

PuLSE-I- DIVERSITY/CDA visualizes the impact of decision made which enable an
immediate validation.

DREAM Not reported

KobrA Commercial UML tool

COVAMOF COVAMOF-VS provides two main graphical views, i.e. the variation point view,
and the dependency.

Pro-PD Eclipse Process Framework(EPF) researcher used it to model the derivation
product process and create a formalised version of Pro-PD

34

DOPLERUCon ProjectKing The configuration preparation activity of DOPLERUCon is supported

by the tool ProjectKing. Domain experts like project and sales managers use the
tool to create derivation models based on variability models.

ConfigurationWizard Domain experts and (software) engineers use the tool to
review and communicate available variability, resolve variability, customize
assets by taking decisions, generate configurations, capture product-specific
requirements, relate product-specific requirements to the existing variability, and
generate requirements specifications

What kind of model does the approach use to modeling variability?

PuLSE-I- PuLSE-CDA (Customizable Domain Analysis)[6].

DREAM Not specified. Any reasonable representation scheme may be used.

KobrA UML in KobrA, each Komponent (KobrA component) in the framework is
described by a suite of UML diagrams as if it were an independent system in its
own right [17].

COVAMOF COVAMOF a variability modeling framework that models variability in terms of
Variation Points and Dependencies [11].

Pro-PD Not reported

DOPLERUCon DOPLERVM the approach was influenced by earlier work by [18] and the
Synthesis project [19] and comprises two main elements: asset and decision.

Has the method been validated in practical industrial cases?

PuLSE-I- The PuLSE approach has been applied in case studies, for example [20] and [10]

DREAM Not reported

KobrA The domain of Enterprise Resource Planning.

It used in the development of the KobrA workbench.

COVAMOF Deelstra, S., Sinnema, M., Bosch, J., 2005. Product derivation in software

product families: a case study [3]

 Industrial validation of COVAMOF. J. Syst. Software [21].

Pro-PD Industrial case study : ROBERT BOSCH GMBH

 further validation of Pro-PD through an inter-model evaluation with the SEI

Product Line Practice Framework

DOPLERUCon Siemens VAI : The case study focuses on SVAI’s automation software for

the continuous casting technology.

 Business Software BMD.

35

3.7 Chapter Summary

In this chapter we have shown the real level of the research at this moment, in this

domain, by presenting and discussing six of the most representative product derivation

methods. We presented a framework that focused on comparing and evaluating different

product derivation approaches.

Next, we will present a reference framework for software component models, which

defines (and explains) terms of reference that we will use throughout this thesis. The

definitions are general, and should therefore be universally applicable. Also, we will present

six current software-Component models in details.

36

CHAPTER 4

COMPONENT-BASED SOFTWARE DEVELOPMENT

4.1 Introduction

The concept of component has been around in the computer hardware industry for a

long time. To build a computer, hardware engineers no longer design tiny, basic elements

from scratch. They simply plug off the-shelf components such as chips, boards, or cards

together. Component-based development has brought a number of benefits to hardware

engineers such as reusability, maintainability, flexibility, and integration readiness. Due to

the constraint of time and budget, software engineers have sought similar techniques for

software development leading in recent years to various techniques for building software

from components. Component models like COM and CORBA (Common Object Request

Broker Architecture) allow software engineers to plug together components in different

languages and platforms. End-users are also benefiting from these technologies: for

example, spreadsheet, word processing, drawing and database applications often use a

component model to embed editable data from one application into the files created and

managed by another [27,28 and 29].

The remainder of this chapter is organized as follows: Section 4.2 defines CBD and

present a reference framework for software component models. Section 4.3 gives an

overview of six current software component models. We summarize the ideas presented in

this chapter in Section 4.4.

4.2 Component-Based Development

Component-based approach has in last year’s shown considerable success in many

application domains. CBD is a concept well known (almost inevitable) and proven in

development of hardware systems. It is based on developing complex systems out of

smaller, well defined components. Although the use of CBD principles in developing

software has advanced in the last decade, Component-based software engineering (CBSE)

still has a lot of room for improvement.

Main goals of CBD are [29]:

 reuse of components, thus shortening time-to-market of new systems;

37

 making the systems easier to maintain and upgrade by making their components

easily replaceable and deployable;

 making the system development easier and more reliable by predicting system

properties from the properties of its components.

In CBD systems are built by combining components using their interfaces. To connect

interfaces of two components, contracts of those interfaces must be satisfied. To ensure

that the components can be deployed to a component framework that will support them at

run-time, and that they can interact with each other, component models are used.

 4.2.1 What is a Component?

The word “component” is used very broadly and often loosely throughout the software

industries. Generically, a component is defined as a computational unit [31]. Components

can be things like clients and servers, databases, filters, and layers in a hierarchical system.

One of the most popular definitions of a component was offered by a working group at

ECOOP (the European Conference on Object-Oriented Programming) [32]:

“A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently

and is subject to composition by third parties”.

This definition emphasizes component composition. As a unit of composition, each

component has its specified interface that determines how it can be composed with other

components.

Sterling in [33] extended the above definition then distinguished three aspects of a

component:

 A specification that describes what the component does and how it should be used.

 A packaging perspective in which a component is considered as a unit of delivery.

 An integrity perspective in which a component is considered as an encapsulation

boundary.

They then defined a component simply as:

“A software package which offers services through interfaces”.

Although these definitions differ in detail, their proposers would probably agree that a

component is an independent software package that provides functionality. Moreover, they

38

all emphasize the importance of well-defined interfaces. The interface could be an export

interface through which a component provides functionality to other components or an

import interface through which a component gains services from other components. All

these definitions also emphasize the “black box” nature of a component: that is, a software

engineer can use one to create a larger system without any knowledge of how it is

implemented.

Most important characteristic of components are [30]:

 Reusability, the ability of a component to be used in different systems;

 Usability by third parties;

 Seamless replacement of a component with newer or different components.

To achieve this it is necessary to separate the implementation of a component from its

interface.

4.2.2 What is an Interface?

Interfaces can be viewed as access points through which the components can exchange

information and cooperate with other components or the component framework.

Interfaces can generally be divided into two groups: provided and required

interfaces. Provided interfaces define services that a component can provide to other

components or the framework. Required interfaces define services that the component

requires from other components or the framework.

As already stated, it is essential that the component's interfaces are separated from the

implementation of the component's services. They are used just to list and describe those

services. By having the services listed and described, it is much easier to

combine components into complex systems. The separation of interface and

implementation enables a component to be replaced with new component that

provides the same interface.

In most modern component models (e.g. COM, JavaBeans, .NET) interface's description

gives just syntactical information. In many cases this information is not sufficient and the

need of contractual definition of interfaces arises.

4.2.3 Contracts

Interface semantics can be viewed as contracts between the provider and the user of

the interface [34]. Through a contract, user of the interface obliges to constraints

39

(preconditions) that the provider sets, and in respect to that, provider of the interface

guarantees some functional and/or non-functional properties.

Hierarchically, we can divide contract definition in four levels [29]:

 Level 1: Syntactic interface. A list of operations including types of their inputs and

outputs. Using the knowledge about types of inputs and outputs, type safety can be

established. Type safety ensures that no run-time error will occur from usage of

operation with wrong type of object.

 Level 2: Constraints on values of parameters and of persistent state variables.

These constraints can be viewed as pre- and post- conditions for an operation. An

example would be a range for the value of variable.

 Level 3: Synchronization between different services and method calls. This level

describes the ordering between different interactions at the component interface. It

also enables the interaction between the component and its environment to be non-

atomic. Automata, temporal logic, process algebras or sequence diagrams can be

used for the description.

 Level 4: Extra-functional properties. Level 4 describes properties like latency, worst

case execution time, memory usage, reliability, robustness and availability.

These properties are of great importance in real-time, embedded and

safety-critical domains. By knowing the extra-functional properties of the

components that will be used in the system, some properties of the system

can be derived before it is actually built.

4.2.4 Component Model

Component model imposes a set of conventions that the components using that model

must adhere to. With that conventions, component model ensures that the components can

be deployed to the component framework and interact with each other.

Types of rules that component models define:

 Types of components that can be used;

 How the components interact with each other;

 How the components bind resources.

In a way, component models define the architecture of systems. That limits the flexibility

of the system, but also speeds up the process of the development because

new architecture does not have to be created.

40

4.2.5 Component framework

Component framework is a run-time infrastructure that upholds the component model

[29]. It manages resources for components and supports component interaction.

Component framework can be viewed as an operating system for the

components [29]. From that viewpoint, components are to framework what

processes are to the operating system. The difference is that the component

frameworks are more compact than operating systems. They are specialized to support

a limited range of component types and interactions between those types. By limiting the

diversity, component composition becomes simpler, more robust and more

predictable. Another difference between component frameworks and operating systems is

that the implementation of the framework does not have to be completely

separated from the components. It is possible that a part of the framework

is implemented by components themselves.

4.3 Current Software Component Models

In this section we describe current software component models. We have selected 6

component models that we encountered in the research literature and in practice.

4.3.1 CCM (CORBA Component Model)

CORBA Component Model [35] evolved from CORBA object model and it was introduced

as a basic model of the OMG’s component specification. The CCM specification defines

an abstract model, a programming model, a packaging model, a deployment model, an

execution model and a metamodel.

Component There are two levels of components [35]: basic and extended. Both are

managed by component homes, but they differ in the capabilities they can offer. Basic

components essentially provide a simple mechanism to “componentize” a regular CORBA

object. Extended components, on the other hand, provide a richer set of functionality. A

basic component is very similar in functionality to an EJB as defined in the Enterprise

JavaBeans 1.1 specification. This allows much easier mapping and integration at this level.

Ports Components support a variety of surface features through which clients and other

elements of an application environment may interact with a component. These surface

features are called ports. The component model supports four basic kinds of ports [35]:

41

 Facets, which are distinct, named interfaces provided by the component for client

interaction.

 Receptacles, which are named connection points that describe the component’s

ability to use a reference supplied by some external agent.

 Event sources, which are named connection points that emit events of a specified

type to one or more interested event consumers, or to an event channel.

 Event sinks, which are named connection points into which events of a specified

type may be pushed.

 Attributes, which are named values exposed through accessor and mutator

operations. Attributes are primarily intended to be used for component configuration,

although they may be used in a variety of other ways.

Basic components are not allowed to offer facets, receptacles, event sources and sinks.

They may only offer attributes. Extended components may offer any type of port.

Components and Facets A component can provide multiple object references, called

facets, which are capable of supporting distinct (i.e., unrelated by inheritance) IDL

interfaces. The component has a single distinguished reference whose interface conforms

to the component definition. This reference supports an interface, called the component’s

equivalent interface that manifests the component’s surface features to clients. The

equivalent interface allows clients to navigate among the component’s facets, and to

connect to the component’s ports. Basic components cannot support facets; therefore

attempts to navigate to other facets will always fail. The equivalent interface of a basic

component is the only object available with which a client may interact. The other interfaces

provided by the component are referred to as facets. Figure 4.1 illustrates the relationship

between the component and its facets.

Figure 4.1: Component Interfaces and Facets.

42

The relationship between the component and its facets is characterized by the following

observations [35]:

 The implementations of the facet interfaces are encapsulated by the component,

and considered to be “parts” of the component. The internal structure of a

component is opaque to clients.

 Clients can navigate from any facet to the component equivalent interface, and can

obtain any facet from the component equivalent interface.

 Clients can reliably determine whether any two references belong to the same

component instance.

 The life cycle of a facet is bounded by the life cycle of its owning component.

Component Identity A component instance is identified primarily by its component

reference, and secondarily by its set of facet references (if any). The component model

provides operations to determine whether two references belong to the same component

instance, and operations to navigate among a component’s references.

Component Homes is meta-type that acts as a manager for instances of a specified

component type. Component home interfaces provide operations to manage component

life cycles, and optionally, to manage associations between component instances and

primary key values. A component home may be thought of as a manager for the extent of

a type (within the scope of a container). A home must be declared for every component

declaration.

4.3.2 Koala

Koala is a component model developed by Philips for building software for consumer

electronics. Koala components are units of design, development and reuse. Koala has a

set of modeling languages: Koala IDL is used to specify Koala component interfaces; its

Component Definition Language (CDL) is used to define Koala components, and Koala

Data Definition Language (DDL) is used to specify local data of components. Koala

components communicate with their environment or other components only through explicit

interfaces statically connected at design time. Koala targets C as implementation language

and uses source code components with simple interaction model. Koala pays special

attention to resource usage such as static memory consumption.

Koala Components are units of design, development, and—more importantly—reuse.

Although they can be very small, the components usually require many person-months of

development effort. A component communicates with its environment through interfaces.

43

As in COM and Java, a Koala interface is a small set of semantically related functions. A

component provides functionality through interfaces, and to do so may require functionality

from its environment through interfaces. In our model, components access all external

functionality through requires interfaces—even general services such as memory

management [36].

Figure 4.2: Koala Component.

In Koala, a component is represented in Figure 4.2. Interfaces is represented as squares

with triangles, the tip of triangle represents the direction of function call. A Koala

component’s interface specifies the signature of a set of functions implemented by the

component.

Koala Interface is a small set of semantically related functions (like in COM). To be more

precise (again), an interface type is a syntactic and semantic description of an interface,

and an interface instance is an interface occurring in a component. An interface type is

described in an interface description language. As it is shown a simple IDL is used ,

resembling COM and Java interface descriptions, in which the function prototypes in a C

syntax is listed [36].

Interface VolumeControl {

Void setVolume(Volume v);

Volume getVolume(void);}

4.3.3 JavaBeans

Developed by Sun Microsystems is based on Java programming language. In the

JavaBeans specification a bean is defined by [37] as:

“A Java Bean is a reusable software component that can be manipulated visually in a

builder tool”.

44

Programming a Java component requires definition of three sets of data: i) properties

(similar to the attributes of a class); ii) methods; and iii) events which are an alternative to

method invocation for sending data. JavaBeans was primarily designed for the construction

of graphical user interface. The model defines three types of interaction points, referred to

as ports: (i) methods, as in Java, (ii) properties, used to parameterize the component at

composition time, (iii) event sources, and event sinks (called listeners) for event-based

communication.

There are a range of different kinds of JavaBeans components [37]:

1. Some JavaBean components will be used as building blocks in composing

applications. So a user may be using some kind of builder tool to connect together

and customize a set of JavaBean components s to act as an application. Thus for

example, an AWT button would be a Bean.

2. Some JavaBean components will be more like regular applications, which may then

be composed together into compound documents. So a spreadsheet Bean might be

embedded inside a Web page.

Here is a simple code to write a SimpleBean Bean component:

 import java.awt.*;

import java.io.Serializable;

public class SimpleBean extends Canvas

 implements Serializable{

 //Constructor sets inherited properties

 public SimpleBean(){

 setSize(60,40);

 setBackground(Color.red); }

SimpleBean extends the java.awt.Canvas component. SimpleBean also implements the

java.io.Serializable interface, a requirement for all Beans. Setting the background color and

component size is all that SimpleBean does.

http://java.sun.com/products/jdk/1.1/api/java.awt.Canvas.html
http://java.sun.com/products/jdk/1.1/api/java.io.Serializable.html

45

4.3.4 Fractal

The FRACTAL component model [38] is a general component model that is intended to

implement, deploy, and manage (i.e. monitor, control, and dynamically configure) complex

software systems, including in particular operating systems and middleware. This motivates

the main features of the model.

 Composite components (components that contain sub-components), in order to

have a uniform view of applications at various levels of abstraction.

 Shared components (sub-components of multiple enclosing composite

components), in order to model resources and resource sharing while maintaining

component encapsulation.

 Introspection capabilities, in or der to monitor and control the execution of a running

system.

 Re-configuration capabilities, in order to deploy and dynamically configure a system.

To allow programmers to tune the control of reflective features of components to the

requirements of their applications, FRACTAL is defined as an extensible system. Control

features of components are not predetermined in the model, rather the model allows for a

continuum of reflective features or levels of control, ranging from no control (black-boxes,

standard objects) to full-fledged introspection and intercession capabilities (including, e.g.,

access and manipulation of component contents, control over components’ life-cycle and

behavior, etc.) [39].

Figure 4.3: A Fractal Component.

As Figure 4.3 shows A FRACTAL component can be understood generally as being

composed of a membrane , which supports interfaces to introspect and reconfigure its

46

internal features, and a content, which consists of a finite set of other components

(called sub-components). The membrane of a component can have external and internal

interfaces. External interfaces are accessible from outside the component, while internal

interfaces are only accessible from the component’s sub-components.

The membrane of a component is typically composed of several controllers. Typically, a

membrane can provide an explicit and causally connected representation of the

component’s sub-components and superpose a control behavior to the behavior of the

component’s sub-components, including suspending, check pointing, and resuming

activities of these sub-components. Controllers can also play the role of interceptors.

Interceptors are used to export the external interface of a subcomponent as an external

interface of the parent component. They can intercept the incoming and outgoing operation

invocations of an exported interface and they can add additional behavior to the handling

of such invocations (e.g. pre- and post-handlers). Each component membrane can thus be

seen as implementing a particular semantics of composition for the component’s sub-

components. Controllers can be understood as meta-objects or meta-groups as they appear

in reflective languages and systems [39].

4.3.5 IASA

IASA (Integrated Approach Software Architecture) is an approach to software

architecture that allows the specification of aspect-oriented software architectures [40].

IASA defines a set of concepts that allows the specification of software architecture in a

very flexible way with a high degree of freedom from any software mechanism constraint,

allowing the specification of software architecture in a way that approaches the mental

model of the architect. The full description of the approach IASA is detailed in [41].

The IASA component model defines a specific organization either for the external view

applicable to any component (primitive, composite, COTS, legacy code) or for the internal

view [42]. The external view is represented by the concept of envelope. The internal view

consists of two parts as shown in Figure 4.4:

The operative part: appears at the top of the IASA component graphics notation, contains

the components achieving the objectives of the core business aspect. Any component

which has an internal structure different from the IASA internal organization of component

is said a primitive component. COTS, legacy code and component written in a programming

language are examples of primitive components.

47

The control part: appears at the bottom of the IASA component graphics not action, is

composed of a controller, which is a specific component dedicated to control the operative

part and a number of components handling the technical aspects). The controller is a

mandatory component of the control part. The components handling technical aspects are

usually called aspect components.

Figure 4.4: The IASA Component Model [41].

In IASA, a component interacts with the external world through a set of ports. A port has

a structure made of access points and a behavior. The instantiation of a component is

realized in the context of the envelope concept. An envelope is used to isolate the pure

instance of a component from its operating environment by avoiding it with the necessary

elements for the operation of the proceeding. The main graphic notations used by IASA are

presented in Figure 4.5.

Figure 4.5: The main graphic notations used by IASA [40].

48

4.3.6 UML 2.0

UML 2 builds on the already highly successful UML 1.x standard, which has become an

industry standard for modeling, design and construction of software systems as well as

more generalized business and scientific processes. UML 2 defines 13 basic diagrams

Types.

Component diagrams are used to model higher level or more complex structures, usually

built up from one or more classes, and providing a well-defined interface. The component

diagram's main purpose is to show the structural relationships between the components of

a system. In UML 1.1, a component represented implementation items, such as files and

executable. Unfortunately, this conflicted with the more common use of the term

component, which refers to things such as COM components. Over time and across

successive releases of UML, the original UML meaning of components was mostly lost.

UML 2 officially changes the essential meaning of the component concept; in UML 2,

components are considered autonomous, encapsulated units within a system or subsystem

that provide one or more interfaces. Although the UML 2 specification does not strictly state

it, components are larger design units that represent things that will typically be

implemented using replaceable modules. But, unlike UML 1.x, components are now strictly

logical, design-time constructs. The idea is that you can easily reuse and/or substitute a

different component implementation in your designs because a component encapsulates

behavior and implements specified interfaces.

In UML 2 they define a component as:

“Component is an encapsulated unit within a system which provides one or more

interfaces. When using components to model the logical architecture (solely in

component diagrams) of a system the term ‘component’ refers to collection of classes

which can be reused and replaced as a whole, when a single logical component can

scattered around multiple physical nodes. When using components to model the physical

architecture of a system (usually in deployment diagrams, but some people that are still

custom to UML 1.x still use it in component diagrams) the term ‘component’ refers to dll,

or some executable”.

In UML 2, a component is represented as rectangle with optional compartments stacked

vertically. A high-level, abstracted view of a component in UML 2 can be modeled as just a

rectangle with the component's name and the component stereotype text and/or icon.

49

Figure 4.6 shows different ways a component can be represented using the UML 2

specification.

Figure 4.6: The UML 2 Component representation.

The assembly connector bridges a component’s required interface (Component1) with

the provided interface of another component (Component2); this allows one component to

provide the services that another component requires as it is shown in Figure 4.7.

Figure 4.7: Required Interfaces in UML 2.

Using Ports with component diagrams as it is shown in Figure 4.8 allows for a service or

behavior to be specified to its environment as well as a service or behavior that a component

requires. Ports may specify inputs and outputs as they can operate bi-directionally.

Figure 4.8: Components with Ports in UML 2.

50

In the next Chapter, we are going to use UML 2.0 as a Software component model to

represent architecture references and product architecture.

4.4 Chapter summary

In this chapter, we have presented a survey of Software Component Models. We start

by defining the principles that are in every component model.

The next chapter presents our proposal of Model-Driven product derivation approach

including the mechanisms we developed for sorting out the drawbacks found in related

work.

51

CHAPTER 5

MODEL-DRIVEN PRODUCT DERIVATION APPROACH

5.1 Introduction

In the previous part (Stat-of-art), we have presented a background on what we need in

our work. We have also discussed the current product derivation approaches and shown

also the limitations of each one and how are dedicated to a specific domain, in aim to

propose a generic product derivation.

This chapter first introduces in Section 5.1 the production planning we proposed to

produce and derive product from SPL. Then, we present in Section 5.2 presented how MDE

can be used to enhance SPL Engineering. We show that MDE can be used to support the

derivation of product line members. Section 5.3 describes in details the Model-Driven

Product Derivation Approach proposed. At the end, we summaries the main ideas of this

chapter.

5.2 Our Production Planning

In this section we propose a planning to produce product in SPL. We introduce in this

section the production planning that we need before the development of a product derivation

approach.

Each SPL organization has to follow a strategy to build products in efficient way as it is

shown in Figure 5.1.

Figure 5.1: Production Planning.

We ask the following questions:

52

1. How can product development satisfy the organization’s goals for the software

product line?

2. What processes, models, and technologies can be used to ensure consistency

across the core assets?

3. What does the product developer need to know to effectively utilize the core assets

to develop products?

The production strategy is a high-level answer to the first question. The production

strategy coordinates the design and use of the core assets. It begins as an informal notion,

evolves concurrently with the core assets, and is ultimately documented in the production

plan. The production strategy is based on the product line goals and influenced by the

technologies to be used during production. This strategy specifies techniques and

conditions for product development that support those goals.

Our main Goals are: (1) reduced development time and (2) improved quality, so our

strategy is used automation wherever possible.

The Production method is the answer to the second question. A production method

specifies a complete set of processes, models, and technologies to be utilized in product

production and that satisfies the production strategy.

To satisfy the production strategy we are going to combine Model-Driven Engineering

and Software Product Line in aim to automate the product derivation.

Finally, the production plan answers the last question. Each core asset has an attached

process that is created by the core-asset developer and that describes how the core asset

is used in product production. The production plan is a description of how the attached

processes cooperate to yield a product.

The production plan specifies the following:

 inputs needed to build a product;

 activities that result in a completed product ;

 roles and responsibilities of the product developers;

 interactions needed with other groups in the organization;

 schedule and resources associated with building the product.

The product developer needs the production plan to be:

 Efficient. All activities in the production process are required to produce the specific

product being developed;

53

 Complete. All information that is needed is in the production plan;

 Understandable. The information in the production plan is usable without outside

assistance;

 Usable. The product developer is able to locate needed information quickly and

easily.

5.3 Model-Driven Software Product Line

Model Driven Development (MDD) is a relatively new paradigm where models are central

in the development. Model Driven Architecture (MDA) is a framework for software

development proposed by the Object Management Group (OMG) in 2001[43] (i.e., MDA is

a concrete realization of MDD). The notion of Model Driven Engineering (MDE) emerged

later as a paradigm generalizing the MDA approach for software development [44].

5.3.1 Definition

Model-driven is a paradigm where models are used to develop software. This process is

driven by model specifications and by transformations among models. It is the ability to

transform among different model representations that differentiates the use of models for

sketching out a design from a more extensive model-driven software engineering process

where models yield implementation artifacts. Model Driven Architecture provides specific

means for using models to accomplish the understanding, design, construction,

deployment, maintenance and modification of software.

MDA’s modeling techniques distinguish between business and technical aspects. This

advocates that the designer must first capture the business concerns of the system in a

model, called the Platform-Independent Model (PIM), while abstracting away technical

details. Then, the PIM is transformed into a Platform-Specific Model (PSM) by introducing

technical aspects of the target platform (in an MDA context). In general, a key challenge is

the transformation of these models.

This transformation is usually specified by a set of precise mapping rules (more shortly).

Finally, the resulting PSM can be used to generate implementation code

5.3.2 Why MDE?

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated

with developing complex software-intensive systems [45]. In general, model-driven is a

paradigm to reuse specific patterns or domains of software development. This emerges

54

through the extensive use of models, which replaces cumbersome (and usually repetitive)

implementation activities. In this way, model-driven approaches improve development

practices by accelerating them. According to Koniti, specific benefits of MDE are [46]:

1. productivity,

2. reduce cost,

3. portability,

4. reduced development time,

5. improved quality.

Overall, the main economic reason behind model-driven is the productivity gain achieved,

which is reported by some studies [47].

5.3.3 Combination MDE-SPL

The main idea is to represent all the 4 phases of application engineering by MDA model

as shown in Figure 5.2. The requirements for the system are modeled in a computation

independent model, CIM describing the situation in which the system will be used [48]. After

that, application design is transformed in a platform independent model, a PIM, is built. It

describes the system, but does not show details of its use of its platform [48]. Then integrate

both models into one PIM model. Application detailed design is modeled in PSM the

platform specific model produced by the transformation is a model of the same system

specified by the PIM; it also specifies how that system makes use of the chosen platform

[48]. Finally, the PSM obtained contained all the information necessary to produce computer

program code.

Figure 5.2: Combination of MDE and SPL.

Application

Requirements

Engineering

Application

 Realisation

Application

Design

Application

Detailed

Design

Computational

Independant

Model

 CIM Platform

Independant

Model

PIM
Platform

Specific

Model

PSM

Code

SPL MDE

55

This thesis adheres to the MDE principles, in particular for domain specific language

design. We use the meta-modelling technique when addressing the definition of modelling

languages. Moreover, the concept of model transformation is also extensively used. Hence,

the notions of model, meta-model, model conformance and model transformation are major

concerns on which this thesis relies on for the achievement of its contributions.

5.4 Our Model-Driven Product Derivation Approach

Our approach is founded on the principles and techniques of software product lines and

model driven engineering. Figure 5.3 illustrates the main elements of our approach and their

respective relationships.

Figure 5.3: Overview of our approach.

5.4.1 Domain Engineering

Domain Analysis. Domain analysis [49] or Feature modelling is the first activity to define

the commonality and variability that can be expected to occur among the SPL members

identified in the product line's scope. The main goals of domain requirements engineering

are the development of common and variable domain requirements. We use feature model

56

[50] to present the similarities and variations among the products identified in the product

line's scope that can be expected to occur.

To build our metamodel we modify the metamodel proposed by Czarnecki et al. [50]

below by adding operation as class for the purpose of the transformation rules; we depict it

in Figure 5.4. All Features in the Feature Model have distinct names and may have

composing members.

Figure 5.4: UML metamodel for feature models.

As an example, we define the feature model for e-Health Product Line, as Figure 5.5

shown as a result of the metamodel shown in Figure 5.4 doctors could connect via the

application to follow up (1) remote consultation (via phone/message) and (2) manage

patient’s accounts. Patient also must do (3) a registration so that he/she can consult and

(4) pay using its own credit card or just by bank transfer which are alternative features only

one could be chosen. Drug refill and offline consultation are two optional features that could

be chosen or just left.

Feature

+name: String
+description: String
+isOptional: Boolean = false
+isRoot: Boolean = falseAttribute

+name: String
+type: String

Product
Operation

+name: String

0..*

0..1

Dependency

+name: String

child

0..*

Alternative Require Standard

2 0..*

0..*

FeatureGroup

+isXor: Boolean = false

*

0..1

0..*

Parameter

+name: String

0..*

57

Figure 5.5: Example of for e-Health Feature Model.

The output of domain requirements engineering provided to domain design

encompasses all defined domain requirements including commonality and variability as well

as the definition of the product line variability in the feature model.

Domain Design. The main goal of the domain design sub-process is to produce the

reference architecture, defining the main software structure and the texture. The architect

determines how requirements, including variability, are reflected in the architecture. An

important characteristic of this architecture is the ability to select and configure reusable

software artefacts.

At this stage the proposed derivation approach uses the mapping technique [51] in aim

to map features to architecture model. After that, feature model is considered as an input

parameter and then is processed by a model-to-model (M2M) transformation written in ATL

(Atlas Transformation Language) [52] that creates an Architecture Model which composed

of a set of rules and helpers. The rules define the mapping between the source and target

model. The helpers are methods that can be called from different points in the ATL

transformation. This model describes all components that have to be included to implement

this particular Application Feature Model. We need to create in the target model all the

model element types that compose a component model as it’s shown in Figure 5.6.

58

Figure 5.6: UML metamodel for Component models.

These are the rules to transform a Feature model to a Component model:

 For each feature instance, a component instance has to be created:

 Their names have to correspond.

 For each feature Attribute instance, a component attribute instance has to be

created.

 Their names have to correspond.

 Their Types have to correspond.

 The Classes have to correspond.

 For each dependency a connector has to be created

 Their names have to correspond.

 For each operation a port has to be created

 Their names have to correspond.

 The Classes have to correspond.

Domain Realization. The goals of the domain realization sub-process are to provide

the detailed design and the implementation of reusable software assets, based on

Model

Connector

+name: String

Client

Port

+name: String

Server

Component

+name: String0..*

0..*

1..*

Attribute

+name: String
+type: String

0..*
1..*

+source

1

1
+target

1

1

59

the Architecture Model obtained in the domain design. In addition, domain realization

incorporates configuration mechanisms that enable application realization to select

variants and build an application with the reusable artifacts. The model obtained in

Domain Design is then processed by a model-to-text (M2T) transformation which generates

an equivalent textual configuration implemented using Acceleo language [53] to promote

the generation of Java. This tool specializes in the generation of text files (code, XML,

documentation) starting from models. Using Acceleo we can generate the source code

based on templates and models expressed with EMF [54].

5.4.2 Application Engineering

The main goal of application engineering is to derive a software product line application

by reusing as many domain artefacts as possible. This is achieved by exploiting the

commonality and the variability of the product line established in domain engineering. In this

part we will show how the feature model is used in the application engineering sub-

processes:

 Consider the commonality and the variability of the product line when defining the

requirements for a specific application.

 Document the selected variants.

 Bind the selected variants from requirements to the architecture and to the

components.

Product Analysis. The main goal of product analysis is to document the requirements

artifacts for a particular application and at the same time reuse, as much as

possible, the domain requirements artefacts. Domain analysis creates the product

analysis artefacts, which are reused for the application under consideration. The product

analysis sub-process reuses the domain analysis artefacts to define the application

requirements artefacts. The product analysis artefacts serve as a basis for application

design.

A feature configuration is the production of this activity which is a legal combination of

features that specifies a particular product. This activity uses feature models as input to

select the feature relevant for customer’s requirements to build the product and identify the

specific-assets of the product. Once the selection is checked and validated by the product

designer the output at this stage is a specialized version of feature model (application

feature model).

60

We use FeatureIDE [55] an Eclipse plug-in for Feature-Oriented Software Development

to create the feature configuration model defining the desired features in the new product

being built; Figure 5.7 illustrates the selected features. We use a text-to-model

transformation to obtain this model as an instance of the metamodel shown in Figure 5.4.

Figure 5.7: Feature Configuration Model for e-Health product Line.

Product Design. The main goal of the product design activity is to produce the product

architecture model. The product architecture model is defined for the particular product

being developed, considering its desired features defined in the feature configuration model.

The product architecture is a specialization of the reference architecture developed in

domain design.The application architecture is passed on to product realization where the

reusable components and interfaces are assembled and where application-specific

components and interfaces are developed.

During product design, the meta-transformation is used to generate from the feature-to-

architecture transformation rule the Model Architecture artifact. This transformation is then

applied to the feature configuration model to automatically generate the product

architecture. The result is product architecture model generated by the rule shown in Figure

5.8, applied to the feature configuration model shown in Figure 5.7.

61

Figure 5.8: Excerpt of Model Transformation Rules.

Product Realization. The goal of product implementation is to build the actual product,

considering the architectural organization defined in the product architecture. The

corresponding component implementations developed during the domain implementation

must be used to obtain the implementation of the product. Product realization provides the

detailed design and implementation of application-specific components and configures

them with the right variants of the domain assets into applications. The main results of

application realization are the application-specific components and interfaces, the selected

variants of reused components, and the application configuration.

At this stage we write a program that generates Java code from our previously created

architecture model using Acceleo. Our goal is to transform the features into java classes

and Attribute into class properties, and finally generate set and get methods for class

properties.

5.4.3 Feature-Component Mapping Technique

We use in the two sub-process defined previously (Domain engineering and Application

Engineering) a mapping technique in aim to bind feature to component. We propose

following the fourth next steps to map feature to component (figure 5.9):

62

Figure 5.9: Process of features-architecture mapping

Step1 (Pre-Derivation): Initially step1 uses feature models as input to select the feature

relevant for customer’s requirements to build the product and identify the specific-assets of

the product. Once the selection is checked and validated. The output at this stage is a

specialized version of feature model (instance). Features are classified into two kinds:

common features which are mandatory and variable features which make the difference

between the product-line members, we need to distinct between features to facilitate the

two next steps.

Step 2 (Common-Architecture Extraction)

To build the common architecture an extraction of common features is needed. We capture

from feature model similarities which means all mandatory features that are common to

every product. Once the set of common feature is obtained we create for each feature a

component or a set of components combined in a specific way.

We subdivide our features into two kinds: (1) technique and (2) aspect to build the

corresponding architectural model.

 Step 3(Variable-Architecture Extraction) :Same as previous step we capture the

variable features and also identifying customer's specific requirements if they exist.

According to the final instance of feature model created on the first step (Pre-derivation) we

map variable features to component. Then, in case of existing specific-requirements we

based on information about their relationship with the available features, if it is possible we

just modify an already existing components to adapt the new customer's wishes, else we

63

develop completely a new component from the scratch. At the end of this step we generate

the variable architecture by creating for each feature a component.

Step 4 (Architectures Linking): Common and variable architectures are required to be

linked each other and to do that connector provides the mechanisms for interconnecting the

components and coordinating their interactions. Connectors between components are built

according to dependencies that appear between features in feature model instance.

All connectors are created in the second step with the common architecture, when the

variable component is added to the architecture we just activate the connector. The

component is connected to another according to its interfaces that contain a set of required

and/or provider services.

Some of them are exclusive; some can be active only if another specific feature is also

active, and so on. These dependencies can be grouped as activation dependencies. A

connector need to activate/deactivate the components mapped from the features.

5.5 Related Work

In this section, we cite the state-of-the-art related to product derivation approaches.

Then, we compare our approach to the existing ones.

5.5.1 Background on Product Derivation by Transformation

Perovich et al. in [56] employ model-driven techniques to transform a feature model to

specific product architectures. However, the domain design is specified in terms of ATL

transformation rules, therefore the transformation processes is not completely automated.

Such an approach is complex and makes the SPL architecture design process difficult.

An approach for deriving the architecture of a product by selectively copying elements

from the SPL architecture based on a product-specific feature configuration is proposed in

[57, 58]. The SPL architecture model contains variability to cover all products’ aspects. This

approach concerns only with the derivation of the high level product architecture. The

mapping between features and the components realizing their implementation is done

through an implementation model. A prototype that implements the derivation as a model

transformation is described in the Atlas Transformation language.

Tawhid et al. in [59] proposed to derive an UML model of a specific product from the

UML model of a product line based on a given feature configuration is enabled through the

64

mapping between features from the feature model and their realizations in the design

model. The mapping technique proposed aims to minimize the amount of explicit feature

annotations in the UML design model of SPL. Implicit feature mapping is inferred during

product derivation from the relationships between annotated and non-annotated model

elements as defined in the UML metamodel and well-formed rules. The transformation is

realized in the Atlas Transformation Language (ATL).

González-Huerta et al. in [60] presented a set of guidelines for the definition of pattern-

based quality-driven architectural transformations in a Model-Driven SPL development

environment. These guidelines rely both on a multimodel that represents the product line

from multiple viewpoints as well as on a derivation process that makes use of this

multimodel to derive a product architecture that meets the quality requirements.

5.5.2 Comparison

An evaluation framework is introduced in Table 5.1. To evaluate each approach we identify

a set of criteria. The goal of our evaluation is to provide an overview of current product

derivation in SPL and find out if - and how - the methods differ from their each other.

Table 5.1: the categories and the framework elements for Characterization and Comparison

of product derivation methods

Framework element Description

Requirement specification What is the trigger of the approach?

Final Product What is expected at the end?

M2M Does the approach support M2M transformation?

M2T Does the approach support M2Ttransformation?

Transformation language In which language the transformation is written?

Automation Is the process automatic?

Mapping technique Does the approach use any mapping technique?

As it is shown in Table 5.2 we summarize the results of our analysis and comparison of

related works and our approach using the evaluation framework.

65

Some observations are evident and we don’t need to include in the comparison table first

the context of the approaches; for the input we observed that to start the process each

method needs “customer’s requirements” which is almost the same for all methods, it’s differ

in the format. Likewise the output of each approach is almost the same which is the final

product that meets customer's requirements. From the comparison, we observe that any

works processed the model obtained in the M2M transformation by M2T transformation.

 Table 5.2: Comparison of our approach with the related work.

Approaches M2M M2T Mapping

techniques

Automation Transformation

language

Botterweck et al. 2007 ATL

Perovich et al. 2009 ATL

Tawhid et al 2011 ATL

González-Huerta et al. 2014 QVT-Relations

Our Approach ATL/Acceleo

5.6 Chapter Summary

Derivation of a product from an SPL seems to be an easy step since it’s relied on reuse.

Actually the product derivation represents one of the main challenges that SPL faces due

to time-consuming.

Our primary goal is to make product derivation more efficient. To this end, we (1)

integrate feature modelling to structure the SPL implementation to facilitate product

derivation and (2) define a model-driven product derivation process, which transforms a

feature configuration into an executable product. In this chapter, we detailed we intended

to reduce the development time of a product by automating the derivation by generating

some java code using Acceleo in conjunction with ATL.

 The next chapter, we propose a new structure to represent composite SPLs. in order to

better explain the general concepts, the problems related to this thesis and our approach to

achieve the thesis objectives and validate our results, through this document we use an

example that is a part of a composite e-Government Product Lines.

66

CHAPTER 6

HIERARCHICAL SOFTWARE PRODUCT LINES CASE STUDY FOR

VALIDATION

6.1 Introduction

To avoid single software implementation Software Product Lines (SPLs) have emerged

as an important development approach. A software product line combines software

architecture and software reuse to build both complex and high-quality systems. The other

advantage is that this fairly recent software development paradigm allows companies to

create efficiently a variety of complicated products with a short lead-time.

Software product lines that belong to the same domain could have at least one

characteristic in common or could also be inter-dependent. A generalization relation may

also exist between product lines. The second contribution of this thesis is a new structure

to represent a composite software product line that allows members of the composition to

communicate and interact with each other.

Complex software-intensive systems comprise many subsystems that are often based

on heterogeneous technological platforms. A composition of SPLs could be a solution for

such large systems. For example, each subsystem could be built as a product line which is

then combined with other product lines to form a product line of product lines or a

composition of SPLs. In this context that, in this chapter, we explore the following three

research questions:

RQ1: How can several SPLs that belong to the same domain interact with each

other?

RQ2: Could one SPL acts as a master and manipulates other SPLs?

RQ3: What structure responds to both RQ1 and RQ2?

The remainder of this chapter is organized as follows. We discuss related work in Section

6.2. In Section 6.3 we sketch an outline of our approach. Section 6.4 we present the

derivation process starting from modeling IHPL to deriving an architecture model. We

conclude with a summary and discussion of future work in Section 6.5.

67

6.2 Inheritance and Hierarchical SPLs

Software Product Lines is traditionally defined as a set of software-intensive systems

sharing a common, managed set of features that satisfy the specific wishes of a particular

market segment or mission and that are developed from a common set of core assets in a

prescribed way [1]. A simple software product line is represented by a set where the borders

of the set are known as product lines scope. The scope of the product line is the collection

of the products that form part of the product line. In other words, the scope encompasses

all the products that the product line is capable of including [9]. This concept of a “simple

software product line” is illustrated in Figure 6.1.

 All the individual members of the set are distinguished from each other by the values of

their variables. It is entirely possible that some members of the family may theoretically exist

but not yet be built. Also, some features may not exist. In this case a specific feature must

be built to adapt the new customer's requirements. Once the new feature is developed it

will be added to the set. In case of unauthorized (or nonsensical) combinations of variables

the SPL may be undefined at some points within the boundaries.

Figure 6.1: Simple Software Product Line.

While some domains need a simple SPL which is well understood and whereby products

can be automatically generated others, such as complex systems, demand a larger variety

of products, hence the composition of several SPLs is needed. Manipulating more than one

SPL at the same time means using different feature models, which is more complicated.

One way to reduce complexity is by using a top-down hierarchical structure as we argue in

this thesis. We developed an inheritance and hierarchical product lines approach, which

consists of representing composite SPLs in a multiple levels (hierarchical) where each SPL

68

(child) is able to inherit all the components of the super SPL. We call arbitrary the

compositions of SPLs IHPL (Inheritance and Hierarchical Product Lines). Figure 6.2 shows

the structure of our composite SPLs. In what follows we will detail each part of the figure.

Figure 6.2: Hierarchical and Inheritance SPLs.

IHPL structure work well and could be implemented if the following conditions are met:

 The set of SPLs chosen to build the structure must belong to the same domain;

 At least one common feature is shared between SPLs;

 Variability must be present in each SPL member of the structure to be able to talk

about large variety of products.

The proposed structure can be defined as a collection of SPLs starting at a root node

(SPL master), where each node is an SPL consisting of a set of features (commons,

variables) with the constraints that no SPL is duplicated. This organization allows

decomposing higher-level SPLs into more detailed ones.

Likewise, the structure imposes hierarchical inheritance where the root serves as a super

SPL (base SPL) which is an abstract SPL and its feature could be expressed as follows:

SPLroot.listF=SPL1.listF ∩ SPL2.listF∩…∩ SPLn.listF,

where SPLx.listF is the list of features along with their type common (features that are part

of each product) and variable (features that are only part of some products).

This expression is available for each parent to construct the list of common features of

all its descendants. Each SPL is linked directly to only one parent (Single inheritance)

69

except the root, with constraints that where selecting a child implies selecting all features of

its parent.

In order to obtain a larger scope we combine SPLs with other features from other SPLs

from the same tree but only if the combination of variables is permissible and worthwhile.

Therefore, the main role of the root node, which is an abstract SPL, is to carry out a product

derivation through interaction between different SPLs and the combination of variables. This

product derivation is detailed in the next section.

6.3 Modeling Features in IHPL

A feature is usually defined as “a system property that is relevant to some stakeholder

and is used to capture commonalities or discriminate among systems in a family” [9] or “a

logical unit of behavior specified by a set of functional and non-functional requirements”

[61]. Recently, Berger et al. in [62] presented a qualitative empirical study that answers the

question “what is a feature?” and provides an in-depth analysis of 23 features in real-world

by covering settings based on interviews investigating the practical use of features in three

large companies.

Therefore, features modeling focus on identifying external visible characteristics of

products in terms of commonality and variability, rather than describing all the details of

products such as other modeling techniques. Feature models were first introduced in the

FODA (Feature-oriented domain analysis) method [10], which also provided a graphical

representation through feature diagrams.

To model a composition of SPLs several approaches can be applied as explained by

[50] or [63] where a cardinality-based feature model is used to specify specializations and

constraints in feature modeling. Whereas, Invar an approach proposed by Dhungana et al.

in [64] allows the configuration of multi product lines by bridging heterogeneous variability

modeling models, e.g., to configure a feature model, an OVM (Orthogonal Variability Model)

model, and a decision model side-by-side.

Given that creating and maintaining a single feature model is not desirable for large

systems [64, 65, and 66], approaches for separating feature models according to different

views [67] or concerns [68] have been proposed. Likewise IHPL cannot be developed as a

single SPL. Accordingly, we propose to model separately each SPL of the composition with

the same variability modeling technique and decide not to use one single feature model for

the whole composition. On the other hand we generate from several feature models a single

hierarchical top-down composition model as shown in Figure 6.3.

70

Figure 6.3: Generating composition model for IHPL.

To represent the relationship between SPLs the composition model uses the concept of

inheritance of classes known from OOP (Object Oriented Programming) where each class

represents an SPL. Each class of the model is represented in IHPL by a rectangle divided

into three compartments .The first shows the name of the SPL, the second its features and

the third constraints between features if they exist.

 6.4 Product Derivation Process for IHPL

Product derivation represents a key element in software product line for its quality has a

direct impact on software product costs and time-to-market. In order to derive products in

IHPL we describe the required steps below.

6.4.1 Transformation Models

Figure 6.4 illustrates the main elements of our approach and their respective

relationships.

Next we briefly explain the activities of second sub-process (Application Engineering)

that we detailed in the previous chapter. In Figure 25 we show the transformation process.

71

Figure 6.4: Transformation Models Process.

The first activity of our approach is the feature configuration. A feature configuration is a

legal combination of features that specifies a particular product. Step1 uses feature models

as input to select the feature relevant for customer’s requirements to build the product and

identify the specific-assets of the product. Once the selection is checked and validated by

the product designer the output at this stage is a specialized version of feature model

(application feature model). After that, application feature model is considered an input

parameter and then is processed by a model-to-model (M2M) transformation written in ATL

(Atlas Transformation Language) that creates an Architecture Model which composed of a

set of rules and helpers. The rules define the mapping between the source and target model.

The helpers are methods that can be called from different points in the ATL transformation.

This model describes all components that have to be included to implement this particular

Application Feature Model. The model is then processed by a model-to-text (M2T)

transformation which generates an equivalent textual configuration implemented using

Acceleo language to promote the generation of Java.

6.4.2 Feature-Component Mapping

Feature-Architecture mapping can be used to facilitate product derivation in software

product line. Our proposal is a process for the generation of an architecture model for a

specific product, starting from features that are organized as feature models according to

the requirements of the domain. As we detailed in the previous chapter, our process of

mapping consists of four steps. Before starting the fourth principal steps, two important

inputs are required:

• Customer’s requirements: to describe what customer needs, their

requirements documented in natural language (textual requirements) or by

conceptual models (model-based requirements).

72

• Feature Model: Our feature model focus on identifying external visible

characteristics of products in terms of commonality and variability. Features can

be common, optional, or alternative.

We propose the following four next steps to build the architecture:

Step 1 (Pre-Derivation): Initially step1 uses feature model as input to select the feature

relevant for customer’s requirements to build the product and identify the specific-assets of

the product. Once the selection is checked and validated by the engineer the output at this

stage is a specialized version of feature model (instance). Features are classified into two

kinds: common features, which are mandatory and variable features, which differentiate

between the product-line members for we need to distinguish between features to facilitate

the next two steps.

Step 2 (Common-Architecture Extraction): To build the common architecture an

extraction of common features is needed. We capture from feature model similarities which

means all mandatory features that are common to every product will be considered. Once

the set of common feature is obtained we create for each feature a component or a set of

components combined in a specific way.

Step 3 (Variable-Architecture Extraction): Same as previous step we capture the variable

features whilst at the same time taking into account customer's specific requirements where

applicable. According to the final instance of feature model created on the first step (Pre-

derivation) we map variable features to components. Then, in case where specific-

requirements exist we use information about their relationship with the available features

Wherever possible we just modify an already existing component to incorporate the new

customer's requirements, otherwise we search for the feature required in other SPLs by

navigating through the composition model generated from the set of feature models. For

this navigation we first, traverse horizontally the composition model which is a local

navigation with the aim to match each feature of its descendants with the desired specific

feature. Second, in cases where the local navigation identified no matches we traverse this

time the composition model vertically which is a global navigation. The latter type of

navigation provides access to others SPLs that allow us to search for the required feature.

Finally, if the specific feature does not exist in any SPL we develop a completely new

component from scratch. At the end of this step we generate the variable architecture by

creating for each feature a component.

Step 4 (Architectures Linking): Common and variable architectures are required to be

linked to each other. In order to do that a connector provides the mechanisms for

73

interconnecting the components and coordinating their interactions. Connectors between

components are built according to dependencies that appear between features in the

feature model instance.

All connectors are created in the second step with the common architecture, when the

variable component is added to the architecture we just activate the connector. The

component is connected to another according to its interfaces that contain a set of required

and/or provider services.

Some features are exclusive; some can be active only if another specific feature is also

active, and so on. These dependencies can be grouped as activation dependencies. A

connector need to activate/deactivate the components mapped from the features.

6.5 Validation Case Study

In the context of an e-Government product lines, we present in this section a simple case

study to illustrate the overall process, from the feature model of different product lines to the

final architecture model. By applying the proposed approach, it becomes possible to derive

a number of applications in a domain.

6.5.1 e-Government Product Line

To provide government services to citizens and business groups we develop different

electronic applications, e-learning [69], e-APC, e-Health and adding e-Meeting [70] to our

IHPL.

The first step is to define the commonality and variability that can be expected to occur

among the SPL members identified in the product line's scope.

We will give a brief definition of each e-application along with their feature models in the

following:

 e-Learning platforms intended for learning online aims to ease and improve the

teaching-learning process by means of taking advantage of internet technologies e.g.

Moodle. E-Learning is just-in-time education integrated with high velocity value chains [71].

It is the delivery of individualized, comprehensive, dynamic learning content in real time,

helping the development of knowledge communities, linking learners and practitioners with

experts. Generally, e-learning improves the flexibility and quality of the education by [72]:

74

 providing access to a range of multimedia resources, such as, sounds,

animations, videos and graphics;

 supporting the reuse of high quality and expensive resources;

 supporting increased communications between teachers and students and

between students;

 enabling teachers to provide different materials to the students from different

backgrounds;

 encouraging students to choose materials according to their own interests

and to study at their own rhythm;

 helping students to take responsibilities for their own studies.

Figure 6.5 shows part of feature model we constructed for e-learning. This feature model

specifies that e-learning applications must (1) connect to a database, (2) supply a HMI

(Human Machine Interface), (3) use collaboration tool and (4) provide a different kind of

Courses. The full description of the feature model is detailed in [69].

Figure 6.5: Feature Model for e-Learning applications.

e-APC The e-APC system aims to enable any citizen to access through the internet various

services of a local government institution called APC (Assemblée Populaire Communale

(in French), the local authority in Algeria). Most frequently required services by the citizen

from the APC are the production of official documents like birth and marriage certificates.

Civil State Service is a service inside the APC that delivers such official documents.

Currently, a citizen requiring any of these certificates must present himself/herself to the

75

APC with the necessary proof documents and ask an APC officer to deliver him or her, the

desired documents. The current process is time-consuming and lacks efficacity. Some key

disadvantages include the long waiting time for the production of such documents (in some

situation a day represents the time unit) and the high rate of errors since some operations

are achieved manually and only some services are dealing with a software solution.

Figure 6.6: Generic Feature Model for e-APC applications.

We constructed a feature model for e-APC as is depicted in Figure 6.6. This feature

model specifies that the e-APC application has four main features: (1) the kind of services

that the application can provide (Civil state service); (2) the different functions that the

application must contain (Technical function); (3) additional services that the application

could have (Secondary service); and (4) the Human Machine Interface (HMI) that must

have.

The HMI could contain or not Theme which is an optional feature, but must contain only

one of three different languages (FR, EN, and AR) since these features are mutually

exclusive alternatives. Also, Secondary service is an optional feature which contains three

services that help citizens to download via internet: (1) an official template, (2) publish

documents or just an online view of documents.

76

Two mandatory features must be used (1) civil state services which allow a citizen to

declare different events, extract his/her civil documentation or manage mentions. (2)

Technical functions for the second mandatory feature contains three other features that

manage users, authentication and also monitoring the output (documents).

e-Health Health-related Internet technology applications delivering a range of clinical care,

content, and connectivity, are referred to collectively as e-health. E-Health does not

characterize only a technical development, but also a state-of-mind, a way of thinking, an

attitude for networked, to ameliorate health care locally, regionally, and worldwide by using

information and communication technology. The most remarkable attribute of e-Health is

that it is enabling the transformation of the health system from one that is barely focused on

curing diseases in hospitals by health professionals, to a system focused on keeping

citizens healthy by affording them with information to take care of their health whenever the

need arises, and wherever they may be. E-health is promoted as a mechanism to bring

growth, gain, cost savings, and process improvement to health care.

Figure 6.7: Feature Model for e-Health applications.

As Figure 6.7 shown doctors could connect via the application to follow up (1) remote

consultation (via phone/message) and (2) manage patient’s accounts. Patient also must do

(3) a registration so that he/she can consult and (4) pay using its own credit card or just by

bank transfer which are alternative features only one could be chosen. Drug refill and offline

consultation are two optional features that could be chosen or just left.

77

e-Meeting Meeting can be found in various fields as in: meetings for year- end deliberation,

meetings of a Scientific Council, meetings of business leader,… etc. Meeting over an

electronic medium (through web-based software) aims to facilitate meetings without

physically travelling to an agreed location and also avoid some problems that may occur

when organizing face-to-face meeting as cost, availability...etc. Voice over Internet Protocol

or VoIP is the most important aspect to the majority of web-based e-meeting application.

VoIP allows voice transmission over the internet, which is the main to facilitating a real-time

e-meeting. Some e-meeting applications also allows participants to create graphs and

charts in real-time, likewise record and save the entire meeting so it can be reviewed at a

later date.

Guendouz et al. have constructed feature model for e-Meeting and divided into three

diagrams according to the type of features it includes: Business features, technical

features, and implementation features.

We modify and simplify the feature model proposed by Guendouz et al. in [70].

Figure 6.8: Feature Model for e-Meeting Applications.

As Figure 6.8 shows, the main features of an e-Meeting application are “Create meeting”

and “Manage meeting”. Each e-Meeting application must allow at least the planning of a

meeting and the generation of reports. However, in some cases a prior step can be needed

before performing a meeting which is: the discussion of the meeting item, modeled by

“Request_Meeting” in the Feature model. “Management of recurring items” feature can be

included if the customer is interested to the history of previously treated items, there results,

statistics about them and so on.

“Configuring” a Meeting is an optional feature that consist in preparing the application by

fixing the meeting type (video, audio), in addition to the needed tools to run a meeting

according to the user’s requirements. “Meeting tools” might include “Attendance

78

management”, “Participation management”, “Schedule manage”... the application can

eventually be extended by new tools if required.

6.5. 2 Composition Model

Composition model uses the concept of inheritance of classes known from OOP to

represent the relationship between SPLs. Based on the set of feature models we generate

the composition model (UML Diagrams) from Java code in Eclipse using the ObjectAid UML

Explorer for Eclipse. As shown in Figure 6.9 the classes of the composition model are

subclasses of an abstract SPL class called e-Government and it contains common features

as authentication, registration, security...etc.

Figure 6.9: Composition Model of e-Government applications.

6.5. 3 Deriving Products

During product analysis we use FeatureIDE to create the feature configuration model

defining the desired features in the new product being built; Figures (6.10, 6.11, and 6.12)

illustrate the selected features. We use a text-to-model transformation to obtain this model

as an instance of the metamodel.

79

Figure 6.10: Feature Configuration Model for e-APC product Line.

Figure 6.11: Feature Configuration Model for e-Meeting product Line

80

Figure 6.12: Feature Configuration Model for e-Meeting product Line.

 During product design, the meta-transformation is used to generate from the feature-to-

architecture transformation rule the Model Architecture artifact. This transformation is then

applied to the feature configuration model to automatically generate the product

architecture. The result is product architecture model generated by the transformation rules

and applied to the feature configuration model shown in Figures (6.10, 6.11, and 6.12)

separately.

As Figures (6.13 and 6.14) illustrate a fragment of the resulting PRODUCT

ARCHITECTURE model generated by the rule, applied to the FEATURE

CONFIGURATION MODEL. The e-Health and e-Learning product lines applications

componenst composed by the subcomponents generated by the rules.

81

Figure 6.13: Component Model for e-Health product Line applications.

Figure 6.14: Component model for the e-learning Application SPL case study.

82

Final activity in application engineering is the application realization. At this stage we

write a program that generates Java code from our previously created architecture model

using Acceleo, which navigates the model and creates the source code (∗.java files for

Java). Our goal is to transform the features into java classes and Attribute into class

properties, and finally generate set and get methods for class properties. here is the code

used to create a bean for each of the classes defined in our target model:

[comment encoding = UTF-8 /]
 [module generate('http://www.eclipse.org/uml2/3.0.0/UML')/]

 [template public generate(aClass : Class)]
 [file (aClass.name.concat('.java'), false)]
 public class [aClass.name.toUpperFirst()/] {
 [for (p: Property | aClass.attribute) separator('\n')]
 private [p.type.name/] [p.name/];
 [/for]

 [for (p: Property | aClass.attribute) separator('\n')]
 public [p.type.name/] get[p.name.toUpperFirst()/]() {
 return this.[p.name/];

 }
 [/for]

 [for (o: Operation | aClass.ownedOperation) separator('\n')]
 public [o.type.name/] [o.name/]() {
 // TODO should be implemented
 }
 [/for]

 }
 [/file]

 [/template]

6.6 Results and Discussion

In this section we report the results of the evaluation using the proposed approach and

transformation rules. We carried out our experiment on a Toshiba Intel Core i5 4th Gen and

4 GB of RAM running Windows 7 Pro. We experimented the proposed derivation process

on four deployment scenarios (e-University, e-Hospital …Etc.) using ATL/Acceleo. As it is

shown in Table each e-Application used for the experiments had features and its number

of valid configurations.

Table 6.1: number of features and configuration for e-Applications

 e-Learning e-APC e-Health e-Meeting

Number of Features 29 43 22 12

Number of Configurations 244 2084 48 64

83

For each scenario, we used the automated techniques described in the previous chapter to

transform Feature model into architecture model.

We tested the derivation of a product architecture for 4 random possible feature

configurations with our e-Government case study. In all cases the product architecture was

correctly derived. Furthermore, we also tested the detection of mapping errors. First, for

each architectural variants with dependencies to other features, we tested the mappings of

wrong feature dependencies. Second, we tested if any of the features described in the all

e-Government system were missing during the mappings between these features and

architectural elements. In all cases, our prototype detected the mapping error. One of the

goal of our production strategy is to reduce the time of development. With respect to this

purpose, a reduction of time and effort part has been clearly observed for all scenarios. The

second goal is to use automation wherever possible, the degree is high, and the processes

are automated as far as possible. This automation also takes care of the model consistency

from the Feature Model through configuration to and the architecture model from which

finally the code is generated.

We faced some problems during the experiments and that we could see it as a limitation of

our approach. One of this problem is there is some missing information that is not yet

provided by the feature model, for example the visibility of operations or attributes or special

data types. Feature model still might not be capable of capturing really all the required

information for the implementation of the domain. Moreover, it is important to provide

support for test of final product against the customer’s requirement.

6.7 Related Work

Every existing approach of modelling the integration of multiple feature modelsand

structering multi product lines can be considered related work. So far, works about multiple

SPls have been proposed ,we structure our discussion related work in the areas of Product

Lines that supply other Product Lines,Automatic configuration of MPLs, velvet and Invar.

SPLs that supply other SPLs in a SOA environment are described by [73]. Their work

focus was on modeling the interfacing between SPLs in a service-oriented environment.

This includes service registration and service consumption.

Rosenmüller et al. presented in earlier work [74] an extension of existing modeling

techniques design and configure MPLs. Therefore they use composition models that

describe how an MPL is composed from multiple SPL instancesin aim to automate the

84

configuration of Multiple SPLs which is required to handle the resulting complexity. Then,

recent work also by Rosenmüller et al. where they present a language for multi-dimensional

variability modeling in [75] called Velvet that allows domain engineer to model each

variability dimension of an SPL separately, then compose the separated dimensions and

finally configure SPL. The syntax of Velvet uses parts of the syntax of TVL (text-based

variability language) [76]. This improves reuse of FMs and supports independent modeling

variability dimensions. Furthermore, Velvet combines feature modeling and configuration in

a single language.

Invar (Integrated view on variability) an approach proposed by Dhungana et al in [78]

and the tool prototype was presented in a short tool demonstration paper [64]. Invar allows

to “plug-and-play” variability models. “Plugging” means simply adding new variability models

to a shared repository. “Playing” means present the options to the end-user to allow her to

configure the required product. The Invar prototype supports integration of three different

variability modeling approaches, i.e., a feature modeling [77] , a decision modeling [78] ,

and an orthogonal variability modeling approach [79] .Invar enables the communication

between different languages and tools for variability management. It eliminates the need

to stick to one concrete variability modeling approach when designing multi product lines.

A configuration front-end for end users transparently presents models created in different

notations. Recently, [80] provide an extension to this previous work by extending Invar with

different model enactment strategies allowing different orders in a configuration process

based on multiple models.

In contrast to the approaches presented above, we propose to model SPLs separately

and then generate a composite model for the whole IHPL. Our approach used an existing

SPL modeling technique and we think that a single feature model for IHPL is not desirable

for large systems. Therefore, a composition model is required to sufficiently model MPLs.

6.8 Chapter Summary

We presented in this chapter IHPL an approach that structures a set of SPLs that belong

to the same domain. To facilitate communication between SPLs we model each SPL

separately and then generate a composition model.

Further, we propose to derive an architecture model by mapping feature to component.

The Feature-component mapping technique proposed is composed of four steps to

sequentially produce a software architecture model. By instantiating the initial feature

model, an instance of a feature model is constructed according to customer’s requirements.

85

Then, separate features are constructed into two types: common and variable. The main

idea is to create for each feature a component or a set of components combined in a specific

way. Linking these created components together based on the relationships among features

in the feature model is the last step of our process.

86

CHAPTER 7

CONCLUSION

In this chapter, we summarize our thesis dissertation by summarizing the challenges and

goals addressed, and we outline our contributions. Then, we discuss our perspectives

related to the work presented in this dissertation.

7.1 Summary of the Dissertation

Product Derivation is the process of constructing a product from a product line of

software assets [2]. An effective product derivation process within an organization brings

the return of investment required for setting up the product line by allowing deriving

customized products quickly and in an automated way [81]. However, when compared to

the vast amount of research on software product lines, relatively few works has been

dedicated to the process of product derivation [81].

A recent published report points out to an increasingly interest for product derivation

related aspects, due to its importance for an organization [15]. However, this research field

still lacks a set of improvements, especially in case of Software Product Line Engineering

as described in [15]. Existing approaches do not give detailed information regarding

strategies for product customization, variability resolution, or database model derivation. In

addition, there is just a few existing approaches that provide support for the derivation

process other than a high level description of the activities required.

In this work we presented a comparison framework for product derivation. To evaluate

each approach we identify a set of criteria. We start the evaluation from the element of the

problem situation, i.e. the approach context (input requirement and output product of the

method). The second category is the problem solving process, i.e. what does the method

itself contain (process, artifacts, tool...). The last category brings the two previous categories

together through self-evaluation to evaluate the method output.

The goal of our evaluation is to provide an overview of current product derivation in SPL

and find out if - and how - the methods differ from their each other. With various questions

this study tries to address, e.g. maturity, practicality and scope of the methods to find

differences.

87

Then, we proposed an approach for product derivation based on Model-Driven

Engineering technology. To automate the process of Product Derivation we use the

metamodelin. In this work, we use ATL as a model-to-model transformation language and

Acceleo as a model-to-text transformation language.

Finally, a new representation of composite Software Product Lines is proposed in this

work in aim to validate the product derivation approach proposed. We illustrate the

application of our approaches in various case studies in the context of e-Government

Product Lines, from the feature model of each different product line to the final application.

7.2 Research Contributions

The main contributions of this work can be split into the following aspects:

 Comparison Framework: an overview of related works and a framework to

compare Product Derivation approaches based on a set of criteria.

 A Model-Driven Product Derivation Approach: Our approach is founded on the

principles and techniques of software product lines and model driven engineering.

This thesis adheres to the MDE principles, in particular for domain specific language

design. We use the meta-modelling technique when addressing the definition of

modelling languages. Moreover, the concept of model transformation is also

extensively used.

 A composite Software Product Lines: a new structure to represent a composite

software product line that allows members of the composition to communicate and

interact with each other. The hierarchical structure proposed is based on inheritance

that provides an easily understandable representation. The aim of the

representation is to derive multiple products using a simple but practical method.

7.3 Perspectives

This work can be seen as an initial climbing towards an understanding of product

derivation in software product lines, and interesting directions remain to improve what was

started here and new routes can be explored in the future. Thus, the following issues should

be investigated as future work:

 More Empirical Studies. This research presented the analysis, comparison,

planning, derivation, structuring, and validation by e-Government case study.

However, new studies in different contexts, including more companies and other

88

domains are still necessary in order to increment a set of empirical evidences

extracted.

 Tool Support. The tool to support the product derivation process and implements

the requirements defined in is still not complete. Moreover, it is important to provide

support for test of final product against the customer’s requirement.

89

A List of Abbreviations and Acronyms

ATL Atlas Transformation Language

CBD Component-Based Development

CBSE Component-based software engineering

CCM CORBA Component Model

CIM Computation Independent Model

CORBA Common Object Request Broker Architecture

COVAMOF Configuration in Industrial Product Families VAriability Modeling Framework

DREAM DRamatically Effective Application development Methodology

DSL Description Specific Language

EMF Eclipse Modeling Framework

IASA Integrated Approach Software Architecture

KobrA Komponentenbasierte Anwendungsentwicklung

M2M Model-to-Model

M2T Model-to-Text

MDA Model-Driven Architecture

MDE Model-Driven Engineering

PD Product Derivation

PIM Platform-Independent Model

PSM Platform-Specific Model

SPL Software Product Line

UML Unified Modeling Language

XML Extensible Markup Languag

90

REFERENCE

1. Clements, P. and Northrop,L. ,” Software Product Lines: Practices and Patterns”,

The SEI series in software engineering, Addison-Wesley, Boston, (2002).

2. Deelstra, S., Sinnema, M., and Bosch, J., “Product derivation in software product

families: a case study”, The Journal of Systems and Software, V.74, n° 2, (2005),

173-194.

3. O’Leary, P, “Towards a Product Derivation Process Reference Model for Software

Product Line Organisations”, Ph.D. thesis, University of Limerick, (2010).

4. Schmidt, D.C, “Guest editor’s introduction: model-driven engineering”, IEEE

Comput, V.39, n°2, (2006),25–31

5. Stahl, T., Voelter, M. and Czarnecki, K., “Model-Driven Software Development

Technology, Engineering, Management”, John Wiley & Sons, (2006).

6. Pohl, K., Böckle, G.v.d. and Linden, F., “Software Product Line Engineering:

Foundations, Principles, and Techniques”, Springer Science & Business Media,

(2005).

7. Schmid, K., “Planning Software Reuse - A Disciplined Scoping Approach for

Software Product Lines”, Ph.D. thesis, Fraunhofer IRB Verlag, (2003)

8. Linden, F. V. D., Schmid, K., and Rommes, E., “Software Product Lines in

Action:The Best Industrial Practice in Product Line Engineering”, Springer, Berlin,

Heidelberg,(2007), 3-20.

9. Czarnecki, K., Eisenecker, U. W., Goos, G., Hartmanis, J., and van Leeuwen, J.

Generative programming. Edited by G. Goos, J. Hartmanis, and J. van Leeuwen,

15, (2000).

10. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S., “Feature-

oriented domain analysis (FODA) feasibility study “,n°. CMU/SEI-90-TR-21),

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, (1990).

11. Botterweck, G., O’Brien, L., and Thiel, S, “Model-driven derivation of product

architectures”, In Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, ASE ’07, New York, NY, USA,

(2007), 469–472.

12. O’Leary, P., Rabiser, R., Richardson, I., and Thiel, S., “Important issues and key

activities in product derivation: experiences from two independent research

projects”, In Proceedings of the 13th International Software Product Line

Conference, SPLC ’09, Pittsburgh, PA, USA. Carnegie Mellon University, (2009),

121–130.

91

13. McGregor, J., “Goal-driven Product Derivation”, Clemson University and Luminary

Software LLC, U.S.A. Journal of object technology, (2009).

14. Wolter, K., Hotz, L., and Krebs, T., “Model-based configuration support for software

product families”, Springer, Boston, MA, (2006), 43-61.

15. Rabiser, R., Grünbacher, P., and Dhungana, D., “Requirements for product

derivation support: Results from a systematic literature review and an expert

survey”, Information and Software Technology, V 52, n°3, (2010), 324-346.

16. Hotz, L., Günter, A., Krebs, T., and Fachbereich, H. C., “A knowledge-based product

derivation process and some ideas how to integrate product development”. In in of

Software Variability Management Workshop, (2003), 136–140.

17. Griss, M. L., “Implementing product-line features with component reuse”, In

Proceedings of the 6th International Conference on Software Reuse: Advances in

Software Reusability, London, UK. Springer-Verlag, (2000), 137–152.

18. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and

DeBaud, J.M, “PuLSE: A methodology to develop software product lines”, In

Proceedings of the Symposium on Software Reusability (SSR’99), (May 1999).

19. Bayer, J., Gacek, C., Muthig, D., and Widen, T, “PuLSE-I: deriving instances from a

product line infrastructure”, in 7th IEEE International Conference and Workshop on

the Engineering of Computer Based Systems, (2000), 237-245.

20. Kim, S.D., Min, H.G., Her, J.S., and Chang, S.H., “DREAM: A Practical Product Line

Engineering using Model Driven Architecture”, in Proceedings of the Third

International Conference on Information Technology and Applications (ICITA‟05),

IEEE Computer Society: Washington, DC, USA, (2005), 70-75.

21. Atkinson, C., Bunse, C., and Bayer, J., “Component-based product line engineering

with UML”, Addison-Wesley, London, New York, (2002).

22. Atkinson, C., Bayer, J., and Muthig, D., “Component-based product line

development: the KobrA approach”, in Proceedings of the first conference on

Software product lines : experience and research directions, (2000).

23. Sinnema, M., Deelstra, S., Nijhuis, J., and Bosch, J., “COVAMOF: A Framework for

Modeling Variability in Software Product Families”, In: Proc. 3rd Int’l Conf. Software

Product Lines (SPLC 04), San Diego, (2004).

24. Rabiser,R. , “A User-Centered Approach to Product Configuration in Software

Product Line Engineering”, in Christian Doppler Laboratory for Automated Software

Engineering, PhD Thesis, Institute for Systems Engineering and Automation,

Johannes Kepler University, Linz, (2009).

25. Software Productivity Consortium, “Synthesis guidebook”, Technical report, SPC-

91122-MC, Herndon, Virginia, (1991).

92

26. Sinnema, M. and Deelstra, S., “Industrial Validation of COVAMOF”, Journal of

Systems and Software,V. 81, n°4, (2004), 584-600.

27. D’Souza, D. F. and Wills A.C., “Objects, Components, and Frameworks with UML–

the Catalysis Approach”, Addison-Wesley, Reading, Mass, (1997).

28. Jacobson, I., Griss M., and Jonsson P., “Software Reuse, Architecture Process and

Organization for Business Success”, ACM Press, Addison-Wesley Longman,

(1997).

29. Szyperski C., “Component Software, Beyond Object-Oriented Programming”, ACM

Press, Addison-Wesley, (1998).

30. Crnkovic, I., and Larsson, M. P. H., “Building reliable component-based software

systems”. Artech House, (2002).

31. Shaw M. and Garlan D., “Software Architecture - Perspectives on an Emerging

Discipline”, Prentice Hall, (1996).

32. Szyperski, Clemens, Gruntz, D., and Murer, S.,“Component software: beyond

object-oriented programming”, (2002).

33. Sterling,L. , “Modeling with Interface”, In: Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 1. ACM, (2002), 3-

10.

34. Beugnard, A., Jézéquel, J. M., Plouzeau, N., and Watkins, D., “Making components

contract aware”, Computer, V.32, n°7, (1999), 38-45.

35. OMG CORBA v 4.0 Available at: http://www.omg.org/spec/CCM/4.0/PDF/

36. Van Ommering, R., Van Der Linden, F., Kramer, J., and Magee, J., “The Koala

component model for consumer electronics software”, Computer, V.33, n°3, (2000).

78-85.

37. JavaBeans specification, Sun Microsystemsé,, Avaliable

http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html, 1997).

38. Bruneton, E., Coupaye, T., and Stefani, J. B., “The fractal component model. Draft

of specification”, version, 2(3), (2004).

39. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J. B. “The fractal

component model and its support in java”, Software: Practice and Experience, V.36,

n°11, (2006), 1257-1284.

40. Bennouar,D. and and HENNI,A., “A Review of an Aspect Oriented Architecture

Description Language”, The Meditaranen Journal of Computers and Networks, V.6,

n°1,(2010),15-22.

41. Bennouar,D., “The Integrated Approach to Software Architecture”, PhD thesis, ESI,

Oued Smar,Algies, (2009).

93

42. Bennouar,.D, Khammaci, T., and Henni A., “A New Approach To Component's Port

Modeling In Software Architecture”, ACIT’2007, Lattikia, Syria, (December2007).

43. OMG. “MDA Guide version 1.0.1”. OMG document 2003-06-01, (2003).

44. Kent, S., “Model Driven Engineering”. In 3rd International Conference on Integrated

Formal Methods (IFM 2002), Turku, Finland, (May2002),15-1.

45. Schmidt, D.C.: Guest editor’s introduction: “model-driven engineering”, IEEE

Comput, V.39, n°2, (2006), 25–31.

46. Kontio, M., “Architectural Manifesto: The MDA Adoption Manual”, (2009)

47. Herst, D. and Roman, E., “Model Driven Development for J2EE Utilizing a Model

Driven Architecture (MDA) - Approach: A Productivity Analysis”, Technical report,

TMC Research Report, (2003).

48. Mukerji, J., and Miller, J., "MDA Guide," (2003).

49. Northrop, L., Clements, P., Bachmann, F., Bergey, J., Chastek, G., Cohen, S.,and

McGregor, J. A framework for software product line practice, version 5.0.

SEI,((2007)

50. Czarnecki, K., Helsen, S., and Eisenecker, U., “Staged configuration using feature

models”, In International Conference on Software Product Lines, Springer Berlin

Heidelberg, (August, 2004), 266-283.

51. Lahiani, N., and Bennouar, D., “A Software Product Line Derivation Process Based

on Mapping Features to Architecture”. In Proceedings of the International

Conference on Advanced Communication Systems and Signal Processing,

(November 2015).

52. “ATL Project”, [Online]. Available: http: //www.eclipse.org/atl/.

53. “Acceleo Project”, [Online]. Available: https: //eclipse.org/acceleo.

54. "Eclipse Modeling Framework," [Online]. Available: http://www.eclipse.org/emf/.

55. “FeatureIDE”,[Online]Available:http://wwwiti.cs.unimagdeburg.de/iti_db/research/fe

atureide/#downloadK.

56. Perovich, D., Rossel, P. O., and Bastarrica, M. C., “Feature model to product

architectures: Applying MDE to Software Product Lines”, In WICSA/ECSA

(September 2009), 201-210).

57. Botterweck, G., O'Brien, L., and Thiel, S., “Model-driven derivation of product

architectures”, In Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering (November 2007), 469-472.

58. Botterweck, G., Lee, K., and Thiel, S., “Automating product derivation in software

product line engineering”, (2009).

94

59. Tawhid, R., and Petriu, D. C. , “Product model derivation by model transformation in

software product lines”, In Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops (ISORCW), (2011), 72-79.

60. González-Huerta, J., Insfran, E., Abrahão, S., and McGregor, J. D., “Architecture

derivation in product line development through model transformations”, In

Information System Development, Springer International Publishing. (2014), 371-

384.

61. Bosch, J., “Design and Use of Software Architectures – Adopting and Evolving a

Product-line Approach”, ACM Press, (2000).

62. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., and

Czarnecki, .K , “What is a feature?: a qualitative study of features in industrial

software product lines”, Proceedings of the 19th International Conference on

Software Product Line, (July 2015), 16-25.

63. Hwan, C., Kim, P., and Czarnecki, K., “Synchronizing cardinality-based feature

models and their specializations”, In Model Driven Architecture–Foundations and

Applications Springer Berlin Heidelberg, (November 2005), 331-348.

64. Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grunbacher, P.,

Benavides, D., and Galindo, J. A., “Configuration of multi product lines by bridging

heterogeneous variability modeling approaches”, In Software Product Line

Conference (SPLC), 15th International, (August 2011), 120-129.

65. Dhungana, D., Grünbacher, P., Rabiser, R., and Neumayer, T., “Structuring the

modeling space and supporting evolution in software product line engineering”,

Journal of Systems and Software, V.83, n°7, (2010), 1108-1122.

66. Hartmann, H., and Trew, T. “Using feature diagrams with context variability to model

multiple product lines for software supply chains”, In Software Product Line

Conference, SPLC'08,12th International, (September2008), 12-21.

67. Hubaux, A., Heymans, P., Schobbens, P. Y., Deridder, D. and Abbasi, E. K,

“Supporting multiple perspectives in feature-based configuration”, Software &

Systems Modeling, V.12, n°3, (2013), 641-663.

68. Acher, M., Collet, P., Lahire, P., and France, R. B., “Separation of concerns in

feature modeling: support and applications”, In Proceedings of the 11th annual

international conference on Aspect-oriented Software Development (March 2012),

1-12.

69. Lahiani, N., and Bennouar, D, A Model Driven Approach to Derive e-Learning

Applications in Software Product Line. In Proceedings of the International

Conference on Intelligent Information Processing, Security and Advanced

Communication, (November 2015), 78-84.

95

70. Guendouz, A., Bennouar, D., “Component-Based Specification of Software Product

Line Architecture”, In ICAASE, Algeria ,(2014), 100-107.

71. Drucker, P., “Need to know: Integrating e-learning with high velocity value chains”,

A Delphi Group White Paper, (2000), 1-12.

72. Zhou, D., Cheng, X., and He, X. “The Development of a Customized E-Learning

System”, Journal of Computational Information Systems, V.2, n°1, (2006), 211-216.

73. Trujillo, S., Kästner, C., and Apel, S., “Product lines that supply other product lines:

A service-oriented approach”, In SPLC Workshop: Service-Oriented Architectures

and Product Lines–What is the Connection, (September 2007).

74. Rosenmüller, M., and Siegmund, N., “Automating the Configuration of Multi

Software Product Lines”, VaMoS, (2010), 123-130.

75. Rosenmüller, M., Siegmund, N., Thüm, T., and Saake, G., “Multi-dimensional

variability modelling”, In Proceedings of the 5th Workshop on Variability Modeling of

Software-Intensive Systems, (January 2011), 11-20.

76. Boucher, Q., Classen, A., Faber, P., and Heymans, P., “Introducing TVL, a text-

based feature modelling language, In Proceedings of the Fourth International

Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10), Linz,

Austria, (January 2010), 27-29.

77. Trinidad, P., Benavides, D., Ruiz-Cortés, A., Segura, S. and Jimenez, A., “Fama

framework”, In Software Product Line Conference, 12th International IEEE,

(September 2012), 359-359.

78. Dhungana, D., Grünbacher, P., and Rabiser, R.. “The DOPLER meta-tool for

decision-oriented variability modeling: a multiple case study”, Automated Software

Engineering,V.18, n°1,(2011), 77-114.

79. Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., and Lauenroth, K.,

“Quality-aware analysis in product line engineering with the orthogonal variability

model”, Software Quality Journal, V.20, n°3, (2012), 519-565.

80. Galindo, J. A., Dhungana, D., Rabiser, R., Benavides, D., Botterweck, G., and

Grünbacher, P, “Supporting distributed product configuration by integrating

heterogeneous variability modeling approaches”, Information and Software

Technology, V.62, (2015), 78-100.

81. Rabiser, R., O’Leary, P., and Richardson, I., “Key activities for product derivation in

software product lines”, Journal of Systems and Software, V.84, n° 2, (2011), 285-

300.

