UNIVERSITE DE BLIDA 1

Faculté de Technologie

Département de Génie des Procédés

THESE DE DOCTORAT ES SCIENCE

en Chimie Industrielle

Spécialité : Génie des procédés

Par

Kamel HACHAMA

THEME

Synthèse d'hétérocycles à base des dérivés de l'acide 2-oxoglutarique

devant le jury composé de :

Mr. Ali AOUABED	Professeur	USDB	Président
Mr. Abdelkader TOUATI	Professeur	ENSK	Examinateur
Mr. Yazid FOUDIL-CHERIF	Professeur	USTHB	Examinateur
Mme. Samia AICHOUCHE- BOUZROURA	MCA	USTHB	Examinateur
Mr. Mohamed ZOUIKRI	MCA	USDB	Examinateur
Mr. Mohamed KHODJA	Professeur	USDB	Rapporteur

UNIVERSITE DE BLIDA 1

Faculté de Technologie

Département de Génie des Procédés

THESE DE DOCTORAT ES SCIENCE

en Chimie Industrielle

Spécialité : Génie des procédés

Par

Kamel HACHAMA

THEME

Synthèse d'hétérocycles à base des dérivés de l'acide 2-oxoglutarique

devant le jury composé de :

Mr. Ali AOUABED	Professeur	USDB	Président
Mr. Abdelkader TOUATI	Professeur	ENSK	Examinateur
Mr. Yazid FOUDIL-CHERIF	Professeur	USTHB	Examinateur
Mme. Samia AICHOUCHE- BOUZROURA	MCA	USTHB	Examinateur
Mr. Mohamed ZOUIKRI	MCA	USDB	Examinateur
Mr. Mohamed KHODJA	Professeur	USDB	Rapporteur

ملخص

الهدف من هذا العمل هو تصنيع مركبات حلقية غير متجانسة، جديدة و نشطة بيولوجيا، انطلاقا من مشتقات حامض 2- أوكسو غلوتاريك ، والتي يمكن الوصول إليها بسهولة.

التفاعل الكيميائي لـ 2- أوكسو غلوتارات ثنائي الميثيل مع 2-أمينوفينول ومشتقاته أعطى المشتق الجديد 3-(2-أوكسو-4،1-H2-بنزوكسازين-3-YL) بروباناوات الميثيل.

تفاعل 2-2-ثنائي إيتوكسى غلوتارات ثنائي الميثيل، و الذي تحصلنا عليه من عملية الأستلة لمركب 2- أوكسو غلوتارات ثنائي ميثيل، مع متفاعلات بنيكليوفيلية مثل الهيدرازين أحادي هيدرات، أورتو أمينوفينول وأورتو فينيلان ثنائي أمين أعطى على التوالي: المركب الحمضى 3-إيتوكسى-6-أوكسو هيكساهيدرو بيريدازين- 3- كربوكسيل بمردود عالي، 3- (3- إيتوكسي-2-أوكسو، 4،3-ال- بنزوكسازين-3-الا)بروبانوات الميثيل، إظافة إلى 3-(2- إيتوكسى-3-أوكسو، 4،3،2،1 رباعي هيدروكينوكزالين-2-الا) بروبانوات الميثيل.

أجريت تحاليل للمركبات المنتجة بمختلف الطرق الفيزائية، كالمطيافية تحت الحمراء، الرنين المغناطيسي النووي، مطيافية الكتلة، إضافة إلى التحليل العنصري.

إختبار جميع المركبات الحلقية غير المتجانسة الجديدة المصنعة على ستة سلالات ميكروبية أظهر نشاط ملحوظ.

الكلمات المفتاحية: حامض 2- أوكسو غلوتاريك ، 2- أوكسو غلوتارات ثنائي الميثيل، 2-2-ثنائي إيتوكسى غلوتارات ثنائى الميثيل، بنزوكسازين ، بيريدازين • كينوكزالين.

RESUME

Le but de ce travail était de synthétiser de nouveaux hétérocyles bioactifs à partir de dérivés, facilement accessibles, de l'acide 2-oxoglutarique.

La réaction du 2-oxoglutarate de diméthyle avec le 2-aminophénol et ses dérivés a donné un nouveau dérivé 3-(2-oxo-2*H*-1,4-benzoxazin-3-yl)propanoate de méthyle.

L'action 2,2-diéthoxyglutarate de diméthyle, obtenu acétalisation par du 2-oxoglutarate de diméthyle, sur les réactifs binucléophiles tels que l'hydrazine l'ortho-phénylènediamine monohydrate, l'ortho-aminophénol ou donné respectivement un nouveau dérivé 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique avec un excellent rendement, un nouveau dérivé 3-(3-éthoxy-2-oxo-3,4-dihydro-2H-1,4benzoxazin-3-yl)propanoate de méthyle et un nouveau dérivé 3-(2-éthoxy-3-oxo-1,2,3,4tetrahydroquinoxalin-2-yl)propanoate de méthyle.

Les produits synthétisés ont été caractérisés par les différentes méthodes physiques d'analyses. A savoir, la spectroscopie infrarouge à transformée de Fourier (FTIR), la spectroscopie de résonance magnétique nucléaire (RMN) du proton ¹H et du carbone ¹³C, la spectrométrie de masse et l'analyse élémentaire pour certains composés.

Tous les produits hétérocycliques issus de ce travail, ont été testés sur six souches microbiennes auxquelles ils ont montré des activités remarquables.

Mots clés : acide 2-oxoglutarique, 2-oxoglutarate de diméthyle, 2,2-diéthoxyglutarate de diméthyle, 2,2-diéthoxyglutarate de diméthyle, benzoxazine, pyridazine et quinoxaline.

ABSTRACT

The aim of this work is to synthesize new bioactive heterocycles from easily accessible derivatives of 2-oxoglutaric acid.

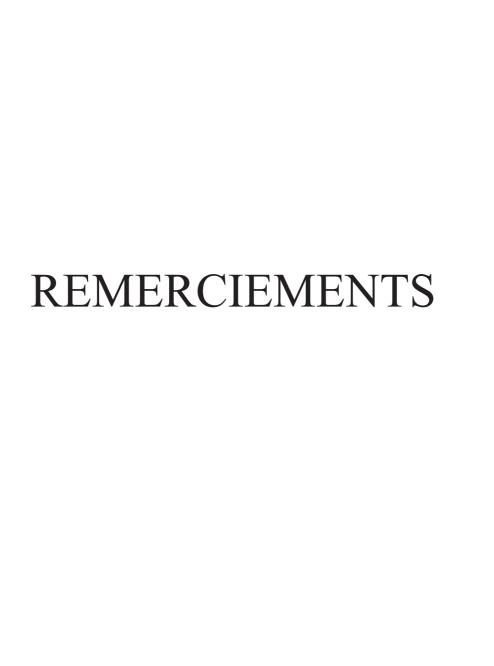
The reaction of dimethyl 2-oxoglutarate with 2-aminophenol and its derivatives gave a new compound 3 - (2-oxo-2H-1,4-benzoxazin-3-yl) propanoate.

The action of dimethyl 2,2-diéthoxyglutarate, obtained by acetalization of 2-oxoglutarate dimethyl on the binucléophiles reagents such as hydrazine monohydrate, ortho-aminophenol or ortho-phenylenediamine gave respectively: a novel 3-ethoxy-6-oxohexahydropyridazine-3-carboxylic acid with excellent yield, a new compound 3-(3-ethoxy-2-oxo-3,4-dihydro-2H-1,4-benzoxazin-3-yl) propanoate and a novel derived methyl 3 - (2-ethoxy-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl) propanoate.

The synthesized products were characterized by various physical methods of analysis. Namely, the infrared Fourier transform spectroscopy (FTIR) spectroscopy, nuclear magnetic resonance (NMR) of proton ¹H and of carbon ¹³C, mass spectrometry and elemental analysis for certain compounds.

All the new obtained heterocycles were tested on six microbial strains and all which of them have shown remarkable activities.

Keywords: 2-oxoglutaric acid, dimethyl 2-oxoglutarate, dimethyl 2,2-diéthoxyglutarate, benzoxazin, pyridazine and quinoxalin.


DEDICACES

A mes parents

A ma famille et belle-famille

A mes amis

A tous ceux qui m'ont aidé de près ou de loin.

Remerciements

Ce travail a été réalisé au laboratoire de chimie organique, département de chimie industrielle, faculté de technologie, Université Saad Dahlab de Blida, sous la direction du Professeur Mohammed Khodja. Je tiens ici à lui exprimer mes plus vifs remerciements et ma profonde reconnaissance pour m'avoir donné la possibilité de réaliser ce travail dans un environnement aussi enrichissant tant sur le plan scientifique que personnel, et également pour sa disponibilité permanente, l'enthousiasme et la compétence avec lesquels il a guidé mes recherches, et m'avoir fait bénéficier de ses connaissances en chimie organique hétérocyclique.

Je tiens à exprimer ma profonde gratitude à Monsieur Ali AOUABED, Professeur à l'Université Saad Dahlab de Blida, à Monsieur Abdelkader TOUATI, Professeur à l'école Normale supérieur de Kouba «Alger», Monsieur Yazid FOUDIL-CHERIF, Professeur à l'Université des sciences et de la technologie Houari Boumediene «Alger», Madame Samia AICHOUCHE - BOUZROURA, Maître de Conférences classe A à l'Université des sciences et de la technologie Houari Boumediene «Alger» et à Monsieur Mohamed ZOUIKRI, Maître de Conférences classe A à l'Université Saad Dahlab de Blida, pour l'intérêt qu'ils ont porté à ce travail en acceptant de le juger.

Je voudrais aussi exprimer toute ma reconnaissance au Professeur **Dieter Sicker** et au Docteur **Lothar Hennig** de l'institut de chimie organique de l'université de Leipzig d'Allemagne pour le temps qu'ils nous ont consacré pour la réalisation des différentes analyses.

Je remercie infiniment le Docteur **Hocine Boutoumi** pour son aide et son soutien, ainsi que le Professeur **Saad Moulay** pour sa propre contribution.

J'adresse mes innombrables remerciements à tous les collègues du laboratoire pour leur sympathie, leur collaboration et leur bonne humeur: H. Leuttrache, Z. Cheurfa, H. Akir, F. Messaadia, A. Khen et à tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail.

Je veux par ailleurs remercier toutes les personnes qui, par leur disponibilité et leur compétence professionnelle, ont participé à l'aboutissement de ce travail, et plus particulièrement Monsieur M. Tahar pour les tests biologiques réalisés sur les composés synthétisés.

Enfin, je tiens à remercier chaleureusement tous les "sacrifiés" : famille et vieux copains, qui ont fait preuve de beaucoup de patience, de soutien et d'encouragements pendant ces années où nos rencontres se sont inexorablement espacées. Merci d'avoir été et d'être toujours présents.

SOMMAIRE

Résumé	i
Sommaire	ii
Introduction Générale	1
CHAPITRE I: ETUDE BIBLIOGRAPHIQUE	
I.1. Introduction	03
I.2. Propriétés, réactions et synthèses de l'acide 2-oxoglutarique	03
I.2.1. Propriétés et réactions chimiques	03
I.2.2. Synthèse de l'acide 2-oxoglutarique	07
I.3. Synthèse d'hétérocycles.	09
I.3.1. Synthèse d'hétérocycles avec l'acide 2-oxoglutarique	09
I.3.2. Synthèse d'hétérocycles avec les esters de l'acide 2-oxoglutarique	14
I.3.3. Synthèse d'hétérocycles avec le 3-bromo-2-oxglutarat de diméthyle	15
I.3.4. Synthèse d'hétérocycles avec le 2-oxoglutaconate de diméthyle	17
I.3.5. Synthèse d'hétérocycles avec le 2,2-diéthoxyglutarate de diéthyle	19
CHAPITRE II: RESULTATS ET DISCUSSION	
II.1. Synthèse du 2-oxoglutarate de diméthyle	21
II.2. Synthèse du dérivé 1,4-benzoxazin-2-one.	24
II.3. Synthèse d'hétérocycles avec le 2-oxoglutarate de diméthyle	36
II.4. Synthèse du 2,2-diéthoxyglutarate de diméthyle	38
II.5. Synthèse d'hétérocycles avec le 2,2-diéthoxyglutarate de diméthyle	40
II.5.1. Réaction avec l'hydrazine monohydrate : synthèse de l'acide	
3-éthoxy-6-oxohexahydropyridazine-3-carboxylique	40

11.5.2. Reaction avec l'ortho-aminophenol : synthèse de 3-(3-ethoxy-2-oxo-	
3,4-dihydro-2 <i>H</i> -1,4-benzoxazin-3-yl)propanoate de méthyle	45
II.5.3. Réation avec l'o-aminophénylène : synthèse de 3-(2-éthoxy-3-oxo-	
1,2,3,4-tetrahydroquinoxalin-2-yl)propanoate de méthyle	48
II.6. Synthèse d'hétérocycles avec le 2,2-diéthoxyglutarate de diméthyle	51
II.6.1. Réaction avec l'hydrazine monohydrate	51
II.6.2. Réaction avec l'ortho-aminophénol : synthèse du dérivé	
1,4-benzoxazin-2-one	54
II.6.3. Réaction avec l'ortho-aminophénylène : synthèse du dérivé quinoxaline	55
II.7. Synthèse de 3-bromo-2,2- diéthoxyglutarate de diméthyle	58
II.8. Synthèse du 2,2-diéthoxyglutaconate de diméthyle.	60
II.9. Tests de l'activité antimicrobienne des composés synthétisés	62
CHAPITRE III : PARTIE EXPÉRIMENTALE	
III.1. Généralités.	64
III.1.1 Réactifs et solvants.	64
III.1.2. Appareillage et techniques analytiques	65
III.2. Prépartion des produits	66
- 2-oxoglutarate de diméthyle 2.	66
- Synthèse des dérivées de benzoxazine 4a-e	67
- 3-(2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4a	67
- 3-(7-methyl-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4b	68
- 3-(6-methyl-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de methyl 4c	69
- 3-(5-methyl-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4d	70
- 3-(6-chloro-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4e	71
- 2,2 diéthoxyglutarate de diméthyle 5	72
- 2,2 diméthoxyglutarate de diméthyle 6	73
- Acide 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique 7	73
- 3-(3-éthoxy-2-oxo-3,4-dihydro-1,4-benzoxazin-3-yl) propanoate de méthyle 8.	74

- 3-(2-methoxy-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)propanoate de	
méthyle 9.	75
- 3-(3-oxo-3,4-dihydroquinoxalin-2-yl) propanoate d'éthyle 10	76
- 3-(3-methoxy-2-oxo-3,4-dihydro-2H-1,4-benzoxazin-3-yl)propanoate de	
méthyl 12	77
- 3-bromo- 2,2- diéthoxyglutarate de diméthyle 13	78
- 2,2-diethoxyglutaconate de diméthyle 14	79
III.3. L'activité antimicrobienne	79
III.3.1.Technique d'étude sur un milieu culture solide	79
III.3.1.2. Préparation de l'inoculation bactérienne	80
III.3.1.3. L'ensemencement	80
III.3.1.5. La distribution des disques	80
CONCLUSION GENERALE ET PERSPECTIVES	81

REFERENCES BIBLIOGRAPHIQUES

LISTES DES TABLEAUX, FIGURES ET SCHEMAS

LISTE DES TABLEAUX

Table II.1:	Résultats des tests antimicrobiens de 4a-e , la concentration de la			
	solution mère est de 160 mg/mL dans le DMSO	62		
Table II.2:	Résultats des tests antimicrobiens de concentrations de 140			
	mg/mL, pour les composés 8, 9, 10, et 15 mg/mL pour le composé			
	7, dans le DMSO	63		
Table III.1:	Réactifs utilisés	64		
Table III.2:	Solvants utilisés	65		
LISTE DES	SFICURES			
	TIGURES			
Figure I.1 :	Acide 2-oxoglutarique	3		
Figure II.1:	Les valeurs de pKa de l'acide 2-oxoglutarique	22		
Figure II.2 :	Spectre IR de 2-oxoglutarate de diméthyle 2	24		
Figure II.3:	Spectre IR du composé 4a	26		
Figure II.4 :	Spectre IR du composé 4b.	26		
Figure II.5 :	Spectre IR du composé 4c	27		
Figure II.6 :	Spectre IR du composé 4d	27		
Figure II.7:	Spectre IR du composé 4e	28		
Figure II.8:	Spectre ¹ H-RMN du composé 4a	28		
Figure II.9:	Spectre ¹ H-RMN du compose 4b	29		
Figure II.10:	Spectre ¹ H-RMN du composé 4c	30		
Figure II.11:	Spectre ¹ H-RMN du composé 4d	31		
Figure II.12:	Spectre ¹ H-RMN du composé 4e	32		
Figure II.13:	Spectre ¹³ C-RMN du composé 4a	32		
Figure II.14:	Spectre ¹³ C-RMN du compose 4b	33		
Figure II.15:	Spectre ¹³ C-RMN du compose 4c	33		
Figure II.16:	Spectre ¹³ C-RMN du composé 4d	34		
Figure II.17:	Spectre ¹³ C-RMN du composé 4e	34		

Listes des tableaux, figures et schémas

Figure II.18 :	Spectre de masse du composé 4a	35
Figure II.19 :	Spectre de masse du composé 4e	35
Figure II.20 :	Spectre IR du 2,2-diéthoxyglutarate de diméthyle	38
Figure II.21 :	Spectre IR du 2,2- diméthoxyglutarate de diméthyle 6	39
Figure II.22 :	Spectre IR de l'acide 3-éthoxy-6-oxohexahydropyridazine-3-	
	carboxylique 7	42
Figure II.23-a:	Spectre ¹ H-RMN du composé 7	43
Figure II.23-b:	Traitement du spectre de la Figure II.26-a de 0 à 4.5 ppm	43
Figure II.24 :	Spectre ¹³ C-RMN du composé 7	44
Figure II.25 :	Spectre de masse du composé 7	44
Figure II.26 :	Spectre IR du composé 8.	46
Figure II.27 :	Spectre ¹ H-RMN du composé 8	47
Figure II.28 :	Spectre ¹³ C-RMN du composé 8 .	48
Figure II.29 :	Spectre de masse du composé 8.	48
Figure II.30 :	Spectre IR du composé 9	49
Figure II.31 :	Spectre ¹ H-RMN du composé 9	50
Figure II.32 :	Spectre ¹³ C-RMN du composé 9	51
Figure II.33 :	Spectre IR du composé 10	52
Figure II.34 :	Spectre ¹ H-RMN du composé 10	53
Figure II.35 :	Spectre ¹³ C-RMN du composé 10	53
Figure II.36 :	Spectre de masse du composé 10	54
Figure II.37 :	Spectre IR du composé 12.	56
Figure II.38 :	Spectre ¹ H-RMN du composé 12	57
Figure II.39 :	Spectre ¹³ C-RMN du composé 12	57
Figure II.40 :	Spectre IR du composé 13	59
Figure II.41 :	Spectre IR du composé 14.	60

LISTE DES SCHEMAS

Schéma I.1:	Réaction d'oxydation de l'acide 2-oxoglutarique	4
Schéma I.2:	Réaction de condensation de l'acide 2-oxoglutarique avec	
	l'hydroxylamine chlorhydrate	4
Schéma I.3:	Réaction de condensation de l'acide 2-oxoglutarique avec	
	différents hydrazines	4
Schéma I.4:	Réaction de condensation de l'acide 2-oxoglutarique avec HFA	
Schéma I.5:	Réaction de l'acide 2-oxoglutarique avec l'orthoformiate de	
	triméthyle	5
Schéma I.6 :	Hydrogénation énantiosélective de l'acide 2-oxoglutarique	5
Schéma I.7:	La bioestérification de l'acide 2-oxoglutarique	6
Schéma I.8:	Réaction de synthèse de l'acide 2-oxoglutarique	7
Schéma I.9:	Réaction de synthèse de l'acide 2-oxoglutarique à partir de	
	nitroacétate d'éthyle	8
Schéma I.10:	Réaction de synthèse de l'acide 2-oxoglutarique à partir de	
	l'acide glutamique	8
Schéma I.11:	Réaction de synthèse de l'acide 2-oxoglutarique de l'ester 1-	
	(acetylamino) cyclopropane-1,2-dicarboxylate de dimethyle	8
Schéma I.12:	Réaction de synthède du derivé [1,2,4]triazino[2,3-	
	a]benzimidazole	9
Schéma I.13:	Réaction de synthèse de l'acide 3-(3-oxo-3,4-	
	dihydro[1,2,4]triazino[2,3-a]benzimidazol-2-yl)propanoique	10
Schéma I.14:	Réaction de synthèse du dérivé imidazo[1,2-	
	<i>b</i>][1,2,4]triazino[4,3- <i>d</i>][1,2,4]triazepine	10
Schéma I.15:	Réaction de synthèse du dérivé de l'acide 3-(5-oxo-3-thioxo-	
	2,3,4,5-tetrahydro-1,2,4-triazin-6-yl)propanoique	11
Schéma I.16:	Réaction de synthèse du dérivé dérivé benzoxazin-2-one	11
Schéma I.17:	Réaction de synthèse du dérivé dérivé quinoxaline	11
Schéma I.18:	Réaction de l'acide 2-oxoglutarique avec l'o-phénylènediamine	11
Schéma I.19:	Réaction de synthèse de benzoquinoxalinone	12

Schéma I.20:	Réaction de l'acide 2-oxoglutarique avec l'hydrazine et la	
	phénylhydrazine	12
Schéma I.21:	Synthèse du 6-oxo-1,4,5,6-tetrahydropyridazine-3-carboxylique	12
Schéma I.22:	Réaction de l'acide 2-oxoglutarique avec la benzyltriptamine	13
Schéma I.23:	Réaction de l'acide 2-oxoglutarique avec le Bromure d'allyle	13
Schéma I.24:	Réaction de condensation du 2-oxoglutarate de diméthyle avec	
	le semicarbohydrazide et le thiosemicarbohydrazide	14
Schéma I.25:	Réaction du 2-oxoglutarate de diméthyle avec la tryptamine	
	chlorhydrate	14
Schéma I.26:	Réaction de synthèse du dérivé 1,4- benzothiazin-2-one	15
Schéma I.27:	Réaction du dérivé 3,4-dihydro[1,6-a]benzimidazole	15
Schéma I.28:	Réaction du 3-bromo-2-oxglutarate de diméthyle avec le	
	2-aminothiophenol	16
Schéma I.29:	Réaction du 3-bromo-2-oxglutarate de diméthyle avec le	
	2-aminophenole	16
Schéma I.30:	Réaction de synthèse d'hétérocycles avec le 3-bromo-2-	
	oxglutarate de diméthyle	16
Schéma I.31:	Réaction de synthèse d'hétérocycles avec le 2-oxoglutaconate de	
	diméthyle	17
Schéma I.32:	Réaction du 2-oxoglutaconate de diméthyle avec	
	le 2-aminothiophenol	17
Schéma I.33:	Réaction du 2-oxoglutaconate de diméthyle sur l'azadiène	18
Schéma I.34:	Réaction du 2-oxoglutaconate de diméthyle avec le dérivé	
	aminé benzimidazole	18
Schéma I.35:	Réaction du 2-oxoglutaconate de diméthyle avec le dérivé	
	7-aminodiazépine	19
Schéma I.36:	Réaction de synthèse du 2,2-diéthoxyglutarate de diéthyle	19
Schéma I.37:	Réaction de synthèse des hétérocycles avec	
	le 2,2-diéthoxyglutarate de diéthyle	20

Estérification de l'acide 2-oxoglutarique 1	21
Réaction de synthèse du 2-oxoglutarate de diméthyle 2	23
Réaction de synthèse du dérivé 3-(2-oxo-2H-1,4-benzoxazin-3-	
yl)propanoate de méthyle 4a-e	25
Réaction de Synthèse de 2,2-diéthoxyglutarate de diméthyle 5	36
Mécanisme d'acétalisation du 2-oxoglutarate de diméthyle 2	37
Réaction de Synthèse du 2,2-diméthoxyglutarate de diméthyle 6.	39
Réaction de synthèse du dérivé pyridazine 7	40
Mécanisme réactionnel de la cyclisation du dérivé pyridazine 7	41
Réaction de synthèse du dérivé benzoxazine 8	46
Mécanisme réactionnel de synthèse du dérivé de quinoxaline 9	49
Réaction de synthèse du dérivé quinoxaline 10	49
Essai d'obtention de l'acide 3-méthoxy-6-	
oxohexahydropyridazine-3-carboxylique 11	55
Réaction de synthèse du dérivé benzoxazine 12	55
Réaction de synthèse du 3-bromo-2,2- diéthoxyglutarate de	
diméthyle 13	58
Réaction de synthèse du du 2,2-diéthoxyglutaconate de	
diméthyle 14.	59
	Réaction de synthèse du 2-oxoglutarate de diméthyle 2

ABREVIATIONS

LISTE DES ABREVIATION

Groupement fonctionnels et composés chimiques

AcONa	Acétate de sodium	Me	Méthyle
AcOH	Acide acétique	МеОН	Méthanol
Ac	Groupement Acétyle	$MgSO_4$	Sulfate de magnésium
Ar	Groupement Aryle	Na_2CO_3	Carbonate de sodium
Bz	Groupement Benzyle	NaHCO ₃	Hydrogénocarbonate de
CCl ₄	Tétrachlorure de carbone		sodium
DMSO	Diméthylsulfoxyde	NEt ₃	Triéthylamine
DMSO-d ₆	Diméthylsulfoxyde deutéré	Ph	Groupement phényle
Et	Groupement éthyle	<i>t</i> -Bu	Groupement tert-butyle
HBr	Acide bromhydrique	R	Radical
HC1	Acide chlorhydrique	TMS	Triméthylsilane
HFA	Hexafluoroacetone	TBu ou t-Bu	<i>Tertiobutyl</i> tert-butyle
K_2CO_3	Carbonate de potassium	X	Halogène

Unités et Mesures

cm	centimètre	mol, mmol	mole, millimole
°C	degré Celsius	M	mol.L ⁻¹
eV	électron-volt	min	minute
eq.	équivalent	ppm	partie par million
g, mg	gramme, milligramme	μg	microgramme
Hz, MHZ	hertz, mégahertz	m/z	unité de masse par
h	heure	e	charge élémentaire
L, mL	litre, millilitre		

Chromatographie et spectroscopie

AE	Analyse élémentaire	q	Quadruplet
CCM	Chromatographie sur	RMN	Résonance magnétique
	couche mince		nucléaire
d	Doublet	S	Singulet
dd	Doublet de doublet	sl	Singulet large
IE (EI)	Ionisation électronique	t	Triplet
IC	Ionisation chimique	SM (MS)	Spectrométrie de masse
IR	Infrarouge	δ	Déplacement chimique
J	Constante de couplage		relativement au TMS
m	Multiplet		

Autres abbreviations

Aq.	Aqueux	T_{eb}	Température d'ébullition
i.e.	c'est-à-dire (id est)	H_{arom}	Hydrogène aromatique
CMI	Concentration minimale	P_{f}	Point de fusion
	inhibitrice	Pka	Indication de la constante
coll.	Collaborateurs		d'acidité
Δ	Chauffage	P. vulgaris	Proteus vulgaris
et al.	et collaborateurs (et alii)	S. aureus	Staphylococcus aureus
n_D^{20}	Indice de réfraction	E. coli	Escherichia coli
M	Masse molaire	S. sp.	Staphylococcus sp.
MO	Micro-Onde	Strept. Sp.	Streptococcus sp.
Rdt	Rendement	P. mirabilis	Proteus mirabilis
Rflx	Reflux		

INTRODUCTION GENERALE

Introduction générale

Depuis ces vingt dernières années, le nombre croissant de travaux consacrés à l'obtention de nouveaux hétérocycles, s'explique par une large application de ces derniers dans différents domaines de la vie humaine, plus particulièrement ceux possédant des activités biologiques importantes. En effet la plupart des composés physiologiquement actifs doivent leurs propriétés biologiques à la présence d'hétéroatomes, surtout sous la forme d'hétérocycles. Une grande majorité de substances naturelles connus sont hétérocycliques. Il n'est dès lors pas surprenant que plus de la moitié de toutes les études chimiques publiées traitent de tels composés, de leur synthèse, de leur isolement et de leurs interconversions [1].

Le progrès des produits hétérocycliques dans les différents tests cliniques laisse présumer un grand avenir à cette famille dans la recherche pharmaceutique [2]. La grande diversité structurale des dérivés hétérocycliques à base des diacides aliphatiques en font des cibles de choix pour les chimistes organiciens [3-10], en particulier les acides 2-oxocarboxyliques jouent un rôle important dans le métabolisme des glucides, des lipides et des protides. Les acides 2-oxoanalogues des acides aminés naturels comme l'acide pyruvique (alanine), l'acide oxaloacétique (acide aspartique) et l'acide 2-oxoglutarique (acide glutamique) jouent un rôle fondamental dans la constitution des tissus vivants. Ainsi par exemple le processus de la glycolyse l'acide pyruvique est réduit en acide lactique. Dans le cycle de l'acide citrique ou cycle de Krebs l'acide 2- oxoglutarique est un intermédiaire dans le métabolite. L'acide glutamique est formé à partir de l'acide 2-oxoglutarique par transamination [11-13].

Les propriétés biologiques de ces composés sont remarquables. Parmi eux, l'acide 2-oxoglutarique tient une place de choix par la diversité de son activité pharmacologique et le rôle prépondérant qu'il joue dans certaines biosynthèses naturelles. [14]

L'acide 2-oxoglutarique fut longtemps très peu utilisé dans la synthèse organique. Cependant ces dernières années le nombre de publications de synthèses organiques avec l'acide 2-oxoglutarique et ses dérivés augmenta considérablement.

Introduction générale

Le but du présent travail est de synthétiser de nouveaux hétérocycles à base des dérivés de l'acide 2-oxoglutarique et l'évaluation de leur activité biologique.

A cet effet les objectifs de ce travail sont les suivants :

- Synthèse du 2-oxoglutarate de diméthyle et application dans la synthèse d'hétérocycles.
- Synthèse du 2,2-éthoxyglutarate de diméthyle et étude de sa réactivité dans des réactions de cyclocondensation avec des réactifs binucléophiles.
- Bromation de cet acétal afin d'obtenir le 3-bromo-2,2-éthoxyglutarate de diméthyle. Ce dérivé halogéné non décrit dans la littérature, a été soumis à l'action avec des réactifs binucléophiles.
- Enfin la déhydrobromation de ce dérivé halogéné pour accéder au 2,2-diéthoxyglutaconate de diméthyle, qui sa mise en réaction avec des réactifs binucléophiles est à étudier.

La présente thèse comporte trois chapitres :

Le premier chapitre présente une étude bibliographique sur l'acide 2-oxoglutarique et ses dérivés et leurs utilisations en tant que composés de départ pour la synthèse d'hétérocycles. Des exemples choisis de la littérature de synthèses d'hétérocycles avec l'acide 2-oxoglutarique et ses dérivés sont exposés, montrant ainsi le choix de ces précurseurs.

Le deuxième chapitre est consacré aux résultats et discussions. Il comporte la description des synthèses des composés, leurs caractérisations par les différentes méthodes spectoscopiques d'analyse à savoir l'infrarouge à transformée de Fourier (FTIR), la résonance magnétique nucléaire (RMN) du proton ¹H et du ¹³C et la spectrométrie de masse avec l'interprétation de tous les spectres. L'activité biologique des composés obtenus a été évaluée in vivo contre des germes les plus courants et couramment responsables de diverses pathologies, par la méthode des disques.

Le troisième chapitre est réservé à la partie expérimentale et décrit en détails les protocoles expérimentaux des composés synthétisés.

Enfin une conclusion relatant les résultats obtenus au cours de ce travail avec des recommandations futures en vue d'améliorer et de poursuivre ce travail.

CHAPITRE I ETUDE BIBLIOGRAPHIQUE

Chapitre I

Etude Bibliographique

I.1. Introduction

L'utilisation de l'acide 2-oxoglutarique dans la synthèse organique est due à la présence des groupements fonctionnels dans la molécule. En effet l'acide 2-oxoglutarique avec un groupement oxo, deux groupements carboxyliques et deux groupements méthylènes activés dispose de cinq centres réactifs (figure I.1).

Figure I.1: Acide 2-oxoglutarique

Par une fonctionnalisation correspondante de cet acide cétodicarboxylique et par une large variation de réactifs binucléophiles de nombreux hétérocycles ont été et sont encore synthétisés.

Dans ce chapitre nous allons donner un bref aperçu sur les propriétés et synthèse de cet acide ainsi que ces dérivés. Mais nous présenteront surtout la mise en œuvre de l'acide 2-oxoglutarique et de ses dérivés dans la synthèse de différents hétérocycles.

I. 2. Propriétés, réactions et synthèses de l'acide 2-oxoglutarique

I.2.1. Propriétés et réactions chimiques

H. Wilde et H. Schwesinger ont rapporté un résumé complet sur les propriétés et réactions chimiques de l'acide 2-oxoglutarique [15]. A titre d'exemple nous citons quelques propriétés des plus importantes qui ne sont pas rapportés dan [15].

L'acide 2-oxoglutarique est sous forme des cristaux incolores, avec un point de fusion de 112–116 °C. Il est très soluble dans l'eau, le méthanol et l'éthanol.

Sous l'action d'oxydants il subit une décarboxylation et se transforme en acide succinique (Schéma I.1) [16].

Schéma I.1: Réaction d'oxydation de l'acide 2-oxoglutarique

En raison du groupement oxo une réaction de condensation avec les composés aminés se déroule facilement. L'acide 2-hydroxyiminoglutarique s'obtient par condensation avec l'hydroxylamine chlorhydrate (Schéma I.2) [17].

Schéma I.2 : Réaction de condensation de l'acide 2-oxoglutarique avec l'hydroxylamine chlorhydrate

Cette oxime est utilisée pour synthétiser plusieurs composés importants par exemple l'acide 2-hydroxyaminoglutarique [18], l'acide glutamique [19].

Avec différents hydrazines l'acide 2-oxoglutarique se condense facilement pour donner les hydrazones correspondants (Schéma I.3): phénylhydrazone [20], o-méthylphénylhydrazone [21] et 2,4-dinitrophénylhydrazone [22] (Schéma I.3).

COOH
$$C=O \\ CH_2 \\ CH_2 \\ CH_2 \\ COOH$$

$$R_1 = H, Me, NO_2 ; R_2 = H, NO_2$$

$$R_2 = H, NO_2$$

$$R_1 = H, Me, NO_2 ; R_2 = H, NO_2$$

Schéma I.3 : Réaction de condensation de l'acide 2-oxoglutarique avec différents hydrazines

L'acide 2-oxoglutarique et l'hexafluoroacetone (HFA) donnent un composé spiro après addition intramoléculaire (Schéma I.4) [23].

Schéma I.4: Réaction de condensation de l'acide 2-oxoglutarique avec HFA

L'action de l'orthoformiate de méthyle sur l'acide 2-oxoglutarique dans le méthanol absolu en présence de l'acide sulfurique donne le 2,2-diméthoxypentanedioate de diméthyle avec un rendement de 90% (Schéma I.5) [24-28].

HO OH
$$HC(OMe)_3$$
 H_2SO_4 MeO OMe MeO OMe MeO OMe

Schéma I.5 : Réaction de l'acide 2-oxoglutarique avec l'orthoformiate de méthyle

L'acide 2-oxoglutarique peut être transformé en acide (2*R*)-2-hydroxypentanedioique par hydrogénation énantiosélective catalysée par Pt-Al₂O₃ avec un rendement de 92 % (Schéma I.6) [29].

$$HO_2C$$
 CO_2H
 $H_2/Pt-Al_2O_3$
 HO_2C
 CO_2H
 CO_2H

Schéma I.6 : Hydrogénation énantiosélective de l'acide 2-oxoglutarique

Plusieurs esters de dialkyle de l'acide 2-oxoglutarique peuvent être obtenus en utilisant une lipase comme biocatalyses (Schéma I.7) [30].

Schéma I.7: La bioestérification de l'acide 2-oxoglutarique

L'acide 2-oxoglutarique s'estérifie facilement avec différents alcools en présence d'acides minéraux comme catalyseurs. Comme l'acide dicarboxylique il peut former, suivant les conditions réactionnelles, aussi bien des mono- que des diesters.

Les esters connus de l'acide 2-oxoglutarique sont les suivants :

• 2-oxoglutarate de diméthyle

Il est obtenu par la méthode classique d'estérification des acides carboxyliques qui consiste à chauffer l'acide 2-oxoglutarique dans le méthanol en présence d'acide sulfurique [31]. La littérature rapporte aussi l'estérification avec le diazométhane [32], avec le triméthylsilyldiazométhane [33].

• 2-oxoglutarate de 1-monométhyle

Il se forme comme produit secondaire lors de l'estérification de l'acide 2-oxoglutarique [34].

• 2-oxoglutarate de diéthyle

Il est obtenu par les méthodes classiques d'estérification des acides carboxyliques [35-39].

• 2-oxoglutarate de 1-monoéthyle

Il est synthétisé par estérification de l'acide 2-oxoglutarique avec le chloroformate d'éthyle en présence de triéthylamine [40]. Il se forme aussi comme produit secondaire dans [34].

• 2-oxoglutarate de di-butyle

Il obtenu par chauffage de l'acide 2-oxoglutarate avec le n-butanol dans le benzène en présence d'acide sulfurique [41]. De même manière est obtenu aussi le 2-oxoglutarate de di-tert-butyle [42].

La littérature décrit aussi bien le 2,2,-diméthoxyglutarate de diméthyle [43] que le 2,2,-diéthoxyglutarate de diéthyle [44,45]. Les deux acétals sont synthétisés suivant le procédé de Claisen. Cooper et ses collaborateurs publièrent en 1983 un résumé complet sur les procédés chimiques et biochimiques d'obtention des acides 2-oxocarboxyliques y compris l'acide 2-oxoglutarique [46].

I.2.2. Synthèses de l'acide 2-oxoglutarique

Une variante de synthèse chimique plus avantageuse en ce qui concerne le rendement et la conduite de la réaction pour l'acide 2-oxoglutarique, consiste à chauffer l'oxalosuccinate de triéthyle avec l'acide chlorhydrique concentré. Dans une première étape l'oxalate et le succinate de diéthyle dans l'éther anhydre et sous l'action de l'éthylate de sodium sont convertis en oxalosuccinate de triéthyle qui, finalement, subit une hydrolyse et une décarboxylation (Schéma I.8) [47].

Schéma I.8 : Réaction de synthèse de l'acide 2-oxoglutarique

Ce procédé de synthèse de l'acide 2-oxoglutarique est approprié à l'échelle du laboratoire. Un rendement de 75% pour les deux étapes est atteint.

L'addition du nitroacétate d'éthyle avec l'acrylate d'éthyle conduit au 2- nitroglutarate de diéthyle, ce dernier subit ensuite une oxydation pour obtenir le 2-oxoglutarate de diéthyle dont l'hydrolyse donne l'acide 2-oxoglutarique (schéma I.9) [48].

L'irradiation aux rayons gamma (γ) d'une solution aqueuse d'acide glutamique produit l'acide 2-oxoglutarique avec dégagement d'ammoniac (Schéma I.10) [49].

L'hydrolyse de l'ester 1-(acetylamino) cyclopropane-1,2-dicarboxylate de dimethyle donne l'acide 2-oxoglutarique avec un rendement de 60% (Schéma I.11) [50].

EtO
$$\frac{\text{H}_2\text{C}}{\text{BnMe}_3\text{NOH}}$$
 $\frac{\text{OEt}}{\text{NO}_2}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OEt}}{\text{OP}}$ $\frac{\text{OH}}{\text{OP}}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{OH}}{\text{OP}}$ $\frac{\text{OH}}{\text{OP}}$

Schéma I.9: Réaction de synthèse de l'acide 2-oxoglutarique à partir de nitroacétate d'éthyle

Schéma I.10 : Réaction de synthèse de l'acide 2-oxoglutarique à partir de l'acide glutamique

Schéma I.11 : Réaction de synthèse de l'acide 2-oxoglutarique de l'ester 1-(acetylamino) cyclopropane-1,2-dicarboxylate de dimethyle

I. 3. Synthèse d'hétérocycles

Les réactions décrites dans la littérature pour la synthèse d'hétérocycles avec l'acide 2-oxoglutarique et ses esters ont lieu à travers les atomes C1 et C2 ou bien à travers les atomes C2 et C5. Par cette voie de synthèse des hétérocycles de 5 et de 6 membres respectivement sont synthétisés.

La synthèse d'hétérocycles imliquant les carbones en position 1 et 5 n'est pas encore décrite dans la littérature ; permettrait d'obtenir des cycles de 7 ou 9 membres.

Par cette voie de synthèse nous rapportons dans ce qui suit des exemples choisis de la littérature de synthèses d'hétérocycles à base de l'acide 2-oxoglutarique et ses dérivés.

I. 3.1. Synthèse d'hétérocycles avec l'acide 2-oxoglutarique

I. 3.1.1. Cyclisation à travers les atomes C1 et C2

Le derivé [1,2,4]triazino[2,3-a]benzimidazole est obtenu par condensation de l'acide 2-oxoglutarique avec les sels du dérivé benzimidazole (Schéma I.12) [51].

$$R = Me, Bz, CH_2COMe, CH_2CO-t-Bu, CH_2CO_2Et, CH_2CH_2OH, CH_2CH_2OPh$$
 $R = Cl, Br, l$

Schéma I.12 : Réaction de synthèse du derivé [1,2,4]triazino[2,3-a]benzimidazole

Le chauffage de l'acide 2-oxoglutarique avec le 2-alkylamino-1-aminobenzimidazole dans l'acide acétique glacial donne le dérivé de l'acide 3-(3-oxo-3,4-dihydro[1,2,4]triazino[2,3-a]benzimidazol-2-yl)propanoique (Schéma I.13) [51].

Le dérivé imidazo[1,2-b][1,2,4]triazino[4,3-d][1,2,4]triazepine est obtenu avec un rendement de 68% par action de l'acide 2-oxglutarique sur le dérivé imidazo[1,2-b][1,2,4]triazepine par chauffage dans l'isopropanol (Schéma I.14) [52].

Schéma I.13 : Réaction de synthèse de l'acide 3-(3-oxo-3,4-dihydro[1,2,4]triazino[2,3-*a*]benzimidazol-2-yl)propanoique

$$\begin{array}{c} \text{CH}_3 \\ \text{Ph} \\ \text{N} \\ \text{N}$$

Schéma I.14: Réaction de synthèse du dérivé imidazo[1,2-b][1,2,4]triazino[4,3-d][1,2,4]triazepine

Le dérivé de l'acide 3-(5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl)propanoique doué d'activité pharmacologique est accessible par condensation de l'acide

2-oxoglutarique avec les dérivés de thiosemicarbazide (Schéma I.15) [53].

L'action de l'acide 2-oxoglutarique sur le dérivé 2-aminophénol dans l'acide acétique donne le dérivé benzoxazin-2-one doué d'activité biologique (Schéma I.16) [54].

Le chauffage sans solvant de l'acide 2-oxoglutarique avec l'o-phénylènediamine donne le dérivé quinoxaline avec un rendement de 100% (Schéma I.17) [55].

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_5 R_6 R_7 R_8 R_9 R_9

Schéma I.15 : Réaction de synthèse du dérivé de l'acide 3-(5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl)propanoique

Schéma I.16: Réaction de synthèse du dérivé dérivé benzoxazin-2-one

Schéma I.17: Réaction de synthèse du dérivé dérivé quinoxaline

A fin d'améliorer le temps de cette réaction, le dérivé quinoxaline est aussi obtenu avec un haut rendement par action de l'acide 2-oxoglutarique sur l'o-phénylènediamine sans solvant sous irradiation de micro-ondes (Schéma I.18) [55-58].

Schéma I.18 : Réaction de l'acide 2-oxoglutarique avec l'o-phénylènediamine

La synthèse des dérivés de benzoquinoxalinone peut avoir lieu par la réaction d'Hinsberg (sous irradiation aux micro-ondes en absence de solvant, ou par biocatalyse). Les produits sont isolés avec un très bon rendement (Schéma I.19) [58].

Schéma I.19: Réaction de synthèse de benzoquinoxalinone

I. 3.1.2. Cyclisation à travers les atomes C2 et C5

Les dérivés pyridazinones sont obtenus par réaction de l'acide 2-oxoglutarique avec l'hydrazine et la phénylhydrazine (Schéma I.20) [59].

R-NH-NH₂ +
$$\begin{array}{c} + \\ + \\ O \end{array}$$
 O O $\begin{array}{c} -2 \\ + \\ O \end{array}$ O $\begin{array}{c} -2 \\ + \\ O \end{array}$ R = H, Ph

Schéma I.20 : Réaction de l'acide 2-oxoglutarique avec l'hydrazine et la phénylhydrazine

L'action de l'acide 2-oxoglutarique sur le sulfate d'hydrazine conduit à l'acide 6-oxo-1,4,5,6-tetrahydropyridazine-3-carboxylique avec un rendement de 50% (Schéma I.21) [60].

Schéma I.21: Synthèse de l'acide 6-oxo-1,4,5,6-tetrahydropyridazine-3-carboxylique

L'alcaloïde cantin-6-one anticancéreux est synthétisé avec un rendement de 65% en deux étapes par condensation de l'acide 2-oxoglutarique avec la benzyltriptamine sous reflux dans un mélange de benzène et dioxane. L'hexahydrocantin-6-one obtenue est traitée à l'aide de formiate d'ammonium et du palladium sur du carbone suivie d'une oxydation avec du dioxyde de manganèse (Schéma I.22) [61].

Schéma I.22 : Réaction de l'acide 2-oxoglutarique avec la benzyltriptamine

I. 3.1.3. Cyclisation à travers les atomes C1 et C4

L'action de l'acide 2-oxoglutarique sur le bromure d'allyle en suspension de l'indium métallique, dans le rapport (1:1.5:1) dans le THF-H₂O (2/1) à 0°C aboutit aux acides (2S)-5-oxo-2-(prop-2-en-1-yl)tetrahydrofurane-2-carboxylique, (2S)-2-[(2R)-1-ethoxy-1-oxobut-3-en-2-yl]-5-oxotetrahydrofurane-2-carboxylique et (2S)-5-oxo-2-[(1S)-1-phenylprop-2-en-1-yl]tetrahydrofurane-2-carboxylique (Schéma I.23) [62].

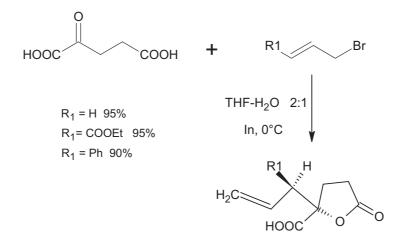


Schéma I.23: Réaction de l'acide 2-oxoglutarique avec le bromure d'allyle

I. 3.2. Synthèse d'hétérocycles avec les esters de l'acide 2-oxoglutarique

I. 3.2.1. Cyclisation à travers les atomes C1 et C2

Les composés 1,2,4-triazines doués d'activité bilogique et sont utilisés comme herbicides sont préparés par condensation de l'ester diméthylique de l'acide 2-oxoglutarique avec le semicarbazide et le thiosemicarbazide (Schéma I.24) [34].

Schéma I.24 : Réaction de condensation du 2-oxoglutarate de diméthyle avec le semicarbohydrazide et le thiosemicarbohydrazide

I. 3.2.2. Cyclisation à travers les atomes C2 et C5

Le chauffage du 2-oxoglutarate de diméthyle avec la tryptamine chlorhydrate dans le méthanol donne le 3-oxo-9-méthoxycarbonylindolizino[8,7-b]indole avec un rendement de 92% (Schéma I.25) [63].

Schéma I.25 : Réaction du 2-oxoglutarate de diméthyle avec la tryptamine chlorhydrate

L'action du 2-oxoglutarate de diméthyle sur le 2-aminothiophénol dans le toluène à la température ambiante conduit au dérivé 1,4-benzothiazin-2-one (Schéma I.26) [64].

Le dérivé 3,4-dihydro[1,6-a]benzimidazole est obtenu en deux étapes par action du dérivé 2-nitrophénylhydrazine sur le 2-oxoglutarate de dialkyle suivie par une hydrogénation catalytique avec traitement ultérieur du mélange réactionnel par NaOH (Schéma I.27) [65].

Schéma I.26 : Réaction de synthèse du dérivé 1,4- benzothiazin-2-one

$$R_2$$
 R_2
 R_3
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_5
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_1
 R_9
 R_9
 R_1
 R_9
 R_1
 R_9
 R_1
 R_1
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8

Schéma I.27 : Réaction du dérivé 3,4-dihydro[1,6-a]benzimidazole

I.3.3. Synthèse d'hétérocycles avec le 3-bromo-2-oxglutarate de diméthyle et de diéthyle

Très peu de travaux ont été réalisés avec ce dérivé bromé qui est obtenu avec un haut rendement par action du brome moléculaire sur l'acide 2-oxoglutarique et ses esters diméthylique et diéthylique. Ainsi le 3-bromo-2-oxoglutarate de diméthyle réagit avec des réactifs binucléophiles tels que le 2-aminothiophenol pour donner le dérivé 1,4-benzothiazine (Schéma I.28) [66], la thiosemicarbazine pour donner le dérivé thiazole, le thiocarbohydrazide pour donner le dérivé 1,3,4,-thiadiazine et l'o-phénylènediamine pour donner le dérivé 3-oxo-3,4-dihydroquinoxaline (Schéma I.29) [67]. Le 3-bromo-2-oxglutarate de diéthyle peut réagir avec le 2-aminophenol pour aboutir au dérivé de 1,4-benzoxazine (Schéma I.30) [66].

Schéma I.28 : Réaction du 3-bromo-2-oxglutarate de diméthyle avec le 2-aminothiophenol

Schéma I.29 : Réaction de synthèse d'hétérocycles avec le 3-bromo-2-oxglutarate de diméthyle

Schéma I.30 : Réaction du 3-bromo-2-oxglutarate de diéthyle avec le 2-aminophénol

I.3.4. Synthèse d'hétérocycles avec le 2-oxoglutaconate de diméthyle

Ce composé, qui est préparé par bromation suivi d'une déhydrobromation du 2-oxoglutarate de diméthyle, est beaucoup utilisé dans la synthèse d'hétérocycles. Il réagit avec l'o-phénylènediamine, la phénylhydrazine, et l'acide anthranilique et fournit respectivement les dérivés de la quinoxaline, du pyrazole et la quinoléine (Schéma I.31) [68], et même avec le 2-aminophénol pour donner le 2,5-dihydro-1,5-benzothiazepine-2,4-dicarboxylate de diméthyle (Schéma I.32) [65].

$$\begin{array}{c} \mathsf{NH}_2\\ \mathsf{NH}$$

Schéma I.31 : Réaction de synthèse d'hétérocycles avec le 2-oxoglutaconate de diméthyle

Schéma I.32 : Réaction du 2-oxoglutaconate de diméthyle avec le 2-aminothiophénol

La pipéridine et la pyranne hautement fonctionnalisées sont formées par l'action du 2-oxoglutaconate de diméthyle sur l'azadiène (Schéma I.33) [69].

Suivant la réaction de Doebner von Miller le 2-oxoglutaconate de diméthyle réagit avec le dérivé aminé benzimidazole dans le dichlorométhane et à température ambiante et donne le dérivé imidazo[4,5-f]quinoléine (Schéma I.34) [70].

Schéma I.33: Réaction du 2-oxoglutaconate de diméthyle sur l'azadiène

Schéma I.34 : Réaction du 2-oxoglutaconate de diméthyle avec le dérivé aminé benzimidazole

De même suivant la réaction de doebner von Miller le 2-oxoglutarate de diméthyle réagit avec le dérivé 7-aminodiazépine pour donner le dérivé [1,4]diazepino[3,2,1-hi]pyrido[4,3,2-cd]indole et le dérivé [1,4]diazepino[2,3-g]quinoline (Schéma I.35) [71].

$$R_1$$
 O OMe $R_1 = R_2 = R_3 = H$, Me, Ph R_2 OMe $R_1 = R_2 = R_3 = H$, Me, Ph R_3 R_4 OMe $R_4 = R_5$ R_5 R_5 OMe R_6 R_6

Schéma I.35 : Réaction du 2-oxoglutaconate de diméthyle avec le dérivé 7-aminodiazépine

I. 3.5. Synthèse d'hétérocycles avec le 2,2-diéthoxyglutarate de diéthyle

Le 2,2-diéthoxyglutarate de diéthyle peut être synthétisé par action de l'ester 2-oxoglutarate de diéthyle sur une solution d'orthoformiate d'éthyle dans l'éthanol absolu catalysé par l'acide sulfurique concentré (Schéma I.37) [72].

$$H_5C_2OOC$$
 orthoformiate d'éthyle H_5C_2OOC H_5 $COOC_2H_5$ $COOC_2H_5$

Schéma I.36 : Réaction de synthèse du 2,2-diéthoxyglutarate de diéthyle

Le 2,2-diéthoxyglutarate de diéthyle élaboré a pu se condenser successivement avec l'oxalate d'éthyle pour donner le 2,2-diéthoxy-3-éthoxalylglutarate de diéthyle et avec le formiate d'éthyle pour aboutir le 2,2-diéthoxy-3-formylglutarate de diéthyle. Le traitement avec de l'acide sulfurique concentré du 2,2-diéthoxy-3-éthoxalylglutarate de diéthyle a conduit avec un rendement de 71% au dérivée 3-hydroxy-2-oxo-2*H*-pyran-4,6-dicarboxylate de diéthyle, et seulement par contre un rendement de 7% de furan-2,3,5-tricarboxylate de triethyle et avec du 2,2-diéthoxy-3-formylglutarate de diéthyle a exclusivement donné furan-2,4-dicarboxylate de diethyle et 1*H*-pyrrole-2,4-dicarboxylate de diethyle avec des rendement de 45% et 32% (Schéma I.38) [72].

Schéma I.37 : Réactions de synthèse d'hétérocycles avec le 2,2-diéthoxyglutarate de diéthyle

CHAPITRE II RESULTATS ET DISCUSSION

Chapitre II

Résultats et discussion

II.1. Synthèse du 2-oxoglutarate de diméthyle 2

L'acide 2-oxoglutarique comme tous les acides 2-oxocarboxyliques, sous l'action de la chaleur, et en présence d'un oxydant, subit une décarboxylation [73]. Cette réaction secondaire non désirable, qui mènerait à un mélange de produits, cette réaction peut être évitée par une estérification. Il est connu que les esters méthyliques, en ce qui concerne les processus ultérieurs de cristallisation, sont mieux appropriés que les esters éthyliques.

D'après une procédure générale de synthèse du 2-oxoxglutarate de diméthyle [74] qui consiste à chauffer l'acide 2-oxoglutarique dans le méthanol en présense d'acide sulfurique, et finalement extraction avec l'éther éthylique donne un rendement maximal de 50 % seulement d'ester 2 (schéma II.1).

COOH
$$C=0$$

$$CH_2 + 2 CH_3OH$$

$$CH_2 + CH_2$$

$$CH_2 + 2 CH_3OH$$

$$CH_3 + 2 CH_3OH$$

$$CH_2 + 2 CH_3OH$$

$$CH_3 + 2 CH_3OH$$

$$CH_2 + 2 CH_3OH$$

$$CH_2 + 2 CH_3OH$$

$$CH_3 + 2 CH_3OH$$

$$CH_2 + 2 CH_3OH$$

$$CH_3 + 2 CH_3OH$$

$$CH_3 + 2 CH_3OH$$

$$CH_2 + 2 CH_3OH$$

$$CH_3 + 2 CH_3OH$$

$$CH_$$

Schéma II.1 : Estérification de l'acide 2-oxoglutarique 1

La variation des conditions opératoires (augmentation du temps de réaction, de l'excès d'alcool, de la quantité catalytique d'acide et une distillation ménagée...), n'améliore en aucun cas ce rendement. La réaction d'estérification des acides carboxyliques est une réaction équilibrée. L'estérification est limitée par une réaction réversible appelée hydrolyse.

A l'équilibre les quatre constituants (l'acide, l'alcool, l'ester et l'eau) sont présents dans des proportions qui ne varient plus au cours du temps, par suite de l'égalité des vitesses de

réaction dans les deux sens. On peut déplacer l'équilibre dans le sens favorable à la formation de l'ester en utilisant un excès de l'un des réactifs par rapport à l'autre ou en éliminant l'un des produits de la réaction au fur et à mesure de sa formation.

La méthode usuelle pour rendre l'estérification complète consiste précisément à éliminer l'eau qui se forme par divers procédés. Les valeurs pKa de l'acide 2-oxoglutarique ont été déterminées (Figure II.1) [75].

$$1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$HOOC - C - CH_2 - CH_2 - COOH$$

$$pk_{a1} = 2,44 \qquad pk_{a2} = 4,90$$

Figure II.1: Les valeurs de pKa de l'acide 2-oxoglutarique

En comparant l'acidité des deux groupements carboxyles (C₁ et C₅), il apparaît une différence considérable de réactivité à l'intérieur de l'acide 2-oxoglutarique.

La différence à la valeur pk_a de l'acide glutamique montre clairement l'effet fort attracteur du groupement 2-oxo. Il s'ensuit que l'acidité de l'acide 2-oxoglutarique est suffisante pour qu'il s'autocatalyse dans une estérification.

En laissant reposer l'acide 2-oxoglutarique dans un grand excès molaire de méthanol pendant un jour à température ambiante ensuite on distille on obtient le 2-oxoglutarate de diméthyle avec un rendement de 50 % [75].

Le problème est cependant l'élimination de l'eau de la réaction car lors d'une estérification avec le méthanol elle ne forme pas de mélange azéotrope. Une solution adéquate pour éliminer l'eau du mélange réactionnel, consiste à ajouter une quantité équimolaire d'acétone diméthylacétal (2,2-diméthoxypropane). Celui-ci réagit exclusivement avec l'eau pour donner le méthanol et l'acétone [76] (Schéma II.2).

Schéma II.2 : Synthèse du 2-oxoglutarate de diméthyle

Le fractionnement du mélange réactionnel sous vide, donne d'abord le 2-oxoglutarate de diméthyle et après élévation de la température, encore une petite quantité de 2-oxoglutarate de monométhyle est distillé. Ceci explique la différence de réactivité des deux groupements acides dans l'acide 2-oxoglutarique, l'attaque nucléophile est portée de préférence sur le groupement carboxyle 1.

L'ester monométhylique peut être transformé en ester diméthylique par le procédé décrit ci-dessus, le rendement total en diméthylester peut alors atteindre 95 % [34].

Les excellents rendements cités plus haut ont été réalisés par un fractionnement sous vide de 1 mm de mercure ce qui a considérablement abaissé le point d'ébullition de l'ester diméthylique.

Le composé $\bf 2$ a été caractérisé par son indice de réfraction $n_D^{20}=1,4414$ conformément à la littérature [34], ainsi que par une analyse spectroscopique IR (figure II.2).

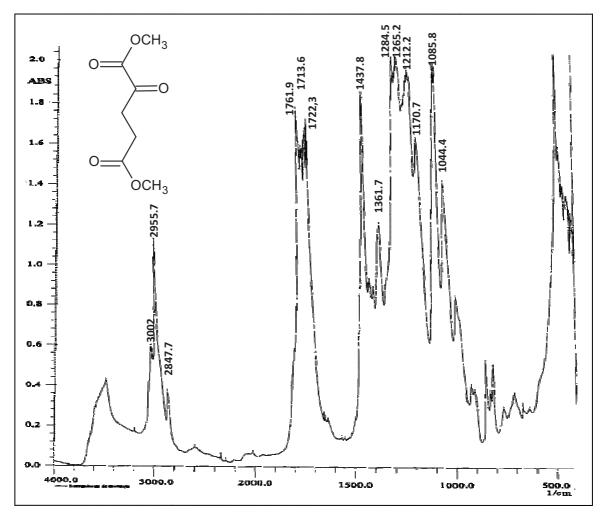


Figure II.2: Spectre IR de 2-oxoglutarate de diméthyle 2

Le spectre IR du 2-oxoglutarate de diméthyle fait apparaître les bandes d'absorption caractéristiques du groupement carbonyle (C=O) à 1761,9; 1722,3 et 1713,6 cm⁻¹. Il montre aussi deux fortes absorptions d'élongations vers 1212,2 et 1265,2 cm⁻¹ (C-O) ainsi que l'absorption d'élongations des alcanes (CH₂) à 2955,7 et 3002 cm⁻¹

II.2. Synthèse du dérivé 1,4-benzoxazin-2-one (4a-e)

Le 2-oxoglutarate de diméthyle renfermant un groupement carbonyle et deux groupements carboxyles offre ainsi à travers des attaques nucléophiles plusieurs possibilités de synthèse d'hétérocycles. Cependant ces groupements montrent une réactivité décroissante. La plus forte est manifestée par le groupement 2-oxo suivi par le carboxylate 1 et le carboxylate de méthyle en position 5 avec la plus faible réactivité.

Les réactions de cyclisation du 2-oxoglutarate de diméthyle avec les réactifs binucléophiles tels que l'o-phénylènediamine substituée et non substituée ainsi que le 1,2-diaminonaphtalène non substitué sont depuis longtemps connues et rapportées par la littérature [77-79]. L'action du 2-oxoglutarate de diéthyle sur l'o-aminophénol a donné le dérivé 1,4-bezoxazin-2-one [80]. Nous avons appliqué l'ester diméthylique de l'acide 2-oxoglutarique préalablement synthétisé sur l'o-aminophénol et ses dérivés : des quantités équimolaires d'o-aminophénol et de 2-oxoglutarate de diméthyle sont mélangés dans le méthanol et agités à température ambiante. Nous avons obtenu, comme prévisible, le dérivé 3-(2-oxo-2*H*-1,4-benzoxazin-3-yl)propanoate de méthyle, non décrit dans la littérature. Le mécanisme d'obtention du composé 4 est représenté dans le (schéma II. 3).

Schéma II. 3 : Synthèse du dérivé 3-(2-oxo-2*H*-1,4-benzoxazin-3-yl)propanoate de méthyle **4a-e**

La structure des composés **4a-e** est confirmée par les méthodes spectroscopiques. les spectres IR (Figure II.3-7) montrent les absorptions caractéristiques du groupement carbonyle à 1740, 1700 cm⁻¹ et les absorptions du groupement N=C entre 1612 et 1616 cm⁻¹.

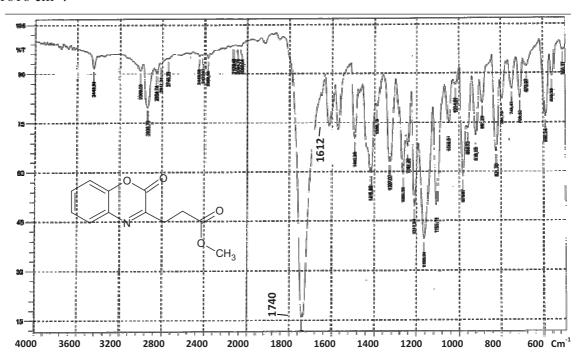


Figure II.3: Spectre IR du composé 4a

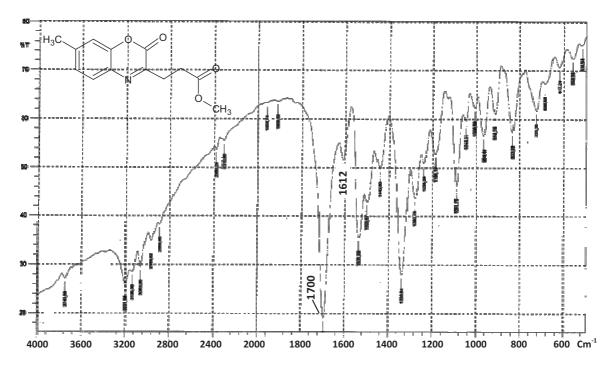


Figure II.4: Spectre IR du composé 4b

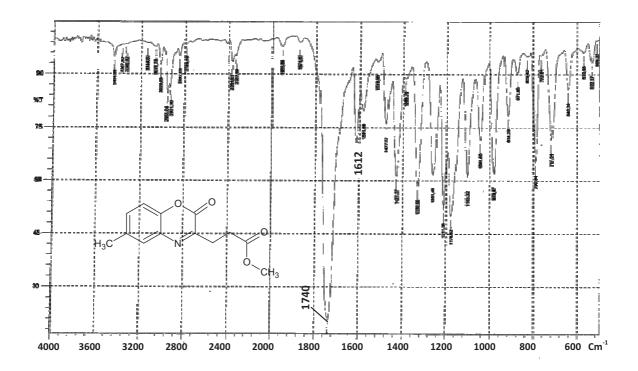


Figure II.5: Spectre IR du composé 4c

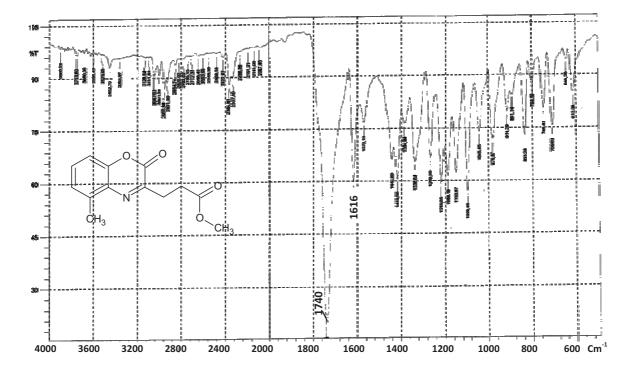


Figure II.6: Spectre IR du composé 4d

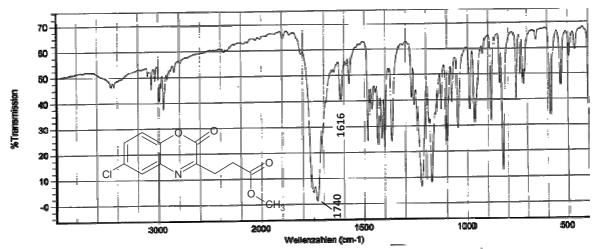


Figure II.7: Spectre IR du composé 4e

Dans les spectres ¹H-RMN pris dans le DMSO-d₆ du composé **4a** (figure II. 8) les signaux des groupements méthylènes apparaissent à 2,76 et 3 ppm sous forme de deux triplets (2H, J = 7,5 Hz, CH₂), (2H, J = 6,9 Hz, CH₂). Un singulet apparait à 3,59 ppm un singulet correspondant au groupement méthoxy (3H, OCH3). Les protons aromatiques sont résolus et apparaissent à 7,37 ppm un multiplet (2H, H_{arom}), 7,51un triplet (1H, J = 7,2 Hz, H_{arom}) et 7,67 un doublet (1H, J = 7,1 Hz, H_{arom}).

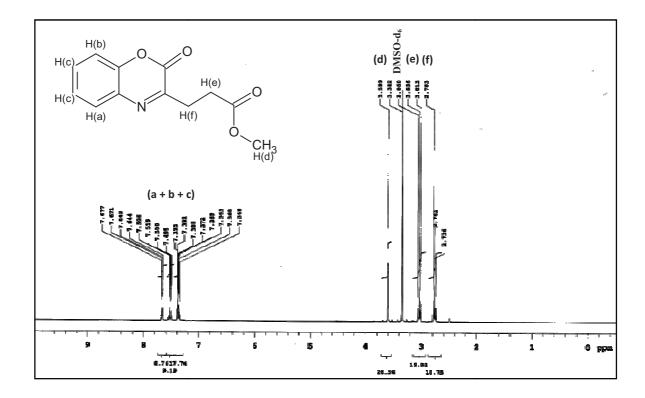


Figure II.8: Spectre ¹H-RMN du composé 4a

Pour le composé **4b** (figure II.9), un singulet présente à 2,38 ppm est attribué aux protons méthyle (3H, CH₃). Les protons des groupements méthylènes sont observés sous forme deux triplets à 2,74 (2H, J = 6,9 Hz, CH₂) et 3,01 ppm (2H, J = 7,2 Hz, CH₂). Le signal du groupement méthoxy est un singulet, apparait à 3,59 ppm (3H, OCH₃) et les protons aromatiques apparaissent sous forme deux doublets à 7,19 ppm (2H, J = 6,9 Hz, H_{arom}) et à 7,54 ppm (1H, J = 8.4 Hz, H_{arom}).

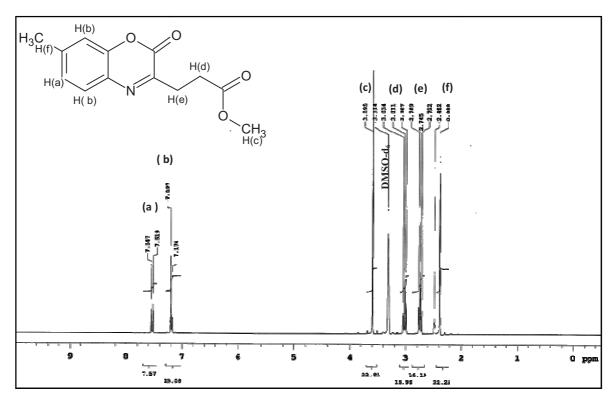


Figure II.9: Spectre ¹H-RMN du compose 4b

Pour le composé **4c** (figure II.10) le singulet des protons méthyle apparait à 2,35 ppm (3H, CH₃), les protons des groupements méthylènes, deux triplets, apparaissent à 2,74(2H, J = 6,9 Hz, CH₂) et 3,02 ppm (2H, J = 7,2 Hz, CH₂). Le signal du groupement méthoxy, un singulet, apparait à 3,59 ppm (3H, s, OCH₃) et les protons aromatiques apparaissent, deux doublets et un singulet à 7,26 (1H, J = 8,7 Hz, H_{arom}); 7,31 (1H, J = 1,5 Hz, H_{arom}) et 7,46 ppm (1H, H_{arom}).

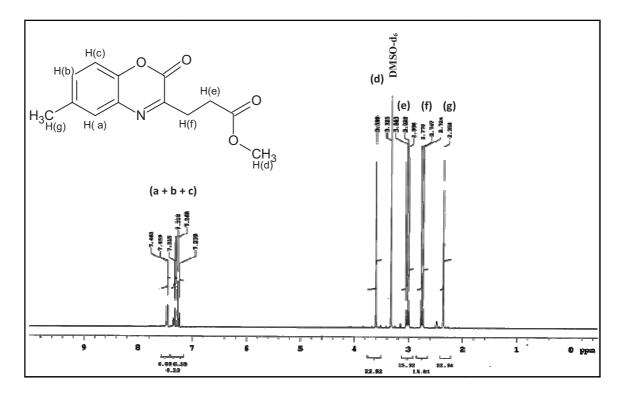


Figure II.10: Spectre ¹H-RMN du composé 4c

Pour le composé **4d** (figure II.11) le singulet des protons méthyle apparait à 2,48 ppm (3H, CH₃), les protons des groupements méthylènes, deux triplets, apparaissent à 2,74 (2H, J = 6,6 Hz, CH₂) et 3,04 ppm (2H, J = 6,3 Hz, CH₂). Le signal du groupement méthoxy, un singulet, apparait à 3,60 ppm (3H, CH₃) et les protons aromatiques apparaissent à 7,23 un multiplet (2H, H_{arom}) et à 7,41 ppm un singulet (1H, J = 7,2 Hz, H_{arom}).

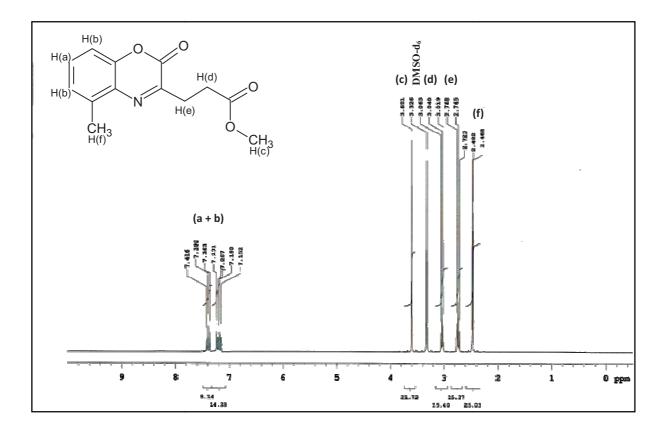


Figure II.11 : Spectre ¹H-RMN du composé **4d**

Pour le composé **4e** (figure II.12) les protons des groupements méthylènes, deux triplets, apparaissent à 2,77 (2H, J=7,2 Hz, CH₂); et à 3,06 ppm (2H, J=7,2 Hz, CH₂). Le signal du groupement méthoxy, un singulet, apparait à 3,62 ppm (3H, OCH₃) et les protons aromatiques, deux multiplets et un singulet apparaissent à 7,46 (1H, J=8,4 Hz, H_{arom}), 7,60 (1H, d, J=8.8 Hz, H_{arom}) et 7,74 ppm (1H, s, H_{arom}).

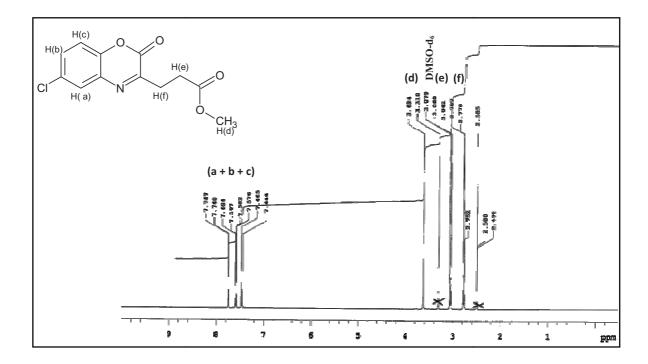


Figure II.12: Spectre ¹H-RMN du composé 4e

Les spectres ¹³C-RMN pris dans le DMSO-d₆ montrent 12 pics pour les composés **4a** et **4e** et 13 pics pour les composés **4b-d** situés dans leur domaine d'apparition (figures II.13-17).

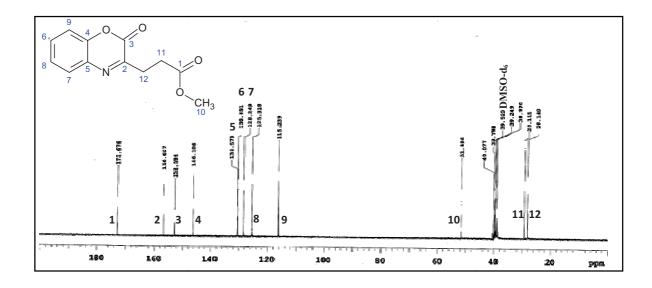


Figure II.13: Spectre ¹³C-RMN du composé 4a

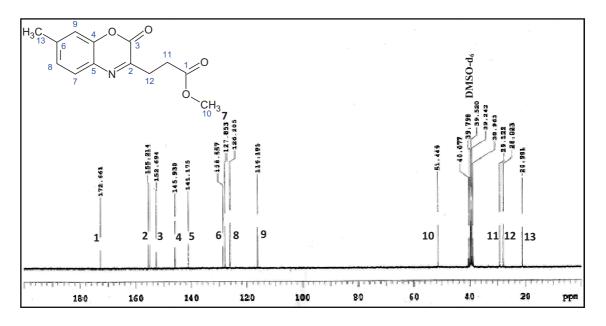


Figure II.14: Spectre ¹³C-RMN du composé 4b

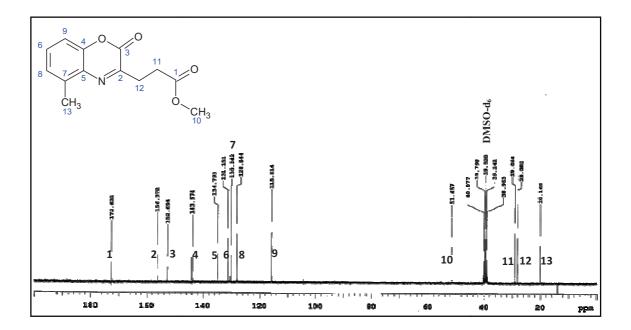


Figure II.15: Spectre ¹³C-RMN du composé **4c**

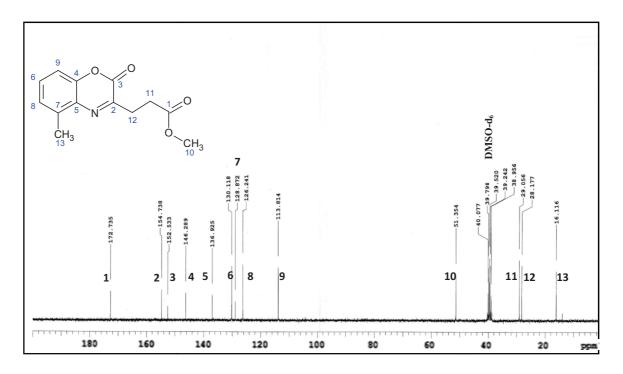


Figure II.16: Spectre ¹³C-RMN du composé 4d

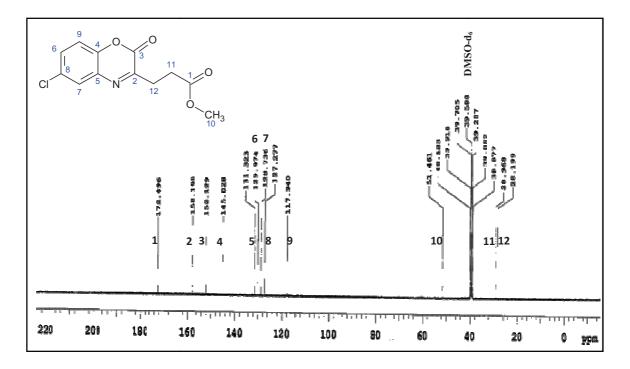


Figure II.17: Spectre ¹³C-RMN du composé **4e**

Les spectres de masse dans le mode (IE), montrent les pics des ions moléculaires correspondant aux masses moléculaires des composés **4a** et **4e** (figures II.18-19).

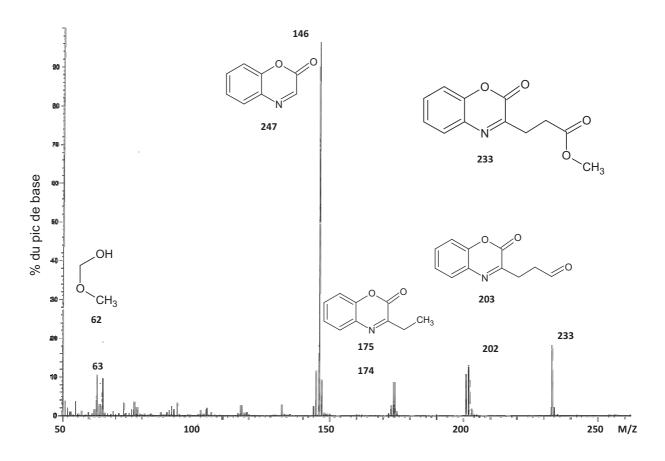


Figure II.18: Spectre de masse du composé 4a

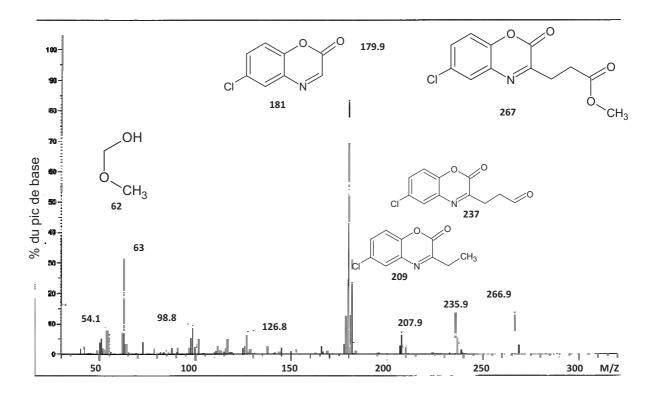


Figure II.19: Spectre de masse du composé 4e

L'analyse élémentaire confirme les compositions centésimales des composés. Ainsi les valeurs(%) calculées/trouvées sont les suivantes :

4a : C₁₂H₁₁NO₄ : C 61,80/61,63; H 4,75/4,74; N 6,01/5,91.

4b : C₁₃H₁₃NO₄ : C 63,15/63,08; H 5,30/5,11; N 5,67/5.61.

4c : C₁₃H₁₃NO₄ : C 63,15/63.03; H, 5,30/5,04; N 5,67/5,59.

4d : C₁₃H₁₃NO₄ : C 63,15/63,10; H 5,30/5,14; N 5,67/5,58.

4e : C₁₂H₁₀ClNO₄: C 53,85/53,83; H 3,77/3,73; N 5,23/5,16.

Les 1,4- benzoxazin-2-ones ont été essentiellement synthétisés par réaction de l'o-aminophénol substitué avec les 2-oxoesters [81-84], avec les alkylpropiolates [85] ou bien avec les β-nitroacrylates[86].

Les derivés 1,4-benzoxazin-2-ones représentent une classe de composés d'une grande importance. Vu leurs utilisations diverses un grand nombre a été synthétisé. Ce sont des composés d'activité photochimique [87-90] et surtout d'un grand intérêt pharmacologique [91-93].

II.3. Synthèse du 2,2-diéthoxyglutarate de diméthyle 5

Nous avons synthétisé le 2,2-diéthoxyglutarate de diméthyle suivant le procédé d'acétalisation de L. Claisen : action de l'ortho-formiate d'éthyle sur les aldéhydes et les cétones en présence de catalyseurs acides [94]. La réaction se déroule d'après l'équation globale suivante :

COOCH₃

$$C=O$$
 CH_2
 CH_2
 CH_2
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$
 $COOCH_3$

Schéma II.4 : Synthèse de 2,2-diéthoxyglutarate de diméthyle 5

Le processus est réversible et son mécanisme pourrait être représenté comme suit [95,96] :

Schéma II.5: Mécanisme d'acétalisation du 2-oxoglutarate de diméthyle 5

Un ajout d'alcool favorise considérablement la réaction, en générale il est même indispensable. Il est possible que l'action de l'ortho-formiate d'éthyle dans ce cas consiste aussi en partie à éliminer irréversiblement l'eau réactionnelle formée lors de l'acétalisation [97].

Dans notre présent travail nous avons procédé à l'acétalisation du 2-oxoglutarate de diméthyle d'après ce procédé de Claisen. On laisse reposer durant toute une nuit à température ambiante un mélange de 2-oxoglutarate de diméthyle, d'ortho-formiate d'éthyle, d'éthanol absolu et d'une quantité catalytique d'acide sulfurique concentré. Ensuite le mélange réactionnel est chauffé dans un bain marie d'où le formiate d'éthyle et l'éthanol formé seront distillés. Après refroidissement le mélange est lavé avec une solution saturée de carbonate de sodium, séché sur du sulfate de magnésium et fractionné sous vide. L'acétal obtenu est incolore, moins visqueux que l'ester avec une odeur caractéristique et un indice de réfraction $n_D^{23} = 1,4334$.

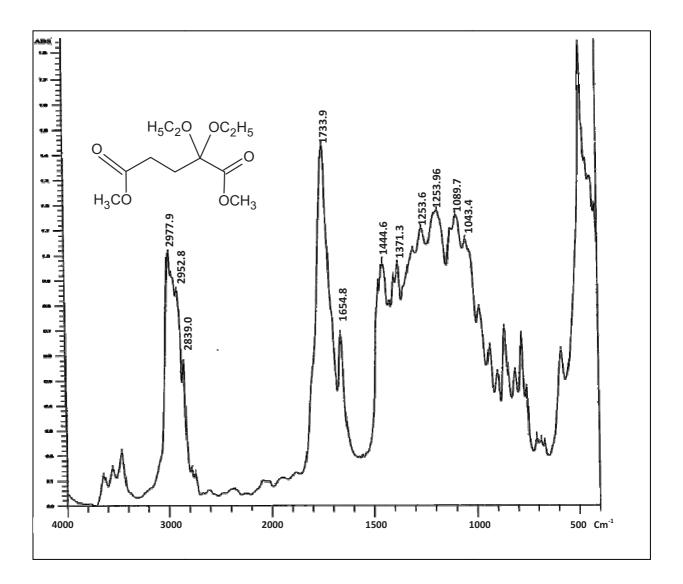


Figure II.20: Spectre IR du 2,2-diéthoxyglutarate de diméthyle 5

Le spectre IR (figure II.20) fait apparaître les bandes d'absorption caractéristiques du groupement carbonyle à 1654,8 et 1733,9 cm⁻¹.

II.4. Synthèse du 2,2-diméthoxyglutarate de diméthyle 6

Nous avons synthétisé cet acétal par le même procédé décrit précédemment, en remplaçant l'ortho-formiate d'éthyle par l'ortho-formiate de méthyle et l'éthanol par le méthanol (schéma II.6).

Schéma II.6 : Synthèse du 2,2-diméthoxyglutarate de diméthyle 6

Cet acétal 6 est aussi incolore, moins visqueux que l'ester avec une odeur caractéristique et un indice de réfraction $n_D^{23} = 1,4334$.

Le spectre IR (figure II.21) fait apparaître les bandes d'absorption caractéristiques du groupement carbonyle à 1741,6 et 1726,2 cm⁻¹.

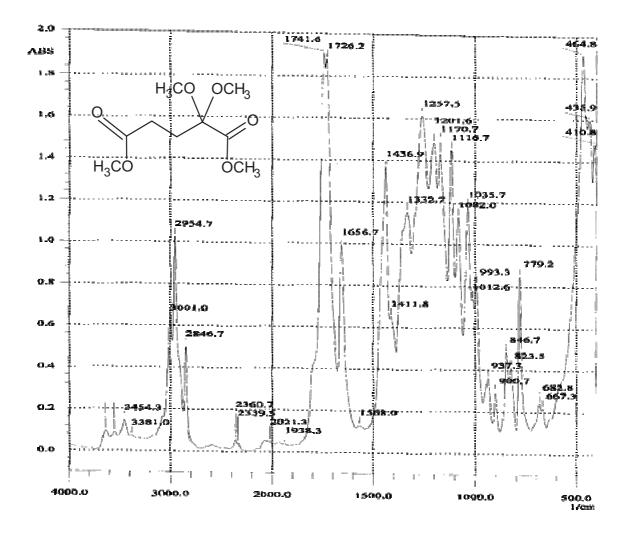


Figure II.21: Spectre IR du 2,2- diméthoxyglutarate de diméthyle 6

II.5. Synthèse d'hétérocycles avec le 2,2-diéthoxyglutarate de diméthyle 5

Les réactions de cyclisation de l'ester diméthylique de l'acide 2-oxoglutarique avec les réactifs binucléophiles comme 2-aminothiophénol [65], 1,2-diaminonaphtalène et l'ortho-phénylènediamine [77-79] sont bien étudiées.

Par suite du blocage du groupement carbonyle 2-oxo, les attaques nucléophiles ne peuvent se porter, en principe, que sur les groupements carboxylates de méthyle en positions C1 et C5. D'autant plus il est connu que les acétals sont stables en milieu basique. A partir de cette optique nous avons recherché à synthétiser des hétérocycles de 7, 8 et 9 membres en mettant en réaction nos acétals diéthoxy- et diméthoxyglutarate de diméthyle avec les réactifs binucléophiles sus-cités.

II.5.1. Réaction avec l'hydrazine monohydrate : synthèse de l'acide 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique 7

Le 2,2-diéthoxyglutarate de diméthyle et l'hydrazine monohydrate en excès sont mélangés dans le méthanol et portés sous reflux pendant quelques heures. Après évaporation du solvant sous vide et purification du produit par recristallisation, nous avons obtenu avec un haut rendement un nouveau dérivé pyridazine 7dont la structure est confirmée par les différentes méthodes physiques d'analyse. Ce composé n'est pas encore jusque là décrit dans la littérature. La présence de plusieurs sites électrophiles dans le précurseur 5 pourrait donner lieu à la formation de deux hétérocycles à sept membres le 1,2-diazépine 6 et à six membres un dérivé pyridazine 7.

Schéma II.7 : Synthèse du dérivé pyridazine 7

Il s'avère que le carbone C2 est plus déficitaire en densité électronique que le carbone C1. Nous proposons le mécanisme ci-dessous, les étapes de formation du dérivé pyridazine 7

Schéma II.8: Mécanisme réactionnel de la cyclisation du dérivé pyridazine 7

Les résultats de l'analyse spectrale du composé isolé exclus la structure 6 et confirme la structure du composé 7.

Dans le spectre IR (figure II.22) les bandes d'absorption caractéristiques du groupement carbonyle de la fonction amide apparaissent à 1730 cm⁻¹ et celles des liens NH à 3201,94 et 3132,5 cm⁻¹.

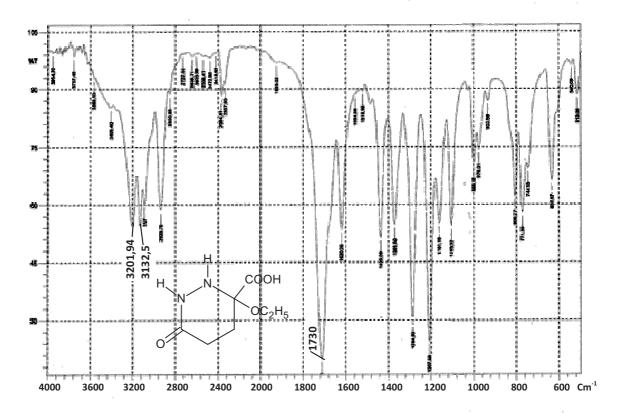
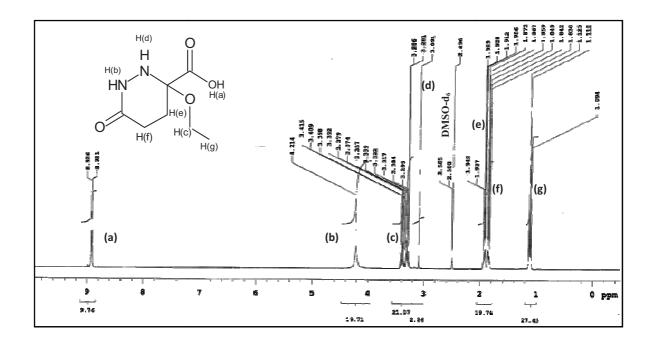



Figure II.22: Spectre IR de l'acide 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique 7

Dans le spectre ¹H-RMN pris dans le DMSO-d₆ du composé 7 (figure II. 23-a et figure II. 23-b), le signal du groupement méthyle, un triplet, apparait à 1,11 ppm et celui du groupement méthylène, un multiplet, apparait à 3,33 ppm. Le signal des deux groupements méthylènes, un multiplet, apparait à 1,87 ppm. Les deux singulets larges des protons NH apparaissent à 3,09 et 4,21 ppm. Le signal du proton OH, un singulet large, apparait 8,02 à ppm.

Figure II.23-a: Spectre ¹H-RMN du composé 7

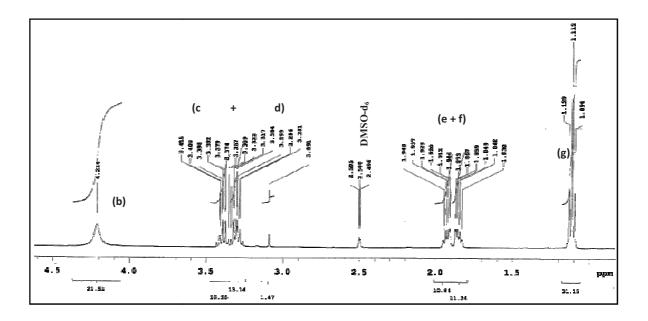


Figure II.23-b: Traitement du spectre de la Figure II.26-a de 0 à 4.5 ppm.

Dans le spectre ¹³C-RMN pris dans le DMSO-d₆ (figure II. 24) apparaissent distinctement 11 signaux dans leurs domaines d'apparition.

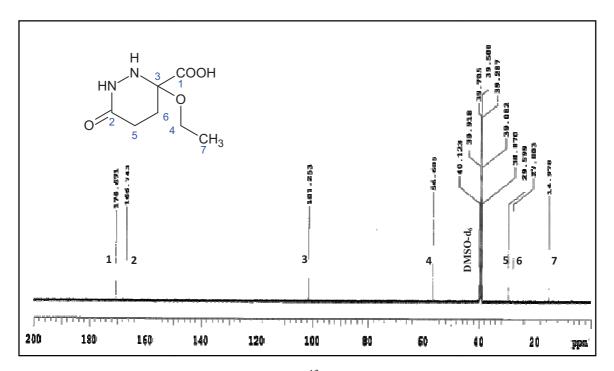


Figure II. 24: Spectre ¹³C-RMN du composé 7

Le spectre de masse dans le mode (IC) (figure II. 25), montre le pic de l'ion moléculaire $m/z = 189 [M+H]^+$ confirmant ainsi la masse du composé.

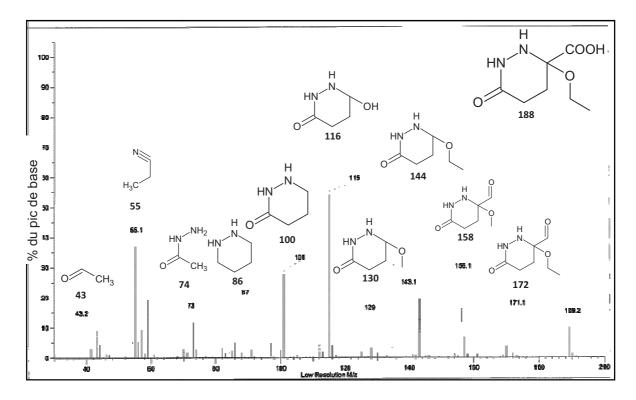


Figure II. 25: Spectre de masse du composé 7

Il existe très peu des dérivés naturels contenant la pyridazine, les seuls composés connus sont extraits des champignons de type *streptomyces* [98], par contre de nombreux dérivés de la pyridazine ont été essentiellement synthétisés par réaction d'hydrazine et le sulfate d'hydrazine avec des composés saturés 1,4-dicarbonylés [99], avec l'acide 2-oxoglutarique [99,100], ou bien avec les β-benzoylpropionique [98].

Les dérivés pyridazinique sont des produits très importants en raison de leurs propriétés pharmacologiques, ils ont de nombreuses applications dans la chimie médicinale, ils se retrouvent comme principes actifs dans certains médicaments comme la cefozopran, la minaparine [101]. Ce sont aussi des composés d'activité antimicrobienne, antiparasitaire, antifongique [98,101-106], anticancéreuse [107,108], anti-virale [109,110], cardiotonique [111], antinflammatoire [112,113], antituberculeuse [114], et surtout d'un grand intérêt sur le système nerveux centrale [111,115,116].

II.5.2. Réaction avec l'ortho-aminophénol: synthèse de 3-(3-éthoxy-2-oxo-3,4-dihydro-2*H*-1,4-benzoxazin-3-yl)propanoate de méthyle 8

Nous avons procédé à cette réaction dans les mêmes conditions qu'avec l'hydrazine monohydrate : le 2,2-diéthoxyglutarate de diméthyle et l'ortho-aminophénol en quantités équimolaires sont mélangés dans le méthanol et portés sous reflux pendant quelques heures. Après évaporation du solvant sous vide et purification du produit obtenu, la caractérisation par la RMN du proton ¹H et du carbone ¹³C correspond à un nouveau dérivé 1,4-benzoxazin-2-one qui n'est pas encore jusque là décrit dans la littérature. Le mécanisme réactionnel de cette cyclisation est le suivant :

Schéma II.9 : Synthèse du dérivé benzoxazine 8

Les résultats spectroscopiques du composé 8 sont en bon accord avec la structure proposée. On relèvera, en spectroscopie Infra-Rouge (FT. IR) (figure II.26), la présence des bandes d'absorptions caractéristiques du groupement carbonyle apparaissent à 1740 cm⁻¹ et celles du groupent (N-H) à 3437 et 1570 cm⁻¹.

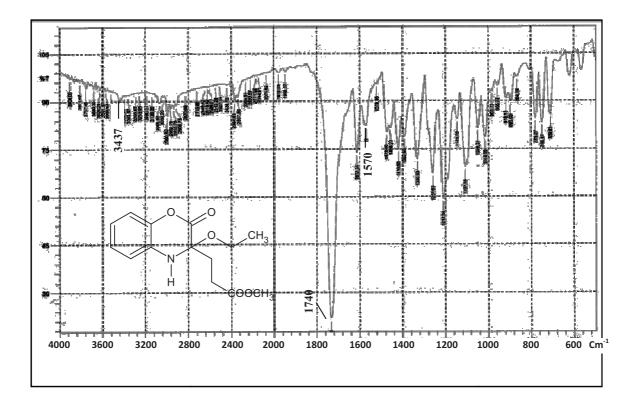


Figure II. 26: Spectre IR du composé 8

Le spectre ¹H-RMN, pris dans le DMSO-d₆ (figure II. 27), montre le signal du groupement éthoxy à 1,16 ppm sous forme d'un triplet (3H, J = 7,2 Hz) ainsi qu'à 4,05 ppm un quadruplet (2H, J = 6,8 Hz). Le groupement méthoxy apparait à 3,30 ppm par un singulet (3H). Les signaux des deux groupements méthylènes se trouvent à 2,76 ppm un triplet (2H, J = 6,8 Hz) ainsi qu'à 3,03 ppm un triplet (2H, J = 6,4 Hz). Le proton du groupement NH un singulet se trouve à 3,60 ppm. Les protons aromatiques sont résolus et apparaissent à 7,38 ppm un triplet (2H, J = 6,8 Hz), à 7,51 ppm un triplet (1H, J = 7,2 Hz) et à 7,65 ppm un doublet (1H, J = 6,8 Hz).

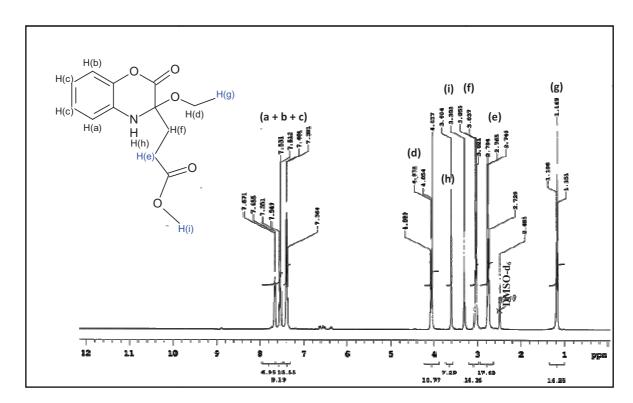


Figure II. 27: Spectre ¹H-RMN du composé 8

Le spectre ¹³C-RMN pris dans le DMSO-d₆ (figure II. 28) montre en tout 14 signaux situés dans leur domaine d'apparition.

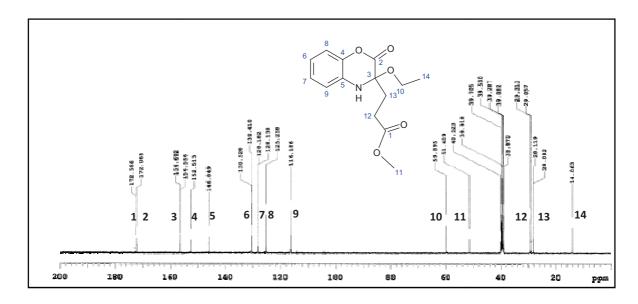


Figure II. 28: Spectre ¹³C-RMN du composé 8

Le spectre de masse dans le mode (IE) (figure II. 29), montre le pic de l'ion moléculaire $m/z = 279 \, [\text{M}^+]$ confirmant ainsi la masse du composé.

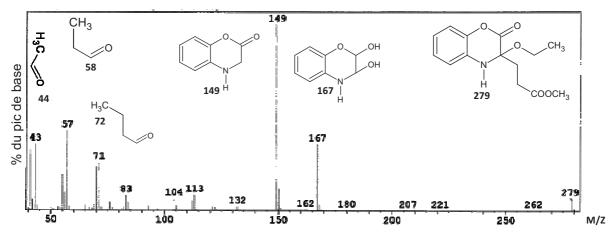


Figure II. 29: Spectre de masse du composé 8

II.5.3. Réation avec l'o-aminophénylène : synthèse de 3-(2-éthoxy-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)propanoate de méthyle 9

De même cette réaction du 2,2-diéthoxyglutarate de diméthyle avec l'orthophénylènediamine opérée dans les mêmes conditions qu'avec l'ortho-aminophénol a donné un nouveau dérivé quinoxaline dont la structure est conforme aux spectres ¹H- et ¹³C-RMN. Ce dérivé quinoxaline n'est pas encore aussi décrit dans la littérature. Le mécanisme de cyclisation est le suivant :

Schéma II.10 : Synthèse du dérivé quinoxaline 9

La structure du composé 9 est confirmée par les méthodes physiques d'analyse.

Dans le spectre IR (figure II.30) les bandes d'absorption caractéristiques du groupement carbonyle apparaissent à $1720~\rm cm^{-1}$ et celles du groupement NH à 3167, 3105 et $1660~\rm cm^{-1}$.

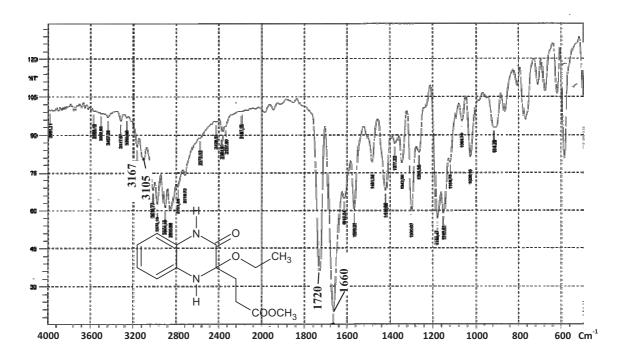


Figure II. 30: Spectre IR du composé 9

Le spectre ¹H-RMN, pris dans le DMSO-d₆ (figure II. 31), montre le signal du groupement éthoxy à 1,14 ppm un triplet (3H, J = 6,8 Hz, CH₃) ainsi qu'à 4,03 ppm un quadruplet (2H, J = 7,2 Hz, OCH₂). Le groupement méthoxy apparait à 3,30 ppm un singulet (3H, OCH₃). Les signaux des deux groupements méthylènes se trouvent à 2,74 ppm un quadruplet (2H, J = 6,8 Hz, CH₂) ainsi qu'à 3,02 ppm un triplet (2H, J = 6,4 Hz, CH₂). Les protons des groupements NH deux singulets se trouvent à 3,31 et 12,32 ppm. Les protons aromatiques sont résolus et apparaissent à 7,24 ppm un triplet (2H, J = 7,2 Hz, H_{arom}), à 7,45 ppm un triplet (1H, J = 7,6 Hz, H_{arom}) et à 7,62 ppm un doublet (1H, J = 8,8 Hz, H_{arom}).

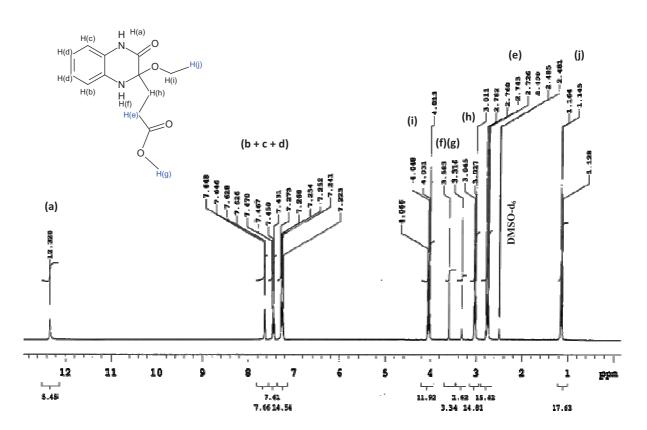


Figure II.31: Spectre ¹H-RMN du composé 9

Dans le spectre ¹³C-RMN pris dans le DMSO-d6 (figure II. 32), apparaissent 14 signaux dans leur domaine d'apparition.

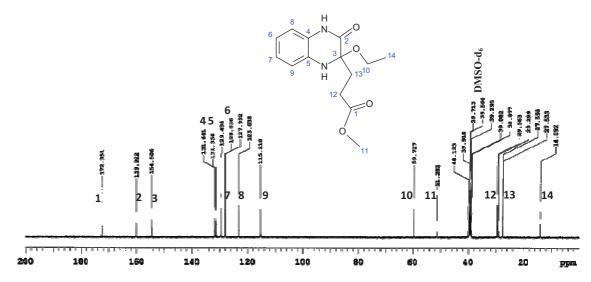


Figure II.32: Spectre ¹³C-RMN du composé 9

II.6. Synthèse d'hétérocycles avec le 2,2-diméthoxyglutarate de diméthyle 6

Vu les hétérocycles obtenus avec le 2,2-diéthoxyglutarate de méthyle nous avons procédé aux mêmes réactions avec le 2,2-diméthoxyglutarate de diméthyle dans le but d'obtenir d'autres dérivés de ces nouveaux hétérocycles.

II.6.1. Réaction avec l'ortho-aminophénylène : synthèse du dérivé quinoxaline 10

De même cette réaction du 2,2-diméthoxyglutarate de diméthyle avec l'orthophénylènediamine opérée dans les mêmes conditions qu'avec l'ortho-aminophénol a donné le dérivé quinoxaline qui est décrit dans la littérature. La structure est conforme aux spectres ¹H- et ¹³C-RMN et au spectre de masse. Comme dans le cas avec l'orthoaminophénol, il n'y a pas eu cyclisation à un nouveau dérivé quinoxaline escompté.

Schéma II.11: Synthèse du dérivé quinoxaline 10

Le spectre IR du dérivé quinoxaline **10** (figure II. 33), fait apparaître les bandes d'absorption caractéristiques du groupement (N-H) à 3535 cm⁻¹, du groupement carbonyle (C=O) à 1728 cm⁻¹ ainsi que la fonction (C=N) à 1602 cm⁻¹.

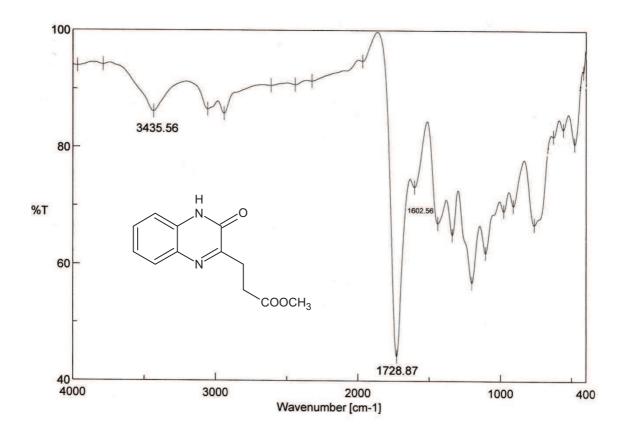


Figure II. 33: Spectre IR du composé 10

Le spectre 1 H-RMN, pris dans le DMSO-d₆ (figure II. 34), montre le signal du groupement méthoxy à 3,58 ppm un singulet (3H, OCH₃). Les signaux des deux groupements méthylènes se trouvent à 2,76 ppm un triplet (2H, J = 6,6 Hz, CH₂) ainsi qu'à 3,03 ppm un triplet (2H, J = 6,9 Hz, CH₂). Les protons aromatiques sont résolus et apparaissent à 7,24 ppm un triplet (2H, J = 7,2 Hz, H_{arom}), 7,45 un triplet (1H, J = 6,6 Hz, H_{arom}) et 7,66 ppm un doublet (1H, J = 7,8 Hz, H_{arom}). Le singulet large du proton NH apparait à 12, 32 ppm.

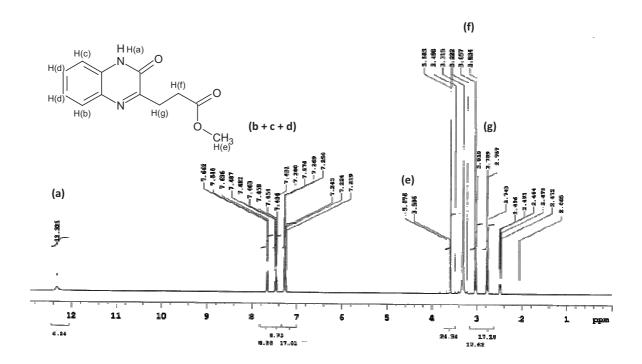


Figure II.34: Spectre ¹H-RMN du composé 10.

Le spectre ¹³C-RMN pris dans le DMSO-d₆ (figure II. 35) montre en tout 12 pics dans leur domaine d'apparition.

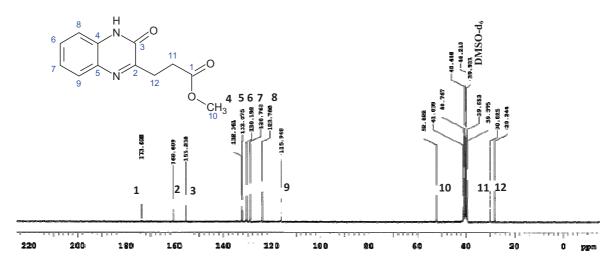


Figure II.35: Spectre ¹³C-RMN du composé 10.

Le spectre de masse en mode de (IE), montre le pic de l'ion moléculaire m/z= 232 correspondant à la masse moléculaire du composé.

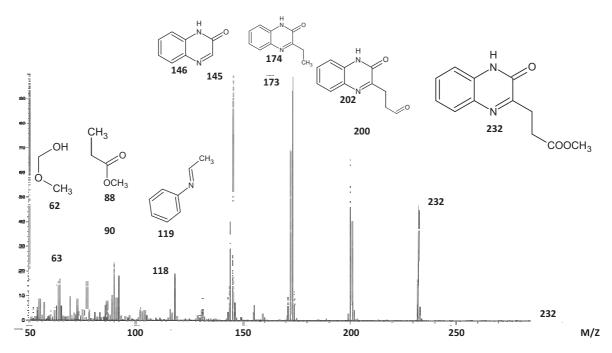


Figure II.36: Spectre de masse du composé 10

La quinoxaline et ses dérivés jouent un rôle intéressant comme squelette de base pour la synthèse de produits pharmacologiquement et biologiquement actifs : insecticides, herbicides, antifongiques, [117] antibactériens, antiviraux, anticancéreux. [118,119].

Ils sont bien connus et bien utilisés dans l'industrie pharmaceutique, où le noyau quinoxaline intervient dans plusieurs antibiotiques [120,121] et comme principe actif contre des tumeurs [122]. Pour la préparation du noyau quinoxalinone, la réaction d'Hinsberg [123] est la plus utilisée, c'est une réaction de condensation entre l'ophénélenediamine et les acides α -cétocarboxylique ou leurs esters. Plusieurs d'autre travaux cités dans la littérature utilise la condensation des dérivés de l'o-phénélenediamine sur : un α -halo ester [124], l'acide glyoxalique ou le pyruvate de méthyle [125,126], la pyrimidine [127], l'oxalate d'alkyle [128], l'acide oxalique dihydraté [129,130], ou bien par des réactions d'addition sur les alcynes [131].

II.6.2. Réaction avec l'hydrazine monohydrate

Bien que nous ayons opéré dans les mêmes conditions qu'avec le 2,2-diéthoxyglutarate de diméthyle nous n'avons isolé aucun produit solide. La variation des conditions opératoires (prolongement du temps de réaction, variation des concentrations des réactifs...) n'a donné aucun résultat. Nous avons toujours obtenu un produit résineux consistant.

Schéma II.12 Essai d'obtention de l'acide 3-méthoxy-6-oxohexahydropyridazine-3-carboxylique **11**

II.6.3. Réaction avec l'ortho-aminophénol : synthèse du dérivé 1,4-benzoxazin-2-one 12

Nous avons procédé à cette réaction dans les mêmes conditions qu'avec l'hydrazine monohydrate et nous avons isolé un composé solide pur. La caractérisation par la RMN du proton ¹H et du carbone ¹³C et la spectrométrie de masse a montré que la structure de ce composé est celle du dérivé 1,4-benzoxazin-2-one que nous avons obtenu avec le 2-oxoglutarate de diméthyle. Il n'y a pas eu de cyclisation au composé escompté. Ceci peut être expliqué par le fait que le groupement méthoxy est un bon partant nucléofuge.

Schéma II.13: Synthèse du dérivé benzoxazine 12

La structure du composé 12 est confirmée par les méthodes physiques d'analyse.

Dans le spectre IR (figure II.37) les bandes d'absorption caractéristiques du groupement carbonyle apparaissent à 1740 cm⁻¹ et celle du groupent N=C à 1600 cm⁻¹.

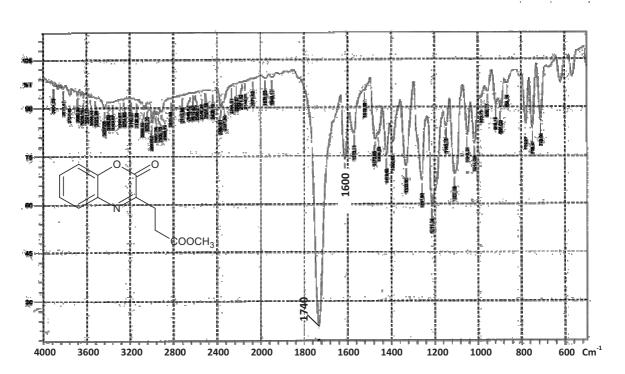


Figure II.37: Spectre de masse du composé 12

Le spectre 1 H-RMN, pris dans le CDCl₃ (figure II. 38), montre le signal du groupement méthoxy à 3,68 ppm un triplet (3H, OCH₃). Les signaux des deux groupements méthylènes se trouvent à 2,86 ppm un multiplet (2H, J = 7 Hz, CH₂) ainsi qu'à 3,22 ppm un multiplet (2H, J = 6,6 Hz, CH₂). Les protons aromatiques forment des multiplets et apparaissent entre 7,24 et 7,72 ppm (4H, H_{arom}).

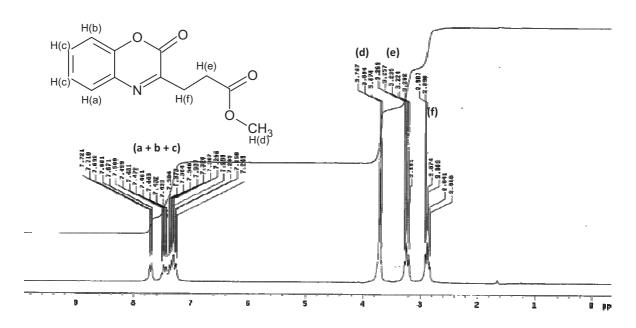


Figure II.38: Spectre ¹H-RMN du composé 12

Le spectre ¹³C-RMN pris dans le CDCl3 (figure II. 39) montre en tout 12 pics dans leur domaine d'apparition.

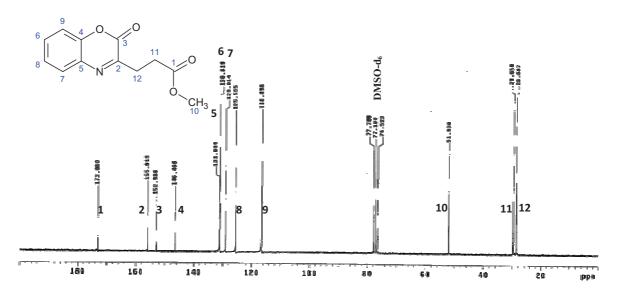


Figure II.39: Spectre ¹³C-RMN du composé 12

II.7. Synthèse de 3-bromo-2,2- diéthoxyglutarate de diméthyle 13

L'action du brome moléculaire sur le 2,2-diéthoxyglutarate de diméthyle en quantité équimolaire sous les conditions d'une réaction radicalaire donne le 3-bromo-2,2-diéthoxyglutarate de diméthyle **13** avec un haut rendement.

Schéma II.14: Synthèse du 3-bromo-2,2- diéthoxyglutarate de diméthyle 13

Cet acétal bromé **13** de l'ester diméthylique de l'acide 2-oxoglutarique obtenu avec un rendement de 85% n'est pas encore décrit dans la littérature.

Cette bromation du 2,2-diéthoxyglutarate de diméthyle se déroule suivant une réaction séléctive comme dans le cas de la bromation du 2-oxoglutarate de diméthyle [43]. La substitution radicalaire d'un atome d'hydrogène a lieu seulement sur l'atome de carbone C3 car avec un excès de brome il ne s'ensuit pas une deuxième bromation ni sur l'atome de carbone C3 ni sur celui du carbone C4.

Ceci peut être expliqué par le fait que l'atome de carbone C2 est déficitaire en densité électronique comme cela a été observé dans le chapitre II.6.1. De ce fait le groupement méthylène du carbone C3 est plus activé que celui du carbone C4. Mais cela reste à confirmer par une caractérisation complète de cet acétal bromé.

Nous avons procédé à la synthèse de ce dérivé bromé par action du brome moléculaire sur le 2,2-diéthoxyglutarate de diméthyle sous les conditions d'une réaction radicalaire dans le tétrachlorométhane au point d'ébullition de ce dernier. Après évaporation du solvant le produit huileux jaune-brun se laisse fractionner sous vide sans se décomposer.

Le spectre IR du composé **13** (figure II.40) fait apparaître les bandes d'absorptions caractéristiques du groupement carbonyle à 1735 cm⁻¹, du groupement (C-O) à 1257 et 1195 cm⁻¹, ainsi que l'absorption d'élongations des alcanes (CH₂) à 2983 et (CH₃) à 2955 cm⁻¹. La bande d'absorption caractéristique du lien C-Br apparaît à 660 cm⁻¹.

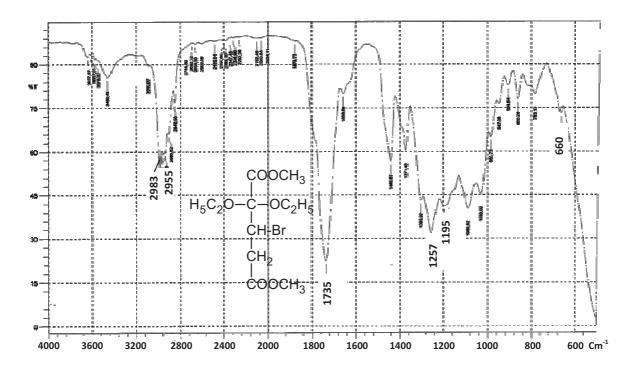


Figure II.40: Spectre IR du composé 13

II.8. Synthèse du 2,2-diéthoxyglutaconate de diméthyle 14

Ce dérivé fort intéressant qui n'est pas décrit dans la littérature peut être obtenu par déshydrobromation du 3-bromo-2,2-diéthoxyglutarate de diméthyle au moyen de triéthylamine.

Schéma II.15: Synthèse du 2,2-diéthoxyglutaconate de diméthyle 14

Nous avons réalisé cette réaction dans l'éther diéthylique avec des quantités équimolaires d'acétal bromé et de triéthylamine. Après filtration du sel triéthylaminebromhydrade formé et évaporation du solvant le produit huileux restant est fractionné sous vide. Nous avons obtenu un seul produit de couleur jaune clair.

Le spectre IR du composé **14** (figure II.41) fait apparaître les bandes d'absorptions caractéristiques du groupement carbonyle à 1735 cm⁻¹, du groupement (C-O) à 1257 et 1219 cm⁻¹, ainsi que l'absorption d'élongations des alcanes (CH₂) à 2983 et (CH₃) à 2957 cm⁻¹. La bande d'absorption caractéristique du lien C=C apparaît à 1635 cm⁻¹.

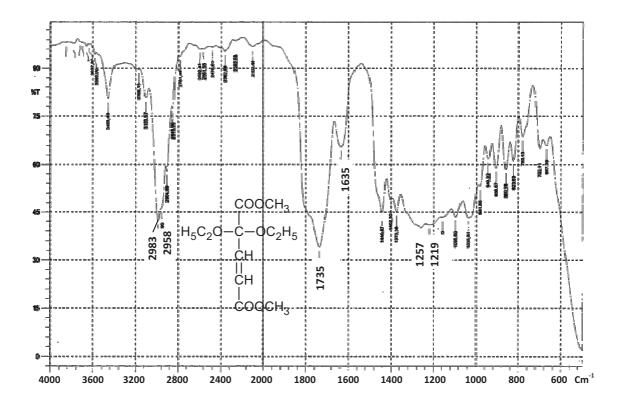


Figure II. 41: Spectre IR du composé 14

L'obtention d'un seul produit signifie que cette réaction de déshydrobromation est diastéréospécifique, comme dans le cas de la déshydrobromation de 3-bromo-2-oxoglutarate de diméthyle [133]. Il se forme seulement l'isomère (E) plus stable. Elle se déroule donc suivant un mécanisme d'élimination bimoléculaire.

II.9. Tests de l'activité antimicrobienne des composés synthétisés 4a-e, 7, 8, 9 et 10

La progression importante des infections microbiennes, les pertes économiques dues aux altérations des aliments d'origines microbiennes ne cessent d'augmenter au fil du temps. En plus les intoxications alimentaires ainsi que les contaminations qui en résultent, posent de plus en plus de problèmes de santé publique à l'échelle mondiale. D'autant plus la résistance des microorganismes aux agents antimicrobiens chimiques (antibiotiques, conservateurs des aliments...) ne cesse d'augmenter. Ainsi la mise au point de nouvelles molécules bioactives s'avère indispensable [134].

Donc dans ce qui suit nous présentons les résultats d'étude expérimentale établie pour évaluer le pouvoir antibactérien et antifongique des nouveaux hétérocycles obtenus sur des espèces bactériennes et une espèce de levure choisies pour leur pouvoir pathogène sur l'homme.

L'activité antimicrobienne in vitro des composés (4a-e, 7, 8, 9 et 10) sous forme de solutions dans le DMSO a été évaluée contre les germes les plus courants et numériquement majoritaires et couramment responsables de diverses pathologies, par la méthode des disques, aussi connu comme méthode Bauer-Kirby [135,136]. Six souches microbiennes de référence ont été utilisées dans notre étude : deux bactéries à Gram positif (Staphylococcus aureus, et Streptococcus Sp), quatre bactéries à Gram négatif (Escherichia coli, Proteus vulgaris, Proteus mirabilis et Citrobacter) et un champignon (Candida albicans). Un essai à blanc a été réalisé avec le DMSO, le résultat a été négatif.

Les résultats des tests antimicrobiens des composés (4a-e) présentés dans le Tableau II.1 montrent clairement que tous les composés présentaient une activité antifongique dans l'ordre 4a> 4c> 4d> 7e> 4b. Les souches sont avérées sensibles vis-à-vis du dérivé 3 - (6-méthyl-2-oxo-2*H*-benzo [b] [1,4] oxazin-3-yl) propanoate de méthyle (7c) notons que son activité antifongique était 2,5 fois supérieure à celle antibactérienne. Les composés 7a et 7e étaient actifs contre *P. vulgaris*, et le composé 7c est le plus actif contre toutes les souches bactériennes testées. D'autre part, les concentrations minimales inhibitrices (CMIs), définies comme la plus faible concentration d'un antimicrobien qui inhibe la croissance visible d'un micro-organisme après incubation, ont également été déterminées [137] (Tableau II.1).

Comme on le voit, tous les CMIs ont été jugées dans le spectre de 1250 à 2500 μ g / mL pour 4c vis à vis *S. aureus*, *E. coli* et *P.vulgaris*. Il convient de rappeler que les CMIs annoncée pour (7)-substituée-3-acylmethylene-1,4-benzoxazine-2-ones et éthacridine lactate vers les deux premières bactéries étaient de l'ordre de 500-2000 μ g / mL [138]. L'activité antimicrobienne des composés présents dépend fortement du type de souche testée de la nature et de la position du substituant dans le noyau benzénique. De toute évidence, le dérivé 6-méthyle 4c a montré la plus forte activité biologique.

Tableau II.1: Résultats des tests antimicrobiens de **4a-e**, la concentration de la solution mère est de 160 mg/mL dans le DMSO. [139]

	activité antibactérienne				
_	Gram-positive (+) Gram-negative (-)		antifongique		
composés testés	Staphylococcus aureus	Escherichia coli	Proteus vulgaris	Candida albicans	
DMSO	00	00	00	00	
4a	00	00	09 (20 000)	34 (10 000)	
4b	00	00	00	16 (5000)	
4c	13 (2500)	13 (2500)	12 (1250)	30 (40 000)	
4d	00	00	00	25 (20 000)	
4e	00	00	13 (40 000)	21 (10 000)	

Le diamètre de l'auréole formée en millimètres (mm); les numéros ci-dessous et entre parenthèses sont les valeurs minimales de concentration inhibitrice en μg / mL. La concentration minimale inhibitrice a été évaluée comme décrit dans la littérature en utilisant la méthode de dilution [137].

De même la première remarque établie des tests biologiques des composés (7, 8, 9 et 10) présentés dans le tableau 2, est que le composé 7 présente une activité sur toutes les souches utilisées. L'activité antifongique des composés dans l'ordre 7 > 8, 9 sauf le composé 10 qui est inactif. Les Composés 10 et 8 étaient plus actifs contre *Citrobacter*. Les concentrations minimales inhibitrices (CMIs) des composés les plus actifs, déterminées dans les intervalles de 546,5 à 35 000 µg / mL, montrent la grande efficacité inhibitrice du composé 7 sur les bactéries à Gram positif (*Staphylococcus aureus, Streptococcus Sp*) qui ont un intérêt alimentaire et industriel, et sur *Candida albicans*. Par contre pour les bactéries Gram négatifs, qui ont un intérêt hygiénique (*E. coli, Proteus mirabilis et Citrobacter*), l'activité antimicrobienne mesurée s'est montrée meilleur en utilisant le composé 8 contre *E. coli*, 9 contre *Proteus mirabilis*, cependant, la *Citrobacter* est inhibée efficacement par le composé 10.

Tableau II.2: Résultats des tests antimicrobiens de concentrations de 140 mg/mL, pour les composés 8, 9, 10, et 15 mg/mL pour le composé 7, dans le DMSO. [139]

	Activité antibactérienne					Activité antifongique
	Gram-pos	sitive (+)	Gram-negative (-)		•	
composés testés	Staphylococcus aureus	Streptococcus Sp	Escherichia coli	Proteus mirabilis	Citrobacter	Candida albicans
DMSO	00	00	00	00	00	00
7	16 (1875)	15 (1875)	16 (1875)	16 (3750)	10 (15 000)	12 (3750)
8	12 (4375)	12 (35000)	18 (1093.75)	16 (2187.5)	20 (1093.75)	11 (8750)
9	14 (8750)	12 (17500)	00	18 (1093.75)	16 (2187.5)	11 (17 500)
10	14 (4375)	00	12 (17 500)	10 (35000)	30 (546,5)	00

CHAPITRE III

PARTIE EXPERIMENTALE

Chapitre III

Partie expérimentale

III.1. Généralités

III.1.1. Réactifs et solvants

L'origine et la pureté des réactifs et solvants utilisés au cours de ce travail sont présentés dans les tableaux III.1 et III.2.

Tableau III.1: Réactifs utilisés

Réactifs	Formule brute	Pureté	Origine
Acétone diméthylacétal	$C_5H_{12}O_2$	98,0%	Panreac
Acide 2-oxoglutarique	$C_5H_6O_5$	99, 0%	Fluka
Ortho formiate d'éthyle	$C_7H_{16}O_3$	98 ,0%	Panreac
Carbonate de sodium	Na ₂ CO ₃	99,8%	Coprochim
Carbonate de potassium	K_2CO_3	99,5%	Fluka
Chlorure de calcium	CaCl ₂	98 ,0%	Panreac
Hydrazine monohydrate	N ₂ H ₄ .H ₂ O	98 ,0%	Avocado
Coupeaux de magnésium	Mg	99,8%	Panreac
2,2 Diméthoxypropane	$C_5H_{12}O_2$	98%	Panreac
Ortho formiate d'éthyle	$C_7H_{16}O_3$	98 ,0%	Panreac
2-hydroxy- 5-méthylaniline	C_7H_{10} NO	99%	fluka
2-hydroxy 6-méthylaniline	C_7H_{10} NO	99%	fluka
Brome	Br_2	99%	fluka
2-hydroxy 4-méthylaniline	C_7H_{10} NO	99%	fluka
Triéthylamine	$C_6H_{15}N$	99%	fluka
Ortho aminophénol	C ₆ H ₇ NO	98%	Biochimen
Ortho formiate d'éthyle	$C_6H_{16}O_3$	98%	Panreac
Ortho phénylènediamine	$C_6H_8N_2$	≥98%	Fluka
Sulfate de magnésium	MgSO ₄	97,0%	Panreac

Triéthylamine

Panreac

Solvants Formule brute Pureté Origine Acétone 99% C_3H_6O Coprochim $C_4H_8O_2$ 99% Acétate d'éthyle Panreac Acide sulfurique H_2SO_4 98% Organics C_2H_5OH 95,0% Ethanol Panreac 99,8% Diméthylsulfoxyde C_2H_6OS Panreac Ethanol C₂H₅OH 96% Panreac Ethanol absolu C_2H_5OH 99% Panreac 99.5% Méthanol CH₃OH Aldrich CH₃OH 99,99% Aldrich Méthanol absolu C_4H_8O Tétrahydrofurane 99,7% Panreac Toluène C_7H_8 99,8% Panreac

Tableau III.2: Solvants utilisés

Tous ces composés sont utilisés tels quels. La pureté indiquée est la pureté minimale garantie par le fournisseur. Le cas échéant, les solvants sont séchés et purifiés selon les méthodes usuelles.

99,5

III.1.2. Appareillage et techniques d'analyses

• Les indices de réfraction ont été déterminés par le réfractomètre d'ABBE.

 $C_6H_{15}N$

- Les points de fusions P_f (°C) sont déterminés à l'aide d'un appareil à plaque chauffante de MELTING POINT SMPA (à lamelles).
- Les spectres infrarouges (IR) ont été enregistrés sur deux spectromètres à transformée de fourrier, PARAGON 1000 Pc et Perkin-Elmer 1710 en solution ou sur pastille de KBr. Les fréquences d'absorption sont exprimées en cm⁻¹ à leur maximum d'intensité.
- La Chromatographie sur Couche Mince (CCM) a été effectuée sur gel de silice 60 F254, d'épaisseur 0,2 mm, déposé sur feuille d'aluminium (Merck).
- Les spectres de masse (SM) en impact électronique (IE) et en ionisation chimique (IC), ont été enregistrés avec un spectromètre de masse Thermo Finnigan MAT 8230,70 eV.
- L'analyse élémentaire a été mesurée avec un analyseur élémentaire El Vario de Elementar Analysensysteme GmbH Hanau.
- Les spectres RMN ¹H et RMN ¹³C ont été enregistrés dans le DMSO-d₆ sur un appareil Bruker Avance 300 avec une fréquence de 300 et 400 MHz pour le proton (¹H) et de 75 MHz pour le carbone (¹³C).

65

Les déplacements chimiques sont exprimés en parties par million (ppm) par rapport au tétraméthylsilane (TMS) pris comme référence interne.

• Les constantes de couplage *J* sont exprimées en Hertz (H). La multiplicité des signaux de résonance est indiquée par les abréviations : (s) singulet, (sl) pour singulet large, (d) doublet, (t) triplet, (q) quadruplet, (m) multiplet et (dd) doublet de doublet.

III.2. Préparation des produits

2-oxoglutarate de diméthyle 2

$$H_3CO$$
 OC H_3

73,05 g (0,5 mole) d'acide 2-oxoglutarique (1) sont dissous dans 300 mL de méthanol absolu et laissés reposer à température ambiante pendant 5 jours.

Le 6^{ème} jour 104,15 g (1 mole) de 2,2-diméthoxypropane y sont ajoutés et le mélange réactionnel est laissé reposer encore un autre jour. Ensuite le méthanol ainsi que l'acétone formé sont distillés sous vide et le produit huileux restant est fractionné sous vide. Tout d'abord le 2-oxoglutarate de diméthyle est distillé et après élévation de la température une infime partie de 2-oxoglutarate de monométhyle est distillée. Ce dernier peut être transformé en diméthyle par le même mode opératoire.

 $M(C_7H_{10}O_5): 174,1 \text{ g/mole}$

Aspect: Huile incolore

Rendement: 85 %. (74,0 g)

 $T_{\text{\'eb}}$ (160mm de Hg) : 110-120°C

 $n_D^{20} = 1,4414$

IR (KBr): v (cm⁻¹) = 2955,7 et 3002 (C-H); 176,9; 1722,3 et 1713,6 (C=O); 1212,2 et 1265,2 (C-O).

Synthèse des dérivées de benzoxazine 4a-e

$$R^1$$
 R^2
 R^3
 R^3
 R^3
 CH_3

<u>4a-e</u>

R ³
Н
Н
Н
Me
Н

Une solution de 1,74 g (0,01 mole) de 2-oxoglutarate de diméthyle (2) dans 10 mL de méthanol absolu est égouttée à 20°C et sous agitation à une solution des dérivés de 2-aminophénol (1a–e) (0,01 mole) dans 20 mL de méthanol absolu. Après une heure d'agitation à 20°C le produit formé est filtré et recristallisé dans le méthanol.

3-(2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4a

 $M(C_{12}H_{11}NO_4): 233,22 \text{ g/mole}$

Aspect: Cristaux oranges

Rendement: 60 % (1,39 g)

Point de fusion: 134-135°C

IR (KBr) v = 1740 (C=O) cm⁻¹

RMN ¹**H** (300 MHz, DMSO-d₆): δ (ppm) = 2,76 (2H, t, J = 7,5 Hz, CH₂); 3,03 (2H, t, J = 6,9 Hz, CH₂); 3,59 (3H, s, OMe); 7,37 (2H, m, H_{arom}); 7,51 (1H, t, J = 7,2 Hz, H_{arom}); 7,67 (1H, d, J = 7,1 Hz, H_{arom}).

RMN ¹³C (75,44 MHz, DMSO-d₆): δ (ppm) = 28,14 (CH₂); 29,11 (CH₂); 51,48 (OMe); 116,23 (C-8); 125,31 (C-6); 128,24 (C-5); 130,49 (C-7); 130,57 (C-4a); 146,10 (C-8a); 152,28 (C=O); 156,60 (N=C); 172,67 (COO).

MS (**EI 70eV**): m/z 233 (M+, 58%), 231 (M+ -OCH₃, 37%), 174 (M+ -CO₂CH₃, 35%), 146 (M+ -CH₂-CH₂-CO₂CH₃, 100%).

Analyse élémentaire :

Calculée / trouvée (%): C = 61.80 / 61.63; H = 4.75 / 4.74; N = 6.01 / 5.91.

3-(7-methyl-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4b

 $M(C_{13}H_{13}NO_4): 247.246 \text{ g/mole}$

Aspect: Cristaux oranges

Rendement: 40 % (0,98 g)

Point de fusion: 99-100°C

IR (KBr) v = 1740 (C=O) cm⁻¹

RMN ¹**H** (300 MHz, DMSO-d₆): δ = 2,38 (3H, s, CH₃); 2,74 (2H, t, J = 6,9 Hz, CH₂); 3,01 (2H, t, J = 7,2 Hz, CH₂); 3,59 (3H, s, OMe); 7,19 (2H, d, J = 6,9 Hz, H_{arom}); 7,54 (1H, d, J = 8,4 Hz, H_{arom}).

RMN ¹³C (75,44 MHz, DMSO-d₆): $\delta = 20,98$ (CH₃); 28,02 (CH₂); 29,12 (CH₂); 51,44 (OMe); 116,18 (C-8); 126,20 (C-6); 127,85 (C-5); 128,55 (C-7); 141,17 (C-4a); 145,93 (C-8a); 152,69 (C=O); 155,21 (N=C); 172,66 (COO).

MS (EI 70eV): m/z 247 (M+, 88%), 216 (M+-OCH₃, 51%), 188 (M+-CO₂CH₃, 36%), 160 (M+-CH₂-CH₂-CO₂CH₃, 100%).

Analyse élémentaire :

Calculée / trouvée (%): C = 63,15 / 63,08; H = 5,30 / 5,11; N = 5,67 / 5,61.

3-(6-methyl-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de methyl 4c

 $M(C_{13}H_{13}NO_4): 247,246 \text{ g/mole}$

Aspect: Cristaux jaune-pale

Rendement : 50 % (1,23 g)

Point de fusion: 100-101°C

IR (KBr): v = 1740 (C=O) cm⁻¹.

RMN ¹**H** (300 MHz, DMSO-d₆): $\delta = 2,35$ (3H, s, CH₃); 2,74 (2H, t, J = 6,9 Hz, CH₂); 3,02 (2H, t, J = 7,2 Hz, CH₂); 3,59 (3H, s, OMe); 7,26 (1H, d, J = 8,7 Hz, H_{arom}); 7,31 (1H, d, J = 1,5 Hz, H_{arom}); 7.46 (1H, s, H_{arom}).

RMN ¹³**C** (75,44 MHz, DMSO-d₆): $\delta = 20,16$ (CH₃); 28,08 (CH₂); 29,06 (CH₂); 51,45 (OMe); 115,81 (C-8); 128,04 (C-6); 130,24 (C-5); 131,15 (C-7); 134,79 (C-4a); 143,97 (C-8a); 152,69 (C=O); 156,37 (N=C); 172,63 (COO).

MS (**EI 70eV**): m/z 247 (M+, 81%), 216 (M+_OCH3, 43%), 188 (M+_CO₂CH₃, 19%), 160 (M+_CH₂-CH₂-CO₂CH₃, 100%).

Analyse élémentaire :

Calculée / trouvée (%): C = 63,15 / 63,03; H = 5,30 / 5,04; N = 5,67 / 5,59.

3-(5-methyl-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4d

M (C₁₃H₁₃NO₄): 247,246 g/mole

Aspect: Cristaux jaune-pale

Rendement: 50 % (1,23 g)

Point de fusion: 132-134°C

IR (KBr) v = 1740 (C=O) cm⁻¹.

RMN ¹**H** (300 MHz, DMSO-d₆): δ = 2,48 (3H, s, CH₃); 2,74 (2H, t, J = 6,6 Hz, CH₂); 3,04 (2H, t, J = 6,3 Hz, CH₂); 3,60 (3H, s, OMe); 7,23 (2H, m, H_{arom}); 7,41 (1H, t, J = 7,2 Hz, H_{arom}).

RMN ¹³C (75,44 MHz, DMSO-d₆): $\delta = 16,11$ (CH₃); 28,17 (CH₂); 29,05 (CH₂); 51,35 (OMe); 113,81 (C-8); 126,24 (C-6); 128,87 (C-5); 130,11 (C-7); 136,92 (C-4a); 146,28 (C-8a); 152,53 (C=O); 154,73 (N=C); 172,73 (COO).

MS (**EI 70eV**): m/z 247 (M+, 80%), 215 (M+-CH₃OH, 100%), 188 (M+-CO₂CH₃, 10%), 160 (M+-CH₂-CH₂-CO₂CH₃, 80%).

Analyse élémentaire :

Calculée / trouvée (%): C = 63,15 / 63,10; H = 5,30 / 5,14; N = 5,67 / 5,58.

3-(6-chloro-2-oxo-2H-1,4-benzoxazin-3-yl)propanoate de méthyle 4e

 $M (C_{12}H_{10}ClNO_4) = 267,665 g/mole$

Aspect: Cristaux blancs

Rendement : 50 % (1,33 g)

Point de fusion: 114-116°C

IR (KBr): v = 1740 (C=O) cm⁻¹.

RMN ¹**H** (400 MHz, DMSO-d₆): $\delta = 2,77$ (2H, t, J = 7,2 Hz, CH₂); 3,06 (2H, t, J = 7,2 Hz, CH₂); 3,62 (3H, s, OMe); 7,46 (1H, d, J = 8,4 Hz, H_{arom}); 7,60 (1H, d, J = 8,8 Hz, H_{arom}); 7,74 (1H, s, H_{arom}).

RMN ¹³**C** (100,58 MHz, DMSO-d₆): δ = 28,19 (CH₂); 28,96 (CH₂); 51,46 (OMe); 117,94 (C-8); 127,27 (C-5); 128,73 (C-7); 129,97 (C-6); 131,32 (C-4a); 145,02 (C-8a); 152,12 (C=O); 158,19 (N=C); 172,49 (COO).

MS (**EI 70eV**): m/z 267 (M+, 16%), 236 (M+-OCH₃, 15%), 208 (M+-CO₂CH₃, 5%), 180 (M+-CH₂-CH₂-CO₂CH₃, 100%).

Analyse élémentaire :

Calculée / trouvée (%): C = 53,85 / 53,83; H = 3,77 / 3,73; N = 5,23 / 5,16.

2,2 diéthoxyglutarate de diméthyle 5

$$H_3CO$$
 OC H_3 OC H_3 OC H_5 OC $H_$

<u>5</u>

A 10 g (57,42 mmol) de 2-oxoglutarate de diméthyle (2) sont ajoutés 8,5 g (57 mmole) d'orthoformiate d'éthyle, 2,64 g d'éthanol absolu et 0,4 mL d'acide sulfurique concentré. La solution est laissée au repos pendant une journée à température ambiante. Après le mélange réactionnel est chauffé dans un bain marée pendant 4 heures d'où le formiate d'éthyle formé ainsi que 1'éthanol sont distillés. Ensuite le mélange réactionnel restant est refroidi, lavé avec 6 mL d'une solution de carbonate de sodium saturée et séché sur du sulfate de magnésium, filtré et fractionné sous vide ; un liquide incolore avec une odeur caractéristique est récupéré.

 $M(C_{11}H_{20}O_6): 248,27 \text{ g/mole}$

Aspect: Huile incolore

Rendement: 60% (51,34g)

Téb (160mm de Hg): 120-125 °C.

 $n_D^{23} = 1,4334$

IR (KBr): $v \text{ (cm}^{-1}) = 2954 \text{ (C-H)}$; 1740, 1728 et 1743 (C=O); 1438, 8 (C-C); 1178.4 (C-O).

2,2 diméthoxyglutarate de diméthyle 6

<u>6</u>

A 30 g (136,23 mmole) de 2-oxoglutarate de diméthyle **(2)** sont ajoutés 25,5 g (171 mmole) d'orthoformiate de méthyle, 7,92 g de méthanol absolu et 0,9 mL d'acide sulfurique concentré. La solution est laissée au repos pendant une journée à température ambiante. Ensuite le mélange réactionnel est porté sous reflux dans un bain marie pendant 4 heures d'où le formiate de méthyle formé ainsi que le méthanol sont distillés. Après refroidissement à l'air, la solution est lavée avec 18 mL d'une solution de carbonate de sodium saturée, séchée sur du sulfate de magnésium, filtrée et distillée sous vide : obtention d'un liquide incolore avec une odeur caractéristique.

 $M(C_9H_{16}O_6): 220,21 \text{ g/mole}$

Aspect: Huile incolore

Rendement : 56% (21 g)

Téb (160mm de Hg): 100-105 °C.

 $n_D^{23} = 1,4237$

IR (KBr): v (cm⁻¹) = 2954 (C-H); 1740, 1728 et 1743 (C = O); 1438,8 (C-C); 1178,4 (C-O).

Acide 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique 7

On dissout 6 g (0,242 mole) de 2,2-diethoxyglutrate de diméthyle dans 20 mL de méthanol absolu et on ajoute sous agitation une solution de 8 g (0,16 mole) d'hydrazine monohydrate dans le méthanol absolu; le mélange est chauffé sous reflux pendant 4 heures et 30 mn. Le solvant est évaporé sous vide et le produit formé est filtré et recristallisé dans le méthanol.

 $M(C_7H_{12}N_2O_4): 188,18 \text{ g/mole}$

Aspect: cristaux blancs

Rendement: 97 % (5,15 g)

Point de fusion: 154 -156 °C

IR (KBr) v (cm⁻¹) = 3680,25 (C-N); 3356 et 3248,23 (NH); 1628,51 (C=O).

RMN ¹**H** (400 MHz, DMSO-d₆): $\delta = 1,12$ (3H, d, J = 7,2 Hz, CH₃); 1,85 (2H, d, J = 4 Hz, CH_{2arom}); 1,92 (2H, d, J = 3,2 Hz, CH_{2arom}); 3,09 (1H, s, NH); 3,35 (1H, s, NH); 3,40 (2H, q, J = 4,4 Hz, OCH₂); 4,21 (1H, s, NH); 8,92 (1H, s, OH).

RMN ¹³C (100,58 MHz, DMSO-d₆): δ = 14,97 (C-7/ CH₃); 27,80 (C-6/C_{cycl}); 29,59 (C-5/C_{cycl}); 56,60 (C-4/ OCH₂); 101,25 (C-3/C-N); 166,74 (C-2/C=O);170,67 (C-1/COO).

3-(3-éthoxy-2-oxo-3,4-dihydro-1,4-benzoxazin-3-yl) propanoate de méthyle 8

$$\begin{array}{c|c} O & O \\ \hline O & CH_3 \\ \hline \\ H & COOCH_3 \\ \hline \\ \underline{8} \\ \end{array}$$

On dissout 0,44 g (4,036 mmoles) de 2- aminophénol dans 25 mL de méthanol absolu et on ajoute à température ambiante une solution de 1g (4,028 mmoles) de 2,2-diéthoxyglutarate de diméthyle. La solution est agitée pendant 4 heures. Le précipité formé est filtré et recristallisé dans l'éthanol.

 $M(C_{14}H_{17}NO_5)$: 269,30 g/mole

Aspect: Cristaux marron clair

Rendement: 21,12% (0,23 g)

Point de fusion: 126-128 °C

IR (KBr): v (cm⁻¹) = 1765 (C=O); 1211,34 et 1257,63 (C-O); 709,83; 748,41 et 779,29 (C-C); 3437,26 (N-H); 1612,54 (C=C).

RMN ¹**H** (400 MHz, DMSO-d₆): $\delta = 1,16$ (3H, t, J = 7,2 Hz, CH₃); 2,76 (2H, t, J = 7,6 Hz, CH₂); 3,03 (2H, t, J = 6,4 Hz, CH₂); 3,30 (3H, s, OMe); 3,60 (1H, s, NH); 4,07 (2H, t, J = 7,2 Hz, CH₂); 7,38 (2H, m, J = 6,8 Hz, H_{arom}); 7,54 (1H, d, J = 7,2 Hz, H_{arom}); 7,65 (1H, d, J = 6,4 Hz, H_{arom}).

RMN ¹³**C** (100,58 MHz, DMSO-d₆) : $\delta = 14,06$ (C-14); 28,11 (C-13); 29,31 (C-12); 51,40 (C-11/OMe); 59,89 (C-10/CH₂); 116,18 (C-9/C_{arom}); 125,25 (C-8/C_{arom}); 128,18 (C-7/C_{arom}); 130,41 (C-6/C_{arom}); 146,04 (C-5/C_{arom}); 152,51 (C-4/C_{arom}); 156,60 (C-3/C-O); 172,06 (C-2/C=O); 172,58 (C-1/COO).

3-(2-methoxy-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)propanoate de méthyle 9

$$\begin{array}{c|c} H \\ O \\ CH_3 \\ \hline H \\ COOCH_3 \\ \underline{9} \\ \end{array}$$

Une solution de 1g (4,028 mmoles) de 2,2-diéthoxyglutarate de diméthyle dans 10 mL d'éthanol absolu est égouttée à 20°C et sous agitation à une solution de 0,45g (4,166 mmoles) d'ortho phénylènediamine dans 20 mL d'éthanol absolu. Après 4 heures d'agitation à 20°C, on évapore le solvant sous vide, le produit formé est recristallisé dans l'éthanol.

 $M(C_{14}H_{18}N_2O_4)$: 270,30 g/mole

Aspect : Cristaux jaunes

Rendement: 9,55 (0,14g)

Point de fusion: 202-204 °C

IR (KBr): v (cm⁻¹) = 1728,28 (C=O); 1180,47 et 1149,61(C-O); 1566,25 (C=C); 2850,88 et 2904,89 (C-H); 3437,26 (N-H); 1419,66 (C-H).

RMN ¹**H** (400 MHz, DMSO-d₆): $\delta = 1,14$ (3H, t, J = 6.8 Hz, CH₃); 2,76 (2H, q, J = 6.8 Hz, OCH₂); 3,02 (2H, t, J = 6.4 Hz, CH₂); 3,31 (3H, s, OMe); 3,58 (1H, s, NH); 4,04 (2H, q, J = 6.8 Hz, CH₂); 7,25 (2H, m, J = 0.8 Hz, H_{arom}); 7,46 (1H, d, J = 6.8 Hz, H_{arom}); 7,64 (1H, d, J = 7.2 Hz, H_{arom}); 12,32 (1H, s, NH).

RMN ¹³**C** (100,58 MHz, DMSO-d₆): δ = 14,09 (C-14/CH₃); 27,59 (C-13/CH₂); 29,56 (C-12/ CH₂); 51,29 (C-11/OMe); 59,72 (C-10/OCH₂); 115,21 (C-9/C_{arom}); 123,03 (C-8/C_{arom}); 128,03 (C-7/C_{arom}); 129,43 (C-6/C_{arom}); 131,35 (C-5/C_{arom}); 131,64 (C-4/C_{arom}); 154,50(C-3/O-C-N); 159,92 (C-2/C=O); 172,35 (C-1/COO).

3-(3-oxo-3,4-dihydroquinoxalin-2-yl) propanoate d'éthyle 10

Une solution de 1g (4,028 mmoles) de 2,2-diméthoxyglutarate de diméthyle dans 10 mL d'éthanol absolu est égouttée à 20°C et sous agitation à une solution de 0,45 g (4,166 mmoles) d'ortho phénylènediamine dans 20 mL d'éthanol absolu. Après 4 heures d'agitation à 20°C, on évapore le solvant sous vide et le produit formé est recristallisé dans l'éthanol.

 $M(C_{12}H_{12} N_2O_3): 232,225 \text{ g/mole}$

Aspect: Cristaux marrons

Rendement : 27,55 (0,3g)

Point de fusion : 210-112 °C

IR (KBr): v (cm⁻¹) = 1662 et 1724 (C=O); 3008 (N- H); 1662,5(C=C); 1504 et 1562 (C-C); 1261,4 et 1303,8 (C-O); 891,1 (C=C-H).

RMN ¹**H** (400 MHz, DMSO-d₆): $\delta = 2,76$ (2H, d, J = 9,6 Hz, CH₂); 3,05 (2H, d, J = 9,2 Hz, CH₂); 3,59 (3H, s, OMe); 7,25 (2H, m, J = 2,8 Hz, H_{arom}); 7,46 (1H, d, J = 2 Hz, H_{arom}); 7,64 (1H, d, J = 1,6 Hz, H_{arom}); 12,32 (1H, s, NH).

RMN ¹³C (100,58 MHz, DMSO-d₆) : $\delta = 28,24$ (C-12/ CH₂); 30,02 (C-11/CH₂); 52,02 (C-10/OMe); 115,94 (C-9/C_{arom});123,78 (C-8/C_{arom}); 128,76 (C-7/C_{arom});130,19(C-6/C_{arom}); 132,07 (C-5/C_{arom}); 132,36 (C-4/C_{arom}); 155,23 (C-3/C=O);160,60 (C-2/C=N); 173,60 (C-1/COO).

3-(3-methoxy-2-oxo-3,4-dihydro-2H-1,4-benzoxazin-3-yl)propanoate de méthyl 12

On dissout 0,44 g (4,036 mmoles) de 2- aminophénol dans 25 mL d'éthanol absolu et on ajoute à température ambiante une solution de 1g (4,028 mmoles) de 2,2-diméthoxyglutarate de diméthyle. La solution est agitée pendant 4 heures. Le précipité formé est filtré et recristallisé dans l'éthanol.

 $M(C_{12}H_{11}NO_4): 233,220 \text{ g/mole}$

Aspect : cristaux marrons

Rendement: 18,4% (0,125g)

Point de fusion: 170-172 °C

IR (KBr): v (cm⁻¹) = 1765 (C=O); 1211,34 et 1257,63 (C-O); 709,83, 748,41 et 779,29 (C-C); 3437,26 (N-H); 1612,54 (C=C).

RMN ¹**H** (400 MHz, DMSO-d₆) : δ = 2,89 (2H, m, J = 8,8 Hz, CH₂); 3,23 (2H, m, J = 4,4 Hz, CH₂); 3,69 (3H, t, OMe); 7,30 (2H, m, J = 4,4 Hz, H_{arom}); 7,47 (1H, m, J = 4,4 Hz, H_{arom}); 7,69 (1H, m, J = 4 Hz, H_{arom}).

RMN ¹³C (100,58 MHz, DMSO-d₆) : $\delta = 28,68$ (C-12/ CH₂); 29,65 (C-11/CH₂); 51,93 (C-10/OMe); 116,49 (C-9/C_{arom}); 125,53 (C-8/C_{arom}); 129,01 (C-7/C_{arom}); 130,81 (C-6/C_{arom}); 131,09 (C-5/C_{arom}); 146,46 (C-4/C_{arom}); 152,98 (C-3/C=O); 155,91 (C-2/C=N); 173,06 (C-1/COO).

3-bromo- 2,2- diéthoxyglutarate de diméthyle 13

<u>13</u>

Dans un ballon bicol d'un litre, muni d'un réfrigérant et d'une ampoule à brome sont dissous 15 g de 2,2 diéthoxyglutarate de diméthyle dans 34 mL de CCl₄. Le mélange réactionnel est porté au reflux sous agitation. Par l'intermédiaire de l'ampoule, une solution de 9,67g de brome dans le tétrachlorure de méthane absolu est ajoutée goutte à goutte. Au cours de la réaction un dégagement de HBr est indiqué par le papier Congo (virage du rouge au bleu). Le chauffage continue jusqu'à ce qu'il n'y ait plus de dégagement de HBr. Après le milieu est évaporé sous pression réduite et le résidu est distillé sous vide.

 $M(C_{11}H_{19}BrO_6): 327,17 \text{ g/mole}$

Aspect: liquide jaune clair.

Rendement: 70%

Téb (220mm de Hg): 145-150°C.

 $n_D^{20} = 1,4675$

IR (KBr): v (cm⁻¹) = 2954 (C-H); 1740, 1728 et 1743 (C = O); 1438, 8 (C-C); 1178,4 (C-O).

2,2-diethoxyglutaconate de diméthyle 14

$$H_3CO$$
 OC H_3 OC H_5 OC $H_$

<u>14</u>

A une solution de 2 g (6,11303 mmoles) de 3-bromo-2,2-diéthoxyglutarate de diméthyle dans 25 mL de dichlorométhane est ajoutée 0,62 g (6,13861 mmoles) de triéthylamine; le mélange réactionnel est agité pendant 30 min à température ambiante. On filtre le précipité formé, le triéthylaminebromhydrate, et on évapore le solvant à pression réduite puis on fractionne le mélange récupéré sous vide.

 $M(C_{11}H_{18}O_6): 246,26 \text{ g/mole}$

Aspect: Liquide jaune clair.

Rendement : 35 % (0,53 g)

Téb (220mm de Hg): 180-185°C

 $n_D^{20} = 1,4395$

IR (KBr): $v \text{ (cm}^{-1}) = 2954 \text{ (C-H)}$; 1740, 1728 et 1743 (C=O); 1438, 8 (C-C); 1178,4(C-O).

III.3. L'activité antimicrobienne

III.3.1. Technique d'étude sur un milieu culture solide

Cette technique utilisée en bactériologie médicale, appelée antibiogramme ou encore méthode des disques est une méthode en milieu gélosé réalisée dans une boîte de pétri, le contact se fait par l'intermédiaire d'un disque de papier sur lequel on dispose une quantité donnée de produit à tester.

La technique consiste à utiliser des disques de papier imprégnés des différents produits à tester, les disques sont déposés à la surface d'une gélose uniformément ensemencée avec une suspension de la bactérie à étudier. Chaque produit à tester diffuse à partir du disque au sein de la gélose et y détermine un gradient de concentration.

Les bactéries croissent sur toute la surface de la gélose sauf là où elles rencontrent une concentration d'antibiotique suffisante pour inhiber leur croissance, on observe ainsi autour des disques une zone circulaire échappé de colonies appelée zone d'inhibition [136,137].

III.3.1.2. Préparation de l'inoculation bactérienne

Les suspensions de microorganismes sont préparées à partir des bouillons d'enrichissement de différentes souches.

Dans chaque tube de 5mL de bouillon nutritif on ensemence chaque bactérie à part et on les incube pendant 18 heurs à 37 °C.

III.3.1.3. L'ensemencement

En premier lieu il faut chauffer le milieu de culture à 100 °C dans un bain marie, le laisser refroidir jusqu'à 50 °C, ensuite couler les boites de pétri à une épaisseur de 4 mm, les sécher pendant 30 minutes, puis déverser 2 à 6 mL de l'inoculation bactérienne d'une façon à recouvrir toute la surface gélosée, enfin sécher les boites ensemencées pendant 15 minutes.

III.3.1.4. Préparation des dilutions

On prépare des solutions mères à des concentrations de 160 mg/mL pour les composés de 4a-e, 140 mg/mL pour les composés 8, 9, 10, et 15 mg/mL pour le composé 7, dans le DMSO stérile, puis on prépare des dilutions.

III.3.1.5. La distribution des disques

On dépose des disques vierges et stériles dans les solutions de substrats étudiés aux différentes doses, pendant 30 min pour assurer une bonne absorption. Les disques qui absorbent l'échantillon sont placés sur la gélose séchée dans des boites pétri, puis les boites sont laissées durant 20 min à la température ambiante pour assurer une bonne diffusion de l'échantillon. Ensuite les incuber à 37°C pendant 24 heure pour les espèces bactérienne et à 30 °C pendant trois jours pour la *Candida albicans*; à la sortie de l'étuve, l'absence de la croissance microbienne se traduit par un halo translucide autour du disque. La lecture se fait par la mesure du diamètre de la zone d'inhibition et exprimée en millimètre.

CONCLUSION GENERALE

Conclusion générale

L'objectif de ce travail était la synthèse d'hétérocycles à partir des dérivés de l'acide 2-oxoglutarique : 2-oxo-, 2,2-diéthoxy- et 2,2-diméthoxyglutarate de diméthyle.

Le 2-oxoglutarate de diméthyle a été préparé par estérification dans un grand excès molaire de méthanol absolu en présence d'une quantité équimolaire d'acétone diméthylacétal pour éliminer l'eau de la réaction. Le 2-oxoglutarate de diméthyle est obtenu avec un rendement de 80%. Les 2,2-diéthoxy- et 2,2-diméthoxyglutarates de diméthyle ont été préparés par acétalisation suivant le procédé de L. Claisen par action de l'ortho-formiate d'éthyle dans l'éthanol et l'ortho-formiate de méthyle dans le méthanol respectivement.

L'action du 2-oxoglutarate de diméthyle sur l'o-aminophénol et ses dérivés conduit au dérivé 3-(2-oxo-2*H*-1,4-benzoxazin-3-yl)propanoate.

La réaction du 2,2-diéthoxyglutarate de diméthyle avec un excès d'hydrazine monohydrate dans le méthanol au point d'ébullition a donné l'acide 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique avec un haut rendement. Ce nouveau dérivé pyridazine n'est pas jusque là décrit dans la littérature.

Dans les mêmes conditions l'action du 2,2-diéthoxyglutarate de diméthyle sur l'o-aminophénol et l'o-phénylènediamine a donné le 3-(3-éthoxy-2-oxo-3,4-dihydro-2*H*-1,4-benzoxazin-3-yl)propanoate de méthyle et le 3-(2-éthoxy-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)propanoate de méthyle respectivement. Ce sont de nouveaux dérivés benzoxazine et quinoxalique qui ne sont pas aussi jusque là décrits dans la littérature.

Par contre l'action du 2,2-diméthoxyglutarate de diméthyle sur les mêmes réactifs nucléophiles et dans les mêmes conditions réactionnelles n'a pas donné les résultats escomptés. La réaction avec l'hydrazine monohydrate n'a donné aucun produit solide.

La réaction avec l'o-aminophénol a donné le même dérivé 1,4-benzoxazine qu'avec le 2-oxoglutarate de diméthyle et avec l'o-aminophénylènediamine a donné le dérivé quinoxaline qui est décrit dans la littérature.

Tous les nouveaux hétérocycles obtenus ont été soumis à des tests biologiques in vitro sur six souches microbiennes de référence : deux bactéries à Gram positif (*Staphylococcus aureus*, et Streptococcus Sp), quatre bactéries à Gram négatif (*Escherichia coli*, *Proteus vulgaris*, *Proteus mirabilis* et *Citrobacter*) et un champignon (*Candida albicans*). Tous les composés testés ont présenté des activités inhibitrices remarquables.

Les résultats obtenus dans ce travail nous permettent d'envisager les perspectives suivantes :

- Fonctionnalisation des nouveaux hétérocycles obtenus : acide 3-éthoxy-6-oxohexahydropyridazine-3-carboxylique, 3-(3-éthoxy-2-oxo-3,4-dihydro-2*H*-1,4-benzoxazin-3-yl)propanoate de méthyle et 3-(2-éthoxy-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)propanoate de méthyle.
- Caractérisation complète du 3-bromo-2,2-diéthoxyglutarate et du 2,2-diéthoxyglutaconate de diméthyle.
- Application de ces nouveaux dérivés de l'acide 2-oxoglutarique dans la synthèse d'hétérocyles en les faisant réagir avec les mêmes réactifs binucléophiles.

REFERENCES BIBLIOGRAPHIQUES

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1]. K. Peter, C. Vollhardt et Neil Eric Schore, Traité de chimie organique, 4^e édition, De Boeck, (2004).
- [2]. C. Couturier, Etude vers la synthèse totale de la Lemonomycine, synthèse d'acides β-amines par ouverture nucléophile d'Aziridiniums dérivés de sérine, Thèse de doctorat, Institut de chimie des substances naturelles (ICSN), France, (2005).
- [3]. E. C. Taylor, A. McKillop, and R. E. Ross, Facile Reductive Cyclizations. New Routes to Heterocycles II, *Journal of the American Chemical Society*, 87 (1965) 1990-1995.
- [4]. H. Kwart and K. King, The Chemistry of Carboxylic Acids and Esters, J. Patai, Ed. Interscience, London, (1969).
- [5]. R. Milcent, Chimie organique hétérocyclique Structures fondamentales, Chimie et biochimie des principaux composes naturels, EDP Sciences (2003).
- [6]. P. Wyatt and S. Warren, Organic Synthesis: Strategy and Control, John Wiley & Sons Ltd, (2007).
- [7]. U. W. Bert Maes, Synthesis of Heterocycles via Multicomponent Reactions II, Topics in Heterocyclic Chemistry, V. 25, Springer-Verlag Berlin Heidelberg (2010).
- [8]. J. A. Joule and K. Mills, Heterocyclic Chemistry, Fifth Edition, John Wiley & Sons, Ltd., Blackwell Publishing (2010).
- [9]. A. R. Katrizky and A. F. Pozharskii, Handbook of Heterocyclic Chemistry, Third Edition, Elsevier Ltd, (2010).
- [10]. L. D. Quin and J. A. Tyrell, Fundamentals of heterocyclic chemistry, Importance in Nature and in the Synthesis of Pharmaceuticals, John Wiley & Sons, Inc, (2010).
- [11]. P. Karlson, 'Biochemie', George Thieme Verlag, Auflage, Stuttgart- New York (1988).

- [12]. P. M. Dewick, Medicinal Natural Products. A Biosynthetic Approach, 3rd Edition, John Wiley & Sons, Ltd. (2009).
- [13]. S. Weinman, P. Méhul, Toute la biochimie, Dunod, Paris, (2004).
- [14]. S. Yolou, Analyse rationnelle et structurale de diacides aliphatiques oxo et gem-diméthyle substitues et de leurs sels alcalins en solution aqueuse, Thèse de doctorat, Université de Montpellier I, (1992).
- [15]. H. Wilde and H. Schwesinger, G-1-Bericht, Synthesechemische Veredlung von 2-oxocarbonsäuren, *für CKB* (11/86), (1986).
- [16]. R. W. Hanson, J. Chem. Educ. 64 (1987) 591.
- [17]. J. G. Wood, M. R. Hone, M. E. Matter and C. P. Symons, *Austr. J. Sci. Res., Ser. B*,1 38, (1948).
- [18]. A. Ahmad, Bull. Chem. Soc. Japan, 47 (1974) 1819.
- [19]. C. Hoffman, R. S. Tanke and J. M. Miller, *J. Org. Chem.* 54 (1989) 3750.
- [20]. S. Motoki, Nippon Kagaku Zasshi, 82 (1962) 740.
- [21]. Chemical Abstract 48 (1954) 4443.
- [22]. F. A. Isherwood and R. L. Jones, *Nature*, (London) 175 (1955) 419.
- [23]. J. Spengler, Ch. Bottcher, F. Albericio and K. Burger, *Chem. Rev.* 106, (2006) 4728-4746.
- [24]. J. H. Bushweller, P. A. Bartlett, J. Org. Chem. 54, (1989) 2404.
- [25]. V. Helaine, J. Bolte, Eur. J. Org. Chem. 12, (1999) 3403.
- [26]. Q. Y. Chen, Q. S. Liu, C. J. Schofield, *Chinese Chemical Letters*, Vol. 17, No. 2, (2006) 156-158.
- [27]. A.P. Mityuk, A.V. Denisenko, O. Grygorenko, and A. Tolmachev, *ARKIVOC* viii (2012) 226-230.
- [28]. K. Michail, H. Juan, A. Maier, V. Matzi, J. Greilberger, R. Wintersteiger, Analytica Chimica Acta, 581 (2007) 287–297.
- [29]. K. Felföldi , K. Szöri, M. Bartók, *Applied Catalysis A: General* 251 (2003) 457–460.
- [30]. E. M. Rustoy, E. N. Pereyra, Silvia Morenob and A. Baldessaria, *Tetrahedron Asymmetry*, 15 (2004) 3763–3768
- [31]. S. Hachihama, J. Chem. Soc. Jap. Ind. Chem. Sect. 58 (1955) 806.
- [32]. T. J. Hagen, K. Narayanan, J. Names and J. M. Cook, *J. Org. Chem.* 54 (1989) 2170.

- [33]. N. Hashimoto, T. Aogama and T. Shioiri, Chem. Pharm. Bull. 29 (1981) 1475.
- [34]. H. Schwesinger, Thèse de doctorat, Université de Leipzig, Section chimie, (1991).
- [35]. W. Wislicenus, M. Waldmueller, Chem. Ber. 44 (1911) 1571.
- [36]. C. Temple, C. L. Kussner and J. A. Montgomery, *J. Med. Chem.* 18 (1975) 1255.
- [37]. J. Kozlowski and P. Zuman, *J. Electroanal Chem.* 226 (1987) 69.
- [38]. N. Ikota, K. Achiwa and S. Yamada, Chem. Pharm. Bull. 31 (1983) 887.
- [39]. J. T. Slama, R. K. Satsangi, A. Simmons, V. Lynch, R. E. Bolger and J. Suttie, *J. Med. Chem.* 33 (1990) 824.
- [40]. J M. Domagala, *Tetrahedron Letters* 21 (1980) 4997.
- [41]. T. Takemoto and Y. Suzuki, Kogyo Kagaku Zasshi 61 (1958) 1384.
- [42]. H. Molines, M. H. Massoudi, D. Cantacuzene and C. Wakselman, *Synthesis* (1983) 322.
- [43]. J. H. Bushweller and P. A. Bartlett, J. Org. Chem. 54 (1989) 2404.
- [44]. R. G. Jones, J. Am. Chem. Soc. 77 (1955) 4074.
- [45]. G. Solladie and Ch. Gerber, Synlett. 5 (1992) 449.
- [46]. A. J. L. Cooper, J. Z. Ginos and A. Meister, Chem. Rev. 83 (1983) 321.
- [47]. E. M. Bottorff and L. C. Moore, *Org. Synthesis*. 44 (1964) 67.
- [48]. R. Ballini, L. Barboni, D. Fiorini, A. Palmieri, and M. Petrini, Nitro compounds as useful reagents for the synthesis of dicarbonyl derivatives, *ARKIVOC* vi (2006) 127-152.
- [49]. H. Hiroyuki and R. Souji, Oxidative Deamination of Several Amino Acids in Aqueous Solution by Gamma Irradiation, the 4th Symposium on Isotope in Japan, (May 1962), the Proceedings, R -35, p. 401.
- [50]. N. A. Anisimova, G. A. Berkova, and L. I. Deiko, Russian Journal of General Chemistry, Vol. 72, No. 1, (2002) 86 390. Translated from Zhurnal Obshchei Khimii, Vol. 72, No. 1, (2002) 93397.
- [51]. T. A. Kuzmenko, V. V. Kuzmenko, A. S. Morkovnik, and L. N. Divaeva, *Chemistry of Heterocyclic Compounds*, Vol. 42, N°5, (2006) 648-656.
- [52]. V. P. Kruglenko, M. V. Povstyanoi, N. A. Klyuev, and V. A. Idzikovskii, Chemistry of Heterocyclic Compounds, Vol. 33, No. 10, (1997) 1238.

- [53]. M. Baldini, M. Belicchi-Ferrari, F. Bisceglie, S. Capacchi, G. Pelosi and P. Tarasconi, *Journal of Inorganic Biochemistry* 99 (2005) 1504-1513.
- [54]. V. L. Gein, N. A. Rassudikhrina, N. V. Shepelina, M. I. Vakhrin, E. B. Babushkina, and E. V. Voronina, *Pharmaceutical Chemistry Journal*, Vol. 42, N°9 (2008) 529.
- [55]. G. Kaup, J. Naimi, Eur. J. Org. Chem. 8 (2002) 1368.
- [56]. J. Gris, R. Glisoni, L. Fabian, B. Fernández and A. G. Moglioni, Synthesis of potential chemotherapic quinoxalinone derivatives by biocatalysis or microwave-assisted Hinsberg reaction, *Tetrahedron Letters*, Vol. 49, Issue 6, (2008) 1053-1056.
- [57]. S. M. Kaurase, S. J. Wadher, N. A. Karande, P. G. Yeole, *International Journal of Universal Pharmacy and Life Sciences* 1(2) (2011) 117-126
- [58]. Javier Gris, Romina Glisoni, Lucas Fabian, Beatriz Fernandez, Albertina G. Moglioni, Tetrahedron Letters, Vol. 49, Issue 6, (2008) 1053–1056
- [59]. M. Takaya, T. Yamada and A. Yamaguchi, Yagugaku Zasshi, 99 (1979) 221.
- [60]. B. R. Castleman Evans and F. Y. Wiselogie, *Journal of the American Chemical Society* 67 (1945) 60-62.
- [61]. Brian E. Love, Synthesis of Carbolines Possessing Antitumor Activity, *Top Heterocycl Chem*, 2 (2006) 93–128.
- [62]. P. Singh, A. Mittal, P. Kaur and S. Kumar, *Tetrahedron* 62 (2006) 1063–1068.
- [63]. Timothy J. Hagen and James M. Cook, *Tetrahedron Letters*, Vol. 29, N°20, (1988) 2421-2427.
- [64]. T. Blitzke, D. Sicker and H. Wilde, *J. Heterocyclic. Chem.* 34 (1997) 453-455.
- [65]. M. Khodja, D. Sicker and H. Wilde, *Heterocycles*, 37 (1994) 401.
- [66]. E. Biekert, D. Hoffmann, and F. J. Meyer, *Chem. Ber.*, 94 (1961) 1664-1675.
- [67]. H. Hartenstein, T. Blitzke, D. Sicker and H. Wilde; *J. Prakt. Chem.*, 335 (1993) 176.
- [68]. T. Blitzke, H. Hartenstein, D. Sicker and H. Wilde, *J. pract. Chem.* 335 (1993) 683.
- [69]. J. E. Mullins, J. L. G. Etoga, M. Gajewski, J. I. Degraw, and C. M. Thompson, *Tetrahedron Letters*, Vol. 50, issue 20, (2009), 2298.

- [70]. M. D. David, L.M.V. Fouchard, L. M. V. Tillekeratne, and R. A. Hudson, Synthesis of Imidazolo Analogues of the Oxidation–Reduction Cofactor Pyrrologuinoline Quinone (PQQ), *J. Org. Chem* 69 (2004) 2626.
- [71]. R. Janciene, Z. Stumbreviciute, A. Vektariene, R. Sirutkaitis, D. Podeniene, A. Palaima, and B. Puodziunaite, Interaction of derivaction 7-amino-1,5-benzo-diazepin-2-ones with α,β-unsaturated ketones, *Chemistry of Heterocyclic Compounds*, Vol. 46, No. 8, (2010), 998-1005.
- [72]. B. Reuben, G.Jones, J. Am. Chem. Soc. 77 (1955) 4074.
- [73]. W. L. Mc Keehan, K. A. Mc Keehan, *Biosci. Rep.* (1981) 661.
- [74]. S. Schmit, Thèse, Université de Leipzig, Section chimie, (1988).
- [75]. H. Hartenstein, Thèse, Université de Leipzig, section chimie, (1990).
- [76]. N. B. Lorette, J. H. Brown, J. Org. Chem., 24 (1959) 1809.
- [77]. H. Reinheckel, Monatsh. Chem., 99 (1968) 2203.
- [78]. I. Kumashiro, *Nippon Kagaku Zasshi*, 82 (1961) 1224.
- [79]. G. A.R. Kon, A. Stevenson and J. F. Thorpe, J. Chem. Soc., 121 (1922) 664.
- [80]. E. Biekert, L. Enslein, Chem. Ber., 94 (1961) 1851-1860.
- [81]. E. Biekert, D. Hoffmann and F. J. Meyer, *Chem. Ber.*, 94 (1961) 1664-1675.
- [82]. H. Weidinger, K. Joachim, *Chem. Ber.*, 97(6) (1964) 1599-1608.
- [83]. D. G. Orphanos, A. Taurins, Can. J. Chem., 44(15) (1966) 1795-1800.
- [84]. M. R. Bruce, J. Med Chem., 9(4) (1966) 475-478.
- [85]. I. Yavari, S. Souri, M. Sirouspour, H. Djahaniani, *Synthesis*, 19 (2006) 3243-3249.
- [86]. R. Ballini, A. Palmieri, M. A. K. Talaq, S. Gabrielli, *Adv. Synth. Catal.*, 351(16) (2009) 2611-2614.
- [87]. G. Hassan, Egypte. J. Pharm. Sci., 18(2) (2004) 129-137.
- [88]. J. B. S. Bredenberg, E. Honcanen, A. I. Vitanen, *Acta Chem. Scand.*, 16 (1962) 135-141.
- [89]. C. Benzatti, F. Heidemoergher, P. Melloni, *J. Heterocycl. Chem.* 20 (1983) 259-265.
- [90]. S. R. Hagen, J. D. Thompson, J. Chromatogr. a, 692 (1995) 167-172.
- [91]. K. Shimada, K. Mitamura, S. Ishitoya, K. Hirakata, *Japan, J. Liquid Chromatogr.*, 16(18) (1993) 3965-3976.

- [92]. F. Fery, S. Le Bris, M. Therese, G. Jean Paul; V. Bernard, *J. Phys. Chem.*, 92(22) (1988) 6233-6237.
- [93]. K. Azuma, S. Suzuki, S. Uchiyama, T. Kajiro, T. Santa, K. Imai, *Photochem. Photobiol. Sci.*, 2, (2003) 443-449.
- [94]. L. Claisen, Chem. Ber. 29, (1896) 1005; 40, (1907) 3903.
- [95]. H. E. Carswell and H. Adkins, J. Am. Chem. Soc. 50, (1928) 235.
- [96]. J. Preiffer and H. Adkins, *J. Am. Chem. Soc.* 53, (1931) 1043.
- [97]. R. D. Haworth and A. Lapworth, *J. Am. Chem. Soc.* 121 (1922) 76.
- [98]. J. Litchfield, T. G. Wilcoxon, J. Pharmacol, 14, (1970) 407.
- [99]. R. C. Evans, F. Y. Wiselogle, J. Am. Chem. Soc., 67, (1945) 60.
- [100]. J. Mirek, B. Kawalak, *Tétrahedron*, 26, (1970) 1261.
- [101]. J.Majoral, J.Nawech, P. Kraemer, *Tétrahedron*, 24, (2000) 5885.
- [102]. S.Yamamoto, I.Touida, N.Watanab, T.U, *Anti-microb, Agent Chemother*, 39, (1995) 2088.
- [103]. R.W.Carling, A.Madin, A.Guiblin, K.W.Moore et al, A fonctionnaly, activity of 7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4triazolo 4,3 -b]pyridazine, *J. Org.Chem.* Vol. 48, (1983) 708-709.
- [104]. H. Frank, G.Heinnisch, progress in medicinal chimestry, 3 (1999) 49.
- [105]. A. Kumar, A. Mishra, Bioorganic Medicinal Chemistry, 9 (2001) 715-718.
- [106]. Anna. Katrusiak , Andrzej .Katrusiak, *journal of molecular structure*, 16 (2007) 90.
- [107]. S. Fokin, V.Burgart, I.Viktor, N.Yamima, organic synthesis, 15 (2005) 252-253.
- [108]. M. Hidalgo, S.G. Eckhlrdt, Development of matrix metalloproteinase inhibitors in cancer therapy, *J. Nat. Cancer Inst.*, 93 (2001) 178-193.
- [109]. S.Mirzova ,A.Sawkar , M .Zesadzk, L .Guo , A.V. et al , *J. Med. Chem.*, ;45(3): (2002) 563-566.
- [110]. J.X, A .Junior, S. Martine et al, *Tetrahedron letters*, 47 (2006) 6125.
- [111]. A. Coehlo, E. Sotelo, N. Héctor and M.Oswald, Tetrahedron, 60 (2004) 1277.
- [112]. O.Elias, Laszlo Karlyhazy, J.Horvath, *molecular structurs* Vol, (2003) 625-626, 666-667.

- [113]. M. Schmitt, M, J.X. Oumoch and S. Bourgugnon, *Molecular Diversity*, Vol. 10, Issue 3, (2006) 429-434.
- [114]. F. Alphone ,A.Suzente ,F. Keromnes , A. lebret ,B.Guillaenet, *Org .Lett* , 5 (2003) 6.
- [115]. M. A. Espinal, K.Laverason, M.Camacho et al, *Int J Tuberc Lung Dis.* 5(10) (2001) 887-93.
- [116]. A. Benmoussa, J.Lansaouri, M.Ansar, Y.Cherrah, et J.Taoufik, *Biologie & Santé* vol. 7, n° 1, (2007) 20-30.
- [117]. N.Moore, M. Molimard, A. Fourrier, R. Karin, L.F. Haramburu, G. Miremont, S. K. Titier, pharmacologie générale, 3^{eme} edition, (Paris, 2006) P 300.
- [118]. S. Raw, C. Wilfred, R. Taylor, J. K. Org, Biomol. Chem., 2 (2004) 788.
- [119]. G. Cheeseman, R. Cookson, in: A. Weissberger, E.C. Taylor, *The Chemisty of Heterocyclic Compounds*, *35*, John Wiley and Sons, New York, (1979).
- [120]. A. Porter, A. Katrizky, C. Rees, *Comprehensive Heterocyclic Chemistry*, 3, Pergamon Press, New York, (1984) 195.
- [121]. A. Dell, D. William, H. Morris, G. Smith, J. Feeney, G. Roberts, *J. Am. Chem. Soc, 97* (1975) 2497.
- [122]. C. Bailly, S. Echepare, F Gago, M. Waring, *J. Anti- Cancer Drug Des*, *15* (1999) 291.
- [123]. O. Hinsberg *Liebigs, Ann. Chem*, 237 (1887)1228.
- [124]. F. King, J. Clark-Lewis, J. Am. Chem. Soc, 73 (1951) 3379.
- [125]. J. L'Italien, C. Banks, J. Am. Chem. Soc, 73 (1951)3246.
- [126]. C. L. Leese, H. N. Rydon, J. Am. Chem. Soc, 77 (1955), 303.
- [127]. Y. Kurasawa, J. Satoh, M. Ogura, Y. Okamato, A. Takada, *Heterocycles*, 22 (1984) 1531.
- [128]. S. Lin, Molecules, 1 (1996) 37.
- [129]. H.Thakuria, G. Das, J. Chem. Sci., 118 (2006) 425.
- [130]. G. Olayiwola, C. Obafemi, F. Taiwo, *African Journal of Biotechnology*, *6*, (2007) 777.
- [131]. Y. Iwanami, J. Chem. Soc. Japan, 83, (1962) 316.
- [132]. E. J. Corey, A. Tramontano, J. Am. Chem. Soc., 103 (1981) 5599.
- [133]. E.Biekert, D.Hoffman und F.J.Meyer; Universität Leipzig (1991).
- [134]. Ouahiba et al., Rev. Microbiol. Ind. San et Environn, Vol 4, (2010) 114-128.

- [135]. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, Antibiotic susceptibility testing by a standardized single disc method. *Am. J. Clin. Pathol.* 44, (1966) 493.
- [136]. J.D. Cavallo, H. Chardon, C. Chidiac, P. Choutet et al., Communiqué de la Comité Française de l'Antibiogramme. Société Française de Microbiologie. Edition de (janvier 2006).
- [137]. A. Balows, W. J. Hausler, K. L. Herrmann, H. D. Isenberg, H. J. Shadomy, Manual of Clinical Microbiology; American Society for Microbiology: Washington, DC., 5th ed.; (1991) 360–477.
- [138]. G.D. Clayton, Clayton FE Patty's, "Industrial hygiene and toxicology", 3ème edition, New York. (1982).
- [139]. K. Hachama, M. Khodja, S. Moulay, H. Boutoumi, L. Hennig, and D. Sicker; *J. Heterocyclic Chem.*, 50, 413 (2013).