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ABSTRACT

A ircraft noise is dominant for residents near airports when planes fly at low
altitudes such as during departure and landing. Flaps, wings, landing gear
contribute significantly to the total sound emission. This paper aims to present

a passive flow control (in the sense that there is no power input) to reduce the noise
radiation induced by the flow over the cavity of the landing gear during take-off and
landing. The understanding of the noise source mechanism, is normally caused by
the unsteady interactions between the cavity surface and the turbulent flows as well
as some studies have shown tonal noise due to cavity resonances, this tonal noise
is dependent on cavity geometry and incoming flow, lead us to use of a sinusoidal
surface modification application upstream of a cavity as a passive acoustics control
device in approach conditions. It is demonstrated that the proposed surface waviness
showed a potential reduction in cavity resonance and in the overall sound pressure
level at the majority of the points investigated in the low Mach number. Furthermore,
optimum sinusoidal amplitude and frequency were determined by the means of a
two-dimensional Computational Fluid Dynamics analysis for a cavity with a length to
depth ratio of 4. The noise control by surface waviness has not implemented in real
flight test yet, as all the tests are conducted in the credible numerical simulation. The
application of passive control method on the cavity requires a global aerodynamic
study of the airframe, is a matter of ongoing debate between aerodynamicists and
acousticians. The latter is aimed at the reduction of the noise whereas the former
fears a corruption of flow conditions. In order to balance aerodynamic performance
and acoustics, the use of the surface waviness in cavity leading edge is the most
optimal solution. The proposed leading edge modification it has important theoretical
basis and reference value for engineering application it can meet the demands of
engineering practice. Particularly, to contribute to the reduce the aircraft noise adopted
by the "European Visions 2020". The investigate cavity noise with and without surface
waviness generation and propagation by employing a hybrid approach, the computation
of flow is decoupled from the computation of sound, which can be performed during a
post-processing based on Curle’s acoustic analogy as implemented in OpenFOAM.

keywords— Aeroacoutics, Landing Configurations, Cavity Noise, surface waviness,
OpenFOAM, Triple Deck.
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RESUME

Pendant plus d’un si?cle de nombreuse recherches ont été effectuées sur
l’aérodynamique et l’acoustique des écoulements affleurant une cavité, cepen-
dant apr?s la seconde guerre mondiale ces études ont trouvé une large appli-

cation dans les avions, les soutes à bombes induisent des fluctuations qui peuvent
exciter les modes vibratoires de la structure de l’avion. L’oscillation à travers et ou tours
des cavités devient une question majeur pour les trappe d’un traine d’atterrissage.
Avec une réduction des performances des avions par l’augmentation des trainées,
la présence d’une cavité provoque de larges fluctuations de pression, de masse vo-
lumique ou de vitesse dans son voisinage ainsi que d’intenses ondes acoustiques.
Plusieurs solutions pour contrôler le flux ont été élaborées au fil des ans, des solutions
simples passives généralement basées sur des modifications de la géométrie ainsi
que des méthodes de contrôle actives qui coutent tr?s ch?re. Les nuisances sonores
et les vibrations engendrées par les instabilités rencontrées en écoulement de cavité
ont également été le sujet d’un grand nombre d’études visant à leur suppression.
Cependant, le besoin de l’industrie aéronautique moderne est de réduire l’acoustique
de leurs conceptions pour réduire les nuisances sonores dans l’environnement des
aéroports. Notre travail de recherche basée sur le contrôle acoustique de cavité par
l’utilisation d’une surface ondulée dans les configurations des trains d’atterrissage.
L’acoustique dans la cavité sera atténuée en contrôlons la couche de cisaillement
développée en amont du bord d’attaque de la cavité.

Mots clés— Aéroacoustique, Bruit de Cavité, Couche Limite, Surface Ondulée.
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NOMENCLATURE

. First Derivation of Time
∞ Far-Field Values
0 At initial condition
t Time
x Projection on X-axis
y Projection on Y-axis
z Projection on Z-axis
u Velocity in X-direction [m/s]
v Velocity in Y-direction [m/s]
w Velocity in Z-direction [m/s]
λ Wave Length
µ Dynamic Viscosity [kg/ms]
ν Kinematic Viscosity [m2/s]
ρ Density [kg/m3]
ε Perturbation Parameter [non-dimensional]
D Cavity Depth [m]
L Cavity Length [m]
W Cavity Width [m]
δ Boundary layer thickness
f Acoustic frequency of disturbance

fm Frequency of the mth mode
p

′
Pressure perturbations

prms Root mean square pressure
Re Reynolds number
St Strouhal number
G Green function

M∞ Freestream Mach number
Pre f Pre f = 2×10−5Pa, The value adopted as the minimum

audible sound pressure variation
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ACRONYMS AND ABBREVIATIONS
CAA Computaional Aero Acoustics
CFD Computational Fluid Dynamics
LES Large Eddy Simulation

RANS Raynols Averaged Navier-Stokes
N-S Navier-Stokes

PBiCG Preconditioned Bi-Conjugate gradient solver for asym-
metric matrices

GAMG Generalized Geometric Algebraic Multi Grid
CN Crank Nicolson
CFL Courant Friedrichs Lewy

SIMPLE Semi-Implicit Method for Pressure-Linked Equations
PISO Pressure-Implicit Split Operator
SPL Sound Pressure Level
PSD Power Spectral Density

OASPL Overall Sound Pressure Level
FFT Fast Fourier Transform

OpenFOAM Open Field Operation And Manipulation
CFD Computational Fluid Dynamics
GCI Grid Convergence Index
GIS Grid-Induced separation
SGS Sub-Grid Scale
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1
INTRODUCTION

A irframe noise refers to the noise generated by all components of the aircraft
except the propulsion system (Noise in the context of this studied is undesired
sound particularly that generated by a fluid flow). With the implementation of

quieter jet propulsion systems, airframe noise becomes especially significant for larger,
modern commercial aircraft.

Thus, the radiation of airframe noise will be a necessary component of the de-
velopment of future commercial aircraft, particularly in the subsonic fleet. Earlier
investigations indicated that there are many sources that contribute to airframe noise.
One such component is cavity noise. Flow over cavities on solid surfaces became a
topic of interest in the late 1950s and early 1960s with the introduction of high speed
combat aircraft. The primary concerns at that time were the buffeting of the cockpits
and the drag induced by flow over bomb bays and landing gear compartments, Figure
1.1. Effective noise control focuses on reducing the noise from these sources as near
of the source as possible.

Noise suppression involves the reduction of noise sources efficiency and ability
to convert kinetic energy to sound power, the interruption of sound transmission, the
accelerated dissipation of acoustic energy into heat, or the active cancellation of sound
waves using out-of-phase waves. These strategies can be implemented by a variety of
passive, active, and reactive devices ranging in complexity from simple ear plugs to
sophisticated anti-sound systems.

Cavity flows contains a wide range of physical phenomenon like unsteady shear

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Bomb bays and landing gear.

layer, vortex shedding, recirculation eddies, instabilities and three dimensional effects.
In many experimental studies, it has been observed, the interactions between the
cavity surface and the turbulent flows produces intense acoustic tones, this tonal noise
is dependent on cavity geometry and incoming flow. for that wide control techniques
have been tested in order to reduce the cavity acoustic tones with variable results. Both
active and passive control systems have been used. Passive control devices are the
easiest to implement and a wide variety of systems were tested, in particular: spoilers,
mass injection and modification of the cavity leading and/or trailing edge. These
concepts sometimes proved to be very effective in reducing energetic tones but, in
general, they did not succeed in suppressing multiple acoustic modes simultaneously.

The main objective of this work is to reduce the cavity flow noise using sinusoidal
surface modification application upstream of a cavity. In these conditions the growth
of some oscillation modes can be suppressed. The effect of a surface waviness in
incompressible cross flow parallel to the leading edge of the cavity is a passive device
that proved to be very efficient, as shown first by (Garry, Dala, 2009) [29].

Noise Generation Sound ordinarily refers to audible pressure fluctuations in the
ambient air. However, sound can propagate as well in liquids and solids, and its
frequencies can be lower (infrasonic waves below 20 Hz) or higher (ultrasonic waves
above 20 kHz) than those that can stimulate the human ear and brain to the sensation
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of hearing.
Sound can be generated by the vibrations of solid surfaces such as the strings

of violins and similar musical instruments or the diaphragms of loudspeakers. It can
also be generated by flow oscillations either directly or, more effectively, as a result of
interactions with solid surfaces.

In 1952, Lighthill focused on the sources of sound in the absence of vibrating
surfaces and termed the genre "sound generated aerodynamically". The field is now
known as aeroacoustics or, in water applications, hydroacoustics.

Audible sound levels vary over an enormous range, and therefore a relative logarith-
mic scale is typically used to express the sound’s power, level of pressure fluctuations
or intensity (energy flux or product of pressure and velocity perturbations). Sound
measured in decibels (dB) is computed from the relation: 10 log (X/Y), where X is
either the sound power, the mean-square pressure fluctuations, or the mean sound
intensity, and Y is a corresponding reference value typically related to the threshold of
hearing. More subjectively, sound can also be measured in phons, where a loudness
level of N phons is judged by the average ear to be as loud as a pure tone of frequency
1 kHz at a sound-pressure level of NdB. There is also the sone scale, which is a linear
measure of loudness that is normalized so that 1 sone is a sound whose loudness
level is 40 phons. A sound of 10 sones is 10 times as loud as a sound of 1 sone, and
the audible sounds lie in a range of≈ 0−100 sones. Finally, there is the perceived noise
decibel (PNdB), the A-weighted sound level (dBA), B-weighted, C-weighted,

Noise Effect The noise, defined as unwanted, excessive, uncomfortable sound, is
a major problem in day to day life. Researchers have known for years that exposure
to excessively loud noise can cause changes in blood pressure as well as changes
in sleep and digestive patterns all signs of stress on the human body. The very word
"noise" itself derives from the Latin word noxia, which means injury or hurt. For humans,
unprotected exposure to sound levels above 100 dB for more than 15 minutes can
cause hearing damage, and permanent hearing loss results when exposed to sound
levels above 110 dB. The threshold of pain is between 130 and 140 dB.

ICAO Noise Certification Requirements The environmental regulations are con-
cerned with the noise levels at and around airports during the take-off and landing
situations. The international civil aviation organization (ICAO) annex 16 is the one
involved with setting the standards of noise levels for aircraft and engine manufacturers.
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Figure 1.2 shows the measurement points that the ICAO are concerned with. They are
the approach point (area before the landing), sideline (on the runway), and take-off
point (area surrounding the take-off of the plane). At these locations, the aircraft should
meet its specific noise limit which depends on the aircraft’s maximum takeoff weight
and the number of engines.

Figure 1.2: ICAO Noise Measurement Points.

Before a newly designed aircraft can be certified for commercial use, it must
complete a standard set of procedures to allow for the evaluation of its acoustic
signature. The certification process is divided into three procedures: lateral full power
(takeoff), flyover, and approach. During takeoff, the engines are running at full power
and therefore constitute the primary noise source. Alternately, during approach, the
engines are running at relatively low power, resulting in airframe noise levels being
comparable to engine noise levels

Outline The contents of this thesis are organised as follows:
Chapter 2 : This chapter is devoted to discuss about the literature related to cavity
flows and the description about the inflow condition.

Chapter 3 : This chapter starts with the description about Aeroacoustics which
includes acoustic analogy and the procedures that are followed to determine the sound
pressure level of the noise generated by the cavity flow.

Chapter 4 : provides a general overview of main features of the OpenFOAM
solver. The chapter description of the governing equations of Large Eddy Simulation.

4



CHAPTER 1. INTRODUCTION

Description of boundary conditions is also included. The test cases, geometries,
meshing, challenges while performing simulations are also discussed in this chapter
for both cases two and three dimensional cavity.

Chapter 5 : The chapter show the use of the Triple Deck theory to solve the
equations of boundary layer. many test cases, geometries, meshing, numerical solution
of the non-linear Triple-deck equations, which serve to identify the effects of frequency
and the height (Amplitude) of the wave in the distribution of the displacement and
pressure are discussed..

Chapter 6 : Results are summarised and analysis of both the baseline and the
modified configuration were carried out. At the end of this chapter results obtained
from acoustic analogy are presented and analysed

Chapter 7 : In this final chapter of the thesis, observations and conclusions are
laid.
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2
INVESTIGATION OF FLOW PHENOMENA FOR

CAVITY FLOW

There are several types of researchers who study flows past cavities. Aerody-
namicists are concerned with the drag due to a cavity, which may serve as
a bay for weapons or special cameras, or a landing gear well on an aircraft.

Aeroacousticians study the sound waves generated by the self-induced oscillations
of the flow inside a cavity, which can affect the avionics and the people on board.
Fluid dynamicists are interested in the complex structure of the flow in a cavity. There
exist both experimental and computational investigations on the flow fields of two
and three dimensional rectangular cavities. Although work has been conducted from
the subsonic to hypersonic regimes, most of the effort has been concentrated on the
supersonic speed regime. In the subsonic and transonic regime, static pressure data
have been sparse.

2.1 Leading parameters

Karamcheti [33] reported that there is a minimum cavity length needed for generation of
cavity noise, depending on the Mach number of the flow and whether the approaching
boundary layer is turbulent. If the cavity length is less than the minimum length, the
flows will not oscillate. The dependence of cavity noise amplitude on various cavity
geometric and flow parameters is seriously lacking.
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In view of the wide variety of configurations, and the numerous primary or sec-
ondary parameters which drive cavity oscillations, it seems neccessary to draw some
classifications.

2.1.1 Cavity geometry

Figure 2.1-(a) illustrates the length L, depth D and width W in an experimental setup
with respect to the stream wise flow direction and the Figure 2.1-(b) carries details
showing the incoming boundary layer at the leading edge of the cavity, shear layer
over the cavity and the pressure perturbation from the trailing edge of the cavity due
to the impingement of the shear layer on the corner of the downstream of the cavity.
Eddy or eddies are created inside the cavity depending on various parameters which
will be dicussed inside the chapter.

Figure 2.1: Cavity flow [22]

2.1.1.1 Ratio of length over depth L/D

In the literature, vastly different values of length-to-depth ratio (L/D) have been quoted
to define the cavity flow types. For instance: L/D < 7 for open and L/D > 13 for closed
cavity flow is reported by Stallings and Wilcox [63] whereas L/D < 10 for open and
L/D > 13 for closed cavity flow is reported in the work of Plentovich [47]. Similarly, Dix
and Bauer [14] quote L/D < 9 for open and L/D > 13 for closed cavity flow whereas
Srinivisan and Baysal [61] quote L/D < 3 for open and L/D > 10 for closed cavity
flowfields. Tracy and Plentovich [69] investigated the variations in the values of L/D and
concluded that the vast disagreements in the literature were due to the dependence of
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the cavity flow type on Mach number as well as L/D. Four different types of cavity flows
at subsonic speed have been identified depending on the value of this ratio are shown
in Figure 2.2, separation point at the upstream of the cavity and stagnation point at
the downstream of the cavity with dividing streamline for the open cavity at subsonic
velocity. For the closed cavity at the subsonic speed, a separation point occurs at
the leading edge of the cavity, impingement point and second separation point are
at the bottom of the cavity with a stagnation point at the trailing edge of the cavity. In
the this closed cavity configuration, the profile of the dividing stream line starts from
the bottom of the cavity. Open cavities refer to flow over cavities where the boundary
layer separates at the upstream corner and reattaches near the downstream corner.
Open cavities may further be divided into shallow and deep cavities. The cavities
with aspect ratio L/D > 1 may considered as shallow and for L/D < 1 the cavities
may be considered deep. Cavities are closed when the separated layer reattaches
at the bottom of the cavity and again separates ahead of the downstream wall of
the cavity. The other important parameters that affect cavity flow types are incoming
boundary layer thickness (δ), ambient density (ρ), viscosity (µ), and speed of sound
(a0). When the cavity is very elongated, it can be modeled in a first approximation by

Figure 2.2: Schematic of deep (a), and shallow cavities: open (b), transitional (c), and
closed (d) [17]
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a backward-facing step followed by a decoupled forward-facing step. Thus, when the
mean flow reattaches the floor of the cavity, the cavity is qualified to be closed. The flow
then separates again as it approaches the rear-wall of the cavity. The cavity is termed
open in the other limit. In this flow regime, the oncoming boundary layer separates
from the leading edge and forms a free shear layer which spans the mouth of the cavity
and impinges at the trailing edge of the cavity. Between these two states, a transitional
flow regime can occur, which exhibits characteristics that are indicative of both the
open and closed flow regimes. The extensive measurements show that open-cavity
flow are observable in cavities with L/D ratios on the order of 6 to 8. The pressure
distributions on the cavity walls are used to discriminate between different flow regimes.
Schematics representing of Cavity flow types and corresponding pressure distributions
are shown in Figure 2.3.

Figure 2.3: Classification of cavities as a function of the evolution of pressure coefficient
at the cavity floor. From Tracy et al. [48]

2.1.1.2 Ratio of length over width L/W

Another important geometrical parameter is the length-to-width L/W ratio. Ahuja and
Mendoza [5] conducted experiments on the effect of cavity dimensions, boundary
layer, and temperature on cavity noise for subsonic flows with turbulent boundary
layer upstream of the cavity. They determined that the ratio L/W, provided a transition
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between two-dimensional (L/W < 1) and three-dimensional flow (L/W > 1) and observed
that the intensity of the oscillations are reduced by changing from a two dimensional to
a three-dimensional cavity and the three-dimensional cavity flow produce lower levels
of cavity feedback tones (as much as 15 dB) compared to two-dimensional cavity flow,
with no change in tonal frequency.

At each of the four tested velocities, and for two length-to-depth ratios (namely 1.08
and 2), Block [7] noticed that the narrower cavities (higher L/W) generate the more
sharply defined tonal spectra. In some situations, the self-sustained oscillations are
not present for the wider cavity, whereas intense tones are induced when the width
is decreased. The wide and narrow cavities peak at the same frequency, so that the
resonance frequency is not related to the width. This last point is also checked in the
measurements of Ahuja and Mendoza [5].

Figure 2.4 [57] shows the effect of width on cavity oscillations at Reynolds number
Reδ0

= 2.86×103 and d
δ0

= 10 where Non-dimensional Frequency f b
Ue

is plotted against
non-dimensional width b

δ0
. There was a slow increase in non-dimensional frequency

as b
δ0

increased. as the critical value of b
δ0

= 8.15 was reached, oscillations jumped to a
higher mode.

Figure 2.4: Effet of Width on Non-dimensional Frequency at Reδ0
= 2.86×103 and

d
δ0

= 10 [57]

2.1.2 Incoming flow

The influence of the freestream flow velocity has been investigated in the majority of
the experimental studies. The cavity flow physics and its resonance depend on several
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flow parameters.

2.1.2.1 Mach number

The effects of Mach number on non-dimensional frequency f b
Ue

have been studied by
many investigations for both laminar and turbulent boundary layers. On the basis of
high speed shadow-graphs of cavity oscillation, Rossiter [54] speculated that periodic
vortices are shed at the upstream corner in sympathy with the pressure oscillation
produced by interaction of the vortices with the downstream corner. Based on this idea
Rossiter derived a formula for the oscillation frequency.

Heller [? ] and Covert studied shallow cavities over a wide range of Mach numbers
and correlated a great many experimental results with Rossiter’s formulation of cavity
oscillation frequency, the vortices shed from the upstream cavity corner are assumed
to convect at a constant phase velocity through the shear layer, resulting in a linear
phase distribution.

The increase in Mach number affects the critical L/D ratio. Critical L/D refers to a
particular ratio beyond which the flow behaves completely as a closed cavity flow, and
below which it behaves as an open cavity flow [62].

2.1.2.2 Boundary layer thickness

Colonius [10] states that the momentum thickness θ0 at the leading edge of the
cavity plays a vital role in the selection of the modes and in governing the growth
of the shear layer. They also found L

θ
for lower limit for the cavity resonance to be

approximately L
θ
≈ 80. When the ratio of the cavity length to the momentum thickness

of the incoming boundary layer (L
θ
) is in the range 80 < L

θ
< 120, the self-sustained

oscillations take place in the shear layer mode. When L
θ

exceeds 120, another mode
of cavity oscillation has been observed, but has received much less attention, and
is relatively poorly understood. In incompressible experiments for an axi-symmetric
cavity, Gharib and Roshko [23] observed a wake mode, where the oscillating flow
over the cavity resembles the wake behind a bluff body, rather than a free shear layer.
Flow features in this wake mode were qualitatively very different from those in the
shear-layer mode described by Rossiter, and wake mode was accompanied by a large
increase in drag. Similar dramatic increases in drag had been previously observed
by Fox [21] as the cavity length was increased, in flows with thin laminar upstream
boundary layers, and Roshko [53] observed an intermittency analogous to the large
fluctuations of drag which occur on a bluff cylinder in the critical range of Reynolds
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number, where the flow may be switching between shear-layer mode and a type of
wake mode.

Grace et al [25] performed measurements of both laminar and turbulent upstream
boundary layers cases with low Mach number. They found no evidence of self-
sustained oscillations in streamwise velocity data obtained using a hotwire or in wall
pressure fluctuation data obtained using a microphone when an incoming boundary
layer is turbulent. They examined mean and turbulent flow fields in a shallow cavity with
aspect ratio L

D = 4. The laminar cases with L
θ
= 130 and 190 and the turbulent cases

with L
θ
= 78 and 86 were performed with corresponding Reynolds number, Reθ = ρ∞Uθ0

µ

were 2892, 3949 for laminar cases and 6318, 12627 for turbulent cases respectively.
Sarohia [57] stated that the parameters cavity depth D and initial momentum

thickness θ0 at the leading edge also are as important as the cavity length L, for a fixed
value of the edge velocity Ue, depth D and Width W, there exists a maximum value
of shear thickness δ0max above which the cavity does not oscillate. As the shear layer
thickness δ0 is decreased (δ0 < δ0max), the frequency of cavity oscillations increases.

2.1.2.3 Reynolds number

For fixed upstream geometry, a change in the Reynolds number will cause an associ-
ated change in the boundary layer at the leading edge of the cavity. So it is possible
that sufficiently large changes in Reynolds number may still indirectly effect the na-
ture of the resonance through a change in the upstream boundary layer. Certainly a
change from a laminar to turbulent boundary layer is known to effect the resonance
(Karamcheti) [32]. Figure 2.5 shows the results of the effect of Reynolds number Reδ0

on non-dimensional frequency f b
Ue

.

2.2 Theories from experiments

Earlier experimental investigations and theoretical studies have laid out the funda-
mentals of cavity noise generation mechanisms. Many studies have identified that for
intense tonal noise generation arise from discrete frequency oscillations, the mecha-
nism can be either:

1. a feedback mechanism in which the shear layer generated at the upstream edge
of the cavity impinges on the downstream cavity edge, generating acoustic waves
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Figure 2.5: Effet of Reynolds Number on Non-dimensional Frequency at b
δ0

= 12.76,
(Sarohia) [57]

that propagate upstream and further excite the shear layer growth, as shown
schematically in Figure 2.6; Or

2. an acoustic resonance in which the cavity is driven by the unsteady pressure
across its mouth in normal modes for deep cavities.

Flow-induced cavity noise is a very complex phenomenon. The flow is unsteady and
highly three-dimensional, even for a cavity of low length to width ratio. Krishnamurty
published his work on the acoustic radiation from two-dimensional rectangular cutouts
in aerodynamic surfaces [39]. This work was motivated by the need to understand
the flow field in bomb bays used for the internal carriege of weapons and the open
cockpits.

It was observed in experiments. the acoustic field influenced by five main parame-
ters :

• Mach number. The radiation become more intense as the Mach number is
increased.

• a minimum length was required for an acoustic field to occur.

• as the L/D ratio of the cavity was increased (from L/D=1), the intensity of the
acoustic radiation was observed to increase at first before it gradually diminished.
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Figure 2.6: A schematic representation of the feedback mechanism for noise generation
in a shallow cavity [5]

• a laminar boundary layer upstream provided a clear and well-defined acoustic
field, while the field obtained from a turbulent boundary layer was weak and
diffused.

• the wavelength of the acoustic radiation increased with the cavity length.

Krishnamurty recognised that the oscillating shear layer impinging on the aft wall of
the cavity was a key element in the production of the acoustic radiation.

2.2.1 Frequency measures

Since the early investigations on feedback loop phenomena for cavities, or other
impinging shear layers, numerous semi-empirical relationships have been proposed to
adapt the typical phase relationship to experimental observations. The frequency f at a
given value of M∞ and T0 was found to be inversely proportional to the gap breadth b
Eq. (2.1):

f =α1
b

(2.1)

The constant of proportionality α was different for laminar and turbulent layers and
was usually lower for turbulent layers. In the laminar case Krishnamurty measured the
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frequencies at a Mach number of 0.815 and a stagnation temperature of 116.80F is
presented in Figure 2.7. The dominant frequency and the first harmonic are shown.
The harmonic frequency is twice the corresponding dominant frequency. The range of
gap breadths covered for the measurementswas from 0.1 inch to 0.5 inch. It may be
noted that most of the frequencies measured for this case were in the ultrasonic range.
In the turbulent case the measurements of frequency with turbulent boundary layer are
differed from those of the laminar case. while in the laminar case only a single domain
frequency was observed at a given gap width an Mach number, in the turbulent case
two frequencies of nearly equal strength were recorded [39].

Figure 2.7: Results of frequency measurments for laminair case forrang of gap breadths
from 0.1 to 0.5 inch. M∞ = 0.815; T0 = 116.80F. [39]

2.2.2 Nondimensional frequency

Obviously one would like to from a dimensionless frequency or Strouhal number. The
measurements have shown that the frequency f is related to b, the breadth of the cavity.
To form a Strouhal number a characteristic velocity has to be chosen.If one uses U∞,
the free-stream velocity, one has

S = f
b

U∞
(2.2)

It has been seen that, for a given free-stream velocity Mach number M∞ and stagnation
temperature T0.

f b = Constant =α (2.3)
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The constant α is then a function of M∞ and possibly T0.

S =α 1
U∞

=α 1
a0

1
U∞
a0

(2.4)

The variation of S with Mach number for a turbulent boundary layer is shown in
Figure 2.8. Krishnamurty recorded two frequencies of equal magnitude with the high
frequency almost double the low frequency.

Figure 2.8: Variation of Strouhal Number with Mach Number (Krishnamurty)[39]

2.2.2.1 Rossiter modes

In 1964, Rossiter [54] advanced on the findings of krishnamurty [39]. more then two
frequencies were observed and he suggested that these frequencies indicated a
feedback mechanism.

A sound pulse is generated when these vortical structures reaches the downstream
edge, then propagates upstream and excites the shear layer formation. A vortex
travels across the cavity in time L

Uc
, where Uc is the convection velocity of the vortical

structures, whereas the sound radiates back to the upstream edge in time L
c0

, c0

denoting the speed of sound. The feedback pressure wave must attain the upstream
edge just at the right instant to reinforce the periodic shedding, so that the frequency f
satisfies the feedback equation Eq. (2.5):

L
Uc

+ L
c0

= n
f

(2.5)

where n is an integer representing the number of vortices in the shear layer.
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A semi-empirical formula was proposed for predicting the discrete tones detected
in the experiments. Rossiter proposed that vortices which are shed from the cavity
leading edge are convected downstream until they interact with the aft cavity wall,
generating acoustic pulses. These acoustic pulses propagate upstream in the cavity
eventually reaching the front cavity wall. At this time they induce separation of the
shear layer which results in the shedding of another vortex, completing the feedback
loop. Based on this description a formula was proposed to predict the frequencies,
given by Eq. (2.6):

fm = U∞
L

m−γ
M∞+ 1

κ

(2.6)

The Figure 2.9 illustrate typical spectra for cavity with open flow as well as a
section of the resonant range classification presented in corresponding to the cavity
dimensions of interest for this study.

Figure 2.9: Typical Spectral View of Rossitor Modes [48].

where m is an integer index for the frequency of interest (m=1,2,3...), γ is constant
for a fixed L/D and κ represents the ratio of the speed of the vortices to the free-stream
speed. where κ is empirical constant, κ= 0.57 yields a fairly good collapse with the
experimental data. For shallower cavities (L/D from 4 to 10), Rossiter adjusted the
constant γ, by using the values of Table 2.1.

The sequence of frequencies is the same as that found by Brown [9] in his classic
experiments on the ’edge-tone’ which occurs when a wedge is placed in a laminar
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L/D γ

4 0.25
6 0.38
8 0.54

10 0.58

Table 2.1: Values of γ as a function of the length-to-depth ratio L/D, from Rossiter [54]

jet issuing from a narrow slit. The parameter γ accounts for the time lag that occurs
between a vortex being shed from the front of the cavity and an acoustic disturbance
being generated at the aft wall. It is assumed that the acoustic radiation initiates
vortex shedding at the leading edge, whilst the impact of the vortices on the aft cavity
wall is the generating mechanism for new acoustic waves. In the shallower cavities
(length/depth ratios from 4 to 10) there are generally two or more peaks of similar
magnitude in the amplitude spectra. The agreement for a range of Mach numbers
between the frequencies predicted and measured by Rossiter is shown to be close in
Figure 2.10.

Figure 2.10: Frequency of periodic pressure fluctuations in shallower cavities [54].

Rossiter suggested a physical interpretation for his formula by analogy with the
edge-tone phenomenon. The acoustic waves generated at the downstream corner
will induce the shedding of vortices at the upstream corner. This vorticity is in turn
responsible for the acoustic emission as it interacts with the downstream corner. λa

denotes the acoustic wavelength and λv the aerodynamic wavelength, that is the
spacing between two vortices. At the initial time t = 0, the phase of the upstrem-
propagating acoustic wave is supposed to be zero, and the cavity spans na complete
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wavelengthes λa. At this time, there is a vortex located at a distance αvλv downstream
of the downstream corner, as depicted in Figure 2.11(a).

Figure 2.11: Simplified model of the flow over a cavity, [54][57]

At the time t = t
′
, a wavefront reaches the upstream corner, synchronized with the

shedding of a new vortex. The vortices have been convected over a distance Uvt
′
, and

the vortex downstream of the downstream corner is now located at αvλv +Uvt
′
, as

indicated in Figure 2.11(b). For the nv vortices above the cavity opening, we can write
Eq. (2.7):

nvλv = L+αvλv +Uvt
′

(2.7)

In the same period of time, the acoustic wavefronts have propaged over Uat
′
in the

supstream direction, so that Eq. (2.8):

L = naλa +Uat
′

(2.8)

Eliminating t
′
, this yields:

Uv

Ua
naλa + (nv −αv)λv = L(1+ Uv

Ua
)= kL(

1
k
+M

c∞
Ua

) (2.9)

where c∞ is the sound speed above the cavity, k is the ratio Uv
U∞ , and M the Mach

number U∞
c∞ . The oscillation frequency f = Uv

λv
= Ua

λa
is introduced to lead:

f L
U∞

= (na +nv −αv)
( 1

k +M c∞
Ua

)
(2.10)

A comparison with the empirical formula Eq. (2.6) indicates that the physical model
is compatible with the experimental data if we choose: na + nv = m; αv = γ; k = κ;
c∞ =Ua;
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2.2.2.2 Bilanin and Covert’s model

In 1973, Bilanin and Covert [6], discuss their work in some detail. This analysis consists
of three parts: the analysis of the shear layer stability: the calculation of the interior
acoustics of a rectangular cavity; and the prediction of the cavity oscillation frequency.
In the first part of the calculation, the shear layer is modeled as a vortex sheet that
is only dependent upon the depth of the cavity. With this assumption, the effect of
shear layer impingement at the downstream edge of the cavity is eliminated, and the
separation of upstream and downstream edge effects and the pressure field from the
upstream edge have little effect on the vortex sheet except near the upstream edge.
Therefore, the only boundary conditions required in the stability analysis are the rigid
wall boundary condition at the floor of the cavity, the kinematic and dynamic boundary
conditions at the shear layer interface, and the outgoing radiation boundary condition
above the shear layer. According to the photographs taken by Krishnamurty [39], the
shear layer impingement generates an acoustic source at the downstream edge of the
cavity. Hence, in the second part of the analysis, Bilanin and Covert [6] assumed a
mass addition and removal at the downstream edge of the cavity as the cause of the
acoustic source. The velocity potential for a two-dimensional acoustic monopole in a
static medium is defined as

Φ= Be−iωtH(1)
0 [(

ω

a−
)|r− r0|] (2.11)

where B represents the strength of the source, ω is the radian frequency of the
source, a− is the local speed of sound inside the cavity, H(1)

0 is the zeroth order Hankel
function of the first kind, and r0 is the source position vector. To approximate the
velocity potential inside the cavity without violating the boundary conditions on the
solid walls, the velocity potentials for each acoustic source in the image system are
summed together, given by

Φ= Be−iωt
1∑

m=0

∞∑
n=−∞

H(1)
0

ω

a−

√
[x− (2n+1)L]2 + (y+2mD)2 (2.12)

The summation over n is for the contribution from the sources located at x =±L,±3L, ...,
and the summation over m is for the sources located at y = 0 and y =-2D. The pressure
field can be related to the velocity potential by

P = iωρ−φ (2.13)

where ρ− is the density of the flow field inside the cavity. Since it is assumed that
the acoustic pressure field forces the vortex sheet at the upstream edge of the cavity,
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an expression for the pressure at the origin is required. By setting x = y = 0. assuming a
symmetry condition along the y-axis, and using an approximation for Hankel functions
of large argument, their asymptotic representation yields

P = 2iωρ−Be−iωt(
1∑

m=0

N−1∑
n=0

H(1)
0 S2

√
(2n+1)2 + (

2m
L/D

)2 +R) (2.14)

where

R = 2ei π4 cos(S2)
∞∑

n=N

1
πnS2

e2i S2 n (2.15)

N is the number of acoustic monopole sources used along each y = constant line,
since it is not realistic to use an infinite number of sources, and S2 is a Strouhal
number defined by S2 = ωL

a− . The phase of the pressure given by Equation 2.14 has
been evaluated for N = 2, which corresponds to four image sources, and L

D ratios
of 4 and ∞. It was found that the error incurred for the phase of the pressure at the
upstream edge of the cavity by neglecting R and all sources except the one located at
the downstream edge is small for cavities with L

D ratios greater than 4. Therefore, in
Bilanin and Covert’s study, calculations were made with only a single source at the
downstream edge of the cavity, implying the assumption of a very shallow cavity. The
derived frequency model is similar to the model given by Rossiter in Equation 2.6.

The shear layer is modeled as an infinitely thin vortex sheet, and an acoustic
monopolar source is located at the downstream corner. To full fill the model, a pressure
line source is imposed at the upstream corner in order to represent the excitation of the
shear layer by the pressure disturbances. Fixing the phase relationship to 2π between
the two corners, the following expression is derived

St = n− 3
8 −

φ

2π
αrU∞
ω

+M c+
c−

(2.16)

which is formally identical to formula (2.10), if we choose: α = 3
8 + φ

2π and κ = ω
αrU∞

where φ and 2π× 3
8 correspond to the phase lags, respectively due to the upstream

and downstream edges, ω and αr are the radian frequency and the real part of the
complex wavenumber of the unstable vortex sheet solution respectively and U∞ is the
velocity outside the cavity. This formula takes the compressibility factor into account
through the ratio c+

c− between the exterior and interior sound speeds. It is important
to point out that the constant α is not restricted to a phase lag due to the complex
impingement process on the downstream corner, but is also the expression of the
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correction at the upstream edge during the initial phase of the vortex shedding. In the

Figure 2.12: Classes of possible of vortex-corner interactions. From Rockwell and
Knisely [50]

study by Bilanin and Covert [6], the internal cavity wave structure is uncoupled from
the shear layer motion in order to simplify the analysis. It is assumed that the cavity
internal pressure modes force the shear layer only at the upstream edge and, therefore,
only the downstream wave motion of the shear layer is considered. To eliminate this
assumption, Heller and Bliss [28] introduced the concept of the "pseudopiston" effect
Figure 2.12 [50]. This is similar to the replacement of the downstream cavity wall with
an oscillating piston. The mass addition and removal creates pressure fluctuations that
travel upstream in the cavity, and further amplifies the vortices shed at the upstream
edge. In this manner, the internal cavity acoustic wave is coupled with the shear layer
motion, and the feedback loop is complete.

2.2.2.3 Heller and Bliss model

In 1971, Heller, Holmes and Covert [27] took into account the effect of variations of
the sound speed for high Mach numbers M > 1.2. The modified formula for the sound
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speed follows:
c[cavity]

c∞
=

√
1+ r

γ−1
2

M2 (2.17)

where γ is the ratio of specific heats, and r the thermal recovery coefficient, defined as:

r = Tc −T∞
T0 −T∞

(2.18)

where T∞, T0 and Tc are the free-stream static temperature, the stagnation tem-
perature, and the temperature inside the cavity, respectively. They found 0.8 < r < 1
with an increase of r with increasing Mach numbers.

A description of the events occurring in an open cavity which was based on wave
propagation was put forward by Heller and Bliss in 1975 [? ]. The experimental
study recorded information about frequencies, mode shapes and acoustic levels for
different L

D ratios and Mach numbers. Palliative devices were also investigated. Despite
basing the description on acoustic wave propagation, use was made of the equation
developed by Rossiter. The tones detected in the experiments fell on the curves that
are associated with the resonant modes, as defined by the Rossiter equation, modified
to account for the higher sound speed in the cavity as

fm = U∞
L

m−α
M∞p

1+[(γ−1)/2]M2∞
+ 1

κ

(2.19)

where γ is the ratio of specific heats and fm is the modified resonant frequency
corresponding to the mth mode. Heller and Bliss determined from their experiments
that the constants α and κ are 0.25 and 0.57. respectively. It was previously estimated
that for cavities with a L

D ratio of 4 or greater, the difference between the unmodified
Rossiter formula and experiments should be within 10% [27]. Although the derivation of
the Rossiter equation was based on vortex shedding, Heller and Bliss did not consider
this for their modified equation and instead focussed on wave propagation. Figure
2.13-1 indicates a pressure wave moving downstream and approaching the trailing
wall. This wave produces an outward deflection of the shear layer that allows fluid
to leave the cavity at the trailing edge. Upstream, a pressure wave, which previously
had been travelling upstream, is reflected from the forward wall and now also moves
downstream. In Figure 2.13-2, the upstream wave continues to travel downstream. The
downstream wave, however, has reflected from the aft wall and propagates upstream
through the relatively inactive fluid within the cavity. This wave moves supersonically
with respect to the freestream and so a compression wave is generated in the external
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flow. At the rear bulkhead, the shear layer lies below the cavity lip, resulting in mass
addition to the cavity. The forward and rearward propagating waves intersect near
the centre of the cavity and, after interacting, maintain their respective directions as
shown in Figure 2.13-3. At the aft bulkhead, the shear layer continues to inject fluid
into the cavity, thus creating a recirculating flow. In Figure 2.13-4, the aft wave is seen
to lift the shear layer above the downstream lip, resulting in mass removal, while the
forward wave is about to impact the front bulkhead and complete the oscillation cycle
that began with the situation depicted in Figure 2.13-1.

Figure 2.13: Schematic Representation of Cavity Oscillation Cycle [27]

2.2.2.4 Tam and Block’s model

Block [7] wanted to generalize the work of Bilanin and Covert by taking into account
the effect of the finite depth D of the cavity. To this end, she used image sources
to represent the reflexions by the cavity walls. The new formula still bears some
similarities with Rossiter’s formula, but the ratio L

D appears now explicitly:

St = n− 1
4 −

β

2π −
φ

2π
1
κ
+M(1+ 0.514

L
D

)
(2.20)

where β represents the phase lag between the acoustic source and positive motions of
the shear layer at the downstream edge, and φ is the phase lag between the arrival of
the wavefront on the upstream edge and the shedding of new instabilities. This phase
lag φ is identical to φ in the Bilanin and Covert formula (2.16), but whose value is not
explicitely given. That is why Block suggested that it is negligible, as in the Rossiter
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model. The phase lag at the downstream edge is fixed at β=−π
2 , yielding β

2π = 1
4 , as in

the Rossiter formula. The compressibility factor is taken at 1 since subsonic velocities
are of interest. The term (1+ 0.514

L
D

) estimates the variation of the slope of the phase as

a function of ωL
c . This dependence is a straight line for L

D sup1, whose slope is related
to L

D . The final formula of Block is:

St = n
1
κ
+M(1+ 0.514

L
D

)
(2.21)

2.3 Shear and wake mode

For the low Mach number flows, the cavity has been classified as shear mode or
wake mode according to the shear-layer on the cavity. In a shear layer mode, the
length of the cavity plays an important role. According to Rossiter [54], the oscillations
generated are driven by the vortices from the shear layer. The wave length of this
periodic oscillation is usually close to the cavity length or 1

N of the cavity length. The
oscillation of the shear layer is confined within a narrow region near the straight line
between the leading and trailing edge of the cavity. The recirculation flow inside the
cavity is usually relatively quiescent and the interaction between the shear layer and
flow inside the cavity is weak. In a cavity with shear-layer mode, the shear layer spans
the mouth of the cavity and stagnates at the downstream wall. Both fluid-resonant and
fluid-dynamic regimes can be found in the cavity with shear-layer mode. When the
shear layer oscillates in the shear layer mode, multiple discrete and high magnitude
peaks will be present in the pressure spectra. These peaks are the cavity tones.
There is usually one tone with higher magnitude than the rest of the spectrum as
it so that it possesses most of the energy. This tone is referred to as the dominant
tone or the fundamental frequency. Karamcheti [33] discovered that the frequency
of the dominant tone is inversely proportional to the cavity length. As the length or
depth of the cavity (relative to the upstream boundary-layer thickness) and/or Mach
and Reynolds numbers is increased, there is a substantial change in the behaviour
of the cavity oscillations. Under these conditions, the flow is characterized by a large-
scale shedding from the cavity leading edge. As noted in the introduction, Gharib and
Roshko [23] were the first to understand this transition in detail, and used the term
wake mode to describe the resulting flow regime. The shed vortex has dimensions of
nearly the cavity size, and as it is forming, irrotational free-stream fluid is directed into
the cavity, impinging on the cavity base. The vortex is shed from the leading edge and
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ejected from the cavity in a violent event. The vortex is large enough to cause flow
separation upstream of the cavity during its formation, and again in the boundary layer
downstream of the cavity as it convects away.

Figure 2.14: Time-averaged flow for (a) shear-layer mode and (b) wake mode. Mean
streamlines (solid lines) are superposed on contours of contant Cp (dashed lines) [55]

Figure 2.14 contrasts the time-averaged flow for runs shear-layer mode and wake
mode. The mean streamlines in the wake mode are significantly deflected above the
cavity, and show that on average the boundary layer upstream of the cavity sees an
adverse pressure gradient. On average the flow in the cavity is strongly recirculating,
and there is an impingement of the recirculating flow on the rear wall. The region of
high pressure near the back corner of the cavity resembles that observed by Fox [20]
in his high-drag flow regime. Variations in the average coefficient of pressure are also
quite large, reaching a minimum of about −0.5 where the flow is expanding into the
cavity, to about 0.3 in the impingement region on the rear step.

2.4 Cavity-related flow oscillations

The understanding of cavity-related flow oscillations was simplified by Rossiter and
Naudascher [51]. They divides them into three categories:

2.4.1 Fluid-elastic oscillations

They occur when a cavity surface itself is forced into oscillation 2.15. In other words,
this regime encompasses flows that are affected by the elastic boundaries of the cavity.
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Figure 2.15: Fluid-resonant oscillations [18]

2.4.2 Fluid-resonant oscillations

In 1958-62, Plumblee et al. [49] proposed that the periodic pressure fluctuations in
cavities are due to an acoustic resonance excited by the unsteadiness in the turbulent
boundary layer approaching the cavity.

These are caused when a self sustaining oscillation in the flow has a wavelength
of the same order as one of the cavity dimensions. This regime couples the acoustic
modes of the cavity and shear layer over the deeper cavities and for the cavities subject
to high Mach number flow.

2.4.3 Fluid-dynamic oscillations

These are related to the cavity feedback resonance mechanism. This regime involves
shear-layer instability amplification due to feedback from interaction of the shear layer.
These interactions occurs for low-speed flow past shallow cavities.
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3
COMPUTATIONAL AERO-ACOUSTICS

3.1 Generalities

Aerodynamic noise occurs because of two basically different phenomena. The first
is impulsive noise, which is a result of moving surfaces or surfaces in non-uniform
flow conditions. The displacement effect of an immersed body in motion and the non-
stationary aerodynamic loads on the body surface generate pressure fluctuations that
are radiated as sound. This kind of noise is deterministic and relatively easy to extract
from aerodynamic simulations because the required resolution in space and time to
predict the acoustics is similar to the demands from the aerodynamic computation.

The other noise mechanism is the result of turbulence and therefore arises in nearly
every engineering application. Turbulence is by its very nature stochastic and therefore
has a broad frequency spectrum. Interestingly enough, turbulent energy is converted
into acoustic energy. Athird phenomenon is the case of combustion noise,which is a
result of the chemical reactions and the subsequent introduction of energy into the
flow.

Like Computational fluid dynamics (CFD), the sound generated by fluid flows, is
an area of research that has received an increasing amount of attention during the
past decade. Most of the research has been aimed at high-Mach-number applications,
with jet noise being the most typical case of interest. For a long time the works was
mostly based on analytical and experimental studies, but the astonishing advances
in computer technology have made a numerical approach feasible. That approach is
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called Computational Aero-Acoustics (CAA),
A variety of approaches are available to compute the flow data and to estimate the

radiated noise from the flow. Computational techniques for flow-generated sound can
be classified into two broad categories:

1. The direct approach computes the sound together with its fluid dynamic source
field by solving the governing equations without modelling, this approach needs
high quality grids. Direct approach are comparable to the Direct Numerical
Simulation (DNS) in the Computational Fluid Dynamics (CFD).

2. In the hybrid approach, the computation of flow is decoupled from the computation
of sound, the sound sources are extracted from the turbulence solved in the fluid
dynamic simulation, which can be performed during a post-processing stage
based on Aero-Acoustic Analogy. The problems that exhibit a one-way coupling
between the flow and the acoustics. In the case of a one-way coupling the flow is
independent of the acoustic part, hence no energy is fed back into the flow from
the acoustic wave propagation. An advantage behind one-way coupled problems
is that they can be separated into two different problems, one part being the flow
induced source field while the other one is propagation of sources.

Figure 3.1 shows the main computational approaches used to evaluating the sound
field generated by turbulent flows.

The far-field sound is obtained by integral or numerical solutions of acoustic analogy
equations using computed source field data. From the Figure 3.2, the flow region is
dominated by hydrodynamic phenomena. The pressure fluctuations which are present
in this region is due to turbulence or large structures. Consider a source region of
characteristic length scale Lsource containing individual sources (eddies) of size led.
The far field is a region where the turbulence is less and the mean flow field is typically
homogeneous. The far field and the source region is separated by a distance d. The
only phenomena in this region is acoustic wave propagation. In the integral forms of
acoustic analogies, the use of leading-order terms in an acoustic far-field expansion
(with respect to λac

d , where λac is the acoustic wavelength) leads to much simpler
evaluations of sound. For small amplitudes and low Mach numbers M, far-field can be
described by a linear homogeneous wave equation. The near-field which is overlapped
by the other two regions. This region becomes important as both hydrodynamics and
acoustics are present. A source region is said to be acoustically compact if its extent
is much smaller than the acoustic wavelength, or led

λac
¿ 1 or Lsource

λac
¿ 1. Given that
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Figure 3.1: Noise prediction methods.

λac = led
M , it is apparent that low Mach number flows are more likely to be acoustically

compact [71].
The pressure perturbations p

′
(p

′ = p− p0) which propagate as waves and which
can be detected by the human ear. For harmonic pressure fluctuations the audio range
is:

20Hz ≤ f ≤ 20kHz (3.1)

The Sound Pressure Level (SPL) measured in decibel (dB) is defined by:

SPL = 20log10(
p

′
rms

pre f
) (3.2)

where pre f = 2×10−5Pa for sound propagating in gases The sound intensity 〈I〉 =
〈I.n〉 is defined as the time averaged energy flux associated to the acoustic wave,
propagating in direction n.
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Figure 3.2: Schematic of sources and sound scales [71]

The intensity of radiation is the rate at which energy is transmitted across a unit
area of a plane parallel to that wave front. For a simple harmonic wave of frequency f
the intensity I is given by the relation:

I = 1
2

P2

ρea
(3.3)

where a is the local speed of sound, P the maximum amplitudes of the pressure , ρe is
the equilibrium value of the local density of the medium and I is expressed in ergs per
square centimetre per second. in the decibel scale the intensity is given by its level
relative to the reference level 10−9 arg per centimetre per second. Thus,

Idb = 10log10
I

Ire f
(3.4)

where Idb is the intensity in decibels and the reference intensity Ire f = 10−12Wm−2 in
air, log10 erg square centimeter per second. Hence,

Idb = 90+10log10 I (3.5)

3.2 Acoustic analogies

The technique of the acoustic analogies was established by Sir James Lighthill [40] who
published in 1952 his " acoustic analogy ". This represents one of the first theories on
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aerodynamic noise generation for describing the radiation of the sound field generated
by a turbulent flow and since then multiple times used for aero-acoustic problems.
Lighthill (1952) transformed the Navier-Stokes and continuity equations to form an
exact, inhomogeneous wave equation (namely the Lighthill equation 3.12) whose
source terms are important only within the turbulent region. He argued that sound is a
very small component of the whole motion and that, once generated, its back-reaction
on the main flow can usually be ignored. The properties of the unsteady flow in the
source region may then be determined by neglecting the production and propagation
of the sound, a reasonable approximation if the Mach number M is small, and there
are many important flows where the hypothesis is obviously correct, and where the
theory leads to unambiguous predictions of the sound. Lighthill was initially interested
in solving the problem, illustrated in Figure 3.3-a, of the sound produced by a turbulent
nozzle flow. However, his original theory actually applies to the simpler situation shown
in Figure 3.3-b, in which the sound is imagined to be generated by a finite region
of rotational flow in an unbounded fluid. This avoids complications caused by the
presence of the nozzle. The fluid is assumed to be at rest at infinity, where the mean
pressure, density, and sound speed are respectively equal to p0, ρ0, a∞. Lighthill
compared the equations for the production of acoustic density fluctuations in the real
flow with those in an ideal linear acoustic medium that coincides with the real fluid at
large distances from the sources.

Figure 3.3: Lighthill’s Analogy for a Turbulent Jet

The theory formulated by Lighthill in 1952 is considered as the starting point of
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modern Aero-Acoustics. It relies on an analogy between the full non linear flows and
the linear theory of acoustics. The conservation equations are rewritten to form the
following inhomogeneous wave equation.

3.2.1 Lighthill’s acoustic analogy

Lighthill considered that the acoustic waves result from small scale, localised turbulent
structures, and that they propagate in an homogeneous medium at rest where density
ρ and speed of sound a∞ are constant. Acoustic fluctuations are then governed by
the classical acoustic wave equation outside of the source zone. Considering the
conservation of mass and momentum equations, Lighthill gives a reformulation of
the fluid dynamics equations in such a way that he obtains a wave equation for the
acoustic density fluctuations with a source term on the right hand side.

The first step consists to derive the mass conservation equation

∂ρ

∂t
+ ∂

∂xi

(
ρui

)= 0 (3.6)

with respect to time. The following equation is obtained:

∂2ρ

∂t2 + ∂2

∂t∂xi

(
ρui

)= 0 (3.7)

Then the term a2∞
∂ρ

∂xi
is introduced in each side of the momentum conservation

equation (in the conservative form):

∂

∂t
(
ρui

)+ ∂

∂x j

(
ρuiu j

)=− ∂

∂x j

(
Pδi j −τi j

)
(3.8)

• δi j= tensor of Kronecker

• τi j= viscous stress tensor

∂

∂x j

(
Pδi j

)= ∂P
∂xi

(3.9)

It comes:
∂

∂t
(
ρui

)+a2
∞
∂ρ

∂xi
=− ∂

∂xi

(
ρuiu j +

(
P −a2

∞ρ
)
δi j −τi j

)
(3.10)

By taking the divergence of the equation 3.10:

∂2

∂xi∂t
(
ρui

)+a2
∞∆ρ =− ∂2

∂xi∂x j

(
ρuiu j +

(
P −a2

∞ρ
)
δi j −τi j

)
(3.11)
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and then, substracting 3.7, the wave equation is obtained for the acoustic density:

∂2ρ

∂t2 −a2
∞∆ρ = ∂2Ti j

∂xi∂x j
(3.12)

where ρ is the density, a∞ is the ambient sound speed and Ti j = ρuiu j+
(
P −a2∞ρ

)
δi j−

τi j is known as the Lighthill stress tensor, ui p, τi j being the velocity components, the
pressure and the viscous stresses respectively.

No assumptions has been made at this point and Eq. 3.12 is exact. A distinction
has been made between the sound sources and the propagation of sound sources.
The left hand side is an ordinary wave operator whereas the right hand side is the
acoustic source terms. For Lighthill’s equation to be applicable the right hand side
should be known as well as decoupled from the acoustic field. From eq. 3.12, three
fundamental processes of noise sources can be identifyed in a turbulent flow:

• the unsteadiness of the non linear convective forces included in the tensor ρuiu j

(and more generally, in the Reynolds stresses tensor), can be neglected except
where the motion is turbulent.

• the so-called "entropy noise", which is present when transformations are no
more isentropic or when the flow is not homoentropic

(ds
dt 6= 0

)
In these cases:

P −a2∞ρ = ρ (
a2 −a2∞

) 6= 0

• the fluctuations of the viscous stress tensor τi j, is linear in the perturbation
quantities, and properly accounts for the attenuation of the sound; in most
applications the Reynolds number in the source region is very large.

Noise computation using Lighthill’s equation with inclusion of mean flow - acoustics
Lighthill’s equation is used to compute the noise produced by subsonic flows. The
objective is to show that, although this equation is based on a wave equation in a
medium at rest, mean flow effects on sound propagation, included in Lighthill’s source
term, can be properly taken into account by numerical approches. The source terms
are evaluated from the unsteady compressible flow motion equations, which provide
also a reference sound field.

3.2.2 The solution of the Lighthill equation in free space

The use of the integral formalism is very convenient to obtain Lighthill’s equation
solution.
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3.2.2.1 Definition of Green’s function

The Green function is the solution of the inhomogeneous linear differential equation for
which the inhomogenity is concentrated at one point, both in time and space. From a
mathematical point of vue, the Green function G corresponds to the system response
to a pulse. For the present inhomogeneous wave equation:

∂2 G
∂ t2 −a2

0
∂2 G
∂x2

i
= δ(−→x −−→y )

δ (t−τ) (3.13)

The Dirac pulse δ is produced at the source point −→y at time τ, and the Green
function G is determined at the observation −→x point at time t, the Green function is
generally noted G0.

3.2.2.2 Properties of the Green function

• The Green function (and a fortiori G0) has to respect the causality condition,
occur after the pulse has been released. This implies:

G
(−→x , t

/−→y ,τ
)= 0

∂
∂tG

(−→x , t
/−→y ,τ

)= 0

}
t < τ (3.14)

• Another important point is that the Green function respects the reciprocity rela-
tionship:

G
(−→x , t

/−→y ,τ
)=G

(−→y ,−τ/−→x ,−t
)
(interchangeabil ityof thesourceandtheobserver)

(3.15)

It is then possible to show that the Green function is the solution of the following
equation :

∂2 G
∂t2 −a2

∞
∂2 G
∂x2

i
= δ(−→x −−→y )

δ (t−τ) (3.16)

−→x ↔ −→y andt ↔ τ which is a direct consequence of the symmetry of the Dirac
function δ(t−τ), of the reciprocity relationship, and of the interchangeability of the
variables.
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3.2.2.3 Free space Green’s function

To determine Go, we first consider the Fourier transform of Go, defined by:

Ĝ0 =
+∞∫

−∞
G0 e− jωtdt (3.17)

From Eq. 3.16:

−a2
∞

[
∂2 Ĝ0

∂x2
i

+k2 Ĝ0

]
=

+∞∫
−∞

δ
(−→x −−→y )

δ (t−τ) e− jωtdt (3.18)

with k = w
a∞ and then As

+∞∫
−∞

δ (t−τ) e− jωtdt = e− jωτ

it yields:
∂2 Ĝ0

∂x2
i

+k2 Ĝ0 =− 1
a2∞

δ
(−→x −−→y )

e− jωτ (3.19)

The free field Green function can then be defined in the temporal domain

G0
(−→x , t

/−→y ,τ
)= 1

4πa2∞
δ

(
t−τ r

a∞

)
(3.20)

with r = ∣∣−→x −−→y ∣∣ and t = r
a∞ retarded time (transit time from the source to the

observer)

3.2.2.4 Solution of the Lighthill equation

Let us at first recall the equation giving the acoustic field (characterized by the acoustic
density r) created by a source located at the point −→y at time t (Lighthill’s equation)

∂2ρ

∂t2 −a2
∞∆ρ = ∂2Ti j

(−→y ,τ
)

∂xi∂x j
(3.21)

which can also be written as, according to the reciprocity theorem

∂2ρ

∂τ2 −a2
∞
∂2ρ

∂ yi2 = ∂2Ti j
(−→y ,τ

)
∂yi∂yj

(3.22)

Moreover, we have seen that

∂2 G0

∂τ2 −a2
∞
∂2 G0

∂ y2
i

= δ(−→x −−→y )
δ (t−τ) (3.23)

it yields
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∂2 G0

∂τ2 ρ−a2
∞ρ

∂2 G0

∂ y2
i

−G0
∂2ρ

∂τ2 +a2
∞G0

∂2ρ

∂ yi2 = ρ
(−→y ,τ

)
δ

(−→x −−→y )
δ (t−τ)

−G0
(−→x , t

/−→y ,τ
) ∂2Ti j(−→y ,τ)

∂yi∂yj

(3.24)

By integrating over a volume V (with respect to −→y and in time, from t0 to t, where
t0 is the temporal origin for the observer, and then can be associated to the initial
condition of the phenomenon for the observer (for instance the time at which the signal
emitted by the source at the time τ is received by the observer), one obtains:

t∫
t0

∫∫
V

∫ [
∂2 G0
∂τ2 ρ−G0

∂2ρ

∂τ2

]
d−→y dτ−a2∞

t∫
t0

∫∫
V

∫ [
ρ ∂

2 G0
∂ y2

i
−G0

∂2ρ

∂ yi2

]
d−→y dτ=

t∫
t0

∫∫
V

∫
ρ

(−→y ,τ
)
δ

(−→x −−→y )
δ (t−τ)d−→y dτ−

t∫
t0

∫∫
V

∫
G0

(−→x , t
/−→y ,τ

) ∂2Ti j(−→y ,τ)
∂yi∂yj

d−→y dτ (3.25)

According to the following property of the Dirac function∫
g (a)δ (b−a)da = g (b) we have

t∫
t0

∫∫
V

∫
ρ

(−→y ,τ
)
δ

(−→x −−→y )
δ (t−τ)d−→y dτ= ρ (−→x , t

)
and then

ρ
(−→x , t

)=
t∫

t0

∫∫
V

∫
G0

(−→x , t
/−→y ,τ

) ∂2Ti j(−→y ,τ)
∂yi∂yj

d−→y dτ

+
t∫

t0

∫∫
V

∫ [
∂2 G0
∂τ2 ρ−G0

∂2ρ

∂τ2

]
d−→y dτ................(a)

−a2∞
t∫

t0

∫∫
V

∫ [
ρ ∂

2 G0
∂ y2

i
−G0

∂2ρ

∂ yi2

]
d−→y dτ...........(b)

(3.26)

Partial integration of (a) with respect to time
We have
ρ ∂

2 G0
∂τ2 −G0

∂2ρ

∂τ2 = ∂
∂τ

(
ρ
∂G0
∂τ

)
− ∂ρ

∂τ
∂G0
∂τ

−
[
∂
∂τ

(
G0

∂ρ

∂τ

)
− ∂G0

∂τ

(
∂ρ

∂τ

)]
= ∂

∂τ

[
ρ
∂G0
∂τ

−G0
∂ρ

∂τ

]
and then

(a)=
t∫

t0

∫∫
V

∫
∂
∂τ

[
ρ
∂G0
∂τ

−G0
∂ρ

∂τ

]
d−→y dτ=

[∫∫
V

∫ (
ρ
∂G0
∂τ

−G0
∂ρ

∂τ

)
d−→y

]
τ=t

............... (α)

−
[∫∫

V

∫ (
ρ
∂G0
∂τ

−G0
∂ρ

∂τ

)
d−→y

]
τ=t0

.................
(
β
)

According to the causality condition, the term (a) is equal to zero: t0 write t = τ has
not physical meaning, t0 being the transit time of the signal from the source to the
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observer (we can’t have t0 < 0), we have t = τ+ t0 ⇒ t > τ and then G0 = 0 and ∂G0
∂τ

= 0

Partial integration of (b) with respect to space We have
ρ ∂

2 G0
∂y2 −G0

∂2ρ

∂y2 = ∂
∂y

(
ρ
∂G0
∂y

)
− ∂ρ

∂y
∂G0
∂y −

[
∂
∂y

(
G0

∂ρ

∂y

)
− ∂G0

∂y

(
∂ρ

∂y

)]
= ∂

∂y

[
ρ
∂G0
∂y −G0

∂ρ

∂y

]
and

then (by Green’s theorem)

(b)=−a2∞
t∫

t0

∫∫
V

∫
∂
∂yi

[
ρ
∂G0
∂yi

−G0
∂ρ

∂yi

]
d−→y dτ=− c2

0

t∫
t0

∫∫∑ (
ρ
∂G0
∂yi

−G0
∂ρ

∂yi

)
nidσdτ

The following form of the solution is obtained:

ρ
(−→x , t

)=

t∫
t0

∫∫
V

∫ ∂2Ti j(−→y ,τ)
∂yi∂yj

G0
(−→x , t

/−→y ,τ
)
d−→y dτ

−a2∞
t∫

t0

∫∫∑ (
ρ

(−→y ,τ
) ∂G0
∂yi

−G0
∂ρ(−→y ,τ)
∂yi

)
nidσdτ.........(C)

−
[∫∫

V

∫ (
ρ

(−→y ,τ
) ∂G0

∂τ
−G0

∂ρ(−→y ,τ)
∂τ

)
d−→y

]
τ=t0

............(d)

(3.27)

• The surface integral (c) disappears for boundary conditions corresponding to
those of the physical problem. That is of course the case of G0 in a free space,
as G0 is defined in such a way that G0 → 0 when r →∞, and so on

∑
.

• The term (d) represents the initial conditions effects at t = t0. For a phenomenon
not dependant of the initial condition, (steady state or permanent phenomenon,
in statistical point of view), so that t0 →−∞ (d) is equal to zero.

Then we have

ρ
(−→x , t

)= t∫
t0

∫ ∫
V

∫
∂2Ti j

(−→y ,τ
)

∂yi∂yj
G0

(−→x , t
/−→y ,τ

)
d−→y dτ (3.28)

where the expression of the Green function in free space is

G0
(−→x , t

/−→y ,τ
)= δ

(
t−τ−r/a∞

)
4πr a2∞

with r = ∣∣−→x −−→y ∣∣ Then we have

ρ
(−→x , t

)= ∂2

∂xi∂x j

∫ ∫
V

∫ Ti j

(
~y, t− r

a∞

)
4πrc2

0
d~y (3.29)

This is strictly an alternative, integral equation representation of Equation 3.12; it
provides a useful prediction of the sound only when Ti j is known.

38



CHAPTER 3. COMPUTATIONAL AERO-ACOUSTICS

Far field approximation In the acoustic far field, the only characteristic length scale
of the phenomenon is the wavelength. It is then possible to the problem of the estima-
tion of the space derivative ( ∂

∂xi
) at the observer by the estimation of the characteristic

frequency (or the characteristic time) of the radiated noise.
Effectively, we have in the far field

• 1
|−→x −−→y | ∼=

1
|−→x | as

∣∣−→x ∣∣À ∣∣−→y ∣∣
• secondly 1

∂xi
∼=− xi

a∞|−→x |
∂
∂t

which allows to write, for the acoustic density

ρ
(−→x , t

)= xi x j

4πa2∞
∣∣−→x ∣∣2 1

a2∞

∂2

∂t2

∫ ∫
V

∫ Ti j

(
~y, t− |−→x |

a∞

)
∣∣−→x ∣∣ d~y (3.30)

Hence, if viscous dissipation is neglected we make the approximation Ti j ≈ ρ0 vi v j

3.2.3 Curle’s Analogy: the influence of solid boundaries

As an extension to Lighthill’s acoustic analogy, Curle [13] proposed a formal solution
to Lighthill’s analogy in 1955 to include the influence of the solid static boundaries.

In practice, surfaces are often present in turbulent flows. The presence of surfaces
strongly modify the sound production.

• changes in the radiated acoustic field in comparison with the previous case of
free turbulent flows

• extension of the integral formulation to the case of wall-bounded turbulent flows

We assume a solid body, placed normally to a mean flow:

The volume V is the entire space occupied by the fluid, and V is delimited by a
surface S enclosing the body. −→n is the outer normal to the volume V at the surface S,
directed towards the body.
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ρ
(−→x , t

)= t∫
t0

∫∫
V

∫ ∂2[Ti j(−→y ,τ)]
∂yi∂yj

G0
(−→x , t

/−→y ,τ
)
d−→y dτ

−c2
0

t∫
t0

∫∫
S

[
ρ

(−→y ,τ
) ∂G0
∂yi

−G0
∂ρ(−→y ,τ)
∂yi

]
ni dσdτ

(3.31)

and finally:

ρ
(−→x , t

)=
t∫

−∞

∫∫
V

∫
Ti j

∂2 G0
∂yi∂yj

d−→y dτ

−
t∫

−∞

∫∫
S

G0
∂
∂τ

(
ρui

)
ni dsdτ

−
t∫

−∞

∫∫
S

(
ρui u j +pδi j −τi j

) ∂G0
∂yi

ni dsdτ

(3.32)

Far field approximation First, with the use with the reciprocity theorem and sec-
ondly, with the symmetry property in time of Green’s functions and using the far field
approximation and by definition of G0 we obtain

ρ
(−→x , t

)=
xi x j

4πa4
0 |−→x |3

∂2

∂t2

∫∫
V

∫ [
Ti j

]
d−→y

−∫∫
S

1
4πa2

0|−→x |
∂
∂t

[
ρui

]
ni dS

+ x j

4πa3
0 |−→x |2

∂
∂t

∫∫
S

[
ρui u j +pδi j −τi j

]
ni ds

(3.33)

• the first integral (volumic integral) represents the noise due to the turbulence in
the source volume, similarly to the case of a free turbulent flow ;

• the second integral (surfacic integral) results from a volume injection through
the surface S enclosing the body, which can be due to a flow through a porous
surface or to pulsations of the body ;

• the third integral (surfacic integral) results from the momentum flux through the
surface S and from the surface stresses on S (pressure and viscosity forces)

Interpretation for a compact rigid body In this case, ui = 0 at the surface. The
only surface integral remaining is then simply the instantaneous force Fi exerted by
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the flow on the body:

ρ
(−→x , t

)= xi x j

4πa4
0

∣∣−→x ∣∣3 ∂2

∂t2

∫ ∫
V

∫ [
Ti j

]
d−→y + x j

4πa3
0

∣∣−→x ∣∣2 ∂

∂t

∫ ∫
S

[
pδi j −τi j

]
ni ds

︸ ︷︷ ︸
Fi

(3.34)

3.2.4 Ffowcs-Williams Hawkings analogy

FH-W analogy is an extended version of Lighthill analogy. It introduces the so called
source surfaces, which are taken into account when computing the sound pressure
level at the observer. Those surfaces can be set as surfaces of solid body (imper-
meable) or as a any free surface located in domain (permeable). In contradiction to
Lighthill analogy, FH-W analogy allows the motion of the bodies inside fluid domain,
that fact extends its applicability to predict noise generated by rotors. Analogy is govern
by equations below:

1
a0

∂2 (
ρ−ρ0

)
∂ t2 −∇2 (

ρ−ρ0
)= ∂

∂t
[
Qnδ ( f )

]− ∂

∂xi
[L i δ ( f )]+ ∂2

∂xi ∂x j

[
Ti j H ( f )

]
(3.35)

Where Qn and L i are defined as:

Qn =Q i n̂i =
[
ρ0 vi+ρ (ui−vi)

]
n̂i (3.36)

L i = L i j n̂i =
[
Pi j +ρui

(
u j −v j

)]
n̂i (3.37)

The source surface mentioned before(also called integration surface) is described as
f(x,t)=0 and n̂i =∇ f is a unit normal vector pointed out from surface f. In equations
3.36 and 3.37 vi denotes the velocity of surface f, while ui is the velocity of the fluid at
the integration surface. If the source surface is equal to the solid body surface then
ui = vi. In equation 3.37 there is a compressible stress tensor:

Pi j = (p− p0)δi j −τi j (3.38)

Formulation 1A For a complex geometry it is hard to find the direct solution of equa-
tion 3.35. Therefore some numerical formulations of FH-W analogy were introduced.
One of them is formulation 1A proposed by Farassant [19] [8]. It is suitable for moving
solid bodies in fluid at rest. That formulation was developed to improve prediction of
noise generated by helicopter rotor. The acoustic pressure p‚Äô that is generated by
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solid body with subsonic velocity, measured by observer in position x and time t is
given by:

p′
(x, t)= p′

T (x, t)+ p′
L (x, t) (3.39)

4π p′
T (x, t)=

∫
f−0

[
Q̇n+Qn

r (1−Mr)2

]
ret

ds+
∫

f−0

[
Qn

(
r Ṁr+a0(Mr−M2)

)
r2 (1−Mr)3

]
ret

ds (3.40)

4π p′
T (x, t)=

∫
f−0

[
L̇r

r (1−Mr)2

]
ret

ds+
∫

f−0

[
Lr−Lm

r2 (1−Mr)3

]
ret

ds+
∫

f−0

[
Lr

(
r Ṁr+a0(Mr−M2)

)
r2 (1−Mr)3

]
ret

ds

(3.41)
Where M denotes Mach number of a source, with components Mi = vi

a0
, the dot (.)

means time derivative with respect to emission time τ. Other components of equations
3.40 and 3.41 are following:

Mr = Mi r i Ṁr = ∂Mi
∂τ

r i

Qn =Q i n̂i Q̇n = ∂Q i
∂τ

n̂i Qṅ =Q i
∂ n̂i
∂τ

Ln = L i j n̂i L̇r = ∂L i
∂r r̂i Lr = L i r̂i LM = L i Mi

(3.42)

Subscript ret means that the integral is evaluated at the emission time. The retarded
time equation has a form presented below:

g =τret−t+ r
a0

= 0 (3.43)

Where r =|x− y(ret)| is a distance between observer and the source at the emission
time.
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4
DOMAIN GENERATION METHODOLOGY

4.1 Introduction

The geometrical parameters of the cavity model in paper are displayed in Figure
4.1 (a- baseline Cavity geometry and b- wavy cavity geometry), they are
taken from the computational domain of Garry Hughes and Laurent Dala [29].

Different surface modifications were simulated by varying the amplitude and frequency
of surface waviness was constructed using OpenFOAM program.

Figure 4.1: Cavity geometry reproduced from [29]
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4.2 Open Field Operation And Manipulation -

OpenFOAM

OpenFOAM [3] is a acronym for Open Source Field Operation And Manipulation. It is
a C++ toolbox that provides a platform for the development of customized numerical
solvers related to continuum mechanic problems using the finite volume method. It is
released under the Open Software GNU General Public License [2]. The code was
originally developed by Henry Weller at Imperial College in London. The commercial
Computational Fluid Dynamic (CFD) codes StarCD [4] and Fluent (ANSYS [1]) also
originates from this college.

Numerical analysis of aerospace and defence applications requires a significant
level of code flexibility to make the desired changes to existing subroutines or to
develop new routines. OpenFOAM consist of many solvers, utilities and libraries that
provide an ideal platform of development. Its object oriented code architecture allows
for re-use of existing code blocks and objects and therefore eases the overhead of new
development. OpenFOAM provides a good alternative to commercial software since it
has been extensivly validated and there is no direct costs involved to operate it.

In order to work with OpenFOAM, the user needs to be familiar with the file structure,
since there is no Graphical User Interface (GUI). The general structure of OpenFOAM
is divided into three main directories; a System, Constant and Initial and boundary
conditions "0" directory Figure 4.2:

• The System directory contains at minimum the controlDict, fvSchemes, and
fvSolution. The controlDict controls parameters such as start/end time, step
size, when and what files to output etc. fvSchemes and fvSolution dictates what
discretization schemes to use, equation solvers and tolerances respectively.

• In the constant directory, turbulence and material properties are specified. The file
LESProperties contains the option to choose a LES turbulence model. transport-
Properties contains the possibility to specify the value of the kinematic viscosity
ν. Editing the file turbulenceProperties enables changes in the constants of
the different turbulence models. As shown in Figure 4.2, there is a yet another
subfolder in the constant directory. This subfolder contains all information about
the mesh and the only file to be edited is the file boundary. In this file, the user
has to set the physical type of the different surface patches (wall, symmetryPlane,
patch).
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Figure 4.2: OpenFOAM case structure

• The "0" directory contains files in which the initial conditions for the different
variables and surface patches can be specified.

More detailed information, especially regarding the different possibilities for adjust-
ment, can be found in the OpenFOAM User Guide [3].

4.2.1 Spatial and Temporal Discretization

4.2.1.1 Spatial

The Poisson equation for pressure is solved by GAMG (Generalized Geometric-
Algebraic Multi-Grid) algorithm, while the linear equation for velocity is solved by
PBiCG algorithm (Preconditioned Bi-Conjugate gradient solver for asymmetric matri-
ces). Linear interpolation is used to obtain the physical quantities at the surface centers
of the cells. SnGradSchemes is a user defined variable in OpenFOAM that allows
the user to chose what surface normal grad scheme to use. Gaussian integration is
a second order discretization scheme and is defined in the fvSchemes dict together
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with the choice of interpolation scheme. In the Gaussian integration values from cell
centers need to be interpolated to face centers. A linear interpolation scheme is used
for this.

4.2.1.2 Temporal

OpenFOAM provides a wide range of temporal discretization schemes varying in
accuracy and computational cost. During a steady state simulation the SteadyState
option can be specified in the fvSchemes for the time scheme, and the time derivative
will be "switched off". For a transient problem the solution is time dependent and a
solution will be found by a time-marching method. The Crank-Nicolson (CN) method
averages properties between time steps where both the old and new values are used.
CN uses a weighted average between spatial steps where for an equal contribution
close resemblance can be found to central-differencing schemes. The Crank-Nicolson
method is often used for parabolic equations. Crank-Nicolson is conditionally bounded
and comes with a time constraint. Since it is not a pure explicit method CN does not
have as strict of a time step for stability. The solver makes it possible to dynamically
adjust the time step in runtime based on the specified maximum Courant-Friedrichs-
Lewy (CFL) number, which reduces the initial relaxation time and find a suitable time
step for temporal accuracy as well as stability.

CFL = |u|a ta
x

6 1 (4.1)

The CFL condition is a necessary condition for stability but does not ensure a
stable solution.

4.2.2 Pressure and Velocity Coupling

PISO and SIMPLE are two algorithms commonly used in OpenFOAM to solve the
equations for velocity and pressure. PISO is a semi-implicit method that stands for
Pressure-Implicit Split Operator and is developed for transient problems. SIMPLE on
the other hand, or Semi-Implicit Method for Pressure-Linked Equations, is a steady-
state algorithm. PIMPLE is a merged version of the PISO-SIMPLE algorithms. Both
SIMPLE and PISO are discretized using a staggered velocity field. H.K Versteeg
[1995] [70] presents a grafic figure of the discretized volume where scalar variables
are defined on the nodes (black dots) while velocities are defined between nodes in
Figure 4.3.
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Figure 4.3: Staggered grid for velocity components

4.2.2.1 SIMPLE Algorithm

SIMPLE, or the Semi-Implicit Method for Pressure-Linked Equations, is a steadystate
algorithm based on work by Patankar and Spalding (1972)[46]. The SIMPLE algorithm
uses a guess-and-correct method [H.K Versteeg, 1995][70] where in its initial stage
SIMPLE approximates the velocity field using the momentum equation and a guessed
pressure field p∗. The discretized u- and v-momentum equations are:

ai,J u∗
i,J =∑

anbu∗
nb + (P∗

I−1,J −P∗
I,J)A i,J +bi,J

aI, jv∗I, j =
∑

anbv∗nb + (P∗
I,J−1 −P∗

I,J)AI,J +bI,J
(4.2)

where ai,J and anb are coefficients. The correct pressure field p, relates to the
guessed pressure field p∗ and the correction, p

′
, in the following way;

p = p∗+ p
′

(4.3)

Many times under-relaxation is used to reduce the risk of divergence. Under-
relaxation reduces the amount the guessed pressure field is corrected by p

′
, and the

new pressure field can be calculated in a following way

pnew = p∗+αp p
′

(4.4)

Here αp is the under-relaxation factor and it is for the present case set to 0.33. From the
guessed pressure field, and the discretized momentum equation u∗ and v∗ velocities

47



CHAPTER 4. DOMAIN GENERATION METHODOLOGY

are solved for.
u = u∗+u

′
v = v∗+v

′
(4.5)

p∗ = p u∗ = u v∗ = v (4.6)

4.2.2.2 PISO Algorithm

The PISO (Pressure Implicit with Splitting of Operators) is an efficient method to solve
the Navier-Stokes equations in unsteady problems. The main differences from the
SIMPLE algorithm are the following:

• No under-relaxation is applied.

• The momentum corrector step is performed more than once.

PISO has shown to require less computational time over SIMPLE in order to converge
the solution up to the exact same level of tolerance. The PISO algorithm is summarized
in Figure 4.4. As it can be seen, the main characteristic of this coupling scheme is
certainly the presence of not one, but two corrections on the pressure field. Another
characteristic not shown on this figure is the fact that no under-relaxation is required.
This last property partly explains the reduced computational cost of PISO over SIMPLE.

4.2.3 The creation of geometry and mesh

The geometry and the computational mesh was created in OpenFOAM software
environment using the appropriate commands, checked in a graphical environment
Paraview and subsequently modified or approved and then it went through the numeri-
cal calculation. The geometry and mesh is created directly by blockMesh command.
The appropriate command creates geometry and mesh in a few steps:

• Creates points placed in a 3D coordinate system;

• Links these points into blocks;

• Divides the blocks into individual cells according to parameters specified by the
user;

• Sets boundary conditions.
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Figure 4.4: Representation of the PISO segregated algorithm for pressure-velocity
coupling

4.2.4 Boundary Conditions

OpenFOAM has vast libraries of boundary conditions that can be used. Boundary
conditions can also be augmented from existing source code or newly developed. three
classes of boundary conditions are defined: basic, derived and constraint conditions.

4.2.4.1 Basic boundary conditions

are independent from any other utilities and all the mathematical equation to used this
library is in its root source code. Example of this is the fixedValue condiction and the
zeroGradient condictions ars shown in Figure 4.5.

the fixedValue condition enforced a fixed value on the boundary, while the zeroGra-
dient condition obtains the boundary value from the internal node.

4.2.4.2 Derived boundary conditions

are dependent on either the basic boundary condition specification or an another
external library. the inletOutlet condition is an example of an outlet derived boundary
where a fixedValue condition is enforce on the boundary if the flux is out of the domain.
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Figure 4.5: Boundary condition definition for fixedValue, zeroGradient and inletOutlet

Figure 4.6: Boundary condition definition for empty, symmetryPlane and cyclic

4.2.4.3 Constraint type boundary conditions

allows for reduction of dimensions or computational domain due to axis-symmetry,
symmetry or two dimensionality Figure 4.6. The empty condition allow for the reduction
of dimensions where no solution is required on the empty patch. A symmetryPlan
condition is used at the mirror line of a symmetrical object to reduce the size and
extend of the computational domain. This condition sets all the normal components of
vectors to zero. The cyclic condition requires that a pair of boundaries be identified
and treats these patches as if it is physically connected. This allows for the reduction
of the computational grid in axis-symmetrical cases.

Two special boundary conditions were also used as shown in Figure 4.7. This
condition allows for less stringent pressure conditions on the outlet boundary where
the boundary value assigned is a function of the inner node and a far-field ghost node.
Interpolation between the inner node and the ghost node is used to obtain the value
for the boundary.

4.2.5 Aero-Acoustics Implementation

Hybrid methods are applicable for problem with only one-way coupling between flow
and acoustics. That is, the flow is independent of the acoustics. By doing this, the
problem is divided into two sections, with one being the flow solution and other, the
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Figure 4.7: Boundary condition definition for waveTranmissive

Figure 4.8: Overview of the implemented method

propagation of sound waves. The methodology is described in Figure 4.8. Implementing
Curle’s analogy to compute the sound region assumes that the generation of sound
can be decoupled from its propagation . The aerodynamic quantities are transiently
recorded using a CFD mesh. Since sound is the propagation of unsteady, small,
pressure fluctuations it is of paramount importance that the mesh is fine enough to
capture this phenomena. For the purpose of this work one mesh was used for both the
CFD as well as the acoustic computation.
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Figure 4.9: The hierarchy of the OpenFOAM solvers and the place of the libAcoustics
library [16]

4.2.5.1 The architecture of the libAcoustics library

libAcoustics is on the same level as post-processing utilities of the package (see
Fig.4.9) [16]. It was implemented in the OpenFOAM as dynamical library in real time
together with solvers. The library can use both solution data and solver data when
calculation continues and the last option is preferred because large amount of different
information about solution is converted in specific files. These files are the result of
applying the acoustic analogy and contain only pressure fluctuation at certain points
(see Fig. 4.10) .

The simulation using libAcoustics library needs the following data and parameters
[16]:

• User data. The user must define following input data before simulation: name of
the patches or face sets, which are used for integration, names of the pressure
and density fields, start and end time, frequency range, observer (microphone)
position, sound speed, characteristic length, FastFourier Transform settings for
obtaining SPL data. For instance, when using Curle analogy, user should set a
type name "Curle" in functionObject dictionary.

• Force distribution on the surface of the body. This type of data is obtaining during
the simulation and functionObject gets necessary pressure distribution and face
normal vector using relevant OpenFOAM basic classes and object.

• Time derivative numerical scheme. The numerical scheme for boundary force
time derivative can be of two different types: Euler and upwind.

• Sound observer settings. The reference pressure and observer position are saved
in separate objects in the different class soundObserver and thus need to be
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Figure 4.10: Solution methodology

set in separate sub-dictionary. The separation of the soundObserver data allows
to generalize different types of analogies and enhance code re-use when new
analogies will be implemented. Also in soundObserver sub-dictionary user must
set parameters for objects of the Fast-Fourier Transform class FoamFftwDriver
from third-party library Fftw3. The FoamFftwDriver process pressure fluctuations
obtained from analogy and returns list of the frequencies and amplitudes for
given acoustic pressure. Then SPL is calculated in the output file that is saved at
the end.

• Saving data sequence. The library uses OFstream OpenFOAM class to save
data on the hard drive. Pressure fluctuations and noise SPL data are saved in
specific files for each observer.

• Parameters of parallel mode calculation. In the case of using parallel algorithms
we need to take into account the following points: a) The patches could be in
the different sub-domains; to provide simulations we need to go through all
processors and collect all necessary data using special callings; b) Fast-Fourier-
Transform and writing operations could be executed on a single processor.

4.2.5.2 Time to Frequency Domain Transformation

Since the acoustical solver works in frequency domain and the CFD solver works in
the time domain the data transferred between the solvers (the acoustical source terms)
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needs to be transformed. This is done by computing the Discrete Fourier Transform
(DFT) of the source terms in each node. Computing the DFT directly from its definition
is computationally very expensive. Instead an approximate algorithm is usually used.
These algorithms are called the Fast Fourier Transform or FFT.

4.2.6 Running OpenFOAM codes in Parallel

The method of parallel computing used by OpenFOAM is known as domain decom-
position, in which the geometry and associated fields are broken into pieces and
allocated to separate processors for solution. The first step required to run a parallel
case is therefore to decompose the domain using the decomposePar utility. There is a
dictionary associated with decomposePar named decomposeParDict which is located
in the system directory of the tutorial case. In this case, each processor executes the
same program on its own set of data. At some stage each processor needs data that
exists in other subdomains, then communication between processors is performed to
synchronize the data.

4.2.7 Optimisation process

The concept is numerically optimised to achieve an optimum geometry of two-dimensional
surface waviness. The process proved to be robust whether starting the optimisation
from clean geometry. There are many optimisation approaches for different applica-
tions, from the method of trial-and-error to advanced adjoint optimisation algorithms.
The most common is the genetic or evolutionary algorithm which is based on Darwin’s
theory of natural selection: only the fittest individuals survive and provide their genetic
code to the following generation. The Single-Objective Optimization based on the
OASPL is used to finding global solution with decreased the SPL tones. The flowchart
of the optimisation loop is shown in Figure 4.11.

After obtaining the new mesh from the baseline geometry, simulation of the flow
through the cavity is performed using pisoFoam solver. The optimisation is performed
entirely within shall script. Geom. is the geometry Function which creation automatically
a new geometries based on the two input (Amplitude and cycle). A automatic mesh
method is set up by blockMesh mesher, witch is applied to each new geometry. the
pisoFoam solver implemented in OpenFOAM are used to aerodynamic solver. The
modules pass information along to each subsequent module in serial.
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Figure 4.11: Single-objective optimization (SOO) methodology: evaluation and opti-
mization

4.3 Two Dimensional simulations

All simulations were performed on the cavity of aspect ratio L/D = 4. Through out the
work, the length of the cavity is maintained as 50.8 mm and depth of the cavity as 12.7
mm. Figure 4.12 illustrates the schematic diagram of two dimensional domain adopted
to simulate cavity flows. The flow is from left to right hand side. The domain extends
between 0≤ x/D ≤ 44 and −1≤ y/D ≤ 8. The computational domain extends to 20D and
20D upstream and downstream of the cavity leading and trailing edges, respectively.
The Table 4.1 summaries the details related to the geometry of the two dimensional
cavity.

4.3.1 Computational Mesh

The mesh is a very important part of the calculation; in the evaluation of a CFD
simulation it is necessary to improve the mesh to generate a good simulation. To do that
some dimensionless number are used, Figure 4.13 shows the computational domain
and the grid structure for the cavity. The following figure and table are respectively a
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Figure 4.12: Schematic diagram of the computational domain

Total length of the domain 558.8 mm
Height of the domain 101.6 mm

Cavity length L 50.8 mm
Cavity depth D 12.7 mm

Aspect ratio of the cavity L
D 4

Table 4.1: Details of the Geometry

scaled sketch of the cavity section and sub-divided into blocks with labeled edges and
table of the meshing parameters associated to the different edges.

While running a 2-D simulation OpenFOAM does not support strictly 2-D cases
and the depth of the domain size is therefore specified as 1. This "additional" volume
created by a front and back plane will later on be defined as empty and yield a 2-D
domain.

For applications with complex, inhomogeneous flows and flow-induced noise radia-
tion, the most promising and commonly used numerical technique is to adopt a hybrid
approach. In such an approach, the sound-generation and sound propagation pro-
cesses are considered separately. The general idea is to alternate as fast as possible
between a "noise generation" fine mesh criteria to a "noise propagation" coarser one.
This is achieved by making sure that the highly turbulent zones are meshed with the
fine criteria.
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Figure 4.13: Side View of the Meshing Domain Sub-divided Into Four Blocks with
Labeled Edges

4.3.2 Large Eddy Simulations

The solver use traditional Large Eddy Simulations (LES) wall model in conjunction
with an acoustic analogy, in order to predict the aeroacoustic behavior of cavity flow.
The idea underlying LES is so called convergent evolution. Behavior of the large-scale
eddies depends strongly on the forces acting on the flow and on initial and boundary
conditions; they are flow-dependent. Small-scale eddies are generally in dependent
from what is happening on the larger scales; they are flow-independent. Hence large
eddies are directly resolved while small eddies are modeled. To perform the simulation
with LES method in CFD are used the continuity and momentum equation, below are
present the continuity and momentum equations without filtering.
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∂p
∂t

+ ∂(ρui)
∂xi

= 0 (4.7)

∂

∂t
(ρui)+ ∂

∂x j
(ρuiu j)=− ∂p

∂xi
+ ∂

∂x j
[ρν(

∂ui

∂x j
+ ∂u j

∂xi
)] (4.8)

Filtering operation is applied to continuity and momentum equations

∂p
∂t

+ ∂(ρūi)
∂xi

= 0 (4.9)

∂

∂t
(ρui)+ ∂

∂x j
(ρuiu j)=− ∂p

∂xi
+ ∂

∂x j
[ρν(

∂ui

∂x j
+ ∂u j

∂xi
)] (4.10)

To reduce the momentum filter equation are used the following considerations :

1. The product of filter velocities is uiu j = uiu j +u
′
iu

′
j;

2. The subgrid stress tensor, which is the Reynolds stress tensor is τ
′
i j = ρu

′
iu

′
j =

ρ(uiu j −uiu j);

3. The filtered strain tensor rate is S i j = 1
2

(
∂ūi

x j
+ ∂ū j

∂xi
);

4. The filtered viscous stress tensor is τi j = 2ρνS̄i j .

The result of the reduction of the momentum filter equation is :

∂

∂t
(ρui)+ ∂

∂x j
(ρuiu j)=− ∂p

∂xi
+ ∂

∂x j
[ρν(τi j −τ

′
i j) (4.11)

Spectrum of turbulent eddies in the Navier-Stokes equations is filtered :

1. The filter is a function of grid size;

2. Eddies smaller than the grid size are removed and modeled by a subgrid scale
(SGS) model;

3. Larger eddies are directly solved numerically by the filtered transient N-S equa-
tion.

Leonard (1974) proposes a model it as the application of a convolution filter to the exact
solution. The filtered part ū of the variable u is defined by the following convolution
operator (denoted by the symbol * hereafter) :
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u(x, t)=
t∫

−∞

+∞∫
−∞

G(∆,θ, |x− x
′ |, t− t

′
)u(x

′
, t

′
)dx

′
dt

′ =G(∆,θ, )∗u(x, t) (4.12)

where G(∆,θ, |x− x
′ |, t− t

′
) is the kernel of the filter. The two arbitrary parameters ∆

and θ are the cutoff length and the cutoff time, respectively. It can be proven that G must
depend on the distance |x− x

′ | to preserve certain symmetries of the Navier-Stokes
equations. The small-scale subgrid part u

′
is then defined as :

u
′
(x, t)= u(x, t)− ū(x, t) (4.13)

Next it is generated a filtration to reduce them for Explicit LES and Implicit LES:

1. Explicit (i.e., associated with the application of a convolution filter to the DNS
solution).

2. Implicit (i.e., imposed by numerical errors, the computational mesh, or modeling
errors) or even a blending of these two possibilities. The numerical filter: the
numerical error, which is not uniformly distributed over the resolved frequencies,
can also be interpreted as a filter. When local numerical methods such as
finite element, finite volume, or finite difference methods are used to solve the
governing equations, the numerical error is observed to be an increasing function
of the wave number. Consequently, the dynamics of the highest frequencies
resolved on the computational grid are only poorly captured, and these scales
can be considered as being filtered.( M. Hahn et al , 2005)[29],(Thornber et al,
2008)[68] and (Drikakis et al. ,2009)[15].

The subgrid stress tensor is expressed as: τ
′
i j = ρ( ¯uiu j − ūi ū j + τ̃′

i j), where the
tensor τ̃

′
i j is considered equal to subbgrid dissipation scale action. High-resolution

methods are most commonly associated with compressible flow solutions. Their in-
troduction to incompressible flow solutions was most directly impacted by their use
with a projection method by Bell, Colella, and Glaz (1989), as well as with the artificial
compressibility method by Drikakis, Govatsos, and Papantonis (1988). (FERNANDO F.
et al., 2007)[26].

One Equation Eddy Model Most one equation models are solving one equation
for their own subgrid-scale quantity, which also based on the eddy-viscosity concept.
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One such typical scale like kinetic energy kSGS, is defined as the subtracting of kinetic
energy and the resolved kinetic energy:

kSGS = K −kRES = 1
2
τi j (4.14)

The transport equation for SGS turbulent energy can be derived by first subtracting
the filtered equations of motion from their resolved parts to give a relation to the
fluctuating component of velocity u

′
. And then multiply the result by the sub-grid

velocity vector to give the equation, which was first formulated by Yoshizawa [72] as:

∂kSGS

∂t
+ ∂

∂x j
(uikSGS)= ∂

∂x j
[(ν+νSGS)

∂kSGS

∂x j
]+2νSGSS i jS i j − 1

∆
Cek

3
2
SGS (4.15)

νSGS = Ckk
1
2
SGS∆ (4.16)

The production term 2νSGSS i jS i j in this equation is equivalent to the SGS dissi-
pation in the equation for the resolved turbulent kinetic energy kRES. ∆ is taken to be
the power average of the grid sizes in all directions, ∆= (∆x∆y∆z)

1
3 . Default values of

model coefficients Ce and Ck are given in OpenFoam as Ce = 1.048 and Ck = 0.094.

4.3.3 Initial and boundary conditions

Free stream variables for each length-to-depth ratio were set everywhere in the domain
as the initial condition for the unsteady flow with M = 0.3 and Re = 3.2×10−5 . The
results presented here were normalized on the following conditions: Air at 200C and 1
bar; Dynamic viscosity µ= 1.82×10−5Nsm−2, Density ρ = 1.19kgm−3. The boundary
conditions are defined in the Table 4.2. Furthermore, time dependency is a crucial
factor of this study due the unsteadiness of the flow field consisting of random and
periodic pressure fluctuation occurring within the cavity. Each time step was set as
0.25×10−5 seconds with initial time equal to zero and a the maximum time duration
was set as 49500 time steps, cumulating a simulation time of 0.4975 seconds.

Figure 4.14 shows the density of mesh resolution near the walls and in the cavity
region. The boxed region which is highlighted at the upper left corner represents
the high mesh density. It is the region where the shear layer and other important
mechanisms begin for hydrodynamics and aeroacoustics.

The Virtual microphones positions are also depicted for visual inspection in the xy
plane in Figure 4.15.
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Boundary Velocity Pressure nuSgs
Inlet timeVaryingUniformFixedValue; M=0.3 zeroGradient zeroGradient
outlet zeroGradient totalPressure zeroGradient

cavity and bottom Wall; No-Slip zeroGradient zeroGradient
Top Free-Stream zeroGradien zeroGradient

front/back empty empty empty

Table 4.2: Boundary conditions

Figure 4.14: Mesh density: a) Baseline cavity b) Wavy cavity

Figure 4.15: Microphone positions

4.4 Three Dimensional simulations

Figure 4.16 illustrates the schematic diagram of three dimensional computational
domain adopted to simulate cavity flows for the fate case. The flat case mesh replicates
the two-dimensional parameters detailed in section 4.3. The 3rd dimension mesh has
been obtained using the consecutive extrusions by normal element. The flow is from

61



CHAPTER 4. DOMAIN GENERATION METHODOLOGY

Edges A B C F E G N
Nodes 101 254 150 150 88 25 25
Grid Size 4.289.400
Mesher type Quadrilateral mesh

Table 4.3: Meshing Parameters

left to right hand side, the computational domain extends to 20D and 20D upstream
and downstream of the cavity leading and trailing edges, respectively.

Figure 4.16: Side and front View of the Meshing Domain Sub-divided Into Four Blocks
with Labelled Edges

The sound is the propagation of unsteady, small, pressure fluctuations it is of
paramount importance that the mesh is fine enough to capture this phenomena. The
table 4.3 detailed the meshing parameters associated to the different edges of the
cavity section sub-divided into blocks.

The Computational mesh for the wavy case was generated to keep the same grid
resolution defined for the baseline case. Figures (4.17, 4.18) show the Mesh topology
for both baseline and wavy case respectively.
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Figure 4.17: Baseline case mesh

Figure 4.18: wavy case mesh

The microphone positions are also depicted for visual inspection in the xyz plane in
Figure 4.19.

63



CHAPTER 4. DOMAIN GENERATION METHODOLOGY

Figure 4.19: Microphone positions

4.4.1 Detached Eddy Simulation

Detached eddy simulation (DES) was originally formulated for the Spalart Allmaras
model and is a hybrid approach which combines classical RANS and LES models. It
bases on the idea to cover boundary layers by a RANS model and to switch to LES
model in separated flow regions, which are typically characterised by larger turbulent
structures. In other words, it allows a much coarser domain discretization than LES
and therefore a reduced computational time, but still offers some of the advantages of
an LES method in separated regions.

4.5 wake mode

Three-dimensionality has been shown to play a role in suppressing the wake mode.
Large eddy simulations by Shieh and Morris [59] showed that two-dimensional cavities
in wake mode return to shear-layer mode when three-dimensional disturbances are
present in the incoming boundary layer. Similarly, recent work by Suponitsky et al. [66]
showed that the development of a three-dimensional flow field, generated by the intro-
duction of the random in flow disturbance into a two-dimensional cavity oscillating in
wake mode, yielded the transition to the shear-layer mode, regardless of the amplitude
and shape of the in flow disturbance.
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5
APPLICATION OF TRIPLE DECK THEORY TO SUBSONIC

FLOW OVER A SURFACE WAVINESS

5.1 Introduction

The main physical ideas underlying Triple-Deck theory were laid down by Lighthill
(1953) [41] treated interaction mathematically by perturbing a parallel flow, lin-
earizing the Navier equations around it, and produced a coherent self-consistent

theory of interaction that divides the region of interest into three parts: the inviscid flow
outside the boundary layer, the displaced boundary layer in which the perturbations
are governed by linearized compressible Euler equations, and an inner part close to
the wall in which the perturbations are governed by incompressible boundary-layer
equations.

Then, Gadd (1957) developed an approximate theory to extend the Lighthill’s anal-
ysis to the nonlinear case. Stewartson (1969)[64], Stewartson and Williams (1969)[65]
and Messiter (1970)[45] extended Lighthill’s theory to nonlinear interactions and used
the Gadd approximate to developed the Triple-Teck theory to overcome the singularities
present in the boundary-layer solutions at the point of separation and at the edge of the
flat plate. Hunt (1971)[30] and Smith (1973)[60], using order of magnitude arguments,
investigated the structure of an incompressible flow at high Reynolds number past a
hump on an otherwise smooth surface. In these cases The Triple-deck theory is able to
accurately describe the interaction between the boundary layer flow and inviscid flow
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outside the boundary layer. Triple-deck theory was extended to include unsteady flows
by Schneider (1974)[58]. Here it was noted that the flow in the viscous lower deck
was the most sensitive to unsteady perturbations to the flow and deduced the char-
acteristic time within the lower deck. The flow in the main and upper decks was seen
to remain quasi-steady. The asymptotic foundation of two-dimensional, steady-state
Triple-Deck theory (for incompressible and compressible flows) is reviewed by Zeytou-
nian (2002)[73]. Diesperov and Korolev (2003)[34] investigated the transonic flow past
a small hump on a flat plate by solving the Triple-Deck equations with the interaction
governed by the nonlinear Kármán - Guderley equation in the upper deck. They were
able to demonstrate the existence of closed pockets of supersonic regions in the outer
flow in conjunction with separation in the lower deck. Recently, Lipatov and Koroteev
have published a series of papers (see for instance Lipatov (2006)[42], Koroteev and
Lipatov (2009[35], 2012[? ], 2013[37])) in which micro-electro-mechanical-system
(MEMS) devices are modelled as small flat-plate localised heating elements located in
the boundary layer. The work of Mengaldo et al. (2015)[44] who looked at subsonic
and transonic flows over roughness elements, suggests that Triple-Deck theory is able
to correctly capture the main qualitative physics in practical aeronautical applications,
although there are some differences in the quantitative results when compared to the
full Navier-Stokes computations.

Our interest lies in trying to gain a better understanding, from a mathematical
perspective, of how surface waviness can be used to change the flow properties.
For aircraft, if we take the typical Reynolds numbers to be large and assume the
characteristic size of a wing fuselage to be 4 m, then the size of the interaction region
in the Triple-Deck theory is approximately 1 cm.

In the following analysis Section 1, we will examine a problem not with single
hump, but with a multiple humps (wall waviness), periodic perturbation with the Triple-
Deck scaling y = hR− 5

8 F(R− 3
8 x) extending from a distance L0 downstream from the

leading edge. In Section 2, the appropriately scaled governing equations and boundary
conditions are introduced, and the Triple-Deck structure described. The important
lower-deck equations are derived in Section 3. In Section 4, the results of these non-
linear calculations are examined for increasing amplitude h, wavelength and incoming
velocity.
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5.2 Problem formulation

We consider laminar, incompressible, two-dimensional, steady flow past a flat plate on
which there is a surface waviness has dimensions that are small compared with those
of the boundary layer along the plate, described by the Navier-Stokes equations. The
incoming flow is uniform and, therefore, irrotational. We assume that the perturbation
produced by the boundary layer on the inviscid flow is of order ε for the velocity
components and for the pressure. In addition, the small deformation of the wall induces
a perturbation formally of the same order (Figure 5.1). We use an orthonormal axis
system (x, y) with all the quantities are non-dimensionalised by using the free stream
velocity U∞ and the abscissa L0 of the surface waviness location.

Figure 5.1: Model problem (flat plate deformed by a surface waviness)

We use the following dimensionless variables with the asterisk denoting dimensional
quantities and ∞ free-stream values:

x = x∗

L0
, y= y∗

L0
, u = u∗

U∞
, v = v∗

U∞
, p = p∗

ρU2∞

The two dimensionless Navier-Stokes equations in terms of dimensionless variables
are given by:

∂u
∂x

+ ∂v
∂y

= 0

u
∂u
∂x

+v
∂u
∂y

=−∂p
∂x

+ 1
R
∂2u
∂x2 + 1

R
∂2u
∂y2

u
∂v
∂x

+v
∂v
∂y

=−∂p
∂y

+ 1
R
∂2v
∂x2 + 1

R
∂2v
∂y2

(5.1)

The Reynolds number Re defined by Re = ρ∞U∞L0/µ∞ is assumed to be large.
Here ρ∞, U∞ and µ∞ are the density, the streamwise velocity and the dynamic viscosity
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coefficient, respectively, in the undisturbed flow above the surface where the surface
waviness is located. The no-slip condition for the fluid at the body surface u(x,0) =
v(x,0)= 0 and the condition of matching the solutions for the boundary layer and the
outer inviscid flow field, which can be written as
lim
y→∞u(x, y)= lim

y→0
U(x, y)=Ue(x)

∂p
∂x

|y=0= p
′
e(x) = −Ue(x)U

′
e(x) The perturbations are caused by the rippled surface

y0(x) = εsinαx (Figure 5.1) where ε is amplitude and α = 2π/L the reciprocal wave
length. Consequently the flow properties may be expressed as the sum of a mean
value and a small perturbation harmonic in αx The small parameter ε is defined by:

ε= 1
Rm , where m is arbitrary (m > 0) (5.2)

In the inviscid flow region, the Navier-Stokes equations reduce to the Euler equa-
tions. In this region, the flow velocity components and the pressure are expanded
as:

u = u1(x, y)+ ..., v = v1(x, y)+ ..., p = p1(x, y)+ ..., (5.3)

and the Euler equation can be written as:

∂u1

∂x
+ ∂v1

∂y
= 0

u1
∂u1

∂x
+v1

∂u1

∂y
=−∂p1

∂x

u1
∂v1

∂x
+v1

∂v1

∂y
=−∂p1

∂y

(5.4)

The no-slip conditions at the wall cannot be satisfied, it is necessary to introduce a
boundary layer structure. The dependent variables are resolved into a mean undis-
turbed component denoted by the subscript 0 and a disturbed component which is
identified by a tilde:

u
′ = u0(Y )+εũ(x

′
, y

′
;ε)...,

v
′ = εṽ(x

′
, y

′
;ε)+ ...,

p
′ = p0 +εp̃(x

′
, y

′
;ε)+ ...,

(5.5)

where Y is the local variable Y = y
′

ε
. All the scales and asymptotic structures are

discussed in [12]. Then substituting these expressions into the incompressible Navier-
Stokes equations, applying the aforementioned simplifying assumptions and retaining
only first order perturbations, the boundary layer equations are given:
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∂u
′

∂x′ +
∂v

′

∂Y
= 0

u
′ ∂u

′

∂x′ +v
∂u

′

∂Y
=−∂p

′

∂x′ +
∂2u

′

∂Y 2

0=−∂p
′

∂Y

(5.6)

at Y = 0 ⇒ u
′ = 0, v

′ = 0

lim
Y−→∞

u
′
(x

′
,Y )= u1(x,0)

v1(x,0)= 0

lim
Y−→∞

p
′
(x

′
,Y )= p1(x,0)

(5.7)

The Prandtl’s transposition theorem can be applied to Eqs. 5.6, 5.7 in order to
make the longitudinal axis coincide with the body surface by defining new longitudinal
and vertical independent variables and a new normal velocity component as:

(x
′
, y

′
) 7−→ [x = x

′
, y= y

′ −F(x
′
)] (5.8)

where F(x
′
) is the equation of the surface waviness.

The following change on the velocity components is also introduced:

u = u
′
, v = v

′ − dF
dx′ u

′
, p = p

′
(5.9)

Applying the chain rule:

∂p
∂x

= ∂p
′

∂x′
∂x

′

∂x
+ ∂p

′

∂y′
∂y

′

∂x
= ∂p

′

∂x′ −F
′
(x)

∂p
′

∂y′

∂p
∂y

= ∂p
′

∂x′
∂x

′

∂y
+ ∂p

′

∂y′
∂y

′

∂y
= ∂p

′

∂y′

(5.10)

The Navier-Stokes equations become [12]:

• Continuity equation
∂u
∂x

+ ∂v
∂y

= 0,

• x-momentum equation

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∂p
∂y

dF
dx

+ εm ∂2u
∂x2 − 2εm ∂2u

∂x∂y
dF
dx

+ εm ∂2u
∂y2 (

dF
dx

)2 − εm ∂u
∂y

d2F
dx2 +

εm ∂2u
∂y2 ,
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• y-momentum equation

u
∂v
∂x

+u2 d2F
dx2 +v

∂v
∂y

+u
dF
dx

∂u
∂x

+v
∂u
∂y

dF
dx

=−∂p
∂y

+2εm d2F
dx2

∂u
∂x

+εm ∂2u
∂y2 (

dF
dx

)3−2εm ∂2v
∂x∂y

(
dF
dx

)+

εmu
d3F
dx3 − εm ∂v

∂y
d2F
dx2 − 2εm ∂2u

∂x∂y
(
dF
dx

)2 + εm ∂2u
∂y2

dF
dx

+ εm dF
dx

∂2u
∂x2 + εm ∂2v

∂y2 (
dF
dx

)2 −

3εm d2F
dx2

∂u
∂y

dF
dx

+εm ∂2v
∂x2 +εm ∂2v

∂y2

The streamwise extent of the perturbation is εα so that the variable adapted to the
study is

X = x
εα

, Y = y
εm/2

The Blasius solution Ub, can then be approximated using a Taylor expansion around
x ' 0 :
Ub(x'0,Y ) =U0(Y )+O(εα) Where U0(Y )=Ub(0,Y ).

The boundary layer perturbations are sought in the general form

u =U0(Y )+µU(X ,Y ) µ¿ 1 where the gauge µ is unknown a priori.

The scalings of this problem require a division of the vertical structure into a
Triple-Deck regime as shown in Figure 5.2: a viscous sublayer (’Lower Deck’) and an
inviscid main part of the boundary layer (’Main Deck’), where the third tier is an inviscid
potential flow (’Upper Deck’) outside of the boundary layer. The Triple-Deck structure
establishes a link between the unperturbed upstream flow and the downstream flow.

Figure 5.2: Triple deck structure [12]
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The streamwise and transverse length scales of the perturbed region are LR
−3
8 .

Inside the perturbed region, there are three decks.

• Lower Deck: The "Lower Deck" or viscous sublayer: the thickness of the lower
deck is LR

−5
8 , is comprised of the stream filaments immediately adjacent to the

wall. Even a small variation of pressure along the wall may cause significant
deceleration/acceleration of fluid particles there. As a result the flow filaments
change their thickness leading to a deformation of streamlines. This process is
termed the displacement effect of the boundary layer. The perturbations in this
lower layer called are transmitted through the "Main Deck".

• Main Deck: The basic boundary layer, which is now the "Main Deck". The main
part of the boundary layer, the middle tier of the interactive structure, represents
a continuation of the conventional boundary layer developing along the plate. Its
thickness is estimated as LR

−1
8 . The flow in this tier is significantly less sensitive

to the pressure variations. It does not produce any noticeable contribution to the
displacement effect of the boundary layer, which means that all the streamlines
in the middle tier are parallel to each other and carry the deformation produced
by the displacement effect of the viscous sublayer.

• Upper Deck: The upper tier is situated in the potential flow region outside the
boundary layer. It serves to convert the perturbations in the form of the stream-
lines into perturbations of pressure. These are then transmitted through the main
part of the boundary layer back to the "Lower Deck", enhancing the process of
fluid deceleration. This process is self-sustained, and it drives the boundary layer
towards the separation.

As in all Triple-Deck problems, it reduces to solving the lower-deck equations. These,
in turn, will furnish solutions for the main and upper decks.

We consider the surface waviness on the wall y = 0 of equation y = εβ f (
x
εα

). To
determine the layer thicknesses and the gauge functions, depending on the values
of the two parameters α,β. Four zones have been identified Figure 5.3 shows the

limits of these four zones depending on the hump’s height (h) and horizontal size
(L). Two conditions are imposed : β > m

2
, β > α. Physically, this means that the

protuberance height is less than the incident boundary layer thickness, and less than
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its dimensions in the x direction.
In the map (α,β), four significant zones are defined [52]:

• Zones 1 and 2 have linear equations in the lower deck;

• Zones 3 and 4, corresponding to higher protuberances, have non-linear ones;

• Zones 1 and 3 the lower-deck equations are solved in direct mode with prescribed
pressure;

• Zones 2 and 4, they are solved in inverse mode with the displacement thickness
is prescribed and the pressure is deduced from the resulting solution.

They are delimited by different straight lines whose meaning is given below (Fig. 5.3).

• D1: β=α. The height of the surface waviness must be smaller than its length.

• β = m/2. For β > m/2, the hump height is smaller than the thickness of the
oncoming boundary layer.

• β = m/2. For β > m/2, the hump height is smaller than the thickness of the
oncoming boundary layer.

• α= 3m/8. This line defines the boundary between zone 1 and zone 2 wh ch differ
by the mode of resolution. The direct mode applies in zone 1 and the inverse
mode in zone 2.
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• D5: β = α+ m/2. If β > α+ m/2, the
perturbations are small with respect
to the second order of the standard
boundary layer theory. For example,
the first order of the pressure in zone
1 is εβ−α whereas the second order in
the boundary layer is εm/2.

• α = 3m/10. This boundary is given
by the study of second order terms
and defines the hierarchy between
U∗

1 and Ū2. Along the straight line D6,
the point of abscissa α= 3m/10 corre-
sponds to β= m/2 which is the limit of
the hump height.

• D6: β = 5α/3. This line defines the
boundary for the linearity of lower
deck equations between zones 1 and
3. In zone 1, the lower deck equations
are linear whereas in zone 3, they are
non linear.

Figure 5.3: Delimitation of different zones
around the Triple-Deck; T.D.: Triple-Deck,
D.D.: double deck [12],[11]

• D3: β=α/3+m/2. This line defines the boundary for the linearity of lower deck
equations between zones 2 and 4. In zone 2, the lower deck equations are linear
whereas in zone 4, they are non linear.

• α= m/2. The upper deck dimension is of order εα. The line 4α= m/2 defines the
minimum of the streamwise hump extent which is supposed to be larger than the
thickness of the oncoming boundary layer; this condition implies the existence of
an upper deck thicker than Blasius boundary layer which is of order εm/2.

• D4: β= m−α/3. If β> m−α/3 the perturbations are large compared to the second
order of the standard boundary layer theory. For example, the first order of
the pressure in zone 2 is εβ+α/3−m/2 whereas the second order of the standard
boundary layer is εm/2.

• D2: β=−α+m. This line defines the boundary of zones 3 and 4 which differ by
the mode of resolution of equations: direct mode in zone 3 and inverse mode in
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zone 4.

Zone 1

Y ∗ = y
εα

, Ȳ =Y = y
εm/2 , Ỹ = y

εα/3+m/2

Upper deck

• u = 1+εβ−αU∗
1 + ...,

• v = εβ−αV∗
1 + ...,

• p = εβ−αP∗
1 + ...,

•
∂U∗

1

∂X
+ ∂V∗

1

∂Y ∗ = 0,

•
∂U∗

1

∂X
=−∂P∗

1

∂X
,

•
∂V∗

1

∂X
+ d2 f

dX2 =−∂P∗
1

∂Y ∗ .

Main deck

• u =U0(Y )+εβ−4α/3U1 +εβ−8α/3U2 + ...,

• v = εβ−7α/3+m/2V 1 + ...,

• p = εβ−αP1,

•
∂U1

∂X
+ ∂V 1

∂Y
= 0,

• U0
∂U1

∂X
+V 1

dU0

dY
= 0,

•
∂P1

∂Y
= 0.

Lower deck

• u = εβ/3λỸ +εβ−4α/3Ũ1 + ...,

• v = εm/2−2α+βṼ1 + ...,

• p = εβ−αP̃1 + ...,

•
∂Ũ1

∂X
+ ∂Ṽ1

∂Ỹ
= 0,

• λỸ
∂Ũ1

∂X
+λṼ1 =−∂P̃1

∂X
+ ∂2Ũ1

∂Ỹ 2

•
∂P̃1

∂Ỹ
= 0.

Zone 2

Y ∗ = y
εα

, Ȳ =Y = y
εm/2 , Ỹ = y

εα/3+m/2

Upper deck

• u = 1+εβ+α/3−m/2U∗
2 + ...,

• v =−εβ−α d f
dX

+εβ+α/3−m/2V∗
2 + ...,

• p = εβ+α/3−m/2P∗
2 + ...,

•
∂U∗

2

∂X
+ ∂V∗

2

∂Y ∗ = 0,

•
∂U∗

2

∂X
=−∂P∗

2

∂X
,

•
∂V∗

2

∂X
=−∂P∗

2

∂Y ∗ .
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Main deck

• u = U0(Y ) + εβ−m/2 f (X )
dU0

dY
+

εβ+4α/3−mU2 + ...,

• v =−εβ−α d f
dX

U0(Y )+εβ+α/3−m/2V 2+...,

• p = εβ+α/3−m/2P2 + ...,

•
∂U2

∂X
+ ∂V 2

∂Y
= 0,

• U0
∂U2

∂X
+V 2

dU0

dY
= 0,

•
∂P2

∂Y
= 0.

Lower deck

• u = εα/3λỸ +εβ−m/2Ũ1 + ...,

• v = εβ−2α/3Ṽ1 + ...,

• p = εβ+α/3−m/2P̃1 + ...,

•
∂Ũ1

∂X
+ ∂Ṽ1

∂Ỹ
= 0,

• λỸ
∂Ũ1

∂X
+λṼ1 =−∂P̃1

∂X
+ ∂2Ũ1

∂Ỹ 2

•
∂P̃1

∂Ỹ
= 0.

Zone 3

Y ∗ = y
εα

, Ȳ =Y = y
εm/2 , Ỹ = y

ε(3α−β+2m)/4

Upper deck

• u = 1+εβ−αU∗
1 + ...,

• v = εβ−αV∗
1 + ...,

• p = εβ−αP∗
1 + ...,

•
∂U∗

1

∂X
+ ∂V∗

1

∂Y ∗ = 0,

•
∂U∗

1

∂X
=−∂P∗

1

∂X
,

•
∂V∗

1

∂X
+ d2 f

dX2 =−∂P∗
1

∂Y ∗ .

Main deck

• u =U0 +ε(β−α)/2U1 + ...,

• v = ε(β−3α+m)/2V 1 + ...,

• p = εβ−αP1,

•
∂U1

∂X
+ ∂V 1

∂Y
= 0,

• U0
∂U1

∂X
+V 1

dU0

dY
= 0,

•
∂P1

∂Y
= 0.

Lower deck

• u = ε(β−α)/2Ũ1 +ε(3α−β)/4λỸ + ...,

• v = ε(β−3α+2m)/4Ṽ1 + ...,

• p = εβ−αP̃1 + ...,

•
∂Ũ1

∂X
+ ∂Ṽ1

∂Ỹ
= 0,

• Ũ1
∂Ũ1

∂X
+ Ṽ1

∂Ũ1

∂Ỹ
=−∂P̃1

∂X
+ ∂2Ũ1

∂Ỹ 2

•
∂P̃1

∂Ỹ
= 0.
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Zone 4

Y ∗ = y
εα

, Ȳ =Y = y
εm/2 , Ỹ = y

ε(2α−2β+3m)/4

Upper deck

• u = 1+ε2β−mU∗
2 + ...,

• v =−εβ−α d f
dX

+ε2β−mV∗
2 + ...,

• p = ε2β−mP∗
2 + ...,

•
∂U∗

2

∂X
+ ∂V∗

2

∂Y ∗ = 0,

•
∂U∗

2

∂X
=−∂P∗

2

∂X
,

•
∂V∗

2

∂X
=−∂P∗

2

∂Y ∗ .

Main deck

• u = U0 + εβ−m/2 f (X )
dU0

dY
+

ε2β+α−3m/2U2...,,

• v =−εβ−α d f
dX

U0 +ε2β−mV 2 + ...,

• p = ε2β−mP2.

•
∂U2

∂X
+ ∂V 2

∂Y
= 0,

• U0
∂U2

∂X
+V 2

dU0

dY
= 0,

•
∂P2

∂Y
= 0.

Lower deck

• u = εβ−α/2Ũ1 +ε(2α−2β+m)/4λỸ + ...,

• v = ε(2β−2α+2m)/4Ṽ1 + ...,

• p = ε2β−mP̃1 + ...,

•
∂Ũ1

∂X
+ ∂Ṽ1

∂Ỹ
= 0,

• Ũ1
∂Ũ1

∂X
+ Ṽ1

∂Ũ1

∂Ỹ
=−∂P̃1

∂X
+ ∂2Ũ1

∂Ỹ 2
.

•
∂P̃1

∂Ỹ
= 0.

5.3 Methodology of analytical solution

In this work, the structure of the flow is studied along the line β=−α+m (D2), with
3m/8<α< m/2, (Figure 5.3), corresponding to the model delimited by zone number 3:

Y ∗ = y
εα

Ȳ =Y = y
εm/2 Ỹ = y

ε(4α+m)/4
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Upper deck

• u = 1+εm−2αU∗
1 + ...,

• v = εm−2αV∗
1 + ...,

• p = εma−2αP∗
1 + ...,

•
∂U∗

1

∂X
+ ∂V∗

1

∂Y ∗ = 0,

•
∂U∗

1

∂X
=−∂P∗

1

∂X
,

•
∂V∗

1

∂X
+ d2 f

dX2 =−∂P∗
1

∂Y ∗ .

Main deck

• u =U0 +ε(m−2α)/2U1 + ...,

• v = εm−2αV 1 + ...,

• p = εm−2αP1,

•
∂U1

∂X
+ ∂V 1

∂Y
= 0,

• U0
∂U1

∂X
+V 1

dU0

dY
= 0,

•
∂P1

∂Y
= 0.

Lower deck

• u = ε(m−2α)/2Ũ1 +ε(3α−β)/4λỸ + ...,

• v = ε(3m−4α)/4Ṽ1 + ...,

• p = εm−2αP̃1 + ...,

•
∂Ũ1

∂X
+ ∂Ṽ1

∂Ỹ
= 0,

• Ũ1
∂Ũ1

∂X
+ Ṽ1

∂Ũ1

∂Ỹ
= −∂P̃1

∂X
+

∂2Ũ1

∂Ỹ 2

•
∂P̃1

∂Ỹ
= 0.

5.3.1 Main Deck

In this deck, the first terms denote by U0(Y ), the non perturbed velocity profile of the
boundary layer at point x = x0 and its slope at the wall, which does not depend on
X, this means that, to the considered order, the basic velocity profile does not vary
significantly in the perturbation domain. The upstream boundary condition results from
matching to the Blasius solution. The non perturbed flow is described by the equation
2 f

′′′
B + fB f

′′
B = 0 with U0(x,Y )= f

′
B(η) and η=Y x

−1
2 .

The equation as follows are solved.

Using:
∂U1

∂X
+ ∂V 1

∂Y
= 0 and U0

∂U1

∂X
+V 1

dU0

dY
= 0

give:

−U0
∂V 1

∂Y
+V 1

dU0

dY
= 0 (5.11)
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Dividing both terms by U2
0 , the Equ. 5.11 become − 1

U0

∂V 1

∂Y
+V 1

U
′
0

U2
0
= 0 or

equivalently
∂

∂Y
(
V 1

U0
)= 0

The ratio
V 1

U0
is a function of X only, V 1 become −dA

dX
U0 where A(X ) is an unknown

displacement function.

The velocity-Blasius profile is given by: U0
∼= λY + 1

2
λ2Y

2
as Y → 0. where the

constant λ is defined by λ= (
dU0

dY
)Y=0, is the local scaled skin friction of the oncoming

boundary layer. Also the constant λ2, is equal to the local externally produced pressure

gradient
dp
dx

driving the boundary layer in the absence of the surface waviness.
In the main deck, the solution is:

• U1 = A(X )U
′
0(Y ) with U

′
0(Y )= dU0

dY
;

• V 1 =−A
′
(X )U0(Y ) with A

′
(X )= dA

dX
;

• P1 = P1(X ).

The appropriate form of the solution to the resulting equations is:

u =U0 +ε(m−2α)/2A(X )U
′
0(Y )+ ...,

v =−εm−2αA
′
(X )U0(Y )+ ...,

p = εm−2αP1.

(5.12)

Where the displacement function A and P are unknown of the problem function of X .
A(X ) can be interpreted as the velocity slip at the base of the main deck corresponding
to the inviscid perturbation of the upstream Blasius solution by the induced pressure
gradient. Another useful interpretation of A(X ) can be seen by noting that to second
order the stream wise velocity in the main deck can be written in the form U0(y+εA),
where U0(y) is the Blasius solution and y the main-deck coordinate. Thus, can be
regarded as a displacement thickness. By continuity, the transverse velocity at the top
of the main deck is −ε2A

′
(X ), which must match the potential flow at the base of the

upper deck [31].
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5.3.2 Lower Deck

The initial conditions are given by:

• X →−∞ is satisfied provided A(−∞)= 0.

• On the surface waviness Y = f (X ) no-slip conditions Ũ1 = 0, Ṽ1 = 0,
∂Ũ1

∂Ỹ
= 0

• lim
Ỹ→∞

(Ũ1 −λỸ )=λ(A+ f ), or Ũ1 →λ(Ỹ + A+ f ), as Ỹ →∞.

The conditions which relate the displacement thickness with the longitudinal vilocity
are supplied with the interaction condition, which, in turn, relates the displacement
thickness with th pressure and thus expresses the interaction of the viscous sublayer
with the outer inviscid flow [36].

5.3.3 Upper Deck

The first term in the upper deck is 1, the value of the first approximation for the inviscid
flow outside the boundary layer. from matching the solutions between the upper layer
(as Y ∗ → 0) and main layer (as Y →∞):

a) Y ∗ → 0 : U0 → 1 U∗
1 = 0;

b) V∗
1 =− ∂ f

∂X
;

c) V∗
1 (X ,0)= lim

Y→∞
V 1(X ,Y );

d) V∗
1 (X ,0)=−dA

dX
;

e) P∗
1 (X ,0)=−U∗

1 (X ,0);

f ) P∗
1 (X ,0)= lim

Ỹ→∞
P̃1(X , Ỹ ).

(5.13)

The Fourier transform Ĝ(α,Y ) of a function g(X ,Y ) and the inversion integral are
defined by the following formulas:

• Ĝ(α,Y ∗)=
∞∫

−∞
g(X ,Y ∗)e−2iπXαdX ,

• g(X ,Y ∗)=
∞∫

−∞
Ĝ(α,Y ∗)e2iπXαdα,
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•
∂̂g
∂X

= 2iπαĜ.

The equation for V̂∗
1 is deduced

−4π2α2V̂∗
1 + ∂2V̂∗

1

∂Y ∗2 = 2iπα
d2 f̂
dX2 (5.14)

The solution of homogeneous linear equations −4π2α2V̂∗
1 + ∂2V̂∗

1

∂Y ∗2 = 0 are given
by:

V̂∗
1 = K1e2παY ∗

1 +K2e−2παY ∗
1 (5.15)

Let V̂∗
0 (α) be the Fourier transform of the velocity component V∗

1 at Y ∗
1 = 0. In order

that the velocity component V∗
1 vanish as Y ∗

1 →∞, the solution writes:
• α≤ 0 : V̂∗

1 = V̂∗
0 e2παY ∗

1

• α≥ 0 : V̂∗
1 = V̂∗

0 e−2παY ∗
1

or V̂∗
1 = V̂∗

0 e−2π|α|Y ∗
1

and we obtain:

Û∗
1 =−isgn(α)V̂∗

0 e−2π|α|Y ∗
1 (5.16)

The Method of Variation of Parameters:

Vp =G1(K1e2παY ∗
1 )+G2(K2e−2παY ∗

1 )

Differentiating this equation
V

′
p = (G

′
1(K1e2παY ∗

1 )+G
′
2(K2e−2παY ∗

1 ))+ (G1(K1e2παY ∗
1 )

′ +G2(K2e−2παY ∗
1 )

′
)

Let’s impose the condition that

• G
′
1(K1e2παY ∗

1 )+G
′
2(K2e−2παY ∗

1 )= 0

and we obtain:

• V
′′
p =G

′
1(K1e2παY ∗

1 )
′ +G

′
2(K2e−2παY ∗

1 )
′ +G1(K1e2παY ∗

1 )
′′ +G2(K2e−2παY ∗

1 )
′′

Substituting in the differential
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• G
′
1(K1e2παY ∗

1 )
′ +G

′
2(K2e−2παY ∗

1 )
′ = 2iπα

d2 f̂
dX2

After solving the system of two equations in the unknown functions G
′
1 and G

′
2 , the

variables G1 and G2 are given. The general solution of the nonhomogeneous differen-
tial equation can be written as:

V∗
1 =V∗

1p +V∗
1c (5.17)

Where V∗
1p ia a solution particular and V∗

1c is called the complementary solution. To

return to physical space, it is required to know the following formulas:

• −isgn(α)e−2π|α|Y ∗
1 =

∞∫
−∞

X
X2 +Y ∗2

1
e−2iπαX dX ,

• πe−2π|α|Y ∗
1 =

∞∫
−∞

Y ∗
1

X2 +Y ∗2
1

e−2iπαX dX .

For Y ∗
1 6= 0:

• U∗
1 (X ,Y ∗

1 )= 1
π

∞∫
−∞

(V∗
1 (ξ,0)+ ∂ f

∂ξ
)(X −ξ)

(X −ξ)2 +Y ∗2
1

dξ

• V∗
1 (X ,Y ∗

1 )+ ∂ f (X )
∂X

= 1
π

∞∫
−∞

U∗
1 Y ∗

1

(X −ξ)2 +Y ∗2
1

dξ

In the above formulas, the velocity component U∗
1 can be replaced by −P∗

1 .
Along the ling Y = 0, the pressure and the velocity normal to the wall are related by

Cauchy-Hilbert integral

P∗
1 (X ,0)=−1

π
∼
∞∫

−∞

(V∗
1 (ξ,0)+ ∂ f

∂ξ
)

X −ξ dξ (5.18)

Using Equ.5.13-a) the Equ. 5.18 become:
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P∗
1 (X ,0)= 1

π
∼
∞∫

−∞

∂

∂ξ
(A− f )

X −ξ dξ (5.19)

Moreover, as we have
∂P1

∂Y
= 0 and

∂P̃1

∂Ỹ
= 0, we deduce P∗

1 (X ,0)= P1(X )= P̃1(X ).

The Triple-Deck displacement function, A(X ), is related to the air pressure through
the Cauchy-Hilbert integral:

P̃1(X )= 1
π
∼
∞∫

−∞

∂

∂ξ
(A− f )

X −ξ dξ (5.20)

5.4 Numerical solution of Tripl Deck

Several techniques have been devised in recent years in an attempt to solve the above
problem. Apart from the non-linearity of the governing equations, complications arise
from the elliptic nature of the Hilbert integral pressure displacement relationship.

One relationship between the unknown pressure P and displacement A is obtained
from the potential flow properties holding in the upper deck outside the boundary layer
(Smith 1973; Stewartson 1974) [60], Equ. 5.20.

5.4.1 Discretisation of the interaction Law

In this subsection a brief method to discretise the Hilbert integral Equ.5.19 are pre-
sented. This method is presented by Kravtsova et al. [38]. The interaction equation
can be written as:

∂P
∂X

(X )=−1
π

∞∫
−∞

A
′′
(ξ)− f

′′
(ξ)

ξ− X
dξ (5.21)

We introduce a non-uniform mesh

(X i,Ym)

{
i = 1, ..., N
m = 1, ..., M

(5.22)
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and denote the values of function A(X ) at points X i by A i. A i are calculated in the

’inviscid pressure gradient’,
∂P
∂X

|inv. For the same A i, we can calculate the ’viscous

pressure gradient’,
∂P
∂X

|v(X i) based on Lower Deck equations. The task is to find
function A i that satisfies the following implicit set of equations:

G j(A i)= ∂P
∂X

|inv − ∂P
∂X

|v = 0, j = 1, ..., N (5.23)

In order to solve these equations Newton Raphson linearization has been used, with an

improved approximation written as A i +δA i. The correction function δA i is determined
by solving the matrix equation

G j(A i)+
∂G j

∂A i
δA i = 0 (5.24)

The general strategy is to suppose an approximation value for A(ξ) to obtain an
approximation value of P(X ) and that being done, an improved guess for A can be
found from the Hilbert integral relating P and A. For additional details, the interested
reader can also refer to Sychev et al. [67] and Korolev et al. [? ].

5.4.2 Calculation of the Hilbert integral

The interaction below requires special manipulations due to the singularity of the
integral.

∂P
∂X

(X )=−1
π

∞∫
−∞

A
′′
(ξ)

ξ− X
dξ+ 1

π

∞∫
−∞

f ′′(ξ)
ξ− X

dξ (5.25)

The first integral Equ.5.25 is truncated at N and represented for each X = X i in the
form:

XN∫
X1

A
′′
(ξ)

ξ− X i
dξ=

i−2∑
k=1

Xk+1∫
Xk

A
′′
(ξ)

ξ− X i
dξ+

X i+1∫
X i−1

A
′′
(ξ)

ξ− X i
dξ+

N−1∑
k=i+1

Xk+1∫
Xk

A
′′
(ξ)

ξ− X i
dξ (5.26)

using the Taylor expansion for A(ξ) the Equ. 5.25 become:
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∂P
∂X

(X i)=β(X i)= A
′′′
i (X i+1 − X i−1)A

′′
i ln

X i+1 − X i

X i − X i−1

+∑i−2
k=1{A

′′′
k+1(Xk+1 − Xk)+ [A

′′
k+1 + (X i − Xk+1)A

′′′
k+1] ln

X i − Xk+1

X i − Xk
}

+∑N−1
k=i+1{A

′′′
k (Xk+1 − Xk)+ [A

′′
k + (X i − Xk)A

′′′
k ] ln

Xk+i − X i

Xk − X i
}

+1
π

XN∫
X1

f
′′
(ξ)

ξ− X i
dξ

(5.27)

5.4.3 Solution of Lower Deck

The Lower Deck equations taking into account the asymptotic scales are:

∂Ũ1

∂X
+ ∂Ṽ1

∂Ỹ
= 0

Ũ1
∂Ũ1

∂X
+ Ṽ1

∂Ũ1

∂Ỹ
=−∂P̃1

∂X
+ ∂2Ũ1

Ỹ 2

∂P̃1

∂Ỹ
= 0

(5.28)

Here Ũ1 and Ṽ1 are longitudinal and transverse components of velosity, P̃1 is the
pressure which only depends on x and consequently is constant across the Desks,
the pressure gradient is not a prescribed function as in the classical boundary-layer
theory, but is determined through interaction with the displacement A, (Equ. 5.19).

The Lower Deck equations were calculated marching from position X i to the next
position X i+1. For a set of the operator equations: φm = 0, m = 1, ..., M−1. Provided
that Ũ j,m ≥ 0, for m = 2, ..., M−2 the momentum equation form become:

φm =−Ũi,m
C1Ũi−2,m +C2Ũi−1,m +C3Ũi,m

X i − X i−2

−Ṽi,m
d1Ũi,m−1 +d2Ũi,m +d3Ũi,m+1

Ỹm+1 − Ỹm−1
− dP̃

dX
|i

+b1Ũi,m−2 +b2Ũi,m−1 +b3Ũi,m +b4Ũi,m+1

(Ỹm+1 − Ỹm−2)(Ỹm+1 − Ỹm)

(5.29)

Where C1 = X i−1 − X i

X i−2 − X i−1
C2 = (X i − X i−2)2

(X i−1 − X i)(X i−2 − X i−1)
C3 =−(C1 +C2)

d1 =− 1
d3

d2 =−(d1 +d3) d3 = Ỹm − Ỹm−1

Ỹm+1 − Ỹm

b1 =−b2
Ỹm−1 − Ỹm

Ỹm−2 − Ỹm
−b4

Ỹm+1 − Ỹm

Ỹm−2 − Ỹm
b2 =−b4

(Ỹm+1 − Ỹm)(Ỹm+1 − Ỹm−2)(Ỹm+1 −2Ỹm + Ỹm−2)
(Ỹm−1 − Ỹm)(Ỹm−1 − Ỹm−2)(Ỹm−1 −2Ỹm + Ỹm−2)
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b3 =−(b1 +b2 +b4) b4 = 2
Ỹm−1 −2Ỹm + Ỹm−2

Ỹm−1 − Ỹm+1
The y-component of the velocity vector is calculated using the continuity equation. It is
written in finite difference form as follows:

1
2

(
C1Ui−2,m +C2Ui−1,m +C3Ui,m

X i − X i−2
+C1Ui−2,m−1 +C2Ui−1,m−1 +C3Ui,m−1

X i − X i−2
)+Vi,m −Vi,m−1

Ỹm − Ỹm−1
= 0

(5.30)

The introduction of central differences scheme to the boundary layer momentum
equation results in a matrix equation of the form:

∑
j

Hi, jU j = Ri (5.31)

The Hi, j matrix is tridiagonal with elements that contain the initially unknown U j.

A iUi−1,m +BiUi,m +CiUi+1,m = Ri,m (5.32)

by used the uniform grid

A(i)=− nu
(Y (i+1,m)−Y (i,m))2 − v(i,m)

2(Y (i+1,m)−Y (i,m))

B(i)= 2nu
(Y (i+1,m)−Y (i,m))2 + u(i,m)

(X (i,m+1)− X (i,m))

C(i)= −nu
(Y (i+1,m)−Y (i,m))2 + v(i,m)

2(Y (i+1,m)−Y (i,m))

D(i)= u(i,m)2

(X (i,m+1)− X (i,m))
+Px(m)

(5.33)

The basic problem was solved by using an iterative schemes in Triple Deck ap-
proach developed by Jobe and Burggraf [31]. A flow chart of the computer program is
shown in Figure 5.4, the main program contains three nested loops: an inner loop in
which the velocity profile and pressure are calculated for a given displacement function
A(X), a middle loop in which the computation is advanced through the complete range
of X, and an outer loop in which A(X) is recomputed according to the Hilbert integral
until convergence is obtained to the desired degree of accuracy.

The inner loop of the main program solve the boundary layer equations of the lower
deck for that pressure gradient P

′
(X ) which will produce the velocity, Ue, and thereby

A(X )=Ue −Ye with Ye fixed. The method of solution is to compute the velocity profile
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Figure 5.4: A flow chart of the program, [31]
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by means of the iterative boundary layer subroutine with the input P
′
(X ), determine

the difference between the computed A(X ) and the requested A(X ), and then use this
difference to correct P

′
(X ).

P
′
(X )new = P

′
(X )old +5∆A(X ). After several iterations, the program exits from the inner

loop with the P
′
(X ) required to produce the requested A(X ), and proceeds stepwise

downstream via the middle loop. If we know the approximation of An(x), then at
each line x = xi the equation for vorticity is solved by the tridiagonal matrix method
consecutively from the bottom to the top of the grid with the boundary conditions
of the Lower Deck. Then the computations are transferred to the next line x. At the
completion of the middle loop, the P

′
(X ) required to produce the requested A(X ) has

been determined for all X. The outer loop now computes the A
′
(X ) corresponding to

the new P(X) from the Hilbert transformation subroutine. Comparing the new A(X )

with the A(X ) from the previous iteration determines if the program has converged. If
not, A(X) is replaced according to the formula, A(X )= kA(X )old + (1−k)A(X )new, and
the outer loop reinitiates the streamwise traverse of the lower deck until the differences
between succeeding A(X) iterates is less than 10−5.

5.5 Numerical results and discussion

In this section we present results from the numerical solution of the non-linear Triple-
Deck problem for subsonic flow past a surface waviness. The results depend on the
rippled shape Figure 5.5 which is chosen as.

Y (x)= hsin(
2π
L

x) (5.34)

With h are the amplitude of he wave and L its wavelength.
To find the resulting flow field and in particular the deplacement function and

pressure it is necessary to solve the non-linear lower-deck equation. The solution of
Lower Deck equations requires special numerical techniques. Now we discussed the
numerical data for the two functions, A(X ) and P(X )

′
, with the predicted asymptotic

method (Triple Deck). The satisfaction of the asymptotic boundary conditions is of
major importance in assessing the accuracy of the numerical procedure. As shown
by Mengaldo [44] to compared two substantially different approaches, namely DNS
and asymptotic Triple-Deck theory, for calculating the flow past an isolated roughness
element on a flat plate with separation behind the element in some situations, they
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Figure 5.5: Parameters for a pure sinusoidal surface

demonstrates that the asymptotic Triple-Deck theory captures correctly the qualitative
physics and the main flow as well as the DNS approaches.

Several tests are imposed to determine whether the mesh spacing and precision
is adequate to resolve details of the flow. The calculations were performed using
a non-uniform mesh (400×400) a concentration of the mesh points was arranged:
dx = 8.18×10−5, d y= 3.75×10−6 and gradually reduced to 4.17×10−7.

The results of the calculations are summarized in Figure 5.6, which shows the
comparison of the velocity upper the surface waviness, the displacement function A(x)
and the pressure p(x) as a function of the scaled length.
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Figure 5.6: A summary of the numerical results for h/Lower Deck = 0.8, Cycle = 3 and
U = 5 ms−1

The detailed results of the Triple-Teck analysis show that the predominant effect
of the surface waviness on the boundary layer is to cause a local distortion in the
impressed pressure. We seen that far upstream, where the interaction region matches
with the unperturbed boundary layer, the deplacement and the pressure perturbation
are null. As the pressure starts to decrease in the interaction region, it cause the flow
in the viscous sublayer to "decelerate". This is revealed by the observed "increase" of
the deplacement function.

The displacement A(x), pressure P(x) and velocity u(x) are predicted by present
theory for various height h/HLowerDeck ratios and cycle of the surface waviness for
different cases: [U0 = 5, 50 m/s].
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Figure 5.7: Lower deck displacement function, A(X)

In Figure 5.7, a detailed comparison of the displacement function A(x), pressure
and velocity is conducted for the tree solutions with different cycle and incoming flow.
In Figure 5.8 we show the same quantities for different height h/HLowerDeck ratios. In
the surface waviness produces a favourable pressure gradient, followed by an adverse
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pressure gradient, the distortion becomes greater as the heigh increases.

Figure 5.8: Numerical solution for A, P and u with various amplitudes of surface
waviness

At low and high values of the free-stream Reynolds number Re based on the
distance from the leading edge to the surface waviness L0, the effect of the surface
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waviness on the displacement A diminishes. The effect continues when Re is varied
by hanging either the free-stream unit Reynolds number or the distance L0.

5.6 Closure

We have formulated the problem of subsonic flow past a surface waviness placed
on a flat plate. New results have been presented, obtained by numerical solution of
the non-linear Triple-deck equations, which serve to identify the effects of frequency
and the height (Amplitude) of the wave in the distribution of the displacement and
pressure. They also constitute a concrete step towards understanding the mechanism
of momentum transfer between inviscid flow outside and viscous sub-layer.

The Mach and Reynolds numbers were chosen to be relevant for aeronautical
applications, while the shape and the related parameters can be seen as simple
models of small deformation placed at the leading edge of the aircraft landing gear
cavity.

Clearly the size and shape of the surface waviness are important factors to be
taken into consideration in designing suitable forms which can be used to control the
flow and separation of the boundary layer. Although for this particular application it is
understood that effects of turbulence, unsteadiness of the flow may also be important,
and should be included when considering the full problem.
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6
RESULTS

6.1 Results for Two Dimensional simulations

Numerical simulations are used to investigate the self-sustained oscillating
flows past an open cavity. The two-dimensional incompressible Navier-Stokes
equations are solved directly by using the finite difference method. A series of

simulations are performed for a variety of surface waviness amplitudes and frequencies.

6.1.1 Aerodynamics

Flow dynamics inside the cavity is driven by the shear layer, developing above the
cavity, and a main vortex, developing along the whole cavity span. The predictions of
instantaneous velocity flow field from LES simulations are shown in Figure 6.1.

Shear mode The test case (Ampl. 0 Cyc. 0) oscillates in shear mode. Figure 6.2
illustrates instantaneous vorticity contours in the cavity flow-field at different flow time
after 60 computational periods. The turbulent boundary layer which separates from
the leading edge of cavity forms an oscillating shear layer. Figure 6.2(a) shows the
shear layer stretching from the upstream of the cavity and is parallel to the bottom
of the cavity. Over the right upper corner of the cavity, shear layer with a tongue like
structure extends to the downstream of the cavity from the vortex near to the vertical
wall of the cavity. Figure 6.2(b) describes the complex interaction between the shear
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Figure 6.1: Instantaneous flow field from LES simulations

layer and the vortex at the downstream wall of the cavity. The incoming shear layer
extends until the middle of the cavity region and the lip of the shear layer swipes on
the vertical wall at the trailing edge of the cavity. (The swiping action cuts the tongue
like shear layer to travel downstream of the cavity.) The shear layer which extends due
to the oscillation, impinges on the upper right corner of cavity and breaks into two (see
Fig. 6.2(c)) and at time period 3T/4 i.e in the Figure 6.2(d), one part of the lip of the
broken shear layer enters the cavity creating a eddy close to the downstream wall with
the size of cavity depth, while the other part of the shear layer moves downstream of
the cavity with less energetic eddies.

Wake mode Figure 6.3 shows the instantaneous vorticity fields U over a period. A
vortex is formed from the trailing edge and fills the cavity region is shown in Figure
6.3(a). In Figure 6.3(b), the vortex detaches and impinges on the downstream corner
of the cavity. Due to the impingement, is ruptured and moves out of the cavity, while
another eddy enter the cavity from the leading edge of the cavity (see Fig. 6.3(c)).
The eddy which is broken at this point of time moves downstream of the cavity, while
another new eddy grows to fill the cavity is shown in the Figure 6.3(d). The flow above
the cavity region is affected by the flow from the cavity.

6.1.2 Aeroacoustic

Acoustic Parameters The pressure perturbations p
′
(p

′ = p− p0) which propagate
as waves and which can be detected by the human ear. For harmonic pressure
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Figure 6.2: Instantaneous vorticity contours in the baseline cavity. (a) 60.25T; (b) 60.5T;
(c) 60.75T (d) 70T; (T is numerical simulation period).

fluctuations the audio range is:

20Hz ≤ f ≤ 20kHz (6.1)

The Sound Pressure Level (SPL) is a logarithmic scale measure of the pressure
unsteadiness in which the minimum pressure fluctuation detected by the human ear
pre f = 2×10−5Pa is taken as the reference. For continuous pressure signals, the SPL
is defined by:

SPL = 10log(
PSD
pre f

) (6.2)

The PSD describes how the power of a signal or time series, in our case the time
dependent pressure, is distributed with frequency. The PSD spectrum is determined
by means of a Fast Fourier Transform (FFT) utilizing windowing as to smoothen the
PSD estimate, in our case the Hanning window. The FFT of a signal P(t) is defined as

FFT (t, f )=
∞∫

−∞
P (τ)w (τ− t) e− j2π f τdτ (6.3)
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Figure 6.3: Instantaneous vorticity fields U for wake mode at four different times (a-d)
corresponding to approximately a quarter of a period of oscillations. Only a small
portion of the computational domain near the cavity is shown.

where w(t) is the Hanning window function, applied to obtain a clear definition of the fun-
damental frequencies. Time averaging the pressure fluctuations one would obtain the
mean pressure P̄ = 1

N−N0

∑N
k=N0

Pk (t) where N is the total number of samples taken and
N0 is the first sample number at which the time averaging starts. The root mean square
pressure is therefore calculated via the equation: Prms = 1

N−N0

∑N
k=N0

(
Pk (t)− P̄

)2 Using
the acoustic spectrum results, an overall sound pressure level (OASPL) can be ob-
tained by adding all noise amplitudes of the spectrum, the OASPL can be obtained
applying the following expression:

OASPL = 20log
√∑

i
(10SPL i /20)2 (6.4)

Sound pressure levels (SPL) for the acoustic field above the cavity predicted by Rowley,
et al [56] and paper are shown in Figure 6.4, peak radiation to the far field occurs at
an angle of about 1350 from the downstream axis.

The setup of Curle’s acoustic analogy The setup is done in the file named "CurleAnal-
ogy" in the directory "system". The start and end time of sensing acoustic quantities,

96



CHAPTER 6. RESULTS

Figure 6.4: SPL distributions. (a) 2D-DNS predicted by Rowley, et al. [56]; (b) 2D-LES
with surface wavy

the source object cavity, the speed of sound in the medium c, the reference density ρ,
pressure p and the reference sound pressure pA are defined in this file. Furthermore,
receivers’ (the probes) positioning, the sampling frequency for evaluating a fast Fourier
transform are defined. The aeroacoustic simulation result is shown in the following
chart. Figure 6.5 shows the sound pressure level of the computed acoustic signal at
M∞ = 0.3 (flow velocity 99.44 m/s). The spectral resolution of these results is 6.97 Hz.
over the whole frequency range [0-10000] Hz. From the acoustic analysis it can be
seen that the significant peak of the sound pressure level is at the frequency 2000
Hz correspond to the 2nd Rossiter mode. The highest sound pressure level at this
frequency is 129 dB (for receiver A, Figure 4.12). the peaks at 840 Hz, 2000 Hz, 4080
Hz, 6122 Hz, 80150 HZ and 10300 HZ correspond very well to the results predicted by
Rossiter, Eq. 2.6. (see Table 6.1) We now discuss the results obtained for M∞ = 0.3

cavity flow: It is seen that in Figure 6.6 the cavity for an applied surface waviness with
frequency of 19.7×10−3 and 11.8×10−3 cycles per mm increase the resonance peak by
9 dB compared to the baseline case and also the peak of the sound pressure level is at
the frequency 1000 Hz correspond to the 1st Rossiter mode for wake mode. Figure 6.7
shows frequencies of the two most energetic peaks in the spectra for the series of run

with
L
D

= 4, compared to experimental data and predictions from Eq. 2.6, the transition
to wake mode oscillations for M > 0.3. The results for surface wavy control, Figure 6.8,
show a considerable attenuation of the dominant Rossiter peak, it was clarified that
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m St f(Hz)
1 0.412 807.60
2 0.962 1884.39
3 1.512 2961.19
4 2.068 4037.98
5 2.612 5114.78
6 3.163 6191.57
7 3.713 7268.37
8 4.263 8345.16
9 4.813 9421.96
10 5.363 10498.75

Table 6.1: Longitudinal Rossiter modal frequencies for cavity length of 50.8 mm with
associated Strouhal Numbers [54]

Figure 6.5: SPL at one receiver for baseline cavity
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Figure 6.6: Sound pressure level with and without surface waviness

Figure 6.7: Strouhal numbers for peaks in spectra for the shear-layer mode and wake
modes
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the tonal sound reduced for frequency of 4.92×10−3, 9.84×10−3 cycles per mm. The
maximum noise level of 116 dB was observed at f= 625 Hz for frequency 4.92×10−3

cycles per mm and the maximum noise level of 127.8 dB was observed at f = 1095 Hz
for frequency 9.84×10−3 cycles per mm. It was observed that the attenuation achieved
using this configuration was of the highest value, giving an overall reduction in SPL of
14 dB.

Figure 6.8: Sound pressure level with and without surface waviness

6.1.3 Closure

A complete two-dimensional analysis of both the baseline and the modified configura-
tion were carried out. Additionally the flow regime was demonstrated with success by
the use of CFD code (OpenFOAM). The results of different geometry modifications
applied to the leading edge of a cavity with length to depth ratio of 4, in order to reduce
the resonance of flow at M∞ = 0.3 have been presented. The amplitude of 3.25 mm
and the frequency of 4.92×10−3 cycles per mm was observed as achieving the best
reduction in cavity resonance.
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"At this stage a quantitative comparison (with the experimental) is still not possible
because of the 2D acoustic simulation. In fact, due to the 2D propagation, the pressure
intensity is overestimated intrinsically".

6.2 Results for three Dimensional simulations

6.2.1 Flow Results

Figures 6.9 show the flow structures generated by both cases with and without surface
waviness. The reference case (baseline) is located on the left hand side and the wavy
cases are located on the right hand side. One of the major differences between the
two cases is the fact that the applied surface waviness accelerated the flow ahead of
the cavity. The flow field clearly oscillates in a shear layer mode. The visualisation of
the free shear layer over the cavity shows a marked decrease in the recirculation of
flow structures in the case with the surface waviness.

Figure 6.9: Velocity contour for both: a) Flat Case (left ) and b) Wavy Case (right )
located at the cavity central line

The computed flow inside the cavity was found to be highly unsteady and dominated
by periodic phenomena. Tubular vortical structures inside the cavity were seen to affect
the shear layer (Fig. 6.10), but overall the shear layer spanning the cavity width is
found to be more stable in the case with the surface waviness. In addition, Tubular
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structures are seen to arrive at the cavity leading edge but these structures do not
have sufficient energy to cause the violent flapping of the streaks of the separated
shear layer.

Figure 6.10: Pressure iso-surfaces, coloured by velocity, showing flow structures in the
cavity; L/D=4, M∞ = 0.3; (a) clean cavity and (b) cavities with surface waviness

To understand the effect of the control method on the cavity flow, the streamwise
velocity component together with the associated streamlines are plotted in Figure 6.11.
For appropriate form of surface waviness, a slow circular motion can be observed inside
the cavity. From the baseline case, as the surface waviness parameters (Amplitude
and cycle) were increased, the major changes in the structure of the flow field were
concentrated in the region close to the rear wall. In other side the strength of this
vortex velocities increase with reduction of those parameters. As the flow separates
at the upstream edge of the cavity, a large-scale vortical structure grows as it travels
downstream, and impinges on the downstream edge of the cavity. Part of the vortex
spills over the cavity, while the rest of the vortex rolls underneath the downstream cavity
edge. The rolled-up vortex inside the cavity interacts with the next vortical structure
inside the shear layer and the unsteady motion of the shear layer, causes the formation
of compression wave due to the inflow/outflow of the external fluid into the cavity.
These waves propagate outward as acoustic wave and travel upstream. It can be seen
that a larger recirculation bubble forms which is approximately 70% of the cavity length
starting from the aft wall. At the upstream edge of the cavity, the pressure difference
inside and outside of the cavity further excites the shear layer. This external excitation
provides the link to the feedback mechanism.
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Figure 6.11: Streamline and streamwise Velocity for Wavy Case

6.2.2 Acoustic Results

In order to validate the results obtained, a comparison between Ahuja’s [5] experiments
and the DES simulation (Fig. 6.12), for the L/D = 3.75, M= 0.4. The second-mode
feedback frequency appears to be the most dominant tone.

Figure 6.12: Case for L/D=3.75 and M∞ = 0.4. a) clean cavity DES simulation, b) Ahuja
experience [5]

It can be seen that the sound pressure level appear to be highest in the simulation
because there’s some interferences between the jet and the sound field of the cavity
in the Ahuja experience.

Figure 6.13 show the numerous sum or difference interactions between the mode I,
fa, and the mode II, fb of the Rossiter feedback loop (Table 6.2) [24]. The sound field
appears to be a result of constructive and destructive interference between pressure
waves of the same frequency with potentially different origins.
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fa + ( fb − fa)→ fa ( fb − fa)+2 fb → (3 fb − fa)
fa + fb → ( fb + fa) 2 fb − ( fb − fa)→ ( fb + fa)
fb − fa → ( fb − fa) fb + ( fb + fa)→ (2 fb + fa)
( fb + fa)− fa → fb fb − (2 fb − fa)→ (3 fb − fa)

fa + (2 fb − fa)→ 2 fb (2 fb − fa)− fb → ( fb − fa)
fb − ( fb − fa)→ fa fb +2 fb → 3 fb

( fb − fa)+ ( fb + fa)→ 2 fb ......

Table 6.2: Multiple tones interaction in cavity [24]

Figure 6.13: Three dimensional cavity frequency multiple interaction for L/D=4, M∞ =
0.3 [24]

Many tones are visible, with the first tone mode clearly having the highest amplitude.
This first-mode dominance was also seen in various microphone locations around the
cavity, as shown in Figure 6.14 (see Fig. 4.19 for positioning).
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Figure 6.14: SPL at different microphones positions

Figure 6.15 show a comparison of the two and three dimensional SPL spectrograms.
we seen the presence of high intensity peaks within the signal, the frequencies of which
are compared with the theoretical Rossiter frequencies calculated using equation (2.6)
are indicated as R1, R2, R3 and R4 corresponding to the first, second, third and
fourth feedback mode tone frequency, respectively. It can be seen in this figure that
the frequencies of the simulated tones (3D case) are somewhat smaller than those
predicted by Rossiter’s equation. Also, the second and the third mode feedback tones
are not as strong as the first mode tone. The fundamental mode agrees very well with
Rossiter’s formula, but the frequencies of the harmonic modes are under-predicted
in the analysis. However, there is a wide scatter in the experimental data of Rossiter
[54] and Tam and Bloc [7]. At a distance about four cavity depths along the peak
radiation, the sound pressure level is about (10 dB) louder for the three-dimensional
than two-dimensional cavity. The 2nd Rossiter mode has been reduced significantly,
though the tonal peak which occurred at 2000 Hz in the two-dimensional case. For the
three-dimensional case, the dominant frequency corresponding to mode 1 appears at
around 500 Hz. As the width increases, the frequency of mode 1 appears very weak.
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Such reduction in SPL is due to a dissipation in the 3rd dimension.

Figure 6.15: 2D/3D Comparison for clean cavity case, SPL spectrograms

OASPL’s along the centerline of the cavity for the baseline case at different micro-
phones positions are shown in Figure 6.16. There is a strong acoustic radiation in the
upstream direction, about 135 degrees from the downstream axis. The source of the
feedback sound for all modes is at the trailing edge.

Sound Pressure Level spectra, comparing the baseline case to the controlled cases
for different surface waviness forms, are displayed in figure 6.17. The addition of the
surface waviness controls the flow by modifying the stability of the mean velocity
field. Once compared, three dimensional SPL spectrograms of cavity with and without
surface waviness showed similar repartition in peak tones SPL.
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Figure 6.16: OASPL, in the centerline of the clean cavity

Figure 6.17: 2D/3D Comparison, SPL spectrograms

Table 6.3 shows the acoustic performance of each of the passive devices tested
and compared to the baseline.

Over the plotted frequency range, the pressure fluctuations for (Ampl. 2, Cyc. 3) are
on average about 8 dB greater than those that the baseline case. It can be seen that
for the relatively values of surface waviness parameters, the method leads to a rapid
attenuation of the SPL. In general, as the surface waviness parameters increased the
peak tones were more sufficiently reduced. The overall suppression increased sharply
when the amplitude of surface waviness takes 15-16 % of the cavity depth.
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Surface waviness OASPL dB Delta OASPL dB Peak Frequency dB
Ampl. 0 Cyc. 0 329.056 0 123.816
Ampl. 2 Cyc. 3 317.097 11.959 115.918
Ampl. 2 Cyc. 5 324.198 4.858 121.657

Ampl. 2.25 Cyc. 1 360.754 -31.698 136.276
Ampl. 3.25 Cyc. 3 361.448 -32.392 136.639

Table 6.3: acoustic performance of Wavy cases compared to baseline

In addition to those obtained at M∞ = 0.3, the SPL are compared to the experimental
data of Maureen’s [43] in Figure 6.16 for M∞ = 0.6. It can be seen that the presence of
the wavy surface reaching a significant SPL in comparison to the empty cavity case.

Figure 6.18: Case for L/D=4, W/D=1 and M∞ = 0.6. a) clean cavity, b) Maureen
experience [43]

6.3 closure

The results obtained from the use of surface waviness as a means of reducing the
tones produced by the L/D=4 cavity at M∞ = 0.3 are now considered. The objective of
the surface wavy was to introduce disturbances into the shear layer in order to disrupt
the resonant mechanism that sustains the cavity oscillations. The dominant frequency
is changed from Mode 2 for the two-dimensional cavity to Mode 1 for three-dimensional
cavity. Though more wavy surface where tested the three that was discussed in this
thesis shown a performance extreme in the acoustic results and therefore a detailed
analysis of how these wavy surface change the flow physics for the better or worst are
done.
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7
CONCLUSIONS AND FURTHER WORK

The objective of this thesis is to study numerically the aeroacoustics of different
geometry modifications applied to the leading edge of a cavity, in order to
reduce the resonance of flow at low Mach number (M < 0.3) based on hybrid

method.
The numerical approach is based on Large Eddy Simulations (LES) and Detached

eddy simulation (DES) which are resolved using the OpenFOAM code. The acoustic
analysis based on the Lighthill-Curle analogy has been performed to present the
influence of the surface waviness on the mode of oscillation in the shallow cavity.

The flow over a cavity can be divided into three regions : An incoming turbulent
boundary layer which develops and grows before reaching the cavity, the turbulent flow
inside and above the cavity which can be distinguished into a wake mode and a shear
layer mode, and the flow downstream of the cavity which is with or without surface
waviness.

Two-dimensional and three-dimensional cavity flows were simulated with incoming
thick turbulent boundary layer, with an constant aspect ratio of 4. The thickness of the
boundary layer introduces a strong shear flow in the cavity which can oscillate at a
dominant frequency, with a shear layer mode and wake mode with and without surface
waviness respectively.

The aeroacoustic study has been done to analyse the acoustic sources. A large
set of instantaneous pressure field was determined from large eddy simulation(LES)
or Detached eddy simulation (DES) and used as an input to the Curle’s analogy, to
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compute the acoustic pressure of an observer region. The Sound Pressure Level
(SPL), is related to the upstream velocity and the oscillating mode of the shear layer.

For two-dimensional case the amplitude of the surface waviness was first altered
and tested and an amplitude of 3.25 mm was observed as achieving the best reduction
in cavity resonance. After achieving an optimum amplitude the frequency was analysed
achieving an optimal value of 1,25 cycles. Pressure fluctuations were extracted from
a total of 18 points for each case. However, for three-dimensional case the optimal
amplitude and frequency are 2 and 3 respectively.

Then, results from numerical simulations, including global modes, steady simula-
tions , were compared to Rossiter mode, with and without the passive control surface
waviness. Finally, the sensitivity analysis succeeded to control the flow means of a
small control waves.

Mean SPL were compared for both clean cavity and cavity with surface waviness
cases. The comparison of the numerical simulation with the experimental measure-
ments for acoustic part has not been carried out yet. But this study proves the influence
of the surface wavy in the attenuation or amplification of sound and its intensity.

By use the Triple Deck theory we can seen that for fixed upstream Reynolds number
, a change in the geometry will cause an associated change in the boundary layer
at the leading edge of the cavity. So it is possible that sufficiently large changes in
geometry may still indirectly effect the nature of the resonance through a change in
the upstream boundary layer.

To fully understand the wavy surface impact on the cavity flow control, the following
further work is required:

• Application of Multi-Objective Genetic Algorithm (MOGA)to determine the cavity
acoustic control device parameters;

• Study the surface waviness effect on cavity acoustic at supersonic flow;

• Effects of landing gear door in cavity noise;

• Study the cavity noise with full Landing Gear;

• Wind Tunnel testing of an optimum 3D model.
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