# République Algérienne Démocratique et populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique



#### **UNIVERSITÉ DE BLIDA 1**

#### Faculté de Technologie

Département de Génie Civil
Option : Structure

# Mémoire de Fin d'étude En vue de l'obtention du diplôme de Master

#### Thème:

Étude et conception parasismique d'un bâtiment Rez-dechaussée+10 étage+2 sous-sols contreventé par voiles

Réalisé par :

**Encadrée par :** 

**Gharbi Yahia Kamel** 

Mme: N.Kerboua

**Mazeghrane Lyes** 

Promotion 2020/2021 -



#### REMERCIEMENT

Tout d'abord, nous tenons à remercier Allah, le clément et le miséricordieux de nous avoir donné la force et le courage de mener à bien ce modeste travail.

Nous voudrions exprimer nos vifs remerciements à notre promotrice **N.KERBOUA**, qu'a su nous prodiguer durant l'évolution de notre projet.

Nous ne manquerions pas de remercier vivement les enseignants du département de GENIE CIVIL qui nous ont suivies tout au long de notre cursus, et qui nous ont permis d'acquérir les connaissances nécessaires pour l'élaboration de ce modeste travail.

Que tous les membres du jury trouvent ici l'expression de nos profonds Respects pour avoir pris la peine d'examiner ce manuscrit.

Nos remerciements vont également à tous ceux et celles qui de près ou de loin nous ont apportés aide et encouragement. Qu'ils trouvent ici l'expression de notre profonde gratitude.

## Dédicace

A ma mère,

Tu m'as donné la vie ; la tendresse et le courage pour réussir.

Tout ce que je peux t'offrir ne pourra exprimer l'amour et la reconnaissance que je te porte.

En t'témoignage, je t'offre ce modeste travail pour te remercier pour tes sacrifices et pour l'affection dont tu m'as toujours entouré.

A mon père,

L'épaule solide, l'œil attentif et la personne la plus digne de mon estime et de mon respect.

Aucune dédicace ne pourrait exprimer mes sentiments, que Dieu te préserves et te procures santé et longue vie.

A mon frère et ma sœur qui ont été toujours à mes cotés,

A toutes mes oncles et tantes,

A tous mes amís et collègues,

## Dédicace

Je dédie cette thèse à ...

A mes parents ; pour votre soutient ; sacrifice et votre appui tout au long de ces année d'instruction aucune expression ne saura vous traduire mes sentiments et ma gratitude envers vous.

Ma mère, qui a œuvré pour ma réussite, de par son amour, son soutien, tous les sacrifices consentis et ses précieux conseils, pour toute son assistance et sa présence dans ma vie, reçois à travers ce travail aussi modeste soit-il, l'expression de mes sentiments et de mon éternelle gratitude.

Mon père, qui peut être fier et trouver ici le résultat de longues années de sacrifices et de privations pour m'aider à avancer dans la vie. Puisse Dieu faire en sorte que ce travail porte son fruit ; Merci pour les valeurs nobles, l'éducation et le soutient permanent venu de toi.

A mes deux frères,

A toute ma famille et mes amis,

#### ملخص

يهدف هذا المشروع إلى دراسة بناية ذات طابع سكني و تجاري تتألف من طابق ارضي+10 طوابق + 2 طوابق ارضية سفلية باستخدام نوعين من الجدران (أجور و صفائح الجبس), يتم انجازها بولاية الجزائر المصنفة ضمن المنطقة الزلزالية رقم III حسب المعايير الجزائرية المضادة للزلازل (RPA99 version 2003).

-مقاومة و استقرار البناية لكل الحمولات العمودية و الأفقية مضمونة بواسطة الروافد الأعمدة و الجدران المشكلة من مادة الخرسانة المسلحة.

-الدر اسة الحركية تمت باستعمال (ETABS).

- تحديد الأبعاد وتسليح كل العناصر المقاومة للبناية صمم طبقا للمعايير والقوانين المعمول بها في الجزائر (RPA 99 version 2003, BAEL 91 modifier99, CBA).

- للتحقق من نتاج التسليح استعنا بواسطة برنامج ألي (SOCOTEC). - دراسة الطوابق التحت أرضية مرحلة من مراحل هذا المشروع.

#### **RESUME**

Le but de cette étude est la conception d'une structure à usage multiple de R+10 étages +2 sous sol en utilisant deux types de remplissages (maçonnerie et Placoplatre), qui sera implantée dans la wilaya d'Alger, classée en zone III selon le règlement parasismique Algérien (*RPA 99 version 2003*).

- -La stabilité de l'ouvrage est assurée par les poutres, et les poteaux et les voiles.
- -L'étude dynamique et l'analyse de ce projet ont été établies par le logiciel (ETABS).
- -Le calcul des dimensions et du ferraillage de tous les éléments résistants sont conformes aux règles applicables en vigueurs à savoir (**CBA** ,**BAEL91** modifier99, **RPA99** version 2003). Pour la vérification du ferraillage nous avons utilisé un logiciel (**SOCOTEC**).
- -L'étude des éléments de l'infrastructure fait également partie de ce projet.

#### **ABSTRACT**

The aim of this study is the conception of building R+10floors+2 underground using two types of fillings (masonry and plasterboard filling), which will be established in Algiers, classified in zone III according to the Algerian payment the Algerian seismic design regulations (*RPA 99 version 2003*).

- -The stability of structure is ensured by the beams, and the columns and the walls.
- -The study and the analysis of this plan had been established by software (*ETABS*).
- -The calculation of dimensions and the reinforcement of all the resistant elements are in conformity with the rules applied in strengths to knowing (CBA,BAEL91 modify99, RPA99 Version 2003).
- -For the checking of reinforcement we used software (SOCOTEC).
- -The study of the elements of the infrastructure also forms part of it project.

# Sommaire

| Remerciements                                                         |
|-----------------------------------------------------------------------|
| Dédicaces                                                             |
| Résumé                                                                |
| Liste des symboles                                                    |
| Liste des tableaux                                                    |
| Liste des figures                                                     |
| Plans                                                                 |
| Introduction générale                                                 |
| I.3.caractéristique mécanique des matériaux  I.4.hypothéses de calcul |
| Chapitre II : pré dimensionnement                                     |
| II.1.introduction                                                     |
| II.2.pré dimensionnement des planchers                                |
| II.3.evaluation des charges.                                          |
| II.4.pré dimensionnement des poutres                                  |
| II.5.pré dimensionnement des poteaux                                  |
| II.6.pré dimensionnement des voiles                                   |
| Chapitre III : calcul des éléments secondaires                        |
| III.1.introduction                                                    |
| III.2.acrotére                                                        |
| III.3.escalier.                                                       |
| III.4.etude des planches                                              |
| III.5.plancher en dalle pleine                                        |
| III.6.balcon.                                                         |
| Chapitre IV : Etude dynamique en zone sismique                        |
| IV.1.introduction                                                     |
| IV.2.etude dynamique                                                  |
| IV.3.modilisation de la structure                                     |
| IV.4.etude sismique                                                   |
| IV.5.résultats de l'analyse sismique                                  |
| Chapitre V : Ferraillage des éléments résistant                       |
| V.1.introduction                                                      |
| V.2.ferraillage des poteaux                                           |
| V.3.ferraillage des poutres                                           |
| V.4.ferraillage des voiles                                            |

| V.5.ferraillage des linteaux       | 158 |
|------------------------------------|-----|
| Chapitre VI : Etude des fondations |     |
| VI.1.itroduction                   | 165 |
| VI.2.choix de type de fondation    | 165 |
| VI.3.calcul des fondations         | 165 |
| VI.4.etude du voile périphérique   | 184 |
| Conclusion.                        | 189 |
| Cuiciusivii                        | 10) |

Annexe

Références

Bibliographique

#### Liste des symboles

- A : Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement.
- $A_s$ : Aire d'une section d'acier.
- $A_t$ : Section d'armatures transversales.
- *B* : Aire d'une section de béton.
- $\phi$ : Diamètre des armatures, mode propre.
- $\varphi$ : Angle de frottement.
- lacktriangle C: Cohésion.
- $\bar{q}$ : Capacité portante admissible.
- Q: Charge d'exploitation.
- $\sigma_c$ : Contrainte de consolidation.
- $C_c$ : Coefficient de compression.
- $C_s$ : Coefficient de sur consolidation.
- $K_t$ : Facteur de terrain.
- $Z_0$ : Paramètre de rugosité.
- $Z_{min}$ : Hauteur minimale.
- $C_r$ : Coefficient de rugosité.
- $C_t$ : Coefficient de topographie.
- $C_d$ : Coefficient dynamique.
- $C_e$ : Coefficient d'exposition.
- $C_{pe}$ : Coefficient de pression extérieure.
- $C_{pi}$ : Coefficient de pression intérieure.
- $C_p$ : Coefficient de pression nette.
- $q_{dyn}$ : Pression dynamique.
- $q_{réf}$ : Pression dynamique de référence.
- $q_i$ : Pression dû au vent.
- $F_{fr}$ : Force de frottement.
- $\blacksquare$  *R* : Force résultante.
- $\gamma_s$ : Coefficient de sécurité dans l'acier.
- $\gamma_h$ : Coefficient de sécurité dans le béton.
- $\sigma_s$ : Contrainte de traction de l'acier.
- $\sigma_{bc}$ : Contrainte de compression du béton.
- $\bar{\sigma}_s$ : Contrainte de traction admissible de l'acier.
- $\overline{\sigma}_{bc}$ : Contrainte de compression admissible du béton.
- $\tau_u$ : Contrainte ultime de cisaillement.
- $\tau$ : Contrainte tangentielle.
- $\beta$ : Coefficient de pondération.
- $\sigma_{sol}$ : Contrainte du sol.
- $\sigma_m$ : Contrainte moyenne.
- G: Charge permanente.
- $\xi$ : Déformation relative.
- $V_0$ : Effort tranchant a la base.
- E.L.U: Etat limite ultime.

- *E.L.S* : Etat limite service.
- N<sub>ser</sub>: Effort normal pondéré aux états limites de service.
- $N_u$ : Effort normal pondéré aux états limites ultime.
- $T_u$ : Effort tranchant ultime.
- T : Effort tranchant, Période.
- $S_t$ : Espacement.
- $\lambda$ : Elancement.
- *e* : Epaisseur, Indice des vides.
- $N_a, N_{\gamma}, N_c$ : Facteurs de portance.
- *F* : Force concentrée.
- *f* : Flèche.
- $\bar{f}$ : Flèche admissible.
- D : Fiche d'ancrage.
- *L* : Longueur ou portée.
- $L_f$ : Longueur de flambement.
- $I_p$ : Indice de plasticité.
- $I_c$ : Indice de consistance.
- W: Teneur en eau, Poids total de la structure.
- $S_r$ : Degré de saturation.
- $\gamma_d$ : Poids volumique sèche.
- $\gamma_h$ : Poids volumique humide.
- $\gamma_{sat}$ : Poids volumique saturé.
- $W_{sat}$ : Teneur en eau saturé.
- $W_L$ : Limite de liquidité.
- $W_p$ : Limite de plasticité.
- d: Hauteur utile.
- $F_e$ : Limite d'élasticité de l'acier.
- $M_u$ : Moment à l'état limite ultime.
- $M_{ser}$ : Moment à l'état limite de service.
- $M_t$ : Moment en travée.
- $M_a$ : Moment sur appuis.
- $M_0$ : Moment en travée d'une poutre reposant sur deux appuis libres, Moment a la base.
- I: Moment d'inertie.
- $f_i$ : Flèche due aux charges instantanées.
- $f_v$ : Flèche due aux charges de longue durée.
- $I_{fi}$ : Moment d'inertie fictif pour les déformations instantanées.
- $I_{fv}$ : Moment d'inertie fictif pour les déformations différées.
- lack M: Moment, Masse.
- $E_{ij}$ : Module d'élasticité instantané.
- $E_{vi}$ : Module d'élasticité différé.
- $E_s$ : Module d'élasticité de l'acier.
- *P* : Rayon moyen.
- $f_{c28}$ : Résistance caractéristique à la compression du béton à 28 jours d'age.
- $f_{t28}$ : Résistance caractéristique à la traction du béton à 28 jours d'age.
- $F_{ci}$ : Résistance caractéristique à la compression du béton à j jours d'age.
- K : Coefficient de raideur de sol.
- $S_c$ : Tassement œnométrique.
- $S_c^T$ : Tassement total.
- $S_c^{adm}$ : Tassement admissible.

- δ : Rapport de l'aire d'acier à l'aire de béton.
  Y : Position de l'axe neutre.
- $I_0$ : Moment d'inertie de la section totale homogène.

# Liste des tableaux

| Tableau II.1                  | Composition de la terrasse (inaccessible)                                                                               | 12       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|
| Tableau II.2                  | Composition du plancher courant                                                                                         | 12       |
| Tableau II.3                  | Composition de la dalle pleine                                                                                          | 13       |
| Tableau II.4                  | Composition de la dalle pleine (balcon)                                                                                 | 13       |
| Tableau II.5                  | Composition de mur extérieur                                                                                            | 13       |
| Tableau II.6                  | Composition de mur intérieur                                                                                            | 14       |
| Tableau II.7                  | Charges d'exploitations                                                                                                 | 14       |
| Tableau II.8                  | Pré-dimensionnement des poutres                                                                                         | 16       |
| Tableau II.9                  | Surface reprise par le poteau le plus sollicité                                                                         | 19       |
| Tableau II.10                 | Dégression des surcharges                                                                                               | 20       |
| Tableau II.11                 | La descente des charges permanentes (Poteau central)                                                                    | 22       |
| Tableau II.12                 | La descente des charges verticales d'exploitation (Poteau central)                                                      | 22       |
| Tableau II.13                 | choix final des poteaux centraux                                                                                        | 23       |
| Tableau III.1                 | Poids propre du palier de repose de l'escalier                                                                          | 34       |
| Tableau III.2                 | Poids propre du Paillasse                                                                                               | 34       |
| Tableau III.3                 | combinaison ELU et ELS                                                                                                  | 35       |
| Tableau III.4                 | Ferraillage des marches                                                                                                 | 36       |
| Tableau III.5                 | Vérification des contraintes des marches                                                                                | 36       |
| Tableau III.6                 | Ferraillage du pallier                                                                                                  | 37       |
| Tableau III.7                 | Vérification des contraintes du pallier                                                                                 | 38       |
| Tableau III.8                 | diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 4                                               | 48       |
|                               | travées                                                                                                                 |          |
| Tableau III.9                 | diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à                                                 | 50       |
| T 11 TH 10                    | 5travées                                                                                                                | 50       |
| Tableau III.10                | diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 6                                               | 52       |
| T-11 III 11                   | travées                                                                                                                 | F 1      |
| Tableau III.11                | Tableau récapitulatif du calcul des sections d'armatures en travée                                                      | 54       |
| Tableau III.12 Tableau III.13 | Tableau récapitulatif du calcul des sections d'armatures sur appuis  Tableau récapitulatif pour la vérification à l'ELS | 54<br>56 |
| Tableau III.13                |                                                                                                                         |          |
| Tableau III.14                | Récupulatif du calcul de laflèche                                                                                       | 57       |
| Tableau III.15                | Ferraillage de la dalle pleine                                                                                          | 61       |
| Tableau III.16                | Vérification des contraintes à l'ELS                                                                                    | 63       |
| Tableau III.17                | Ferraillage des balcons                                                                                                 | 66       |
| Tableau IV.1                  | Facteur de qualité                                                                                                      | 74       |
| Tableau IV.2                  | Dimensions des éléments verticaux de chaque niveau                                                                      | 78       |
| Tableau IV.3                  | Participation massique du modèle initial                                                                                | 79       |
| Tableau IV.4                  | Participation massique du modèle final                                                                                  | 81       |
| Tableau IV.5                  | Vérification des déplacements inter-étage                                                                               | 83       |
| Tableau IV.6                  | Vérification de l'effort normal pour les poteaux                                                                        | 85       |
| Tableau IV.7                  | participation massique du modèle final                                                                                  | 86       |
| Tableau IV.8                  | Vérification des déplacements inter-étage du modèle final selon l'axe (x-x)                                             | 89       |
| Tableau IV.9                  | Vérification des déplacements inter-étage du modèle final selon l'axe (y-y)                                             | 90       |
| Tableau IV.10                 | vérification de l'effort normal réduit pour les poteaux                                                                 | 91       |
| Tableau IV.11                 | Vérification l'effet P- $\Delta$ inter étages du modèle final selon l'axe(x-x)                                          | 92       |
| Tableau IV.12                 | Vérification l'effet P-Δ inter étages du modèle final selon l'axe(y-y)                                                  | 93       |
| Tableau IV.13                 | Poids cumulée de chaque étage                                                                                           | 93       |
| Tableau IV.14                 | participation massique du modèle final                                                                                  | 95       |
| Tableau IV.15                 | Vérification des déplacements inter-étage du modèle final                                                               | 97       |
| Tableau IV.16                 | vérification de l'effort normal réduit pour les poteaux                                                                 | 99       |
| ī                             |                                                                                                                         |          |

| Tableau IV.17           | Várification l'affat D. A inter átages du modèle final                                     | 101 |
|-------------------------|--------------------------------------------------------------------------------------------|-----|
| Tableau V.1             | Vérification l'effet P-Δ inter étages du modèle final                                      |     |
|                         | Caractéristiques du béton et de l'acier                                                    | 104 |
| Tableau V.2 Tableau V.3 | Ferraillages des poteaux en situation durable (N <sup>max</sup> , M <sup>corr</sup> )      | 106 |
|                         | Ferraillages des poteaux en situation durable (N <sup>min</sup> , M <sup>corr</sup> )      | 106 |
| Tableau V.4             | Ferraillages des poteaux en situation durable (M <sup>max</sup> , N <sup>corr</sup> )      | 107 |
| Tableau V.5             | Ferraillages des poteaux situation accidentelle (N <sup>max</sup> , M <sup>corr</sup> )    | 107 |
| Tableau V.6             | Ferraillages des poteaux situation accidentelle (N <sup>min</sup> , M <sup>corr</sup> )    | 108 |
| Tableau V.7             | Ferraillages des poteaux situation accidentelle (N <sup>corr</sup> , M <sup>max</sup> )    | 108 |
| Tableau V.8             | Ferraillages des poteaux situation accidentelle (N <sup>max</sup> , M <sup>corr</sup> )    | 109 |
| Tableau V.9             | Ferraillages des poteaux situation accidentelle (N <sup>min</sup> , M <sup>corr</sup> )    | 109 |
| Tableau V.10            | Ferraillages des poteaux situation accidentelle (N <sup>corr</sup> , M <sup>max</sup> )    | 110 |
| Tableau V.11            | Choix des armatures des poteaux                                                            | 110 |
| Tableau V.12            | Vérification des contraintes pour les poteaux (M <sup>corr</sup> , N <sup>Max</sup> )      | 111 |
| Tableau V.13            | Vérification des contraintes pour les poteaux (N <sup>min,</sup> M <sup>corr</sup> )       | 112 |
| Tableau V.14            | Vérification des contraintes pour les poteaux (N <sup>corr</sup> , M <sup>max</sup> )      | 112 |
| Tableau V.15            | Vérification de la contrainte de cisaillement pour les poteaux                             | 114 |
| Tableau V.16            | Espacement maximales selon RPA99 des poteaux                                               | 116 |
| Tableau V.17            | Choix des armatures transversales pour les poteaux                                         | 116 |
| Tableau V.18            | Schéma de ferraillage des poteaux                                                          | 119 |
| Tableau V.19            | Ferraillage des poutres porteuses 30x50                                                    | 121 |
| Tableau V.20            | Ferraillage des poutres porteuses 30x50                                                    | 121 |
| Tableau V.21            | Ferraillage des poutres porteuses 30x50                                                    | 122 |
| Tableau V.22            | Ferraillage des poutres non porteuses 30x40                                                | 122 |
| Tableau V.23            | Ferraillage des poutres non porteuses 30x40                                                | 122 |
| Tableau V.24            | Ferraillage des poutres non porteuses 30x40                                                | 123 |
| Tableau V.25            | Choix des armatures pour les poutres porteuses 30x50                                       | 123 |
| Tableau V.26            | Choix des armatures pour les poutres non porteuses 30x40                                   | 124 |
| Tableau V.27            | Vérification de la condition de non fragilité                                              | 124 |
| Tableau V.28            | Vérification des poutres (30X50) à l'ELS                                                   | 125 |
| Tableau V.29            | Vérification des poutres (30X40) à l'ELS                                                   | 125 |
| Tableau V.30            | Vérification de la contrainte de cisaillement                                              | 126 |
| Tableau V.31            | calcul des armatures transversales                                                         | 126 |
| Tableau V.32            | Tableau récapitulatif du calcul de la flèche                                               | 128 |
| Tableau V.33            | Ferraillage des poutres porteuses 30x50(Pour les bouts de voile)                           | 129 |
| Tableau V.34            | Ferraillage des poutres porteuses 30x50(Pour les bouts de voile)                           | 129 |
| Tableau V.35            | Ferraillage des poutres porteuses 30x50(Pour les bouts de voile)                           | 129 |
| Tableau V.36            | Choix des armatures pour les poutres porteuses 30x50                                       | 130 |
| <b></b>                 | (Pour les bouts de voile)                                                                  |     |
| Tableau V.37            | Vérification de la condition de non fragilité 30x50                                        | 130 |
| m 11 *** **             | (Pour les bouts de voile)                                                                  | 100 |
| Tableau V.38            | Vérification des poutres à l'ELS 30x50                                                     | 130 |
| m 11 */ **              | (Pour les bouts de voile)                                                                  | 101 |
| Tableau V.39            | Vérification de la contrainte de cisaillement 30x50                                        | 131 |
| TD 11 X7 40             | (Pour les bouts de voile)                                                                  | 101 |
| Tableau V.40            | calcul des armatures transversales 30x50                                                   | 131 |
| 77 11 X7 44             | (Pour les bouts de voile)                                                                  | 101 |
| Tableau V.41            | Tableau récapitulatif du calcul de la flèche 30x50                                         | 131 |
| Tableau V.42            | (Pour les bouts de voile)  Ferraillage des poutres non porteuses 30x40(avec bout de voile) | 132 |
| Tableau V.42            | remainage des pourres non porteuses 30x40(avec bout de voile)                              | 132 |

| Tableau V.43                | Ferraillage des poutres non porteuses 30x40(avec bout de voile)          | 132        |
|-----------------------------|--------------------------------------------------------------------------|------------|
| Tableau V.44                | Ferraillage des poutres non porteuses 30x40(avec bout de voile)          | 132        |
| Tableau V.45                | Choix des armatures pour les poutres non porteuses 30x40                 | 133        |
|                             | (Pour les bouts de voile)                                                |            |
| Tableau V.46                | Vérification de la condition de non fragilité 30x40                      | 133        |
|                             | (Pour les bouts de voile)                                                |            |
| Tableau V.47                | Vérification des poutres à l'ELS 30x40(pour les bouts de voile)          | 133        |
| Tableau V.48                | Vérification de la contrainte de cisaillement 30x40                      | 134        |
|                             | (Pour les bouts de voile)                                                |            |
| Tableau V.49                | calcul des armatures transversales 30x40(Pour les bouts de voile)        | 134        |
| Tableau V.50                | Tableau récapitulatif du calcul de la flèche 30x40(Pour les bouts        | 134        |
|                             | voile)                                                                   |            |
| Tableau V.51                | Valeurs de $(l_f/l)$                                                     | 141        |
| Tableau V.52                | Calcul de $\sigma_{u \ lim}$                                             | 142        |
| Tableau V.53                | Aciers verticaux et horizontaux                                          | 143        |
| Tableau V.54                | Acers transversaux                                                       | 144        |
| Tableau V.55                | Calcul de $\sigma_{ba}$ et $\sigma_{bna}$ pour l'exemple                 | 148        |
| Tableau V.56                | Calcul des armatures verticales de l'exemple                             | 149        |
| Tableau V.57                | Caractéristiques des voiles                                              | 151        |
| Tableau V.58                | Calcul des armatures du voile (V1)                                       | 151        |
| Tableau V.59                | Calcul des armatures du voile (V2)                                       | 151        |
| Tableau V.60                | Calcul des armatures du voile (V3)                                       | 152        |
| Tableau V.61                | Calcul des armatures du voile (V4)                                       | 152        |
| Tableau V.62                | Calcul des armatures du voile (V5)                                       | 152        |
| Tableau V.63                | Calcul des armatures du voile (V6)                                       | 152        |
| Tableau V.64                | Calcul des armatures du voile (V7)                                       | 152        |
| Tableau V.65                | Calcul des armatures du voile (V8)                                       | 153        |
| Tableau V.66                | Calcul des armatures du voile (V9)                                       | 153        |
| Tableau V.67                | Calcul des armatures du voile (V10)                                      | 153        |
| Tableau V.68                | Calcul des aciers de coutures des voiles                                 | 153        |
| Tableau V.69                | Calcul des aciers horizontaux des voiles                                 | 154        |
| Tableau V.70                | Ferraillage des linteaux                                                 | 161        |
| Tableau V.71                | Ferraillage des linteaux                                                 | 161        |
| Tableau V.72                | Ferraillage des linteaux                                                 | 162        |
| Tableau V.73                | Ferraillage des linteaux                                                 | 162        |
| Tableau VI.1                | Sections des semelles filantes                                           | 167        |
| Tableau VI.2                | Chois la hauteur de nervure                                              | 171        |
| Tableau VI.3                | caractéristiques géométriques du radier                                  | 171        |
| Tableau VI.4                | Contraintes sous le radier à l'ELU                                       | 174        |
| Tableau VI.5                | Contraintes sous le radier à l'ELS                                       | 174        |
| Tableau VI.6                | Calcul des moments à l'ELU                                               | 176        |
| Tableau VI.7                | Calcul des moments à l'ELS                                               | 176<br>177 |
| Tableau VI.8                | Ferraillage des panneaux du radier  Vérification des contraintes(radier) |            |
| Tableau VI.9                | Ferraillage des nervures sens (y-y)                                      | 178<br>179 |
| Tableau VI.10 Tableau VI.11 | Ferraillage des nervures sens (y-y)  Ferraillage des nervures sens (x-x) | 180        |
| Tableau VI.11               | Vérification des contraintes (Nervure)                                   | 180        |
| Tableau VI.12 Tableau VI.13 | Ferraillage du débord                                                    | 183        |
| Tableau VI.13               | Vérification des contraintes du débord                                   | 184        |
| 1 avicau 11.14              | - contention des containtes du déboid                                    | 104        |

| Tableau VI.15 | Ferraillage du Voile Périphérique    | 186 |
|---------------|--------------------------------------|-----|
| Tableau VI.16 | Vérification des contraintes à l'ELS | 188 |

# Liste des figures

| Chapitre 1: presentation de 1 ouvrage                         |     |
|---------------------------------------------------------------|-----|
| I.1.escalier                                                  |     |
| I.2.diagramme contrainte déformation du béton a ELU           |     |
| I.3.diagramme contrainte déformation du béton a ELS           |     |
| I.4.diagramme contrainte déformation de l'acier à ELU         |     |
| Chapitre II : pré dimensionnement                             |     |
| II.1.détails d'une planche à corps creux                      |     |
| II.2.détails d'une planche à dalle plaine                     | . 1 |
| II.3.surface reprise par le poteau central                    | 2   |
| II.4.shema de voile                                           | 2   |
| Chapitre III : calcul des éléments secondaire                 |     |
| III.1.schéma représentatif de l'acrotère                      | 2   |
| III.2.sollicitation de l'acrotère                             | 2   |
| III.3.diagrammes de l'effort à L' ELU                         | 2   |
| III.4.section de calcul de l'acrotère                         | 4   |
| III.5.distance de l'axe neutre                                |     |
| III.6.ferraillage de l'acrotère                               | 2   |
| III.7.dimensions de l'escalier                                | ,   |
| III.8.shéma de l'escalier                                     | ,   |
| III.9.shéma statique de l'escalier                            |     |
| III.10.ferraillage du palier                                  |     |
| III.11.ferraillage des marches                                | ,   |
| III.12.coupe des planches en corps creux                      |     |
| III.13.shéma de poutrelle                                     | ,   |
| III.14.diagramme des moments fléchissant et efforts           |     |
| Tranchant de la poutrelle à 4 travées                         |     |
| III.15. diagramme des moments fléchissant et efforts          |     |
| Tranchant de la poutrelle à 5 travées.                        | •   |
| III.16. diagramme des moments fléchissant et efforts          |     |
| Tranchant de la poutrelle à 6 travées                         | •   |
| III.17.disposition constructive des armatures                 |     |
| Des poutrelles                                                |     |
| III.18.disposition constructive des armatures                 | (   |
| Da la table de compression                                    |     |
| III.19.shéma de la dalle plaine sous sol                      | (   |
| III.20.ferraillage de la dalle pleine                         |     |
| III.21.vue en plan des balcons                                | Ì   |
| III.22.plan de ferraillage des balcons                        |     |
| Chapitre IV : étude dynamique en zone sismique                |     |
| IV.1.spectre de réponse                                       |     |
| IV.2.vue en 3D du modèle initial                              | ,   |
| IV.3. vue en plan du modèle initial                           | ,   |
| IV.4.vue en 3D du modèle 1                                    | 8   |
| I V .サ. Y UV . C II . フフ U III U II I I I I I I I I I I I I I |     |

| IV.5.vue en plan du modèle 1                             | 80  |
|----------------------------------------------------------|-----|
| Chapitre V : ferraillage des éléments résistant          |     |
| V.1.arrét des barres                                     | 127 |
| V.2.shéma de ferraillage des poutres porteuses           | 135 |
| Et non porteuses                                         |     |
| V.3.shéma de poutre avec bout de voile                   | 137 |
| V.4.définition de l'élément mur                          | 141 |
| V.5.discrétisation d'un voile en élément (maille) coque  | 145 |
| V.6.disposition des armatures verticales dans les voiles | 146 |
| V.7.disposition des voiles                               | 150 |
| V.8.Contraintes $\delta_{22}$                            | 155 |
| V.9.Contraintes $\delta_{12}$                            | 155 |
| V.10.ferraillage des voile (V3; RDC)                     | 156 |
| V.11. ferraillage des voile (V3; 5 <sup>éme</sup> )      | 157 |
| V.12. ferraillage de linteau (RDC)                       | 163 |
| V.13.ferraillage de linteau (5 <sup>éme</sup> )          | 164 |
| Chapitre VI : étude des fondations                       |     |
| VI.1.semelle isolée sous poteaux                         | 166 |
| VI.2.semelle filantes                                    | 167 |
| VI.3.disposition des nervures par rapport au radier      | 168 |
| Et aux poteaux.                                          |     |
| VI.4.schéma statique du bâtiment                         | 172 |
| VI.5.contrainte sous le radier                           | 173 |
| VI.6.vue en plan illustrant dimensions du panneau        | 177 |
| De rive le plus sollicité                                |     |
| VI.7.ferraillage de la dalle du radier                   | 179 |
| VI.8.ferraillage des nervures du sens porteur            | 182 |
| VI.9.shéma du débord                                     | 182 |
| VI.10.diagrame des moments                               | 182 |
| VI.11.ferraillage du débord                              | 184 |
| VI.12.vue illustrant les dimensions du panneau           | 185 |
| Le plus sollicité                                        |     |
| VI.13.ferraillage du voile périphérique                  | 188 |
|                                                          |     |

# Introduction

#### I. INTRODUCTION GENERALE:

Les désordres et les conséquences fâcheuses engendrés par les sollicitations sismiques, dont le phénomène de ruine structurelle partielle ou total des constructions ont fait que la prise en compte du risque sismique dans la conception des ouvrages est devenue plus que nécessaire et ont contribué à la connaissance phénoménologique de l'action sismique.

Une structure doit être calculée et conçue de telle manière à ce :

- Qu'elle reste apte à l'utilisation pour laquelle elle a été prévue, compte tenu de sa durée de vie envisagée et de son coût.
- Elle ne doit pas être endommagé par des événements, tels que : Explosion, choc ou conséquences d'erreurs humaines.
- Elle doit résister à toutes les actions et autres influences susceptibles de s'exercer aussi bien pendent l'exécution que durant son exploitation et qu'elle ait une durabilité convenable au regard des coûts d'entretien.

Pour satisfaire aux exigences énoncées ci-dessus, on doit choisir convenablement les matériaux, définir une conception, un dimensionnement et des détails constructifs appropriés. Spécifier les procédures de contrôles adaptées au projet considéré, au stade de la production, de la construction et de l'exploitation. Pour ce faire il faut impérativement se munir des règlements propres à chaque pays (RPA99/version 2003 pour le cas de l'Algérie).

Dans le cadre de ce présent projet de fin d'étude, nous proposons de faire une étude pour un bâtiment de R+10, avec 2 sous-sols.

Notre mémoire se structure comme suit :

- ➤ Le 1<sup>er</sup> chapitre constitue une présentation de l'ouvrage et les caractéristiques des matériaux utilisés.
- L'objectif du deuxième chapitre est le pré dimensionnent des éléments résistant (Poteaux, poutres et voiles).
- ➤ Dans le troisième chapitre nous étudions les éléments secondaires (acrotère, poutrelles, escaliers, balcons, dalle pleine).
- Le quatrième chapitre qui est une étape importante pour notre étude ; c'est la modélisation de la structure et la détermination des modes de vibrations.
- L'étude du bâtiment sera faite par l'analyse d'éléments finis de la structure en 3D à l'aide du logiciel de calcul **ETABS 18.0.2**.

Le calcul de ferraillage des éléments structuraux a été déterminé avec le logiciel **SOCOTEC**, fondé sur les résultats du logiciel **ETABS18.0.2**, sera l'objectif du cinquième chapitre.

Le sixième chapitre portera sur l'étude de fondation.

Et enfin, Nous terminons ce document par une conclusion générale.

# Présentation de l'ouvrage

#### I.1. Introduction:

Ce projet porte sur l'étude d'une Bâtiment (*RDC+10+2SS*) à usage multiple, l'ouvrage est implanté à Alger qui est classée comme zone de forte sismicité (*Zone III*) selon le classement des zone établit par le règlement parasismique Algérien (*RPA 99 version 2003*).

Notre étude sera conforme aux exigences des règles de conception et de calcul des ouvrages en béton armé CBA93, BAEL91, et aux règles parasismiques RPA99 version 2003.

#### I.2. Présentation De L'ouvrage :

L'objet de notre projet est l'étude des éléments résistants d'un bâtiment constitué d'un seul bloc. Cette structure se compose de :

- Rez de chaussée et le premier étage à usage de commerce.
- 9 étages à usage d'habitation.
- 2 sous sol à usage de parking.
- Terrasse inaccessible.

#### I.2.1. Caractéristiques géométriques :

#### Dimensions en élévation :

| - | Hauteur totale du bâtiment                  | 34.4m.  |
|---|---------------------------------------------|---------|
| _ | Hauteur du sous sol 1                       | 3.65 m. |
| _ | Hauteur du sous sol 2                       | 2.96m.  |
| _ | Hauteur du rez-de-chaussée et étage courant | 3.55 m. |

#### **Dimensions en plan**:

- Longueur totale en plan ......29.23m.
- Largeur totale en plan ......22.59 m.

#### I.2.2. Ossature:

Le bâtiment est assuré par une structure résistante constituée de portiques auto-stable en béton armé et des voiles suivant les deux sens qui assure la rigidité et la stabilité de la structure. Donc selon (*RPA 99 version 2003*) le système de contreventement du bâtiment est un système de contreventement mixte assuré par des voiles et des portiques.

#### I.2.3. Classification du bâtiment selon (RPA 99 versions 2003):

Le bâtiment est un ouvrage classé dans le « *groupe 2* », car il est à usage d'habitation dont la hauteur ne dépasse pas 48 m.

#### I.2.4. Plancher:

Les planchers, étant considérés comme des diaphragmes rigides, d'épaisseur relativement faible par rapport aux autres dimensions de la structure, dont le rôle est de résister aux charges verticales et les transmettre aux éléments porteurs de la structure, ils ont également un rôle d'isolation thermique et phonique.

Dans notre bâtiment, on a deux types de plancher :

- Plancher à corps creux.
- Plancher à dalle pleine (sous-sol et balcons).

#### I.2.5. Escalier:

L'escalier est un ouvrage constitué d'une suite de marches et de paliers qui permettent de passer d'un niveau à un autre.

Dans notre bâtiment, on a un type d'escalier :

- Escaliers avec palier qui sont constituées de deux volées.

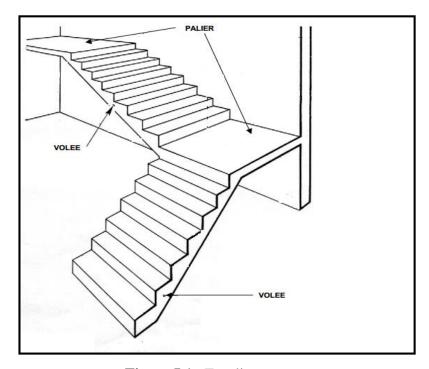



Figure I.1 : Escaliers.

#### I.2.6 Terrasse:

Notre structure comporte un seul type de terrasse :

- Terrasse inaccessible.

#### I.2.7. Maçonnerie:

La maçonnerie du bâtiment est réalisée en briques creuses :

- Murs extérieurs constitués d'une double paroi en briques (15 cm et 10 cm d'épaisseur) séparée par une âme d'air de 5 cm d'épaisseur.
- Murs intérieurs constitués par une seule paroi de brique de 10 cm d'épaisseur.

#### I.2.8 Acrotère:

Au niveau de la terrasse, la structure est entourée d'un acrotère conçu en béton armé de 60cm de hauteur et de 10cm d'épaisseur.

#### I.2.9. Infrastructure:

Elle sera réalisée en béton armé coulée sur place, elle doit constituer un ensemble résistant et rigide capable de remplir les fonctions suivantes :

- \* Réaliser l'encastrement de la structure dans le sol.
- \* Transmettre les charges horizontales (charges sismiques) et les charges verticales au sol d'assise de la structure.
- \* La contrainte admissible du sol est de 3 bars (selon un rapport de sol).
- \*La catégorie de site S<sub>3</sub> : site meuble.

#### I.3. Caractéristiques Mécaniques Des Matériaux :

Les caractéristiques des matériaux utilisés dans la construction du bâtiment doivent être conformes aux règles techniques de construction et de calcul des ouvrages en béton armé (*BAEL91*) et à la réglementation en vigueur en Algérie (*RPA 99 version 2003* et *CBA93*).

#### **I.3.1. Béton:**

#### a. Composition du béton :

Le béton est un matériau constitué par le mélange dans des proportions convenables, de ciment, de granulats (graviers, sable) et d'eau. Il résiste bien à la compression, tandis que sa résistance à la traction est faible.

Pour sa mise en œuvre, le béton doit être maniable et doit présenter certains critères :

- 1. une résistance mécanique élevée.
- 2. un retrait minimum.
- 3. une bonne tenue dans le temps.
- **Granulats :** pour un béton normal les dimensions des granulats sont compris entre : 0,2mm < Cg < 25mm.
- **Liants**: le liant le plus couramment utilisé pour un béton normal est le ciment portland artificiel de classe 32,5 (CEMI325).
- L'eau : l'eau utilisée dans le béton doit être une eau potable filtrée de toute impureté de matière organique.
- **Sable :** sable noir 0/3, il a été utilisé pour la construction et le sable jaune qui a été utilisé pour la maçonnerie.

#### b. Résistance du béton :

Béton est caractérisé par sa résistance à la compression à «j» jours.

#### b.1. Résistance à la compression:

Le béton est défini par une valeur de sa résistance caractéristique à la compression à l'âge de **28 jours**. Celle-ci, notée  $\mathbf{f}_{c28}$ . Cette valeur est déterminée par des essais sur des éprouvettes cylindriques normalisées (16x32) dont la hauteur est double du diamètre et de section 200 cm<sup>2</sup>.

$$j \le 28 jours \rightarrow f_{cj} = 0.685 f_{c28} \log(j+1)$$
  
 $j = 28 jours \rightarrow f_{cj} = f_{c28}$   
 $j > 28 jours \rightarrow f_{cj} = 1.1 f_{c28}$ 

Pour les ouvrages courants on admet une résistance à la compression :

 $f_{c28} = 25 \text{ MPa}$ 

#### b.2. Résistance à la traction :

La résistance caractéristique à la traction à «j» jours notée par «  $f_{tj}$  », elle est conventionnellement définie par la relation :

$$f_{tj} = 0.6 + 0.06 f_{cj}$$
 (MPa) [1]

Pour 
$$f_{c28} = 25$$
 MPa, on trouve  $f_{t28} = 2.1$ MPa

#### c. Module de déformation longitudinale :

Ce module est défini sous l'action des contraintes normales d'une longue durée ou de courte application, connu sous le nom de module de "Young ou module de déformation longitudinal".

#### c.1. Module d'élasticité instantané « $E_{ij}$ » :

Sous des contraintes normales d'une courte durée (inférieure à 24 heures), on admet qu'à **j jours**, le module d'élasticité instantané du béton est égale à :

$$E_{ij} = 11000 (f_{cj})^{1/3} (MPa)$$
 Donc:  $E_{ij} = 32164.195 MPa$  [1]

 $f_{cj}$ : résistance caractéristique à la compression à **j jours**. (MPa)

#### c.2. Module d'élasticité différé « $E_{vj}$ » :

Sous des contraintes de longue durée d'application, on admet qu'à **j jours**, le module de déformation longitudinale différée est donné par la formule :

$$E_{vj} = 3700 (f_{cj})^{1/3} (Mpa)$$
 Donc:  $E_{vj} = 10818.886 \text{ MPa}$  [1]

#### d. Coefficient de poisson :

Le coefficient de poisson représente la variation relative de dimension transversale d'une pièce soumise à une variation relative de dimension longitudinale.

$$\nu = \frac{\Delta l/l}{\Delta l/l} = \frac{Allongement\ relatif\ dans\ le\ sens\ transversde}{\text{Raccourcissement\ relatif\ longitudinale}}$$

• E.L.U:

v = 0.0 calcul des sollicitations (béton fissuré).

• E.L.S:

v = 0.2 calcul des déformations (béton non fissuré).

#### e. Poids volumique:

On adopte la valeur  $\rho = 25 \text{ kN/m}^3$ 

#### f. Les contraintes limites de calcul:

#### f.1. Contraintes limites à l'état limite ultime (E.L.U):

L'état limite ultime est défini généralement par la limite de résistance mécanique au-delà de la quelle il y a ruine de l'ouvrage, dans ce cas la contrainte est définie par :

$$f_{bc} = \frac{0.85 f_{c28}}{\theta \gamma_b}$$
 [1]

#### Avec:

 $\gamma_b$ : Coefficient de sécurité.

Tel que:

 $\theta$  = coefficient fixé en fonction de la durée d'application de l'action considérée.

Avec : t = durée d'application de l'action considérée en heures.

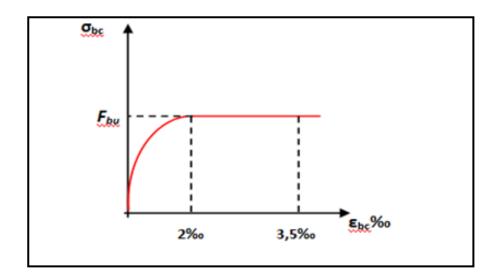



Figure I.2: Diagramme contrainte-déformation du béton à ELU.

#### f.2. Contraintes limites à l'état limite de service (E.L.S):

L'état limite de service est un état de chargement au-delà du quel la construction ne peut plus assurer le confort et la durabilité pour lesquels elle a été conçue ; on distingue :

- L'état limite de service vis-à-vis de la compression de béton .
- L'état limite de service d'ouverture des fissures.
- L'état limite de service de déformation.

La contrainte limite de service est donnée par :  $\sigma_{bc} = 0.6 f_{c28}$ 

 $f_{c28} = 25MPa$  on trouve :  $\sigma_{bc} = 15 \text{ MPa}$ 

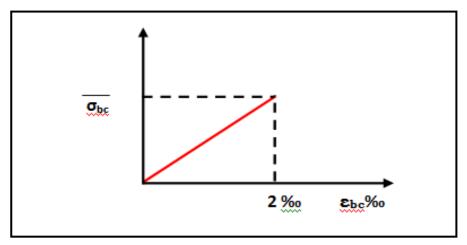



Figure I.3 : Diagramme contrainte-déformation du béton a ELS.

#### **I.3.2. ACIERS:**

A fin de remédier au problème de non résistance du béton à la traction, on intègre dans les pièces de béton des armatures d'acier pour reprendre les efforts de traction.

Les aciers utilisés pour constituer les pièces en béton armé sont :

- Ronds lisses ( $\emptyset$ ): FeE240
- Barres à haute adhérences (HA) : FeE500
- Treillis soudés (TS): **TLE520** Ø=6 mm pour les dalles.

#### a. Les limites élastiques :

- Les ronds lisses (R.L):  $(f_e = 235 MPa)$
- Barres à haute adhérence (HA) :  $f_e = 500 MPa$ .
- Treillis soudés (TS) :  $f_e = 520MPa$ .

#### b. Module d'élasticité des aciers :

Les aciers sont aussi caractérisés par le module d'élasticité longitudinale. Les expériences ont montré que sa valeur est fixée quelque soit la nuance de l'acier.

$$Es = 2, 1.10^5 MPa$$

#### c. Les contraintes limites de calcul :

#### c.1. Contraintes limites à l'état limite ultime (E.L.U):

On adopte le diagramme contrainte- déformation suivant:

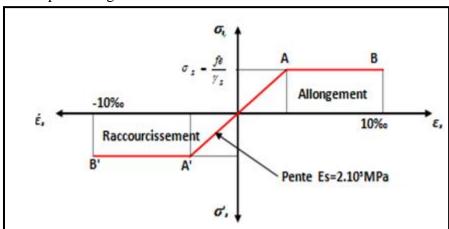



Figure I.4: Diagramme contrainte-déformation de l'acier à ELU.

fe: Contrainte limite élastique.

 $\varepsilon_s$ : Déformation (allongement) relative de l'acier  $\rightarrow \varepsilon_s = \frac{\Delta L}{L}$ 

$$\varepsilon_{es} = \frac{fe}{E_s \gamma_s}$$

 $\sigma_{\rm s}$ : Contrainte de l'acier. :  $\sigma_{\rm s} = \frac{f_e}{\gamma_{\rm s}}$ 

γ<sub>s</sub>: Coefficient de sécurité de l'acier.

 $\gamma_s = \begin{cases} 1{,}15 & Cas \, des \, situations durable soutrans ito i nes \\ 1{,}00 & Cas \, des \, situations accidente \, les \end{cases}$ 

Pour les aciers FeE500 on a :  $\varepsilon_{es} = \frac{500}{1,15 \times 2,1.10^5} = 2,07 \%$ 

#### c.2. Contraintes limites à l'état limite de service (E.L.S):

C'est l'état où on fait les vérifications des contraintes par rapport aux cas appropriées :

• Fissuration peu nuisible : pas de vérification.

• Fissuration préjudiciable :  $\overline{\sigma}_s = Min\left(\frac{2}{3}f_e, \max\left(0.5f_e; 110\sqrt{\eta f_{ij}}\right)\right)$ [1]

• Fissuration très préjudiciable :  $\sigma_s = Min\left(\frac{1}{2}fe, \max\left(200,90.\sqrt{\eta.f_{tj}}\right)\right)$ 

 $\eta$ : Coefficient de fissuration

 $\eta = 1.00$  pour les aciers ronds lisse.

 $\eta = 1,60$  pour les aciers à haute adhérence.

#### d. Le coefficient d'équivalence :

Le coefficient d'équivalence noté « n » est le rapport de :

n : Coefficient d'équivalence.

Es : Module de déformation de l'acier.

Eb: Module de déformation du béton.

#### I.4. Hypothèses de calcul:

Le calcul en béton armé est basé sur les hypothèses suivantes:

- Les sections droites restent planes après déformation.
- Il n'y a pas de glissement entre les armatures d'acier et le béton.
- Le béton tendu est négligé dans le calcul de la résistance à cause de sa faible résistance à la traction.
- Le raccourcissement unitaire du béton est limité à 3,5 ‰ en flexion simple ou composée et à 2‰ dans la compression simple.
- L'allongement unitaire dans les aciers est limité à 10‰.
- La contrainte de calcul, notée " $\sigma_s$ " et qui est définie par la relation :  $\sigma_s = \frac{f_e}{\gamma_s}$ égale a :

  - ♦ Rond lisse  $\begin{cases} \sigma_s = 204{,}34MPa & Situation durable \\ \sigma_s = 235MPa & Situation accidente lle \end{cases}$ ♦ Haute adhérence  $\begin{cases} \sigma_s = 434{,}78MPa & Situation durable \\ \sigma_s = 500MPa & Situation accidente lle \end{cases}$
- Allongement de rupture :  $\varepsilon_s = 10\%$  Hauteur du sous sol.

# Pré Dimensionnement

#### II.1. Introduction:

Le but du pré dimensionnement est de définir les dimensions des éléments résistants de la structure et de déterminer les différentes charges et surcharges agissant sur la stabilité et la résistance de l'ouvrage. Ces dimensions sont choisies selon les formules du RPA99 V2003, CBA93 et BAEL 91 modifie 99.

Les résultats obtenus peuvent être modifiés après les vérifications dans la phase du dimensionnement.

#### II.2. Pré-dimensionnement des planchers :

Les planchers sont des éléments porteurs horizontaux dont leur épaisseur est faible par rapport à leurs dimensions en plan et peuvent reposer sur 2, 3 et 4 appuis.

Pour des planchers courants et pour des raisons économiques et de mise en œuvre, on opte généralement pour des corps creux avec des poutrelles préfabriquées. Ils sont conçus afin de supporter leur poids propre, les charges d'exploitations et assurer l'isolation thermique et phonique.

#### a) Plancher à corps creux :




Figure II.1: Détails d'un plancher à corps creux

Selon le BAEL 91, on doit dimensionner le plancher suivant la condition suivante :

$$\boxed{\frac{L}{25} \le h_t \le \frac{L}{20}} \qquad [1]$$

ht: L'épaisseur totale du plancher.

L : la portée maximale de la poutrelle mesurée entre nus des appuis.

$$L = 3.5 \text{m}$$
  $18.8 \le \text{ht} \le 23.5$ 

Donc on adoptera des planchers à corps creux avec une hauteur de (16+5)=21cm.

#### b) Plancher à dalle pleine : (balcon et sous-sol)

L'épaisseur de la dalle dépend le plus souvent des conditions d'utilisation que des vérifications de résistance.

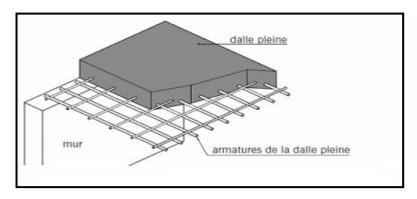



Figure II.2 : Détails d'un plancher à dalle pleine

On déduira donc l'épaisseur des dalles à partir des conditions suivantes :

#### • Résistance au feu :

Le coupe feu est obtenu par la dalle de compression. Autrement, plus on augmente l'épaisseur de béton plus le plancher est résistant au feu.

e = 7 cm Pour une heure de coupe - feu

e = 11 cm Pour deux heures de coupe – feu

Alors, on admet : e = 11 cm.

#### • Résistance à la flexion :

Les conditions qui doivent être vérifiées selon le nombre des appuis sont les suivantes :

- Dalle reposant sur deux appuis :

$$\frac{L_x}{35} \le e \le \frac{L_x}{30} \tag{6}$$

- Dalle reposant sur trois ou quatre appuis :

$$\frac{L_x}{50} \le e \le \frac{L_x}{40}$$

#### Avec:

e = Epaisseur de la dalle pleine.

L<sub>x</sub> = La plus petite portée mesurée entre nus des appuis du panneau le plus sollicité.

 $L_x = 3.5 \text{ m}$ 

La dalle repose sur quatre appuis

On aura donc :  $9,40 \le e \le 11,75$  (cm)  $\leftarrow$  On admet : e = 11 cm.

#### • Isolation phonique:

Selon les règles « CBA93 », l'épaisseur du plancher doit être supérieure ou égale à 13 cm, pour obtenir une bonne isolation acoustique. [3]

Soit : e = 15 cm.

Donc pour la dalle pleine, et d'après les conditions précédentes on choisit une épaisseur de **16cm**.

#### **II.3. Evaluation des charges :**

Cette étape consiste à déterminer les charges et les surcharges qui influent sur la résistance et la stabilité de l'ouvrage, selon le DTR B.C.2.2. [4]

#### **II.3.1** Charges permanentes:

#### A) Terrasse inaccessible:

**Tableau II.1 :** Composition de la terrasse (inaccessible)

| Matière                                     | Epaisseur | ρ (KN/m²) | G(KN/m2)              |
|---------------------------------------------|-----------|-----------|-----------------------|
|                                             | (cm)      |           |                       |
| <ol> <li>Gravillon de protection</li> </ol> | 5         | 17        | 0,85                  |
| 2. Etanchéité multicouche                   |           |           | 0,12                  |
| 3. Forme de pente                           | 10        | 22        | 2,2                   |
| 4. Isolation thermique                      | 4         | 4         | 0,16                  |
| 5. Dalle de compression +corps creux        | 16+5      | 10        | 2,80                  |
| 6. Enduit en plâtre                         | 2         | 10        | 0,20                  |
|                                             |           |           |                       |
|                                             |           | ∑=G       | 6.34KN/m <sup>2</sup> |

#### B) Etage courant:

Tableau II.2: Composition du plancher courant

| Matière                                                             | Epaisseur<br>(cm) | ρ (KN/m²)      | G(KN/m2)            |
|---------------------------------------------------------------------|-------------------|----------------|---------------------|
| 1. Carrelage                                                        | 2                 | 22             | 0,44                |
| 2. Mortier de pose                                                  | 2                 | 20             | 0,40                |
| <ul><li>3. Lit de sable</li><li>4. Dalle de compression +</li></ul> | 3                 | 18             | 0,54                |
| corps creux 5. Enduit en plâtre 6. Cloisons de distribution         | 16+5<br>2<br>10   | 10<br>10<br>10 | 2,8<br>0,20<br>1,00 |

 $\Sigma$ =G 5,38 KN/m<sup>2</sup>

#### A) Dalle pleine (sous sol):

Tableau II.3: Composition de la dalle pleine

| Matière                               | Epaisseur<br>(cm) | ρ (KN/m²) | G(KN/m2) |
|---------------------------------------|-------------------|-----------|----------|
| 1. Carrelage                          | 2                 | 22        | 0,44     |
| 2. Mortier de pose                    | 2                 | 20        | 0,40     |
| 3. Lit de sable                       | 3                 | 18        | 0,54     |
| 4. Dalle pleine                       | 15                | 25        | 3,75     |
| <ol><li>5. Enduit en plâtre</li></ol> | 2                 | 10        | 0,20     |
| 6. Cloisons de distribution           | 10                | 10        | 1,00     |
|                                       |                   |           |          |

 $\Sigma$ =G 6,33 KN/m<sup>2</sup>

#### B) Balcon:

**Tableau II.4 :** Composition de la dalle pleine (balcon)

| Matière             | Epaisseur (m) | ρ (KN/m <sup>3</sup> )   | ρ (KN/m <sup>2</sup> ) |
|---------------------|---------------|--------------------------|------------------------|
| 1. Carrelage        | 0,02          | 22                       | 0,44                   |
| 2. Mortier de pose  | 0,02          | 20                       | 0,40                   |
| 3. Lit de sable     | 0,03          | 18                       | 0,54                   |
| 4. Dalle pleine     | 0,15          | 25                       | 3.75                   |
| 5. Enduit en plâtre | 0,03          | 10                       | 0,30                   |
|                     |               |                          |                        |
|                     |               | $\sum \rho = \mathbf{G}$ | $5.45 \text{ KN/m}^2$  |

#### C) Mur extérieur (double cloisons)

Tableau II.5: Composition de mur extérieur

| Matière                    | Epaisseur    | $\rho (KN/m^3)$ | ρ (KN/m²)              |
|----------------------------|--------------|-----------------|------------------------|
|                            | ( <b>m</b> ) |                 |                        |
| Enduit intérieur au plâtre | 0,02         | 10              | 0,20                   |
| 2. Briques creuses         | 0,10         | 09              | 0,90                   |
| 3. L'âme d'air             | 0,05         | 00              | 0,00                   |
| 4. Briques creuses         | 0,15         | 09              | 1,35                   |
| 5. Enduit extérieur        | 0,02         | 18              | 0,36                   |
|                            |              | $\sum \rho = G$ | 2,81 KN/m <sup>2</sup> |

#### D) Mur intérieur :

Tableau II.6: Composition de mur intérieur

| Matière             | Epaisseur    | $\rho (KN/m^3)$          | $\rho (KN/m^2)$       |
|---------------------|--------------|--------------------------|-----------------------|
|                     | ( <b>m</b> ) |                          |                       |
| 1. Enduit au plâtre | 0,02         | 10                       | 0,20                  |
| 2. Briques creuses  | 0,10         | 09                       | 0,90                  |
| 3. Enduit au plâtre | 0,05         | 10                       | 0,20                  |
|                     |              | $\sum \rho = \mathbf{G}$ | 1,3 KN/m <sup>2</sup> |

#### II.3.2 Charges d'exploitations :

**Tableau II.7:** Charges d'exploitations.

| 1) Acrotère                            | $Q = 1.0 \text{ KN/m}^2$ |
|----------------------------------------|--------------------------|
| 2) Plancher terrasse inaccessible      | $Q = 1.0 \text{ KN/m}^2$ |
| 3) Plancher étage courant (habitation) | $Q = 1.5 \text{ KN/m}^2$ |
| 4) Escaliers                           | $Q = 2.5 \text{ KN/m}^2$ |
| 5) Balcon                              | $Q = 3.5 \text{ KN/m}^2$ |
| 6) Parking (sous sol)                  | $Q = 2.5 \text{ KN/m}^2$ |

#### II.4 Pré-dimensionnement des poutres :

Les poutres sont des éléments porteurs horizontaux en béton armé et ont pour but de transmettre aux poteaux les efforts dus aux charges transmis par les planchers.

Leur pré-dimensionnement se base sur les étapes suivantes :

- Détermination des dimensions (h, b) à partir des formules données par le **BAEL91** modifié 99.
- Vérification des dimensions (h, b) par le Règlement Parasismique Algérien **RPA99** version 2003.

• Selon le BAEL91 modifié 99 : [1]

- La hauteur **h** de la poutre doit être :  $\frac{L}{15} \le h \le \frac{L}{10}$
- La largeur **b** de la poutre doit être :  $0.3h \le b \le 0.7h$

Avec:

L : Portée de la poutre de la plus grande travée considérée entre nu .

h: Hauteur de la poutre.

b : Largeur de la poutre.

• Selon le RPA99 version 2003 : [2]

- La hauteur **h** de la poutre doit être :  $h \ge 30cm$ .

- La largeur **b** de la poutre doit être :  $b \ge 20cm$ .

- Le rapport hauteur largeur doit être :  $\frac{h}{b} \le 4$ 

- On 'a:

1-Poutre principale (porteuse)

$$\begin{cases} L = 4.7 \text{ m.} \end{cases}$$

2- Poutre secondaire (non porteuse)  $\{L=3,5 \text{ m}.$ 

Tableau II.8: Pré-dimensionnement des poutres

| Selon le                                                                         |                                 |              |                                   |
|----------------------------------------------------------------------------------|---------------------------------|--------------|-----------------------------------|
|                                                                                  | Poutre secondaire               |              |                                   |
| $L/15 \le h \le L/10$                                                            | L                               |              | L =3,5 m                          |
|                                                                                  | =4,7 m                          |              | 23,33≤h≤35 (cm)                   |
|                                                                                  | 31,33≤h≤47 (cm)                 |              | h=40cm                            |
|                                                                                  | h=50cm                          |              |                                   |
| 0.3h ≤b≤ 0.7h                                                                    | 15≤b≤35 (cm)                    |              | 12≤b≤28 (cm)                      |
|                                                                                  | b= 30cm                         |              | b= 30cm                           |
| Seloi                                                                            | n le RPA99/V2003 (véri          | fication)[2] |                                   |
| • h≥30cm                                                                         | h=50≥40 (cm)                    |              | h=40≥30 (cm)                      |
| • b≥20cm                                                                         | b=30\ge 20 (cm)                 |              | b=30\ge 20 (cm)                   |
| • h/b≥4                                                                          | 50/30=1.67≤4                    |              | 40/30=1.33≤4                      |
|                                                                                  | Condition de rigidi             | ité          |                                   |
|                                                                                  |                                 |              |                                   |
| $\left(\frac{\boldsymbol{h}}{\boldsymbol{L}}\right) > \left(\frac{1}{16}\right)$ | $\frac{50}{500} = 0.1 > 0.0625$ |              | $\frac{40}{300} = 0.133 > 0.0625$ |

# II.5 Pré-dimensionnement des poteaux :

Les poteaux sont pré-dimensionnés en compression simple en choisissant les poteaux les plus sollicités de la structure. C'est-à-dire, un poteau central, un poteau de rive et un poteau d'angle.

Chaque type de poteau est affecté de la surface de plancher chargé lui revenant et on utilisera un calcul basé sur la descente de charge, on appliquera la loi de dégression des charges d'exploitations.

# II.5.1 Procédure de pré-dimensionnement :

Le Pré dimensionnement des poteaux s'effectue de la manière suivante :

- ✓ Calcul de la surface reprise par chaque poteau.
- ✓ Évaluation de l'effort normal ultime de la compression à chaque niveau.
- ✓ La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau.
- ✓ La section du poteau obtenue doit vérifier les conditions minimales imposées par le « RPA99 version 2003 ».

# ❖ D'après l'article B.8.4.1 du BAEL91 :

La section du poteau est déterminée en supposant que les poteaux sont soumis à la compression simple par la formule suivante :

$$N_{u} = \alpha \left[ \frac{Br.f_{c28}}{0.9\gamma_{b}} + \frac{A_{s}fe}{\gamma_{s}} \right]$$
 [1]

Avec

- $\triangleright$  Nu : Effort normal ultime (compression) =1,35G+1,5Q.
- $\triangleright$   $\alpha$ : Coefficient réducteur tenant compte de la stabilité  $(\alpha = f(\lambda))$ .
- $\triangleright$   $\lambda$ : Elancement d'EULER :  $\lambda = \frac{L_f}{i}$
- $ightharpoonup L_f$ : Longueur de flambement :  $l_f = k l_0$
- ightharpoonup i: Rayon de giration :  $i = \sqrt{\frac{I}{B}}$
- ➤ I: Moment d'inertie de la section :  $I = \frac{b \cdot a^3}{12}$
- B : Surface de la section du béton : a x b
- $\triangleright$   $\gamma_b$ : Coefficient de sécurité pour le béton ( $\gamma_b = 1,50$ ).....situation durable.
- $ightharpoonup \gamma_s$  : Coefficient de sécurité pour l'acier  $(\gamma_s=1,15)$ ..... situation durable.
- > fe : Limite élastique de l'acier (fe = 500 MPa).
- ightharpoonup fc<sub>28</sub>: Contrainte caractéristique du béton à 28 jours (fc<sub>28</sub> = 25 MPa).
- > As': Section d'acier comprimée.
- ➤ Br : Section réduite d'un poteau, obtenue en réduisant de sa section réelle 1cm d'épaisseur sur toute sa périphérie [Br = (a-0,02) (b-0,02)] m².

$$\qquad \qquad \left( a = \frac{l_f}{10} \right)$$

► Br = 
$$(a - 0.02)^2$$
  $\longrightarrow$   $a = b = \sqrt{Br} + 2$  (cm)

# Selon le BAEL 91 modifié 99 : [1]

On cherche à dimensionner le poteau de telle sorte que :  $\frac{A_s'}{R} = 1\%$ 

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} & si \quad \lambda \ge 50 \\ \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 & si \quad 50 < \lambda < 70 \end{cases}$$

Selon BAEL, on prend comme hypothèse  $\lambda = 35 \rightarrow \alpha = 0.708$ 

La section réduite du poteau est donnée par l'équation suivante :

$$B_r \ge \frac{N_{\rm u}}{\alpha \left[ \frac{f_{\rm c\,28}}{0.9\,\gamma_{\rm b}} + \frac{A_{\rm s}}{B}\,\frac{f_{\rm e}}{\gamma_{\rm s}} \right]}$$

En faisant l'application numérique  $B_r$  sera égale à :  $B_r \ge 0.062$ .  $N_u$ 

# \* Le minimum requis par le «RPA99 version 2003 » [2]

Pour une zone sismique III, on doit avoir au minimum

Poteaux carres

$$\begin{cases} * \operatorname{Min}(a; b) \ge 30 \operatorname{cm} \\ * \operatorname{Min}(a; b) > \frac{h_{e}}{20} \\ * \frac{1}{4} < \frac{a}{b} < 4 \end{cases}$$

Avec:

(a;b): Dimensions de la section.

he: Hauteur d'étage.

On opte pour des poteaux de section carrée (a=b)

#### **❖** Vérification à l'ELS :

Vérifier la section à l'ELS, selon la formule :

$$\sigma_{\text{ser}} = \frac{N_{\text{ser}}}{B + \eta A_{\text{ser}}} \le 0.6 f_{\text{c28}}....(2)$$

Avec:

- $N_{ser}$ : effort normal à l'ELS ( $N_{ser}=N_G+N_Q$ ).
- B : section de béton du poteau.
- $A_s$ : section des armatures ( $A_s=1\%B$ ),

- $n : coefficient d'équivalence \left(n = \frac{E_s}{E_b} = 15\right)$ .
- $\sigma_{ser}$ : contrainte de compression à l'ELS.
- En remplaçant dans l'équation (2) les différents termes par leurs valeurs, on obtient :

$$\sigma_{\text{ser}} = \frac{N_{\text{ser}}}{1,15B} \le 0.6f_{c28} = 15\text{MPa}$$

# Calcul des poteaux :

Le poteau le plus sollicité est :

Tableau II.9: Surface reprise par le poteau le plus sollicité D4

| Type de poteau | Surface (m <sup>2</sup> ) |
|----------------|---------------------------|
| Poteau central | 14,35                     |

## II.5.2 Evaluation de l'effort normal ultime :

# a. Loi de dégression :

Comme il est rare que toutes les charges d'exploitation agissent simultanément, on applique pour leur détermination la loi de dégression qui consiste à réduire les charges identiques à chaque étage de 10 % jusqu'à 0,5Q.

Donnée par DTR.B.C.2.2

Avec:

$$Q_{0+} + \frac{3+n}{2n}.(Q)$$
 pour  $n \ge 5$ 

- n: nombre d'étage.
- $Q_0$ : la charge d'exploitation sur la terrasse.
- Q: Les surcharges d'exploitation des planchers respectifs..
- $Q_0 = 1$  KN/m (Terrasse inaccessible).
- Q = 1.5 KN/m (usage d'habitation).

| Niveau des<br>plancher | Surcharge             | ∑ Surcharge                                                  | $\sum$ Surcharge (KN/m <sup>2</sup> ) |
|------------------------|-----------------------|--------------------------------------------------------------|---------------------------------------|
| Terrasse               | $Q_0$                 | $\sum_{0}=Q_{0}$                                             | 01,00                                 |
| 10                     | $Q_1$                 | $\sum_1 = Q_0 + Q_1$                                         | 02,50                                 |
| 9                      | $Q_2$                 | $\sum_{2} = Q_0 + 0.95  (Q_1 + Q_2)$                         | 03,85                                 |
| 8                      | $\mathbf{Q}_3$        | $\sum_{3} = Q_0 + 0.90  (Q_1 + Q_2 + Q_3)$                   | 05,05                                 |
| 7                      | Q <sub>4</sub>        | $\sum_{4} = Q_0 + 0.85  (Q_1 + Q_2 + Q_3 + Q_4)$             | 06,10                                 |
| 6                      | $Q_5$                 | $\sum_{5} = Q_0 + 0.80  (Q_1 + Q_2 + Q_3 + Q_4 + Q_5)$       | 07,00                                 |
| 5                      | $Q_6$                 | $\sum_{6} = Q_0 + 0.75  (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6)$ | 07,75                                 |
| 4                      | <b>Q</b> <sub>7</sub> | $\sum_{7} = Q_0 + 0.714 \ (Q_1 + \dots + Q_7)$               | 08,50                                 |
| 3                      | $Q_8$                 | $\sum_{8} = Q_0 + 0.69 (Q_1 + \dots + Q_8)$                  | 09,28                                 |
| 2                      | <b>Q</b> 9            | $\sum_{9} = Q_0 + 0.67  (Q_1 + \dots + Q_9)$                 | 10,05                                 |
| 1                      | $Q_{10}$              | $\sum_{10} = Q_0 + 0.65 \ (Q_1 + \dots + Q_{10})$            | 10,75                                 |
| RDC                    | Q <sub>11</sub>       | $\sum_{11} = Q_0 + 0.64  (Q_1 + \dots + Q_{11})$             | 11,56                                 |
| Sous-sol1              | Q <sub>12</sub>       | $\sum_{12} = Q_0 + 0.625 (Q_1 + \dots + Q_{12})$             | 12,88                                 |
| Sous-sol2              | Q <sub>13</sub>       | $\sum_{13} = Q_0 + 0.62 (Q_1 + \dots + Q_{13})$              | 14.33                                 |

Tableau II.10 : Dégression des surcharges.

# b- Descente de charges :

#### 1. Poteau central: D4

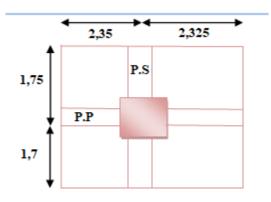



Figure II.3: surface reprise par le poteau central.

# Niveau terrasse : S= 14,35m<sup>2</sup>

Plancher......  $14,35 \times 6,34 = 96.85$  KN.

# • Niveau étage courant (du 10<sup>ème</sup> jusqu'au RDC) : S=14,35 m<sup>2</sup>

Poutre principale......0,5 × 0, 3 × 25 × 4,675= 17.625 KN.

Poids du poteau ......  $25x(2,73)x(0,3)^2 = 7.25KN$ 

G<sub>Etage courant = .</sub>116.735 KN.

# • Niveau plancher sous-sol 1: $S = 14,35 \text{ m}^2$

Poutre principale......0,5 × 0, 3 × 25 × 4,675= 17.625 KN.

G<sub>sous-sol</sub> = 133.475 KN

# • Niveau plancher sous-sol 2: $S = 14,35 \text{ m}^2$

Poutre secondaire......0, $4 \times 0,3 \times 25 \times 3,45 = 10.8$  KN.

 $G_{sous-sol} = 131.175 \text{ KN}$ 

# - Charges permanentes (G):

Tableau II.11: La descente des charges permanentes (Poteau central).

| Etage      | Charge<br>permanant de<br>chaque Niveau | G cumulé |
|------------|-----------------------------------------|----------|
| Terrasse   | 124.31                                  | 124.31   |
| 10         | 116.74                                  | 241.05   |
| 9          | 116.74                                  | 357.79   |
| 8          | 116.74                                  | 474.53   |
| 7          | 116.74                                  | 591.7    |
| 6          | 116.74                                  | 708.44   |
| 5          | 116.74                                  | 824.75   |
| 4          | 116.74                                  | 941.49   |
| 3          | 116.74                                  | 1058.23  |
| 2          | 116.74                                  | 1175.97  |
| 1          | 116.74                                  | 1291.71  |
| RDC        | 116.74                                  | 1408.45  |
| Sous-sol 1 | 133.475                                 | 1541.925 |

# - Charges d'exploitation (Q)

Tableau II.12: La descente des charges verticales d'exploitation (Poteau central).

| Etage      | Surface | Surcharge | Q ( kN ) |
|------------|---------|-----------|----------|
| Terrasse   | 15.18   | 1,00      | 15.18    |
| 10         | 15.18   | 2,50      | 37.95    |
| 9          | 15.18   | 3,85      | 58.443   |
| 8          | 15.18   | 5,05      | 76.659   |
| 7          | 15.18   | 6,10      | 92.598   |
| 6          | 15.18   | 7,00      | 106.26   |
| 5          | 15.18   | 7,75      | 117.645  |
| 4          | 15.18   | 8,50      | 129.03   |
| 3          | 15.18   | 9,28      | 140.87   |
| 2          | 15.18   | 10,04     | 152.41   |
| 1          | 15.18   | 10,75     | 163.185  |
| RDC        | 15.18   | 11,56     | 175.48   |
| Sous-sol 1 | 15.18   | 12,88     | 195.52   |

Les résultats et le choix final des poteaux centraux sont regroupés dans le tableau suivant :

Sous Niv NG(KN) NQ(KN) Nser Nu(KN) Br(cm<sup>2</sup>) RPa a=b Choix obs  $\sigma_{ser}$ (KN) (cm) (cm) (Mpa) 124.31 139.49 125.79 30.00 12.21 Terrasse 15.18 190.59 30×30 1.79 Ok 240.84 37.95 278.79 382.059 252.16 30.00 17.88 30×30 3.72 **10** Ok 9 357.37 58.44 415.81 570.11 495.61 30.00 26.26 30×30 5.62 Ok 473.9 757.76 500.12 8 76.66 550.56 30.00 24.36 30×30 5.50 Ok 7 590.43 92.6 683.03 935.98 617.75 30.00 26.85 6.84 30×30 Ok 6 706.96 106.26 813.22 1113.79 735.10 30.00 29.11 30×30 8.16 Ok 823.49 941.14 7.24 117.65 1288.19 850.21 30.00 31.16 35×35 5 Ok 940.2 128.99 1069.19 1462.76 965.42 30.00 33.07 8.23 4 35×35 Ok

1080.5

1269.06

1458.36

1611.46

1773.1824

30.00

30.00

30.00

30.00

30.00

34.87

37.62

40.18

42.14

44.1

9.22

8.07

8.85

9.64

8.60

Ok

Ok

Ok

Ok

Ok

35×35

40×40

45×45

45×45

45×45

1637.11

1922.82

2209.63

2441.613

2686.64

**Tableau II.13:** choix final des poteaux centraux.

# II.6 Pré-dimensionnement des voiles :

140.51

212.58

285.38

320.78

365.73

#### **Introduction:**

1056.55

1188.11

1319.67

1452.18

1583.74

3

2

1

**RDC** 

Sous-sol

1

Pré dimensionnement des murs en béton armé justifié par l'article 7.7 de RPA 99 versions 2003.

Les voiles servent, d'une part, à contreventer le bâtiment en reprenant les efforts horizontaux (séisme et/ou vent), et d'autre part, à reprendre les efforts verticaux (poids propre et autres) qu'ils transmettent aux fondations.

• Les charges verticales : charges permanentes et surcharges.

1197.06

1400.69

1605.05

1772.96

1949.47

- Les actions horizontales : effets de séisme et/ou du vent.
- Les voiles qui assurent le contreventement sont supposés être pleins.

D'après le **RPA 99 article 7.7.1** les voiles sont considérés comme éléments satisfaisants à la condition :  $L \ge 4a$ . Dans le cas contraire, les éléments sont considérés comme des éléments linéaires.

#### Avec:

L : longueur de voile.

a : épaisseur du voile.

L'épaisseur minimale est de 15cm de plus, l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage  $h_e$  et des conditions de rigidité aux extrémités.

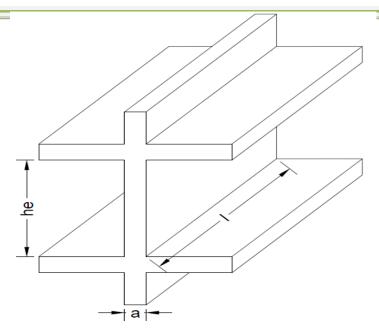



Figure II.4 : Chemin de voile.

Dans notre cas:

$$a_{min} \geq \, max \, \, \left\{ 15 \ cm \ ; \, h_e / \, 20 \right\} \label{eq:min_min}$$

Avec:

 $h_e$  = Hauteur libre d'étage.

**a** min = Epaisseur du voile.

• Pour le RDC et les étages courants :

$$h_e = 3,55 - 0,5 = 3,05 \text{ m}$$
  $\longrightarrow$   $a > \frac{h_e}{20} = 14.7 \text{ cm}.$   $a_{min} \ge \max \left\{ 15 \text{ cm} ; 14.7 \text{ cm} \right\}$   $a_{min} \ge 15 \text{cm}.$ 

Donc: on prend e = 15 cm

• Vérification de la longueur :

$$L_{min} \geq 4a \longrightarrow L_{min} \geq 4 \times 15 = 60 \ cm.$$

Donc: on prend  $L_{min} = 60 \text{ cm}$ .

# Calcul des Eléments Secondaire

#### III.1. Introduction:

Les éléments secondaires sont des éléments qui ne contribuent pas directement à la résistance de l'ossature.

Nous considérons dans ce chapitre l'étude des éléments secondaires que comporte notre bâtiment, l'acrotère, les escaliers, les planchers, balcon.

- ➤ l'étude est indépendante de l'action sismique, mais ils sont considérés comme dépendant de la géométrie interne de la structure.
- Le calcul de ces éléments s'effectue suivant le règlement BAEL 91 modifié 99 en respectant le règlement parasismique Algérien RPA 99 version 2003.

#### III.2. Acrotère:

## III.2.1. Définition et principe de calcule :

L'acrotère est un élément non structural, il sera calculé comme une console encastrée au niveau du plancher terrasse qui est la section dangereuse, d'après sa disposition, l'acrotère est soumis à une flexion composée due aux charges suivantes :

- Son poids propre sous forme d'un effort normal vertical.
- Une force horizontale due à une main courante Q=1kN/ml.

Le calcul se fait pour une bande de 1m de largeur dont les dimensions sont les suivantes :

- Largeur b=100cm.
- Hauteur H=60cm.
- Epaisseur e=10cm.

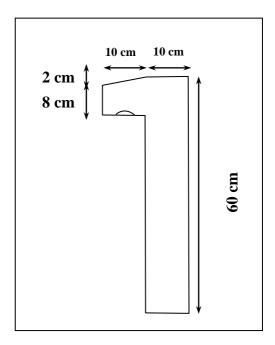



Figure III.1.: Schéma représentatif de l'acrotère

# III.2.2.Evaluation des charges :

a-Charge d'exploitation : Q=1kN/ml b-Charges permanentes :

• Surface de l'acrotère :

$$S = \left[ (0,1x0,6) + (0,1x0,08) + \frac{(0,1x0,02)}{2} \right] = 0,069 \text{m}^2$$

• Poids propre de l'acrotère :

$$G_{p,p} = \rho_b xS = 25x0,069 = 1,725 \text{kN/ml}$$

• Revêtement en ciment (e=2cm;  $\rho$ =18kN/m<sup>3</sup>);

$$G_{R.C} = \rho_{ci} x ex P_{cme} = 18x0,02x (60+10)x2.10^{-2} = 0,504kN/ml$$

$$\Rightarrow$$
 G = G<sub>p,p</sub> + G<sub>R,C</sub> = 2,229KN /  $ml$ 

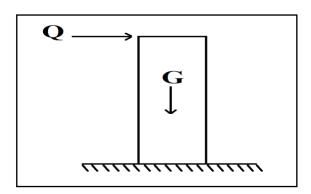



Figure .III.2: Sollicitation de l'acrotère

# c-L'action des forces horizontales Q<sub>h</sub> (F<sub>p</sub>) [2]

L'action des forces horizontales est donnée par la formule suivant : F<sub>p</sub>=4AC<sub>p</sub>W<sub>p</sub>

Avec:

A : Coefficient d'accélération de zone obtenu dans le **tableau (4-1)** RPA(99) pour la Zone et le groupe d'usage appropriés [A=0,25].....groupe 2

 $C_p$ : Facteur de force horizontale donnée par le tableau (6-1) RPA(99) (élément console) ......  $[C_p=0,8]$ 

 $W_p$ : Poids de l'acrotère =2,117kN  $F_p$ =4x0,25x0,8x2,229=1,78kN

$$Q_{u} = Max(1,5Q; F_{p}) \rightarrow F_{p} = 1,78kN$$
  
 $1,5Q = 1,5kN$   $\Rightarrow Q_{u} = Q_{h} = 1,78kN.$ 

$$pour~une~bande~de~1m~de~largeur \begin{cases} G=2,229kN/ml\\ Q=1,78KN/ml \end{cases}$$

#### III.2.3. Calcul des efforts:

Pour une bande de 1m de largeur

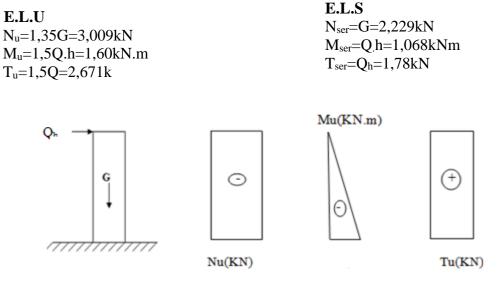



Figure III.3: Diagrammes des efforts à L'ELU

## III.2.4. Ferraillage de la section de l'acrotère :

L'acrotère est sollicité en flexion composée le calcul s'effectuera à l'ELU.

#### Données:

h=10~cm ; b=100cm , d=8cm ,  $f_{c28}=25~MPa$  ,  $\,M_u=1,\!60kN.\,m$  ,  $\,N_u=3,\!009kN$  ,  $f_{bC}=14,\!17~MPa$  ,  $\,c=c'=2cm$  ;  $\,F_e=500~MPa.$ 

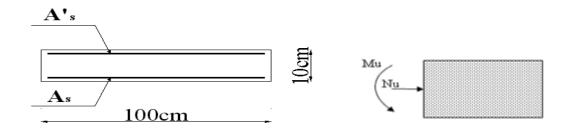



Figure III.4 : Section de calcul de l'acrotère

## ✓ Calcul de l'excentricité :

$$e_0 = \frac{M_u}{N_u} = \frac{1,60}{3,009} = 53,17 \text{cm}$$

$$e_0 > \frac{h}{2} - c' \Rightarrow \text{ Section partiellement comprimée.}$$

On calcule  $\psi_1$ :

$$\psi_1 = \frac{N_u}{b.h.f_{bo}} = \frac{3,009.10^3}{1 \times 0,1 \times 14,17.10^6} = 2,12.10^{-3} < 0.81$$

 $\xi = f(\psi_1)$   $\Rightarrow$  D'après le tableau, on trouve :  $\xi = 0.1666$ .

$$e_{nc} = \xi \times h = 0,1666 \times 10 = 1,666 \text{ cm}.$$

 $e_o\!\!>\!\!e_{nc} \Rightarrow$  Donc la section est partiellement comprimée et l'état Limite ultime n'est pas atteint. (SPC)

- Le centre de pression se trouve à l'extérieur de la section.
- Les armatures seront calculées à la flexion simple en équilibrant le moment fictif  $M_f$ .

#### ✓ Calcul du moment fictif « M<sub>f</sub> »

$$\begin{split} M_{\rm f} &= M_{\rm u} + N_{\rm u} \bigg(\frac{h}{2} - c'\bigg) = 1,60 + 3,009(0,12 - 0,02) = 1,69 \text{kNm} \\ \mu &= \frac{M_{\rm f}}{bd^2 \sigma_{bc}} = \frac{1,69}{1 \times 0,09^2 \times 14,17 \times 10^3} = 0,014 \end{split}$$

 $\mu \prec \mu_R = 0.371 \Longrightarrow A_s^{'} = 0$  Les armatures comprimées ne sont nécessaires.

$$\alpha = 1,25 \left(1 - \sqrt{1 - 2\mu}\right) = 0,017$$

$$Z = d(1-0.4\alpha) = 8.93$$
cm

$$\mu = 0.017 < 0.186 \Rightarrow \zeta_s = 10\%$$
 et  $\sigma_s = \frac{f_e}{\gamma_s} = 435 MPa$ 

$$A_{sf} = f(M_f)$$

$$A_{sf} = \frac{M_f}{Z\sigma_s} = \frac{1,69 \times 10^6}{89.3 \times 435} = 43,50 \text{mm}^2$$

$$\bullet A_{s1} = A'_s = 0$$

• 
$$A_{s2} = A_{sf} - \frac{N_u}{\sigma_s} = 36,58 \text{mm}^2$$

Donc: 
$$\begin{cases} A_{s1} = 0 \text{cm}^2 \\ A_{s2} = 0.36 \text{cm}^2 \end{cases}$$

#### III.2.5. Vérification de la section d'acier selon «BAEL 91 Modifié 99 »

Il faut vérifier  $A_s$  avec la section minimale imposée par la règle du millième et par la règle de non fragilité :

Avec:

$$f_{t28}$$
=2,1MPa; fe=500MPa; b=100cm; d=8cm

$$A_s^{min} \ge Max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{128}}{fe} \right\}$$

$$A_s^{min} \ge Max \{ 1 cm^2; 0.87 cm^2 \} = 1 cm^2$$

Donc: nous optons finalement pour 6T6=1,70cm<sup>2</sup>

Avec un espacement 
$$S_t = \frac{100}{5} = 20 \text{cm}$$

# \* armatures de répartitions

$$A_r \ge \frac{A_s}{4} \Rightarrow A_r \ge 0.425 \text{cm}^2$$

Nous choisissons 4T6=1,13 cm² avec un espacement

$$S_t = \frac{60-5}{3} = \frac{55}{3} = 18,33 \text{cm} \implies S_t \approx 18 \text{cm}.$$

#### III.2.6. Vérification à l'E.L.S:

La fissuration est considérée comme préjudiciable.

$$e_0 = \frac{M_{ser}}{N_{ser}} = 47,91 cm$$

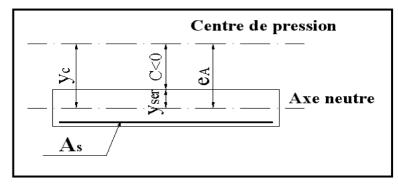



Figure III.5 : Distance de l'axe neutre.

On a:

$$e_0 \succ \frac{h}{2} - c' \Longrightarrow \text{ La section est partiellement comprimée (SPC)}.$$

C : La distance entre le centre de pression et la fibre la plus comprimée.  $C \! = \! d \! - \! e_A$ 

Avec: 
$$e_A = \frac{M_{ser}}{N_{ser}} + \left(d - \frac{h}{2}\right) = 51,91 \text{ cm} \Rightarrow C = -42,91 \text{ cm}$$
 (C < 0)

D'après le "  $BAEL\ 91\ modifié\ 99\ ^{\scriptscriptstyle >\!\!>}$  , on doit résoudre l'équation suivant :

$$y_c^3 + py_c + q = 0$$

y<sub>c</sub>: Distance entre le centre de pression et l'axe neutre.

Avec:

$$n = 15 \begin{cases} p = -3c^{2} + 6n(c - c')\frac{A_{s}}{b} + 6n(d - c)\frac{A_{s}}{b} = -5535,24 \\ q = -2c^{3} - 6n(c - c')^{2}\frac{A_{s}}{b} - 6n(d - c)^{2}\frac{A_{s}}{b} = 151828,24 \end{cases}$$

La solution de l'équation du troisième degré est obtenue par :

La solution de l'equation du troisieme degre  

$$\Delta = q^2 + \left(\frac{4p^3}{27}\right) = -2,07.10^9$$

$$\cos \varphi = \frac{3q}{2p} \sqrt{\frac{-3}{p}} = -0,96 \Rightarrow \varphi = 163,74^\circ$$

$$a = 2\sqrt{\frac{-p}{3}} = 85,91$$

$$y_1 = a\cos\left(\frac{\varphi}{3} + 120\right) = -85,52cm$$

$$y_2 = a\cos\left(\frac{\varphi}{3}\right) = 49,79cm$$

$$y_3 = a\cos\left(\frac{\varphi}{3} + 240\right) = 35,74cm$$

La solution qui convient est : y<sub>c</sub>=46,79cm

$$Car: 0 < y_{ser} = y_c + c < d$$

$$0 < y_{ser} = 46,79 - 42,99 = 3,8 cm < 8 cm$$

Donc 
$$\begin{cases} y_{ser} = 3.8cm \\ y_{c} = 46.79cm \end{cases}$$

#### ✓ Calcul du moment d'inertie

$$I = \frac{b}{3}y_{ser}^3 + n[A_s(d - y_{ser})^2 + A_s'(y_{ser} - c')^2] = 2361,50cm^4 \text{ avec } n = 15$$

#### Vérification des contraintes :

#### • Contrainte du béton :

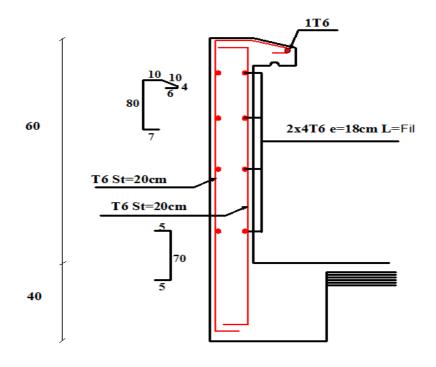
$$\sigma_{bc} = \left(\frac{N_{ser}}{I}y_{c}\right)y_{ser} \le \overline{\sigma}_{bc} = 0.6f_{c28} = 15MPa$$

$$\sigma_{bc} = \left(\frac{2,229.10^3 \text{ x}46,79.10}{2361,50.10^4}\right) \text{x}3,8 \times 10 = 1,68 \text{MPa} \prec \overline{\sigma}_{bc} \dots \text{v\'erifi\'ee}$$

## • Contraintes de l'acier :

$$\begin{split} &\sigma_s = n \bigg(\frac{N_{ser}}{I} \, y_c \, \bigg) (d - y_{ser} \, ) \leq \overline{\sigma}_s \, ... ... ... ... ... A cier tendu \\ &\sigma_s' = n \bigg(\frac{N_{ser}}{I} \, y_c \, \bigg) (y_{ser} - c') \leq \overline{\sigma}_s \, ... ... ... ... ... ... A cier comprimé \\ &\overline{\sigma}_s = Min \bigg(\frac{2}{3} \, fe; Max(0.5fe; 110 \sqrt{\eta f_{tj}}) \bigg) = 250 MPa... ... ... ... (\eta = 1,6 \, pour \, les \, a ciers \, HA) \end{split}$$

$$\sigma_s = 26,43 \text{MPa} \prec \overline{\sigma}_s$$
.....vérifiée


$$\sigma_s'=11{,}33MPa\!\prec\!\overline{\sigma}_s$$
.....vérifiée

## III.2.7. Vérification de l'effort tranchant

La contrainte de cisaillement est donnée par la formule suivante :

$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u = Min \left\{0.1f_{c28}; 4MPa\right\} = 2.5MPa$$

## III.2.8.ferraillage de l'acrotère :



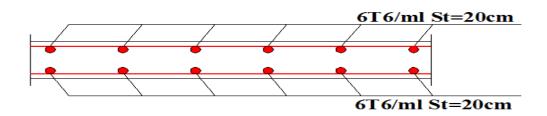



Figure III.6. Ferraillage de l'acrotère

# III.3. Escalier:

#### III.3.1. Introduction:

Les escaliers sont des éléments constitués d'une succession de gradins, ils permettent le passage à pied entre différents niveaux du bâtiment.

Notre bâtiment comporte un seul type d'escalier.

#### III.3.2. Définitions des éléments d'un escalier :

On appelle « marche » la partie horizontale (M) des gradins constituant l'escalier, et « contre marche » la partie verticale (C.M) de ces gradins.

h: Hauteur de la marche.

g: Largeur de la marche.

L : Longueur horizontale de la paillasse.

H: Hauteur verticale de la paillasse.

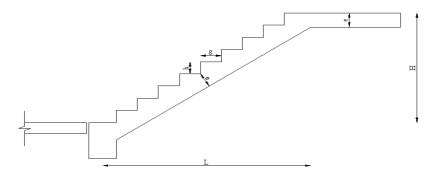



Figure. III.7: Dimensions de l'escalier.

Pour une réalisation idéale et confortable on doit avoir 2h+g=64

On obtient, le nombre des marches et leur dimension par les relations suivantes :

Avec:

n : Le nombre des contre marches

(n-1): Le nombre des marches

Dans notre structure on a un escalier droit à 2 volées

 $64n^2$ - (64+2H+L) n +2H=0

Avec:

n : La racine de l'équation

 $64n^2$ - (64+2H+L) n +2H=0

 $64n^2$ - 658n + 324 = 0

On prend:

- le nombre de contre marche ...... n=10
- le nombre des marches .....n-1=9

Alors:

$$h = \frac{H}{n} = \frac{162}{10} = 17 \text{ cm}$$
 $g = \frac{L}{n-1} = 30 \text{ cm}$ 
 $h = 17 \text{ cm}$ 
 $g = 30 \text{ cm}$ 

## Vérification de l'équation de «BLONDEL» :

$$\begin{cases} (59 \le g + 2h \le 66) \text{ cm} \\ (16 \le h \le 18) \text{ cm} \\ (22 \le g \le 33) \text{ cm} \end{cases} \qquad \longleftrightarrow \qquad \begin{cases} 2h + g = 64\text{cm} \\ h = 17\text{cm} \\ g = 30\text{cm} \end{cases}$$
 vérifiée 
$$1^{er} \text{ Volée}:$$

Angle d'inclinaison de la paillasse :

$$tg\alpha = \frac{H}{L} = \frac{162}{270} = 0.60 \Rightarrow \alpha = 30,96^{\circ}$$

Détermination de l'épaisseur de la paillasse :

$$\frac{l}{30} \le e \le \frac{l}{20}$$

Avec:

$$l = \frac{162}{\sin \alpha} = 3{,}149m$$

$$\Rightarrow$$
 10,5  $\leq$  *e*  $\leq$  15,75*cm*

On prend donc l'épaisseur e=15 cm

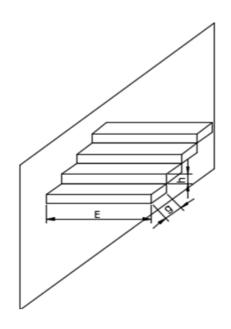



Figure. III.8 : Schéma de l'escalier.

#### **N.B**:

Le palier aura la même épaisseur que la paillasse. Cette épaisseur sera prise en considération une fois que toutes les vérifications soient satisfaites.

# III.3.3. Evaluation des charges:

# a. Palier:

# a.1. Charges permanentes:

Tableau III.1: Poids propre du palier de repose de l'escalier

| N° | Composants             | Epaisseur | Poids volumique | Poids surfacique |
|----|------------------------|-----------|-----------------|------------------|
|    |                        | (m)       | $(KN/m^3)$      | (KN/m²)          |
| 1  | Carrelage              | 0.02      | 20              | 0.40             |
| 2  | Lit de sable           | 0.03      | 18              | 0.54             |
| 3  | Mortier de pose        | 0.02      | 20              | 0.40             |
| 4  | Poids propre du palier | 0.15      | 25              | 3.75             |
| 5  | Enduit en plâtre       | 0.02      | 10              | 0.2              |
|    | (                      | 5.25      |                 |                  |

# a.2. Charge d'exploitation :

 $Q_1=2,50KN/m^2$ 

# b. Paillasse:

# **b.1.** Charge permanentes:

Tableau III.2: Poids propre du Paillasse.

| N° | Composants                   | Epaisseur    | Poids volumique | Poids surfacique |
|----|------------------------------|--------------|-----------------|------------------|
|    |                              | (m)          | $(KN/m^3)$      | $(KN/m^2)$       |
| 1  | Carrelage                    | 0.02         | 20              | 0.40             |
| 2  | Lit de sable                 | 0.03         | 18              | 0.54             |
| 3  | Mortier de pose              | 0.02         | 20              | 0.40             |
| 4  | Poids propre de la paillasse | 0.15 / cos α | 25              | 4.37             |
| 5  | Poids des marches            | 0.17 / 2     | 25              | 2.125            |
| 6  | Enduit en plâtre             | 0.02         | 10              | 0.2              |
|    |                              | 8.035        |                 |                  |

# b.2. Charge d'exploitation :

$$Q_2=2,50KN/m^2$$

## III.3.4. Schéma statique :

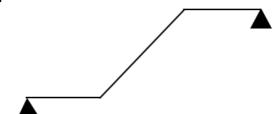



Figure III.9 : schéma statique de l'escalier.

# III.3.5. Combinaison de charge :

#### **E.L.U**:

 $P_{u1}=1,35G_1+1,5Q_1$ 

 $P_{u2}=1,35G_2+1,5Q_2$ 

# **E.L.S**:

 $P_{ser1}=G_1+Q_1$ 

 $P_{ser2}=G_2+Q_2$ 

Le chargement de la rampe pour une bande de 1m est donné par le tableau suivant :

Tableau III.3: combinaison ELU et ELS

| Combinaison | Le palier (KN/m²) | La paillasse (KN/m²) |
|-------------|-------------------|----------------------|
| ELU         | 10.84             | 14.59                |
| ELS         | 7.75              | 10.53                |

#### III.3.5.1. Calcul des marches :

Les marches seront calculées comme des poutres de 30 cm de largeur et 16 cm de hauteur travaillant en console encastrée dans les voiles.

## III.3.5.2. Calcul des efforts internes :

L=1.4 m   
**à ELU**: 
$$M_u = \frac{P_u \times b \times L^2}{2} = \frac{14,59 \times 0.3 \times 1.4^2}{2} = 4,29 \ KNm$$
  
**à ELS**:  $M_s = \frac{P_s \times b \times L^2}{2} = \frac{10,35 \times 0.3 \times 1.4^2}{2} = 3,04 KNm$ 

#### III.3.5.3. Ferraillage des marches :

$$b = 30 \text{ cm}$$
;  $h = 17 \text{ cm}$ ;  $d = 13 \text{ cm}$ ;  $f_e = 500 \text{ MPa}$ ;  $f_{c28} = 25 \text{ MPa}$ ;  $f_{t28} = 2,1 \text{ MPa}$ 

Les résultats sont récapitulés dans le tableau suivant :

**Tableau III.4:** Ferraillage des marches.

| N<br>(kN | Iu<br>m) | M     | μ<μ <sub>R</sub> | As' (cm <sup>2</sup> ) | α     | Z(cm) | A <sub>s</sub> <sup>cal</sup> (cm <sup>2</sup> ) | $A_s^{min}$ $(cm^2)$ | Choix | At   |
|----------|----------|-------|------------------|------------------------|-------|-------|--------------------------------------------------|----------------------|-------|------|
| 4.       | 29       | 0.059 | Oui              | 0                      | 0.076 | 12.60 | 0,78                                             | 0,48                 | 3T8   | 1.51 |

#### III.3.5.4. Vérifications :

# a. Condition de non fragilité :

#### b. Effort tranchant:

On doit vérifier que :  $\tau_u \le \overline{\tau_u}$ 

$$\bar{\tau} = Min(0.1f_{c28};4MPa) = 2.5MPa$$
 ..... (Fissuration peu préjudiciable)

$$T_u = P_u \times b \times L = 14.59 \times 0.3 \times 1.4 = 6,13 \text{ kN}$$

$$\tau_{\rm u} = \frac{{\rm T}_{\rm u}^{\rm max}}{{\rm hd}} = \frac{6.13 \times 10^3}{130 \times 300} = 0.16 \text{ MPa} < \overline{\tau_{\rm u}} = 2.5 \text{MPa} \dots \text{vérifiée}$$

#### c. Contraintes:

#### - Position de l'axe neutre :

$$\frac{b}{2}y^2 + nA_s'(y - c') - nA_s(d - y) = 0$$

## - Moment d'inertie :

$$I = \frac{b}{3}y^3 + nA_s'(y - c')^2 + nA_s(d - y)^2$$

On doit vérifier que:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15MPa$$

Les résultats sont résumés dans le tableau ci-dessous :

Tableau III.5 : Vérification des contraintes des marches.

| Ms<br>(KN |    | A <sub>s</sub> (cm <sup>2</sup> ) | Y<br>(cm) | I (cm <sup>4</sup> ) | σ <sub>bc</sub><br>(MPa) | σ <sub>bc</sub> <b>&lt;</b> σ <sub>b</sub> | σ <sub>s</sub><br>(MPa) | σ̄ <sub>s</sub> (MPa) | $\sigma_s \leq \overline{\sigma_s}$ |
|-----------|----|-----------------------------------|-----------|----------------------|--------------------------|--------------------------------------------|-------------------------|-----------------------|-------------------------------------|
| 3,        | 04 | 1.51                              | 3.74      | 2465.32              | 4,7                      | Vérifiée                                   | 171,27                  | 250                   | Vérifiée                            |

#### d. La flèche:

$$f = \frac{P_{ser} \times 0.3 \times L^4}{8 \times E_{vj} \times I} = \frac{10,53 \times 0.3 \times 1400^4}{8 \times 10721,39 \times 300 \times \frac{300 \times 140^3}{12}} = 2.24 \text{ } mm \le f = \frac{L}{250} = \frac{1400}{250} = 5.6 \text{ } mm$$

La flèche est donc vérifiée.

# III.3.6. Calcul du pallier :

Les paliers seront calculés comme des poutres de bandes égales à 1 m de largeur et 16 cm de hauteur travaillant en console encastrée dans les voiles et poutres de chaînage.

#### III.3.7. Calcul des efforts internes :

**à ELU**: 
$$M_u = \frac{P_u \times L^2}{2} = \frac{10,84 \times 1.4^2}{2} = 10,62 \text{ KNm}$$

**à ELS**: 
$$M_S = \frac{P_S \times L^2}{2} = \frac{7.75 \times 1.4^2}{2} = 7,59 KNm$$

#### III.3.8. Ferraillage du pallier :

$$b = 100 \text{ cm}$$
;  $h = 17 \text{ cm}$ ;  $d = 13 \text{ cm}$ ;  $f_e = 500 \text{ MPa}$ ;  $f_{c28} = 25 \text{ MPa}$ ;  $f_{t28} = 2,1 \text{ MPa}$ 

Les résultats sont récapitulés dans le tableau suivant :

**Tableau III.6:** Ferraillage du pallier.

| Mu<br>(kNm) | M      | μ<μ <sub>R</sub> | As' (cm <sup>2</sup> ) | α     | Z(cm) | As <sup>cal</sup> (cm <sup>2</sup> ) | As <sup>min</sup> (cm <sup>2</sup> ) | Choix | At   |
|-------------|--------|------------------|------------------------|-------|-------|--------------------------------------|--------------------------------------|-------|------|
| 10,62       | 0,0443 | Oui              | 0                      | 0,056 | 12,71 | 1,92                                 | 1,26                                 | 6T8   | 3.02 |

#### III.3.9. Vérifications :

## a. Condition de non fragilité :

#### b. Espacement:

Sens x-x : esp=
$$\frac{100}{6}$$
=16.67 cm

Sens y-y : 
$$esp = \frac{100}{6} = 16.67$$
 cm

#### c. Effort tranchant:

On doit vérifier que : 
$$\tau_u \leq \overline{\tau_u}$$

$$\bar{\tau} = Min(0.1f_{c28};4MPa) = 2.5MPa$$
 .....(Fissuration peu préjudiciable)

$$T_u = P_u \times L = 10,83 \times 1,4 = 15,162 \text{ kN}$$

$$\tau_{u} = \frac{\tau_{u}^{\text{max}}}{\text{bd}} = \frac{15,162 \times 10^{3}}{130 \times 1000} = 0,116 \text{ MPa} < \tau_{u} = 2,5 \text{MPa} \dots \text{Vérifiée}.$$

#### d. Contraintes:

- Position de l'axe neutre :

$$\frac{b}{2}y^2 + nA_s'(y-c') - nA_s(d-y) = 0$$

- Moment d'inertie :

$$I = \frac{b}{3}y^{3} + nA_{s}(y - c')^{2} + nA_{s}(d - y)^{2}$$

On doit vérifier que:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15MPa$$

Les résultats sont résumés dans le tableau ci-dessous :

Tableau III.7: Vérification des contraintes du pallier.

| Mser<br>(KN.m) | A <sub>s</sub> (cm <sup>2</sup> ) | Y<br>(cm) | I (cm <sup>4</sup> ) | σ <sub>bc</sub><br>(MPa) | σ <sub>bc</sub> < <b>σ</b> <sub>b</sub> | σ <sub>s</sub><br>(MPa) | $\overline{\sigma}_{s}\left(MPa\right)$ | σ <sub>s</sub> ≤ <b>̄</b> σ̄₅ |
|----------------|-----------------------------------|-----------|----------------------|--------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------------------------|
| 7,59           | 3.02                              | 3.01      | 5429.97              | 4,2                      | Vérifiée                                | 209,45                  | 250                                     | Vérifiée                      |

#### e. La flèche:

$$f = \frac{P_{ser} \times L^4}{8 \times E_{vj} \times I} = \frac{7.75 \times 1400^4}{8 \times 10721,39 \times \frac{1000 \times 140^3}{12}} = 1.31 \ mm \le f = \frac{L}{250} = \frac{1400}{250} = 5,6 \ mm$$

La flèche est donc vérifiée.

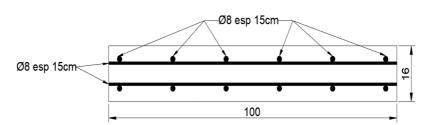



Figure III.10: Ferraillage du palier (cm).

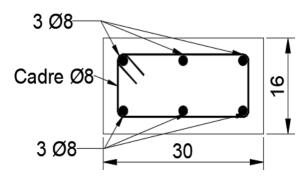



Figure III.11: Ferraillage des marches (cm)

## III.4. Etude des plancher:

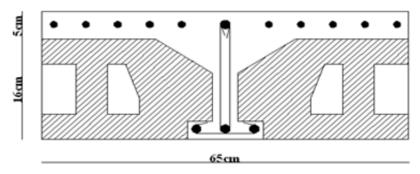
#### III.4.1. Introduction:

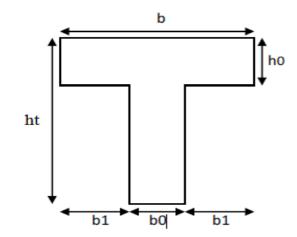
Les planchers sont des éléments plans horizontaux et qui ont pour rôle :

- Isolation des différents étages du point de vue thermique et acoustique.
- Répartir les charges horizontales dans les contreventements.
- Assurer la compatibilité des déplacements horizontaux.

# III.4.2. Plancher en corps creux :

Ce type de planchers est constitué d'éléments porteurs (poutrelles) et d'éléments de remplissage (corps creux) de dimension (16x21x65) cm<sup>3</sup> avec une dalle de compression de 5cm d'épaisseur.





Figure III.12: coupe du plancher en corps creux

# a. Etude des poutrelles :

Les poutrelles sont des éléments préfabriqués, leur calcul est associé à une poutre continue semi encastrée aux poutres de rives.

Pour notre ouvrage on a trois (03) types de poutrelle :

- -Poutrelle à 04 travée
- -Poutrelle à 05 travées
- -Poutrelle à 06 travées



#### a.1. Dimensions de la poutrelle :

$$\frac{1}{25} \le \frac{h}{L} \le \frac{1}{20} \implies \frac{470}{25} \le h \le \frac{470}{20}$$
$$\Rightarrow 18.8 \le h \le 23.5cm$$

$$\Rightarrow \begin{cases} h = 21cm & ; \quad h_0 = 5cm \\ b = 65cm & ; \quad b_0 = 12cm \\ c = \frac{b - b_0}{2} = 26,5cm \end{cases}$$

Figure III.13: Schéma de poutrelle

#### a.2. Calcul des moments :

Étant donné que les poutrelles étudiées se présentent comme des poutres continues sur plusieurs appuis, leurs études se feront selon l'une des méthodes suivantes :

#### a.2.1. Méthode forfaitaire:

## a.2.1.1. Domaine d'application :

 $H_1: Q \le Max \{2G; 5kN/m^2\}$ 

H<sub>2</sub>:Les moments d'inertie des sections transversales sont les même dans les différentes travées en continuité.

H<sub>3</sub>: Les portées successives sont dans un rapport compris entre 0,8 et 1,25.

H<sub>4</sub>: Fissuration non préjudiciable.

#### a.2.1.2. Exposé de la méthode :

$$\bullet \ \alpha = \frac{Q}{G + Q}$$

• 
$$M_{t} \ge Max\{1,05M_{0};(1+0,3\alpha)M_{0}\} - \frac{M_{w} - M_{e}}{2}$$

$$\bullet \, M_{_{t}} \geq \begin{cases} (1+0.3\alpha)\frac{M_{_{0}}}{2}.....Trav\'{e}int\ erm\'{e}diaire\\ (1.2+0.3\alpha)\frac{M_{_{0}}}{2}....Trav\'{e}ede\ rive \end{cases}$$

Avec:

M<sub>0</sub>: La valeur minimale du moment fléchissant dans chaque travée (moment isostatique).

 $(M_w\,;\,M_e)$ : Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

M<sub>t</sub>: Le moment maximal en travée dans la travée considérée.

#### Moment sur appuis :

- $M=0,2M_0...$ appuis de rive
- $M=0,6M_0...$ pour une poutre à deux travées
- M=0,5M<sub>0</sub>.....pour les appuis voisins des appuis de rives d'une poutre à plus de deux travée
- M=0,4M<sub>0</sub>.....pour les autres appuis intermédiaires d'une poutre à plus de deux travées

#### a.2.2. Méthode de CAQUOT:

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

Cette méthode est basée sur la méthode des poutres continues.

#### a.2.2.1. Exposé de la méthode :

• Moment sur appuis :

$$*M_a = 0.....Appuisderives$$

\*
$$M_a = -\frac{q_w l_w^{'3} + q_e l_e^{'3}}{8.5(l_w + l_e)}$$
......Appuisint ermédiaires

• Moment en travée :

$$M_{t}(x) = -\frac{qx^{2}}{2} + \left(\frac{ql}{2} + \frac{M_{e} - M_{w}}{l}\right)x + M_{w}$$

Avec:

M<sub>0</sub>: La valeur maximale du moment fléchissant dans chaque travée (moment isostatique).

 $(M_{\rm w}\,;\,M_{\rm e})$  : Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

qw: Charge répartie à gauche de l'appuis considérée.

q<sub>e</sub>: Charge répartie à droite de l'appuis considérée.

On calcul, de chaque coté de l'appui, les longueurs de travées fictives "l' $_{\rm w}$ " à gauche et "l' $_{\rm e}$ " à droite, avec :

l'=1.....pour une travée de rive

1'=0,81.....pour une travée intermédiaire.

Où "1" représente la portée de la travée libre.

#### \*Effort tranchant :

$$\begin{cases} T_{w} = \frac{ql}{2} + \frac{\left(M_{e} - M_{w}\right)}{l} \\ T_{e} = -\frac{ql}{2} + \frac{\left(M_{e} - M_{w}\right)}{l} \end{cases}$$

Avec:

Tw: Effort tranchant à gauche de l'appui considéré.

T<sub>e</sub>: Effort tranchant à droite de l'appui considéré.

# a.3. Calcul des poutrelles :

Le calcul se fait en deux étapes :

- 1èreétape : Avant le coulage de la table de compression.
- 2èmeétape : Après le coulage de la table de compression.
- \* 1ère étape : Avant le coulage de la table de compression
  - Poutrelle de travée L=4,75m
  - On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :
  - Son poids propre.
  - Poids du corps creux.

Surcharge due à l'ouvrier Q=1kN/m

# **Evaluation des charges et surcharges :**

## > Charges permanentes:

Poids propre de la poutrelle ...0,12x0,05x25=0,15kN/mlPoids du corps creux ....0,65x0,21x14=1,82kN/ml

G=2,06kN/ml

## > Charges d'exploitation :

Q=1x0,65=0,65kN/ml

#### Combinaison des charges :

**E.L.U**:  $q_u=1,35G+1,5Q=3,76kN/ml$ 

 $E.L.S: q_{ser}=G+Q=2,71kN/ml$ 

#### Calcul des moments :

$$M_{u} = \frac{q_{u}l^{2}}{8} = \frac{3,76x(4,70)^{2}}{8} = 10,38kNm$$

$$M_{ser} = \frac{q_{ser}l^{2}}{8} = \frac{2,71x(4,70)^{2}}{8} = 7,48kNm$$

# Ferraillage:

La poutre est sollicitée à la flexion simple à l'E.L.U

 $M_u=10,38kNm$ ; b=12cm; d=4,5cm;  $\sigma_{bc}=14,17Mpa$ 

D'après l'organigramme de la flexion simple; on a:

$$\mu = \frac{M_u}{bd^2\sigma_{ho}} = 3.01 \succ \mu_R = 0.392 \Rightarrow A_s \neq 0$$

Donc, les armatures de compression sont nécessaires, mais il est impossible de les placer du point de vue pratique car la section du béton est trop faible.

On prévoit donc des étaiements pour aider la poutrelle à supporter les charges qui lui reviennent avant et lors du coulage sans qu'elle fléchisse.

#### \* 2ème étape : Après le coulage de la table de compression

Après le coulage et durcissement du béton de la dalle de compression, la poutrelle travaillera comme une poutrelle en "Té"

#### **Evaluation des charges et surcharges :**

a.1 Plancher terrasse:

Charge permanentes:

$$G = 6.34 \times 0.65 = 4.12 \text{ kN/ml}$$

Surcharges d'exploitation :

$$Q = 1.0 \times 0.65 = 0.65 \text{ kN/ml}$$

# a.2 Plancher courant:

# Charge permanente:

$$G = 5.38 \times 0.65 = 3.49 \text{ kN/ml}$$

# Surcharge d'exploitation:

$$Q = 1.5 \times 0.65 = 0.97 \text{ kN/m}$$

# Charge permanente:

$$G_C = 5.38 \times 0.65 = 3.49 \text{ kN/ml}$$

# Surcharge d'exploitation:

$$Q_C = 5 \times 0.65 = 3.25 \text{ kN/m}$$

# b) Combinaison des charges :

#### b.1 Plancher terrasse:

E.L.U: 
$$qu = 1,35G+1,5Q = 6,54 \text{ kN/ml}$$

$$E.L.S: q_{ser} = G+Q = 4,77 \text{ kN/ml}$$

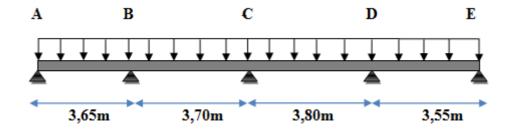
## b.2 Plancher courant:

E.L.U: 
$$q_u = 1,35G + 1,5Q = 6,17 \text{ kN/ml}$$

E.L.S : 
$$q_{ser} = G + Q = 4,46 \text{ kN/ml}$$

#### b.2 Plancher courant:

E.L.U: 
$$q_{uc} = 1,35G + 1,5Q = 9,59 \text{ kN/ml}$$


E.L.S : 
$$q_{ser} = G + Q = 6,74 \text{ kN/ml}$$

#### **Conclusion:**

Le plancher courant (commerce) est le plus sollicité.

# III.4.3 Calcul les efforts internes des poutrelles:

a) Poutrelle à quatre travées :



$$\begin{cases} q_u = 9.59kN/ml \\ q_{ser} = 6.74kN/ml \end{cases}$$

Vérification des conditions de la méthode forfaitaire :

1) 
$$Q = 0.65KN/ml$$
  $2G=2*9,59=19,18KN/ml$ 

Calcul des sollicitations :

a) L'inertie est constante pour toutes les travées..... vérifier

c) La fissuration est peu nuisible ...... vérifier

Donc la méthode forfaitaire est applicable.

Calcul des moments : 
$$\alpha = \frac{3,25}{3.49 + 3.25} = 0,482$$

# ELU:

**Mo AB** = 
$$\frac{q l^2}{8} = \frac{9,59*3.65^2}{8} = 15,97 \text{ KN.m}$$
  
**Mo BC**= $\frac{q l^2}{8} = \frac{9,59*3.70^2}{8} = 16,41 \text{KN.m}$   
**Mo CD**= $\frac{q l^2}{8} = \frac{9,59*3,80^2}{8} = 17,30 \text{KN.m}$   
**Mo AB** =  $\frac{q l^2}{8} = \frac{9,59*3,55^2}{8} = 15,11 \text{ KN.m}$ 

#### Sur appuis:

Ma = 0,2\*15,97 = 3,19 KN.m  
Mb= 0.5\*Max 
$$\begin{cases} Mo & AB \\ Mo & BC \end{cases}$$
 = 0.5\*16,41 = 8,21 KN.m  
Mc = 0.4\*Max  $\begin{cases} Mo & BC \\ Mo & CD \end{cases}$  = 0.4\*17,30 = 6,92KN.m  
Md = 0.5\*Mo CD = 0.5\*17,30 = 8,65 KN.m  
Ma = 0,2\*15,11 = 3,02 KN.m

# En travées :

AB et DE (travée de Rive):

# Travée AB:

1) M t AB 
$$\geq$$
 max  $\begin{cases} 1.05 * 15,97 \\ (1+0.3*0,482)*15,97 \end{cases} - \frac{3,19+8,21}{2} = 12,66$ 

2.1) Mt AB 
$$\geq \frac{1.2+0.3*0,482}{2}*15,97 = 10,78$$

$$Mt AB = 12,66KN.m$$

# **Travée DE:**

1) M t DE 
$$\geq \max \left\{ \begin{array}{c} 1.05 * 15, 11 \\ (1+0.3*0, 482)*15, 11 \end{array} \right. - \frac{8,65+3,02}{2} = 11,54$$

2.1) Mt DE 
$$\geq \frac{1.2+0.3*0,482}{2}*15,11 = 10,20$$

On utilise 1 et 2.2 pour BC et CD (travée intermédiaire):

#### Travée BC:

1) MtBC 
$$\geq \max \left\{ \frac{1.05 * 16,41}{(1+0.3*0,482)*16,41} - \frac{8,21+6,92}{2} = 11,31 \right\}$$

2.2) Mt BC 
$$\geq \frac{1+0.3*0,482}{2} * 9.795 = 9,43$$

#### Travée CD:

1) M t CD 
$$\geq$$
 max  $\begin{cases} 1.05 * 17,30 \\ (1+0.3*0.482)*12.794 \end{cases} = \frac{6,92+8,65}{2} = 12,11$ 

2.2) Mt CD 
$$\geq \frac{1+0.3*0,482}{2} * 17,30 = 9,95$$

#### ELS:

**Mo AB** = 
$$\frac{q \ l^2}{8} = \frac{6,74*3,65^2}{8} = 11,22 \text{ KN.m}$$
  
**Mo BC**= $\frac{q \ l^2}{8} = \frac{6,74*3,70^2}{8} = 11,53 \text{KN.m}$   
**Mo CD**= **Mo DE** =  $\frac{q \ l^2}{8} = \frac{6,74*3,8^2}{8} = 12,17 \text{KN.m}$   
**Mo EF**= $\frac{q \ l^2}{8} = \frac{6,74*3.8^2}{8} = 10,62 \text{KN.m}$ 

#### Sur appuis:

$$\begin{aligned} &\text{Ma} = 0.2*11,22 = 2,24 \text{ KN.m} \\ &\text{Mb} = 0.5*\text{Max} \begin{cases} &\textit{Mo AB}\\ &\textit{Mo BC} \end{cases} = 0.5*11,53 = 5,77\text{KN.m} \\ &\text{Mc} = 0.4*\text{Max} \begin{cases} &\textit{Mo BC}\\ &\textit{Mo CD} \end{cases} = 0.4*12,17 = 4,87\text{KN.m} \\ &\text{Md} = 0.5*\text{Mo CD} = 0.5*12,17 = 6,08 \text{ KN.m} \\ &\text{Ma} = 0,2*10,62 = 2,12 \text{ KN.m} \end{aligned}$$

## En travées:

On utilise 1 et 2.1 pour AB et DE (travée de Rive) :

# Travée AB:

2) Mt AB 
$$\geq$$
 max  $\begin{cases} 1.05 * 11,22 \\ (1+0.3*0,482)*11,22 \end{cases} = \frac{2,24+5,77}{2} = 8,90$ 

2.1) Mt AB 
$$\geq \frac{1.2+0.3*0,482}{2}*11,22 = 7,57$$

$$Mt AB = 8,90KN.m$$

## **Travée DE:**

2) Mt DE 
$$\geq \max \left\{ \begin{array}{c} 1.05 * 10,62 \\ (1+0.3*0.482)* 10,62 \end{array} \right. - \frac{6,08+2,12}{2} = 8,11$$

2.1) Mt DE
$$\geq \frac{1.2+0.3*0,482}{2}*10,62=7,17$$

On utilise 1 et 2.2 pour BC et CD (travée intermédiaire):

Mt BC =7,94KN.m

#### Travée BC:

2) MtBC 
$$\geq \max \left\{ \frac{1.05 * 11,53}{(1+0.3*0.482)*11.53} - \frac{4,87+5,77}{2} = 7,94 \right\}$$

2.2) Mt BC 
$$\geq \frac{1+0.3*0,482}{2} * 11,53 = 6,63$$

# Travée CD:

2) M t CD 
$$\geq$$
 max  $\begin{cases} 1.05 * 12, 17 \\ (1+0.3*0, 482)*12, 17 \end{cases} - \frac{6,08+4,87}{2} = 8,52$ 

2.2) Mt CD
$$\geq \frac{1+0.3*0,482}{2}*12,17=6,99$$
  
Mt CD =8,52KN.m

# **Effort tranchant:**

# Travée AB:

$$Tw = \frac{9,59*3,65}{2} + \frac{3,19 - 8,21}{3.65} = 16,13KN$$

$$Te = -\frac{9,59*3.65}{2} + \frac{3,19-8,21}{3.65} = -18,87KN$$

# Travée BC:

$$Tw = \frac{9,59*3,70}{2} + \frac{8,21-6,92}{3,70} = 18,09KN$$

$$Te = -\frac{9,59*3,70}{2} + \frac{8,21-6,92}{3,70} = -17,39KN$$

# Travée CD:

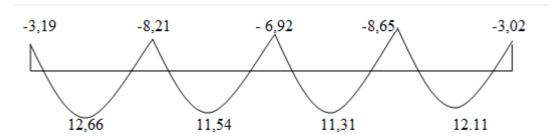
$$Tw = \frac{9,59*3,80}{2} + \frac{6,92-8,65}{3,80} = 17,76KN$$

$$Te = -\frac{9,59*3,80}{2} + \frac{6,92-8,65}{3,80} = -18,68KN$$

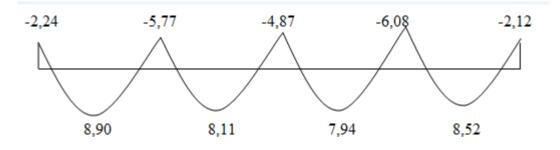
# **Travée DE**:

$$Tw = \frac{9,59*3,55}{2} + \frac{8,65 - 3,02}{3,55} = 18,61KN$$

$$Te = -\frac{9,59*3,55}{2} + \frac{8,65-3,02}{3,55} = -15,44KN$$

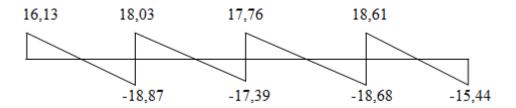

**Tableau III.8:** diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 4 travées

| Appuis | Moment sur<br>appuis<br>(kNm) |      | Travée | _     | ent en<br>(kNm) | Effort tranchant (kN) |         |
|--------|-------------------------------|------|--------|-------|-----------------|-----------------------|---------|
|        | ELU                           | ELS  |        | ELU   | ELS             | ELU                   |         |
|        |                               |      |        |       |                 | $T_{\mathbf{w}}$      | $T_{e}$ |
| 1      | 3,19                          | 2,24 | A-B    | 12,66 | 8,90            | 16,13                 | -18,87  |
| 2      | 8,21                          | 5,77 | В-С    | 11,31 | 7,94            | 18,09                 | -17,39  |
| 3      | 6,92                          | 4,87 | C-D    | 12,11 | 8,52            | 17,76                 | -18,68  |
| 4      | 8,65                          | 6,08 | D-E    | 11,54 | 8,11            | 18,61                 | -15,44  |
| 5      | 3,02                          | 2,12 |        |       |                 |                       |         |


# Diagrammes des efforts internes :

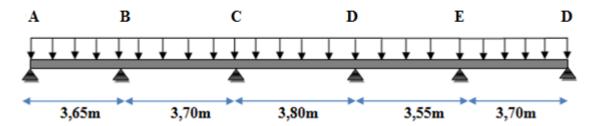
• Moment fléchissant :

# **E.L.U**:




# **E.L.S**:




#### • Effort tranchant :

#### **E.L.U**:



**Figure III.14:** diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 4 travées

#### 2- Poutrelles à 5 travées :



$$\begin{cases} q_u = 9.59kN/ml \\ q_{ser} = 6.74kN/ml \end{cases}$$

Vérification des conditions de la méthode forfaitaire :

2) Q = 0.65KN/ml 2G=2\*9,59=19,18KN/ml

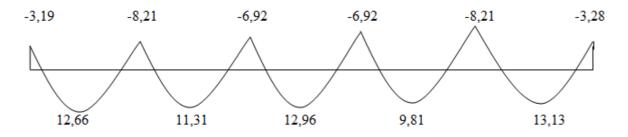
 $0.65KN/ml \le (19,18KN/ml; 5KN/ml)$  ...... vérifier

## 2)\_Calcul des sollicitations :

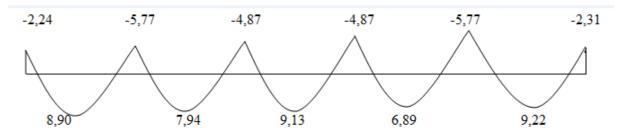
a) L'inertie est constante pour toutes les travées..... vérifier

c) La fissuration est peu nuisible ...... vérifier

Donc la méthode forfaitaire est applicable.

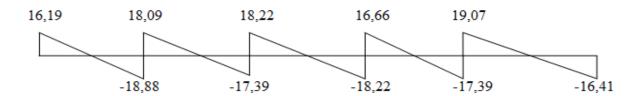

**Tableau III.9:** diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 5travées

| Appuis | Moment sur<br>appuis (kNm) |      | Travée | Moment en<br>travée (kNm) |      | Effort tranchant (kN) |        |
|--------|----------------------------|------|--------|---------------------------|------|-----------------------|--------|
|        | ELU                        | ELS  |        | ELU                       | ELS  | ELU                   |        |
|        | ELU                        |      |        |                           |      | Tw                    | Te     |
| 1      | 3,19                       | 2,24 | A-B    | 12,66                     | 8,90 | 16,13                 | -18,88 |
| 2      | 8,21                       | 5,77 | В-С    | 11,31                     | 7,94 | 18,09                 | -17,39 |
| 3      | 6,92                       | 4,87 | C-D    | 12,96                     | 9,13 | 18,22                 | -18,22 |
| 4      | 6,92                       | 4,87 | D-E    | 9,81                      | 6,89 | 16,66                 | -17,39 |
| 5      | 8,21                       | 5,77 | E-F    | 13,13                     | 9,22 | 19,07                 | -16,41 |
| 6      | 3,28                       | 2,31 |        | <u>I</u>                  |      | I.                    | l      |


# Diagrammes des efforts internes :

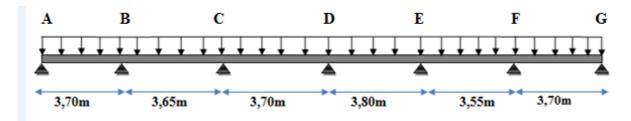
• Moment fléchissant :

# **E.L.U:**




# **E.L.S**:




#### • Effort tranchant :

#### **E.L.U:**



**Figure III.15 :** diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 5travées

#### 3- Poutrelles à 6 travées :



$$\begin{cases} q_u = 9.59kN/ml \\ q_{sar} = 6.74kN/ml \end{cases}$$

Vérification des conditions de la méthode forfaitaire :

3) 
$$Q = 0.65KN/ml$$
  $2G=2*9,59=19,18KN/ml$ 

 $0.65 \text{KN/ml} \leq (19,18 \text{KN/ml}; 5 \text{KN/ml})$ .....vérifier

#### 2) Calcul des sollicitations :

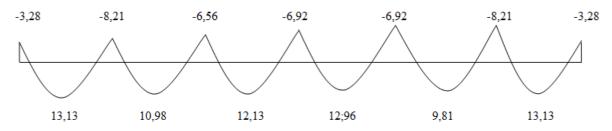
a) L'inertie est constante pour toutes les travées................ Verifier

b) 
$$0.85 < \left(\frac{L_{AB}}{L_{BC}}\right) < 1.25$$
  $\longrightarrow$   $0.85 < 1.01 < 1.25$  vérifier  $0.85 < \left(\frac{L_{BC}}{L_{CD}}\right) < 1.25$   $\longrightarrow$   $0.85 < 0.98 < 1.25$  vérifier  $0.85 < \left(\frac{L_{CD}}{L_{DE}}\right) < 1.25$   $\longrightarrow$   $0.85 < 0.97 < 1.25$  vérifier  $0.85 < \left(\frac{L_{DE}}{L_{EF}}\right) < 1.25$   $\longrightarrow$   $0.85 < 1.07 < 1.25$  vérifier  $0.85 < \left(\frac{L_{EF}}{L_{EF}}\right) < 1.25$   $\longrightarrow$   $0.85 < 0.96 < 1.25$  vérifier

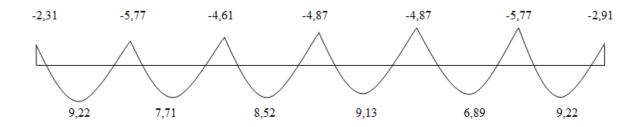
c) La fissuration est peu nuisible

vérifier

Donc la méthode forfaitaire est applicable.

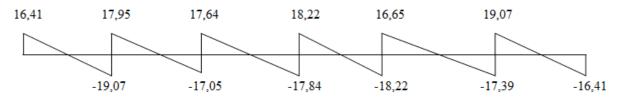

**Tableau III.10 :** diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 6 travées

| Appuis | 1.10111 | Moment sur ppuis (kNm)  Travée  Moment en travée (kNm) |     | vée   |      | fort<br>ant (kN) |          |
|--------|---------|--------------------------------------------------------|-----|-------|------|------------------|----------|
|        | ELU     | ELS                                                    |     | ELU   | ELS  | T <sub>w</sub>   | LU<br>Te |
| 1      | 3,28    | 2,31                                                   | A-B | 13,13 | 9,22 | 16,41            | -19,07   |
| 2      | 8,21    | 5,77                                                   | В-С | 10,98 | 7,71 | 17,95            | -17,05   |
| 3      | 6,56    | 4,61                                                   | C-D | 12,13 | 8,52 | 17,64            | -17,84   |
| 4      | 6,92    | 4,87                                                   | D-E | 12,96 | 9,13 | 18,22            | -18,22   |
| 5      | 6,92    | 4,87                                                   | E-F | 9,81  | 6,89 | 16,65            | -17,39   |
| 6      | 8,21    | 5,77                                                   | F-G | 13,13 | 9,22 | 19,07            | -16,41   |
| 7      | 3,28    | 2,31                                                   |     | •     | ı    | •                | <u>'</u> |


# Diagrammes des efforts internes :

#### • Moment fléchissant :

#### **E.L.U:**




# **E.L.S:**



#### • Effort tranchant :

#### **E.L.U:**



**Figure III.16 :** diagramme des Moment fléchissant et Efforts tranchant de la poutrelle à 6 travées

#### b. Calcul du ferraillage:

On considère pour le ferraillage le type de poutrelle le plus défavorable c'est-à-dire qui a le moment le plus grand en travée et sur appuis, et le calcul se fait à l'ELU en flexion simple. Les efforts maximaux sur appuis et en travée sont :

$$\begin{cases}
E.L.U: \\
M_{tu}^{max}=13,13kNm \\
M_{au}^{max}=8,65kNm \\
T_{u}^{max riv}=16,14kN \\
T_{u}^{max int}=19,07kN
\end{cases}$$

$$\begin{cases} \textbf{E.L.S:} \\ M_{tser}^{max} = 9,22 \text{kNm} \\ M_{aser}^{max} = 6,08 \text{kNm} \end{cases}$$

#### b.1. Ferraillage en travée :

h=21cm; h<sub>0</sub>=5cm; b=65cm; b<sub>0</sub>=12cm; d=0,9h=18,9cm;  $\sigma_{bc}$ =14,17MPa; fe=500MPa;  $f_{c28}$ =25MPa;  $f_{t28}$ =2,1MPa

Le calcul des sections en forme de "Té" s'effectue différemment selon que l'axe neutre est dans la table ou dans la nervure.

- Si  $M_u < M_{tab}$ : l'axe neutre est dans la table de compression.
- Si  $M_u>M_{tab}$ : l'axe neutre est dans la table ou dans la nervure.

$$M_{tab} = bh_0 \sigma_{bc} \left( d - \frac{h_0}{2} \right) = 75,53kNm$$

On a :  $M_{tu} < M_{tab}$ 

Alors: l'axe neutre est dans la table de compression.

Comme le béton tendu n'intervient pas dans les calculs de résistance, on conduit le calcul comme si la section était rectangulaire de largeur constante égale à la largeur de la table "b". Donc, la section étudiée est assimilée à une section rectangulaire (bxh) en flexion simple.

D'après l'organigramme donnant le ferraillage d'une section soumise à la flexion, on aura :

Tableau. III.11: Tableau récapitulatif du calcul des sections d'armatures en travée

| M <sub>tu</sub> (kNm) | μ     | μ<μR | As'(cm <sup>2</sup> ) | A     | Z(cm) | μ<0,186 | ζs  | σ <sub>s</sub> (MPa) | A <sub>s</sub> (cm <sup>2</sup> ) |
|-----------------------|-------|------|-----------------------|-------|-------|---------|-----|----------------------|-----------------------------------|
| 13,13                 | 0,039 | Oui  | 0                     | 0,049 | 18,53 | Oui     | 10‰ | 435                  | 1,63                              |

#### b.1.1. Condition de non fragilité :

$$A_s^{\min} \ge 0.23bd \frac{f_{t28}}{fe} = 1.19cm^2$$
  
 $A_s = \text{Max}\{1.19\text{cm}^2; 1.30\text{cm}^2\} = 1.30\text{cm}^2$ 

#### b.2. Ferraillage sur appuis:

On a:  $M_{au}^{max}$ =8,65kNm< $M_{tab}$ =75,53kNm

 $\Rightarrow$  L'axe neutre est dans la table de compression, et la section étudiée est assimilée à une section rectangulaire (b<sub>0</sub>xh) en flexion simple.

**Tableau.III.12:** Tableau récapitulatif du calcul des sections d'armatures sur appuis

| M <sub>tu</sub> (kNm) | μ     | μ<μ <sub>R</sub> | <b>A</b> <sub>s</sub> '(cm <sup>2</sup> ) | A     | Z(cm) | μ<0,186 | $\zeta_{ m s}$ | σ <sub>s</sub> (MPa) | $A_s(cm^2)$ |
|-----------------------|-------|------------------|-------------------------------------------|-------|-------|---------|----------------|----------------------|-------------|
| 8,65                  | 0,026 | Oui              | 0                                         | 0,033 | 18,65 | oui     | 10‰            | 435                  | 1,06        |

#### b.2.1. Condition de non fragilité :

$$A_s^{\min} \ge 0.23b_0 d \frac{f_{t28}}{fe} = 0.22cm^2$$
  
 $A_s = 1.06cm^2 > A_s^{\min} = 0.22cm^2$ 

$$\rightarrow$$
 Choix : 2T10 (A<sub>s</sub>=1,57cm<sup>2</sup>)

#### c. Vérifications :

#### c.1. Effort tranchant:

Pour l'effort tranchant, la vérification du cisaillement se fera dans le cas le plus défavorable c'est-à-dire : $T_u^{max int} = 19,07 kN$ .

On doit vérifier que :  $\tau_u \leq \bar{\tau}_u$ 

$$\begin{split} \overline{\tau}_u &= Min \bigg\{ 0.2 \frac{f_{cj}}{\gamma_b}; 5MPa \bigg\} = 3,33MPa.....Fissuration peunuisible \end{split}$$
 Tel que : 
$$\tau_u &= \frac{T_u^{\max}}{b_0 d} = 0,084MPa \prec \overline{\tau}_u....V\acute{e}rifi\acute{e}e \end{split}$$

#### Au voisinage des appuis :

#### • Appuis de rives :

- Vérification de la compression du béton:

$$\sigma_b = \frac{T_u}{0.9b_0 d} \le 0.4 \frac{f_{c28}}{\gamma_b}$$

Avec: T<sub>u</sub>=12,51kN (appuis de rive)

$$\sigma_b = \frac{16,41*10^3}{0,9*120*189} = 0,8 MPa \prec 0,4 \frac{f_{c28}}{\gamma_b} = 6,67 MPa....V\acute{e}rifi\acute{e}e$$

- Vérification des armatures longitudinales :

$$A_s = 1,57cm^2 \ge \frac{T_u}{fe} = 0,38cm^2....Vérifiée$$

#### Appuis intermédiaires :

- Vérification de la contrainte de compression :

$$\sigma_b = \frac{T_u^{\text{max}}}{0.9b_0d} = \frac{19.07*10^3}{0.9*120*189} = 0.93 MPa \prec 0.4 \frac{f_{c28}}{\gamma_b} = 6.67 MPa....V\acute{e}rifi\acute{e}e$$

- Vérification des armatures longitudinales :

$$A_{s} = 1,57cm^{2} \ge \frac{T_{u}^{\text{max}} - \frac{M_{ua}}{0.9d}}{\sigma_{s}}....V\acute{e}rifi\acute{e}e$$

#### c.2. Vérification à l'E.L.S:

La fissuration étant peu nuisible, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

#### c.2.1. Vérification des contraintes du béton :

Soit "y" la distance du centre de gravité de la section homogène (par lequel passe, l'axe neutre) à la fibre la plus comprimé.

La section étant soumise à un moment  $M_{ser}$ , la contrainte à une distance « y » de l'axe neutre :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

D'après l'organigramme de la vérification d'une section rectangulaire à l'ELS, on doit vérifier que :  $\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$ 

#### Détermination de l'axe neutre :

On suppose que l'axe neutre se trouve dans la table de compression :

$$\frac{b}{2}y^{2} + nA'_{s}(y - c') - nA_{s}(d - y) = 0$$

Avec : 
$$n = \frac{E_s}{E_b} = 15$$
 ; b=65cm(travée) ; b<sub>0</sub>=12cm(appuis) ; c=c'=2cm

y : Est solution de l'équation du deuxième degré suivante, puis on calcule le moment d'inertie :

$$\begin{cases} by^2 + 30(A_s + A_s')y - 30(dA_s + c'A_s') = 0\\ I = \frac{b}{3}y^3 + 15A_s(d - y)^2 + 15A_s'(y - c')^2 \end{cases}$$

- Si  $y \prec h_0 \Rightarrow$  l'hypothèse est vérifiée
- Si y > h<sub>0</sub> ⇒ la distance "y" et le moment d'inertie "I" se Calculent par les formules qui suivent :

$$\begin{cases}
b_0 y^2 + [2(b - b_0)h_0 + 30(A_s - A_s')]y - [(b - b_0)h_0^2 + 30(dA_s + c'A_s')] = 0 \\
I = \frac{b_0}{3} y^3 + \frac{(b - b_0)h_0^3}{12} + (b - b_0)h_0 \left(y - \frac{h_0}{2}\right)^2 + 15[A_s(d - y)^2 + A_s'(y - d')^2]
\end{cases}$$

**Tableau .III.13:** Tableau récapitulatif pour la vérification à l'ELS

|        | M <sub>ser</sub> (kNm) | A <sub>s</sub> (cm <sup>2</sup> ) | A's(cm <sup>2</sup> ) | Y(cm) | I(cm <sup>4</sup> ) | σ <sub>bc</sub> (MPa) | Vérification |
|--------|------------------------|-----------------------------------|-----------------------|-------|---------------------|-----------------------|--------------|
| Travée | 9,22                   | 2,36                              | 0                     | 4,02  | 8188,211            | 4,52                  | Vérifiée     |
| Appuis | 6,08                   | 1,57                              | 0                     | 3,35  | 5937,5960           | 3,43                  | Vérifiée     |

#### c.2.2. Vérification de la flèche :

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées : Les conditions à vérifier :

$$\bullet \frac{h}{L} \ge \frac{1}{16}$$

$$\bullet \frac{A_s}{b_0 d} \le \frac{4,2}{fe}$$

$$\bullet \frac{h}{L} \ge \frac{M_t}{10M_0}$$

Avec:

h=21cm ; b\_0=12cm ; d=18,9cm ; L=3,8m ;  $M_{tser}\!\!=\!\!9,\!22kNm$  ;  $A_s\!\!=\!\!2,\!36cm^2$  ; fe=500MPa. Alors:

• 
$$\frac{h}{L}$$
 = 0,055 \leq 0,0625.....nonvérifiée

• 
$$\frac{A_s}{b_0 d}$$
 = 0,0104 \times 0,0084.....vérifée

• 
$$\frac{h}{L}$$
 = 0,055 \times 0,079.....nonvérifiée

Puisque les deux conditions ne sont pas vérifiées, il est nécessaire de calculer la flèche.

Flèche totale :  $\Delta f_T = f_v - f_i \le f$  .

Tel que : 
$$\bar{f} = \frac{L}{500} = 0.76cm$$
 (L < 5m)

f<sub>i</sub>: La flèche due aux charges instantanées.

f<sub>v</sub>: La flèche due aux charges de longues durée.

- Position de l'axe neutre « y<sub>1</sub> »:

$$y_1 = \frac{bh_0 \frac{h_0}{2} + (h - h_0)b_0 \left(\frac{h - h_0}{2} + h_0\right) + 15A_s d}{bh_0 + (h - h_0)b_0 + 15A_s}$$

- Moment d'inertie de la section totale homogène « I<sub>0</sub> » :

$$I_0 = \frac{b}{3}y_1^3 + \frac{b_0}{3}(h - y_1)^3 - \frac{(b - b_0)}{3}(y_1 - h_0)^3 + 15A_s(d - y_1)^2$$

- Calcul des moments d'inerties fictifs :

$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu}$$
 ;  $I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$ 

Avec:

$$\lambda_i = \frac{0.05 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
..... Pour la déformation instantanée.

$$\lambda_{v} = \frac{0.02 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
...... Pour la déformation différée.

$$\delta = \frac{A_s}{b_0 d}$$
: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75 f_{t28}}{4\delta \sigma_s + f_{t28}}$$

 $\sigma_s$  : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_s = \frac{M_{ser}}{A_s d}$$

Les résultats sont récapitulés dans ce tableau :

Tableau .III.14 : Récapitulatif du calcul de la flèche

| M <sub>ser</sub> (kNm) | A <sub>s</sub> (cm <sup>2</sup> ) | Y <sub>1</sub> (cm) | Δ      | σ <sub>s</sub><br>(MPa) | λi   | $\lambda_{ m v}$ | μ     | I <sub>0</sub> (cm <sup>4</sup> ) | I <sub>fi</sub> (cm <sup>4</sup> ) | I <sub>fv</sub> (cm <sup>4</sup> ) |
|------------------------|-----------------------------------|---------------------|--------|-------------------------|------|------------------|-------|-----------------------------------|------------------------------------|------------------------------------|
| 7,54                   | 2,36                              | 7,20                | 0,0104 | 209,71                  | 3,95 | 1,58             | 0,656 | 23257,12                          | 7123,75                            | 11420,25                           |

#### - Calcul des modules de déformation :

$$E_i = 11000(f_{c28})^{\frac{1}{3}} = 31820.93MPa$$

$$E_{v} = \frac{E_{i}}{3} = 1060698MPa$$

- Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_iI_{fi}} = 0,587cm$$
 (L = 3,8m)

- Calcul de la flèche due aux déformations différées :

$$f_{v} = \frac{M_{ser}l^{2}}{10E_{v}I_{fv}} = 1,09cm$$

$$\Delta f_T = f_v - f_i = 0.503cm \prec \bar{f} = 0.76cm....v\acute{e}rifi\acute{e}e$$

# d. Calcul des armatures transversales et l'espacement :

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE24 (fe=235MPa)

#### «BAEL 91 modifié 99»:

$$\begin{cases} \bullet \frac{A_{t}}{b_{0}S_{t}} \geq \frac{\tau_{u} - 0.3f_{tj}K}{0.8fe} & (K = 1 \ pasdereprisedeb\'{e}tonnage) \\ \bullet S_{t} \leq Min(0.9d;40cm) \\ \bullet \frac{A_{t}fe}{b_{0}S_{t}} \geq Max \left(\frac{\tau_{u}}{2};0.4MPa\right) \end{cases}$$

#### \*RPA 99 version 2003 \*:

$$\begin{cases} \bullet \frac{A_{t}}{S_{t}} \geq 0,003b_{0} \\ \bullet S_{t} \leq Min\left(\frac{h}{4};12\phi_{t}\right)......Zone \, nodale \\ \bullet S_{t} \leq \frac{h}{2}.....Zone \, courante \end{cases}$$

Avec:

$$\phi_t \leq Min\left(\frac{h}{35};\phi_t;\frac{b}{10}\right)$$

 $\emptyset_1$ : Diamètre minimum des armatures longitudinales.

 $\emptyset_t \le Min(0,6cm; 1cm; 6,5cm) = 0,6cm$ 

On adopte: Øt=6mm

Donc:

#### - Selon le « RPA 99 version 2003 » :

#### Choix des armatures :

On adopte : $A_t=2T6=0,57cm$ 

#### **Choix des espacements:**

$$\frac{A_t}{S_t} \ge 0.036 \Rightarrow S_t \le 15.83cm$$

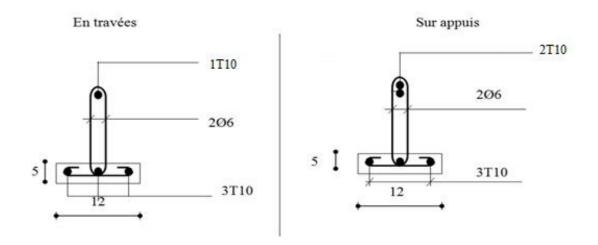



Figure. III.17: Disposition constructive des armatures des poutrelles

#### e. Ferraillage de la dalle de compression :

Le ferraillage de la dalle de compression doit se faire par un quadrillage dont les dimensions des mailles ne doivent pas dépasser :

- 20cm : Dans le sens parallèle aux poutrelles.
- 30cm : Dans le sens perpendiculaire aux poutrelles.

$$\operatorname{Si}: \begin{cases} 50 \leq L_{1} \leq 80cm \Rightarrow A_{1} = \frac{4L_{1}}{fe} \\ L_{1} \leq 50cm \Rightarrow A_{2} = \frac{200}{fe} \end{cases} \tag{$L_{1}encm$}$$

 $L_1$ : Distance entre axes des poutrelles ( $L_1$ =65cm)

A<sub>1</sub>: Armatures perpendiculaires aux poutrelles (AP)

A<sub>2</sub>: Armatures parallèles aux poutrelles (AR)

$$A_2 = \frac{A_1}{2}$$

Fe=520MPa (quadrillage de TS.TIE520→Ø≤6mm)

On a: L=65cm

Donc on obtient :  $A_1=0.5$ cm<sup>2</sup>/ml

On prend: 6T5=1,18cm<sup>2</sup>

$$S_t = \frac{100}{5} = 20cm$$

## **Armatures de répartitions :**

$$A_2 = \frac{A_1}{2} = 0.59cm^2$$

Soit:  $6T5=1,18cm^2 \rightarrow S_t=20cm$ 

#### **Conclusion:**

Pour le ferraillage de la dalle de compression, on adopte un treillis soudés dont la dimension des mailles est égale à 20cm et armatures T8 suivant les deux sens qui est plus utilisable.

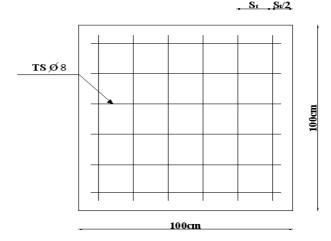



Figure III.18: Disposition constructive des armatures de la table de compression

#### III.5. Plancher en dalle pleine :

Les dalles pleines sont des éléments d'épaisseur faible par rapport aux autres dimensions, chargée perpendiculairement à leur plan moyen reposant sur deux, trois ou quatre appuis. Des dalles pleines en porte à faux (console) existent aussi.

- type "I": sous forme rectangulaire qui repose sur quatre appuis, pour le calcul on choisi la dalle la plus sollicitée.

# III.5.1. Dalle type "I"

#### III.5.1.1. Evaluation des charges :

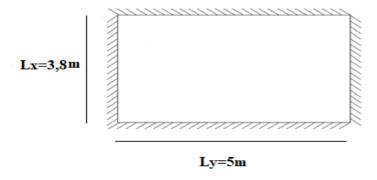



Figure .III.19: schéma de la dalle pleine sous sol

 $G=6,33kN/m^2$ ,  $Q=2,5kN/m^2$ .

ELU:

$$q_u=1,35G+1,5Q=12,29kN/m^2$$

ELS:

$$q_{ser} = G + Q = 8,83 \text{kN/m}^2$$

 $\rho = \frac{L_x}{L_y} = \frac{3.8}{5} = 0.76 > 0.4 \Rightarrow$  La dalle travaille dans les deux sens.

#### III.5.1.2. Calcul des moments :

- Dans le sens de la petite portée :  $M_x = \mu_x q_\mu L_x^2$
- Dans le sens de la grande portée :  $M_y = \mu_y M_x$

Les coefficients  $\mu_x$  et  $\mu_y$  sont fonction de  $\rho = \frac{L_x}{L_y}$  et de v.

v: Coefficient de poisson 
$$\begin{cases} 0 & a l' ELU \\ 0.2 & a l' ELS \end{cases}$$

 $\mu_x$  et  $\mu_y$  sont donnés par l'abaque de calcul des dalles rectangulaires.

$$\rho = 0.76 \Longrightarrow \begin{cases} \mu_x = 0.0608 \\ \mu_y = 0.5274 \end{cases}$$

$$M_x = \mu_x q_u L_x^2 = 10,79kNm$$
  
 $M_y = \mu_y M_x = 5,69kNm$ 

#### Moments en travées :

$$M_{tx}$$
=0,75 $M_x$ =8,09 $k$ N $m$   
 $M_{ty}$ =0,75 $M_y$ =4,26 $k$ N $m$ 

Moments sur appuis :

$$M_{ax} = M_{ay} = 0.5 M_x = 4.05 kNm$$

#### III.5.1.3. Ferraillage de la dalle :

b=100cm ;h=15cm ; d=0,9h=13,5cm ;  $f_e$ =500MPa;  $f_{c28}$ =25MPa ;  $f_{t28}$ =2,1MPa ;  $\sigma_s$ =435MPa Les résultats sont récapitulés dans le tableau suivant :

**Tableau III.15 :** Ferraillage de la dalle pleine

|        | Sens | $M_{\rm u}$ | U      | As'      | α     | Z(cm) | A scal   | Choix | A sadp   | Esp  |
|--------|------|-------------|--------|----------|-------|-------|----------|-------|----------|------|
|        |      | (kNm)       |        | $(cm^2)$ |       |       | $(cm^2)$ |       | $(cm^2)$ | (cm) |
|        |      |             |        |          |       |       |          |       |          |      |
| Travée | X-X  | 8,09        | 0,0313 | 0        | 0,039 | 13,29 | 1,39     | 5T8   | 2,51     | 20   |
|        | у-у  | 4,26        | 0,0164 | 0        | 0,021 | 13,39 | 0.73     | 4T8   | 2.01     | 25   |
| Appuis | X-X  | 4,05        | 0,0157 | 0        | 0,019 | 13,39 | 0,69     | 4T8   | 2,01     | 25   |
|        | у-у  |             |        |          |       |       |          |       |          |      |

#### **Espacement:**

#### Travée:

-Sens x-x: 
$$esp = \frac{100}{5} = 20cm \prec Min(3h = 60cm; 33cm) = 33cm.....Vérifier$$
  
-Sens y-y:  $esp = \frac{100}{4} = 25cm \prec Min(4h = 80cm; 45cm) = 45cm.....Vérifier$ 

#### **Appuis:**

-Sens x-x: 
$$esp = \frac{100}{4} = 25cm \prec Min(3h = 60cm; 33cm) = 33cm.....Vérifier$$
  
-Sens y-y:  $esp = \frac{100}{4} = 25cm \prec Min(4h = 80cm; 45cm) = 45cm....Vérifier$ 

#### III.5.1.4. Condition de non fragilité :

On a: 
$$12cm \le e \le 30cm$$
  
h=e=15cm; b=100cm  
$$\begin{cases} A_x \ge \rho_0 \frac{(3-\rho)}{2}bh = 1,34cm^2 \\ A_y \ge \rho_0 bh = 1,28cm^2 \end{cases}$$

Avec : 
$$\begin{cases} \rho_0 = 0.8\%_0 \ pour les barres \`a \ haute a dh\'erence \\ \rho = \frac{L_x}{L_y} = 0.76 \end{cases}$$

#### Travée:

• Sens x-x: 
$$A_x = 2.51cm^2 > A_s^{min} = 1.34cm^2....V\acute{e}rifi\acute{e}e$$

• Sens y-y: 
$$A_y = 2.01cm^2 > A_s^{min} = 1,28cm^2....V\acute{e}rifi\acute{e}e$$

#### Appuis:

• Sens x-x : 
$$A_x = 2.01cm^2 > A_s^{min} = 1.34cm^2....V\acute{e}rifi\acute{e}e$$

• Sens y-y: 
$$A_y = 2.01cm^2 > A_s^{min} = 1.28cm^2....V\acute{e}rifi\acute{e}e$$

#### III.5.1.5. Calcule des armatures des armatures transversales :

Les armatures transversales ne sont pas nécessaires si la condition ci dessous est vérifiée :

$$\begin{split} &\tau_{u} = \frac{T_{u}^{\max}}{bd} \prec \overline{\tau}_{u} = 0.05 f_{c28} = 1.25 MPa \\ &T_{x} = \frac{q_{u} L_{x} L_{y}}{2L_{x} + L_{y}} = \frac{12.29 x3.8 x5}{2 x3.8 + 5} = 18.53 kN \\ &T_{y} = \frac{q_{u} L_{x}}{3} = 15.57 kN \\ &T_{u}^{\max} = Max \left(T_{x}; T_{y}\right) = 18.53 kN \\ &\tau_{u} = \frac{18.53.10^{3}}{1000 x135} = 0.137 MPa \prec \overline{\tau}_{u} = 1.25 MPa.....Vérifier \end{split}$$

#### III.5.1.6. Vérification a L'ELS:

#### a. Evaluation des sollicitations à l'ELS:

$$\frac{L_x}{L_y} = 0.76 \Rightarrow \begin{cases} \mu_x = 0.0672 \\ \mu_y = 0.6580 \end{cases}$$

$$\begin{cases} M_x = \mu_x q_{ser} L_x^2 = 8.56kNm \\ M_y = \mu_y M_x = 5.63kNm \end{cases}$$

$$\begin{cases} M_{tx} = 0.85M_x = 7.28kNm \\ M_{ty} = 0.85M_y = 4.78kNm \\ M_a = 0.3M_x = 2.57kNm \end{cases}$$

#### b. Vérification des contraintes :

Il faut vérifier que :  $\sigma_{bc} \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$ Le tableau suivant récapitule les résultats trouvés :

Tableau III.16: Vérification des contraintes à l'ELS

|        | Sens | M <sub>ser</sub> (kNm) | $A_s(cm^2)$ | Y(cm) | I(cm <sup>4</sup> ) | σ <sub>bc</sub> (MPa) | σ <sub>bc</sub> (MPa) | Vérification |
|--------|------|------------------------|-------------|-------|---------------------|-----------------------|-----------------------|--------------|
|        |      |                        |             |       |                     |                       |                       |              |
| Travée | X-X  | 7,28                   | 2.51        | 3.32  | 9328.63             | 2,59                  | 15                    | OK           |
|        | у-у  | 4,78                   | 2.01        | 3.00  | 7683.66             | 1,86                  |                       |              |
|        | уу   | 4,70                   | 2.01        | 5.00  | 7005.00             | 1,00                  |                       |              |
| Appuis | X-X  | 2,57                   | 2.01        | 3.00  | 7683.66             | 1,00                  | 15                    | OK           |
|        | у-у  |                        |             |       |                     |                       |                       |              |

#### c. Vérification de la flèche :

Il n'est pas nécessaire de faire la vérification de la flèche, si les trois conditions citées ci dessous sont vérifiées simultanément :

dessous sont vérifiées simultanément : 
$$1 - \frac{h}{L_x} \ge \frac{M_t}{20M_x}$$

$$2 - \frac{h}{L_x} \ge \frac{1}{27} \grave{a} \frac{1}{35}$$

$$3 - \frac{A}{bd} \le \frac{2}{f_e}$$

$$\Rightarrow \begin{cases} 0,042 \succ 0,030......vérifier \\ 0,042 \succ 0,037\grave{a}0,028.....vérifier \\ 1,74.10^{-3} \prec 4.10^{-3}....vérifier \end{cases}$$

Les trois conditions sont vérifiées, donc le calcul de la flèche n'est pas nécessaire

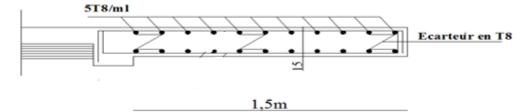



Figure .III.20 : ferraillage de la dalle plein

#### III.6. Balcons

#### III.6.1. Introduction

Dans notre cas les balcons sont réalisés en dalles pleines d'épaisseur 15 cm. Selon les dimensions et les surcharges, nos balcons sont partiellement encastrés et se reposent sur trois appuis.

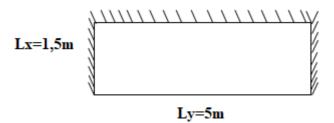



Figure .III.21: vue en plan des balcons

#### III.6.2.1. pré dimensionnement :

On a: Ly=5m; Lx=1,5m 
$$\frac{Lx}{Ly} = 0.3 < 0.40$$

#### III.6.2.2. Evaluation des charges

- Charge permanente: G=5,45 kN/m²
   Charge d'exploitation: Q=3,50kN/m²
- Charge concentrée "F": (Poids du mur)
- Mur:  $G=2.81 \text{ kN/m}^2$
- Hauteur du mur: h=1,2m

$$qu = 1,35G+1,5Q = 12,61kn/ml$$
  
 $qs = G+Q = 8,95kn/ml$ 

#### III.6.2.3. Calcul des sollicitations :

on détarmine les moments isostatique sollicitant la dalle comme suit :

Lx=1,5m< 
$$\frac{Ly}{2}$$
 = 2,5m
$$Lx \le \frac{Ly}{2} \longrightarrow \begin{cases} Moy = \frac{12,61*1,5^3}{6} = 7,09kn.m \\ Mox = \frac{12,61*1,5^3*5}{2} - \frac{2*12,61*1,5^3}{3} = 42,55kn.m \end{cases}$$

#### <u>a-Moments en travées</u>:

$$M_{tx}$$
= 0,85  $M_{0x}$  =0,85(42,55)=36,17 kn.m

$$M_{ty}$$
= 0,85  $M_{0y}$  =0,85(7,09) = 6,03 kn.m

#### **b-Moments aux appuis:**

$$M_{ax}=M_{ay}=-0.5 M_{0x}=-0.5(36.17)=-18.09 kn.m$$

#### III.6.3. Le Ferraillage :

Le ferraillage est mené à la flexion simple pour une bonde de largeur  $b=100 \, \text{cm}$  et d'épaisseur  $e=15 \, \text{cm}$ .

#### En travée :

Sens x-x: d=13.5cm

| M <sub>tu</sub> (kNm) | μ     | μ<μR | <b>A</b> s'(cm <sup>2</sup> ) | Z'    | $\mathbf{A_s}$ | choix | $\mathbf{A_s}^{\mathrm{adp}}$ |
|-----------------------|-------|------|-------------------------------|-------|----------------|-------|-------------------------------|
| 36,17                 | 0,139 | Oui  | 0                             | 12,49 | 6,65           | 6HA14 | 9,24                          |

#### Condition de non fragilité :

$$A_s^{\min} \ge 0.23b_0 d \frac{f_{t28}}{fe} = 1.31cm^2$$

# Armature de répartition:

$$A_r = 2.31 \text{ cm}^2$$

#### Sens y-y:

| M <sub>tu</sub> (kNm) | μ     | μ<μ <sub>R</sub> | As'(cm <sup>2</sup> ) | Z'   | $\mathbf{A_s}$ | choix | $\mathbf{A_s}^{\mathrm{adp}}$ |
|-----------------------|-------|------------------|-----------------------|------|----------------|-------|-------------------------------|
| 6,03                  | 0,023 | Oui              | 0                     | 11,7 | 1,18           | 6HA14 | 9,24                          |

$$A_s^{\text{min}} \ge 0.23b_0 d \frac{f_{t28}}{fe} = 1.31cm^2$$

# Armature de répartition:

$$A_r = 2,31 \text{ cm}^2$$

On adopte  $6HA8 = 3,02 \text{ cm}^2$ 

 $A_{st~min} \geq 1{,}31~cm^2.....v\acute{e}rifier$ 

| désignation | Sans       | M(kn. | A <sub>cal</sub> (cm <sup>2</sup> ) | A <sub>min</sub> (cm <sup>2</sup> ) | On adopte |
|-------------|------------|-------|-------------------------------------|-------------------------------------|-----------|
| _           |            | m)    |                                     |                                     | _         |
| Travée      | X-X        | 36,17 | 6,65                                | 1,31                                | 6HA14     |
|             | Y-Y        | 6,03  | 1,18                                | 1,31                                | 6HA8      |
| Appuis      | X-X<br>Y-Y | 18,09 | 4,88                                | 1,31                                | 4HA14     |

Tableau III .17: Ferraillage des balcons

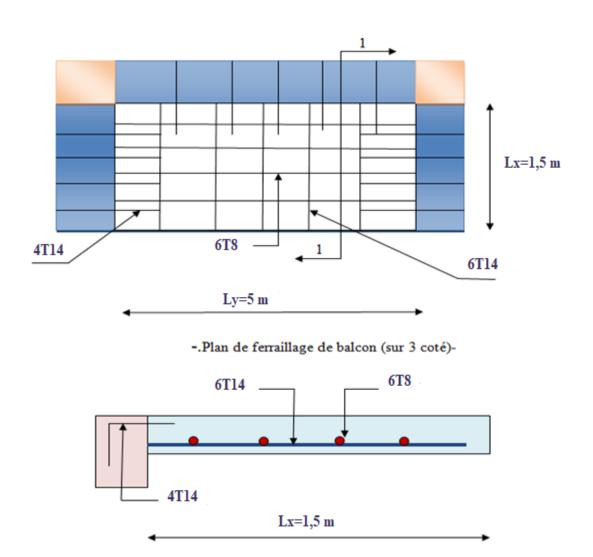



Figure III.22 : Plan de ferraillage des balcons

# Etude Dynamique

#### **IV.1.Introduction:**

Le calcul parasismique a pour but l'estimation des valeurs caractéristiques les plus défavorables de la réponse sismique et le dimensionnement des éléments de résistance, afin d'obtenir une sécurité jugée satisfaisante pour l'ensemble de l'ouvrage. Toute structure implantée en zone sismique est susceptible de subir durant sa durée de vie une excitation dynamique de nature sismique.

De ce fait la détermination de la réponse sismique de la structure est incontournable lors de l'analyse et de la conception parasismique de cette dernière. Ainsi le calcul d'un bâtiment vis à vis du séisme vise à évaluer les charges susceptibles d'être engendrées dans le système structurel lors du séisme.

Le but de ce chapitre est de définir un modèle de structure qui vérifie les conditions et critères de sécurités imposées par les règles parasismiques Algériennes RPA99/version 2003.

#### IV.2 Etude dynamique:

#### IV.2.1. Introduction:

L'analyse dynamique nécessite toujours initialement de créer un modèle de calcul représentant la structure, Ce modèle introduit en suite dans un programme de calcul dynamique permet la détermination de ses modes propre de vibrations et des efforts engendrés par l'action sismique.

#### IV.2.2. Modélisation mathématique :

La modélisation revient à représenter un problème physique possédant un nombre de degré de liberté (D.D.L) infini par un modèle ayant un nombre de (D.D.L) fini et qui reflète avec une bonne précision les paramètres du système d'origine à savoir : la masse, la rigidité et l'amortissement. En d'autres termes ; la modélisation est la recherche d'un mécanisme simplifié qui nous rapproche le plus possible du comportement réel de la structure, en tenant compte le plus correctement possible de la masse et de la raideur (rigidité) de tous les éléments de la structure.

#### IV.2.3. Caractéristique dynamiques propres :

Une structure classique idéale est dépourvue de tout amortissement de sorte qu'elle peut vibrer indéfiniment tant qu'il soit nécessaire de lui fournir de l'énergie. Ce comportement est purement théorique en raison de l'existence inévitable des frottements qui amortissent le mouvement.

Les caractéristiques propres de la structure sont obtenues à partir du système non amorti et non forcé, l'équation d'un tel système est donné par :

$$[M] \begin{Bmatrix} \ddot{x}(t) \end{Bmatrix} + [K] \{x\} = \{0\}....(1)$$

Avec :[M] : Matrice de masse de la structure.

[K] : Matrice de rigidité de la structure.

 $\left\{\frac{x}{x}\right\}$ : Vecteur des accélérations relatives.

 $\{x\}$ : Vecteur des déplacements relatifs.

L'analyse d'un système à plusieurs degrés de liberté nous fournie les propriétés dynamiques les plus importantes de ce système, qui sont les fréquences propres et modes propres.

Chaque point de la structure exécute un mouvement harmonique autour de sa position d'équilibre.

Ce qui est donné par :

$$\{x(t)\} = \{A\}\sin(\varpi t + \varphi)....(2)$$

Avec:

 $\{A\}$ : Vecteur des amplitudes.

ω: Fréquence de vibration.

φ: Angle de déphasage.

Les accélérations en vibration libre non amortie sont données par :

$$\begin{Bmatrix} \vdots \\ x \end{Bmatrix} = -\omega^2 \{A\} \sin(\omega t + \varphi)....(3)$$

En substituant les équations (2) et (3) dans l'équation (1) ; on aura :

$$([K] - \omega^2[M])(A)\sin(\omega t + \varphi) = 0....(4)$$

Cette équation doit être vérifiée quelque soit le temps (t), donc pour toutes les valeurs de la fonction sinus, ce qui donne :

$$([K] - \omega^2[M])(A) = \{0\}....(5)$$

Ce système d'équation est un système à (n) inconnues " $A_i$ ". Ce système ne peut admettre une solution non nulle que si le déterminant de la matrice  $\Delta_{\omega}$  est nul c'est à dire :

$$\Delta_{\omega} = \left[ \left[ K. \right] - \omega^2 \left[ M \right] = 0....(6)$$

L'expression ci dessus est appelée "Equation caractéristique".

En développant l'équation caractéristique, on obtient une équation polynomiale de degré (n)  $\operatorname{en}(\omega^2)$ .

Les (n) solutions  $(\omega_1^2; \omega_2^2; \dots; \omega_n^2)$  sont les carrés des pulsations propres des (n) modes de vibrations possibles.

Le 1<sup>er</sup> mode vibratoire correspond a  $\omega_1$  et il est appelé mode fondamental  $(\omega_1 \prec \omega_2 \prec ... \prec \omega_n)$ 

A chaque pulsation propre, correspond une forme d'oscillation appelée mode propre  $\{A\}_i$  ou forme modale (modale Shape).

#### IV.3. Modélisation de la structure :

L'une des étapes les plus importantes lors d'une analyse dynamique de la structure est modélisation adéquate de cette dernière.

Vue la complexité et le volume de calcul que requiert l'analyse de notre structure, la nécessite de l'utilisation de l'outil informatique s'impose. L'utilisation d'un logiciel préétabli en se basant sur la méthode des éléments finis par exemple « SAP2000, ETABS, ROBOT... » avec une modélisation adéquate de la structure, peut aboutir à une meilleure définition des caractéristiques dynamiques propres d'une structure donnée.

Dans le cadre de notre projet nous avons opté pour un logiciel de calcul existant depuis quelque années et qui est à notre porté : il s'agit de l'ETABS.

#### IV.3.1. Présentation du programme Etabs :

Etabs est un logiciel de calcul des structures de génie civil (bâtiments, châteaux d'eau......)et des travaux publics (ponts, tunnels...), Il offre de nombreuses possibilités d'analyse des effets statiques et dynamiques avec des compléments de conception. Il permet aussi la vérification des structures en béton armé ou en charpente métallique, L'interface graphique disponible facilite, considérablement, la modélisation et l'exploitation des résultats.

#### IV.3.2 Modélisation de rigidité :

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degré de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par un élément surfacique type (Shell) à quatre nœud après on l'a divisé en mailles.
- A tout les planchers nous avons attribués une contrainte de type diaphragme ce qui correspond à des planchers infiniment rigide dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

#### IV.3.3. L'analyse:

Après la modélisation de la structure et la distribution des masses et des chargements ainsi que la définition des combinaisons de charges, on passe à l'analyse.

Etabs offre les possibilités d'analyses suivantes :

- -Analyse statique linéaire.
- Analyse P-Delta.

- -Analyse statique non linéaire.
- -Analyse dynamique

#### IV.3.4 . Modélisation de la masse :

- La charge des planchers est supposée uniformément répartie sur toute la surface du plancher.
- La masse est calculée par l'équation (G+ $\beta$ Q) imposée par le RPA99 version2003 avec ( $\beta$ =0,2) pour un bâtiment à usage multiple habitation et Commerce. (mass source).
- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir 2,5t/m<sup>3</sup>.
- La charge de l'acrotère et des murs extérieurs (maçonnerie) a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

#### IV.3.5. Conception du contreventement vertical :

Pour une bonne conception parasismique il faudra:

- Disposer les éléments de contreventement d'une manière symétrique dans chaque direction afin de limiter la torsion d'ensemble.
- ➤ Eloigner les éléments verticaux parallèles afin de disposer d'un grand bras de levier du couple résistant à torsion.
- Maximiser la largeur des éléments verticaux afin de diminuer la déformabilité horizontale.
- > Superposer les éléments verticaux, afin de créer des consoles verticales de section constante ou élargies vers le bas.

#### IV .4. Etude sismique:

#### IV.4.1. Stratégie du calcul sismique :

Le choix des méthodes de calcul et la maîtrise de la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage considéré. Les règles parasismiques Algériennes (RPA99/version2003) propose trois méthodes de calcul des sollicitations, le calcul dont le choix est fonction à la fois du type de la structure et de la nature de l'excitation dynamique, il s'agit donc de s'orienter vers l'une ou l'autre des méthodes suivantes :

#### 1- La méthode statique équivalente :

Le calcul statique équivalent implique la substitution au calcul dynamique des équivalents statiques qui sont censés produire les mêmes effets. Le calcul statique peut être considéré comme dérivant de l'analyse modale par les simplifications suivantes :

- le mode fondamental est seul pris en compte.
- La déformée du mode fondamentale est arbitrairement assimilée à une droite pour les structure à portique et à une parabole pour les structures en voiles.

#### a. Conditions d'applications :

Les conditions d'applications de la méthode statique équivalente sont :

-Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I et II et à 30m en zones III

-Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outres les conditions de hauteur énoncées en haut, et les conditions complémentaires suivantes :

Zone III: ogroupe d'usage 3 et 2, si la hauteur est inférieur ou égale à 5 niveaux ou 17m.

• groupe d'usage 1B, si la hauteur est inférieur ou égale à 3 niveaux ou 10m.
 • groupe d'usage 1A, si la hauteur est inférieur ou égale à 2 niveaux ou 8m.

✓ la méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III de groupe d'usage 2 et sa hauteur dépasse les 17m.

#### 2-La méthode d'analyse modale spectrale :

Il s'agit de mettre en évidence les modes propres du mouvement libre et d'introduire le spectre de dimensionnement qui fournit la valeur de la réponse maximale.

#### a-Principe:

Il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques, représentées par un spectre de calcul, ces effets sont par suite combinés pour obtenir la réponse de la structure.

Cette méthode est basée sur les hypothèses suivantes :

- Concentration des masses au niveau des planchers.
- Seuls les déplacements horizontaux des nœuds sont pris en compte.
- Le nombre de modes à prendre en compte est tel que la somme des coefficients massiques de ces modes soit aux moins égales 90%.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la repense totale de la structure.

Le minimum de modes à retenir est de trois (3) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que:

$$K \ge 3\sqrt{N}$$
 et  $T_K \le 0.20 \sec$  ..... (4-14)

Où : N est le nombre de niveaux au dessus de sol et  $T_K$  la période du mode K.

#### 3-La méthode d'analyse dynamique par accélérogramme (temporelle) :

À partir des accélérogrammes, elle donne la valeur de la réponse de la structure en fonction du temps.

#### IV.4.2. Choix de la méthode calcul:

Pour le choix de la méthode à utiliser, on doit vérifier un certain nombre de conditions suivant les règles en vigueur en Algérie (RPA99/version 2003).

Dans le cas de notre structure étudié la hauteur supérieurement à 10 m en zone III, nous utiliserons la méthode d'analyse modale spectrale pour l'analyse sismique.

#### **IV.4.3.** Analyse spectrale:

#### IV .4.3.1. Méthode dynamique modale spectrale :

Il y a lieu de rappeler que la direction d'un séisme est aléatoire et que par conséquent il convient d'analyser une structure sous les deux composantes horizontales orthogonales d'un séisme agissant suivant les deux directions principales de celle-ci.

L'analyse spectrale permet d'avoir :

Pour chaque mode propre : la période, les facteurs des participations massique.

Pour chaque direction : déplacements, réactions et efforts correspondants à chacun des modes propres.

#### IV.4.3.2. Spectre de réponse :

Le règlement recommande le spectre de réponse de calcul donné par la fonction suivante :

$$\frac{S_a}{g} = \begin{cases} 1.25 \left[ 1 + \frac{T}{T_1} \left( 2.5 \eta \frac{Q}{R} - 1 \right) \right] & 0 \le T \le T_1 \\ 2.5 \eta (1.25A) \frac{Q}{R} & T_1 \le T \le T_2 \\ 2.5 \eta (1.25A) \frac{Q}{R} \left( \frac{T_2}{T} \right)^{2/3} & T_2 \le T \le 3s \\ 2.5 \eta (1.25A) \frac{Q}{R} \left( \frac{T_2}{3} \right)^{2/3} \left( \frac{3}{T} \right)^{5/3} & T \ge 3.0s \end{cases}$$
[2]

Avec:

g: accélération de la pesanteur.

g = 10 N

A : Coefficient d'accélération de zone.

Pour notre cas:

- L'ouvrage est classé de (groupe 2).
- L'implantation de ce bâtiment se fera dans la wilaya d'Alger (zone III).

Donc:

A = 0.25

η: Facteur de correction d'amortissement (quand l'amortissement est différent de 5%).

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

 $\xi$ : Pourcentage d'amortissement critique.

avec 
$$\xi = 7 \% \rightarrow \eta = 0.8819$$

 $\xi$ =7%. (Portique en béton armée et de remplissage dense).

 ${f R}$ : Coefficient de comportement de la structure qui reflète la ductilité de la structure. Il est en fonction du système de contreventement.

R=5.

T1, T2 : Périodes caractéristiques associées à la catégorie de site est donnée dans le tableau 4.7 de RPA99/version 2003.

$$T_1 = 0.15 \text{ s et } T_2 = 0.5 \text{ s (site meuble S} = 3)$$

Q : Facteur de qualité

Le facteur de qualité de la structure est fonction de :

- La redondance et de la géométrie des éléments qui la constituent.
- La régularité en plan et en élévation.
- La qualité de contrôle de la construction.

La valeur de **Q** déterminée par la formule :  $Q = 1 + \sum_{1}^{6} P_q$  [2]

 $P_q$ : Est la pénalité à retenir selon que le critère de qualité  ${\bf q}$  "est satisfait ou non ".

Sa valeur est donné par le tableau 4.4(RPA 99/version 2003).

Tableau IV.1 : valeurs de pénalités

| Critère q                                             | Observée (o/n) | Q // xx | Observée (o/n) | Q // yy |
|-------------------------------------------------------|----------------|---------|----------------|---------|
| Conditions minimales sur les files de contreventement | Oui            | 0       | Oui            | 0       |
| Redondance en plan                                    | Oui            | 0       | Oui            | 0       |
| Régularité en plan                                    | Non            | 0.05    | Non            | 0.05    |
| Régularité en élévation                               | Non            | 0.05    | Non            | 0.05    |
| Contrôle de la qualité des matériaux                  | Non            | 0.05    | Non            | 0.05    |
| Contrôle de la qualité de l'exécution                 | Non            | 0.1     | Non            | 0.1     |

Q//xx=1+(0.05+0.05+0.05+0.05+0.05+0+0)=1.25.

Q//yy=1+(0.05+0.05+0.05+0.05+0.05+0+0)=**1.25.** 

## Représentation graphique du spectre de réponse :

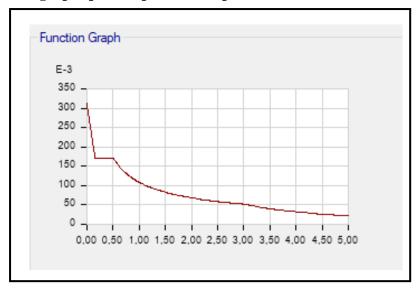



Figure IV.1 : Spectre de réponse.

Une fois le spectre de réponse injecté dans

le fichier de données. La réponse sismique est obtenue sous différentes combinaisons de charges (G, Q et E)

#### > Résultante des forces sismiques de calcul :

La résultante des forces sismique a la base Vt obtenue par combinaison des valeurs modales ne doit pas être inférieure a 80% de la résultante des forces sismique déterminer par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si Vt<0,8V il faudra augmenter tous les paramètres de la réponse (forces, déplacements, moments ...) dont le rapport est de :  $r = \frac{0.8V}{Vt}$ 

Où:

Vt : tirer par logiciel de calcul (modale spectrale).

V : obtenu par la méthode statique équivalente.

#### > Calcul de la force sismique par la méthode statique équivalente :

Cette force V appliquée à la base de la structure doit être calculée successivement dans les deux directions horizontales par la formule suivante :

$$V = \frac{A \cdot D \cdot Q}{R} \cdot W$$

Avec

A = 0.25.

R = 5.

Q = 1,25

W : Poids total de la structure.

D : Facteur d'amplification dynamique moyen, il est en fonction de la catégorie de site, de facteur de correction d'amortissent  $(\eta)$  et de période fondamentale de la structure (T).

D= 
$$\begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0s \\ 2.5\eta \left(\frac{T_2}{3.0}\right)^{2/3} \left(\frac{3.0}{T}\right)^{5/3} & T \ge 3.0s \end{cases}$$

$$\eta = 0.8819 \quad T_1 = 0.15 \text{ s} \quad T_2 = 0.5 \text{ s} \quad T = ?$$

#### Estimation de la période fondamentale de la structure (T) :

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

Les formules empiriques à utiliser selon le RPA99/version 2003 sont :

T= min ( 
$$T = C_T \times h_N^{3/4}$$
 ,  $T = 0.09 \frac{h_N}{\sqrt{D}}$  )

$$C_T = 0.05$$

 $h_N$ : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

$$h_N = 34.3 \text{ m}$$

D : Est la dimension du bâtiment mesurée a sa base dans la direction de calcul considéré

$$\Rightarrow D_X = 26.68m$$

$$\Rightarrow D_Y = 22.1m$$

$$\Rightarrow$$
  $T = C_T \times h_N^{3/4} = 0.05(34.4)^{3/4} = 0.708s$ , dans les deux directions.

✓ Suivant la direction 
$$(x - x)$$
  $T_x = 0.09 \frac{34.3}{\sqrt{26.68}} = 0.597 \text{sec.}$ 

✓ Suivant la direction (y – y) 
$$T_y = 0.09 \frac{34.3}{\sqrt{22.1}} = 0.657 \text{sec.}$$

**Sens** (x-x): 
$$T_X = \min(0.597; 0.708) = 0.597 \text{sec.}$$

**Sens** (y-y): 
$$T_y = \min(0.657; 0.708) = 0.657 \text{sec.}$$

Calcul de D:

$$\begin{cases}
D_x = 2.5\eta \left(\frac{T_2}{T_X}\right)^{2/3} = 2.5 \times 0.8819 \times \left(\frac{0.5}{0.597}\right)^{2/3} = 1.96 \\
D_y = 2.5\eta \left(\frac{T_2}{T_Y}\right)^{2/3} = 2.5 \times 0.8819 \times \left(\frac{0.5}{0.657}\right)^{2/3} = 1.84
\end{cases}$$

Donc:

$$\begin{cases} V_X = \frac{A \times D_X \times Q}{R}. \ W = \frac{0.25 \times 1.96 \times 1.25}{5}. \ W = 0.1225W \\ V_y = \frac{A \times D_y \times Q}{R}. \ W = \frac{0.25 \times 1.84 \times 1.25}{5}. \ W = 0.115W \end{cases}$$

#### IV.5 Résultats de l'analyse sismique :

#### 1-Modèle initial:

• Disposition des voiles :



Figure IV.2 : Vue en 3D du modèle initial.

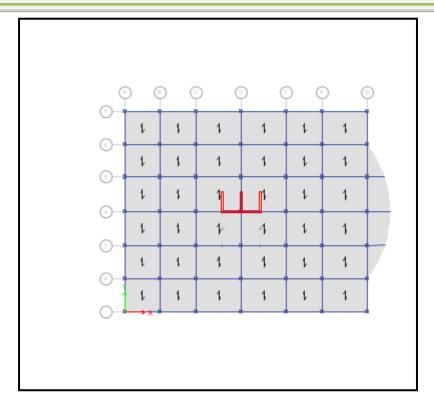



Figure IV.3 : Vue en plan du modèle initial

. Tableau IV.2 : Dimensions des éléments verticaux de chaque niveau.

| Niveau                            | Les sections | Les sections | Les sections | Les sections |
|-----------------------------------|--------------|--------------|--------------|--------------|
|                                   | des poteaux  | des Poutres  | des Poutres  | des Poutres  |
|                                   | $(cm^2)$     | principales  | principales  | secondaire   |
|                                   |              | $(cm^2)$     | $(cm^2)$     | $(cm^2)$     |
| 9èmeet10ème06ème<br>07èmeet 08ème | 30×30        | 30×50        | 35×50        | 30×40        |
| 03ème 04èmeet05ème                | 35×35        | 30×50        | 35×50        | 30×40        |
| 02 <sup>ème</sup>                 | 40×40        | 30×50        | 35×50        | 30×40        |
| RDC 01 <sup>er</sup>              | 45×45        | 30×50        | 35×50        | 30×40        |

| Dalle pleine (balcon) | Plancher corps creux | Voile    |
|-----------------------|----------------------|----------|
| e = 15 cm             | h = (16+5) = 21cm    | e = 15cm |

#### a-Caractéristiques dynamiques propres :

**Tableau IV.3:** Participation massique du modèle initial.

| TABLE: N | Iodal Partic | ipating Ma | ss Ratios   |             |    |             |        |       |             |             |        |        |             |        |
|----------|--------------|------------|-------------|-------------|----|-------------|--------|-------|-------------|-------------|--------|--------|-------------|--------|
| Case     | Mode         | Period     | UX          | UY          | UZ | SumUX       | SumUY  | SumUZ | RX          | RY          | RZ     | SumRX  | SumRY       | SumRZ  |
|          |              | sec        |             |             |    |             |        |       |             |             |        |        |             |        |
| Modal    | 1            | 1,369      | 0,000001655 | 0,6952      | 0  | 0,000001655 | 0,6952 | 0     | 0,3181      | 0,000001107 | 0,0023 | 0,3181 | 0,000001107 | 0,0023 |
| Modal    | 2            | 1,337      | 0,0016      | 0,0024      | 0  | 0,0016      | 0,6977 | 0     | 0,0004      | 0,0006      | 0,7128 | 0,3186 | 0,0006      | 0,7151 |
| Modal    | 3            | 1,077      | 0,6849      | 8,673E-07   | 0  | 0,6865      | 0,6977 | 0     | 0,000003495 | 0,3268      | 0,0016 | 0,3186 | 0,3274      | 0,7167 |
| Modal    | 4            | 0,49       | 0,0005      | 0,0013      | 0  | 0,687       | 0,699  | 0     | 0,0034      | 0,0015      | 0,1251 | 0,322  | 0,3289      | 0,8419 |
| Modal    | 5            | 0,419      | 0,000002891 | 0,146       | 0  | 0,687       | 0,845  | 0     | 0,323       | 0,00000865  | 0,001  | 0,645  | 0,3289      | 0,8429 |
| Modal    | 6            | 0,305      | 0,177       | 0,000002052 | 0  | 0,864       | 0,845  | 0     | 0,000003711 | 0,3416      | 0,001  | 0,645  | 0,6705      | 0,8439 |
| Modal    | 7            | 0,293      | 0,0007      | 0,0001      | 0  | 0,8646      | 0,8451 | 0     | 0,0002      | 0,001       | 0,059  | 0,6452 | 0,6716      | 0,903  |
| Modal    | 8            | 0,221      | 0,00004542  | 0,0034      | 0  | 0,8647      | 0,8485 | 0     | 0,0062      | 0,0002      | 0,0326 | 0,6514 | 0,6718      | 0,9356 |
| Modal    | 9            | 0,2        | 0,000002417 | 0,0617      | 0  | 0,8647      | 0,9103 | 0     | 0,1131      | 0,000008429 | 0,0034 | 0,7645 | 0,6718      | 0,939  |
| Modal    | 10           | 0,169      | 0,0001      | 0,0006      | 0  | 0,8648      | 0,9109 | 0     | 0,0019      | 0,0002      | 0,0155 | 0,7664 | 0,672       | 0,9545 |
| Modal    | 11           | 0,147      | 0,0687      | 0,000006762 | 0  | 0,9335      | 0,9109 | 0     | 0,00001643  | 0,1419      | 0,0006 | 0,7664 | 0,8138      | 0,9551 |
| Modal    | 12           | 0,138      | 0,0007      | 0,0002      | 0  | 0,9342      | 0,9111 | 0     | 0,0004      | 0,0016      | 0,0119 | 0,7668 | 0,8154      | 0,967  |

#### Remarque:

Ce modèle ne comporte que les voiles de l'ascenseur.

#### **Constatation:**

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =1,369sec.
- La participation massique dépasse le seuil des 90% à partir du11ème mode.
- Le 1<sup>er</sup> mode est un mode translation y-y
- Le 2<sup>ème</sup> mode est un mode rotation
- Le 3<sup>ème</sup> mode est un mode translation x-x

Alors on passe au prochain modèle et on rajoute des voiles pour éviter les modes rotations et augment.

#### b- Résultantes des forces sismiques :

D'après le fichier des résultats de « ETABS » on a :

W = 55077.9607KN 
$$\rightarrow V^x = 6747.05KN$$
  $\rightarrow 0.8V^x = 5397.64KN$   $\rightarrow 0.8V^y = 5067.17 KN$ 

$$\begin{cases} F_1 = V_t^x = 5039.463 \, KN \\ F_2 = V_t^y = 4630.5739 \, KN \end{cases}$$

Ce qui donne : 
$$\begin{cases} V_t^x = 5039.463KN \prec 0.8V^x = 5397.64KN \\ V_t^y = 4630.5739KN \prec 0.8V^y = 5067.17KN \end{cases}$$

$$\begin{cases} r_{x} = \frac{0.8V^{x}}{V_{t}^{x}} = 1.07 \\ r_{y} = \frac{0.8V^{y}}{V_{y}^{y}} = 1.094 \end{cases} \Rightarrow \begin{cases} r_{x} = 1.07 \\ r_{y} = 1.094 \end{cases}$$

On a un mode de rotation en 2éme mode donc il faut ajouter des voiles

#### 1-Modèle 1:

• Disposition des voiles :

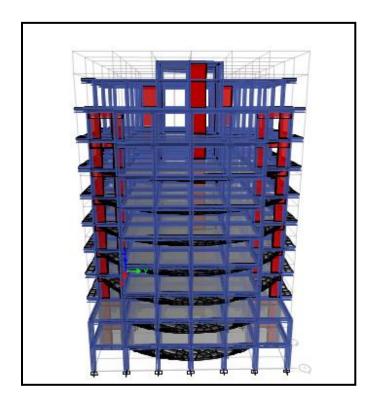



Figure IV.4 : Vue en 3D du modèle 1.

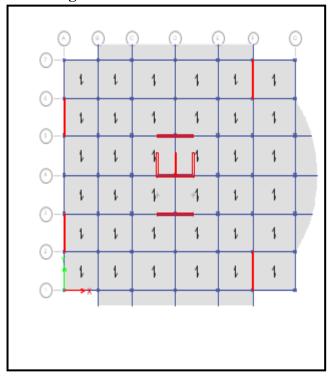



Figure IV.5: vue en plan du modèle 1.

#### a- Caractéristiques dynamiques propres :

Tableau IV.4: Participation massique du modèle final.

| TABLE: M | odal Partici | pating Mass | Ratios |        |    |        |        |       |        |        |            |        |        |        |
|----------|--------------|-------------|--------|--------|----|--------|--------|-------|--------|--------|------------|--------|--------|--------|
| Case     | Mode         | Period      | UX     | UY     | UZ | SumUX  | SumUY  | SumUZ | RX     | RY     | RZ         | SumRX  | SumRY  | SumRZ  |
|          |              | sec         |        |        |    |        |        |       |        |        |            |        |        |        |
| Modal    | 1            | 1.016       | 0.0002 | 0.6143 | 0  | 0.0002 | 0.6143 | 0     | 0.3006 | 0.0001 | 0.0574     | 0.3006 | 0.0001 | 0.0574 |
| Modal    | 2            | 0.944       | 0.6806 | 0.001  | 0  | 0.6808 | 0.6152 | 0     | 0.0008 | 0.3303 | 0.0037     | 0.3014 | 0.3303 | 0.0611 |
| Modal    | 3            | 0.906       | 0.0049 | 0.0527 | 0  | 0.6857 | 0.668  | 0     | 0.0506 | 0.0023 | 0.5994     | 0.352  | 0.3327 | 0.6605 |
| Modal    | 4            | 0.271       | 0.0011 | 0.1214 | 0  | 0.6868 | 0.7894 | 0     | 0.2116 | 0.0023 | 0.0502     | 0.5636 | 0.335  | 0.7107 |
| Modal    | 5            | 0.251       | 0.1705 | 0.0021 | 0  | 0.8573 | 0.7915 | 0     | 0.0034 | 0.3279 | 0.0001     | 0.567  | 0.6628 | 0.7108 |
| Modal    | 6            | 0.226       | 0.001  | 0.0493 | 0  | 0.8583 | 0.8408 | 0     | 0.0726 | 0.0018 | 0.1279     | 0.6396 | 0.6646 | 0.8387 |
| Modal    | 7            | 0.134       | 0.0002 | 0.0412 | 0  | 0.8585 | 0.882  | 0     | 0.0746 | 0.0004 | 0.0196     | 0.7142 | 0.665  | 0.8584 |
| Modal    | 8            | 0.115       | 0.0657 | 0.0004 | 0  | 0.9242 | 0.8823 | 0     | 0.0007 | 0.1304 | 0.00001346 | 0.7149 | 0.7954 | 0.8584 |
| Modal    | 9            | 0.098       | 0.0001 | 0.0128 | 0  | 0.9243 | 0.8952 | 0     | 0.0207 | 0.0002 | 0.064      | 0.7356 | 0.7957 | 0.9223 |
| Modal    | 10           | 0.089       | 0.0001 | 0.0365 | 0  | 0.9244 | 0.9317 | 0     | 0.0831 | 0.0002 | 0.0018     | 0.8187 | 0.7959 | 0.9242 |
| Modal    | 11           | 0.07        | 0.0341 | 0.0001 | 0  | 0.9585 | 0.9317 | 0     | 0.0001 | 0.089  | 0.00001657 | 0.8188 | 0.8849 | 0.9242 |
| Modal    | 12           | 0.063       | 0      | 0.0063 | 0  | 0.9585 | 0.938  | 0     | 0.0165 | 0      | 0.0206     | 0.8354 | 0.8849 | 0.9448 |

#### Remarque:

Ce modèle comporte les voiles de la cage d'ascenseur, l'escalier et les voiles que l'on a rajouté.

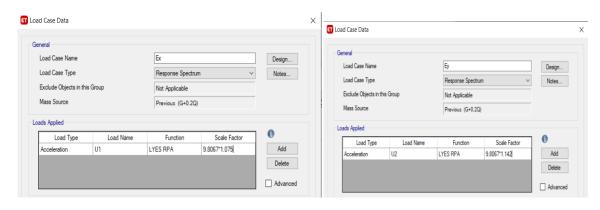
**Constatation :** L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =1.016sec.
- La participation massique dépasse le seuil des 90% à partir du10ème mode.
- Le 1<sup>er</sup> mode est une translation suivant y-y
- Le 2<sup>ème</sup> mode est une translation suivant x-x
- Le 3<sup>ème</sup> mode est un mode de rotation.

## a- Résultantes des forces sismiques :

**b-** D'après le fichier des résultats de « **ETABS** » on a :

W = 58102.8888KN 
$$\rightarrow V^x = 7117.60KN \rightarrow 0.8V^x = 5694.08KN$$
  
 $V^y = 6681.83KN \rightarrow 0.8V^y = 5345.47KN$ 


$$F_1 = V_t^x = 5290.3147 \, KN$$
  
 $F_2 = V_t^y = 4677.3811 \, KN$ 

Ce qui donne : 
$$\begin{cases} V_t^x = 5290.3147KN < 0.8V^x = 5694.08KN \\ V_t^y = 4677.3811KN < 0.8V^y = 5345.47KN \end{cases}$$

$$\begin{cases} r_{x} = \frac{0.8V^{x}}{V_{t}^{x}} = 1.075 \\ r_{y} = \frac{0.8V^{y}}{V_{t}^{y}} = 1.142 \end{cases} \Rightarrow \begin{cases} r_{x} = 1.075 \\ r_{y} = 1.142 \end{cases}$$

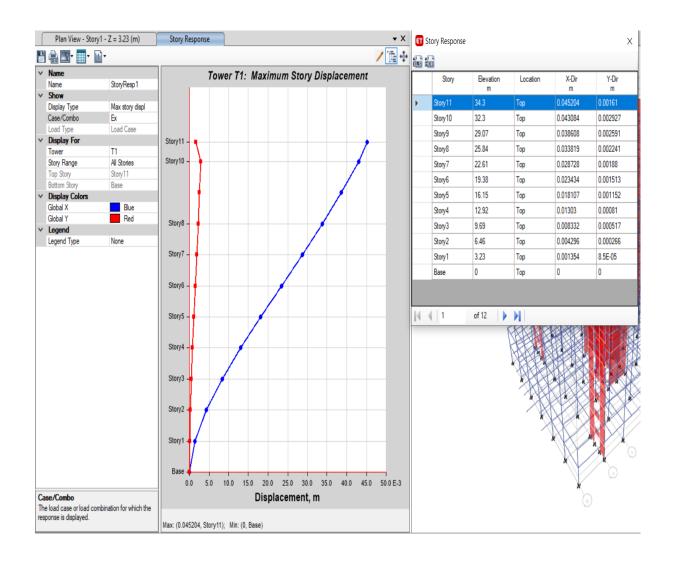
| TABLE: Base | TABLE: Base Reactions |           |           |           |            |             |              |            |   |   |   |  |  |
|-------------|-----------------------|-----------|-----------|-----------|------------|-------------|--------------|------------|---|---|---|--|--|
| Output Case | Case Type             | Step Type | FX        | FY        | FZ         | MX          | MY           | MZ         | X | Υ | Z |  |  |
|             |                       |           | kN        | kN        | kN         | kN-m        | kN-m         | kN-m       | m | m | m |  |  |
| Ex          | LinRespSpec           | Max       | 5290.3147 | 176.2242  | 0          | 2088.6779   | 114256.3202  | 57544.6706 | 0 | 0 | 0 |  |  |
| Еу          | LinRespSpec           | Max       | 176.2242  | 4677.3811 | 0          | 102762.9596 | 1920.4711    | 71476.6719 | 0 | 0 | 0 |  |  |
| W           | Combination           |           | 0         | 0         | 58102.8888 | 637862.6046 | -774419.5319 | 0          | 0 | 0 | 0 |  |  |





| TABLE: Base | TABLE: Base Reactions |           |           |           |            |             |              |            |   |   |   |  |  |
|-------------|-----------------------|-----------|-----------|-----------|------------|-------------|--------------|------------|---|---|---|--|--|
| Output Case | Case Type             | Step Type | FX        | FY        | FZ         | MX          | MY           | MZ         | X | Υ | Z |  |  |
|             |                       |           | kN        | kN        | kN         | kN-m        | kN-m         | kN-m       | m | m | m |  |  |
| Ex          | LinRespSpec           | Max       | 5718.2677 | 190.4796  | 0          | 2257.6387   | 123498.9338  | 62199.6705 | 0 | 0 | 0 |  |  |
| Еу          | LinRespSpec           | Max       | 203.0584  | 5389.6221 | 0          | 118411.0296 | 2212.9079    | 82360.671  | 0 | 0 | 0 |  |  |
| W           | Combination           |           | 0         | 0         | 58102.8888 | 637862.6046 | -774419.5319 | 0          | 0 | 0 | 0 |  |  |

|          | V <sub>dyn</sub> (KN) | 0.8 * V <sub>st</sub> (KN) | Observation |
|----------|-----------------------|----------------------------|-------------|
| Sens X-X | 5718.27               | 5687.041037                | vérifiée    |
| Sens Y-Y | 5389.62               | 5340.990985                | vérifiée    |


$$F_1 = V_t^x = 5718.27 \text{ KN}$$
  
 $F_2 = V_t^y = 5389.62 \text{ KN}$ 

Ce qui donne : 
$$\begin{cases} V_t^x = 5718.27KN > 0.8V^x = 5687.041037KN \\ V_t^y = 5389.62KN > 0.8V^y = 5340.9909 \& KN \end{cases}$$

#### b-Vérification des déplacements inter-étage :

Tableau IV.5: Vérification des déplacements inter-étage.

#### Selon l'axe X-X:



**Tableau IV5 :** vérification des déplacements inter-étage selon (x-x)

| Da       | ns le sens    | X-X                               |                |      |       |       |             |
|----------|---------------|-----------------------------------|----------------|------|-------|-------|-------------|
| Niveaux  | $\delta_{ek}$ | $\delta_{\!\scriptscriptstyle k}$ | $\delta_{k-1}$ | Δ,   | h,    |       | Observation |
| Niveaux  | (cm)          | (cm)                              | (cm)           | (cm) | (cm)  | (%)   |             |
| RDC      | 0.1354        | 0.677                             | 0              | 0.68 | 323.0 | 0.210 | vérifiée    |
| Etage1   | 0.4296        | 2.148                             | 0.677          | 1.47 | 323.0 | 0.455 | vérifiée    |
| Etage 2  | 0.8332        | 4.166                             | 2.148          | 2.02 | 323.0 | 0.625 | vérifiée    |
| Etage 3  | 1.303         | 6.515                             | 4.166          | 2.35 | 323.0 | 0.727 | vérifiée    |
| Etage 4  | 1.8107        | 9.0535                            | 6.515          | 2.54 | 323.0 | 0.786 | vérifiée    |
| Etage 5  | 2.3434        | 11.717                            | 9.0535         | 2.66 | 323.0 | 0.823 | vérifiée    |
| Etage 6  | 2.8728        | 14.364                            | 11.717         | 2.65 | 323.0 | 0.820 | vérifiée    |
| Etage 7  | 3.3819        | 16.9095                           | 14.364         | 2.55 | 323.0 | 0.789 | vérifiée    |
| Etage 8  | 3.8608        | 19.304                            | 16.9095        | 2.39 | 323.0 | 0.739 | vérifiée    |
| Etage 9  | 4.3084        | 21.542                            | 19.304         | 2.24 | 323.0 | 0.693 | vérifiée    |
| Etage 10 | 4.5204        | 22.602                            | 21.542         | 1.06 | 323.0 | 0.328 | vérifiée    |

#### Selon l'axe Y-Y:

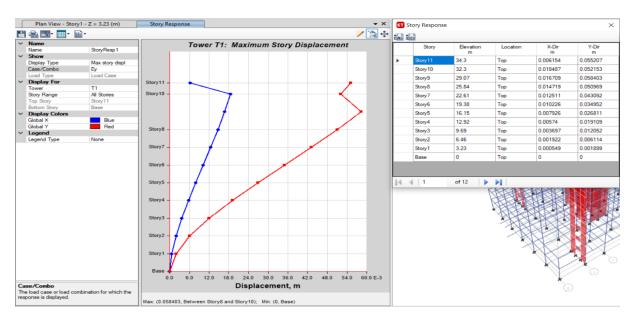



Tableau IV6: vérification des déplacements inter-étage selon (y-y)

| Da       | ns le sens    | Y-Y          |                |            |       |       |          |              |
|----------|---------------|--------------|----------------|------------|-------|-------|----------|--------------|
| Niveaux  | $\delta_{ek}$ | $\delta_{k}$ | $\delta_{k-1}$ | $\Delta_k$ | h,    |       | n .      |              |
| Niveaux  | (cm)          | (cm)         | (cm)           | (cm)       | (cm)  | (%)   |          |              |
| RDC      | 0.1899        | 0.950        | 0              | 0.95       | 323.0 | 0.294 | vérifiée |              |
| Etage 1  | 0.6114        | 3.057        | 0.950          | 2.11       | 323.0 | 0.652 | vérifiée |              |
| Etage 2  | 1.2052        | 6.026        | 3.057          | 2.97       | 323.0 | 0.919 | vérifiée |              |
| Etage 3  | 1.9109        | 9.555        | 6.026          | 3.53       | 323.0 | 1.092 |          | non vérifiée |
| Etage 4  | 2.6811        | 13.406       | 9.555          | 3.85       | 323.0 | 1.192 |          | non vérifiée |
| Etage 5  | 3.4952        | 17.476       | 13.406         | 4.07       | 323.0 | 1.260 |          | non vérifiée |
| Etage 6  | 4.3092        | 21.546       | 17.476         | 4.07       | 323.0 | 1.260 |          | non vérifiée |
| Etage 7  | 5.0969        | 25.485       | 21.546         | 3.94       | 323.0 | 1.219 |          | non vérifiée |
| Etage 8  | 5.8403        | 29.202       | 25.485         | 3.72       | 323.0 | 1.151 |          | non vérifiée |
| Etage 9  | 5.2153        | 26.077       | 29.202         | 3.13       | 323.0 | 0.967 | vérifiée |              |
| Etage 10 | 5.5207        | 27.604       | 26.077         | 1.53       | 323.0 | 0.473 | vérifiée |              |

#### c-Vérification du critère de l'effort normal réduit :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0,30$$

Avec:

B<sub>c</sub>: section de poteau

 $N_d:G+Q\pm E$ 

Les résultats sont regroupés dans le tableau suivant :

> Tableau IV.6: Vérification de l'effort normal pour les poteaux.

| TABLE: Ele | ement Force | es - Columns |             |             |         |           |           |          |          |         |          |          |          |             |
|------------|-------------|--------------|-------------|-------------|---------|-----------|-----------|----------|----------|---------|----------|----------|----------|-------------|
| Story √    | Colum 🔻     | Unique Nar 🔻 | Output Ca 🔻 | Case Typ    | Step Ty | Statio: * | P         | V2 🔽     | V3 🔽     | T 💌     | M2 🔽     | M3 💌     | Elemer * | Elem Static |
|            |             |              |             |             |         | m         | kN        | kN       | kN       | kN-m    | kN-m     | kN-m     |          | m           |
| Story1     | C53         | 1312         | G+Q+Ey      | Combination | Min     | 0         | 1965.9188 | -9.9794  | -16.9611 | -1.1622 | -43.7388 | -21.0394 | 1312     | 0           |
| Story2     | C53         | 1319         | G+Q+Ey      | Combination | Min     | 0         | 1814.7834 | -12.6657 | -8.4043  | -1.5192 | -26.2713 | -20.8056 | 1319     | 0           |
| Story3     | C53         | 1326         | G+Q+Ey      | Combination | Min     | 0         | 1613.1991 | -12.1087 | -4.4653  | -1.2223 | -10.1155 | -19.7297 | 1326     | 0           |
| Story4     | C53         | 1382         | G+Q+Ey      | Combination | Min     | 0         | 1410.3511 | -14.5036 | -7.9363  | -1.4192 | -15.1387 | -23.6284 | 1382     | 0           |
| Story5     | C53         | 1375         | G+Q+Ey      | Combination | Min     | 0         | 1204.622  | -16.1576 | -9.7945  | -1.5292 | -16.9825 | -25.8955 | 1375     | 0           |
| Story6     | C53         | 1333         | G+Q+Ey      | Combination | Min     | 0         | 999.2422  | -10.2157 | -6.4681  | -0.8769 | -10.8383 | -16.2758 | 1333     | 0           |
| Story7     | C53         | 1368         | G+Q+Ey      | Combination | Min     | 0         | 799.0193  | -10.6635 | -6.2348  | -0.883  | -10.2392 | -17.2071 | 1368     | 0           |
| Story8     | C53         | 1361         | G+Q+Ey      | Combination | Min     | 0         | 599.287   | -10.2865 | -5.2274  | -0.8614 | -8.3917  | -16.5911 | 1361     | 0           |
| Story9     | C53         | 1354         | G+Q+Ey      | Combination | Min     | 0         | 400.7266  | -9.5848  | -4.1668  | -0.8207 | -6.321   | -15.4837 | 1354     | 0           |
| Story10    | C53         | 1347         | G+Q+Ey      | Combination | Min     | 0         | 206.8682  | -10.2532 | -1.6824  | -0.7764 | -2.5484  | -15.6432 | 1347     | 0           |
| Story11    | C24         | 1093         | G+Q+Ex      | Combination | Min     | 0         | 83.8152   | -85.1615 | -3.3935  | -0.1686 | -3.2001  | -81.5197 | 1093     | 0           |

| 37       | La secti | on adopt | ée (cm²)   | N. CEND | υ     | 01           |
|----------|----------|----------|------------|---------|-------|--------------|
| Niveaux  | b (cm)   | h (cm)   | aire (cm²) | N (KN)  |       | Observation  |
| RDC      | 45       | 45       | 2025       | 1965.92 | 0.388 | non vérifiée |
| Etage 1  | 40       | 40       | 1600       | 1814.78 | 0.454 | non vérifiée |
| Etage 2  | 35       | 35       | 1225       | 1613.20 | 0.527 | non vérifiée |
| Etage 3  | 35       | 35       | 1225       | 1410.35 | 0.461 | non vérifiée |
| Etage 4  | 35       | 35       | 1225       | 1204.62 | 0.393 | non vérifiée |
| Etage 5  | 30       | 30       | 900        | 999.24  | 0.444 | non vérifiée |
| Etage 6  | 30       | 30       | 900        | 799.02  | 0.355 | non vérifiée |
| Etage 7  | 30       | 30       | 900        | 599.29  | 0.266 | vérifiée     |
| Etage 8  | 30       | 30       | 900        | 400.73  | 0.178 | vérifiée     |
| Etage 9  | 30       | 30       | 900        | 206.87  | 0.092 | vérifiée     |
| Etage 10 | 30       | 30       | 900        | 83.82   | 0.037 | vérifiée     |

#### **Remarques:**

- Les déplacements relatifs inter étages sont inférieurs à la limite imposée par le « RPA99 version 2003 ».
- Les efforts normaux réduits dépassent les valeurs admissibles imposées par le « RPA99 version 2003 ». Donc il faut augmenter les sections des poteaux dans la structure.

| Niveau                                      | Spoteaux |
|---------------------------------------------|----------|
| $RDC \rightarrow 1^{\text{ème}}$            | 55x55    |
| $2^{\text{ème}} \rightarrow 3^{\text{ème}}$ | 50x50    |
| $4^{\text{ème}} \rightarrow 6^{\text{me}}$  | 45x45    |
| $7^{\text{ème}} \rightarrow 10^{\text{me}}$ | 40x40    |

#### 3-Modèle final:

# a- Caractéristiques dynamiques propres :

Tableau IV.7: participation massique du modèle final.

| TABLE: M | odal Partici | pating Mas | s Ratios    |            |    |             |        |       |        |             |             |        |            |        |
|----------|--------------|------------|-------------|------------|----|-------------|--------|-------|--------|-------------|-------------|--------|------------|--------|
| Case     | Mode         | Period     | UX          | UY         | UZ | SumUX       | SumUY  | SumUZ | RX     | RY          | RZ          | SumRX  | SumRY      | SumRZ  |
|          |              | sec        |             |            |    |             |        |       |        |             |             |        |            |        |
| Modal    | 1            | 0.867      | 0.000006585 | 0.6593     | 0  | 0.000006585 | 0.6593 | 0     | 0.322  | 0.00000171  | 0.0218      | 0.322  | 0.00000171 | 0.0218 |
| Modal    | 2            | 0.792      | 0.7059      | 0.00004344 | 0  | 0.7059      | 0.6594 | 0     | 0.0001 | 0.3158      | 0.0007      | 0.3221 | 0.3158     | 0.0225 |
| Modal    | 3            | 0.746      | 0.0008      | 0.0178     | 0  | 0.7067      | 0.6772 | 0     | 0.0261 | 0.0003      | 0.6531      | 0.3482 | 0.3161     | 0.6756 |
| Modal    | 4            | 0.238      | 0.0014      | 0.1318     | 0  | 0.7081      | 0.809  | 0     | 0.2466 | 0.0034      | 0.0337      | 0.5948 | 0.3196     | 0.7092 |
| Modal    | 5            | 0.229      | 0.1534      | 0.0018     | 0  | 0.8615      | 0.8108 | 0     | 0.0032 | 0.3571      | 0.000006317 | 0.598  | 0.6767     | 0.7093 |
| Modal    | 6            | 0.197      | 0.0002      | 0.036      | 0  | 0.8618      | 0.8467 | 0     | 0.0542 | 0.0005      | 0.1391      | 0.6522 | 0.6772     | 0.8484 |
| Modal    | 7            | 0.122      | 0.0003      | 0.0423     | 0  | 0.862       | 0.889  | 0     | 0.0771 | 0.0004      | 0.0147      | 0.7293 | 0.6776     | 0.8631 |
| Modal    | 8            | 0.11       | 0.0637      | 0.0003     | 0  | 0.9258      | 0.8893 | 0     | 0.0006 | 0.1229      | 8.673E-07   | 0.7299 | 0.8005     | 0.8631 |
| Modal    | 9            | 0.09       | 0.00003108  | 0.0066     | 0  | 0.9258      | 0.8959 | 0     | 0.0097 | 0.0001      | 0.0654      | 0.7396 | 0.8006     | 0.9286 |
| Modal    | 10           | 0.082      | 0.0001      | 0.0398     | 0  | 0.9259      | 0.9357 | 0     | 0.0899 | 0.0002      | 0.00004017  | 0.8295 | 0.8008     | 0.9286 |
| Modal    | 11           | 0.068      | 0.0322      | 0.00004546 | 0  | 0.9581      | 0.9358 | 0     | 0.0001 | 0.0846      | 0.000004938 | 0.8296 | 0.8854     | 0.9286 |
| Modal    | 12           | 0.059      | 0.000002018 | 0.0067     | 0  | 0.9581      | 0.9425 | 0     | 0.0177 | 0.000004036 | 0.018       | 0.8473 | 0.8854     | 0.9466 |

## Remarque:

Ce modèle comporte les voiles de la cage d'ascenseur et les voiles que l'on a rajoutés.

### **Constatation:**

L'analyse dynamique de la structure a conduit à :

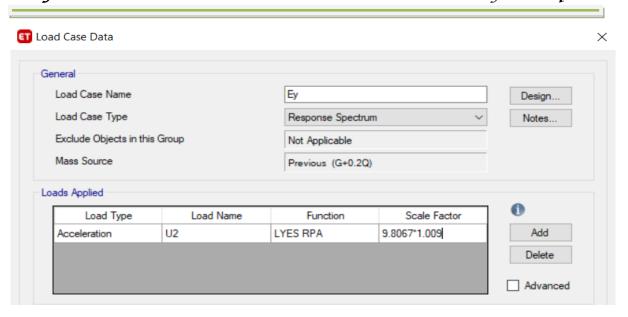
- Une période fondamentale : T =0,867.
- La participation massique dépasse le seuil des 90% à partir du 10ème mode.
- Le 1<sup>er</sup> mode est une translation suivant x-x.
- Le 2<sup>ème</sup> mode est une translation suivant y-y.
- Le 3<sup>ème</sup> mode est un mode de rotation.

## b- Résultantes des forces sismiques :

D'après le fichier des résultats de « ETABS 18.0.2» on a :

$$W = 61490.627KN \rightarrow V^{x} = 7532.60KN V^{y} = 7071.42 KN \rightarrow 0.8V^{y} = 5652.40 KN$$

$$\begin{cases} F_{1} = V_{t}^{x} = 6286.1623KN \\ F_{2} = V_{t}^{y} = 5600.3037 KN \end{cases}$$


Ce qui donne : 
$$\begin{cases} V_t^x = 6286.1623KN > 0.8V^x = 6018.68KN \\ V_t^y = 5600.3037KN < 0.8V^y = 5652.40KN \end{cases}$$

La Condition n'est pas vérifiée.

| TABLE: Base | TABLE: Base Reactions |           |           |           |           |             |              |            |   |   |   |  |  |  |
|-------------|-----------------------|-----------|-----------|-----------|-----------|-------------|--------------|------------|---|---|---|--|--|--|
| Output Case | Case Type             | Step Type | FX        | FY        | FZ        | MX          | MY           | MZ         | X | Υ | Z |  |  |  |
|             |                       |           | kN        | kN        | kN        | kN-m        | kN-m         | kN-m       | m | m | m |  |  |  |
| Ex          | LinRespSpec           | Max       | 6286.1623 | 117.4963  | 0         | 911.5599    | 137054.9184  | 69092.912  | 0 | 0 | 0 |  |  |  |
| Еу          | LinRespSpec           | Max       | 117.4963  | 5600.3037 | 0         | 123315.2388 | 731.2749     | 83114.8679 | 0 | 0 | 0 |  |  |  |
| W           | Combination           |           | 0         | 0         | 61490.627 | 675304.4035 | -817540.2435 | -5.656E-07 | 0 | 0 | 0 |  |  |  |

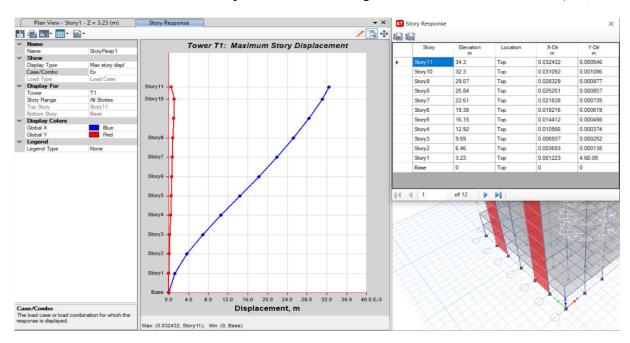
|                                     |                       | rtement global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                  |          |         |
|-------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------|---------|
|                                     |                       | de contreven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tement):      |                  |          |         |
| Contreventen                        | nent mixte por        | tiques-voiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Rightarrow$ | R =              | 5.00     |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
| - Le poids d                        | de la structure       | (W):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>W</b> =    | 6149.06          | Ton      |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 61490.6          | KN       |         |
| Donc:                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
|                                     |                       | V <sub>v</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7523.29       | KN               |          |         |
| $V_{\cdot \cdot} = \frac{A^{2}}{1}$ | $^*D_{x,y}$ $^*Q$     | $W = {}^{^{\Lambda}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                  |          |         |
| st                                  | R                     | $W = V_{X} = V_{Y} = $ | 7065.50       | KN               |          |         |
|                                     |                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                  |          |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
| Il faut aug .                       | 77 > 0                | 0 * 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | at cala dana  | las daun sans    |          |         |
| il faut que :                       | $V_{dynamique} \ge 0$ | .8 * V statique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | et cela dans  | les deux sens.   |          |         |
|                                     | V dyn (KN )           | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1733)        | 0.1              |          |         |
|                                     |                       | 0.8 * V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                  | ervation |         |
| Sens X-X                            | 6286.16               | 6018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .628787       | vérifiée         |          |         |
| Sens Y-Y                            | 5600.30               | 5652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .401993       |                  | non v    | érifiée |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
|                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |          |         |
| Dans le sens Y                      | Y pour Ey il fa       | ut augmenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tous les para | amètres de la ré | pense de |         |
|                                     |                       | .8*Vst/Vdyn=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                  |          |         |

On augmente l'effort sismique Ex par 1.009 et on adoptera Ex=10.



| TABLE: Base | TABLE: Base Reactions |           |           |           |           |             |              |            |   |   |   |  |  |  |
|-------------|-----------------------|-----------|-----------|-----------|-----------|-------------|--------------|------------|---|---|---|--|--|--|
| Output Case | Case Type             | Step Type | FX        | FY        | FZ        | MX          | MY           | MZ         | X | Y | Z |  |  |  |
|             |                       |           | kN        | kN        | kN        | kN-m        | kN-m         | kN-m       | m | m | m |  |  |  |
| Ex          | LinRespSpec           | Max       | 6286.1623 | 117.4963  | 0         | 911.5599    | 137054.9184  | 69092.912  | 0 | 0 | 0 |  |  |  |
| Ey          | LinRespSpec           | Max       | 119.8123  | 5710.6913 | 0         | 125745.9072 | 745.6891     | 84753.1462 | 0 | 0 | 0 |  |  |  |
| W           | Combination           |           | 0         | 0         | 61490.627 | 675304.4035 | -817540.2435 | -5.656E-07 | 0 | 0 | 0 |  |  |  |

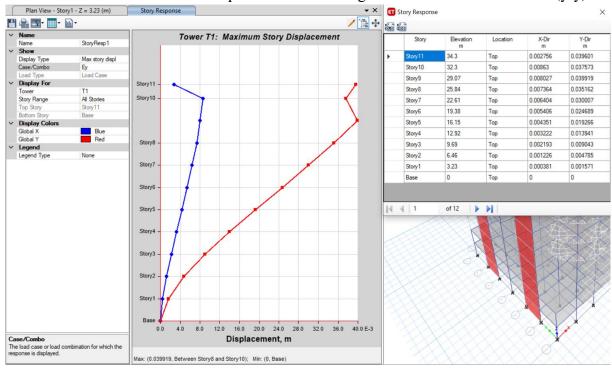
|          | V <sub>dyn</sub> (KN ) | 0.8 * V <sub>st</sub> (KN) | Observation |
|----------|------------------------|----------------------------|-------------|
| Sens X-X | 6286.16                | 6018.628787                | vérifiée    |
| Sens Y-Y | 5710.69                | 5652.401993                | vérifiée    |


$$\begin{cases} F_1 = V_t^x = 6286.16 \text{ KN} \\ F_2 = V_t^y = 5710.69 \text{ KN} \end{cases}$$

$$\begin{cases} F_1 = V_t^x = 6286.16 \, KN \\ F_2 = V_t^y = 5710.69 \, KN \end{cases}$$
Ce qui donne : 
$$\begin{cases} V_t^x = 6286.16 \, KN \succ 0.8V^x = 6018.6287 \, KN \\ V_t^y = 5710.69 \, KN \succ 0.8V^y = 5652.40 \, KN \end{cases}$$
La Condition est vérifiée.

La Condition est vérifiée.

# a- Vérification des déplacements inter-étage : Selon l'axe x-x :


**Tableau IV.8:** Vérification des déplacements inter-étage du modèle final selon l'axe (x-x).



| Da       | ns le sens    | X-X          |                |            |         |         |             |
|----------|---------------|--------------|----------------|------------|---------|---------|-------------|
| M2       | $\delta_{ek}$ | $\delta_{k}$ | $\delta_{k-1}$ | $\Delta_k$ | $h_{k}$ | $h_{k}$ | Observation |
| Niveaux  | (cm)          | (cm)         | (cm)           | (cm)       | (cm)    | (%)     |             |
| RDC      | 0.1223        | 0.6115       | 0              | 0.61       | 323.0   | 0.573   | vérifiée    |
| Etage1   | 0.3693        | 1.8465       | 0.6115         | 1.24       | 323.0   | 0.579   | vérifiée    |
| Etage 2  | 0.6937        | 3.4685       | 1.8465         | 1.62       | 323.0   | 0.663   | vérifiée    |
| Etage 3  | 1.0566        | 5.283        | 3.4685         | 1.81       | 323.0   | 0.690   | vérifiée    |
| Etage 4  | 1.4412        | 7.206        | 5.283          | 1.92       | 323.0   | 0.690   | vérifiée    |
| Etage 5  | 1.8216        | 9.108        | 7.206          | 1.90       | 323.0   | 0.650   | vérifiée    |
| Etage 6  | 2.1838        | 10.919       | 9.108          | 1.81       | 323.0   | 0.591   | vérifiée    |
| Etage 7  | 2.5251        | 12.6255      | 10.919         | 1.71       | 323.0   | 0.523   | vérifiée    |
| Etage 8  | 2.8329        | 14.1645      | 12.6255        | 1.54       | 323.0   | 0.440   | vérifiée    |
| Etage 9  | 3.1092        | 15.546       | 14.1645        | 1.38       | 323.0   | 0.749   | vérifiée    |
| Etage 10 | 3.2432        | 16.216       | 15.546         | 0.67       | 323.0   | 0.953   | vérifiée    |

# Selon l'axe y-y:

Tableau IV.9: Vérification des déplacements inter-étage du modèle final selon l'axe (y-y).



| Dar      | s le sens     | Y-Y          |                |            |         |         |             |
|----------|---------------|--------------|----------------|------------|---------|---------|-------------|
| Niveaux  | $\delta_{ek}$ | $\delta_{k}$ | $\delta_{k-1}$ | $\Delta_k$ | $h_{k}$ | $h_{t}$ | Observation |
| Iviveanx | (cm)          | (cm)         | (cm)           | (cm)       | (cm)    | (%)     |             |
| RDC      | 0.1571        | 0.786        | 0              | 0.79       | 323.0   | 0.243   | vérifiée    |
| Etage 1  | 0.4785        | 2.393        | 0.786          | 1.61       | 323.0   | 0.498   | vérifiée    |
| Etage 2  | 0.9043        | 4.522        | 2.393          | 2.13       | 323.0   | 0.659   | vérifiée    |
| Etage 3  | 1.3941        | 6.971        | 4.522          | 2.45       | 323.0   | 0.758   | vérifiée    |
| Etage 4  | 1.9266        | 9.633        | 6.971          | 2.66       | 323.0   | 0.824   | vérifiée    |
| Etage 5  | 2.4689        | 12.345       | 9.633          | 2.71       | 323.0   | 0.839   | vérifiée    |
| Etage 6  | 3.0007        | 15.004       | 12.345         | 2.66       | 323.0   | 0.823   | vérifiée    |
| Etage 7  | 3.5162        | 17.581       | 15.004         | 2.58       | 323.0   | 0.798   | vérifiée    |
| Etage 8  | 3.9919        | 19.960       | 17.581         | 2.38       | 323.0   | 0.736   | vérifiée    |
| Etage 9  | 3.7573        | 18.787       | 19.960         | 1.17       | 323.0   | 0.363   | vérifiée    |
| Etage 10 | 3.9601        | 19.801       | 18.787         | 1.01       | 323.0   | 0.314   | vérifiée    |

## d-Vérification du critère de l'effort normal réduit :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.30$$

Avec:

B<sub>c</sub>: section de poteau

 $N_d:G+Q\pm E$ 

Les résultats sont regroupés dans le tableau suivant :

**Tableau IV.10 :** vérification de l'effort normal réduit pour les poteaux.

| TABLE: Ele | ement Force | es - Columns |             |             |         |           |           |          |          |         |          |          |          |               |
|------------|-------------|--------------|-------------|-------------|---------|-----------|-----------|----------|----------|---------|----------|----------|----------|---------------|
| Story 🛂    | Colum ▼     | Unique Nar   | Output Ca 🔻 | Case Typ    | Step Ty | Statio: * | P 🔽       | V2 🔻     | V3 🔻     | T 💌     | M2 🔽     | M3 🔻     | Elemer * | Elem Static 🔻 |
|            |             |              |             |             |         | m         | kN        | kN       | kN       | kN-m    | kN-m     | kN-m     |          | m             |
| Story1     | C53         | 51           | G+Q+Ey      | Combination | Min     | 0         | 2068.6612 | -11.1695 | -21.7847 | -1.8262 | -73.0752 | -28.1414 | 51       | 0             |
| Story2     | C53         | 356          | G+Q+Ey      | Combination | Min     | 0         | 1907.8818 | -13.3402 | -9.9958  | -3.3469 | -44.0409 | -23.1593 | 356      | 0             |
| Story3     | C53         | 77           | G+Q+Ey      | Combination | Min     | 0         | 1693.9676 | -13.5881 | -5.026   | -2.7994 | -18.6665 | -22.6467 | 77       | 0             |
| Story4     | C53         | 381          | G+Q+Ey      | Combination | Min     | 0         | 1478.02   | -15.548  | -9.1764  | -3.0221 | -21.6226 | -24.967  | 381      | 0             |
| Story5     | C53         | 113          | G+Q+Ey      | Combination | Min     | 0         | 1260.0755 | -12.681  | -8.8701  | -2.091  | -17.3384 | -20.1749 | 113      | 0             |
| Story6     | C53         | 460          | G+Q+Ey      | Combination | Min     | 0         | 1044.9171 | -13.1068 | -9.0415  | -2.0852 | -15.5808 | -21.0793 | 460      | 0             |
| Story7     | C53         | 415          | G+Q+Ey      | Combination | Min     | 0         | 830.0479  | -13.096  | -8.5776  | -2.0297 | -13.4828 | -20.5964 | 415      | 0             |
| Story8     | C53         | 282          | G+Q+Ey      | Combination | Min     | 0         | 617.8336  | -9.26    | -5.5279  | -1.2441 | -8.202   | -14.4915 | 282      | 0             |
| Story9     | C53         | 602          | G+Q+Ey      | Combination | Min     | 0         | 412.0402  | -8.2597  | -4.9706  | -1.1471 | -6.0524  | -13.383  | 602      | 0             |
| Story10    | C34         | 567          | G+Q+Ex      | Combination | Min     | 0         | 234.5829  | -31.2615 | -0.9781  | -0.1502 | -1.4077  | -52.5169 | 567      | 0             |
| Story11    | C24         | 507          | G+Q+Ex      | Combination | Min     | 0         | 102.7056  | -88.0281 | -5.9201  | -0.4599 | -5.7586  | -78.2239 | 507      | 0             |

| Niveaux  | La secti | on adopt | ée (cm²)   | N. (WN) | υ     | Observation |  |
|----------|----------|----------|------------|---------|-------|-------------|--|
| Niveaux  | b (cm)   | h (cm)   | aire (cm²) | N (KN)  |       | Observation |  |
| RDC      | 55       | 55       | 3025       | 2068.66 | 0.274 | vérifiée    |  |
| Etage 1  | 55       | 55       | 3025       | 1907.88 | 0.252 | vérifiée    |  |
| Etage 2  | 50       | 50       | 2500       | 1693.97 | 0.271 | vérifiée    |  |
| Etage 3  | 50       | 50       | 2500       | 1478.02 | 0.236 | vérifiée    |  |
| Etage 4  | 45       | 45       | 2025       | 1260.08 | 0.249 | vérifiée    |  |
| Etage 5  | 45       | 45       | 2025       | 1044.92 | 0.206 | vérifiée    |  |
| Etage 6  | 45       | 45       | 2025       | 830.05  | 0.164 | vérifiée    |  |
| Etage 7  | 40       | 40       | 1600       | 617.83  | 0.154 | vérifiée    |  |
| Etage 8  | 40       | 40       | 1600       | 412.04  | 0.103 | vérifiée    |  |
| Etage 9  | 40       | 40       | 1600       | 234.58  | 0.059 | vérifiée    |  |
| Etage 10 | 40       | 40       | 1600       | 102.71  | 0.026 | vérifiée    |  |
|          |          |          |            |         |       |             |  |

## Remarque:

- Les déplacements relatifs inter étages sont inférieurs à la limite imposée par le «RPA99 version 2003».
- Les efforts normaux réduits sont inférieurs à la limite imposée par le « RPA99 version 2003 ».

## e-Justification vis-à-vis de l'effet P- $\Delta$ (les effets du second ordre) :

C'est le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

Les effets du  $2^{\circ}$  ordre (ou effet P- $\Delta$ ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux:

$$\theta = \frac{P_{\scriptscriptstyle K} \Delta_{\scriptscriptstyle K}}{V_{\scriptscriptstyle K} h_{\scriptscriptstyle K}} \leq 0.10 \text{"RPA99 version 2003"}$$

Avec:

 $p_k$ : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau K :

$$P_K = \sum_{i=k}^n (W_{Gi} + \beta W_{Qi})$$

 $V_{\kappa}$ : Effort tranchant d'étage au niveau 'K'

- $\Delta_k$ : Déplacement relatif du niveau 'K' par rapport au niveau 'K-1'.
- $\boldsymbol{h_{\!\scriptscriptstyle{k}}}$ :Hauteur d'étage 'k' comme indique-la figure
  - > Les résultats sont regroupés dans le tableau suivant :

**Tableau IV.11 :** Vérification l'effet P- $\Delta$  inter étages du modèle final selon l'axe (x-x).

|          |                     |                     |                     | Da                  | ans le sens X-X |             |
|----------|---------------------|---------------------|---------------------|---------------------|-----------------|-------------|
| Niveaux  | h <sub>k</sub> (cm) | P <sub>k</sub> (KN) | Δ <sub>k</sub> (cm) | V <sub>k</sub> (KN) | $\theta_{k}$    | Observation |
| RDC      | 323.0               | 61490.63            | 0.61                | 6286.1623           | 0.018           | vérifiée    |
| Etage 1  | 323.0               | 54708.22            | 1.24                | 6150.1349           | 0.034           | vérifiée    |
| Etage 2  | 323.0               | 47909.22            | 1.62                | 5879.5118           | 0.041           | vérifiée    |
| Etage 3  | 323.0               | 41713.77            | 1.81                | 5538.4602           | 0.042           | vérifiée    |
| Etage 4  | 323.0               | 35518.33            | 1.92                | 5097.5192           | 0.041           | vérifiée    |
| Etage 5  | 323.0               | 29401.57            | 1.90                | 4558.1204           | 0.038           | vérifiée    |
| Etage 6  | 323.0               | 23290.31            | 1.81                | 3921.7923           | 0.033           | vérifiée    |
| Etage 7  | 323.0               | 17173.57            | 1.71                | 3168.4493           | 0.029           | vérifiée    |
| Etage 8  | 323.0               | 11197.28            | 1.54                | 2298.4597           | 0.023           | vérifiée    |
| Etage 9  | 323.0               | 5301.16             | 1.38                | 1253.9997           | 0.018           | vérifiée    |
| Etage 10 | 323.0               | 997.33              | 0.67                | 256.7982            | 0.008           | vérifiée    |

| TABLE: St | tory Forces |           |           |         |     |          |          |          |          |          |
|-----------|-------------|-----------|-----------|---------|-----|----------|----------|----------|----------|----------|
| Story →   | )utput ( 🔻  | Case Ty ▼ | Step Ty 🔻 | Locatic | P 🔻 | VX 🔽     | VY 🔽     | T 💌      | MX 🔻     | MY 🔻     |
|           |             |           |           |         | kN  | kN       | kN       | kN-m     | kN-m     | kN-m     |
| Story1    | Ex          | LinRespSp | Max       | Bottom  | 0   | 6286.162 | 117.4963 | 69092.91 | 911.5599 | 137054.9 |
| Story2    | Ex          | LinRespSp | Max       | Bottom  | 0   | 6150.135 | 105.0582 | 67632.05 | 680.1897 | 117743   |
| Story3    | Ex          | LinRespSp | Max       | Bottom  | 0   | 5879.512 | 80.7459  | 64684.62 | 602.635  | 98936.05 |
| Story4    | Ex          | LinRespSp | Max       | Bottom  | 0   | 5538.46  | 59.5656  | 60911.51 | 640.7546 | 80896.92 |
| Story5    | Ex          | LinRespSp | Max       | Bottom  | 0   | 5097.519 | 49.1043  | 56008.35 | 686.6436 | 63873.58 |
| Story6    | Ex          | LinRespSp | Max       | Bottom  | 0   | 4558.12  | 46.6132  | 50087.98 | 689.2576 | 48154.39 |
| Story7    | Ex          | LinRespSp | Max       | Bottom  | 0   | 3921.792 | 50.9874  | 43095.1  | 634.4312 | 34032.35 |
| Story8    | Ex          | LinRespSp | Max       | Bottom  | 0   | 3168.449 | 57.929   | 34817.23 | 519.8567 | 21838.1  |
| Story9    | Ex          | LinRespSp | Max       | Bottom  | 0   | 2298.46  | 58.9882  | 25236.88 | 357.7164 | 11893.38 |
| Story10   | Ex          | LinRespSp | Max       | Bottom  | 0   | 1254     | 46.7821  | 13611.68 | 176.4486 | 4560.135 |
| Story11   | Ex          | LinRespSp | Max       | Bottom  | 0   | 256.7982 | 13.3649  | 2736.015 | 26.7297  | 513.5965 |

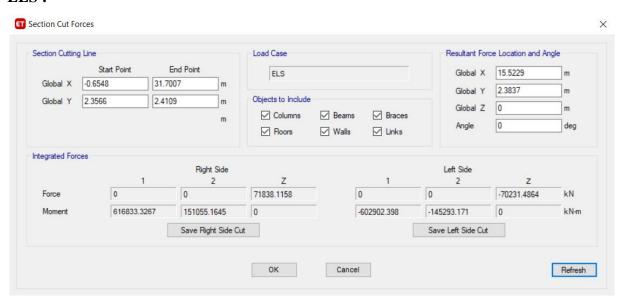
**Tableau IV.12 :** Vérification l'effet P- $\Delta$  inter étages du modèle final selon l'axe (y-y).

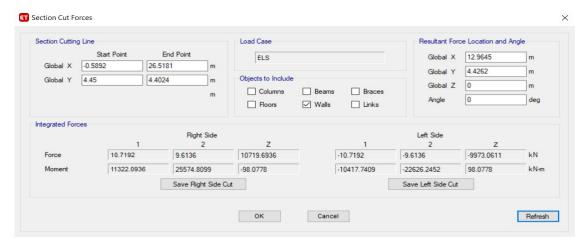
| TABLE: St | tory Forces |           |           |         |     |          |          |          |          |          |
|-----------|-------------|-----------|-----------|---------|-----|----------|----------|----------|----------|----------|
| Story     | )utput ( 🔻  | Case Ty ▼ | Step Ty ▼ | Locatic | P 🔻 | VX 🔽     | VY 🔽     | T 💌      | MX 🔻     | MY 🔽     |
|           |             |           |           |         | kN  | kN       | kN       | kN-m     | kN-m     | kN-m     |
| Story1    | Ex          | LinRespSp | Max       | Bottom  | 0   | 6286.162 | 117.4963 | 69092.91 | 911.5599 | 137054.9 |
| Story2    | Ex          | LinRespSp | Max       | Bottom  | 0   | 6150.135 | 105.0582 | 67632.05 | 680.1897 | 117743   |
| Story3    | Ex          | LinRespSp | Max       | Bottom  | 0   | 5879.512 | 80.7459  | 64684.62 | 602.635  | 98936.05 |
| Story4    | Ex          | LinRespSp | Max       | Bottom  | 0   | 5538.46  | 59.5656  | 60911.51 | 640.7546 | 80896.92 |
| Story5    | Ex          | LinRespSp | Max       | Bottom  | 0   | 5097.519 | 49.1043  | 56008.35 | 686.6436 | 63873.58 |
| Story6    | Ex          | LinRespSp | Max       | Bottom  | 0   | 4558.12  | 46.6132  | 50087.98 | 689.2576 | 48154.39 |
| Story7    | Ex          | LinRespSp | Max       | Bottom  | 0   | 3921.792 | 50.9874  | 43095.1  | 634.4312 | 34032.35 |
| Story8    | Ex          | LinRespSp | Max       | Bottom  | 0   | 3168.449 | 57.929   | 34817.23 | 519.8567 | 21838.1  |
| Story9    | Ex          | LinRespSp | Max       | Bottom  | 0   | 2298.46  | 58.9882  | 25236.88 | 357.7164 | 11893.38 |
| Story10   | Ex          | LinRespSp | Max       | Bottom  | 0   | 1254     | 46.7821  | 13611.68 | 176.4486 | 4560.135 |
| Story11   | Ex          | LinRespSp | Max       | Bottom  | 0   | 256.7982 | 13.3649  | 2736.015 | 26.7297  | 513.5965 |

|          |       |          | ·          | Da        | ans le sens X- | -X          |
|----------|-------|----------|------------|-----------|----------------|-------------|
| Niveaux  | $h_k$ | $P_k$    | $\Delta_k$ | $V_k$     | $\theta_{k}$   | Observation |
|          | (cm)  | (KN)     | (cm)       | (KN)      |                |             |
| RDC      | 323.0 | 61490.63 | 0.61       | 6286.1623 | 0.018          | vérifiée    |
| Etage 1  | 323.0 | 54708.22 | 1.24       | 6150.1349 | 0.034          | vérifiée    |
| Etage 2  | 323.0 | 47909.22 | 1.62       | 5879.5118 | 0.041          | vérifiée    |
| Etage 3  | 323.0 | 41713.77 | 1.81       | 5538.4602 | 0.042          | vérifiée    |
| Etage 4  | 323.0 | 35518.33 | 1.92       | 5097.5192 | 0.041          | vérifiée    |
| Etage 5  | 323.0 | 29401.57 | 1.90       | 4558.1204 | 0.038          | vérifiée    |
| Etage 6  | 323.0 | 23290.31 | 1.81       | 3921.7923 | 0.033          | vérifiée    |
| Etage 7  | 323.0 | 17173.57 | 1.71       | 3168.4493 | 0.029          | vérifiée    |
| Etage 8  | 323.0 | 11197.28 | 1.54       | 2298.4597 | 0.023          | vérifiée    |
| Etage 9  | 323.0 | 5301.16  | 1.38       | 1253.9997 | 0.018          | vérifiée    |
| Etage 10 | 323.0 | 997.33   | 0.67       | 256.7982  | 0.008          | vérifiée    |

Tableau IV.13 : Poids cumulée de chaque étage.

| TABLE: S | tory Forces |                     |           |          |      |      |          |          |          |
|----------|-------------|---------------------|-----------|----------|------|------|----------|----------|----------|
| Story -  | )utput ( 🔻  | Case Ty - Step Ty - | Locatic * | P 🔻      | VX 🔽 | VY 🔽 | T        | MX 🔻     | MY 🔻     |
|          |             |                     |           | kN       | kN   | kN   | kN-m     | kN-m     | kN-m     |
| Story1   | W           | Combination         | Bottom    | 61490.63 | 0    | 0    | -5.7E-07 | 675304.4 | -817540  |
| Story2   | W           | Combination         | Bottom    | 54708.22 | 0    | 0    | -5.1E-07 | 600439   | -725841  |
| Story3   | W           | Combination         | Bottom    | 47909.22 | 0    | 0    | 0        | 525437.8 | -634139  |
| Story4   | W           | Combination         | Bottom    | 41713.77 | 0    | 0    | 0        | 457074.8 | -549377  |
| Story5   | W           | Combination         | Bottom    | 35518.33 | 0    | 0    | 0        | 388711.9 | -464615  |
| Story6   | W           | Combination         | Bottom    | 29401.57 | 0    | 0    | 0        | 322018.7 | -381648  |
| Story7   | W           | Combination         | Bottom    | 23290.31 | 0    | 0    | 0        | 255376.1 | -298764  |
| Story8   | W           | Combination         | Bottom    | 17173.57 | 0    | 0    | 0        | 188683   | -215796  |
| Story9   | W           | Combination         | Bottom    | 11197.28 | 0    | 0    | 0        | 123545.4 | -134643  |
| Story10  | W           | Combination         | Bottom    | 5301.16  | 0    | 0    | 0        | 58494.63 | -53747.3 |
| Story11  | W           | Combination         | Bottom    | 997.3277 | 0    | 0    | 0        | 10970.06 | -12772.3 |


Vu les résultats obtenus les conditions  $\theta_x et \theta_y \le 0.1$  est satisfaites.


# f-Vérification des conditions du facteur de comportement R :

## f-1- Justification des voiles sous charges verticales :

L'effort normal total à la base de la structure  $P_{Tot}$ = 71838.1158kN. L'effort normal à la base repris par les voiles  $P_{voiles}$ = 10719.6936.kN.  $P_{voiles}$ /  $P_{Tot}$ = 22.6 % >20%.

## ELS:





#### **Conclusion:**

Alors les voiles de contreventement reprennent plus de 20% des sollicitations dues aux charges verticales donc il faut changer le facteur de comportement R=3,5.

#### **Conclusion:**

• Justifier le choix de facteur de comportement qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement de la structure.

Dans notre cas on a choisi un facteur R=5 vu que les voiles qui doivent reprennent plus20% des charge verticale :(22.6%), donc il faut changer le facteur de comportement R=3.5.

#### 3-Modèle final:

## a- Caractéristiques dynamiques propres :

SumUX SumUY SumUZ RX RZ SumRX SumRY Mode Period SumRZ Case 0.867 0.000006585 Modal 0.6593 0 0.000006585 0.322 0.00000171 0.0218 0.322 0.00000171 0.792 0.7059 0.00004344 0.0001 0.3158 Modal 0 0.7059 0.6594 0 0.0007 0.3221 0.3158 0.0225 Modal 0.0008 0.0178 0.7067 0.6772 0 0.0261 0.0003 0.6531 0.3482 0.3161 0.6756 0.746 Modal 0.238 0.0014 0.1318 0.7081 0.809 0 0.2466 0.0034 0.0337 0.5948 0.3196 0.7092 Modal 0.229 0.1534 0.0018 0 0.8615 0.8108 0 0.0032 0.3571 0.000006317 0.598 0.6767 0.7093 6 0.197 0.0542 Modal 0.0002 0.036 0.8618 0.8467 0.0005 0.1391 0.6522 0.6772 0.8484 Modal 0.122 0.0003 0.0423 0 0.0771 0.0004 0.0147 0.7293 0.6776 0 0.862 0.889 0.8631 Modal 0.11 0.0637 0.0003 0 0.9258 0.8893 0 0.0006 0.1229 8.673E-07 0.7299 0.8005 0.8631 Modal 0.09 0.00003108 0.0066 0.9258 0.8959 0.0097 0.0001 0.0654 0.7396 0.8006 0.9286 10 0.082 0 0 0.0002 0.00004017 Modal 0.0001 0.0398 0.9259 0.9357 0.0899 0.8295 0.8008 0.9286 Modal 11 0.068 0.0322 0.00004546 0 0.9581 0.9358 0 0.0001 0.0846 0.000004938 0.8296 0.8854 0.9286 Modal 0.059 0.000002018 0.0177 0.000004036 0.8473 0.8854 0.0067 0 0.9581 0.9425 0.018 0.9466

Tableau IV.14: participation massique du modèle final

# Remarque:

Ce modèle comporte les voiles de la cage d'ascenseur et les voiles que l'on a rajoutés.

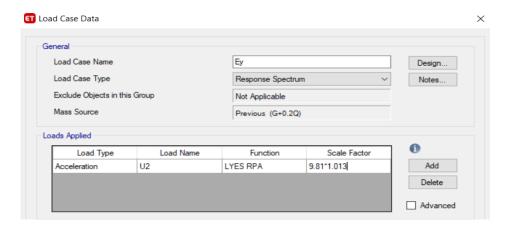
#### **Constatation:**

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0,867.
- La participation massique dépasse le seuil des 90% à partir du10ème mode.
- Le 1<sup>er</sup> mode est une translation suivant x-x.
- Le 2<sup>ème</sup> mode est une translation suivant y-y.
- Le 3<sup>ème</sup> mode est un mode de rotation.

# b- Résultantes des forces sismiques :

D'après le fichier des résultats du logiciel «ETABS » on a :


$$W = 61490.627KN \rightarrow V^{x} = 10760.86KN V^{y} = 100084.46KN \rightarrow 0.8V^{x} = 8608.69 KN 0.8V^{y} = 8067.57KN$$

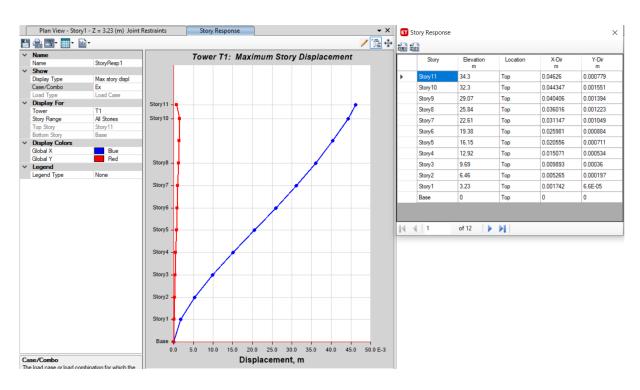
$$\begin{cases} F_{1} = V_{t}^{x} = 8934.9981 KN \\ F_{2} = V_{t}^{y} = 7969.1855KN \end{cases}$$

0

Ce qui donne : 
$$\begin{cases} V_t^x = 8934.9981KN > 0.8V^x = 8608.69 KN \\ V_t^y = 7969.1855KN < 0.8V^y = 8067.57KN \end{cases}$$
$$\begin{cases} r_y = \frac{0.8V^y}{V_t^y} = 1.012 \Longrightarrow \{r_y = 1.012\} \end{cases}$$

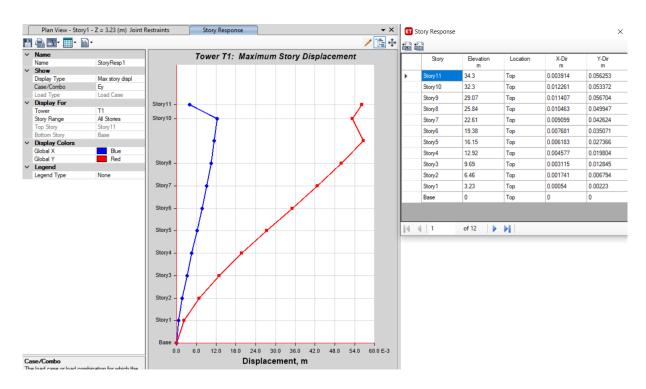
| W Combination 0                                                                                                                                              | FY kN 162.4533 7969.1855 0 65 | kN 0             | MX<br>kN-m<br>1290.355 | MY<br>kN-m                    | MZ<br>kN-m                | X<br>m   | Y   | Z |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|------------------------|-------------------------------|---------------------------|----------|-----|---|
| Ex         LinRespSpec         Max         8934.9981           Ey         LinRespSpec         Max         162.4533           W         Combination         0 | 162.4533<br>7969.1855         | 0                |                        |                               | kN-m                      | m        |     |   |
| Ey LinRespSpec Max 162.4533 W Combination 0                                                                                                                  | 7969.1855                     | -                | 1290.355               |                               |                           |          | m   | m |
| W Combination 0                                                                                                                                              |                               |                  |                        |                               | 98229.0083                | 0        | 0   |   |
|                                                                                                                                                              | 0 0.                          |                  | 176097.108             | 2 1032.5459<br>5 -817540.2435 | 118299.4063<br>-5.656E-07 | 0        | 0   |   |
|                                                                                                                                                              |                               |                  |                        | 3 -817340.2433                | -3.030E-07                | U        | U   |   |
| <ul> <li>Le coefficient de comportem</li> </ul>                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
| Il est fonction (du système de                                                                                                                               | contreve                      | nteme            | nt):                   |                               |                           |          |     |   |
| Contreventement mixte portiqu                                                                                                                                | es-voiles                     |                  | $\Rightarrow$          | R =                           | 3.5                       | 0        |     |   |
| - Le poids de la structure (W)                                                                                                                               | ·                             |                  | N =                    | 6149.03                       | Tor                       | 1        |     |   |
|                                                                                                                                                              |                               | _                |                        | 61490.3                       |                           | -        |     |   |
| Donc:                                                                                                                                                        |                               |                  |                        | 01450.5                       | IXIV                      | •        |     |   |
| Donc.                                                                                                                                                        | V -                           | 107              | 47.40                  | IZAL                          |                           |          |     |   |
| A*D*O                                                                                                                                                        | V <sub>X</sub> =              | 10/              | 47.49                  | KN                            |                           |          |     |   |
| $V_{st} = \frac{A^*D_{x,y}^* Q}{R} * W$                                                                                                                      | <u> </u>                      |                  |                        |                               |                           |          |     |   |
| R                                                                                                                                                            | V <sub>v</sub> :              | 100              | 93.52                  | KN                            |                           |          |     |   |
|                                                                                                                                                              | •                             |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
| il faut que : $V_{dynamique} \ge 0.8*$                                                                                                                       | V                             | et ce            | la dans l              | es deux sen                   | S.                        |          |     |   |
| aynam ique = 0:0                                                                                                                                             | statique                      | 0000             | ia aario i             | co acan con                   |                           |          |     |   |
| V dyn (KN )                                                                                                                                                  | 7 * 8.0                       | $V_{\rm st}(KN)$ | )                      | (                             | Observati                 | ion      |     |   |
| Sens X-X <b>8935.00</b>                                                                                                                                      | 8597                          | 7.991            | 206                    | vérifiée                      |                           |          |     |   |
| Sens Y-Y <b>7969.19</b>                                                                                                                                      | 8074                          | 4.813            | 109                    |                               | no                        | on vérif | iée |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
|                                                                                                                                                              |                               |                  |                        |                               |                           |          |     |   |
| Dans le sens YY pour Ey il faut a                                                                                                                            | ugmenter                      | tous             | les parai              | mètres de la                  | répense                   | de       |     |   |
| 0.8*V                                                                                                                                                        | st/Vdyn=                      | 1.               | .013                   |                               |                           |          |     |   |




| TABLE: Base        | Reactions   |           |           |          |           |             |              |             |   |   |   |
|--------------------|-------------|-----------|-----------|----------|-----------|-------------|--------------|-------------|---|---|---|
| <b>Output Case</b> | Case Type   | Step Type | FX        | FY       | FZ        | MX          | MY           | MZ          | X | Y | Z |
|                    |             |           | kN        | kN       | kN        | kN-m        | kN-m         | kN-m        | m | m | m |
| Ex                 | LinRespSpec | Max       | 8934.9981 | 162.4533 | 0         | 1290.3551   | 195479.0755  | 98229.0083  | 0 | 0 | 0 |
| Ey                 | LinRespSpec | Max       | 164.7717  | 8082.915 | 0         | 178610.2167 | 1047.2815    | 119987.6751 | 0 | 0 | 0 |
| W                  | Combination |           | 0         | 0        | 61490.627 | 675304.4035 | -817540.2435 | -5.656E-07  | 0 | 0 | 0 |

| il faut que : | $V_{dynamique} \ge 0.8*$ | V statique | et cela dans | les deux sens. |          |  |
|---------------|--------------------------|------------|--------------|----------------|----------|--|
|               |                          |            |              |                |          |  |
|               | V <sub>dyn</sub> (KN )   | 0.8 * V    | st(KN)       | Obs            | ervation |  |
| Sens X-X      | 8935.00                  | 8597       | .991206      | vérifiée       |          |  |
| Sens Y-Y      | 8082.92                  | 8074       | .813109      | vérifiée       |          |  |

# c- Vérification des déplacements inter-étage :


**Tableau IV.15 :** Vérification des déplacements inter-étage du modèle final.

## Selon X-X:



| Da       | ns le sens    | X-X          |                |            |         |                        |             |
|----------|---------------|--------------|----------------|------------|---------|------------------------|-------------|
| Niveaux  | $\delta_{ek}$ | $\delta_{k}$ | $\delta_{k-1}$ | $\Delta_k$ | $h_{k}$ | $\frac{\Delta_k}{h_k}$ | Observation |
|          | (cm)          | (cm)         | (cm)           | (cm)       | (cm)    | (%)                    |             |
| RDC      | 0.1742        | 0.6097       | 0              | 0.61       | 323.0   | 0.604                  | vérifiée    |
| Etage1   | 0.5265        | 1.84275      | 0.6097         | 1.23       | 323.0   | 0.585                  | vérifiée    |
| Etage 2  | 0.9893        | 3.46255      | 1.84275        | 1.62       | 323.0   | 0.669                  | vérifiée    |
| Etage 3  | 1.5071        | 5.27485      | 3.46255        | 1.81       | 323.0   | 0.693                  | vérifiée    |
| Etage 4  | 2.0556        | 7.1946       | 5.27485        | 1.92       | 323.0   | 0.693                  | vérifiée    |
| Etage 5  | 2.5981        | 9.09335      | 7.1946         | 1.90       | 323.0   | 0.653                  | vérifiée    |
| Etage 6  | 3.1147        | 10.90145     | 9.09335        | 1.81       | 323.0   | 0.591                  | vérifiée    |
| Etage 7  | 3.6016        | 12.6056      | 10.90145       | 1.70       | 323.0   | 0.523                  | vérifiée    |
| Etage 8  | 4.0406        | 14.1421      | 12.6056        | 1.54       | 323.0   | 0.440                  | vérifiée    |
| Etage 9  | 4.4347        | 15.52145     | 14.1421        | 1.38       | 323.0   | 0.000                  | vérifiée    |
| Etage 10 | 4.626         | 16.191       | 15.52145       | 0.67       | 323.0   | 0.000                  | vérifiée    |

## Selon Y-Y:



| Da       | ns le sens    | Y-Y          |                |            |         | 1 , ,                  |             |
|----------|---------------|--------------|----------------|------------|---------|------------------------|-------------|
| Niveaux  | $\delta_{ek}$ | $\delta_{k}$ | $\delta_{k-1}$ | $\Delta_k$ | $h_{k}$ | $\frac{\Delta_k}{h_k}$ | Observation |
|          | (cm)          | (cm)         | (cm)           | (cm)       | (cm)    | (%)                    |             |
| RDC      | 0.223         | 0.781        | 0              | 0.78       | 323.0   | 0.242                  | vérifiée    |
| Etage 1  | 0.6794        | 2.378        | 0.781          | 1.60       | 323.0   | 0.495                  | vérifiée    |
| Etage 2  | 1.2845        | 4.496        | 2.378          | 2.12       | 323.0   | 0.656                  | vérifiée    |
| Etage 3  | 1.9804        | 6.931        | 4.496          | 2.44       | 323.0   | 0.754                  | vérifiée    |
| Etage 4  | 2.7366        | 9.578        | 6.931          | 2.65       | 323.0   | 0.819                  | vérifiée    |
| Etage 5  | 3.5071        | 12.275       | 9.578          | 2.70       | 323.0   | 0.835                  | vérifiée    |
| Etage 6  | 4.2624        | 14.918       | 12.275         | 2.64       | 323.0   | 0.818                  | vérifiée    |
| Etage 7  | 4.9947        | 17.481       | 14.918         | 2.56       | 323.0   | 0.794                  | vérifiée    |
| Etage 8  | 5.6704        | 19.846       | 17.481         | 2.36       | 323.0   | 0.732                  | vérifiée    |
| Etage 9  | 5.3372        | 18.680       | 19.846         | 1.17       | 323.0   | 0.361                  | vérifiée    |
| Etage 10 | 5.6253        | 19.689       | 18.680         | 1.01       | 323.0   | 0.312                  | vérifiée    |

## d-Vérification du critère de l'effort normal réduit :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.30$$

Avec:

B<sub>c</sub>: section de poteau

 $N_d:G{+}Q\ \pm E$ 

Les résultats sont regroupés dans le tableau suivant :

Tableau IV.16 : vérification de l'effort normal réduit pour les poteaux.

| TABLE: E | lement Forc | es - Columns |             |             |           |         |            |           |          |         |          |           |         |              |
|----------|-------------|--------------|-------------|-------------|-----------|---------|------------|-----------|----------|---------|----------|-----------|---------|--------------|
| Story    | Column      | Unique Name  | Output Case | Case Type   | Step Type | Station | Р          | V2        | V3       | T       | M2       | M3        | Element | Elem Station |
|          |             |              |             |             |           | m       | kN         | kN        | kN       | kN-m    | kN-m     | kN-m      |         | m            |
| Story1   | C23         | 34           | G+Q+Ex      | Combination | Min       | 0       | -2373.5286 | -74.3274  | -1.4341  | -0.2078 | -3.0972  | -156.4484 | 34      | 0            |
| Story2   | C23         | 340          | G+Q+Ex      | Combination | Min       | 0       | -2111.7617 | -129.1287 | -3.6739  | -0.4341 | -5.5802  | -220.0781 | 340     | 0            |
| Story3   | C21         | 76           | G+Q+Ey      | Combination | Min       | 0       | -1846.4982 | -32.12    | -14.6617 | -3.9779 | -39.9414 | -51.8528  | 76      | 0            |
| Story4   | C21         | 380          | G+Q+Ey      | Combination | Min       | 0       | -1586.0661 | -38.0964  | -18.9977 | -4.2935 | -40.4009 | -60.2157  | 380     | 0            |
| Story5   | C53         | 113          | G+Q+Ey      | Combination | Min       | 0       | -1343.3371 | -19.1887  | -18.6704 | -2.9701 | -33.9228 | -30.5007  | 113     | 0            |
| Story6   | C53         | 460          | G+Q+Ey      | Combination | Min       | 0       | -1111.9718 | -20.0082  | -19.4537 | -2.961  | -32.9222 | -32.2014  | 460     | 0            |
| Story7   | C53         | 415          | G+Q+Ey      | Combination | Min       | 0       | -880.2643  | -20.2399  | -19.3615 | -2.884  | -30.2474 | -31.8285  | 415     | 0            |
| Story8   | C53         | 282          | G+Q+Ey      | Combination | Min       | 0       | -652.6762  | -14.4151  | -13.7079 | -1.769  | -20.6301 | -22.5649  | 282     | 0            |
| Story9   | C24         | 597          | G+Q+Ex      | Combination | Min       | 0       | -459.0142  | -95.6131  | -0.4482  | -0.1747 | -0.8635  | -154.1782 | 597     | 0            |
| Story10  | C24         | 552          | G+Q+Ex      | Combination | Min       | 0       | -295.4431  | -62.1315  | -1.0661  | -0.2001 | -1.9493  | -113.9848 | 552     | 0            |
| Story11  | C34         | 522          | G+Q+Ex      | Combination | Min       | 0       | -130.3942  | -102.5708 | -6.2204  | -0.6532 | -6.4517  | -103.8508 | 522     | 0            |

| 7.1.5_ <b>Vérif</b> | ication d  | e l'effort                        | normal r   | éduit:          |                |             |             |      |
|---------------------|------------|-----------------------------------|------------|-----------------|----------------|-------------|-------------|------|
| L'effort nor        | mal de co  | mpressio                          | n de calcu | l sous sollicit | tations dues a | u seisme es | t limité pa | r la |
| condition suiv      | /ante:     | $\upsilon = \frac{N}{B * f_{c2}}$ | < 0.3      | ; avec :        |                |             |             |      |
|                     |            | $B*f_{c2}$                        | 8          |                 |                |             |             |      |
| N: l'effort         | normal de  | e compre                          | ssion s'ex | ercant sur la   | section du po  | teau.       |             |      |
| B: l'aire de        | la section | n transve                         | rsale du p | oteau.          |                |             |             |      |
| fc28 =              | 25.00      | Мра                               |            |                 |                |             |             |      |
| Niveaux             | La secti   | on adopt                          | tée (cm²)  | AL (EAL)        | υ              | 01          |             |      |
| Niveaux             | b (cm)     | h (cm)                            | aire (cm²) | N (KN)          |                | Obser       | vation      |      |
| RDC                 | 55         | 55                                | 3025       | 2373.53         | 0.296          | vérifiée    |             |      |
| Etage 1             | 55         | 55                                | 3025       | 2111.76         | 0.279          | vérifiée    |             |      |
| Etage 2             | 50         | 50                                | 2500       | 1846.50         | 0.295          | vérifiée    |             |      |
| Etage 3             | 50         | 50                                | 2500       | 1568.07         | 0.114          | vérifiée    |             |      |
| Etage 4             | 45         | 45                                | 2025       | 1343.34         | 0.121          | vérifiée    |             |      |
| Etage 5             | 45         | 45                                | 2025       | 1111.97         | 0.110          | vérifiée    |             |      |
| Etage 6             | 45         | 45                                | 2025       | 880.26          | 0.087          | vérifiée    |             |      |
| Etage 7             | 40         | 40                                | 1600       | 652.68          | 0.091          | vérifiée    |             |      |
| Etage 8             | 40         | 40                                | 1600       | 459.01          | 0.064          | vérifiée    |             |      |
| Etage 9             | 40         | 40                                | 1600       | 295.44          | 0.041          | vérifiée    |             |      |
| Etage 10            | 40         | 40                                | 1600       | 130.39          | 0.020          | vérifiée    |             |      |

## Remarque:

- Les déplacements relatifs inter étages sont inférieurs à la limite imposée par le «RPA99 version 2003».
- Les efforts normaux réduits sont inférieurs à la limite imposée par le «RPA99 version 2003 ».

### e-Justification vis-à-vis de l'effet P- $\Delta$ (les effets du second ordre) :

C'est le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

Les effets du 2° ordre (ou effet P-Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux:

$$\theta = \frac{P_{\scriptscriptstyle K} \Delta_{\scriptscriptstyle K}}{V_{\scriptscriptstyle K} h_{\scriptscriptstyle K}} \leq 0.10 \text{"RPA99 version 2003"}$$

Avec:

 $p_{\scriptscriptstyle k}$  : Poids total de la structure et des charges d'exploitations associées au dessus du niveau K :

$$P_K = \sum_{i=k}^n (W_{Gi} + \beta W_{Qi})$$

 $V_K$ : Effort tranchant d'étage au niveau 'K'

 $\Delta_k$ : Déplacement relatif du niveau 'K' par rapport au niveau 'K-1'.

 $\boldsymbol{h_{k}}$ : Hauteur d'étage 'k' comme indique-la figure > Les résultats sont regroupés dans le tableau suivant :

**Tableau IV.17 :** Vérification l'effet P- $\Delta$  inter étages du modèle final.

# Les résultats sont regroupés dans les tableaux suivant :

| TABLE: S | ABLE: Story Forces |             |          |            |    |    |            |             |              |  |  |  |  |  |  |
|----------|--------------------|-------------|----------|------------|----|----|------------|-------------|--------------|--|--|--|--|--|--|
| Story    | Output Case        | Case Type   | Location | P          | VX | VY | T          | MX          | MY           |  |  |  |  |  |  |
|          |                    |             |          | kN         | kN | kN | kN-m       | kN-m        | kN-m         |  |  |  |  |  |  |
| Story11  | W                  | Combination | Bottom   | 997.3277   | 0  | 0  | 0          | 10970.0578  | -12772.3081  |  |  |  |  |  |  |
| Story10  | W                  | Combination | Bottom   | 5301.16    | 0  | 0  | 0          | 58494.6294  | -53747.264   |  |  |  |  |  |  |
| Story9   | W                  | Combination | Bottom   | 11197.2813 | 0  | 0  | 0          | 123545.3958 | -134643.4838 |  |  |  |  |  |  |
| Story8   | W                  | Combination | Bottom   | 17173.5717 | 0  | 0  | 0          | 188682.9849 | -215796.3264 |  |  |  |  |  |  |
| Story7   | W                  | Combination | Bottom   | 23290.309  | 0  | 0  | 0          | 255376.1374 | -298763.9494 |  |  |  |  |  |  |
| Story6   | W                  | Combination | Bottom   | 29401.5706 | 0  | 0  | 0          | 322018.7405 | -381647.5207 |  |  |  |  |  |  |
| Story5   | W                  | Combination | Bottom   | 35518.3266 | 0  | 0  | 0          | 388711.8929 | -464615.1852 |  |  |  |  |  |  |
| Story4   | W                  | Combination | Bottom   | 41713.773  | 0  | 0  | 0          | 457074.8335 | -549376.8695 |  |  |  |  |  |  |
| Story3   | W                  | Combination | Bottom   | 47909.2193 | 0  | 0  | 0          | 525437.7741 | -634138.5537 |  |  |  |  |  |  |
| Story2   | W                  | Combination | Bottom   | 54708.2223 | 0  | 0  | -5.141E-07 | 600438.9572 | -725841.0767 |  |  |  |  |  |  |
| Story1   | W                  | Combination | Bottom   | 61490.627  | 0  | 0  | -5.656E-07 | 675304.4035 | -817540.2435 |  |  |  |  |  |  |

# Selon X-X:

| Story   | <b>Output Case</b> | Case Type   | Step Type | Location | P  | VX        | VY       | T          | MX        | MY          |
|---------|--------------------|-------------|-----------|----------|----|-----------|----------|------------|-----------|-------------|
|         |                    |             |           |          | kN | kN        | kN       | kN-m       | kN-m      | kN-m        |
| Story11 | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 353.0837  | 17.444   | 3773.8962  | 34.8879   | 706.1673    |
| Story10 | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 1749.6107 | 63.3872  | 19029.1493 | 237.8296  | 6353.0277   |
| Story9  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 3262.3784 | 82.6658  | 35834.4976 | 494.6236  | 16792.6784  |
| Story8  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 4515.2337 | 81.7727  | 49621.5996 | 731.2622  | 31058.5693  |
| Story7  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 5581.1471 | 70.6863  | 61339.3303 | 902.1181  | 48522.3298  |
| Story6  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 6487.471  | 61.8383  | 71300.1399 | 984.8829  | 68693.939   |
| Story5  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 7257.2879 | 65.3264  | 79749.0651 | 979.3904  | 91117.1998  |
| Story4  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 7890.2469 | 83.8391  | 86778.1178 | 909.7353  | 115387.2509 |
| Story3  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 8385.0502 | 114.8842 | 92247.0514 | 856.9931  | 141115.8978 |
| Story2  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 8759.8693 | 146.8234 | 96340.2344 | 969.8429  | 167948.1405 |
| Story1  | Ex                 | LinRespSpec | Max       | Bottom   | 0  | 8934.9981 | 162.4533 | 98229.0083 | 1290.3551 | 195479.0755 |

|          |                     |                     |                     | Da                  | ans le sens X-X |             |
|----------|---------------------|---------------------|---------------------|---------------------|-----------------|-------------|
| Niveaux  | h <sub>k</sub> (cm) | P <sub>k</sub> (KN) | Δ <sub>k</sub> (cm) | V <sub>k</sub> (KN) | $\theta_k$      | Observation |
| RDC      | 323.0               | 61490.63            | 0.60                | 8934.9981           | 0.013           | vérifiée    |
| Etage 1  | 323.0               | 54708.22            | 1.23                | 8759.8693           | 0.024           | vérifiée    |
| Etage 2  | 323.0               | 47909.22            | 1.62                | 8385.0502           | 0.029           | vérifiée    |
| Etage 3  | 323.0               | 41713.77            | 1.81                | 7890.2469           | 0.030           | vérifiée    |
| Etage 4  | 323.0               | 35518.33            | 1.92                | 7257.2879           | 0.029           | vérifiée    |
| Etage 5  | 323.0               | 29401.57            | 1.90                | 6487.471            | 0.027           | vérifiée    |
| Etage 6  | 323.0               | 23290.31            | 1.81                | 5581.1471           | 0.023           | vérifiée    |
| Etage 7  | 323.0               | 17173.57            | 1.70                | 4515.2337           | 0.020           | vérifiée    |
| Etage 8  | 323.0               | 11197.28            | 1.54                | 3262.3784           | 0.016           | vérifiée    |
| Etage 9  | 323.0               | 5301.16             | 1.38                | 1749.6107           | 0.013           | vérifiée    |
| Etage 10 | 323.0               | 997.33              | 0.67                | 353.0837            | 0.006           | vérifiée    |

# Selon Y-Y:

| TABLE: S | tory Forces        |             |           |          |    |          |           |             |             |           |
|----------|--------------------|-------------|-----------|----------|----|----------|-----------|-------------|-------------|-----------|
| Story    | <b>Output Case</b> | Case Type   | Step Type | Location | P  | VX       | VY        | T           | MX          | MY        |
|          |                    |             |           |          | kN | kN       | kN        | kN-m        | kN-m        | kN-m      |
| Story11  | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 14.0983  | 346.4687  | 4742.4939   | 692.9374    | 28.1966   |
| Story10  | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 62.5     | 1542.9371 | 19589.0851  | 5652.0349   | 229.903   |
| Story9   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 90.8125  | 2978.9168 | 41333.214   | 15158.9325  | 517.7153  |
| Story8   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 92.3737  | 4162.2163 | 59353.1254  | 28399.4581  | 795.161   |
| Story7   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 79.5901  | 5122.2963 | 73653.8776  | 44567.6248  | 1001.2927 |
| Story6   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 65.4939  | 5944.1803 | 85624.3688  | 63129.1198  | 1104.3654 |
| Story5   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 64.0391  | 6636.6846 | 95936.9517  | 83683.5907  | 1095.7901 |
| Story4   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 79.6247  | 7190.9183 | 104780.6295 | 105853.023  | 987.2861  |
| Story3   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 110.5367 | 7621.6732 | 111930.5672 | 129278.1121 | 833.0577  |
| Story2   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 146.0489 | 7941.5725 | 117433.6944 | 153648.4847 | 801.2911  |
| Story1   | Ey                 | LinRespSpec | Max       | Bottom   | 0  | 164.7717 | 8082.915  | 119987.6751 | 178610.2167 | 1047.2815 |

|          |                     |                     |                     | D                   | ans le sens Y- | -Υ          |
|----------|---------------------|---------------------|---------------------|---------------------|----------------|-------------|
| Niveaux  | h <sub>k</sub> (cm) | P <sub>k</sub> (KN) | Δ <sub>k</sub> (cm) | V <sub>k</sub> (KN) | $\theta_{k}$   | Observation |
| RDC      | 323.0               | 61490.63            | 0.78                | 8082.915            | 0.018          | vérifiée    |
| Etage 1  | 323.0               | 54708.22            | 1.6                 | 7941.5725           | 0.034          | vérifiée    |
| Etage 2  | 323.0               | 47909.22            | 2.12                | 7621.6732           | 0.041          | vérifiée    |
| Etage 3  | 323.0               | 41713.77            | 2.44                | 7190.9183           | 0.044          | vérifiée    |
| Etage 4  | 323.0               | 35518.33            | 2.65                | 6636.6846           | 0.044          | vérifiée    |
| Etage 5  | 323.0               | 29401.57            | 2.7                 | 5944.1803           | 0.000          | vérifiée    |
| Etage 6  | 323.0               | 23290.31            | 2.64                | 5122.2963           | 0.000          | vérifiée    |
| Etage 7  | 323.0               | 17173.57            | 2.56                | 4162.2163           | 0.000          | vérifiée    |
| Etage 8  | 323.0               | 11197.28            | 2.36                | 2978.9168           | 0.000          | vérifiée    |
| Etage 9  | 323.0               | 5301.16             | 1.17                | 1542.9371           | 0.000          | vérifiée    |
| Etage 10 | 323.0               | 997.33              | 1.01                | 346.4687            | 0.000          | vérifiée    |

Vu les résultats obtenus les conditions  $\theta_x et \theta_y \le 0.1$  est satisfaites.

#### **Conclusion:**

Les étapes de vérification suivie pour définir le modèle finale étaient de:

- comparer l'effort tranchant à la base obtenu par l'approche statique équivalente (=0.8\*V $_{(mse)}$ ) qui ne doit pas dépassé la résultante des forces a la base V  $_t$  obtenue par combinaison des valeurs modales ,cet effort(0.8\*V $_{(mse)}$ ) représente l'effort tranchant minimale.
- Vérifier les déplacements inter-étage qui est un indice de dommage de l'étage.
- Vérifier l'effet P- $\Delta$  pour la stabilité de structure vis-à-vis de moment de 2ème ordre.
- L'effort normal réduit pour prendre on considération l'écrasement du béton sous la composante verticale du séisme.
- Justifier le choix de facteur de comportement qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement de la structure.
- Dans notre cas on a choisit un facteur R=3.5 vu que les voiles qui doivent reprendre plus de 20% des charge verticale :(22.22%).

# Ferraillage des éléments résistants

#### **V.1 Introduction:**

Le ferraillage des éléments résistant doit être conforme aux règlements en vigueur en l'occurrence le BAEL 91 modifié 99, CBA 93 et le RPA99 version 2003.

Notre structure est composée essentiellement de trois éléments structuraux à savoir :

- 1- Poteaux
- 2- Poutres
- 3- Voiles

## V.2 Ferraillage des poteaux :

#### **V.2.1 Introduction:**

Les poteaux sont des éléments structuraux verticaux, ils constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations. Les sections des poteaux sont soumises à la flexion composée (M, N), compression "N", et à un moment fléchissant "M".

Une section soumise à la flexion composée peut être l'un des trois cas suivants:

- Section entièrement tendue SET
- Section entièrement comprimée SEC
- Section partiellement comprimée SPC

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations les plus défavorables et dans les situations suivantes:

Béton Acier Situation f<sub>c28</sub> (MPa) fe (MPa) σ<sub>bc</sub> (MPa) σ<sub>s</sub> (MPa) γb  $\gamma_{\rm S}$ Durable 1,5 30 17 500 1.15 435 Accidentelle 1,15 30 22.17 500 1 500

**Tableau V.1 :** Caractéristiques du béton et de l'acier.

#### V.2.2 Combinaison d'action :

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes :

## a- Selon CBA 93:

Situation durable:

**ELU**: 1,35G + 1,5Q

**ELS**: G + Q

b- Selon RPA 99:

Situation accidentelle :  $\begin{cases} G + Q + F \\ 0.8G + F \end{cases}$ 

A partir de ces combinaisons, on distingue les cas suivants:

- Effort normal maximal et le moment correspondant (N<sup>max</sup>, M<sup>corr</sup>)
- Le moment maximum et l'effort correspondant (M<sup>max</sup>, N<sup>corr</sup>)
- Effort normal minimal et le moment correspondant (N<sup>min</sup>, M<sup>corr</sup>)

## V.2.3 Recommandation selon RPA99 version 2003:

D'après le **RPA99 version 2003**, pour une zone sismique III, les armatures longitudinales doivent être à haute adhérence, droites et sans crochet.

• Leur pourcentage est limité par :

$$0.9\% < \frac{A_s}{B} < 4\%$$
 Zone courante (Z.C)

$$0.9\% < \frac{A_s}{B} < 6\%$$
 Zone de recouvrement (Z.R)

#### Avec:

A<sub>s</sub>: La section d'acier.

B : Section du béton [cm<sup>2</sup>].

- Le diamètre minimal est de 12mm.
- La longueur minimale de 50Ø en zone de recouvrement.
- La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 20cm.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales.

Les tableaux suivants regroupent tous les résultats des efforts ainsi que la section d'armature calculée en utilisant les différentes combinaisons.

 $A_s^{min} = 0.9\%B$  selon RPA99 version 2003

**N.B**: On utilise Le logiciel d'EXPERT et SOCOTEC pour le ferraillage des sections.

# a)-Ferraillage des poteaux

# 1. Situation durable:

• Combinaison : **1,35G+1,5Q** 

### **Poteaux:**

a.  $(N^{max}, M^{corr})$ :

**Tableau V.2**: Ferraillages des poteaux en situation durable (N<sup>max</sup>, M<sup>corr</sup>).

| Niveaux                                              | Section  | N max    | M corr  | Sollicitation | $A_{s}$            | $A_s$              | $A_{s \min}$ |
|------------------------------------------------------|----------|----------|---------|---------------|--------------------|--------------------|--------------|
|                                                      | $[cm^2]$ | [kN]     | [kN.m]  |               | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | RPA          |
| RDC,1er                                              | 55 × 55  | 1979.195 | -1.2442 | SEC           | 0                  | 0                  | 27.23        |
| 2 ème,3ème                                           | 50×50    | 1575.948 | 31.0727 | SEC           | 0                  | 0                  | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 1176.611 | 26.5082 | SEC           | 0                  | 0                  | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | 591.6697 | 25.7672 | SEC           | 0                  | 0                  | 14.4         |

| TABLE: E | lement For | ces - Columns |             |             |           |         |          |         |         |         |         |         |         |            |
|----------|------------|---------------|-------------|-------------|-----------|---------|----------|---------|---------|---------|---------|---------|---------|------------|
| Story    | Column     | Unique Name   | Output Case | Case Type   | Step Type | Station | P        | V2      | V3      | T       | M2      | M3      | Element | lem Statio |
|          |            |               |             |             |           | m       | kN       | kN      | kN      | kN-m    | kN-m    | kN-m    |         | m          |
| Story1   | C5         | 6             | ELU         | Combination |           | 0       | 1979.195 | -1.9101 | -0.6202 | -0.0086 | -1.2442 | -0.9408 | 6       | 0          |
| Story3   | C53        | 77            | ELU         | Combination |           | 0       | 1575.948 | 2.5591  | 18.9573 | 0.0035  | 31.0727 | 4.2936  | 77      | 0          |
| Story5   | C53        | 113           | ELU         | Combination |           | 0       | 1176.611 | 3.2236  | 17.3151 | 0.0028  | 26.5082 | 5.0672  | 113     | 0          |
| Story8   | C53        | 282           | ELU         | Combination |           | 0       | 591.6697 | 3.411   | 16.8014 | 0.0031  | 25.7672 | 5.3597  | 282     | 0          |

# b. $(N^{min}, M^{corr})$ :

**Tableau V.3:** Ferraillages des poteaux en situation durable (N<sup>min</sup>, M<sup>corr</sup>).

| Niveaux                                              | Section  | $N^{\mathrm{min}}$ | M corr   | Sollicitation | $A_{s}$            | $A_s$              | $A_{s \min}$ |
|------------------------------------------------------|----------|--------------------|----------|---------------|--------------------|--------------------|--------------|
|                                                      | $[cm^2]$ | [kN]               | [kN.m]   |               | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | RPA          |
| RDC,1er                                              | 55 × 55  | 735.2519           | 11.8867  | SEC           | 0                  | 0                  | 27.23        |
| 2 ème,3ème                                           | 50×50    | 644.7517           | 15.9584  | SEC           | 0                  | 0                  | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 468.5424           | 17.8453  | SEC           | 0                  | 0                  | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | 210.9187           | -10.9994 | SEC           | 0                  | 0                  | 14.4         |

| TABLE: E | TABLE: Element Forces - Columns |             |             |             |           |         |          |          |         |         |         |          |         |            |
|----------|---------------------------------|-------------|-------------|-------------|-----------|---------|----------|----------|---------|---------|---------|----------|---------|------------|
| Story    | Column                          | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2       | V3      | T       | M2      | M3       | Element | lem Statio |
|          |                                 |             |             |             |           | m       | kN       | kN       | kN      | kN-m    | kN-m    | kN-m     |         | m          |
| Story1   | C47                             | 26          | ELU         | Combination |           | 2.73    | 735.2519 | -6.3434  | 0.6107  | -0.0086 | -1.4386 | 11.8867  | 26      | 2.73       |
| Story3   | C44                             | 96          | ELU         | Combination |           | 2.73    | 644.7517 | -12.6151 | -0.6487 | 0.0035  | 0.597   | 15.9584  | 96      | 2.73       |
| Story5   | C44                             | 145         | ELU         | Combination |           | 2.73    | 468.5424 | -14.7509 | -1.0031 | 0.0028  | 1.0954  | 17.8453  | 145     | 2.73       |
| Story8   | C3                              | 265         | ELU         | Combination |           | 2.73    | 210.9187 | 9.7152   | 4.003   | 0.0031  | -4.7235 | -10.9994 | 265     | 2.73       |

# c. $(M^{max}, N^{corr})$ :

**Tableau V.4 :** Ferraillages des poteaux en situation durable  $(M^{max}, N^{corr})$ .

| Niveaux                                              | Section  | N corr   | M max    | Sollicitation | $A_{s}$            | $A_s$    | $A_{s \min}$ |
|------------------------------------------------------|----------|----------|----------|---------------|--------------------|----------|--------------|
|                                                      | $[cm^2]$ | [kN]     | [kN.m]   |               | [cm <sup>2</sup> ] | $[cm^2]$ | RPA          |
| RDC,1er                                              | 55 × 55  | 949.5116 | 47.1493  | SEC           | 0                  | 0        | 27.23        |
| 2 ème,3ème                                           | 50×50    | 1362.942 | -32.7371 | SEC           | 0                  | 0        | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 594.1071 | 35.4289  | SEC           | 0                  | 0        | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | 26.5923  | 42.5224  | SPC           | 2.36               | 2.36     | 14.4         |

| TABLE: E | TABLE: Element Forces - Columns |             |             |             |           |         |          |         |          |         |          |         |         |            |
|----------|---------------------------------|-------------|-------------|-------------|-----------|---------|----------|---------|----------|---------|----------|---------|---------|------------|
| Story    | Column                          | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2      | V3       | T       | M2       | M3      | Element | lem Statio |
|          |                                 |             |             |             |           | m       | kN       | kN      | kN       | kN-m    | kN-m     | kN-m    |         | m          |
| Story2   | C7                              | 314         | ELU         | Combination |           | 0       | 949.5116 | 24.7746 | -8.5993  | -0.0095 | -12.2552 | 47.1493 | 314     | 0          |
| Story4   | C13                             | 373         | ELU         | Combination |           | 0       | 1362.942 | 3.3375  | -21.0858 | 0.0039  | -32.7371 | 5.3848  | 373     | 0          |
| Story7   | C14                             | 436         | ELU         | Combination |           | 0       | 594.1071 | 22.7815 | -17.9142 | 0.0046  | -27.8579 | 35.4289 | 436     | 0          |
| Story11  | C34                             | 522         | ELU         | Combination |           | 0       | 26.5923  | 40.3135 | -0.71    | -0.0029 | -0.7127  | 42.5224 | 522     | 0          |

# 2. Situation accidentelle:

• Combinaison : **G**+**Q**+**E** 

G+Q-E

# Poteaux:

# a. $(N^{max}, M^{corr})$ :

 $\textbf{Tableau V.5:} \ Ferraillages \ des \ poteaux \ situation \ accidentelle \ (N^{max}, \ M^{corr}).$ 

| Niveaux                                              | Section  | N max    | M corr   | Sollicitation | $A_{s}$ | $A_s$              | $A_{s \min}$ |
|------------------------------------------------------|----------|----------|----------|---------------|---------|--------------------|--------------|
|                                                      | $[cm^2]$ | [kN]     | [kN.m]   |               | [cm²]   | [cm <sup>2</sup> ] | RPA          |
| RDC,1er                                              | 55 × 55  | 2373.529 | -156.448 | SEC           | 0       | 0                  | 27.23        |
| 2 ème,3ème                                           | 50×50    | 1846.498 | -51.8528 | SEC           | 0       | 0                  | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 1343.337 | -33.9228 | SEC           | 0       | 0                  | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | 652.6762 | -22.5649 | SEC           | 0       | 0                  | 14.4         |

| TABLE: E | ABLE: Element Forces - Columns |             |             |             |           |         |          |          |          |         |          |          |         |            |
|----------|--------------------------------|-------------|-------------|-------------|-----------|---------|----------|----------|----------|---------|----------|----------|---------|------------|
| Story    | Column                         | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2       | V3       | T       | M2       | М3       | Element | lem Statio |
|          |                                |             |             |             |           | m       | kN       | kN       | kN       | kN-m    | kN-m     | kN-m     |         | m          |
| Story1   | C23                            | 34          | G+Q+Ex      | Combination | Min       | 0       | 2373.529 | -74.3274 | -1.4341  | -0.2078 | -3.0972  | -156.448 | 34      | 0          |
| Story3   | C21                            | 76          | G+Q+Ey      | Combination | Min       | 0       | 1846.498 | -32.12   | -14.6617 | -3.9779 | -39.9414 | -51.8528 | 76      | 0          |
| Story5   | C53                            | 113         | G+Q+Ey      | Combination | Min       | 0       | 1343.337 | -19.1887 | -18.6704 | -2.9701 | -33.9228 | -30.5007 | 113     | 0          |
| Story8   | C53                            | 282         | G+Q+Ey      | Combination | Min       | 0       | 652.6762 | -14.4151 | -13.7079 | -1.769  | -20.6301 | -22.5649 | 282     | 0          |

# b. (Nmin, Mcorr)

 $\textbf{Tableau V.6:} Ferraillages \ des \ poteaux \ situation \ accidentelle \ total \ (N^{min}, M^{corr}).$ 

| Niveaux                                              | Section  | $N^{\mathrm{min}}$ | M corr   | Sollicitation | $A_s$ / face | $A_s$ totale | $A_{s \min}$ |
|------------------------------------------------------|----------|--------------------|----------|---------------|--------------|--------------|--------------|
|                                                      | $[cm^2]$ | [kN]               | [kN.m]   |               | $[cm^2]$     | [cm²]        | RPA          |
| RDC,1 <sup>er</sup>                                  | 55 × 55  | 46.4048            | 129.4197 | SPC           | 4.57         | 4.57         | 27.23        |
| 2 ème,3ème                                           | 50 × 50  | 68.0065            | 144.1625 | SPC           | 5.59         | 5.59         | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 54.4373            | 155.7439 | SPC           | 7.17         | 7.17         | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | 64.8693            | 113.8039 | SPC           | 5.76         | 5.76         | 14.4         |

| TABLE: El | TABLE: Element Forces - Columns |             |             |             |           |         |         |          |        |        |        |          |         |            |
|-----------|---------------------------------|-------------|-------------|-------------|-----------|---------|---------|----------|--------|--------|--------|----------|---------|------------|
| Story     | Column                          | Unique Name | Output Case | Case Type   | Step Type | Station | P       | V2       | V3     | T      | M2     | M3       | Element | lem Statio |
|           |                                 |             |             |             |           | m       | kN      | kN       | kN     | kN-m   | kN-m   | kN-m     |         | m          |
| Story1    | C24                             | 339         | G+Q+Ex      | Combination | Max       | 2.73    | 46.4048 | 110.3874 | 0.614  | 0.4174 | 0.6678 | 129.4197 | 339     | 2.73       |
| Story3    | C24                             | 73          | G+Q+Ex      | Combination | Max       | 2.73    | 68.0065 | 118.2693 | 0.7202 | 0.3878 | 0.5634 | 144.1625 | 73      | 2.73       |
| Story5    | C24                             | 234         | G+Q+Ex      | Combination | Max       | 2.73    | 54.4373 | 116.7474 | 0.6628 | 0.3106 | 0.4566 | 155.7439 | 234     | 2.73       |
| Story8    | C24                             | 277         | G+Q+Ex      | Combination | Max       | 2.73    | 64.8693 | 76.9978  | 0.8523 | 0.1903 | 0.522  | 113.8039 | 277     | 2.73       |

# c. $(N^{corr}, M^{max})$ :

**Tableau V.7 :** Ferraillages des poteaux situation accidentelle  $(N^{corr}, M^{max})$ .

| Niveaux                                              | Section  | N corr   | M max    | Sollicitation | $A_s$ / face | <i>A</i> <sub>s</sub> totale | $A_{s \min}$ |
|------------------------------------------------------|----------|----------|----------|---------------|--------------|------------------------------|--------------|
|                                                      | $[cm^2]$ | [kN]     | [kN.m]   |               | $[cm^2]$     | [cm²]                        | RPA          |
| RDC,1er                                              | 55 × 55  | 43.7185  | 232.503  | SPC           | 8.77         | 8.77                         | 27.3         |
| 2 ème,3ème                                           | 50×50    | 60.2426  | 279.839  | SPC           | 12           | 12                           | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 94.6668  | 244.1327 | SPC           | 11.59        | 11.59                        | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | -75.7686 | 181.5802 | SPC           | 11.22        | 11.22                        | 14.4         |

 $= 43,58 \text{ cm}^2$ 

| TABLE: E | TABLE: Element Forces - Columns |             |             |             |           |         |          |          |        |        |        |          |         |            |
|----------|---------------------------------|-------------|-------------|-------------|-----------|---------|----------|----------|--------|--------|--------|----------|---------|------------|
| Story    | Column                          | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2       | V3     | T      | M2     | M3       | Element | lem Statio |
|          |                                 |             |             |             |           | m       | kN       | kN       | kN     | kN-m   | kN-m   | kN-m     |         | m          |
| Story2   | C35                             | 336         | G+Q+Ex      | Combination | Max       | 0       | 43.7185  | 137.0241 | 2.0859 | 0.4174 | 2.5069 | 232.503  | 336     | 0          |
| Story4   | C35                             | 388         | G+Q+Ex      | Combination | Max       | 0       | 60.2426  | 175.5902 | 4.4608 | 0.4397 | 6.4581 | 279.839  | 388     | 0          |
| Story6   | C35                             | 476         | G+Q+Ex      | Combination | Max       | 0       | 94.6668  | 150.5608 | 5.2822 | 0.3167 | 8.3226 | 244.1327 | 476     | 0          |
| Story11  | C34                             | 522         | G+Q+Ex      | Combination | Max       | 0       | -75.7686 | 176.0515 | 4.8748 | 0.6437 | 5.0948 | 181.5802 | 522     | 0          |

• Combinaison : **0,8G+E** 

0,8G-E

a.  $(N^{max}, M^{corr})$ :

**Tableau V.8 :** Ferraillages des poteaux situation accidentelle (N<sup>max</sup>, M<sup>corr</sup>).

| Niveaux                                                                  | Section  | N max    | M corr   | Sollicitation | $A_{s}$            | $A_s$    | $A_{s \min}$ |
|--------------------------------------------------------------------------|----------|----------|----------|---------------|--------------------|----------|--------------|
|                                                                          | $[cm^2]$ | [kN]     | [kN.m]   |               | [cm <sup>2</sup> ] | $[cm^2]$ | RPA          |
| RDC,1er                                                                  | 55 × 55  | 1940.891 | -154.215 | SEC           | 0                  | 0        | 27.23        |
| 2 ème,3ème                                                               | 50×50    | 1550.72  | -210.673 | SEC           | 0                  | 0        | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup>                     | 45 × 45  | 1109.254 | -207.846 | SPC           | 1.41               | 1.41     | 18.23        |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , 9 <sup>ème</sup> ,10 <sup>éme</sup> | 40×40    | 545.9888 | -148.682 | SPC           | 3.78               | 3.78     | 14.4         |

| TABLE: E | TABLE: Element Forces - Columns |             |             |             |           |         |          |          |         |         |         |          |         |            |
|----------|---------------------------------|-------------|-------------|-------------|-----------|---------|----------|----------|---------|---------|---------|----------|---------|------------|
| Story    | Column                          | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2       | V3      | T       | M2      | М3       | Element | lem Statio |
|          |                                 |             |             |             |           | m       | kN       | kN       | kN      | kN-m    | kN-m    | kN-m     |         | m          |
| Story1   | C23                             | 34          | 0.8G+Ex     | Combination | Min       | 0       | 1940.891 | -71.7826 | -1.4324 | -0.2045 | -2.8971 | -154.215 | 34      | 0          |
| Story3   | C24                             | 73          | 0.8G+Ex     | Combination | Min       | 0       | 1550.72  | -128.92  | -0.6051 | -0.383  | -1.0588 | -210.673 | 73      | 0          |
| Story5   | C24                             | 234         | 0.8G+Ex     | Combination | Min       | 0       | 1109.254 | -131.826 | -0.4955 | -0.3074 | -0.8895 | -207.846 | 234     | 0          |
| Story8   | C24                             | 277         | 0.8G+Ex     | Combination | Min       | 0       | 545.9888 | -94.631  | -0.5454 | -0.187  | -0.9228 | -148.682 | 277     | 0          |

# b.(Nmin,Mcorr):

**Tableau V.9 :** Ferraillages des poteaux situation accidentelle  $N^{min}$ ,  $M^{corr}$ ).

| Niveaux                                              | Section  | $N^{\mathrm{min}}$ | $M^{corr}$ | Sollicitation | $A_{s}$            | $A_{s}$            | $A_{s \min}$ |
|------------------------------------------------------|----------|--------------------|------------|---------------|--------------------|--------------------|--------------|
|                                                      | $[cm^2]$ | [kN]               | [kN.m]     |               | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | RPA          |
| RDC,1er                                              | 55 × 55  | 344.5349           | 37.4823    | SEC           | 0                  | 0                  | 27.23        |
| 2 ème, 3 ème                                         | 50×50    | 346.3996           | 141.3321   | SPC           | 2.76               | 2.76               | 22.5         |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup> | 45 × 45  | 249.9855           | 152.0574   | SPC           | 5.13               | 5.13               | 18.23        |
| 7ème ,8ème, 9ème,10éme                               | 40×40    | 150.5014           | 109.6629   | SPC           | 4.7                | 4.7                | 14.4         |

| TABLE: Element Forces - Columns |        |             |             |             |           |         |          |          |        |        |        |          |         |            |
|---------------------------------|--------|-------------|-------------|-------------|-----------|---------|----------|----------|--------|--------|--------|----------|---------|------------|
| Story                           | Column | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2       | V3     | T      | M2     | M3       | Element | lem Statio |
|                                 |        |             |             |             |           | m       | kN       | kN       | kN     | kN-m   | kN-m   | kN-m     |         | m          |
| Story1                          | C24    | 33          | 0.8G+Ex     | Combination | Max       | 2.73    | 344.5349 | 66.0064  | 0.7438 | 0.196  | 0.3436 | 37.4823  | 33      | 2.73       |
| Story3                          | C24    | 73          | 0.8G+Ex     | Combination | Max       | 2.73    | 346.3996 | 120.2488 | 0.7146 | 0.3865 | 0.6301 | 141.3321 | 73      | 2.73       |
| Story5                          | C24    | 234         | 0.8G+Ex     | Combination | Max       | 2.73    | 249.9855 | 119.7292 | 0.6614 | 0.3093 | 0.5081 | 152.0574 | 234     | 2.73       |
| Story8                          | C24    | 277         | 0.8G+Ex     | Combination | Max       | 2.73    | 150.5014 | 80.4979  | 0.8243 | 0.1888 | 0.5729 | 109.6629 | 277     | 2.73       |

# c. $(N^{corr}, M^{max})$ :

**Tableau V.10 :** Ferraillages des poteaux situation accidentelle ( $N^{corr}$ ,  $M^{max}$ ).

| Niveaux                                                                  | Section  | N corr   | $M^{\mathrm{max}}$ | Sollicitation | $A_{s}$            | $A_s$    | $A_{s \min}$ |
|--------------------------------------------------------------------------|----------|----------|--------------------|---------------|--------------------|----------|--------------|
|                                                                          | $[cm^2]$ | [kN]     | [kN.m]             |               | [cm <sup>2</sup> ] | $[cm^2]$ | RPA          |
| RDC,1er                                                                  | 55 × 55  | 267.0056 | 224.3572           | SEC           | 0                  | 0        | 27.23        |
| 2 ème,3ème                                                               | 50×50    | 173.7682 | 271.9169           | SEC           | 0                  | 0        | 22.5         |
| 4ème, 5ème, 6ème                                                         | 45 × 45  | 67.4411  | 235.3446           | SEC           | 0                  | 0        | 18.23        |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , 9 <sup>ème</sup> ,10 <sup>éme</sup> | 40×40    | 80.0784  | 167.9549           | SEC           | 0                  | 0        | 14.4         |

| TABLE: E | TABLE: Element Forces - Columns |             |             |             |           |         |          |          |        |        |         |          |         |            |
|----------|---------------------------------|-------------|-------------|-------------|-----------|---------|----------|----------|--------|--------|---------|----------|---------|------------|
| Story    | Column                          | Unique Name | Output Case | Case Type   | Step Type | Station | P        | V2       | V3     | Т      | M2      | M3       | Element | lem Statio |
|          |                                 |             |             |             |           | m       | kN       | kN       | kN     | kN-m   | kN-m    | kN-m     |         | m          |
| Story2   | C35                             | 336         | 0.8G+Ex     | Combination | Max       | 0       | 267.0056 | 132.4685 | 2.6172 | 0.4209 | 3.3424  | 224.3572 | 336     | 0          |
| Story4   | C35                             | 388         | 0.8G+Ex     | Combination | Max       | 0       | 173.7682 | 170.5151 | 5.4996 | 0.438  | 8.0796  | 271.9169 | 388     | 0          |
| Story6   | C35                             | 476         | 0.8G+Ex     | Combination | Max       | 0       | 67.4411  | 145.0815 | 6.6122 | 0.3152 | 10.4718 | 235.3446 | 476     | 0          |
| Story11  | C34                             | 522         | 0.8G+Ex     | Combination | Max       | 0       | 80.0784  | 162.9864 | 5.0688 | 0.6416 | 5.2853  | 167.9549 | 522     | 0          |

# V.2.4. Choix des armatures :

# 1)-choix de ferraillage des poteaux :

Tableau V.11: Choix des armatures des poteaux.

| Niveaux                   | Sectio             | $A_s^{cal}$ | $A_s^{ m min}$ | $A_s^{\max}$       | $A_s^{\max}$       | Choix des | $A_s^{adp}$ |
|---------------------------|--------------------|-------------|----------------|--------------------|--------------------|-----------|-------------|
|                           | ns                 | $(cm^2)$    | $(cm^2)$       | ( <b>Z.R</b> )     | ( <b>Z.</b> C)     | armatures | $(cm^2)$    |
|                           | (cm <sup>2</sup> ) |             |                | (cm <sup>2</sup> ) | (cm <sup>2</sup> ) |           |             |
| RDC,1er                   | 55x55              | 17.54       | 27.23          | 181.5              | 121                | 4T20+8T16 | 28.64       |
| 2 ème,3ème                | 50x50              | 24          | 22.5           | 150                | 100                | 12T16     | 24.12       |
| 4ème,5ème,6ème            | 45x45              | 23.18       | 18.23          | 121.5              | 81                 | 12T16     | 24.12       |
| 7ème ,8ème,<br>9ème,10éme | 40x40              | 22.44       | 14.4           | 96                 | 64                 | 12T16     | 24.12       |

## V.2.5. Vérification vis-à-vis de l'état limite de service :

Les contraintes sont calculées à l'état limite de service sous  $(M_{ser}, N_{ser})$  (annexe, organigramme), puis elles sont comparées aux contraintes admissible données par :

• **Béton** : 
$$\sigma_{bc} = 0.6 f_{c28} = 18 MPa$$

•Acier:

Fissuration peu nuisible......Pas de vérification.

Fissuration préjudiciable.....
$$\overline{\sigma}_s = Min\left(\frac{2}{3}f_e, \max\left(0.5f_e; 110\sqrt{\eta f_{ij}}\right)\right)$$

Fissuration très préjudiciable.....
$$\overline{\sigma}_s = Min\left(\frac{1}{3}f_e, 110\eta\right)$$

Avec:  $\eta=1,6$  pour les aciers H.A

Dans notre cas la fissuration est considérée préjudiciable, donc σ<sub>s</sub>=250MPa.

Les résultats sont récapitulés dans les tableaux suivants :

a. 
$$(N^{max}, M^{corr})$$
:

**Tableau V.12:** Vérification des contraintes pour les poteaux (M<sup>corr,</sup> N<sup>Max</sup>)

|                                      |                    |                         |                  |         |               | $\sigma_{s}$ | $\overline{\sigma}_{\scriptscriptstyle s}$ | $\sigma_{bc}$ | $\overline{\sigma}_{bc}$ |              |
|--------------------------------------|--------------------|-------------------------|------------------|---------|---------------|--------------|--------------------------------------------|---------------|--------------------------|--------------|
| Niveaux                              | Sections           | $N_{\text{ser}}^{ max}$ | $M_{ser}^{corr}$ | Section | Sollicitation | (MPa)        | (MPa)                                      | (MPa)         | (MPa)                    | Vérification |
|                                      | (cm <sup>2</sup> ) | (kN)                    | (kN.m)           |         |               |              |                                            |               |                          |              |
| RDC,1 <sup>er</sup>                  | 55×5               | 1764.183                | -1.823           | 28.64   | SEC           | 80.3         | 250                                        | 5.36          | 18                       | OK           |
|                                      |                    |                         |                  |         |               |              |                                            |               |                          |              |
| 2 ème,3ème                           | 50×5               | 1422.733                | 26.1282          | 24.12   | SEC           | 89.3         | 250                                        | 6.05          | 18                       | OK           |
|                                      | 0                  |                         |                  |         |               |              |                                            |               |                          |              |
| 4ème,5ème,6ème                       | 45 × 4             | 1062.482                | 22.0774          | 24.12   | SEC           | 82.9         | 250                                        | 5.64          | 18                       | OK           |
|                                      | 5                  |                         |                  |         |               |              |                                            |               |                          |              |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , | 40 × 4             | 535.1397                | 21.2891          | 24.12   | SEC           | 60.5         | 250                                        | 4.21          | 18                       | OK           |
| 9 <sup>ème</sup> ,10 <sup>éme</sup>  | 0                  |                         |                  |         |               |              |                                            |               |                          |              |

| TABLE: E | TABLE: Element Forces - Columns |           |            |           |         |          |         |         |        |         |        |         |            |  |
|----------|---------------------------------|-----------|------------|-----------|---------|----------|---------|---------|--------|---------|--------|---------|------------|--|
| Story    | Column                          | nique Nan | output Cas | Case Type | Station | P        | V2      | V3      | T      | M2      | М3     | Element | lem Statio |  |
|          |                                 |           |            |           | m       | kN       | kN      | kN      | kN-m   | kN-m    | kN-m   |         | m          |  |
| Story1   | C5                              | 6         | ELS        | Combinati | 0       | 1764.183 | -2.6489 | -0.3199 | 0.0016 | -0.6681 | -1.823 | 6       | 0          |  |
| Story3   | C53                             | 77        | ELS        | Combinati | 0       | 1422.733 | 2.2551  | 15.9307 | 0.0034 | 26.1282 | 3.7773 | 77      | 0          |  |
| Story5   | C53                             | 113       | ELS        | Combinati | 0       | 1062.482 | 2.8421  | 14.4223 | 0.0021 | 22.0774 | 4.464  | 113     | 0          |  |
| Story8   | C53                             | 282       | ELS        | Combinati | 0       | 535.1397 | 3.0011  | 13.8791 | 0.0021 | 21.2891 | 4.7159 | 282     | 0          |  |

# b. $(N^{min}, M^{corr})$ :

**Tableau V.13 :** Vérification des contraintes pour les poteaux  $(N^{min}, M^{corr})$ 

| Niveaux                                                                  | Sections (cm <sup>2</sup> ) | N <sub>ser</sub> <sup>min</sup> (kN) | M <sub>ser</sub> <sup>corr</sup> (kN.m) | Section | Sollicitation | σ <sub>s</sub><br>(MPa) | $\overline{\sigma}_s$ (MPa) | σ <sub>bc</sub><br>(MPa) | $\overline{\sigma}_{bc}$ (MPa) | Vérification |
|--------------------------------------------------------------------------|-----------------------------|--------------------------------------|-----------------------------------------|---------|---------------|-------------------------|-----------------------------|--------------------------|--------------------------------|--------------|
| RDC,1er                                                                  | 55×5                        | 122.977                              | -1.4331                                 | 28.64   | SEC           | 6.11                    | 250                         | 0.41                     | 18                             | OK           |
| 2 ème,3ème                                                               | 50×5<br>0                   | 609.756                              | 14.6621                                 | 24.12   | SEC           | 40                      | 250                         | 2.72                     | 18                             | OK           |
| 4ème,5ème,6ème                                                           | 45 × 4<br>5                 | 443.6546                             | 16.4159                                 | 24.12   | SEC           | 39.3                    | 250                         | 2.71                     | 18                             | OK           |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , 9 <sup>ème</sup> ,10 <sup>éme</sup> | 40×4<br>0                   | 188.5512                             | -9.9095                                 | 24.12   | SEC           | 23.4                    | 250                         | 1.64                     | 18                             | OK           |

| TABLE: E | TABLE: Element Forces - Columns |           |            |           |         |          |          |         |        |         |         |         |            |
|----------|---------------------------------|-----------|------------|-----------|---------|----------|----------|---------|--------|---------|---------|---------|------------|
| Story    | Column                          | nique Nan | output Cas | Case Type | Station | P        | V2       | V3      | T      | M2      | M3      | Element | lem Statio |
|          |                                 |           |            |           | m       | kN       | kN       | kN      | kN-m   | kN-m    | kN-m    |         | m          |
| Story1   | C47                             | 26        | ELS        | Combinati | 2.73    | 122.977  | -5.2599  | 0.6221  | 0.0016 | -1.4331 | 9.8266  | 26      | 2.73       |
| Story3   | C44                             | 96        | ELS        | Combinati | 2.73    | 609.756  | -11.7424 | -0.6063 | 0.0034 | 0.5566  | 14.6621 | 96      | 2.73       |
| Story5   | C44                             | 145       | ELS        | Combinati | 2.73    | 443.6546 | -13.5743 | -0.939  | 0.0021 | 1.0231  | 16.4159 | 145     | 2.73       |
| Story8   | C3                              | 265       | ELS        | Combinati | 2.73    | 188.5512 | 8.7477   | 3.711   | 0.0021 | -4.3748 | -9.9095 | 265     | 2.73       |

# c. $(N^{corr}, M^{max})$ :

**Tableau V.14 :** Vérification des contraintes pour les poteaux  $(N^{corr}, M^{max})$ 

|                                                                          |                    |                  |                 |         |               | $\sigma_{\rm s}$ | $\overline{\sigma}_{\scriptscriptstyle s}$ | $\sigma_{bc}$ | $\overline{\sigma}_{bc}$ | Várification |
|--------------------------------------------------------------------------|--------------------|------------------|-----------------|---------|---------------|------------------|--------------------------------------------|---------------|--------------------------|--------------|
| Niveaux                                                                  | Sections           | $N_{ser}^{corr}$ | $M_{ser}^{max}$ | Section | Sollicitation | (MP              | (MPa)                                      | (MPa)         | (MPa)                    | Vérification |
|                                                                          | (cm <sup>2</sup> ) | (kN)             | (kN.m)          |         |               | a)               |                                            |               |                          |              |
| RDC,1er                                                                  | 55×55              | 717.8294         | -28.7946        | 28.64   | SEC           | 43.7             | 250                                        | 2.99          | 18                       | OK           |
| 2 ème,3ème                                                               | 50×50              | 657.0422         | -24.0138        | 24.12   | SEC           | 47.2             | 250                                        | 3.24          | 18                       | OK           |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup>                     | 45 × 45            | 372.2103         | -28.5015        | 24.12   | SEC           | 42.5             | 250                                        | 2.99          | 18                       | OK           |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , 9 <sup>ème</sup> ,10 <sup>éme</sup> | 40 × 40            | 87.9405          | -33.3571        | 24.12   | SEC           | 41.1             | 250                                        | 3.22          | 18                       | OK           |
| 955,1066                                                                 |                    |                  |                 |         |               |                  |                                            |               |                          |              |

|         |        | ces - Colum |            | o - T     | C1 - 1' | _        | 1/2      | 1/0      | -       | 140     |          | el      |            |
|---------|--------|-------------|------------|-----------|---------|----------|----------|----------|---------|---------|----------|---------|------------|
| Story   | Column | nique Nan   | output Cas | Case Type | Station | Р        | V2       | V3       | ı       | M2      | M3       | Element | lem Statio |
|         |        |             |            |           | m       | kN       | kN       | kN       | kN-m    | kN-m    | kN-m     |         | m          |
| Story2  | C44    | 347         | ELS        | Combinati | 0       | 717.8294 | -17.0754 | -0.5079  | -0.004  | -0.9963 | -28.7946 | 347     | 0          |
| Story4  | C11    | 391         | ELS        | Combinati | 0       | 657.0422 | -15.655  | -6.2541  | 0.0032  | -9.8265 | -24.0138 | 391     | 0          |
| Story7  | C11    | 434         | ELS        | Combinati | 0       | 372.2103 | -18.4458 | -6.2228  | 0.0034  | -9.7056 | -28.5015 | 434     | 0          |
| Story10 | C14    | 551         | ELS        | Combinati | 2.73    | 87.9405  | 25.3353  | -14.9265 | -0.0385 | 17.5402 | -33.3571 | 551     | 2.73       |

#### V.2.6 Vérification de L'effort Tranchant :

#### a. Vérification de la contrainte de cisaillement :

Le calcul de la contrainte de cisaillement se fait au niveau de l'axe neutre. La contrainte de cisaillement est exprimée en fonction de l'effort tranchant à l'état limite ultime par :

Il faut vérifier que : 
$$\tau_u = \frac{T_u}{hd} \le \overline{\tau}_u$$

 $\tau_u$  : contrainte de cisaillement

Tu: effort tranchant à l'état limite ultime de la section étudiée

b: la largeur de la section étudiée

d: la hauteur utile

La contrainte de cisaillement est limitée par une contrainte admissible  $\overline{\tau_u}$  égale à :

## **Selon le BAEL 91 : [1]**

 $\overline{\tau}_u = Min \ (0.13 f_{c28}, 5MPa) \dots$  Fissuration peu nuisible.

 $\bar{\tau}_u = Min \ (0.10 f_{c28}, 4MPa)...$  Fissuration préjudiciable et très préjudiciable.

# Selon RPA99 ver.2003 :[2]

$$\overline{\tau}_u = \rho_d f_{c28}$$

$$\rho_d = 0,075......si l'élancement \lambda \ge 5$$

$$\rho_d = 0,040.....si l'élancement \lambda < 5$$

#### Avec:

λ: L'élancement du poteau  $\left(\lambda = \frac{L_f \times \sqrt{12}}{a}\right)$ 

i: Rayon de giration.

I : Moment d'inertie de la section du poteau dans la direction considérée.

B: Section du poteau.

L<sub>f</sub>: Longueur de flambement.

Les résultats sont regroupés dans les tableaux suivants :

**Tableau V.15 :** Vérification de la contrainte de cisaillement pour les poteaux.

| Niveaux                                               | Sections           | Tu       | $	au_{\mathrm{u}}$ | λ     | $\rho_{d}$ | $\overline{\tau}_u^{RPA}$ | $	au_{u \; BAEL} \ (MPa)$ | Vérification |
|-------------------------------------------------------|--------------------|----------|--------------------|-------|------------|---------------------------|---------------------------|--------------|
|                                                       | (cm <sup>2</sup> ) | (kN)     | (MPa)              |       |            | (MPa)                     | (MI a)                    |              |
| RDC,1 <sup>er</sup>                                   | 55x55              | 128.6506 | 0.473              | 14.24 | 0,075      | 2.25                      | 3                         | OK           |
| 2 ème,3ème                                            | 55x55              | 164.2809 | 0.730              | 15.66 | 0.075      | 2.25                      | 3                         | OK           |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> ,6 <sup>ème</sup>  | 45x45              | 141.9539 | 0.779              | 17.41 | 0,075      | 2.25                      | 3                         | OK           |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , 9 <sup>ème</sup> | 40x40              | 98.2958  | 0.683              | 19.58 | 0,075      | 2.25                      | 3                         | OK           |
| 10 <sup>éme</sup>                                     | 40x40              | 122.1985 | 0.849              | 12.12 | 0,075      |                           |                           |              |

| TABLE: E | ement Ford | es - Columns |             |             |           |         |            |           |         |         |          |           |         |              |
|----------|------------|--------------|-------------|-------------|-----------|---------|------------|-----------|---------|---------|----------|-----------|---------|--------------|
| Story    | Column     | Unique Name  | Output Case | Case Type   | Step Type | Station | P          | V2        | V3      | T       | M2       | M3        | Element | Elem Station |
|          |            |              |             |             |           | m       | kN         | kN        | kN      | kN-m    | kN-m     | kN-m      |         | m            |
| Story2   | C25        | 321          | G+Q+Ex      | Combination | Min       | 0       | -1952.253  | -128.6506 | -3.9233 | -0.4213 | -5.549   | -218.6495 | 321     | 0            |
| Story4   | C25        | 372          | G+Q+Ex      | Combination | Min       | 0       | -1462.5179 | -164.2809 | -8.5595 | -0.4197 | -13.0456 | -261.9335 | 372     | 0            |
| Story7   | C24        | 439          | G+Q+Ex      | Combination | Min       | 0       | -834.7553  | -141.9539 | -0.6498 | -0.2949 | -1.173   | -223.1999 | 439     | 0            |
| Story8   | C24        | 277          | G+Q+Ex      | Combination | Min       | 0       | -634.0031  | -98.2958  | -0.5596 | -0.1792 | -0.9623  | -154.2128 | 277     | 0            |
| Story11  | C33        | 523          | 0.8G+Ex     | Combination | Min       | 0       | -117.3412  | -122.1985 | -7.4404 | -0.5956 | -10.3772 | -124.2551 | 523     | 0            |

# V.2.7 Ferraillage transversal des poteaux :

Les armatures transversales sont déterminées à partir des formules du **BAEL91 modifié 99** et celles du **RPA99 version 2003** ; elles sont données comme suit :

# • Selon BAEL91 modifié 99 :[1]

$$\begin{cases} S_{t} \leq Min(0.9d;40cm) \\ \varphi_{t} \leq Min\left(\frac{h}{35};\frac{b}{10};\varphi_{t}\right) \\ \frac{A_{t}f_{e}}{bS_{t}} \geq Max\left(\frac{\tau_{u}}{2};0.4MPa\right) \end{cases}$$

 $A_t$ : Section d'armatures transversales.

b: Largeur de la section droite.

h: Hauteur de la section droite.

S<sub>t</sub>: Espacement des armatures transversales.

 $\emptyset_t$ : Diamètre des armatures transversales.

Ø<sub>1</sub>: Diamètre des armatures longitudinales.

# • Selon le RPA99 version 2003 : [2]

$$\frac{A_t}{S_t} = \frac{\rho_a T_u}{h f_e}$$

Avec:

At: Section d'armatures transversales.

S<sub>t</sub>: Espacement des armatures transversales.

T<sub>u</sub>: Effort tranchant à l'ELU.

f<sub>e</sub>: Contrainte limite élastique de l'acier d'armatures transversales.

h: Hauteur totale de la section brute.

ρ<sub>a</sub>: Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

$$\rho_a$$
=2,5.....si  $\lambda_g \geq 5$ 

$$\rho_a = 3,75.....$$
si  $\lambda_g < 5$ 

λ<sub>g</sub>: Espacement géométrique.

• L'espacement des armatures transversales est déterminé comme suit :

$$S_t \le 10 cm$$
.....Zone nodale (zone III).

$$S_t \leq Min\left(\frac{b}{2}; \frac{h}{2}; 10\phi_l\right)$$
.....Zone courante (zone III).

Ø<sub>1</sub>: Diamètre minimal des armatures longitudinales du poteau.

• La quantité d'armatures transversales minimale  $\frac{A_t}{Sh}$  en (%) est donnée comme suite :

$$\begin{cases} 0,3\%.....si \, \lambda_{\rm g} \geq 5 \\ 0,8\%.....si \, \lambda_{\rm g} \leq 3 \\ \text{Interpolation entre les valeurs } \lim ites \, précédentes \, si \, 3 \leq \lambda_{\rm g} \leq 5 \end{cases}$$

 $\lambda_g$ : L'élancement géométrique du poteau  $\left(\lambda_g = \frac{L_f}{a}\right)$ 

a : Dimension de la section droite du poteau.

L<sub>f</sub>: Longueur du flambement du poteau.

Pour les armatures transversales f<sub>e</sub>=500 MPa.

> Le tableau suivant rassemble les résultats des espacements maximums des poteaux

Tableau V.16: Espacement maximales selon RPA99 des poteaux

|                        |                            |           |                     | S <sub>t</sub> (cm) |               |  |
|------------------------|----------------------------|-----------|---------------------|---------------------|---------------|--|
| Niveaux                | Section (cm <sup>2</sup> ) | Barres    | Ø <sub>l</sub> (mm) | Zone nodale         | Zone courante |  |
| RDC,1er                | 55x55                      | 4T20+8T16 | 16                  | 10                  | 15            |  |
| 2 ème,3ème             | 50x50                      | 12T16     | 16                  | 10                  | 15            |  |
| 4ème, 5ème, 6ème       | 45x45                      | 12T16     | 16                  | 10                  | 15            |  |
| 7ème ,8ème, 9ème,10éme | 40x40                      | 12T16     | 16                  | 10                  | 15            |  |

➤ Le choix des armatures transversales est regroupé dans le tableau suivant :

**Tableau V.17:** Choix des armatures transversales pour les poteaux.

|                                      | Section            | $L_{\rm f}$ | $\lambda_{ m g}$ | $\rho_a$ | $T_u^{\ max}$ |      | St   | $A_t^{cal}$        | $A_{\min}$         |       | $A_s^{adp}$        |
|--------------------------------------|--------------------|-------------|------------------|----------|---------------|------|------|--------------------|--------------------|-------|--------------------|
| Niveaux                              | (cm <sup>2</sup> ) | (m)         | (%)              |          | (kN)          | Zone | (cm) | (cm <sup>2</sup> ) | (cm <sup>2</sup> ) | choix | (cm <sup>2</sup> ) |
|                                      |                    |             |                  |          |               |      |      |                    |                    |       |                    |
| RDC,1 <sup>èr</sup>                  | 55x55              | 2.261       | 4.11             | 3.75     | 128.6506      | N    | 10   | 0.427              | 2.87               | 4T10  | 3.14               |
|                                      |                    |             |                  |          |               | С    | 15   | 0.641              | 4.305              | 6T10  | 4.71               |
| 2 ème,3ème                           | 50x50              | 2.261       | 4.522            | 3.75     | 164.2809      | Ν    | 10   | 0.545              | 2.1                | 4T10  | 3.14               |
|                                      |                    |             |                  |          |               | С    | 15   | 0.818              | 3.15               | 6T10  | 4.71               |
| 4 <sup>ème</sup> ,5 <sup>ème</sup> , | 45x45              | 2.261       | 5.024            | 2.5      | 141.9539      | Ν    | 10   | 0.314              | 1.35               | 4T8   | 2.01               |
| 6 <sup>ème</sup>                     |                    |             |                  |          |               | С    | 15   | 0.471              | 2.03               | 4T10  | 3.14               |
| 7 <sup>ème</sup> ,8 <sup>ème</sup> , | 40x40              | 2.261       | 5.653            | 2.5      | 98.2958       | Z    | 10   | 0.217              | 1.2                | 4T8   | 2.01               |
| 9 <sup>ème</sup>                     |                    |             |                  |          |               | С    | 15   | 0.326              | 1.8                | 4T8   | 2.01               |
| 10 <sup>ème</sup>                    | 40x40              | 1.4         | 3.5              | 3.75     | 122.1985      | N    | 10   | 0.655              | 2.7                | 4T10  | 3.14               |
|                                      |                    |             |                  |          |               | С    | 15   | 0.983              | 4.05               | 6T10  | 4.71               |

# V.2.8 Longueur de recouvrement :

La longueur minimale de recouvrement est de : L<sub>r</sub>=50Ø<sub>1</sub> en zone III.

Pour:

- Ø=20mm.....L<sub>r</sub>=100cm
- Ø=16mm.....L<sub>r</sub>=80cm

## V.2.9. Ferraillage des Poteaux du Sous-sol

Les poteaux du sous-sol sont calculés à la compression simple, le ferraillage est donné par :

$$A_s \ge \left(\frac{N_u}{\alpha} - \frac{B_r}{0.9} \frac{f_{c28}}{\gamma_b}\right) \frac{\gamma_s}{f_e}$$

 $B_{\rm r}\colon Section$  réduite du poteau considéré (  $B_{\rm r}\!=\!(a\text{-}2)(b\text{-}2))$   $cm^2$ 

α : Coefficient dépendant de l'élancement.

$$\alpha = \begin{cases} \frac{0.85}{1 + 2\left(\frac{\lambda}{35}\right)^2} & si \lambda \le 50\\ \frac{0.6(50)^2}{\lambda} & si > 50 < \lambda < 70 \end{cases}$$

$$\lambda = rac{L_f}{i}$$
 ......poteau carrée  $oldsymbol{\mathrm{L_f}}$ : Longueur de flambement.

$$\mathbf{i}$$
: Rayon de giration  $\left(i = \sqrt{\frac{I}{B}}\right)$ .

I : Moment d'inertie de la section du poteau dans la direction considérée.

$$B_r = (a-0.02)^2 [m^2].$$
 Poteau carré

 $N_u$ : L'effort normal maximal au niveau des poteaux du sous-sol.

La longueur de flambement  $L_f = 0.7l_0$ .

## a. Calcul de l'effort normal pondéré

Prenons le poteau le plus sollicité dont l'effort normal est de:

| TABLE: E  | lement For  | ces - Columns |             |             |         |           |         |         |             |         |         |         |              |
|-----------|-------------|---------------|-------------|-------------|---------|-----------|---------|---------|-------------|---------|---------|---------|--------------|
| Story     | Column      | Unique Name   | Output Case | Case Type   | Station | Р         | V2      | V3      | T           | M2      | M3      | Element | Elem Station |
|           |             |               |             |             | m       | kN        | kN      | kN      | kN-m        | kN-m    | kN-m    |         | m            |
| Structure | e inferieur |               |             |             |         |           |         |         |             |         |         |         |              |
| Story1    | C5          | 6             | G           | LinStatic   | 0       | 272,9128  | 6,3517  | -0,2595 | -0,00003612 | -0,2222 | 5,5038  | 6       | 0            |
| Story1    | C5          | 6             | Q           | LinStatic   | 0       | 70,7556   | 2,1698  | -0,0953 | -0,0000119  | -0,0807 | 1,8797  | 6       | 0            |
| Story1    | C5          | 6             | ELU         | Combination | 0       | 379,0462  | 9,6064  | -0,4025 | -0,0001     | -0,3433 | 8,3234  | 6       | 0            |
| Structure | superier    |               |             |             |         |           |         |         |             |         |         |         |              |
| Story1    | C5          | 6             | G           | LinStatic   | 0       | 1333,8731 | -4,1424 | -0,3727 | -0,0054     | -0,7682 | -3,666  | 6       | 0            |
| Story1    | C5          | 6             | Q           | LinStatic   | 0       | 430,2146  | 1,4882  | -0,165  | -0,0022     | -0,3173 | 1,8168  | 6       | 0            |
| Story1    | C5          | 6             | ELU         | Combination | 0       | 1979,195  | -1,9101 | -0,6202 | -0,0086     | -1,2442 | -0,9408 | 6       | 0            |

Donc l'effort normal total revenant aux poteaux de sous-sol :  $N_{u \text{ (ss)}} = N_{s \text{ inf}} + N_{s \text{ sup}} = 2358,2412KN$ 

## b. Calcul du ferraillage:

Le sous-sol est de section carré B= 55x55cm<sup>2</sup>

$$\bullet \quad i = \frac{a}{\sqrt{12}} = 15,88cm$$

• 
$$\lambda = \frac{0.7 \times 3,78 \times 10^2}{15.88} = 16,66 < 50$$

• 
$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} = 0.81$$

• 
$$Br = (55-2)^2 = 2809.cm^2$$

D'où:

$$A_s \ge \left(\frac{2358,2412 \times 10^3}{0,81} - \frac{2809 \times 10^2}{0,9} \times \frac{25}{1,5}\right) \frac{1,15}{500} = -52,68cm^2 \Rightarrow A_s < 0$$

Le ferraillage se fait par rapport  $A_s^{min} = 0.9\% B$  selon RPA99 version 2003

$$A_s = A_s^{min} = 27.3 \text{ cm}^2$$

# V.2.10 Schéma de ferraillage des poteaux :

Tableau V.18 : Schéma de ferraillage des poteaux.

|                                                        | $\mathbf{A} \times \mathbf{B} = 55 \times 55$ |                                                               | $\mathbf{A} \times \mathbf{B} = 50 \times 50$ |
|--------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|
| Sous-sol<br>RDC<br>et 1 <sup>er</sup>                  | 2HA20<br>2cadsT10<br>2HA16                    | 3éme ;<br>2éme                                                | 2cadsT10 50 cm                                |
|                                                        | $\mathbf{A} \times \mathbf{B} = 45 \times 45$ |                                                               | $\mathbf{A} \times \mathbf{B} = 40 \times 40$ |
| 4 <sup>éme</sup> ;5 <sup>éme</sup> et 6 <sup>ème</sup> | 45 cm<br>4HA16<br>2cadsT10<br>45 cm           | 9éme<br>et<br>10 <sup>ème</sup><br>7 <sup>éme</sup> ;<br>8éme | 40 cm  4HA16  40 cm                           |

## V.3. Ferraillage des poutres :

## **V.3.1 Introduction:**

Les poutres sont des éléments structuraux horizontaux qui permettent de transférer les charges aux poteaux, elles sont sollicitées par des moments de flexion et des efforts tranchants. On fait le calcul pour les situations suivantes :

## a. Selon CBA 93 : [3]

Situation durable:

**ELU:** 1.35 G + 1.5 Q

**ELS:** G + Q

## b. Selon RPA 99: [2]

Situation accidentelle

 $0.8 \, \text{G} + \text{E}$ 

 $G + Q \pm E$ 

#### V.3.2 Recommandations selon RPA99 version 2003:

- 1- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.
- 2- Le pourcentage total maximum des aciers longitudinaux est de :
  - 4% en zone courante.
  - 6% en zone de recouvrement.
- 3- La longueur minimale de recouvrement est de 50Ø en zone III.
- 4- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.

Les armatures longitudinales sont déterminées en tenant compte des deux situations suivantes:

#### • Situation durable:

Béton:  $\gamma_b = 1.5$ ;  $f_{c28} = 25 \text{MPa}$ ;  $\sigma_{bc} = 15 \text{ MPa}$ . Acier:  $\gamma_s = 1.15$ ; FeE 500;  $\sigma_s = 435 \text{ MPa}$ .

## • Situation accidentelle:

Béton:  $\gamma_b = 1.15$ ;  $f_{c28}=25$  MPa;  $\sigma_{bc} = 15$  MPa.

Acier:  $\gamma_s = 1$ ; FeE 500;  $\sigma_s = 500$  MPa.

## V.3.3 Calcul de ferraillage :

Pour le cas de notre structure, les efforts sont déterminés par logiciel ETABS.

Ont disposé 2 types de poutres :

- Poutres principales 30x50(cm<sup>2</sup>)
- Poutres secondaires 30x40(cm<sup>2</sup>)

Les tableaux suivants regroupent tous les résultats des efforts ainsi que les sections d'armatures calculées par le logiciel (Expert) pour chaque type de poutres sous les différentes combinaisons de charge.

## 1. Sens porteur:

a-Situation durable: 1.35G+1.5Q

**Tableau V.19 :** Ferraillage des poutres porteuses 30x50.

| Section (cm <sup>2</sup> ) | Position | M <sub>max</sub> (KN.m) | M <sub>min</sub><br>(KN.m) | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------------------------|----------|-------------------------|----------------------------|--------------------------|--------------|
| 30x50                      | Travée   | 54.1244                 | /                          | 2.86                     | /            |
| 30x50                      | Appui    | /                       | -103.1474                  | /                        | 5.64         |

| TABLE: Element Forces - Beams |      |             |             |             |         |    |           |    |         |      |           |         |              |
|-------------------------------|------|-------------|-------------|-------------|---------|----|-----------|----|---------|------|-----------|---------|--------------|
| Story                         | Beam | Unique Name | Output Case | Case Type   | Station | Р  | V2        | V3 | Т       | M2   | M3        | Element | Elem Station |
|                               |      |             |             |             | m       | kN | kN        | kN | kN-m    | kN-m | kN-m      |         | m            |
| Story1                        | B74  | 1825        | ELU         | Combination | 2.3325  | 0  | -8.9435   | 0  | 0.0718  | 0    | 54.1244   | 1825-2  | 2.3125       |
| Story1                        | B50  | 1517        | ELU         | Combination | 2.7028  | 0  | 10.4594   | 0  | -0.0574 | 0    | 53.4642   | 1517    | 2.7028       |
| :                             | :    | :           | :           | :           | :       | :  | :         | :  | :       | :    | :         | :       | :            |
| Story1                        | B74  | 1825        | ELU         | Combination | 0.02    | 0  | 59.6317   | 0  | 20.0619 | 0    | -78.403   | 1825-1  | 0.02         |
| Story1                        | B74  | 1825        | ELU         | Combination | 0.02    | 0  | -127.0753 | 0  | 0.0718  | 0    | -103.1474 | 1825-2  | 0            |

**b-**Situation accidentelle : G+Q+E

**Tableau V.20:** Ferraillage des poutres porteuses 30x50.

| Section  | Position | $M_{max}$ (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                  | (KN.m)     |                          |              |
| 30x50    | Travée   | 89.7126          | -73.287    | 4.14                     | 3.37         |
| 30x50    | Appui    | 142.7684         | -198.2181  | 6.83                     | 9.8          |

| Story  | Beam | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2        | V3 | T       | M2   | M3        | Element | Elem Station |
|--------|------|-------------|-------------|-------------|-----------|---------|----|-----------|----|---------|------|-----------|---------|--------------|
|        |      |             |             |             |           | m       | kN | kN        | kN | kN-m    | kN-m | kN-m      |         | m            |
| Story6 | B58  | 1601        | G+Q+Ex      | Combination | Max       | 0.225   | 0  | 38.8664   | 0  | 0.1703  | 0    | 142.7684  | 1601    | 0.225        |
| Story6 | B68  | 1711        | G+Q+Ex      | Combination | Min       | 0.225   | 0  | -144.0251 | 0  | -0.4516 | 0    | -198.2181 | 1711    | 0.225        |
| :      | :    | :           | :           | :           | :         | :       | :  | :         | :  | :       | :    | :         | :       | :            |
| Story6 | B58  | 1601        | G+Q+Ex      | Combination | Max       | 1.2164  | 0  | 68.1632   | 0  | 0.1703  | 0    | 89.7126   | 1601    | 1.2164       |
| Story5 | B49  | 1459        | G+Q+Ex      | Combination | Min       | 1.2136  | 0  | -102.3858 | 0  | -0.3076 | 0    | -73.287   | 1459    | 1.2136       |

**c-**Situation accidentelle : 0.8G +E

**Tableau V.21 :** Ferraillage des poutres porteuses 30x50.

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)     |                          |              |
| 30x50    | Travée   | 83.1004                 | -72.6564   | 3.85                     | 3.34         |
|          |          |                         |            |                          |              |
| 30x50    | Appui    | 147.249                 | -180.573   | 7.06                     | 8.83         |

| TABLE: E | ement Ford | ces - Beams |             |             |           |         |    |           |    |         |      |          |         |              |
|----------|------------|-------------|-------------|-------------|-----------|---------|----|-----------|----|---------|------|----------|---------|--------------|
| Story    | Beam       | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2        | V3 | T       | M2   | M3       | Element | Elem Station |
|          |            |             |             |             |           | m       | kN | kN        | kN | kN-m    | kN-m | kN-m     |         | m            |
| Story6   | B58        | 1601        | 0.8G+Ex     | Combination | Max       | 0.225   | 0  | 55.2156   | 0  | 0.1477  | 0    | 147.249  | 1601    | 0.225        |
| Story5   | B68        | 1712        | 0.8G+Ex     | Combination | Min       | 0.225   | 0  | -120.7562 | 0  | -0.4106 | 0    | -180.573 | 1712    | 0.225        |
| :        | :          | :           | :           | :           | :         | :       | :  | :         | :  | :       | :    | :        | :       | :            |
| Story6   | B58        | 1601        | 0.8G+Ex     | Combination | Max       | 1.2164  | 0  | 74.1915   | 0  | 0.1477  | 0    | 83.1004  | 1601    | 1.2164       |
| Story5   | B49        | 1459        | 0.8G+Ex     | Combination | Min       | 1.2136  | 0  | -95.3507  | 0  | -0.3289 | 0    | -72.6564 | 1459    | 1.2136       |

## 2. Sens non porteur:

**a.** Situation durable: 1.35G+1.5Q

**Tableau V.22 :** Ferraillage des poutres non porteuses 30x40.

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)     |                          |              |
| 30x40    | Travée   | 14.6783                 | -10.1303   | 0.95                     | 0.65         |
| 30x40    | Appui    | 30.5841                 | 36.1624    | 2.01                     | 2.39         |

| TABLE: E | lement For | ces - Beams |             |             |         |    |          |    |         |      |          |         |              |
|----------|------------|-------------|-------------|-------------|---------|----|----------|----|---------|------|----------|---------|--------------|
| Story    | Beam       | Unique Name | Output Case | Case Type   | Station | Р  | V2       | V3 | T       | M2   | М3       | Element | Elem Station |
|          |            |             |             |             | m       | kN | kN       | kN | kN-m    | kN-m | kN-m     |         | m            |
| Story9   | B20        | 1961        | ELU         | Combination | 3.35    | 0  | -16.3231 | 0  | -0.3154 | 0    | 30.5841  | 1961    | 3.35         |
| Story9   | B20        | 1961        | ELU         | Combination | 2.45    | 0  | -19.0231 | 0  | -0.3154 | 0    | 14.6783  | 1961    | 2.45         |
| :        | :          | :           | :           | :           | :       | :  | :        | :  | :       | :    | :        | :       | :            |
| Story10  | B23        | 2191        | ELU         | Combination | 2.5214  | 0  | 16.4601  | 0  | 0.1921  | 0    | -10.1303 | 2191    | 2.5214       |
| Story10  | B20        | 1960        | ELU         | Combination | 0.2     | 0  | -25.0386 | 0  | -0.1826 | 0    | -36.1624 | 1960    | 0.2          |

**b.** Situation accidentelle : G+Q+E

**Tableau V.23 :** Ferraillage des poutres non porteuses 30x40.

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|-----------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)    |                          |              |
| 30x40    | Travée   | 79.8098                 | -80.8123  | 4.72                     | 4.78         |
|          |          |                         |           |                          |              |
| 30x40    | Appui    | 184.0747                | -207.6952 | 12.12                    | 14.1         |
|          |          |                         |           |                          |              |
|          |          |                         |           |                          |              |

| TABLE: E | lement Ford | ces - Beams |             |             |           |         |    |          |    |        |      |           |         |              |
|----------|-------------|-------------|-------------|-------------|-----------|---------|----|----------|----|--------|------|-----------|---------|--------------|
| Story    | Beam        | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2       | V3 | T      | M2   | M3        | Element | Elem Station |
|          |             |             |             |             |           | m       | kN | kN       | kN | kN-m   | kN-m | kN-m      |         | m            |
| Story6   | B11         | 1942        | G+Q+Ey      | Combination | Max       | 0.225   | 0  | 121.7274 | 0  | 0.2411 | 0    | 184.0747  | 1942    | 0.225        |
| Story6   | B11         | 1942        | G+Q+Ey      | Combination | Min       | 3.325   | 0  | -104.006 | 0  | -1.099 | 0    | -207.6952 | 1942    | 3.325        |
| :        | :           | :           | :           | :           | :         | :       | :  | :        | :  | :      | :    | :         | :       | :            |
| Story7   | B11         | 1941        | G+Q+Ey      | Combination | Max       | 2.4393  | 0  | 122.967  | 0  | 0.1011 | 0    | 79.8098   | 1941    | 2.4393       |
| Story9   | B8          | 2214        | G+Q+Ey      | Combination | Min       | 1.1286  | 0  | -90.4727 | 0  | 0.2322 | 0    | -80.8123  | 2214    | 1.1286       |

**c.** Situation accidentelle : 0.8G +E

**Tableau V.24 :** Ferraillage des poutres non porteuses 30x40.

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)     |                          |              |
| 30x40    | Travée   | 81.5768                 | -82.3917   | 4.83                     | 4.88         |
| 30x40    | Appui    | 180.3981                | -203.0223  | 11.82                    | 13.7         |

| TABLE: E | lement Ford | ces - Beams |             |             |           |         |    |           |    |         |      |           |         |              |
|----------|-------------|-------------|-------------|-------------|-----------|---------|----|-----------|----|---------|------|-----------|---------|--------------|
| Story    | Beam        | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2        | V3 | T       | M2   | М3        | Element | Elem Station |
|          |             |             |             |             |           | m       | kN | kN        | kN | kN-m    | kN-m | kN-m      |         | m            |
| Story6   | B11         | 1942        | 0.8G+Ey     | Combination | Max       | 0.225   | 0  | 119.964   | 0  | 0.3635  | 0    | 180.3981  | 1942    | 0.225        |
| Story6   | B11         | 1942        | 0.8G+Ey     | Combination | Min       | 3.325   | 0  | -107.6293 | 0  | -0.9766 | 0    | -203.0223 | 1942    | 3.325        |
| :        | :           | :           | :           | :           | :         | :       | :  | :         | :  | :       | :    | :         | :       | :            |
| Story6   | B8          | 2217        | 0.8G+Ey     | Combination | Max       | 1.1393  | 0  | 103.2084  | 0  | 0.9571  | 0    | 81.5768   | 2217    | 1.1393       |
| Story4   | B11         | 1944        | 0.8G+Ey     | Combination | Min       | 2.4286  | 0  | -106.3127 | 0  | -0.9475 | 0    | -82.3917  | 1944    | 2.4286       |

## V.3.3.1.Choix des armatures :

> Le ferraillage final adopté est donné par le tableau suivant :

**Tableau V.25:** Choix des armatures pour les poutres porteuses 30x50.

| Section | Position | $\begin{array}{c} A_{s \; max} \\ z.c \\ (cm^2) \end{array}$ | $\begin{array}{c} A_{s \; max} \\ z.r \\ (cm^2) \end{array}$ | A <sub>s</sub> <sup>min</sup> (cm <sup>2</sup> ) | A <sub>s</sub> <sup>cal</sup> (cm | A <sub>s</sub> 'cal (cm <sup>2</sup> ) | Choix<br>As | Choix<br>As' | $\begin{array}{c} A_{s\;max}{}^{adp} \\ (cm^2) \end{array}$ | $A_s$ , adp (cm <sup>2</sup> ) |
|---------|----------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------------|-------------|--------------|-------------------------------------------------------------|--------------------------------|
| 30x50   | Travée   | 60                                                           | 90                                                           | 7.5                                              | 4.14                              | 3.37                                   | 3T16        | 3T16         | 6.03                                                        | 6.03                           |
| 30x50   | Appui    | 60                                                           | 90                                                           | 7.5                                              | 7.06                              | 9.8                                    | 3T16+1T14   | 3T16+3T14    | 7.57                                                        | 10.65                          |

**Tableau V.26:** Choix des armatures pour les poutres non porteuses 30x40.

| Section | Position | $A_{\text{s max}}$ z.c $(\text{cm}^2)$ | $A_{\text{s max}}$ z.r (cm <sup>2</sup> ) | $A_s^{min}$ (cm <sup>2</sup> ) | $A_s^{cal}(c m^2)$ | A <sub>s</sub> 'cal<br>(cm <sup>2</sup> ) | Choix<br>As | Choix<br>As' | $A_{s max}^{adp}$ $(cm^2)$ | $A_{s min}^{adp}$ (cm <sup>2</sup> ) |
|---------|----------|----------------------------------------|-------------------------------------------|--------------------------------|--------------------|-------------------------------------------|-------------|--------------|----------------------------|--------------------------------------|
| 30x40   | Travée   | 48                                     | 72                                        | 6                              | 4.83               | 4.88                                      | 3T20        | 3T16         | 9.42                       | 6.03                                 |
| 30x40   | Appui    | 48                                     | 72                                        | 6                              | 12.12              | 14.1                                      | 6T16        | 3T20+3T16    | 12.06                      | 15.45                                |

### V.3.4-Condition de non fragilité :

$$A_s \ge A_s^{\min} = 0,23bd \frac{f_{t28}}{f_e}$$

Avec:

 $f_{t28} = 2.1MPa$ ;  $f_e = 500Mpa$ 

Tableau V.27: Vérification de la condition de non fragilité.

| Section (cm <sup>2</sup> ) | $A_{s(\min)}^{choisi}(\mathbf{cm}^2)$ | $A_s^{\min}(\mathbf{cm}^2)$ | Vérification |
|----------------------------|---------------------------------------|-----------------------------|--------------|
| 30x50                      | 6.03                                  | 1,30                        | Vérifiée     |
| 30x40                      | 6.03                                  | 1,04                        | Vérifiée     |

#### V.3.5. Vérification vis à vis de l'ELS:

Les contraintes sont calculées à l'état limite de service sous  $(M_{\text{ser}}, N_{\text{ser}})$ , puis elles sont comparées aux contraintes admissibles données par :

• Béton.

$$\sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

• Acier.

Fissuration préjudiciable : 
$$\overline{\sigma}_s = Min(\frac{2}{3}fe; \max(0.5fe; 110 \times \sqrt{\eta.f_{ij}}))$$

Où :  $\eta = 1,60$  pour les aciers à HA.

Dans notre projet la fissuration est considérée préjudiciable.

On doit vérifier que :

On doit vérifier que : 
$$\begin{cases} \sigma_b = \frac{M_{ser}}{I} y < \overline{\sigma}_b = 15MPa \\ \sigma_s = 15\frac{M_{ser}}{I} (d - y) \le \overline{\sigma}_s = 250MPa \end{cases}$$

Tableau V.28: Vérification des poutres (30X50) à l'ELS.

| Position | M <sub>ser</sub> (KN.m) | σ <sub>bc</sub> (MPa) | $\overline{\sigma}_{\!\scriptscriptstyle bc}$ (MPa) | σ <sub>s</sub> (MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|----------|-------------------------|-----------------------|-----------------------------------------------------|----------------------|-----------------------------|--------------|
| Travée   | 44.3216                 | 3.93                  | 15                                                  | 47                   | 250                         | vérifier     |
| Appui    | -84.5192                | 5.97                  | 15                                                  | 57.2                 | 250                         | vérifier     |

| Story  | Beam | Unique Name | <b>Output Case</b> | Case Type   | Station | P  | V2        | V3 | T       | M2   | М3       | Element | Elem Station |
|--------|------|-------------|--------------------|-------------|---------|----|-----------|----|---------|------|----------|---------|--------------|
|        |      |             |                    |             | m       | kN | kN        | kN | kN-m    | kN-m | kN-m     |         | m            |
| Story1 | B74  | 1825        | ELS                | Combination | 2.3325  | 0  | -7.2721   | 0  | 0.0669  | 0    | 44.3216  | 1825-2  | 2.3125       |
| Story1 | B50  | 1517        | ELS                | Combination | 2.7028  | 0  | 8.649     | 0  | -0.0541 | 0    | 43.7605  | 1517    | 2.7028       |
| :      | :    | :           | :                  | :           | :       | :  | :         | :  | :       | :    | :        | :       | :            |
| Story9 | B73  | 1807        | ELS                | Combination | 3.78    | 0  | 71.1543   | 0  | -0.5521 | 0    | -65.438  | 1807    | 3.78         |
| Story1 | B74  | 1825        | ELS                | Combination | 0.02    | 0  | -104.1577 | 0  | 0.0669  | 0    | -84.5192 | 1825-2  | (            |

Tableau V.29: Vérification des poutres (30X40) à l'ELS.

| Position | M <sub>ser</sub> (KN.m) | σ <sub>bc</sub> (MPa) | $oldsymbol{ar{\sigma}_{\!\scriptscriptstyle bc}}$ (MPa) | σ <sub>s</sub> (MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|----------|-------------------------|-----------------------|---------------------------------------------------------|----------------------|-----------------------------|--------------|
| Travée   | 27.9634                 | 3.1                   | 15                                                      | 37.6                 | 250                         | vérifier     |
| Appui    | -33.3358                | 2.7                   | 15                                                      | 33.5                 | 250                         | vérifier     |

| Story   | Beam | Unique Name | Output Case | Case Type   | Station | Р  | V2       | V3 | Т       | M2   | M3       | Element | Elem Station |
|---------|------|-------------|-------------|-------------|---------|----|----------|----|---------|------|----------|---------|--------------|
|         |      |             | ·           |             | m       | kN | kN       | kN | kN-m    | kN-m | kN-m     |         | m            |
| Story9  | B20  | 1961        | ELS         | Combination | 3.35    | 0  | -14.5884 | 0  | -0.2855 | 0    | 27.9634  | 1961    | 3.35         |
| Story8  | B20  | 1962        | ELS         | Combination | 3.35    | 0  | -13.183  | 0  | -0.2411 | 0    | 25.6291  | 1962    | 3.35         |
| :       | :    | :           | :           | :           | :       | :  | :        | :  | :       | :    | :        | :       | :            |
| Story9  | B20  | 1961        | ELS         | Combination | 0.2     | 0  | -24.0384 | 0  | -0.2855 | 0    | -32.874  | 1961    | 0.2          |
| Story10 | B20  | 1960        | ELS         | Combination | 0.2     | 0  | -23.4051 | 0  | -0.1542 | 0    | -33.3358 | 1960    | 0.2          |

### a. Vérification de la contrainte de cisaillement :

Il faut vérifier que : 
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$

Avec:

T<sub>u</sub>: l'effort tranchant maximum.

b: Largeur de la section de la poutre.

d: Hauteur utile.

 $\overline{\tau}_u$ =Min (0,10 f<sub>c28</sub> ;4 MPA) = 2.5MPA. (Fissuration préjudiciable). **Selon le BAEL91** modifié 99

Tableau V.30: Vérification de la contrainte de cisaillement

| Section | T <sub>u</sub> <sup>max</sup> (KN) | $\tau_u$ (MPa) | τ̄ <sub>u</sub> (MPa) | Vérifier |
|---------|------------------------------------|----------------|-----------------------|----------|
| 30x50   | 240.5815                           | 1.69           | 2.5                   | Vérifier |
| 30x40   | 131.0274                           | 1.03           | 2.5                   | Vérifier |

| TABLE: E  | lement For | ces - Beams |             |             |           |         |    |          |    |        |      |          |         |              |
|-----------|------------|-------------|-------------|-------------|-----------|---------|----|----------|----|--------|------|----------|---------|--------------|
| Story     | Beam       | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2       | V3 | Т      | M2   | М3       | Element | Elem Station |
|           |            |             |             |             |           | m       | kN | kN       | kN | kN-m   | kN-m | kN-m     |         | m            |
| Poutre pr | encipale   |             |             |             |           |         |    |          |    |        |      |          |         |              |
| Story2    | B74        | 1815        | 0.8G+Ex     | Combination | Min       | 0.02    | 0  | 240.5815 | 0  | 3.6661 | 0    | -55.4261 | 1815-1  | 0.02         |
| Poutre se | condaire   |             |             |             |           |         |    |          |    |        |      |          |         |              |
| Story6    | B11        | 1942        | G+Q+Ey      | Combination | Max       | 3.325   | 0  | 131.0274 | 0  | 0.2411 | 0    | 175.5745 | 1942    | 3.325        |

#### V.3.6-Calcul des armatures transversales :

L'acier choisi pour les armatures transversales est de type haute adhérence et nuance FeE500 (f<sub>e</sub>=500MPa).

$$\frac{A_{t}f_{e}}{bS_{t}} \ge Max \left(\frac{\tau_{u}}{2}; 0,4MPa\right)$$

$$\Leftrightarrow \text{ Selon le RPA 99 version 2003 : } \rightarrow \begin{cases} A_{t} = 0,003S_{t}b \\ S_{t} \le Min \left(\frac{h}{4}; 12\phi_{1}\right)......Zone \text{ nodale} \end{cases}$$

$$S_{t} \le \frac{h}{2}......Zone \text{ courante}$$

Avec : 
$$\phi_t \leq Min\left(\frac{h}{35};\phi_t;\frac{b}{10}\right) = 1.2$$
cm.

Les résultats de calcul sont résumés dans le tableau suivant :

**Tableau V.31:** calcul des armatures transversales.

| Section            | $T_u(kN)$  | τ <sub>u</sub> (MPa) | BAEL91              | RP.                   | A99                   | $S_t^{adp}$ | (cm) | $A_{t}$            | Choix | $A_t^{adop}$ |
|--------------------|------------|----------------------|---------------------|-----------------------|-----------------------|-------------|------|--------------------|-------|--------------|
| (cm <sup>2</sup> ) | 2 u(342 V) | vu(1/22 w)           | S <sub>t</sub> (cm) | S <sub>t</sub> (cm)ZN | S <sub>t</sub> (cm)ZC | ZN          | ZC   | (cm <sup>2</sup> ) |       |              |
| 30x50              | 240.5815   | 1.69                 | 40                  | 12.5                  | 25                    | 12.5        | 25   | 2,25               | 4T10  | 3,14         |
| 30x40              | 131.0274   | 1.03                 | 33.75               | 10                    | 20                    | 10          | 20   | 1,8                | 4T8   | 2.01         |

## V.3.7.Recouvrement des armatures longitudinales :

 $L_r = 50\%$  (zone III).  $L_r$ : Longueur de recouvrement.

On a:

a. 
$$\emptyset$$
=16mm....L<sub>r</sub>=80cm

b. 
$$\emptyset = 14$$
mm.....L<sub>r</sub>=70cm

### V.3.8.Arrêt des barres :

Armatures inférieures :  $h \le \frac{L}{10}$ 

$$\frac{L^{MAX}}{4}$$
 Appuis en travée de rive.

Armatures supérieures : h'  $\geq$ 

 $\frac{L^{MAX}}{5}$  Appuis en travée intermédiaire.

Avec : L=Max (L gauche ; L droite)

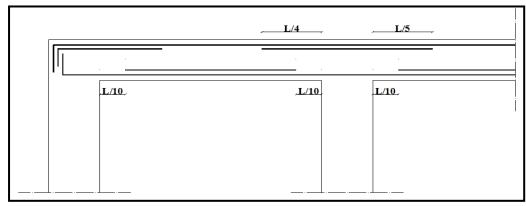



Figure V.1 : Arrêt des barres.

# V.3.9. Vérification de la flèche :

Flèche totale :  $\Delta f_T = f_v - f_i \le \bar{f}$  .

Tel que:

$$\bar{f}_1 = \frac{L}{500} = 0.94cm$$
 (L = 4,7\langle 5m)

$$\bar{f}_2 = \bar{f}_1 = \frac{L}{500} = 0.7cm$$
 (L = 3.5\(5m)

f<sub>i</sub>: La flèche due aux charges instantanées.

f<sub>v</sub>: La flèche due aux charges de longues durée.

• Calcul de la flèche due aux déformations différées :

$$f_{v} = \frac{M_{ser}l^2}{10E_{v}I_{fv}}$$

• Calcul de la flèche due aux déformations instantanées :  $f_i = \frac{M_{ser}l^2}{10E_iI_{fi}}$ 

Les résultats sont récapitulés dans ce tableau :

• Moment d'inertie de la section homogène  $I_0$ :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A_s' \left(\frac{h}{2} - d'\right)^2$$

$$\begin{cases} I_{fi} = \frac{1{,}1I_0}{1 + \lambda_t \mu} \\ I_{fv} = \frac{I_0}{1 + \lambda_v \mu} \end{cases}$$
 Moment d'inertie fictive.

Avec:

$$\begin{cases} \lambda_{i} = \frac{0,05f_{t28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \\ \lambda_{v} = \frac{0,02f_{t28}}{\delta\left(2 + \frac{3b_{0}}{b}\right)} \end{cases} ; \begin{cases} \delta = \frac{A_{s}}{b_{0}d} \\ \mu = 1 - \frac{1,75f_{t28}}{4\delta\sigma_{s} + f_{t28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

Tableau V.32: Tableau récapitulatif du calcul de la flèche.

| Section (cm <sup>2</sup> ) | Longueur<br>(m) | M <sub>ser</sub><br>KNm | A <sub>s</sub> <sup>adp</sup> (cm <sup>2</sup> ) | I <sub>0</sub> (cm <sup>4</sup> ) | Fi<br>(cm) | Fv(cm) | Δft(cm) | $\bar{f}$ (cm) |
|----------------------------|-----------------|-------------------------|--------------------------------------------------|-----------------------------------|------------|--------|---------|----------------|
| 30x50                      | 4.7             | 44.3216                 | 6.03                                             | 404080.625                        | 0.2066     | 0.2671 | 0.1728  | 0.94           |
| 30x40                      | 3.5             | 27.9634                 | 6.03                                             | 215400.625                        | 0.1472     | 0.1779 | 0.1106  | 0.7            |

➤ Poutre principale 30x45 (Pour les bouts de voile) :

**a-**Situation durable: 1.35G+1.5Q

**Tableau V.33:** Ferraillage des poutres porteuses 30x50(Pour les bouts de voile).

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)     |                          |              |
| 30x50    | Travée   | 22.4586                 | -102.924   | 1.1                      | 5.29         |
| 30x50    | Appui    | 39.0024                 | -20.1356   | 1.93                     | 0.99         |

| TABLE: E | lement For | rces - Beams |             |             |         |    |          |    |         |      |          |         |              |
|----------|------------|--------------|-------------|-------------|---------|----|----------|----|---------|------|----------|---------|--------------|
| Story    | Beam       | Unique Name  | Output Case | Case Type   | Station | P  | V2       | V3 | T       | M2   | M3       | Element | Elem Station |
|          |            |              |             |             | m       | kN | kN       | kN | kN-m    | kN-m | kN-m     |         | m            |
| Story11  | B59        | 1607         | ELU         | Combination | 0,2     | 0  | 1,6263   | 0  | 0,1676  | 0    | 39,0024  | 1607-1  | 0,2          |
| Story1   | B65        | 1682         | ELU         | Combination | 4,675   | 0  | 60,5039  | 0  | -0,0508 | 0    | -20,1356 | 1682-2  | 2,625        |
| :        | :          | :            | :           | :           | :       | :  | :        | :  | :       | :    | :        | :       | :            |
| Story10  | B60        | 1619         | ELU         | Combination | 3,85    | 0  | -24,8785 | 0  | -0,0299 | 0    | 22,4586  | 1619-2  | 1,8          |
| Story9   | B59        | 1609         | ELU         | Combination | 2,9     | 0  | 104,4098 | 0  | 0,005   | 0    | -102,924 | 1609-1  | 2,9          |

# **b-**Situation accidentelle G+Q+E

**Tableau V.34:** Ferraillage des poutres porteuses 30x50(Pour les bouts de voile).

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)     |                          |              |
| 30x50    | Travée   | 346.9036                | -429.5428  | 17.56                    | 23.46        |
| 30x50    | Appui    | 265.2727                | -256.5106  | 12.76                    | 12.77        |

| Story  | Beam | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2        | V3 | T       | M2   | M3        | Element | <b>Elem Station</b> |
|--------|------|-------------|-------------|-------------|-----------|---------|----|-----------|----|---------|------|-----------|---------|---------------------|
|        |      |             |             |             |           | m       | kN | kN        | kN | kN-m    | kN-m | kN-m      |         | m                   |
| Story4 | B53  | 1548        | G+Q+Ex      | Combination | Max       | 2,05    | 0  | 190,5446  | 0  | 1,0318  | 0    | 346,9036  | 1548-2  | 0                   |
| Story4 | B54  | 1559        | G+Q+Ex      | Combination | Min       | 2,9     | 0  | -181,7087 | 0  | -0,945  | 0    | -429,5428 | 1559-1  | 2,9                 |
| :      | :    | :           | :           | :           | :         | :       | :  | :         | :  | :       | :    | :         | :       | :                   |
| Story4 | B54  | 1559        | G+Q+Ex      | Combination | Max       | 0,25    | 0  | 223,7237  | 0  | 0,2872  | 0    | 265,2727  | 1559-1  | 0,25                |
| Story3 | B66  | 1692        | G+Q+Ex      | Combination | Min       | 0,25    | 0  | -266,105  | 0  | -0,2312 | 0    | -256,5106 | 1692-1  | 0,25                |

### **c-**Situation accidentelle 0.8G +E

**Tableau V.35:** Ferraillage des poutres porteuses 30x50(Pour les bouts de voile).

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{ m min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|--------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)       |                          |              |
| 30x50    | Travée   | 357.2792                | -411.8162    | 18.32                    | 22.12        |
| 30x50    | Appui    | 262.1045                | -260.7721    | 12.58                    | 12.5         |

| TABLE: Ele | ABLE: Element Forces - Beams |            |           |             |         |        |     |           |      |         |      |           |        |            |         |
|------------|------------------------------|------------|-----------|-------------|---------|--------|-----|-----------|------|---------|------|-----------|--------|------------|---------|
| Story      | Bean  ▼                      | Unique Nan | Output Ca | Case Type   | Step Ty | Statio | p 🔻 | V2 💌      | V3 💌 | T 💌     | M2 💌 | M3 🚚      | Eleme  | Elem Stati | Locatic |
|            |                              |            |           |             |         | m      | kN  | kN        | kN   | kN-m    | kN-m | kN-m      |        | m          |         |
| Story4     | B53                          | 1548       | 0.8G+Ex   | Combination | Max     | 2,05   | 0   | 207,2555  | 0    | 0,8887  | 0    | 357,2792  | 1548-2 | 0          |         |
| Story4     | B54                          | 1559       | 0.8G+Ex   | Combination | Min     | 2,9    | 0   | -203,1308 | 0    | -0,8337 | 0    | -411,8162 | 1559-1 | 2,9        |         |
| :          | :                            | :          | :         | :           | :       | :      | :   | :         | :    | :       | :    | :         | :      | :          |         |
| Story4     | B54                          | 1559       | 0.8G+Ex   | Combination | Max     | 0,25   | 0   | 229,3761  | 0    | 0,3985  | 0    | 262,1045  | 1559-1 | 0,25       |         |
| Story3     | B65                          | 1681       | 0.8G+Ex   | Combination | Min     | 4,7    | 0   | -204,9264 | 0    | -0,4254 | 0    | -260,7721 | 1681-2 | 2,65       |         |

### > Choix des armatures :

Le ferraillage final adopté est donné par le tableau suivant :

**Tableau V.36 :** Choix des armatures pour les poutres porteuses 30x50 (Pour les bouts de voile).

| Section | Position | A <sub>s max</sub> | A <sub>s max</sub> | $A_s^{min}$        | A <sub>s</sub> <sup>cal</sup> (c | A <sub>s</sub> 'cal | Choix     | Choix     | $A_s$              | $A_{s}$  |
|---------|----------|--------------------|--------------------|--------------------|----------------------------------|---------------------|-----------|-----------|--------------------|----------|
|         |          | z.c                | z.r                | (cm <sup>2</sup> ) | $m^2$ )                          | (cm <sup>2</sup> )  | As        | As'       | adp<br>max         | min adp  |
|         |          | (cm <sup>2</sup> ) | (cm <sup>2</sup> ) |                    |                                  |                     |           |           | (cm <sup>2</sup> ) | $(cm^2)$ |
| 30x50   | Travée   | 60                 | 90                 | 7.5                | 18.32                            | 23.46               | 3T20+5T16 | 6T20+3T16 | 19.47              | 24.88    |
| 30x50   | Appui    | 60                 | 90                 | 7.5                | 12.58                            | 12.77               | 3T20+2T16 | 5T20      | 13.44              | 15.71    |

## > Condition de non fragilité :

**Tableau V.37 :** Vérification de la condition de non fragilité 30x50(Pour les bouts de voile).

| Section (cm <sup>2</sup> ) | $A_{s(\min)}^{choisi}(\mathbf{cm^2})$ | $A_s^{\min}(\mathbf{cm}^2)$ | Vérification |
|----------------------------|---------------------------------------|-----------------------------|--------------|
| 30x50                      | 13.44                                 | 1.57                        | Vérifiée     |

### ➤ Vérification vis à vis de l'ELS :

**Tableau V.38:** Vérification des poutres à l'ELS 30x50(Pour les bouts de voile).

| Position | M <sub>ser</sub> (KN.m) | σ <sub>bc</sub> (MPa) | $\overline{\sigma}_{bc}$ (MPa) | σ <sub>s</sub> (MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|----------|-------------------------|-----------------------|--------------------------------|----------------------|-----------------------------|--------------|
| Travée   | 21.0806                 | 1.15                  | 15                             | 11.8                 | 250                         | Vérifier     |
| Appui    | -8.4604                 | 0.57                  | 15                             | 5.81                 | 250                         | Vérifier     |

| TABLE: E | ABLE: Element Forces - Beams |             |             |             |         |    |         |    |         |      |         |         |              |          |
|----------|------------------------------|-------------|-------------|-------------|---------|----|---------|----|---------|------|---------|---------|--------------|----------|
| Story    | Beam                         | Unique Name | Output Case | Case Type   | Station | P  | V2      | V3 | T       | M2   | M3      | Element | Elem Station | Location |
|          |                              |             |             |             | m       | kN | kN      | kN | kN-m    | kN-m | kN-m    |         | m            |          |
| Story11  | B59                          | 1607        | ELS         | Combination | 1.1     | 0  | 32.2427 | 0  | 0.1583  | 0    | 21.0806 | 1607-1  | 1.1          |          |
| Story11  | B60                          | 1618        | ELS         | Combination | 4.75    | 0  | 13.0593 | 0  | -0.1396 | 0    | 20.8206 | 1618-2  | 2.7          |          |
| :        | :                            | :           | :           | :           | :       | :  | :       | :  | :       | :    | :       | :       | :            |          |
| Story5   | B65                          | 1679        | ELS         | Combination | 4.725   | 0  | 38.7978 | 0  | -0.3167 | 0    | -8.1919 | 1679-2  | 2.675        |          |
| Story2   | B53                          | 1540        | ELS         | Combination | 4.675   | 0  | 32.4755 | 0  | 0.1981  | 0    | -8.4604 | 1540-2  | 2.625        |          |

### > Vérification de l'effort tranchant :

### Vérification de la contrainte de cisaillement :

**Tableau V.39 :** Vérification de la contrainte de cisaillement 30x50(Pour les bouts de voile).

| Section | T <sub>u</sub> <sup>max</sup> (KN) | $\tau_u$ (MPa) | τ̄ <sub>u</sub> (MPa) | Vérifier |
|---------|------------------------------------|----------------|-----------------------|----------|
| 30x50   | 306.9681                           | 2.15           | 3                     | Vérifier |

|          | _          | -           | _           | _           |           |         |    |          | _          |       | _    |          |         |              |
|----------|------------|-------------|-------------|-------------|-----------|---------|----|----------|------------|-------|------|----------|---------|--------------|
| TABLE: E | lement For | ces - Beams |             |             |           |         |    |          |            |       |      |          |         |              |
| Story    | Beam       | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2       | <b>V</b> 3 | T     | M2   | M3       | Element | Elem Station |
|          |            | -           |             |             |           | m       | kN | kN       | kN         | kN-m  | kN-m | kN-m     |         | m            |
| Story4   | B66        | 1691        | G+Q+Ex      | Combination | Max       | 2,9     | 0  | 306,9881 | 0          | 0,652 | 0    | 328,7778 | 1691-1  | 2,9          |

#### > Calcul des armatures transversales :

**Tableau V.40:** calcul des armatures transversales 30x50(Pour les bouts de voile).

| Section            | $T_{u}(kN)$     |                      | BAEL91 RPA99        |                       |                       | $S_t^{adp}$ | (cm) | $A_{t}$            | Choix | $A_t^{adop}$ |
|--------------------|-----------------|----------------------|---------------------|-----------------------|-----------------------|-------------|------|--------------------|-------|--------------|
| (cm <sup>2</sup> ) | - <b>u</b> ( 1) | τ <sub>u</sub> (MPa) | S <sub>t</sub> (cm) | S <sub>t</sub> (cm)ZN | S <sub>t</sub> (cm)ZC | ZN          | ZC   | (cm <sup>2</sup> ) |       |              |
| 30x50              | 306.9681        | 2.15                 | 40.5                | 12.5                  | 25                    | 12.5        | 25   | 2.25               | 4T10  | 3.14         |

### > Vérification de la flèche :

**Tableau V.41 :** Tableau récapitulatif du calcul de la flèche 30x50(Pour les bouts de voile).

| Section            | Longueur | $M_{ser}$ | $A_s^{adp}$        | $A_s^{adp}$ $I_0$ $fi$ (cm) $fv$ (cm) $\Delta ft$ (cm) |         | <b>A.G</b> .( ) | -<br>- |        |
|--------------------|----------|-----------|--------------------|--------------------------------------------------------|---------|-----------------|--------|--------|
| (cm <sup>2</sup> ) | (m)      | kNm       | (cm <sup>2</sup> ) | (cm <sup>4</sup> )                                     | 11 (cm) | iv(cm)          | Δπ(cm) | f (cm) |
| 30x50              | 4.7      | 21.0608   | 19,47              | 348412.5                                               | 0.073   | 0.0778          | 0.046  | 0,94   |

➤ Poutre secondaire 30x40 (Pour les bouts de voile) :

**a-**Situation durable: 1.35G+1.5Q

**Tableau V.42:** Ferraillage des poutres non porteuses 30x40(avec bout de voile).

| Section (cm <sup>2</sup> ) | Position | M <sub>max</sub> (KN.m) | M <sub>min</sub> (KN.m) | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------------------------|----------|-------------------------|-------------------------|--------------------------|--------------|
| 30x40                      | Travée   | 0.5059                  | -40.065                 | 0.03                     | 2.55         |
| 30x40                      | Appui    | 26.6738                 | -1.1542                 | 1.68                     | 0.07         |

| TABLE: El | ABLE: Element Forces - Beams |             |             |             |         |   |          |    |         |    |         |         |              |          |
|-----------|------------------------------|-------------|-------------|-------------|---------|---|----------|----|---------|----|---------|---------|--------------|----------|
| Story     | Beam                         | Unique Name | Output Case | Case Type   | Station | P | V2       | V3 | T       | M2 | M3      | Element | Elem Station | Location |
| Story10   | B21                          | 2037        | ELU         | Combination | 2,15    | 0 | -46,5591 | 0  | 0,0183  | 0  | -40,065 | 2037-2  | 0            |          |
| Story1    | B21                          | 2045        | ELU         | Combination | 1,2125  | 0 | 0,4359   | 0  | 0,0315  | 0  | 0,5059  | 2045-1  | 1,2125       |          |
| :         | :                            | :           | :           | :           | :       | : | :        | :  | :       | :  | :       | :       | :            |          |
| Story11   | B21                          | 2036        | ELU         | Combination | 0,2     | 0 | -2,1678  | 0  | -0,0805 | 0  | -1,1542 | 2036-1  | 0,2          |          |
| Story11   | B21                          | 2036        | ELU         | Combination | 3,6     | 0 | -42,365  | 0  | 0,0771  | 0  | 26,6738 | 2036-2  | 1,45         |          |

## **b-**Situation accidentelle G+Q+E

**Tableau V.43:** Ferraillage des poutres non porteuses 30x40(avec bout de voile).

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|-----------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)    |                          |              |
| 30x40    | Travée   | 373.3788                | -419.8727 | 25.04                    | 27.69        |
| 30x40    | Appui    | 270.0607                | -242.7363 | 18.76                    | 16.17        |

| TABLE: E | ABLE: Element Forces - Beams |             |             |             |           |         |    |           |    |         |      |           |         |              |
|----------|------------------------------|-------------|-------------|-------------|-----------|---------|----|-----------|----|---------|------|-----------|---------|--------------|
| Story    | Beam                         | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2        | V3 | T       | M2   | M3        | Element | Elem Station |
|          |                              |             |             |             |           | m       | kN | kN        | kN | kN-m    | kN-m | kN-m      |         | m            |
| Story5   | B21                          | 2042        | G+Q+Ey      | Combination | Max       | 2,15    | 0  | 428,8204  | 0  | 0,9265  | 0    | 371,3788  | 2042-2  | 0            |
| Story5   | B21                          | 2042        | G+Q+Ey      | Combination | Min       | 2,15    | 0  | -486,3012 | 0  | -0,9693 | 0    | -419,8727 | 2042-2  | 0            |
| :        | :                            | :           | :           | :           | :         | :       | :  | :         | :  | :       | :    | :         | :       | :            |
| Story5   | B21                          | 2042        | G+Q+Ey      | Combination | Max       | 3,575   | 0  | 433,0954  | 0  | 0,9265  | 0    | 270,0607  | 2042-2  | 1,425        |
| Story5   | B21                          | 2042        | G+Q+Ey      | Combination | Min       | 3,575   | 0  | -482,0262 | 0  | -0,9693 | 0    | -242,7363 | 2042-2  | 1,425        |

## **c-**Situation accidentelle 0.8G +E

**Tableau V.44:** Ferraillage des poutres non porteuses 30x40(avec bout de voile).

| Section  | Position | M <sub>max</sub> (KN.m) | $M_{\min}$ | $A_s$ (cm <sup>2</sup> ) | $A_s'(cm^2)$ |
|----------|----------|-------------------------|------------|--------------------------|--------------|
| $(cm^2)$ |          |                         | (KN.m)     |                          |              |
| 30x40    | Travée   | 380.1264                | -411.1252  | 25.42                    | 27.2         |
| 30x40    | Appui    | 264.9954                | -247.8017  | 18.26                    | 16.64        |

|        | D    | Hartana Managa | 0.4         | C T         | Ohan Tama | OL-Man  | _  | 140       | 1/2 | -       |      | 840       | El-mant | El 61-11     |
|--------|------|----------------|-------------|-------------|-----------|---------|----|-----------|-----|---------|------|-----------|---------|--------------|
| Story  | Beam | Unique Name    | Output Case | Case Type   | Step Type | Station | P  | V2        | V3  | - 1     | M2   | M3        | Element | Elem Station |
|        |      |                |             |             |           | m       | kN | kN        | kN  | kN-m    | kN-m | kN-m      |         | m            |
| Story5 | B21  | 2042           | 0.8G+Ey     | Combination | Max       | 2,15    | 0  | 438,9412  | 0   | 0,9359  | 0    | 380,1264  | 2042-2  | 0            |
| Story5 | B21  | 2042           | 0.8G+Ey     | Combination | Min       | 2,15    | 0  | -476,1805 | 0   | -0,9599 | 0    | -411,1252 | 2042-2  | 0            |
| :      | :    | :              | :           | :           | :         | :       |    | :         | :   | :       |      | :         | :       | :            |
| Story5 | B21  | 2042           | 0.8G+Ey     | Combination | Max       | 3,575   | 0  | 442,3612  | 0   | 0,9359  | 0    | 264,9954  | 2042-2  | 1,425        |
| Story5 | B21  | 2042           | 0.8G+Ey     | Combination | Min       | 3,575   | 0  | -472,7605 | 0   | -0,9599 | 0    | -247,8017 | 2042-2  | 1,425        |

### > Choix des armatures :

Le ferraillage final adopté est donné par le tableau suivant :

**Tableau V.45 :** Choix des armatures pour les poutres non porteuses 30x40(Pour les bouts de voile).

| Section | Position | A <sub>s max</sub> | A <sub>s max</sub> | $A_s^{min}$ | A <sub>s</sub> <sup>cal</sup> (c | $A_s$ 'cal | Choix     | Choix     | $A_s$      | $A_{s}$            |
|---------|----------|--------------------|--------------------|-------------|----------------------------------|------------|-----------|-----------|------------|--------------------|
|         |          | z.c                | z.r                | $(cm^2)$    | $m^2$ )                          | $(cm^2)$   | As        | As'       | adp<br>max | adp<br>min         |
|         |          | (cm <sup>2</sup> ) | (cm <sup>2</sup> ) |             |                                  |            |           |           | $(cm^2)$   | (cm <sup>2</sup> ) |
| 30x40   | Travée   | 48                 | 72                 | 6           | 25.42                            | 27.69      | 6T20+2T16 | 6T20+3T16 | 22.87      | 24.88              |
| 30x40   | Appui    | 48                 | 72                 | 6           | 18.76                            | 16.64      | 6T20      | 6T20      | 18.85      | 18.85              |

## Condition de non fragilité :

**Tableau V.46 :**Vérification de la condition de non fragilité 30x40(Pour les bouts de voile).

| Section (cm <sup>2</sup> ) | $A_{s(\min)}^{choisi}$ (cm <sup>2</sup> ) | $A_s^{\min}(\mathbf{cm}^2)$ | Vérification |
|----------------------------|-------------------------------------------|-----------------------------|--------------|
| 30x40                      | 15.71                                     | 1.16                        | Vérifiée     |

### > Vérification vis à vis de l'ELS :

**Tableau V.47:** Vérification des poutres à l'ELS 30x40(pour les bouts de voile).

| Position | M <sub>ser</sub> | σ <sub>bc</sub><br>(MPa) | $\overline{\sigma}_{bc}$ (MPa) | σ <sub>s</sub><br>(MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|----------|------------------|--------------------------|--------------------------------|-------------------------|-----------------------------|--------------|
| m (      | (KN.m)           | ` ′                      | (1011 a)                       | /                       | \ /                         | T. ( 10)     |
| Travée   | 0.5109           | 0.03                     | 18                             | 0.36                    | 250                         | Vérifier     |
| Appui    | -1.1147          | 0.09                     | 18                             | 0.93                    | 250                         | Vérifier     |

| TABLE: E | TABLE: Element Forces - Beams |             |             |             |         |    |         |    |         |      |         |         |              |
|----------|-------------------------------|-------------|-------------|-------------|---------|----|---------|----|---------|------|---------|---------|--------------|
| Story    | Beam                          | Unique Name | Output Case | Case Type   | Station | Р  | V2      | V3 | Т       | M2   | M3      | Element | Elem Station |
|          |                               |             |             |             | m       | kN | kN      | kN | kN-m    | kN-m | kN-m    |         | m            |
| Story1   | B21                           | 2045        | ELS         | Combination | 1.2125  | 0  | 0.4285  | 0  | 0.0272  | 0    | 0.5109  | 2045-1  | 1.2125       |
| Story3   | B21                           | 2044        | ELS         | Combination | 1.2     | 0  | 0.4199  | 0  | 0.0363  | 0    | 0.4779  | 2044-1  | 1.2          |
| :        | :                             | :           | :           | :           | :       | :  | :       | :  | :       | :    | :       | :       | :            |
| Story10  | B21                           | 2037        | ELS         | Combination | 0.2     | 0  | -2.6202 | 0  | -0.0112 | 0    | -0.7845 | 2037-1  | 0.2          |
| Story11  | B21                           | 2036        | ELS         | Combination | 0.2     | 0  | -2.21   | 0  | -0.0716 | 0    | -1.1147 | 2036-1  | 0.2          |

## > Vérification de l'effort tranchant :

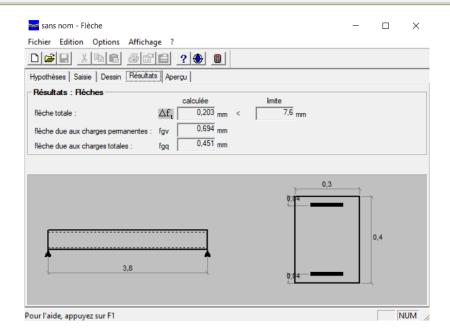
#### Vérification de la contrainte de cisaillement :

**Tableau V.48 :** Vérification de la contrainte de cisaillement 30x40(Pour les bouts de voile).

| Section | $T_u^{\text{max}}$ (KN) | $\tau_u$ (MPa) | τ̄ <sub>u</sub> (MPa) | Vérifier |
|---------|-------------------------|----------------|-----------------------|----------|
| 30x40   | 325.0249                | 2.89           | 3                     | Vérifier |

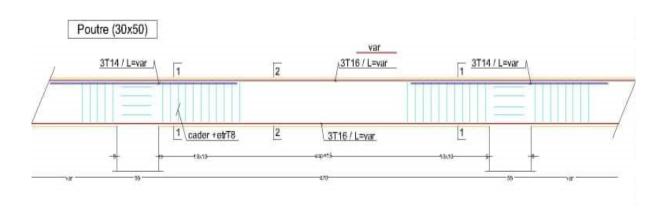
| Α                             | В    | С           | D           | Е           | F         | G       | Н  | I        | J  | K      | L    | M        | N       | 0            |
|-------------------------------|------|-------------|-------------|-------------|-----------|---------|----|----------|----|--------|------|----------|---------|--------------|
| TABLE: Element Forces - Beams |      |             |             |             |           |         |    |          |    |        |      |          |         |              |
| Story                         | Beam | Unique Name | Output Case | Case Type   | Step Type | Station | P  | V2       | V3 | T      | M2   | M3       | Element | Elem Station |
|                               |      |             |             |             |           | m       | kN | kN       | kN | kN-m   | kN-m | kN-m     |         | m            |
| Story2                        | B21  | 2035        | 0.8G+Ey     | Combination | Max       | 2,15    | 0  | 325,0249 | 0  | 0,7189 | 0    | 277,4972 | 2035-2  | 0            |

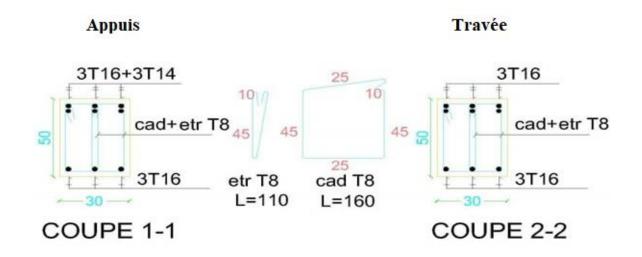
## > Calcul des armatures transversales :

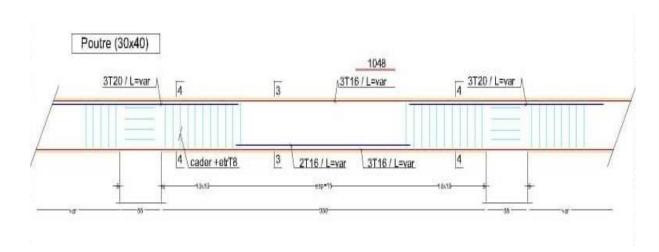

**Tableau V.49:** calcul des armatures transversales 30x40(Pour les bouts de voile).

| Section            | $T_u(kN)$ | τ <sub>u</sub> (MPa) | BAEL91              | RPA99                 |                       | S <sub>t</sub> adp (cm) |    | $A_{t}$            | Choix | $A_t^{adop}$ |
|--------------------|-----------|----------------------|---------------------|-----------------------|-----------------------|-------------------------|----|--------------------|-------|--------------|
| (cm <sup>2</sup> ) |           |                      | S <sub>t</sub> (cm) | S <sub>t</sub> (cm)ZN | S <sub>t</sub> (cm)ZC | ZN                      | ZC | (cm <sup>2</sup> ) |       |              |
| 30x40              | 325.0249  | 2.89                 | 32.4                | 10                    | 20                    | 10                      | 20 | 1.8                | 4T8   | 2.01         |

### Vérification de la flèche :


**Tableau V.50 :** Tableau récapitulatif du calcul de la flèche 30x40(Pour les boutsvoile).

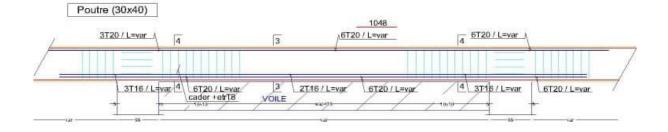

| Section            | Longueur | $\mathbf{M}_{\mathrm{ser}}$ | $A_s^{adp}$        | $I_0$              | fi (cm) | C ( )  | Δft(cm) | <u>-</u> |
|--------------------|----------|-----------------------------|--------------------|--------------------|---------|--------|---------|----------|
| (cm <sup>2</sup> ) | (m)      | kNm                         | (cm <sup>2</sup> ) | (cm <sup>4</sup> ) | 11 (cm) | fv(cm) |         | f (cm)   |
| 30x40              | 3.5      | 0.5109                      | 22.87              | 348412.5           | 0.0239  | 0.0354 | 0.0121  | 0.7      |

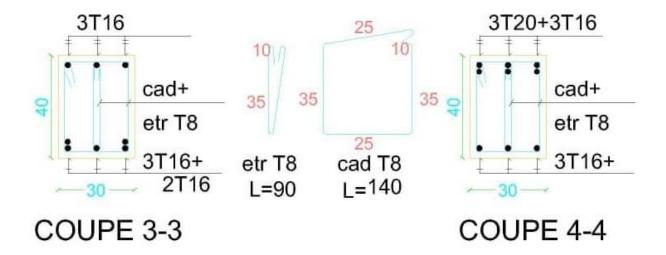



# V.3.10 Schéma de ferraillage des poutres :

Figure V.2: Schéma de ferraillage des poutres porteuses et non porteuses.








Poutre (30x50) 2T20 / L=var 3T20 / C=var VOILE 2 1 cader +etrT8 /1 2T16 / L=var 5T16 / L=yar 5T20 3T20+2T16 25 10 101 cad+etr T8 cad+etr T8 45 8 25 6T20+3T16 etrT8 3T20+2T16 cad T8 L=110 L=160 30 COUPE 1-1 COUPE 2-2

Figure V.3: Schéma de Poutre avec bouts de voile





### V.4.Ferraillage des voiles:

#### V.4.1. Méthode des contraintes :

### V.4.1.1. Introduction:

Les voiles et murs sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur, généralement verticaux et chargés dans leur plan.

#### Ces éléments peuvent être :

- En maçonnerie non armée ou armée, auxquels on réservera le nom de murs ;
- En béton armé ou non armé, et appelés voiles.

#### Remarque:

Le rôle des voiles et murs est :

- De reprendre les charges permanentes et d'exploitation apportée par les planchers.
- De participer au contreventement de la construction (vent et séisme).
- ➤ D'assurer une isolation acoustique entre deux locaux, en particulier entre logements, chambre d'hôtel..., et une protection incendie (coupe-feu).
- De servir de cloisons de séparation entre locaux.

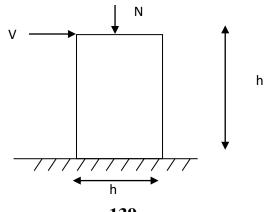
Les calculs des voiles en béton armé et non armé sont effectués suivant les dispositions du **DTU 23.1** « murs en béton banché ».

Les voiles sont utilisés en façade, en pignons ou à l'intérieur (murs de refends) des constructions.

Les voiles en béton comportent un minimum d'armatures :

- ➤ Au droit des ouvertures (concentration de contraintes).
- A leur jonction avec les planchers (chaînages) et a leurs extrémités.

Dans leur grande majorité, les constructions en béton armé sont contreventées par des refends. Les murs de contreventement, ou refends, peuvent être définis comme des structures planes dont la raideur hors plan est négligeable. La rigidité d'un élément résistant aux efforts latéraux va en diminuant depuis le mur de contreventement plein jusqu'au portique, en passant par le mur de contreventement percé d'ouvertures.


Ce sont des éléments en béton armé ou non armé assurant, d'une part le transfert des charges verticales (fonction porteuse) et d'autre part la stabilité sous l'action des charges horizontales (fonction de contreventement). Les murs voiles peuvent donc être assimilés à des consoles verticales soumises à une sollicitation de flexion composée avec compression, ayant un certain degré d'encastrement à la base, sur des fondations superficielles ou sur pieux.

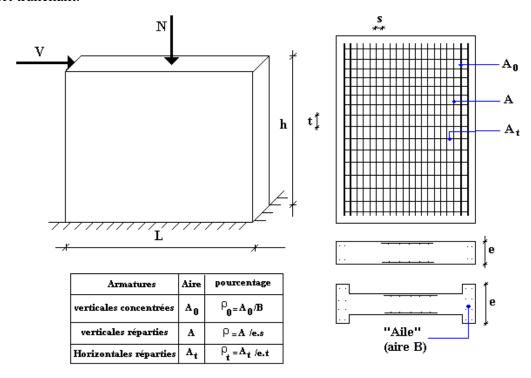
De plus, les murs de contreventement se distinguent par le nombre limite d'ouvertures ou de passages qu'ils comportent, de telle sorte que les déformations élastiques de leurs éléments constitutifs sont faibles par rapport à la déformation de l'ensemble. En général, la déformation prépondérante des refends est une déformation de flexion due aux moments de renversement.

La fonction de contreventement peut être assurée si l'effort normal de compression, provenant des charges verticales est suffisant pour que, sous l'action du moment de renversement, le centre des pressions reste à l'intérieur de la section du mur. [7]

#### 4.2. INTRODUCTION AU FERRAILLAGE DES VOILES:

Le modèle le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La figure suivante montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale *N* et une charge horizontale *V* en tête.




Le voile est donc sollicité par un effort normal N et un effort tranchant V constant sur toute la hauteur, et un moment fléchissant qui est maximal dans la section d'encastrement.

Le ferraillage classique du voile en béton armé est composé :

- 1- D'armatures verticales concentrées aux deux extremités du voile (de pourcentage  $\rho_{V0}$ ) et d'armatures verticales uniformément reparies (de pourcentage  $\rho_V$ )
- 2- D'armatures horizontales, parallèles aux faces du murs, elles aussi uniformément réparties et de pourcentage  $\rho_H$
- 3- Les armatures transversales (epingles) (perpendiculaires aux parement du voile).

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction et de compression, créant ainsi un couple capable d'équilibrer le moment appliqué. À la base du voile, sur une hauteur critique des cadres sont disposés autour de ces armatures afin d'organiser la ductilité de ces zones.

En fin, les armatures de l'âme horizontale et verticale ont le rôle d'assurer la résistante à l'effort tranchant.



## 4.3. JUSTIFICATION S SOUS SOLLICITATIONS NORMALES [12]

#### a. Conditions d'application:

– La longueur d du mur :  $d \ge 5a$ 

- L'épaisseur a du mur :
  - $a \ge 10cm$  pour les murs intérieurs.
  - $a \ge 12cm$  pour les murs exterieurs comportant une protection.
  - $a \ge 15cm$  pour les murs exterieurs dont la résistance à la pénétration de l'eau peut être affectée par la fissuration du béton.
- L'élancement mécanique  $\lambda$ :  $\lambda \leq 80$
- Le raidisseur d'extêmité r:  $r \ge 3a$

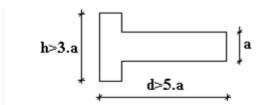
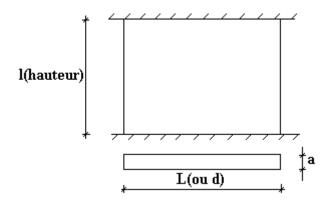




Figure V.4: Définition de l'élement mur

### **b.** Longueur de flambement: (murs non raidi latéralement)

Soit : *l*: la hauteur libre du mur;

 $l_f$ : la longueur libre de flambement d'un mur non raidi.



Lorsqu'un mur n'est pas raidi latéralement par des murs en retour, la longueur libre de flambement  $l_f$  déduit de la hauteur libre du mur l, en fonction de ses liaisons avec le plancher.

Les valeurs du rapport  $\left(\frac{l_f}{l}\right)$  sont données par le tableau suivant :

**Tableau V.51:** Valeurs de  $(l_f/l)$ .

| Liaise                        | ons du mur                                 | Mur armé<br>verticalement | Mur non armé<br>verticalement |  |
|-------------------------------|--------------------------------------------|---------------------------|-------------------------------|--|
| Mur encastré<br>en tête et en | Présence de plancher<br>de part et d'autre | 0,80                      | 0,85                          |  |
| pied                          | Présence de plancher<br>d'un seul coté     | 0,85                      | 0,90                          |  |
| Mur articul                   | é en tête et en pied                       | 1,00                      | 1,00                          |  |

L'élancement mécanique  $\lambda$  se déduit de la longueur libre de flambement par la relation :

$$\lambda = \frac{l_f \sqrt{12}}{a}$$

### c. Effort de compression en ELU:

Soient:

 $l_f$ : longueur de flambement calculée en (b)

a: épaisseur du voile

d: longueur du voile

 $f_{c28}$ : résistance caractéristique du béton à 28 jours

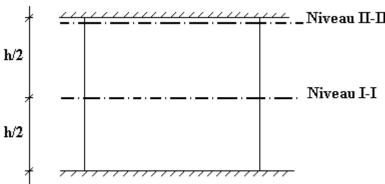
 $f_e$ : limite élastique de l'acier

 $\gamma_b = 1.5$  (sauf combinaison accidentelles pour lesquelles  $\gamma_b = 1.15$ )

 $\gamma_s = 1.15$  (sauf pour combinaison accidentelles pour lesquelles  $\gamma_s = 1$ )

#### Nota:

Les valeurs de  $\alpha$  données par le tableau ci dessous sont valables dans le cas ou plus de la moitié des charges est appliquée après 90 jours, sinon voir.


**Tableau V.52 :** Calcul de  $\sigma_{u \ lim}$ .

|                             | Notation     | Unités | Voiles armé<br>verticalement                                                                 | Voile non armé<br>verticalement                       |  |
|-----------------------------|--------------|--------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Elancement                  | λ            |        | $\frac{l_f\sqrt{12}}{a}$                                                                     |                                                       |  |
| Section réduite             | $B_r$        | $M^2$  | d(a                                                                                          | -0,02)                                                |  |
| Pour λ ≤ 50 Pour 50 ≤ λ ≤80 | α            | /      | $\frac{0,85}{1+0,2\left(\frac{\lambda}{35}\right)^2}$ $0,6\left(\frac{50}{\lambda}\right)^2$ | $\frac{0,65}{1+0,2\left(\frac{\lambda}{30}\right)^2}$ |  |
| Effort limite ELU           | $N_{u\ lim}$ | kN     | $\alpha \left[ \frac{B_r f_{c28}}{0.9 \gamma_b} + \frac{A_s f_e}{\gamma_s} \right]$          |                                                       |  |
| Contraintes limites         | σ            | kPa    | $\sigma_{ba} = \frac{N_{u \lim}}{ad}$                                                        | $\sigma_{bna} = \frac{N_{u \lim}}{ad}$                |  |

### Remarque:

La contrainte limite vaut  $\sigma_{u \text{ lim}} = \frac{N_{u \text{ lim}}}{a \ d}$  que nous appellerons  $\sigma_{bna}$  ou  $\sigma_{ba}$  suivant que le béton est non armé ou armé.

### d. Niveaux de vérification :



On vérifie le voile à deux niveaux différents :

- Niveau **I-I** à mi-hauteur d'étage :  $\sigma_u \leq \sigma_{u \text{ lim}}$
- Niveau **II-II** sous le plancher haut :  $\sigma_u \leq \frac{\sigma_{u \text{ lim}}}{\alpha}$

En cas de traction, on négligera le béton tendu.

#### e. Aciers minimaux:

Si  $\sigma_u^c < \sigma_{bna}$  on a pas besoin d'armatures comprimées, on prendra alors les valeurs minimales données par le tableau suivant : ( $\sigma_u^c$  est la contrainte de compression ultime calculée).

L'épaisseur du voile est désignée par la lettre a1

### 1. Aciers verticaux, aciers horizontaux:

**Tableau V.53:** Aciers verticaux et horizontaux.

|                               | Aciers verticaux                                                                                                                    | Aciers horizontaux                                                                 |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Espacement maximal entre axes | $S_t \leq min(0.33m; 2a)$                                                                                                           | $S_t \leq 0.33m$                                                                   |
|                               | $A_{sv} \geq \rho_v d a$                                                                                                            |                                                                                    |
| Acier minimal                 | $\rho_{v} = Max \left[ 0,001; 0,0015 \frac{400\theta}{f_{e}} \left( \frac{3\sigma_{u}}{\sigma_{u  \text{lim}}} - 1 \right) \right]$ | $ \rho_H = \frac{A_H}{100a} \ge Max \left[ \frac{2\rho_{vMax}}{3}; 0,001 \right] $ |
| Pourcentage<br>minimal        | par moitié sur chaque face<br>Avec : $\theta = 1,4$ pour un voile de rive<br>$\theta = 1$ pour un voile intermédiaire               | ρ <sub>νMax</sub> = le pourcentage vertical de la<br>bande la plus armée           |

• La section d'armatures correspondant au pourcentage  $\rho_{\nu}$  doit être répartie par moitié sur chacune des faces de la bande de mur considérée.

 La section des armatures horizontales parallèles aux faces du mur doit être répartie par moitié sur chacune des faces d'une façon uniforme sur la totalité de la longueur du mur ou de l'élément de mur limité par des ouvertures.

### 2. Aciers transversaux: (perpendiculaire aux parements).

Seuls les aciers verticaux (de diamètre  $\mathcal{O}_l$ ) pris en compte dans le calcul de  $N_{u\ lim}$  sont à maintenir par des armatures transversales (de diamètre  $\mathcal{O}_t$ )

 Tableau V.54: Acers transversaux.

|                                       | Nombre d'armatures transversales       | Diamètre Ø <sub>1</sub> |
|---------------------------------------|----------------------------------------|-------------------------|
| Ø <sub>1</sub> ≤ 12 mm                | 4 épingles par m² de voile             | 6 mm                    |
| $12~mm \leq \varnothing_1 \leq 20~mm$ | Reprendre toutes les barres verticales | 6 mm                    |
| $20 \text{ mm} \leq \emptyset_1$      | Espacement $\leq 15 \ \text{Ø}_1$      | 8 mm                    |

#### **Cisaillement:**

Aucune vérification à l'effort tranchant ultime n'est exigée en compression si le cisaillement est inférieur à  $0.05f_{c28}$  (il faudra donc vérifier que  $S_{12} \le 0.05f_{c28}$ ).

### 4.4. Procédure De Ferraillage Des Trumeaux.

#### **4.4.1. Introduction:**

Pour le ferraillage des trumeaux, on devra calculer et disposer les aciers verticaux et les aciers horizontaux conformément aux règlements *B.A.E.L 91* et *RPA 99*.

L'apparition de logiciels modernes d'analyse de structure, utilisant la méthode des éléments finis pour modéliser et analyser les structures a considérablement aidé l'étude du comportement globale de la structure mais aussi, l'obtention directe des efforts et des contraintes (dans les voiles) en tout point de la structure facilite, après une bonne interprétation des résultats du modèle retenue, l'adoption d'un bon ferraillage (ou ferraillage adéquat).

#### 4.4.2 Méthode Simplifiée Basée Sur Les Contraintes :(Calcul Des Aciers Verticaux) :

Comme déjà dit, les voiles du Bâtiment sont sollicités en flexion composée.

Les contraintes normales engendrées  $(\sigma)$  peuvent être soit des contraintes de compression ou de traction

#### 1 - ZONE COMPRIMEE:

Si  $\sigma < 0 \rightarrow$  compression

Dans ce cas le Voile n'est pas armé à la compression, on prend :

#### 2 - ZONE TENDUE:

Si  $\sigma > 0 \rightarrow$  traction

Lorsqu' une partie (zone) du voile est tendue, la contrainte de traction (moyenne)  $\sigma_m$  vaut :

$$\sigma_{\scriptscriptstyle m} = \frac{F_{\scriptscriptstyle T}}{(e \times l_{\scriptscriptstyle m})}$$

Avec:

 $F_T$ : force de traction.

*e* : épaisseur du voile.

 $l_m$ : longueur de la section considérée (ici maille).

Cette contrainte entraîne une section d'acier As tel que :

$$\frac{As}{S} = \frac{\sigma_m.\gamma_S}{fe}.\Delta s = Av \qquad (1)$$
Où  $\Delta s = e \times l_m$ 

 $\frac{As}{S}$  Est répartie sur S ; cette quantité d'acier sera répartie en deux nappes (une sur chaque face du voile).

Rappelons que les voiles ont été modélisés par des éléments coques (Shell) à 4 nœuds.

Un maillage horizontal et vertical (voir figure ci-après) de chaque voile est nécessaire pour approcher les valeurs réelles des contraintes.

Le rapport (a/b) des dimensions de la maille est choisi proche de l'unité.

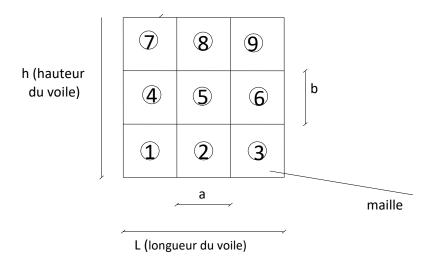



Figure V.5: Discrétisation d'un voile en élément (maille) coque.

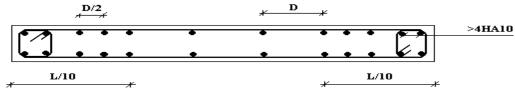
La lecture des contraintes moyennes (de traction ou de compression) se fait directement au milieu de chaque maille dont le ferraillage est calculé par l'équation (1) dans le cas de la traction.

#### 4.4.3 Aciers Horizontaux:

$$A_{h1} = \frac{2}{3} A_{v}$$
 (A<sub>v</sub> = A<sub>s</sub> précédemment définit)  
 $A_{h2} = \frac{\bar{\tau}_{u} b_{0} S_{t}}{0.8(0.8 f_{e})} = \frac{1.4 \tau_{u} a S_{t}}{0.8 f_{e}} 1.25$ 

 $\tau_u = S_{12}$  est donnée par l'interface graphique du **ETABS.** 

 $S_t$ : Espacement maximal trouvé pour  $A_v$ 


 $b_0 = a$  (épaisseur du trumeau)

$$A_h \ge Max(A_{h1}, A_{h2})$$

## 4.4.4. Préconisation Du Règlement Parasismique Algérien (Rpa99 Version2003) :

#### a. Aciers verticaux:

- Lorsqu'une partie du voile est tendue sous l'action des forces verticales et horizontales, l'effort de traction doit être pris en totalité par les armatures, le pourcentage minimum des armatures verticales sur toute la zone tendue est de 0.15%.
- Il est possible de concentrer des armatures de traction à l'extrémité du voile ou du trumeau, la section totale d'armatures verticales de la zone tendue devant rester au moins égale à 0.15 % de la section horizontale du béton tendu.
- Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- Si les efforts importants de compressions agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.
- Les barres verticales du dernier niveau doivent être munies de crochets (jonction par recouvrement).
- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile. Cet espacement d'extrémité doit être au plus égal à 15cm.



Disposition des Armatures verticales das les voiles

Figure V.6: Disposition des Armatures verticales dans les voiles.

#### b. Aciers horizontaux:

Les barres horizontales doivent être munies de crochets à  $135^{\circ}$  ayant une longueur de  $10\phi$ . Dans le cas où il existerait des talons de rigidité, les barres horizontales devront être ancrées sans crochets si les dimensions des talons permettent la réalisation d'un ancrage droit.

### c. Règles communes:

- Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :
  - Globalement dans la section du voile 0.15%
  - En zone courante 0.10%
- L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des

deux valeurs suivantes : 
$$S \le \begin{cases} 1.5a \\ 30cm \end{cases}$$

- Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.
- Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.
- Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.
- Les longueurs de recouvrement doivent être égales à :
  - $40\phi$  pour les barres situées dans les zones où le renversement du signe des efforts est possible.
  - $20\phi$  pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.
- Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :  $A = 1.1 \frac{\overline{V}}{f_a}$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

### Exemple de calcul (voile V3):

Soit le voile de longueur

$$L = 3,65 m$$

a = 0.2 m (épaisseur)

 $h_e = 3.23 m$  (hauteur d'étage)

Le voile est découpé en 3 mailles horizontales de même longueur  $L^i$  =1,22 m et de section  $S_i = L^i*(a)$ .

## • Contraintes limites:

Pour une hauteur d'étage de 3,23 d'où la hauteur libre est égale à :

 $h_e=3,23-0.50=2,73 m$ 

(0.50m : hauteur de la poutre)

**Tableau V.55 :** Calcul de  $\sigma_{ba}$  et  $\sigma_{bna}$  pour l'exemple.

|                                                                              | Unité | Béton non armé                                                                                               | Béton armé                                                                                                                                     |  |  |
|------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Longueur de<br>flambement l <sub>f</sub>                                     | M     | 2,73×0.85=2,32                                                                                               | 0.8×2,73=2,184                                                                                                                                 |  |  |
| Elancement λ                                                                 | /     | $\frac{l_f \sqrt{12}}{0.2} = 40,18$                                                                          | $\frac{l_f \sqrt{12}}{0.2} = 37,83$                                                                                                            |  |  |
| Coefficient α                                                                | /     | 0,478                                                                                                        | 0,689                                                                                                                                          |  |  |
| Section réduite  B <sub>r</sub> (par ml)  Avec d = 1m                        | $m^2$ | (a-0.02) = (0.2-0.02) = 0.18                                                                                 | (a-0.02)1 = (0.2-0.02)1 = 0.18                                                                                                                 |  |  |
| Contraintes limites $\sigma = \frac{N_{u \text{ lim}}}{a \ d}$ Avec $d = 1m$ | MPa   | $\sigma_{bna} = 0.478 \left[ \frac{0.18x25}{0.9 \times 1.15 \times 0.18} \right]$ $\sigma_{bna} = 11,54.MPa$ | $\sigma_{ba} = \frac{0,689}{1 \times 0.18} \left( \frac{0.18 \times 25}{0.9 \times 1.15} + A_s \frac{500}{1} \right)$ $\sigma_{ba} = 16,99MPa$ |  |  |

## Remarque:

 $\sigma_{ba}$ = 16,99 MPa correspondant à  $A_s$ = 0,1% de  $B_{et}$ 

$$B_{et} = (0.18)\,(1)\,m^2$$

$$A_s = 1.8x10^{-4} \text{ cm}^2$$

| Maile                                                                                                | _                                                 | _                                                                                                           | _                                                 |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| (ou élément de voile)                                                                                | 1                                                 | 2                                                                                                           | 3                                                 |  |
| Dimensions (m²)                                                                                      | 0,244                                             | 0,244                                                                                                       | 0,244                                             |  |
| $(a*l^i)=S_j$                                                                                        | ,                                                 |                                                                                                             | ,                                                 |  |
| Contrainte moyenne par                                                                               | 4,56                                              | 1,29                                                                                                        | 6,26                                              |  |
| bande $\sigma_j(MPa)$                                                                                |                                                   | ·                                                                                                           | ·                                                 |  |
| Force de traction                                                                                    | 1,1126                                            | 0,3147                                                                                                      | 1,5274                                            |  |
| $F_t(N) = \sigma_j S_j$                                                                              |                                                   | 0,5147                                                                                                      | 1,32/4                                            |  |
| Section d'acier (cm²)                                                                                |                                                   |                                                                                                             |                                                   |  |
| $A_s = \frac{F_t}{\sigma_s}$                                                                         | 22,252                                            | 6,294                                                                                                       | 30,548                                            |  |
| (situation accidentelle $\gamma_s = 1$ )                                                             |                                                   |                                                                                                             |                                                   |  |
| Aciers minimaux (cm²)  1. Selon BAEL: 0,1%S <sub>béton</sub> 2. Selon RPA99:0,15 %S <sub>béton</sub> | 2,44<br>3,66                                      | 2,44<br>3,66                                                                                                | 2,44<br>3,66                                      |  |
| Acier total<br>(sur deux faces en cm²)<br>S <sub>i</sub> : espacement (Cm)                           | $2 \times 13T14 = 40,02$ $\frac{122}{12} = 10,17$ | $   \begin{array}{r}     2 \times 7T10 \\     = 11 \\     \hline     \frac{122}{12} = 10,17   \end{array} $ | $2 \times 13T14 = 40,02$ $\frac{122}{12} = 10,17$ |  |
| $S \leq (1.5 \ a, 30cm)$ $S \leq 30 \ cm$                                                            | vérifié                                           | vérifié                                                                                                     | Vérifié                                           |  |

**Tableau V.56 :** Calcul des armatures verticales de l'exemple.

# • Armatures de joint de bétonnage (aciers de couture)

$$A_{vj} = 1.1 \frac{\overline{V}}{f_e}$$
 ;  $\overline{V} = 1.4 V_u^{cal}$  ;  $\overline{V} = S_{12}.a.Li$    
 $A_{vj} = 1.1 \frac{1.68(200)(1220)}{500} 1.4 = 1262,55mm^2$ 

$$A_{vj} = 12,62cm^2$$

## • Aciers horizontaux :

$$A_{h1} = \frac{\overline{\tau}_{u}.a.S_{t}}{(0.8 f_{e})0.8}$$

$$\overline{\tau}_{u} = 1.4 \tau_{u} = 1.4 S_{12}$$

$$S_{t min} = 300 \text{ mm}$$

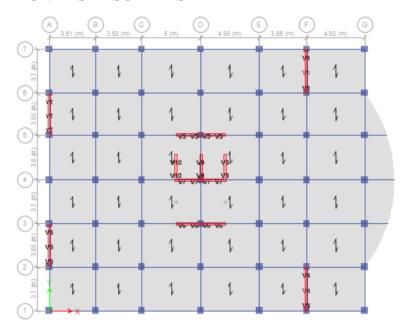
$$A_{h1} = \frac{1.4 (1.68) (200) (300)}{(0.8) (500) (0.8)} = 4,41 cm^2$$

 $A_{h2} = \frac{2}{3} A_V$ ; Av= {section d'acier vertical de la Maille la plus armé}

$$A_{h2} = \frac{2}{3} (40,04) = 26,69cm^2$$

$$A_{h \min} = (0.15\%) \times a \times l = \frac{0.15}{100} (20)(122) = 3,66cm^2$$

D'où:


$$A_h = Max(A_{h1}, A_{h2}, A_h^{min}) = 26,69cm^2$$

Soit :  $2 \times 8T14 = 24,62 \text{ cm}^2$ 

Avec: 
$$S_t = \frac{1220}{6} = 203,33mm$$

On prend :  $S_t = 203$ , 33 mm  $< S_{t min} = 300$  mm ... vérifié

### 5. PRESENTATION DES RESULTATS



**Figure V.7:** Disposition des voiles.

Tableau V.57 : Caractéristiques des voiles.

|           | Li (m) | b (m) | L (m) |
|-----------|--------|-------|-------|
| Voile V1  | 1.2    | 0.2   | 3.7   |
| Voile V2  | 1.18   | 0.2   | 3.55  |
| Voile V3  | 1.22   | 0.2   | 3.65  |
| Voile V4  | 1.2    | 0.2   | 3.7   |
| Voile V5  | 1.04   | 0.2   | 4.15  |
| Voile V6  | 1.04   | 0.2   | 4.15  |
| Voile V7  | 1.04   | 0.2   | 4.15  |
| Voile V8  | 1.05   | 0.2   | 2.1   |
| Voile V9  | 1.05   | 0.2   | 2.1   |
| Voile V10 | 1.05   | 0.2   | 2.1   |

### Nota:

Les valeurs des contraintes dans les voiles données dans les tableaux ci-après correspondent à la combinaison de charge  $G+Q\pm E$ .

#### Armature verticale de traction:

**Tableau V.58 :** Calcul des armatures du voile (V1).

|   |     | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN) | As (cm²) | Nbr d'armtr | Type d'armtr | Av adp (cm²) | St adp (cm) |
|---|-----|------------|--------|---------|----------|---------|----------|-------------|--------------|--------------|-------------|
| Γ | RDC | nnc        | 1      | 0.24    | 8.1      | 1.944   | 38.88    | 13          | T16          | 52.26        | 10          |
| 1 |     | KDC        | 2      | 0.24    | 8.59     | 2.0616  | 41.232   | 13          | T16          | 52.26        | 10          |
| 1 | V1  | F          | 1      | 0.24    | 1.64     | 0.3936  | 7.872    | 13          | T12          | 29.38        | 10          |
| L |     | 5éme       | 2      | 0.24    | 2.49     | 0.5976  | 11.952   | 13          | T12          | 29.38        | 10          |

**Tableau V.59 :** Calcul des armatures du voile (V2).

|   |    | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN)  | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|---|----|------------|--------|---------|----------|----------|----------|-----------|--------------|--------------|-------------|
| Γ | V2 |            | 1      | 0.2366  | 5.35     | 1.26581  | 25.3162  | 12        | T12          | 27.12        | 10          |
| 1 |    | RDC        | 2      | 0.2366  | 1.25     | 0.29575  | 5.915    | 6         | T12          | 13.56        | 20          |
| 1 |    |            | 3      | 0.2366  | 4.94     | 1.168804 | 23.37608 | 12        | T12          | 27.12        | 10          |
| 1 |    |            | 1      | 0.2366  | 1.44     | 0.340704 | 6.81408  | 12        | T12          | 27.12        | 10          |
| 1 |    | 5éme       | 2      | 0.2366  | 0.19     | 0.044954 | 0.89908  | 6         | T10          | 9.48         | 20          |
| 1 |    |            | 3      | 0.2366  | 1.4      | 0.33124  | 6.6248   | 12        | T12          | 27.12        | 10          |

**Tableau V.60 :** Calcul des armatures du voile (V3).

|    | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN)  | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|----|------------|--------|---------|----------|----------|----------|-----------|--------------|--------------|-------------|
|    |            | 1      | 0.2434  | 4.56     | 1.109904 | 22.19808 | 13        | T14          | 40.04        | 10          |
|    | RDC        | 2      | 0.2434  | 1.29     | 0.313986 | 6.27972  | 7         | T10          | 11.06        | 20          |
| V3 |            | 3      | 0.2434  | 6.26     | 1.523684 | 30.47368 | 13        | T14          | 40.04        | 10          |
| V5 |            | 1      | 0.2434  | 1.31     | 0.318854 | 6.37708  | 13        | T12          | 29.38        | 10          |
|    | 5éme       | 2      | 0.2434  | 0.26     | 0.063284 | 1.26568  | 7         | T10          | 11.06        | 20          |
|    |            | 3      | 0.2434  | 2.03     | 0.494102 | 9.88204  | 13        | T12          | 29.38        | 10          |

Tableau V.61: Calcul des armatures du voile (V4).

|   |     | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN) | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|---|-----|------------|--------|---------|----------|---------|----------|-----------|--------------|--------------|-------------|
| I |     | nnc        | 1      | 0.24    | 9.84     | 2.3616  | 47.232   | 13        | T16          | 52.26        | 10          |
| ı | 1/4 | RDC        | 2      | 0.24    | 10.77    | 2.5848  | 51.696   | 13        | T16          | 52.26        | 10          |
| ı | V4  | 5éme       | 1      | 0.24    | 3.06     | 0.7344  | 14.688   | 13        | T12          | 29.38        | 10          |
| ı |     |            | 2      | 0.24    | 1.74     | 0.4176  | 8.352    | 13        | T12          | 29.38        | 10          |

**Tableau V.62 :** Calcul des armatures du voile (V5).

| I |    | Niveau (m) | Mailes | Sj (m²) | σј (Мра) | Ft (MN)  | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|---|----|------------|--------|---------|----------|----------|----------|-----------|--------------|--------------|-------------|
| Ι |    |            | 1      | 0.2076  | 12.86    | 2.669736 | 53.39472 | 11        | T20          | 69.08        | 10          |
| 1 |    | RDC        | 2      | 0.2076  | 3.03     | 0.629028 | 12.58056 | 6         | T12          | 13.56        | 20          |
|   |    | RDC        | 3      | 0.2076  | 2.84     | 0.589584 | 11.79168 | 6         | T12          | 13.56        | 20          |
|   | V5 |            | 4      | 0.2076  | 13.18    | 2.736168 | 54.72336 | 11        | T20          | 69.08        | 10          |
| 1 | VO |            | 1      | 0.2076  | 1.55     | 0.32178  | 6.4356   | 11        | T14          | 33.88        | 10          |
| 1 |    | 5éme       | 2      | 0.2076  | 0.51     | 0.105876 | 2.11752  | 6         | T10          | 9.48         | 20          |
| 1 |    |            | 3      | 0.2076  | 0.47     | 0.097572 | 1.95144  | 6         | T10          | 9.48         | 20          |
| L |    |            | 4      | 0.2076  | 1.61     | 0.334236 | 6.68472  | 11        | T14          | 33.88        | 10          |

**Tableau V.63 :** Calcul des armatures du voile (V6).

|    | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN)  | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|----|------------|--------|---------|----------|----------|----------|-----------|--------------|--------------|-------------|
|    |            | 1      | 0.2076  | 12.99    | 2.696724 | 53.93448 | 11        | T20          | 69.08        | 10          |
|    | nnc nnc    | 2      | 0.2076  | 2.47     | 0.512772 | 10.25544 | 6         | T12          | 13.56        | 20          |
|    | RDC        | 3      | 0.2076  | 2.19     | 0.454644 | 9.09288  | 6         | T12          | 13.56        | 20          |
| V6 | l          | 4      | 0.2076  | 12.75    | 2.6469   | 52.938   | 11        | T20          | 69.08        | 10          |
| VO |            | 1      | 0.2076  | 1.37     | 0.284412 | 5.68824  | 11        | T14          | 33.88        | 10          |
|    | 5éme       | 2      | 0.2076  | 1.23     | 0.255348 | 5.10696  | 6         | T10          | 9.48         | 20          |
|    | seme       | 3      | 0.2076  | 1.23     | 0.255348 | 5.10696  | 6         | T10          | 9.48         | 20          |
|    |            | 4      | 0.2076  | 1.15     | 0.23874  | 4.7748   | 11        | T14          | 33.88        | 10          |

**Tableau V.64 :** Calcul des armatures du voile (V7).

|    | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN)  | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|----|------------|--------|---------|----------|----------|----------|-----------|--------------|--------------|-------------|
|    | 200        | 1      | 0.2076  | 11.14    | 2.312664 | 46.25328 | 11        | T20          | 69.08        | 10          |
|    |            | 2      | 0.2076  | 2.6      | 0.53976  | 10.7952  | 6         | T12          | 13.56        | 20          |
|    | RDC        | 3      | 0.2076  | 2.34     | 0.485784 | 9.71568  | 6         | T12          | 13.56        | 20          |
| V7 |            | 4      | 0.2076  | 11.23    | 2.331348 | 46.62696 | 11        | T20          | 69.08        | 10          |
| ٧/ |            | 1      | 0.2076  | 1.13     | 0.234588 | 4.69176  | 11        | T14          | 33.88        | 10          |
|    | E é m a    | 2      | 0.2076  | 0.71     | 0.147396 | 2.94792  | 6         | T10          | 9.48         | 20          |
|    | 5éme       | 3      | 0.2076  | 0.68     | 0.141168 | 2.82336  | 6         | T10          | 9.48         | 20          |
|    |            | 4      | 0.2076  | 1.18     | 0.244968 | 4.89936  | 11        | T14          | 33.88        | 10          |

**Tableau V.65 :** Calcul des armatures du voile (V8).

|   |     | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN) | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|---|-----|------------|--------|---------|----------|---------|----------|-----------|--------------|--------------|-------------|
| Γ |     | nnc        | 1      | 0.215   | 14.3     | 3.0745  | 61.49    | 11        | T20          | 69.08        | 10          |
| 1 | 1/0 | RDC        | 2      | 0.215   | 11.46    | 2.4639  | 49.278   | 11        | T20          | 69.08        | 10          |
| 1 | V8  | 5éme       | 1      | 0.215   | 3.25     | 0.69875 | 13.975   | 11        | T14          | 33.88        | 10          |
| 1 |     |            | 2      | 0.215   | 0.79     | 0.16985 | 3.397    | 11        | T14          | 33.88        | 10          |

**Tableau V.66 :** Calcul des armatures du voile (V9).

|     | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN) | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|-----|------------|--------|---------|----------|---------|----------|-----------|--------------|--------------|-------------|
|     | nnc        | 1      | 0.215   | 0.36     | 0.0774  | 1.548    | 11        | T12          | 24.86        | 10          |
| \/O | RDC        | 2      | 0.215   | 0.74     | 0.1591  | 3.182    | 11        | T12          | 24.86        | 10          |
| V9  | F.4        | 1      | 0.215   | 0.71     | 0.15265 | 3.053    | 11        | T10          | 17.38        | 10          |
|     | 5éme       | 2      | 0.215   | 1.06     | 0.2279  | 4.558    | 11        | T10          | 17.38        | 10          |

**Tableau V.67:** Calcul des armatures du voile (V10).

|      | Niveau (m) | Mailes | Sj (m²) | σj (Mpa) | Ft (MN) | As (cm²) | Armtr néc | Type d'armtr | Av adp (cm²) | St adp (cm) |
|------|------------|--------|---------|----------|---------|----------|-----------|--------------|--------------|-------------|
|      | DDC        | 1      | 0.215   | 14.91    | 3.20565 | 64.113   | 11        | T20          | 69.08        | 10          |
| V/10 | RDC        | 2      | 0.215   | 11.83    | 2.54345 | 50.869   | 11        | T20          | 69.08        | 10          |
| V10  | F.f        | 1      | 0.215   | 4.03     | 0.86645 | 17.329   | 11        | T14          | 33.88        | 10          |
|      | 5éme       | 2      | 0.215   | 0.89     | 0.19135 | 3.827    | 11        | T14          | 33.88        | 10          |

• Armatures de joint de bétonnages (Acier de couture) :

Tableau V.68: Calcul des aciers de coutures des voiles.

|     | Niveau | Vcal (KN) | V (KN)   | Avj (cm²) | Armature | Nbr d'armature | Nbr d'armature fnl | Av fnl (cm²) | St (cm) |
|-----|--------|-----------|----------|-----------|----------|----------------|--------------------|--------------|---------|
| V1  | RDC    | 593.472   | 830.8608 | 18.27894  | T16      | 6              | 6                  | 12.06        | 20      |
| VI  | 5 éme  | 379.44    | 531.216  | 11.68675  | T16      | 6              | 6                  | 12.06        | 20      |
| V2  | RDC    | 342.72    | 479.808  | 10.55578  | T16      | 6              | 6                  | 12.06        | 20      |
| VZ  | 5 éme  | 240.536   | 336.7504 | 7.408509  | T14      | 6              | 6                  | 9.24         | 20      |
| V3  | RDC    | 330.48    | 462.672  | 10.17878  | T16      | 6              | 6                  | 12.06        | 20      |
| V3  | 5 éme  | 244.8     | 342.72   | 7.53984   | T14      | 6              | 6                  | 9.24         | 20      |
| V4  | RDC    | 611.456   | 856.0384 | 18.83284  | T20      | 6              | 6                  | 18.84        | 20      |
| V-4 | 5 éme  | 381.48    | 534.072  | 11.74958  | T16      | 6              | 6                  | 12.06        | 20      |
| V5  | RDC    | 538.56    | 753.984  | 16.58765  | T20      | 6              | 6                  | 18.84        | 20      |
| VJ  | 5 éme  | 379.912   | 531.8768 | 11.70129  | T16      | 6              | 6                  | 12.06        | 20      |
| V6  | RDC    | 538.56    | 753.984  | 16.58765  | T20      | 6              | 6                  | 18.84        | 20      |
| VO  | 5 éme  | 342.72    | 479.808  | 10.55578  | T16      | 6              | 6                  | 12.06        | 20      |
| V7  | RDC    | 611.456   | 856.0384 | 18.83284  | T20      | 6              | 6                  | 18.84        | 20      |
| V / | 5 éme  | 505.92    | 708.288  | 15.58234  | T12      | 6              | 6                  | 6.78         | 20      |
| V8  | RDC    | 357       | 499.8    | 10.9956   | T16      | 6              | 6                  | 12.06        | 20      |
| VO  | 5 éme  | 130.384   | 182.5376 | 4.015827  | T10      | 6              | 6                  | 4.74         | 20      |
| V9  | RDC    | 367.2     | 514.08   | 11.30976  | T16      | 6              | 6                  | 12.06        | 20      |
| VJ  | 5 éme  | 344.76    | 482.664  | 10.61861  | T16      | 6              | 6                  | 12.06        | 20      |
| V10 | RDC    | 346.192   | 484.6688 | 10.66271  | T16      | 6              | 6                  | 12.06        | 20      |
| V10 | 5 éme  | 116.28    | 162.792  | 3.581424  | T16      | 6              | 6                  | 12.06        | 20      |

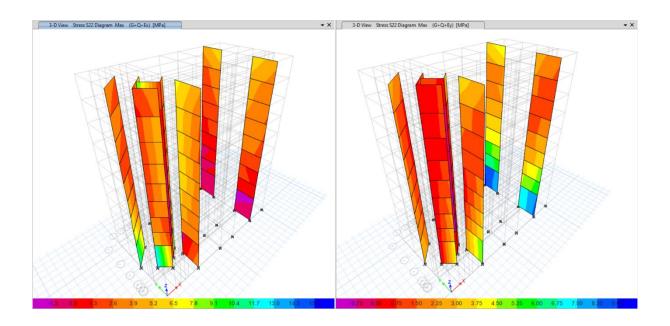
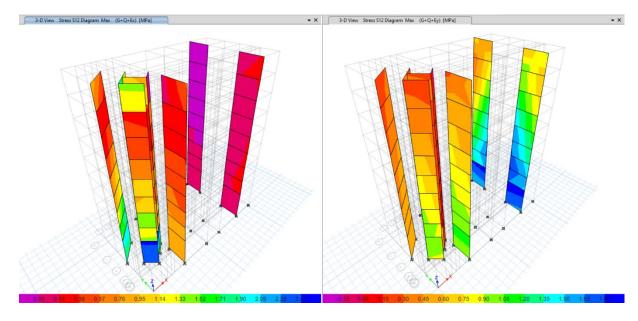
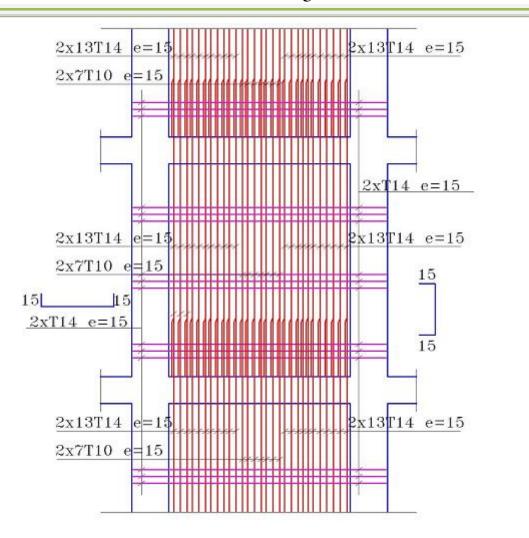

### • Aciers horizontaux :

Tableau V.69: Calcul des aciers horizontaux des voiles.


|                 | ти (МРа) | Ah <sub>1</sub> (cm²) | Ah <sub>2</sub> (cm <sup>2</sup> ) | Ah min (cm²) | Ah (cm²) | Armature | nbr d'armature | St (cm) | As (cm²) |
|-----------------|----------|-----------------------|------------------------------------|--------------|----------|----------|----------------|---------|----------|
| V1              | 3.7      | 6.94                  | 34.84                              | 3.37         | 34.84    | T20      | 14             | 15      | 43.96    |
| VI              | 2.6      | 4.88                  | 19.59                              | 3.06         | 19.59    | T14      | 14             | 15      | 21.56    |
| V2              | 2.35     | 4.41                  | 18.08                              | 3.06         | 18.08    | T14      | 14             | 15      | 21.56    |
| ٧Z              | 1.5      | 2.81                  | 18.08                              | 3.37         | 18.08    | T14      | 14             | 15      | 21.56    |
| V3              | 2.27     | 4.26                  | 26.69                              | 3.06         | 26.69    | T16      | 14             | 15      | 28.14    |
| VS              | 1.68     | 3.15                  | 19.59                              | 3.06         | 19.59    | T14      | 14             | 15      | 21.56    |
| V4              | 3.81     | 7.14                  | 34.84                              | 3.37         | 34.84    | T20      | 14             | 15      | 43.96    |
| V- <del>1</del> | 2.62     | 4.91                  | 19.59                              | 3.06         | 19.59    | T14      | 14             | 15      | 21.56    |
| V5              | 3.7      | 6.94                  | 40.5                               | 3.06         | 40.5     | T20      | 14             | 15      | 43.96    |
| VS              | 2.37     | 4.44                  | 22.59                              | 3.37         | 22.59    | T16      | 14             | 15      | 28.14    |
| V6              | 3.7      | 6.94                  | 40.5                               | 3.06         | 40.5     | T20      | 14             | 15      | 43.96    |
| VO              | 2.35     | 4.41                  | 22.59                              | 3.06         | 22.59    | T16      | 14             | 15      | 28.14    |
| V7              | 3.81     | 7.14                  | 46.05                              | 3.37         | 46.05    | T20      | 16             | 15      | 50.24    |
| <b>V</b> /      | 3.47     | 6.51                  | 22.59                              | 3.06         | 22.59    | T14      | 16             | 15      | 24.64    |
| V8              | 2.45     | 4.59                  | 40.5                               | 3.06         | 40.5     | T20      | 14             | 15      | 43.96    |
| Vo              | 0.81     | 1.52                  | 22.59                              | 3.37         | 22.59    | T16      | 14             | 15      | 28.14    |
| V9              | 2.52     | 4.73                  | 16.57                              | 3.06         | 16.57    | T14      | 14             | 15      | 21.56    |
| V9              | 2.37     | 4.44                  | 11.59                              | 3.06         | 11.59    | T12      | 14             | 15      | 15.82    |
| V10             | 2.16     | 4.05                  | 40.5                               | 3.37         | 40.5     | T20      | 14             | 15      | 43.96    |
| V10             | 0.8      | 1.5                   | 22.59                              | 3.06         | 22.59    | T16      | 14             | 15      | 28.14    |

### Remarque:


Les résultats de ferraillage trouvés dans les tableaux précédents nous donnent plusieurs modèles de ferraillage. La mise en œuvre de ces modèles sur chantier exige des moyens importants tels que la main d'œuvre qualifiée. Pour éviter tout risque de lacune dans la réalisation on choisira un modèle de ferraillage simple, uniforme, qui répond aux exigences réglementaires.

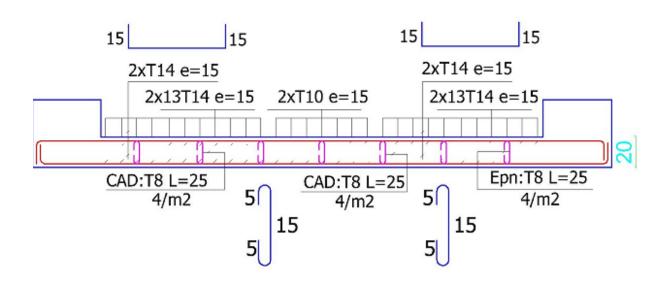


**Figure V.8 :** Contraintes  $\delta_{22}$ .



**Figure V.9 :** Contraintes  $\delta_{12}$ .





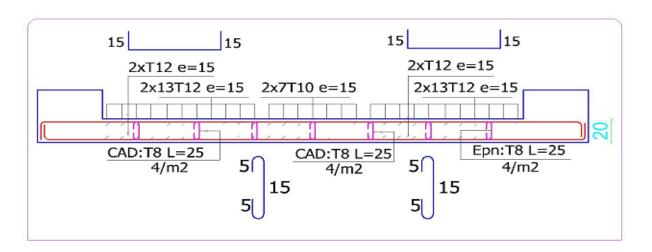



Figure V.10: Ferraillage des voiles (V3, RDC).





**Figure V.11:** Ferraillage des voiles (V3, 5<sup>éme</sup>).

### V.5.FERRAILLAGE DES LINTEAUX

- ➤ Les linteaux sont des éléments considérés comme des poutres courtes de faible raideur, bi encastrés dans les trumeaux.
  - Sous l'effet d'un chargement horizontal et vertical, le linteau sera sollicité par un moment M et un effort tranchant V. Les linteaux pourront donc être calculés en flexion simple.
- La méthode de ferraillage décrite ci-dessus est proposée dans le *RPA99 version 2003*.
- Le *RPA99 version 2003* limite les contraintes de cisaillement (dans les linteaux (et les trumeaux)) dans le béton à ;  $\tau_h \le \overline{\tau_h} = 0.2 f_{c28}$

$$au_b = \frac{\overline{V}}{b_0 d}$$
 Avec  $\overline{V} = 1.4 V_u^{cal}$ 

Ou bien : 
$$\tau_b = 1.4 \ \tau_u^{cal}$$
 (  $\tau_u^{cal} = S_{12}$  du fichier résultats du **ETABS**)

Avec:

 $b_0$ : Epaisseur du linteau ou du voile.

d: Hauteur utile = 0.9h.

h: Hauteur totale de la section brute.

# **V.5.1 Premier Cas :** $\tau_b \le 0.06 f_{c28}$

- Dans ce cas les linteaux sont calculés en flexion simple (avec les efforts M et V)
- On devra disposer:
  - Des aciers longitudinaux de flexion  $(A_l)$
  - Des aciers transversaux  $(A_t)$
  - Des aciers en partie courante, également appelés aciers de peau  $(A_c)$

# a. Aciers Longitudinaux:

Les aciers longitudinaux inférieurs ou supérieurs sont calculés par la formule :

$$A_l \ge \frac{M}{Z f_e}$$

Avec: 
$$Z = h - 2d$$

Où:

*h* : Est la hauteur totale du linteau.

*d*': Est la distance d'enrobage.

M: Moment dû à l'effort tranchant  $(\overline{V} = 1,4 V_u^{cal})$ 

### **b.** Aciers Transversaux :

Deux cas se présentent :

$$\alpha$$
. Premier sous cas: Linteaux Longs  $(\lambda_g = \frac{l}{h} > 1)$ 

On a: 
$$S \leq \frac{A_t f_e Z}{\overline{V}}$$

Où : S : Représente l'espacement des cours d'armatures transversales.

 $A_t$ : Représente la section d'une cour d'armatures transversales.

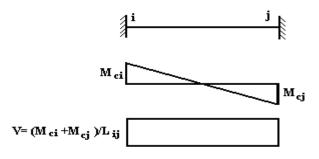
$$Z = h - 2 d$$

V: Représente l'effort tranchant dans la section considérée ( $\overline{V}$  =1,4  $V_u^{cal}$ )

l : Représente la portée du linteau.

 $\beta$  - <u>Deuxième Sous Cas</u>: Linteaux Courts  $(\lambda_g \le 1)$ 

On doit avoir: 
$$S \le \frac{A_t f_e l}{V + A_t f_e}$$


Avec: 
$$V = Min(V_1, V_2)$$

$$V_2 = 2V_u^{cal}$$

$$V_1 = \frac{M_{ci} + M_{cj}}{l_{ij}}$$

Avec :  $M_{ci}$  et  $M_{cj}$  moments « résistants ultimes » des sections d'about à droite et à gauche du linteau de portée  $l_{ij}$  (voir figure suivante) et calculés par :  $M_c = A_l f_e Z$ 

Où : 
$$Z = h - 2 d$$



# **V.5.2. Deuxième Cas** : $\tau_h > 0.06 f_{c28}$

Dans ce cas il y a lieu de disposer les ferraillages longitudinaux (supérieurs et inférieurs), transversaux et en zone courante (armature de peau) suivant les minimums réglementaires. Les efforts (M, V) sont repris suivant des bielles diagonales (compression et traction) suivant l'axe moyen des armatures diagonales  $A_D$  à disposer obligatoirement.

Le calcul de 
$$A_D$$
 se fait suivant la formule :  $A_D = \frac{V}{2 f_a \sin \alpha}$ 

Avec: 
$$tg\alpha = \frac{h-2d}{l}$$

Et: 
$$V = V_u^{cal}$$
 (sans majoration)  $(\tau_u = \frac{V_u^{cal}}{e h} = S_{12})$ 

# V.5.3. Ferraillage Minimal

b: Epaisseur du linteau

h: Hauteur totale du linteau

S: Espacement des armatures transversales

# a. Armatures Longitudinales $A_l$ et $A'_l$ :

$$(A_l, A'_l) \ge 0.0015 b h$$
 (0.15%) (avec  $A_l$  lit inférieur et  $A'_l$  lit supérieur)

# **b.** Armatures Transversales $A_t$ :

• si 
$$\tau_b \le 0.025 f_{c28}$$
  $\Rightarrow$   $A_t \ge 0.0015 b S$ 

• si 
$$\tau_b > 0.025 f_{c28}$$
  $\Rightarrow$   $A_t \ge 0.0025 b S$ 

$$S_t \le \frac{h}{4}$$
 (Espacement des cadres)

# c. Armatures de Peau (ou en section courante) $A_c$ :

Les armatures longitudinales intermédiaires ou de peau  $A_c$  (2 nappes) doivent être au total d'un minimum égale à 0.2%

C'est à dire :  $A_c \ge 0.002bh$  (en deux nappes)

# d. Armatures Diagonales $A_D$ :

• si 
$$\tau_b \le 0.06 f_{c28} \Rightarrow A_D = 0$$

• si 
$$\tau_b > 0.06 f_{c28} \Rightarrow A_D \ge 0.0015 b h$$

# Exemple de calcul:

# Linteau type 1:

Soit le linteau suivant :

$$h = 1.08 m$$

$$l = 1.3 m$$

$$b = 0.2 m$$

Les calculs:

• 
$$\tau_b = 5.85 \, MPa$$

• 
$$0.06 f_{c28} = \tau'_{b} = 1.5 MPa$$

$$\tau_b > 0.06 f_{c28}$$
  $\Rightarrow$  On est dans le cas  $N^{\circ}2$ 

Dans ce cas il y a lieu de disposer le ferraillage longitudinal (supérieur et inférieur), transversal et en zone courante suivant les minimums réglementaires suivants :

$$A_l = A'_l \ge 0.0015(0.2)(1.08)10^4 = 3.24cm^2$$

Soit: 
$$A_l = A'_l = 4T12 = 4,52 \text{ cm}^2$$

$$A_c \ge (0.002)(0.2)(1.08)10^4 = 4.32cm^2$$

Soit : 
$$A_c = 4T12 = 4.52$$
 cm<sup>2</sup> (répartie en deux nappes) (soit 2 barres /nappe)

$$ho 0.025 f_{c28} = 0.625 \, MPa \Rightarrow \tau_b > 0.025 \, f_{c28} \quad \text{donc}:$$

$$A_t \ge 0.0025 x b x S t = (0.0025)(0.2)(0.27)10^4 = 1.4 cm^2$$
 car <sup>2</sup>  $S_{t max} = \frac{h}{4} = \frac{1.08}{4} = 27 cm$   
soit:  $A_t = 6T8 = 3.02 cm^2$ 

Chapitre V
$$S_t = \frac{1.3}{5} = 26cm \quad \text{or} \quad S_t = 26 \text{ cm} < S_t^{max}$$

$$A_D = \frac{(\tau_u \ b \ h)}{2f_e \sin \alpha}$$

Avec: 
$$tg \ \alpha = \frac{h-2d'}{l} = \frac{1.08-2(2)}{130} = 0,800 \Rightarrow \alpha = 38.7^{\circ}$$

$$A_D = \frac{(5.85) \ (200) \ (1080)}{(2) \ (500) \ sin \ (38.7)} = 19,29cm^2$$

Soit :  $A_D = 2 \times 5T16 = 20.1 \text{ cm}^2$ 

- $A_D \ge 0,0015 \ b \ h = 3.24 \ cm^2$  c'est vérifié
- Longueur d'ancrage :  $L_a \ge \frac{h}{4} + 50\varphi = \frac{108}{4} + 50(1,6) = 107$  $\Rightarrow L_a=110 cm$

Le calcul des armatures est donné par le tableau suivant :

### Linteau 1 RDC:

| h<br>(m) | l<br>(m) | b<br>(m) | τ <sub>u</sub> (MPa) |     | $ 	au_b  > 0.025 f_{c28}$ | $A_l=A'_l$ $(cm^2)$ | $A_c$ $(cm^2)$ | $A_t$ $(cm^2)$ | $A_D$ $(cm^2)$ |
|----------|----------|----------|----------------------|-----|---------------------------|---------------------|----------------|----------------|----------------|
| 1.08     | 1.3      | 0,2      | 5.85                 | Oui | Oui                       | 3,24                | 4,32           | 1,4            | 19,29          |

Tableau V.70: Ferraillage des linteaux

### **Choix des armatures :**

Type 01 : 
$$\begin{cases} A_L = A'_L = 4T12 = 4,52 \ cm2 \\ A_c = 4T12 = 4,52 \ cm2 \\ A_t = 6T8 = 3,02 \ cm2 \quad ; \ S_t = 25 \ cm2 \\ A_D = 2 \ x \ 5T16 = 20.1 \ cm^2 \end{cases}$$

# Linteau 15<sup>ème</sup>:

| h (m) | l (m) | b (m) | τ <sub>u</sub> (MPa) | $\tau_b > 0.06 f_{c28}$ | $ 	au_b  > 0.025 f_{c28}$ | $A_{l}=A'_{l}$ $(cm^{2})$ | $A_c$ $(cm^2)$ | $A_t$ $(cm^2)$ | $A_D$ $(cm^2)$ |
|-------|-------|-------|----------------------|-------------------------|---------------------------|---------------------------|----------------|----------------|----------------|
| 1.08  | 1.3   | 0,2   | 2.7                  | Oui                     | Oui                       | 3,24                      | 4,32           | 1,4            | 9.34           |

Tableau V.71: Ferraillage des linteaux

### Choix des armatures :

Type 01: 
$$\begin{cases} A_L = A'_L = 4T12 = 4,52 \ cm2 \\ A_c = 4T12 = 4,52 \ cm2 \\ A_t = 6T8 = 3,02 \ cm2 \quad ; \ S_t = 25 \ cm2 \\ A_D = 2 \ x \ 3T16 = 12.06 \ cm^2 \end{cases}$$

### • Linteau 2 RDC:

| h            | l            | b            | $\tau_{\scriptscriptstyle u}$ | ~ \           | $ 	au_b  > 0.025 f_{c28}$ | $A_l=A'_l$ | $A_c$    | $A_t$    | $A_D$    |
|--------------|--------------|--------------|-------------------------------|---------------|---------------------------|------------|----------|----------|----------|
| ( <b>m</b> ) | ( <b>m</b> ) | ( <b>m</b> ) | (MPa)                         | $0.06f_{c28}$ | 0,023J <sub>c28</sub>     | $(cm^2)$   | $(cm^2)$ | $(cm^2)$ | $(cm^2)$ |
| 1.08         | 1.3          | 0,2          | 5.4                           | Оиі           | Oui                       | 3,24       | 4,32     | 1,4      | 18,67    |

Tableau V.72: Ferraillage des linteaux

### **Choix des armatures:**

Type 01: 
$$\begin{cases} A_L = A'_L = 4T12 = 4,52 \ cm2 \\ A_c = 4T12 = 4,52 \ cm2 \\ A_t = 6T8 = 3,02 \ cm2 \quad ; \ S_t = 25 \ cm2 \\ A_D = 2 \ x \ 5T16 = 20.1 \ cm^2 \end{cases}$$

# • Linteau 15ème:

| h<br>(m) | l<br>(m) | B (m) | (MPa) | $\tau_b > 0.06 f_{c28}$ | $ 	au_b  > 0.025 f_{c28}$ | $A_l=A'_l$ $(cm^2)$ |      | $A_t$ $(cm^2)$ | $A_D$ $(cm^2)$ |
|----------|----------|-------|-------|-------------------------|---------------------------|---------------------|------|----------------|----------------|
| 1.08     | 1.3      | 0,2   | 3.15  | Oui                     | Oui                       | 3,24                | 4,32 | 1,4            | 10,89          |

Tableau V.73: Ferraillage des linteaux

# Choix des armatures :

Type 01: 
$$\begin{cases} A_L = A'_L = 4T12 = 4,52 \ cm2 \\ A_c = 4T12 = 4,52 \ cm2 \\ A_t = 6T8 = 3,02 \ cm2 \quad ; \ S_t = 25 \ cm2 \\ A_D = 2 \ x \ 3T16 = 12.06 \ cm^2 \end{cases}$$

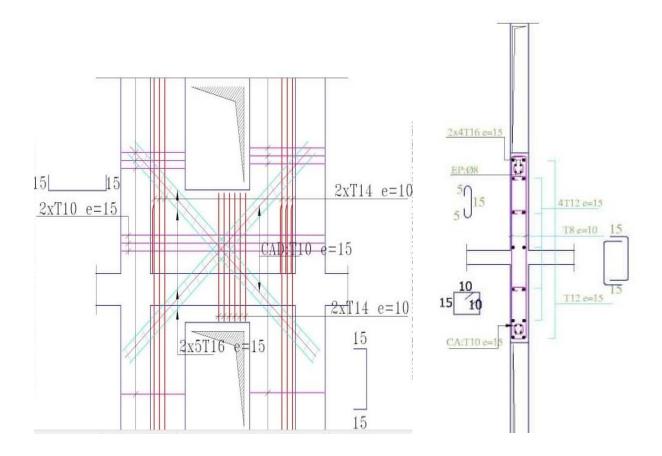



Figure V.12: Ferraillage de linteau (RDC).

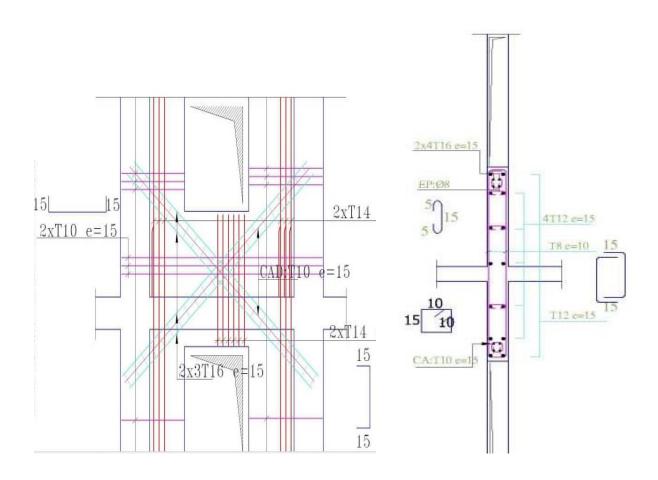



Figure V.13: Ferraillage de linteau  $(5^{\text{ème}})$ .

# Etude des Fondations

# **VI.1. Introduction:**

On appelle fondation la partie inférieure d'un ouvrage reposant sur un terrain d'assise au quelles sont transmise toutes les charges et surcharges supportées par l'ouvrage. Donc elles constituent la partie essentielle de l'ouvrage.

Il existe plusieurs types de fondation:

Fondation superficielle:

- Semelle isolée
- Semelle filante sous mur
- Semelle filante sous poteaux
- Semelle filante croisées
- Radier général
- Fondation profonde (semelle sur pieux)

# VI.2 Choix de type de fondation :

Choix de type de fondation se fait suivent trois paramètres.

- Les efforts transmis à la base.
- La contrainte du sol  $\sigma_{sol}$
- La classification du sol

L'étude géotechnique du site d'implantation de notre ouvrage, a donné une contrainte admissible égale à 2 bars. (Selon le rapport de sol)

# VI.3. Calcul des fondations :

Afin de satisfaite la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage ; la charge que comporte l'ouvrage – la portance du sol – l'ancrage et les différentes données du rapport du sol.

On commence le choix de fondation par les semelles isolées – filantes et radier, chaque étape fera l'objet de vérification.

On suppose que l'effort normal prévenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

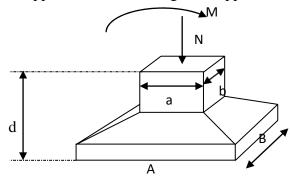
On doit vérifier la condition suivante :  $\frac{N}{S} \le \overline{\sigma}_{sol} \Rightarrow S \ge \frac{N}{\sigma_{sol}}$ 

### Avec:

 $\overline{\sigma}_{sol}$ : Contrainte admissible du sol.

N : Effort normal appliqué sur la fondation.

**S**: Surface de la fondation.


# VI.3.1. Semelle isolée:

On adoptera une semelle homothétique, c'est-à-dire le rapport de A sur B est égal au rapport

$$a \operatorname{sur} b : \frac{a}{b} = \frac{A}{B}$$

Pour les poteaux carrés : a=b donc  $A=B \Rightarrow S=A^2$ 

A est déterminé par : 
$$S \ge \frac{N}{\sigma_{sol}}$$
 d'où  $S = \left[\frac{N}{\sigma_{sol}}\right]$ 



Avec:

 $\sigma_{sol}$ : Contrainte du sol.

Figure VI.1: semelles isolée sous poteaux

N<sub>ser</sub>: Effort normal appliqué sur la fondation.

S : Surface de la fondation.

N=N<sub>1</sub> (revenant de la structure) calculé par la combinaison [G+Q].

Pour assurer la validité de la semelle isolée, on choisit le poteau le plus sollicité de telle façon à vérifier que :

$$\sigma_{ser} = \frac{N_{ser}}{S_{Ssemll}} \le \sigma_{sol}$$

L'effort normal total revenant aux fondations égale à :

N = 1878.472 kN

| TABLE: El   | ement Ford | es - Columns |             |             |         |           |         |         |             |         |         |         |              |
|-------------|------------|--------------|-------------|-------------|---------|-----------|---------|---------|-------------|---------|---------|---------|--------------|
| Story       | Column     | Unique Name  | Output Case | Case Type   | Station | P         | V2      | V3      | T           | M2      | M3      | Element | Elem Station |
|             |            |              |             |             | m       | kN        | kN      | kN      | kN-m        | kN-m    | kN-m    |         | m            |
| Structure i | inférieur  |              |             |             |         |           |         |         |             |         |         |         |              |
| Sous-sol 1  | C17        | 13           | ELS         | Combination | 0       | -406.803  | -3.9921 | -0.5141 | -0.00004802 | -0.4408 | -3.4707 | 13      | 0            |
|             |            |              |             |             |         |           |         |         |             |         |         |         |              |
| Structure s | supérieur  |              |             |             |         |           |         |         |             |         |         |         |              |
| RDC         | C17        | 13           | ELS         | Combination | 0       | -1471.669 | -4.6185 | -0.2557 | -0.0075     | -0.7619 | -3.8758 | 13      | 0            |

D'où 
$$S \ge \frac{1878.472}{200} \implies S=9.39\text{m}^2$$

$$A = \sqrt{S} \implies A = \sqrt{9.39} = 3.06m \implies B = 3.1 \text{ m}$$

• Vérification de la mécanique des sols (vérification de l'interférence entre deux semelles) :

Il faut vérifie que : 
$$L_{\min} \ge 1.5xB$$

Tel que L min est l'entre axe minimum entre deux poteaux

On a: 
$$L_{min} = 3m < 1.5x3.1 = 4.65 \text{ m} \dots \text{non vérifie}$$

# - Conclusion:

On remarque qu'il y a chevauchement des semelles, on passe alors à l'étude des semelles filantes.

### VI.3.2. Semelles filantes

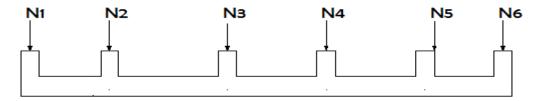



Figure VI.2: Semelles filantes

• L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux et les voiles qui se trouvent dans la même ligne.

On doit vérifier que: 
$$\sigma_{sol} \ge \frac{N}{S}$$

Tel que:

 $N=\sum N_i$  de chaque file de poteaux.

 $S=B \times L$ 

B: Largeur de la semelle.

L: Longueur de la file considérée.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$

Les résultats sont résumés dans le tableau qui suit:

Tableau VI.1: Sections des semelles filantes

| Files | N(KN)   | $S(m^2)$ | L(m) | B(m) | $B^{choisie}(m)$ | $S_{smll}(m^2)$ |
|-------|---------|----------|------|------|------------------|-----------------|
| A-A   | 7803.56 | 39.117   | 22.1 | 1.77 | 1.8              | 39.78           |
| В-В   | 10930.8 | 54.587   | 22.1 | 2.47 | 2.5              | 55.25           |
| C-C   | 12240.6 | 61.217   | 22.1 | 2.77 | 2.8              | 61.88           |
| D-D   | 25421.7 | 127.075  | 22.1 | 5.75 | 5.8              | 128.18          |
| E-E   | 11816   | 59.007   | 22.1 | 2.67 | 2.7              | 59.67           |
| F-F   | 13827.4 | 69.173   | 22.1 | 3.13 | 3.2              | 70.72           |
| G-G   | 9244.58 | 45.968   | 22.1 | 2.08 | 2.1              | 46.41           |
| Н-Н   | 1382.01 | 6.909    | 14.7 | 0.47 | 1.0              | 14.7            |

• Vérification de la mécanique de sol (Vérification de l'interférence entre deux semelles) :

Il faut vérifie que :  $\frac{S(semelles \ filants)}{S(surface \ total)} \le 50\%$ 

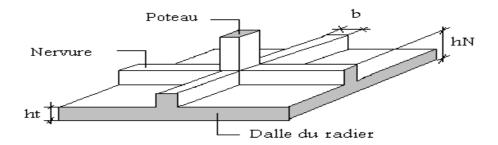
$$\frac{476.59}{604.7931} = 78.8\% > 50\% \dots \dots non \ v\'{e}rifier$$

### **Conclusion:**

Les largeurs des semelles occupent plus de la moitié de l'assise c'est-à-dire une faible bande de sol entre chaque deux files, ce qui engendre un risque de rupture de la bande du sol situé entre les deux semelles à cause du chevauchement des lignes de rupture.

Donc tout cela nous oblige d'opter pour un choix du radier générale.

### VI.3.3. Radier générale


### VI.3.3.1. Introduction:

Un radier est une dalle pleine réalisée sous toute la surface de la construction.

Cette dalle peut être massive (de forte épaisseur) ou nervurée; dans ce cas la dalle est mince mais elle est raidie par des nervures croisées de grande hauteur.

Dans notre cas, on optera pour un radier nervuré (plus économique que pratique).

L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.



**Figure VI.3:** Disposition des nervures par rapport au radier et aux poteaux.

### VI.3.3.2. Surface nécessaire :

Pour déterminer la surface du radier in faut que:  $\sigma_{\max} \le \sigma_{sol}$ 

$$\sigma_{\text{max}} = \frac{N}{S_{nec}} \le \sigma_{sol} \Rightarrow S_{nec} \ge \frac{N}{\sigma_{sol}}$$
Pour: 
$$\begin{cases} N = 91316kN \\ \sigma_{sol} = 2bars \end{cases}$$

$$S_{\text{nec}} \ge 456.58 \text{ m}^2$$

D'où la surface nécessaire est inférieure à celle du bâtiment.

- La surface occupée par l'ouvrage  $Sb=m^2 > 604.7931 S_{nec}$  (la surface a calculé par AUTOCAD).
- Débord de 50cm pour chaque côté.
- La section totale du radier est de : S <sub>rad</sub> =653.7673m<sup>2</sup>

# VI.3.3.3. Pré dimensionnement de radier nervure :

## 1. Dalle:

L'épaisseur de la dalle du radier doit satisfaire aux conditions suivantes:

### • Condition forfaitaire:

$$h_1 \ge \frac{L_{\text{max}}}{20}$$

Avec:

 $L_{max}$ : La longueur maximale entre les axes des poteaux.

$$L_{\text{max}} = 500cm \Rightarrow h_1 \ge 25cm$$

On prend : **h=40 cm.** 

### • Condition de cisaillement:

On doit vérifier que:  $\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u = Min(0.1f_{c28};4MPa) = 2.5MPa$ 

**Avec:** 
$$T_u = \frac{qL}{2}$$
 ;  $q = \frac{N_u 1ml}{S_{rad}}$ 

Nu= 99413.8884 KN

$$L=5.0m ; b=1m$$

$$\tau_{u} = \frac{qL}{2bd} = \frac{N_{u}L.1ml}{2S_{rad}.b.d} = \frac{N_{u}L}{2S_{rad}.b.(0.9h)} \le \overline{\tau}$$

$$h \ge \frac{N_u L.1ml}{2S_{rad}b(0.9\bar{\tau})} = 16.9cm$$

$$\Rightarrow h_2 = 30cm$$

• Conclusion: 
$$h \ge Max(h_1;h_2) = 40cm$$

Pour des raisons constructives on adopte h = 40 cm.

### 2. Nervure:

# a. La largeur des nervures :

### Condition de coffrage:

$$b \ge \frac{L_{\text{max}}}{10} = \frac{500}{10} = 50cm$$

### Donc

b = 50 cm dans les deux sens (x-x et y-y).

### b. La hauteur de nervure :

# • Condition de la flèche :

La hauteur des nervures se calcule par la formule de la flèche suivante :

$$\frac{L_{\text{max}}}{15} \le h_{N1} \le \frac{L_{\text{max}}}{10}$$

On a  $L_{max} = 5.0 \text{m}$ 

$$\Rightarrow$$
 33.3cm <  $h_{N1}$  < 50cm

On prend:  $\mathbf{h}_{N1}=40$  cm.

# • Condition de non poinçonnement :

$$N_u \le 0.045 U_c.h_3.f_{c28}$$

### Avec:

 $N_u$  = Effort normal du poteau le plus sollicité ( $N_u$  = 2064.0643kN)

 $U_c$  = Périmètre de contour au niveau du feuillet moyen ( $U_c$  = 2 [(a + b) + 2h])

a,b = Dimensions du poteau du sous-sol (55x55).

$$N_u \le 0.045 (2a + 2b + 4h).h.f_{c28}$$

# Condition de rigidité :

Pour étudier la raideur de la dalle du radier, on utilise la notion de la longueur élastique

définie par l'expression suivante : 
$$L_{\max} \leq \frac{\pi}{2} L_e$$
 Avec:  $L_e = \sqrt[4]{\frac{4EI}{bK}}$ 

I: Inertie de la section transversale du radier  $\left(I = \frac{bh^3}{12}\right)$ 

E: Module d'élasticité du béton (prendre en moyenne E=11496.76MPa).

b: Largeur de la semelle (b=50 cm).

K: Coefficient de raideur du sol (0,5kg/cm<sup>3</sup>≤K≤12kg/cm<sup>3</sup>).

On pourra par exemple adopter pour K les valeurs suivantes :

- $K=0.5[kg/cm^3]$   $\rightarrow$  pour un très mauvais sol.
- K=4 [kg/cm³] →pour un sol de densité moyenne.
- $K=12[kg/cm^3] \rightarrow pour un très bon sol.$

On aura:

Nous avons un sol de densité moyenne  $\rightarrow$  K=4 [kg/cm<sup>3</sup>].

$$\Rightarrow h \ge \sqrt[3]{\frac{12}{b} \left[ \left( \frac{2}{\pi} \right)^4 \frac{k \times b}{4E} L_{\text{max}}^4 \right]} \Rightarrow h \ge \sqrt[3]{\frac{12}{0.5} \left[ \left( \frac{2}{\pi} \right)^4 \frac{40000 \times 1}{4 \times 10818866} \times 5^4 \right]} \Rightarrow h \ge 131,56cm$$

vérifier

>5

 $(\pi/2)$  (Le + a) vérification I nervure (m<sup>4</sup>) Le (m) **Observation** H nervure (m) 0.4 0.00267 1.55 Non vérifier 3.30 <5 0.456 0.00395 1.71 3.55 <5 Non vérifier 1.32 0.09583 6.85

**Tableau VI.2 :** Chois la hauteur de nervure.

11,62

On prend:  $h_n=1,32m$ 

### Résumé:

-Epaisseur de la dalle du radier h = 40cm

- Les dimensions de la nervure 
$$\begin{cases} h_N = 132cm \\ b = 50cm \text{ sens } (x-x) \text{ et } b = 50cm \text{ sens } (y-y) \end{cases}$$

# VI.3.3.4. Caractéristiques Géométriques Du Radier :

Tableau VI.3 : caractéristiques géométriques du radier

| Position de cer | ntre de gravité    | Moments       | d'inerties                        |
|-----------------|--------------------|---------------|-----------------------------------|
| XG(m)           | y <sub>G</sub> (m) | $I_{xx}(m^4)$ | I <sub>yy</sub> (m <sup>4</sup> ) |
| 13.6632         | 11.0511            | 28456.1092    | 43852.2646                        |

### Vérification de la stabilité du radier:

Il est très important d'assurer la stabilité au renversement de cet ouvrage vis-à-vis des efforts horizontaux.

Le rapport 
$$\frac{M_s}{M_R}$$
 doit être supérieur au coefficient de sécurité 1,5  $\left(\frac{M_s}{M_R} > 1,5\right)$ 

### Avec:

Ms: Moment stabilisateur sous l'effet du poids propre, et éventuellement des terres.

M<sub>R</sub>: Moment de renversement dû aux forces sismique.

$$M_R = \sum M_0 + V_0 h$$

M<sub>0</sub>: Moment à la base de la structure.

V<sub>0</sub>: L'effort tranchant à la base de la structure.

h: Profondeur de l'ouvrage de la structure.

 $M_0$ ,  $V_0$  sont tirés à partir du fichier **ETABS**.

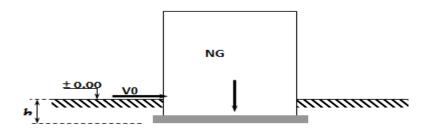



Figure VI.4 : Schéma statique du bâtiment.

### • **Sens x-x**:

M<sub>0</sub>=5692.2769 KN.m

V<sub>0</sub>=8934.9962 KN

N = N<sub>1</sub> (structure) +N<sub>2</sub> (poids propre de radier nervuré)

 $N_{1ser}=91316KN$ .

 $N_2 = \rho_b.S.h = 25 \times 1,32 \times 653,7673 = 21574,3209 kN$ 

### Donc:

N=112890,3290 KN.

Profondeur de l'ouvrage de la structure: h=6.54m.

 $M_R = \sum M_0 + V_0 h$ 

 $M_R = 5692.2769 + (8934.9962 \times 6.54) = 64127.15 \text{kN.m}$ 

 $M_s = N \times x_G = 1542443,14 \text{ KN.m}$ 

$$\frac{M_s}{M_R} = 24,05 \succ 1.5....V\acute{e}rifi\acute{e}e$$

## • Sens yy:

M<sub>0</sub>=16625.501 KN.m

V<sub>0</sub>=8082.8984 KN

### Donc:

 $M_R$ =69487.66 KN.m

 $M_s = N \times y_G = 1247562,31 \text{ KN.m}$ 

$$\frac{M_s}{M_R} = 17,95 > 1.5....V\acute{e}rifi\acute{e}$$

### • Conclusion:

Le rapport du moment de stabilité et du moment de renversement est supérieur à 1,5 ; Donc notre structure est stable dans les deux sens.

### b. Calcul des contraintes :

Le rapport du sol nous offre la contrainte de sol déterminé par les différents essais

In-situ et au laboratoire :  $\overline{\sigma}_{sol} = 200 \text{kN/m}^2$ 

Les contraintes du sol sont données par :

# 1. Sollicitation du premier genre:

On doit vérifier que : 
$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} \le \frac{-}{\sigma_{sol}}$$

$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = \frac{91316}{653.7673} = 139..67kN/m^2$$

$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = 139.67 kN/m^2 \le \frac{-}{\sigma_{sol}} = 200 kN/m^2$$
 ..... Condition vérifiée

### 2. Sollicitation du second genre:

$$\sigma_{1,2} = \frac{N}{S} \pm \frac{M_r \times X_{\text{max}}}{I}$$

### Avec:

 $\sigma_1$ : Contrainte maximale du sol.

 $\sigma_2$ : Contrainte minimale du sol.

- Si  $\sigma_2 > 0$ : la Répartition est trapézoïdale; La contrainte au quart de la largeur de la semelle, ne doit pas dépasser la contrainte admissible  $\sigma_{sol}$  ( $\sigma_m = \frac{3\sigma_1 + \sigma_2}{4} \le \sigma_{sol}$ ).
- Si  $\sigma_2 = 0$ : la Répartition est triangulaire; La contrainte  $\sigma_1$  ne doit pas dépasser 1,33 fois la contrainte admissible.

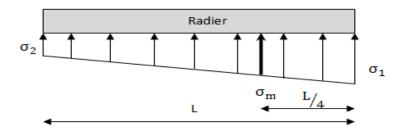



Figure VI.5 : Contraintes sous le radier

### Avec:

 $I_{xx} = 28456.1092 \text{ m}^4$ 

Iyy=43852.2646 m4

### • ELU:

N<sub>u</sub>=Nu (structure)+1.35xpoids propre de radier nervuré.

 $N_{u}$ =78472.2041+1.35×21574,3209

N<sub>u</sub>=107597,5373 KN

M : est le moment de renversement.

 $\overline{\sigma}_{sol} = 200 \text{kN/m}^2$ 

 $(M_{Rx}=64127.15 \text{ KN.m}; M_{Ry}=69487.66 \text{ KN.m}).$ 

Tableau VI.4: Contraintes sous le radier à l'ELU.

|              | $\sigma_1(kN/m^2)$                                      | $\sigma_2(kN/m^2)$            | $\sigma_m \left(\frac{L}{4}\right) (kN/m^2)$              |
|--------------|---------------------------------------------------------|-------------------------------|-----------------------------------------------------------|
| Sens x-x     | 195,81                                                  | 133,35                        | 180,195                                                   |
| Sens y-y     | 181,15                                                  | 148,01                        | 172,865                                                   |
| Vérification | $\sigma_1^{\text{max}} < 1,5 \sigma_{\text{sol}} = 300$ | $\sigma_2^{\mathrm{min}} > 0$ | $\sigma\left(\frac{L}{4}\right) < 1.33\sigma_{sol} = 266$ |

### **Conclusion:**

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

### • ELS:

 $N_{ser}$ = 112890,3209 KN

Tableau VI.5: Contraintes sous le radier à l'ELS.

|              | $\sigma_1(kN/m^2)$                                        | $\sigma_2(kN/m^2)$    | $\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$     |
|--------------|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------|
| Sens x-x     | 170,90                                                    | 108,45                | 155,287                                                   |
| Sens y-y     | 156,24                                                    | 123,11                | 147,957                                                   |
| Vérification | $\sigma_1^{\text{max}} < 1,5 \ \sigma_{\text{sol}} = 300$ | $\sigma_2^{\min} > 0$ | $\sigma\left(\frac{L}{4}\right) < 1.33\sigma_{sol} = 266$ |

### • Conclusion:

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

# > Détermination des sollicitations les plus défavorables:

Le radier se calcul sous l'effet des sollicitations suivante:

• **ELU:**  $\sigma_u = 180{,}195 \ kN/m^2$ 

• **ELS:**  $\sigma_{ser} = 155,287kN/m^2$ 

# VI.3.3.5. Ferraillage du radier :

Le radier fonctionne comme un plancher renversé dont les appuis sont constitués par les poteaux et les poutres qui sont soumises à une pression uniforme provenant du poids propre de l'ouvrage et des surcharges.

- La table du radier est considérée comme une dalle pleine d'épaisseur de 40cm.
- Les nervures sont considérées comme des poutres de 150 cm de hauteur.
- Le calcul du radier sera effectué pour le panneau de rive le plus défavorable et le panneau central le plus défavorable.

# Ferraillage de la table du Radier :

### 1. Détermination des efforts:

Si  $0.4 < \frac{L_x}{L_y} < 1.0 \Rightarrow$  La dalle travaille dans les deux sens, et les moments au centre de la dalle,

pour une largeur unitaire, sont définis comme suit:

$$M_x = \mu_x q L_x^2$$
.....sens de la petite portée.

$$M_{v} = \mu_{v} M_{x}$$
.....sens de la grande portée.

Pour le calcul, on suppose que les panneaux sont encastrés aux niveaux des appuis, d'où on déduit les moments en travée et les moments sur appuis.

### Panneau de rive :

- Moment en travée: 
$$\begin{cases} & M_{tx} = 0.85 M_x \\ & M_{ty} = 0.85 M_y \end{cases}$$

 $\label{eq:max-May} \text{Moment sur appuis:} \begin{cases} M_{ax} = M_{ay} = 0,3 M_x \text{ (appui de rive)} \\ M_{ax} = M_{ay} = 0,5 M_x \text{ (autre appuis)} \end{cases}$ 

### Panneau intermédiaire :

- Moment en travée: 
$$\left\{ \begin{array}{l} M_{tx} = 0.75 M_x \quad ; \, M_{ty} = 0.75 M_y \\ \\ M_{ax} = M_{ay} = 0.5 M_x \end{array} \right.$$

- Moment sur appuis: 
$$M_{ax}=M_{ay}=0.5M_{y}$$

Si  $\frac{L_x}{L_y} < 0.4 \Rightarrow$  La dalle travaille dans un seul sens.

Moment en travée: M<sub>t</sub>=0,85M<sub>0</sub>

Moment sur appuis:  $M_a=0.5M_0$ 

Avec: 
$$M_0 = \frac{ql^2}{8}$$

# 2. Valeur de la pression sous radier :

• **ELU**:  $q_u = \sigma_m^u . 1m = 180,195 \, kN/m$ 

• **ELS:**  $q_{ser} = \sigma_m^{ser}.1m = 155.287 \ kN/m$ 

# 3. Calcul des moments :

• Dans le sens de la petite portée :  $M_x = \mu_x q_u L_x^2$ 

• Dans le sens de la grande portée :  $M_y = \mu_y M_x$ 

Les coefficients  $\mu_x$  et  $\mu_y$  sont en fonction de  $\rho = \frac{L_x}{L_y}$  et de  $\nu$ .

v: Coefficient de poisson  $\begin{cases} 0 & \grave{a} \, l' ELU \\ 0.2 & \grave{a} \, l' ELS \end{cases}$ 

 $\mu_x$  et  $\mu_y$  sont donnés par l'abaque de calcul des dalles rectangulaires "BAEL91 modifié 99 "

# 3.1. Moment en travée et sur appuis à l'ELU (v=0) :

On prend le panneau de rive le plus sollicité avec :  $L_x = 3.8m$ ;  $L_y = 5m$ 

Alors:  $0.4 < \frac{L_x}{L_y} = \frac{3.8}{5} = 0.76 \le 1.0 \Rightarrow$  la dalle travaille dans les deux sens.

Les résultats des moments sont regroupés dans le tableau suivant:

Tableau VI.6: Calcul des moments à l'ELU.

| L <sub>x</sub> (m) | L <sub>y</sub> (m) | L <sub>x</sub> /L <sub>y</sub> | $\mu_{x}$ | $\mu_{\mathrm{y}}$ | q <sub>u</sub> (kN/m) | M <sub>x</sub> (kNm) | M <sub>tx</sub> (kNm) | M <sub>y</sub> (kNm) | M <sub>ty</sub> (kNm) | M <sub>a</sub> (kNm) |
|--------------------|--------------------|--------------------------------|-----------|--------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|
| 3.8                | 5                  | 0.76                           | 0.0608    | 0.5274             | 180.195               | 158.20               | 118.65                | 83.43                | 62.58                 | 79.1                 |

Tableau VI.7: Calcul des moments à l'ELS.

| L <sub>x</sub> (m) | L <sub>y</sub> (m) | L <sub>x</sub> /L <sub>y</sub> | $\mu_{x}$ | μ <sub>y</sub> | q <sub>s</sub> (kN/m) | M <sub>x</sub> (kNm) | M <sub>tx</sub> (kNm) | M <sub>y</sub><br>(kNm) | M <sub>ty</sub> (kNm) | M <sub>a</sub><br>(kNm) |
|--------------------|--------------------|--------------------------------|-----------|----------------|-----------------------|----------------------|-----------------------|-------------------------|-----------------------|-------------------------|
| 3.8                | 5                  | 0.76                           | 0.0672    | 0.6580         | 155.287               | 150.69               | 113.01                | 99.15                   | 74.37                 | 75.35                   |

# 4. Calcul de ferraillage :

Le ferraillage se fait avec le moment maximum en travée et sur appuis. On applique l'organigramme d'une section rectangulaire soumise à la flexion simple.

Les résultats sont regroupés dans le tableau suivant

 $f_{c28}$ = 25MPa;  $f_{t28}$ =2.1MPa;  $\sigma_{bc}$ =15MPa;

 $f_e=500MPa$ ;  $\sigma_s=435MPa$ ; b=100cm; h=40 cm;

d=0,9h=36 cm, fissuration non préjudiciable.

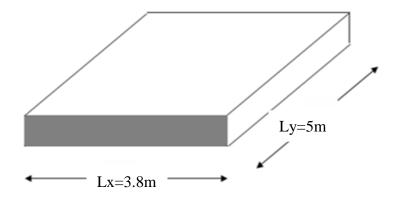



Figure VI.6: Vue en plan illustrant les dimensions du panneau de rive le plus sollicité

 $A_s^{cal}(cm^2)$  $A_s^{adp}(cm^2)$  $M_u(KN.m)$ Sens Z (cm) Choix μ  $S_{\mathsf{t}}$  $\alpha$ 158.20 0.0861 34.37 6T16 12.06 20 Travée X-X 0.113 10.58 83.43 0.0454 0.058 35.16 5.45 6T16 12.06 20 у-у 0.0431 10.05 25 79.1 0.055 5T16 Appui X-X 35.21 5.16

Tableau VI.8: Ferraillage des panneaux du radier

# > Espacement:

у-у

$$Esp \le Min(3h;33cm) \Rightarrow S_t \le Min(120cm;33cm) = 33cm$$

### \* En travée:

### • Sens x-x:

$$S_t = \frac{100}{5} = 20cm < 33cm$$

On opte  $S_t=20$  cm.

• Sens y-y:

$$S_t = \frac{100}{5} = 20cm < 33cm$$

On prend S<sub>t</sub>=20 cm

**Aux Appuis:** 

$$S_t = \frac{100}{4} = 25cm < 33cm$$

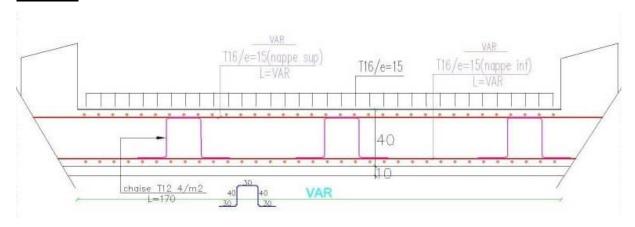
On prend S<sub>t</sub>=20 cm.

### 5. Vérifications nécessaires :

# > Condition de non fragilité :

$$A_s^{\text{min}} = 0.23bd \frac{f_{t28}}{f_e} = 3.48cm^2$$
 ..... Vérifier

# Vérification des contraintes à l'ELS:


**Tableau VI.9:** Vérification des contraintes (radier).

|        | Sens | M <sub>ser</sub> (KN.m) | $A_s$ (cm <sup>2</sup> ) | σ <sub>bc</sub> (MPa) | $\overline{\sigma}_{bc}$ (MPa) | $\sigma_s$ (MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|--------|------|-------------------------|--------------------------|-----------------------|--------------------------------|------------------|-----------------------------|--------------|
| Travée | х-х  | 150.69                  | 12.06                    | 8.82                  | 15                             | 73.9             | 250                         | verifier     |
|        | у-у  | 99.15                   | 12.06                    | 5.61                  | 15                             | 47               | 250                         | verifier     |
| Appui  | X-X  | 75.35                   | 10.05                    | 4.5                   | 15                             | 34.8             | 250                         | verifier     |
|        | у-у  |                         |                          |                       |                                |                  |                             |              |

# Remarque:

La séparation entre les deux nappes est assurée par des armatures de diamètre T12 généralement, appelées CHAISES donc on prévoit : 4 chaises deT12 / m².

# Sens x-x:



# Sens y-y:

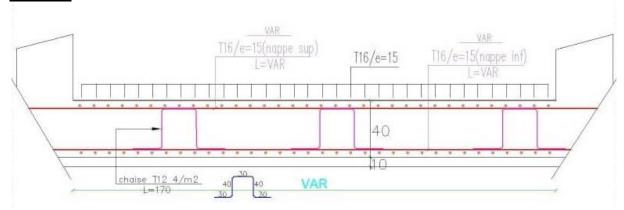



Figure VI.7: Ferraillage de la Dalle du Radier.

# b. Ferraillage Des Nervures :

### 1. Calcul des efforts :

Pour le calcul des efforts, on utilise la méthode forfaitaire (BAEL91 modifié 99)

On a : 
$$M_0 = \frac{qL^2}{8}$$

En travée :  $M_t = 0.85M_0$ 

Sur appuis :  $M_a = 0.5M_0$ 

# 2. Calcul des armatures longitudinales :

b = 50cm; h=132cm; d=118.5cm.

# **Sens porteur (y-y):**

L = 5m;  $q_u=180,195kN/ml$ .

**Tableau VI.10 :** Ferraillage des nervures sens (y-y).

|        | M <sub>u</sub> (kNm) | μ     | A      | Z (cm) | $A_s^{cal}(cm^2)$ | Choix     | $A_s^{adp}(cm^2)$ |
|--------|----------------------|-------|--------|--------|-------------------|-----------|-------------------|
| Travée | 478.64               | 0.048 | 0.0615 | 115.58 | 9,51              | 4T16+2T14 | 11.12             |
|        |                      |       |        |        |                   |           |                   |
| Appuis | 281.55               | 0.028 | 0.0355 | 116.82 | 5.54              | 4T16      | 8.04              |
|        |                      |       |        |        |                   |           |                   |

# • Sens non porteur (x-x):

L = 3.8m;  $q_u=180.195kN/ml$ 

**Tableau VI.11:** Ferraillage des nervures sens (x-x)

|        | M <sub>u</sub> (kNm) | μ     | A      | Z (cm) | $A_s^{cal}(cm^2)$ | Choix     | $A_s^{adp}(cm^2)$ |
|--------|----------------------|-------|--------|--------|-------------------|-----------|-------------------|
| Travée | 276.46               | 0.028 | 0.0355 | 116.82 | 5.44              | 4T16+2T14 | 11.12             |
| Appuis | 162.63               | 0.016 | 0.0202 | 117.52 | 3.18              | 4T16      | 8.04              |

### a. Vérifications nécessaires :

# > Condition de non fragilité :

$$A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e} = 5.72cm^2....V\acute{e}rifi\acute{e}e$$

### ➤ Vérification des contraintes à l'ELS:

Nous avons: q<sub>ser</sub>=155.287KN/ml

Tableau VI.12: Vérification des contraintes (Nervure).

|        | Sens | M <sub>ser</sub> (kNm) | A <sub>s</sub> (cm <sup>2</sup> ) | σ <sub>bc</sub><br>(MPa) | $\overline{\sigma}_{bc}$ (MPa) | σ <sub>s</sub><br>(MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|--------|------|------------------------|-----------------------------------|--------------------------|--------------------------------|-------------------------|-----------------------------|--------------|
| Travée | X-X  | 238.25                 | 11.12                             | 4.26                     | 15                             | 30.8                    | 250                         | verifier     |
|        | у-у  | 412.48                 | 8.04                              | 8.62                     | 15                             | 53.3                    | 250                         | verifier     |
| Appui  | X-X  | 140.15                 | 11.12                             | 2.51                     | 15                             | 18.1                    | 250                         | verifier     |
|        | у-у  | 242.64                 | 8.04                              | 5.07                     | 15                             | 31.4                    | 250                         | verifier     |

# > Vérification de la contrainte tangentielle du béton :

On doit vérifier que :  $\tau_u \le \overline{\tau_u} = Min(0.1f_{c28}; 4 MPa) = 2.5 MPa$ 

$$\tau_{u} = \frac{T_{u}}{bd}$$

$$T_{u} = \frac{q_{u}L}{2} = \frac{180.195 \times 5}{2} = 450.49kN$$

$$\tau_{u} = \frac{450.49 \times 10^{3}}{500 \times 1320} = 0.68MPa \prec \overline{\tau}_{u} = 2.5MPa.....Vérifier$$

# > Armatures transversales :

### • BAEL 91 modifié 99 :

\* 
$$\frac{A_t}{b_0 S_t} \ge \frac{\tau_u - 0.3 f_{tj} K}{0.8 f_e}$$
 (K = 1 pas de reprise de bétonnage)

 $*S_t \le Min(0.9d;40cm) = 40cm$ 

$$*\frac{A_{t}f_{e}}{b_{0}S_{t}} \ge Max\left(\frac{\tau_{u}}{2};0,4MPa\right) = 0,341MPa$$

# > RPA99 version 2003 [2]:

$$*\frac{A_t}{S_t} \ge 0,003b_0$$

\* 
$$S_t \leq Min\left(\frac{h}{4};12\phi_l\right) = 19.2cm....Zone nodale$$

$$*S_t \le \frac{h}{2} = 75cm$$
.....Zone courante

Avec

$$\phi_t \leq Min\left(\frac{h}{35};\phi_l;\frac{b}{10}\right) = 1.6cm$$

 $f_e=500MPa$ ;  $\tau_u=0.68MPa$ ;  $f_{t28}=2.1MPa$ ; b=50cm; d=118.5cm

On trouve:

- $S_t=15$ cm.....Zone nodale.
- $S_t=30$ cm....Zone courante.

 $A_t \ge 2.25 \text{cm}^2$ 

On prend: 4T10=3.14cm<sup>2</sup>

### > Armatures de peau :

Pour les poutres de grande hauteur, il y a lieu de prévoir des armatures de peau dont la section dépend du préjudice de la fissuration.

En effet on risquerait en l'absence de ces armatures d'avoir des fissures relativement ouvertes en dehors des zones armées par les armatures longitudinales inférieures et supérieures.

Leur section est au moins  $3\text{cm}^2$  /ml pour mettre de longueur de paroi mesuré perpendiculairement à leur direction (h=132 cm).

 $A_p=3cm^2/m \times 0.7=2.1cm^2$ 

**On opte** :  $2T12 = 2.26 \text{cm}^2$ 

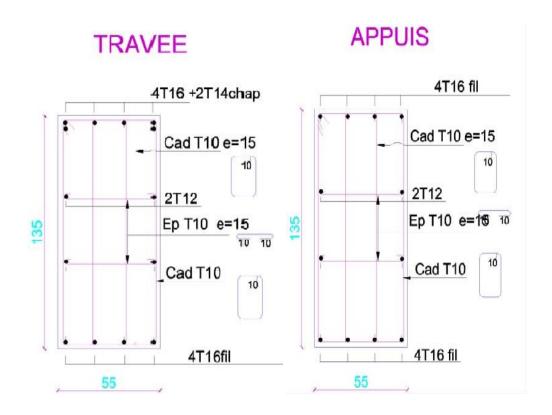



Figure VI.8: Ferraillage des nervures du sens porteur

# 6. Ferraillage du débord :

Le calcul du débord est analogue à celui d'une poutre en console d'un mètre de largeur, on considère que la fissuration est préjudiciable.

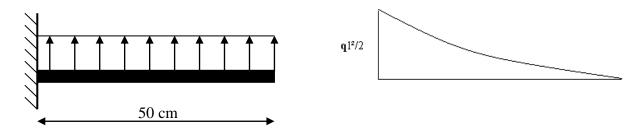



Figure VI.9: Schéma statique du débord

Figure VI.10: Diagramme des Moments.

# > Evaluation des0 charges et surcharges:

# Calcul des efforts :

La section dangereuse est au niveau de l'encastrement

• **E.L.U**: Mu = 
$$\frac{q_u \cdot L^2}{2}$$
 = 22.52KN.m

$$T_u = -q_u .L = -90.10KN$$

• **E.L.S**: 
$$M_{ser} = \frac{q_{ser}.L^2}{2} = 19.41 \text{kN.m}$$

$$T_{ser} = -q_{ser} . L = -77.64KN$$

# > Calcul de ferraillage :

Le ferraillage se fera pour une bande de 1m, et selon l'organigramme I (voir annexe).

Avec: b = 100cm, h = 40cm, d = 36cm,  $f_{c28} = 25MPa$ ,  $f_{bc} = 14.17MPa$ .

Tableau. VI.13: Ferraillage du débord

| M <sub>u</sub> (kNm) | μ     | A     | Z (cm) | $A_s^{cal}(cm^2)$ | Choix | $A_s^{adp}(cm^2)$ |
|----------------------|-------|-------|--------|-------------------|-------|-------------------|
| 22.52                | 0.012 | 0.015 | 35.78  | 1.44              | 4T16  | 8.04              |

# > Condition de non fragilité:

$$A_s^{\min} = 0.23 \, b.d \cdot \frac{f_{f28}}{f_e} = 3.48 cm^2 < 8.04 vérifieé$$

esp=cm.

### > Armature de répartition:

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 2.01 \, cm^2 \le A_r \le 4.02 \, cm^2$$

On adopte :  $3T12=3.39 \text{ cm}^2$ ,

 $S_T = 25$ cm.

### > Vérification de la contrainte tangentielle du béton:

On doit vérifier que :  $\tau_u < \overline{\tau}_u = Min(0.1f_{c28};4MPa) = 2.5MPa$ 

Avec:

$$\begin{split} &\tau_{u} = \frac{T_{u}}{bd} \\ &T_{u} = q_{u}l = 180.195kN \\ &\tau_{u} = \frac{180.195\times10^{3}}{1000\times360} = 0.5MPa < \overline{\tau}_{u} = 2.5MPa......V\acute{e}rifi\acute{e}e \end{split}$$

### Vérification des contraintes à l'ELS:

 $q_{ser} = 155.287 \text{ kN/ml}$ 

$$M_{ser} = 19.41kN.m$$

Les résultats sont donnés dans le tableau suivant :

$$\sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

Fissuration préjudiciable... 
$$\overline{\sigma}_s = \xi = Min\left(\frac{2}{3}f_e, Max(0.5f_e; 110\sqrt{\eta.f_{t28}})\right)$$

Tableau. VI.14: Vérification des contraintes du débord

| M <sub>ser</sub> (kNm) | A <sub>s</sub> (cm <sup>2</sup> ) | σ <sub>bc</sub><br>(MPa) | $\overline{\sigma}_{bc}$ (MPa) | σ <sub>s</sub><br>(MPa) | $\overline{\sigma}_s$ (MPa) | Vérification |
|------------------------|-----------------------------------|--------------------------|--------------------------------|-------------------------|-----------------------------|--------------|
| 19.41                  | 8.04                              | 1.87                     | 15                             | 74.1                    | 250                         | OK           |

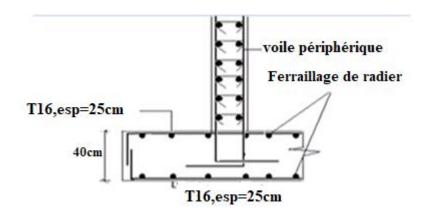



Figure VI.11: Ferraillage du Débord.

# VI.4. Etude du voile périphérique :

### VI.4. 1.Introduction

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec les planchers du RDC, le sous-sol et les fondations.

### VI.4.1. Pré dimensionnement :

Pour le pré dimensionnement du voile périphérique, on se réfère aux prescriptions du RPA99 version 2003, qui stipule d'après l'article 10.1.2.

- ❖ Les ossatures au-dessous du niveau de base comportent un voile périphérique continu entre le niveau de fondation et le niveau de base
- ❖ Ce voile doit avoir les caractéristiques minimales ci-dessous :
   Epaisseur e≥15cm
  - Les armatures sont constituées de deux nappes.
  - ◆ Le pourcentage minimum des armatures est de 0,1%B dans les deux sens (horizontal et vertical).
  - ♦ Les ouvertures dans ce voile ne doivent pas réduire sa rigidité d'une manière importante.
  - ◆ La longueur de recouvrement est de 50Ø avec disposition d'équerres de renforcement dans les angles.

Avec: B=15 cm (Section du voile).

# VI.4. 2. Évaluation des Charges :

On considère le voile comme une dalle pleine reposant sur 4 appuis et qui supporte les charges horizontales dues aux poussées des terres. On considère le tronçon le plus défavorable.

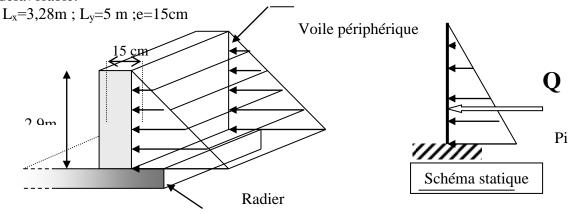



Figure VI.12 : Vue illustrant les dimensions du panneau le plus sollicité

Les charges et surcharges prise uniformément répartie sur une bande de 1m se situe à la base du voile (cas le plus défavorable).

BAEL91 modifié 99, la charge de poussées des terres est donnée par

$$P_i = k_0 \cdot \gamma_d \cdot H$$

# Avec:

 $P_i$  = Contrainte à la base sur une bande de 1m.

 $k_0$ = Coefficient de poussée =  $tg^2$ . [  $(\frac{\pi}{4})$ - $(\frac{\varphi}{2})$ ].

 $\gamma_h$  = Poids spécifique des terres ( $\gamma_h$ =21,4kN/m<sup>3</sup>).

H = Hauteur du voile (H=5 m).

 $\varphi$ : Angle de frottement interne du remblai = 40,6°.

$$\varphi = 40.6^{\circ} \Rightarrow K_0 = f(\varphi) = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 0.2116$$

Donc 
$$Pi = K_0.\gamma_h.H = 22,64kN/ml \Rightarrow P_u = 1,35P_i = 30,57kN/ml$$

### 3. Effort dans la Dalle:

$$\frac{L_x}{L_y} = 0.656 > 0.4 \Rightarrow$$
 La dalle travaille dans les deux sens.

$$\mu_x=0.0737$$
;  $\mu_y=0.3753$ 
 $M_x = \mu_x P_u L_x^2 = 24.24 kNm$ 
 $M_y = \mu_y M_x = 9.09 Nm$ 

• Moment en travée :

$$M_{tx}$$
=0,75 $M_x$ =18,18 kNm  $M_{ty}$ =0,75 $M_y$ = 6,81kNm

• Moment sur appuis :

$$M_{ax} = M_{ay} = 0.5 M_x = 12.12 kNm$$

### > Calcul du Ferraillage :

b=100cm; h=15cm; d=13,5cm;  $\sigma_{bc}$ =14,17MPa

Les résultats du ferraillage sont regroupés dans le tableau suivant :

Tableau VI.15: Ferraillage du Voile Périphérique

|        | Sens       | Mu<br>(kNm) | М      | A <sub>s</sub> ' (cm <sup>2</sup> ) | α     | Z<br>(cm) | As <sup>cal</sup> (cm <sup>2</sup> ) | Choix | A <sub>s</sub> <sup>adp</sup> (cm <sup>2</sup> ) | Esp<br>(cm) |
|--------|------------|-------------|--------|-------------------------------------|-------|-----------|--------------------------------------|-------|--------------------------------------------------|-------------|
| Travée | X-X        | 18,18       | 0,0704 | 0                                   | 0,091 | 13,01     | 3,21                                 | 6T10  | 4,71                                             | 15          |
| Travee | у-у        | 6,81        | 0,0264 | 0                                   | 0,033 | 13,32     | 1,17                                 | 6T8   | 3,02                                             | 15          |
| Appuis | x-x<br>y-y | 12,12       | 0,0469 | 0                                   | 0,060 | 13,18     | 2,11                                 | 4T10  | 3,14                                             | 25          |

### a. Condition de Non Fragilité :

$$A_s^{\min} = 0.23bd \frac{f_{t28}}{f_s} = 1.30cm^2 < 4.71cm^2....vérifieé$$

# b. Condition exigées par le RPA99/version 2003 :

Le RPA99 préconise un pourcentage minimum de 0,1% de la section dans les deux sens et sera disposé en deux nappes.

$$A_s^{min} = 0.1\% \times 100 \times 15 = 1.5 \text{ cm}^2 \times 4.71 \text{cm}^2 \dots \text{vérifieé}$$

# c. Vérification de l'Effort Tranchant :

On doit vérifier que : 
$$\tau_{u} = \frac{T_{u}^{\max}}{bd} \leq \overline{\tau}_{u} = 0,05 f_{c28} = 1,25 MPa$$
 
$$T_{x} = \frac{q_{u}L_{x}L_{y}}{2L_{x} + L_{y}} = 43,37 kN$$
 
$$T_{y} = \frac{q_{u}L_{x}}{3} = 33,42 kN$$
 
$$T_{u}^{\max} = Max(T_{x};T_{y}) = 43,37 kN$$
 
$$\tau_{u} = \frac{43,37 \times 10^{3}}{1000x135} = 0,32 MPa < 1,25 MPa...... Vérifier43$$

### d. Vérification à l'ELS:

### a. Evaluation des sollicitations à l'ELS:

$$\frac{L_x}{L_y} = 0,656 \succ 0,4 \Rightarrow Q_{ser} = 22,64kN/ml$$

$$\mu_x = 0,0792$$

$$\mu_y = 0,5351$$

$$M_x = \mu_x Q_{ser} L_x^2 = 19,29kNm$$

$$M_y = \mu_y M_x = 10,32kNm$$

### • Moment en travée :

$$M_{tx}$$
=0,75 $M_x$ =14,47 $k$ N $m$   
 $M_{ty}$ =0,75 $M_y$ =7,74 $k$ N $m$ 

### • Moment sur appuis :

$$M_{ax}=M_{ay}=0.5M_x=9.65kN$$

### b. Vérification des contraints:

Il faut vérifier que:  $\sigma_{bc} \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 15MPa$ 

Le tableau suivant récapitule les résultats trouvés :

Tableau VI.16: Vérification des contraintes à l'ELS

|        | Sens       | M <sub>ser</sub> (kNm) | A <sub>s</sub> (cm <sup>2</sup> ) | σ <sub>bc</sub> (MPa) | $\overline{\sigma}_{bc}$ (MPa) | σ <sub>s</sub> (MPa) | $\overline{\sigma}_{s}$ (MPa) | Vérification |
|--------|------------|------------------------|-----------------------------------|-----------------------|--------------------------------|----------------------|-------------------------------|--------------|
| Travée | X-X        | 14,47                  | 4,71                              | 7,04                  | 15                             | 55,5                 | 250                           | Oui          |
| Havee  | у-у        | 7,74                   | 3,02                              | 4,05                  | 15                             | 29,7                 | 250                           | Oui          |
| Appuis | x-x<br>y-y | 9,65                   | 3,14                              | 5,04                  | 15                             | 38,4                 | 250                           | Oui          |

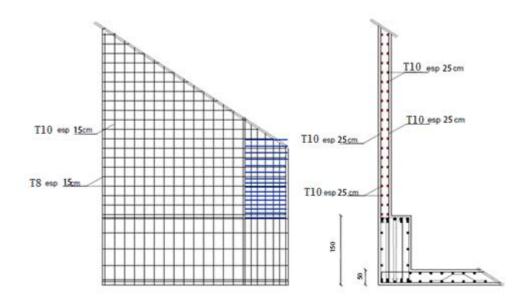
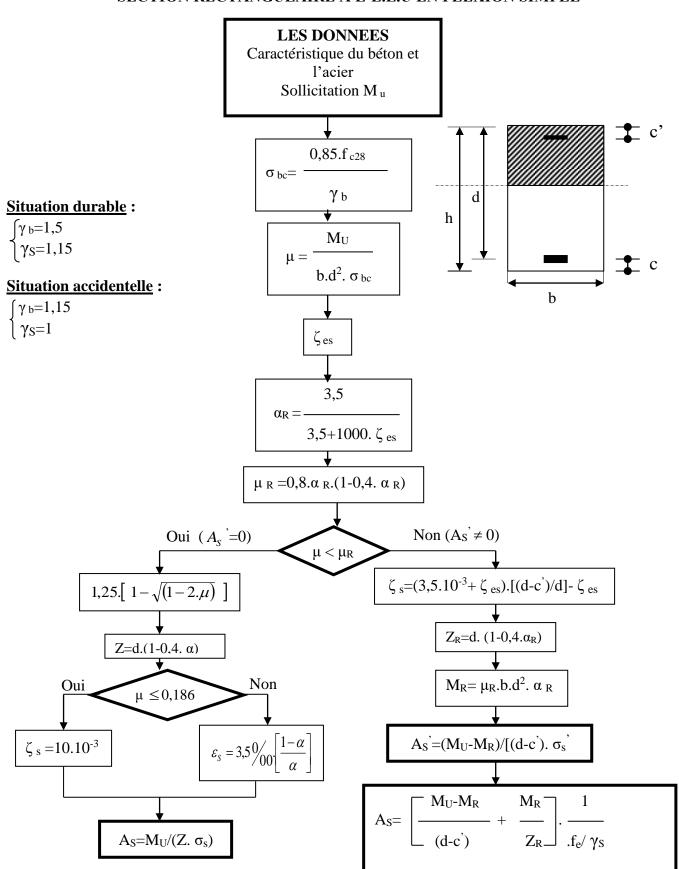



Figure VI.13 : Ferraillage du Voile Périphérique.

# Conclusion

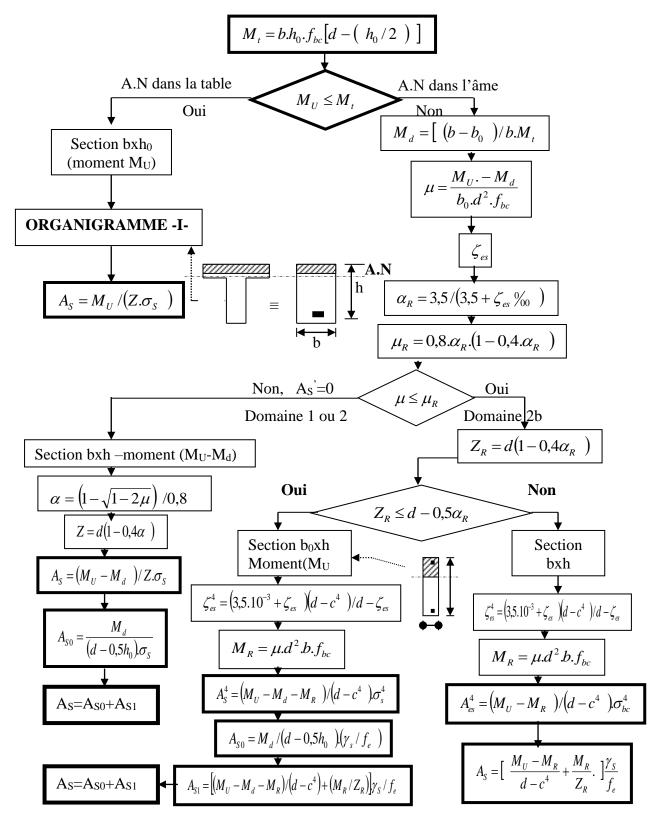
### **CONCLUSION GENERALE:**

Ce projet de fin d'étude, nous a permis de mettre en pratique toutes les connaissances que nous avons acquis durant notre cycle de formation, de les approfondir en se basons sur les documents techniques et réglementaires, de mettre en application les logiciels de calcul récents (ETABS 18.0.2, SOCOTEC), et de mettre en évidence les principes de base qui doivent être pris en compte dans la conception et le calcul des structures en béton armé en zone sismique.


D'après l'étude qu'on a faite, il convient de souligner que pour la conception parasismique, il est très important que l'ingénieur civil et l'architecte travaillent en étroite collaboration dès le début du projet pour éviter toutes les conceptions insuffisantes et pour arriver à une sécurité parasismique réalisée sans surcout important.

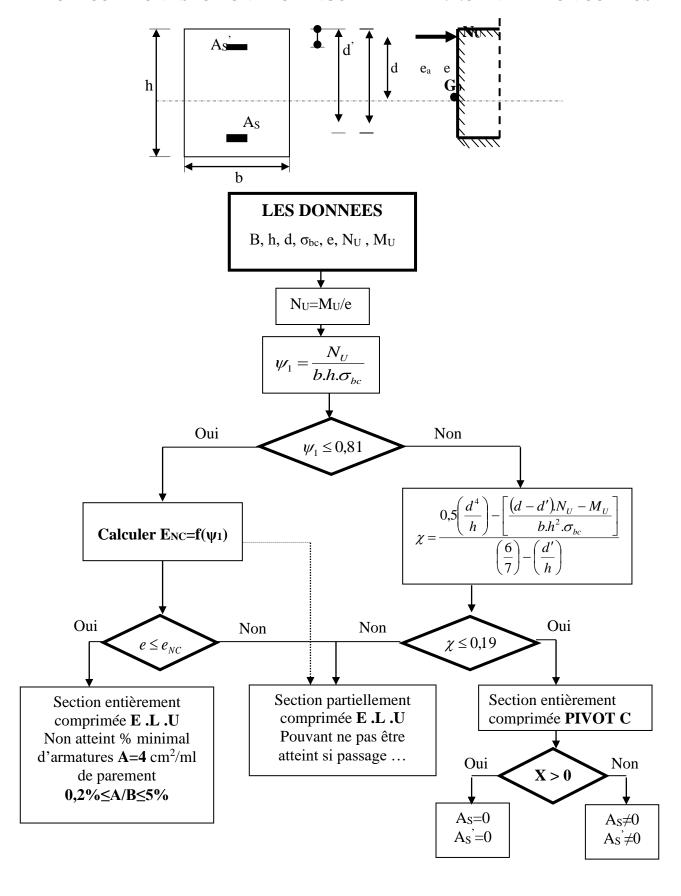
Ainsi, on arrive à la fin des travaux de fin d'études, qui est la résultante des longues années d'étude. Nous espérons que ce travail aura une double répercussion ; la première c'est de nous servir comme élément de référence, la seconde, il servira peut être comme support pour nos futurs camarades qui seront intéressés par cette voie.

# **Annexe**


# **ORGANIGRAMME -I-**

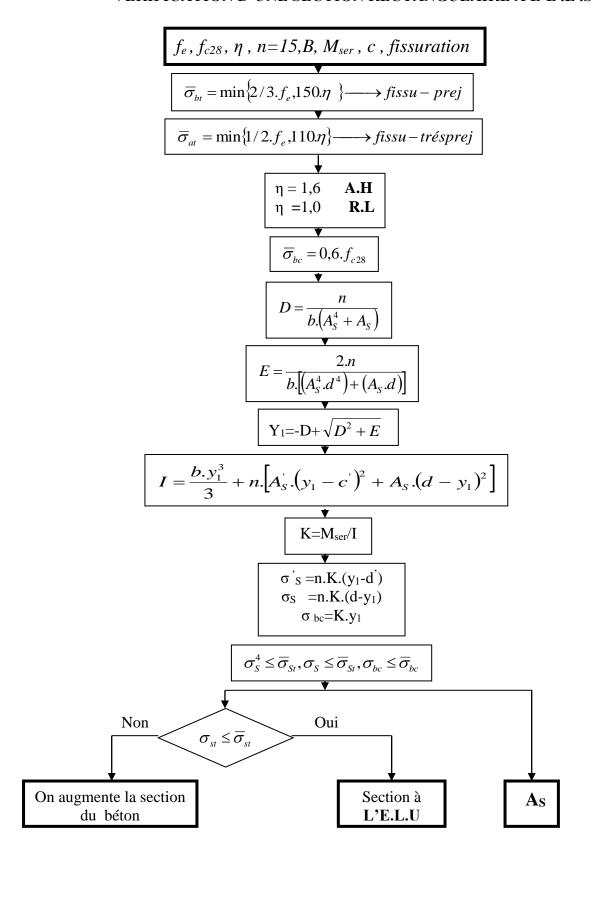
# SECTION RECTANGULAIRE A L'E.L.U EN FLEXION SIMPLE



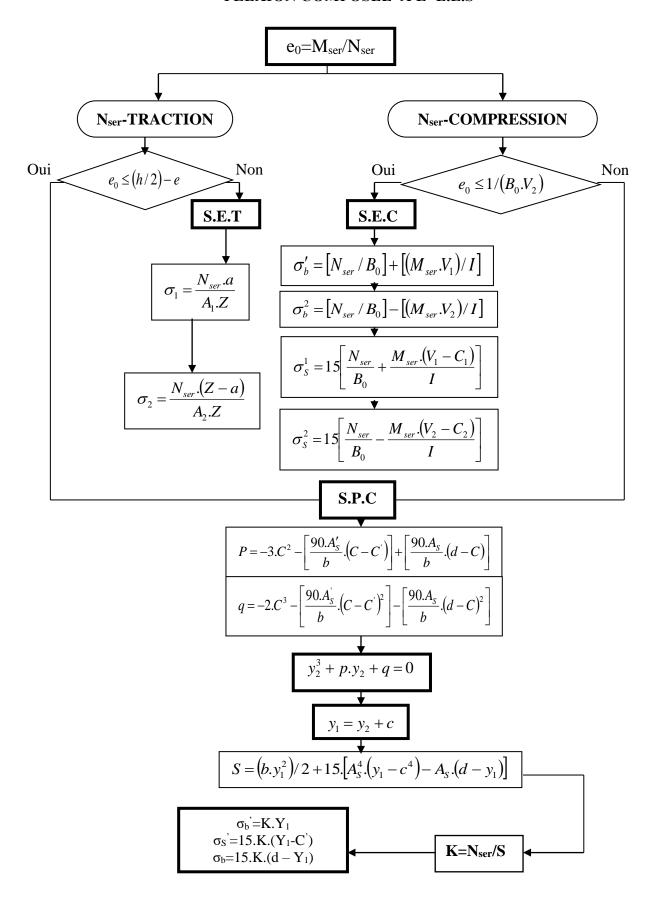

# **ORGANIGRAMME -II-**

# CALCUL D'UNE SECTION EN -Té- A L'E.L.U EN FLEXION SIMPLE

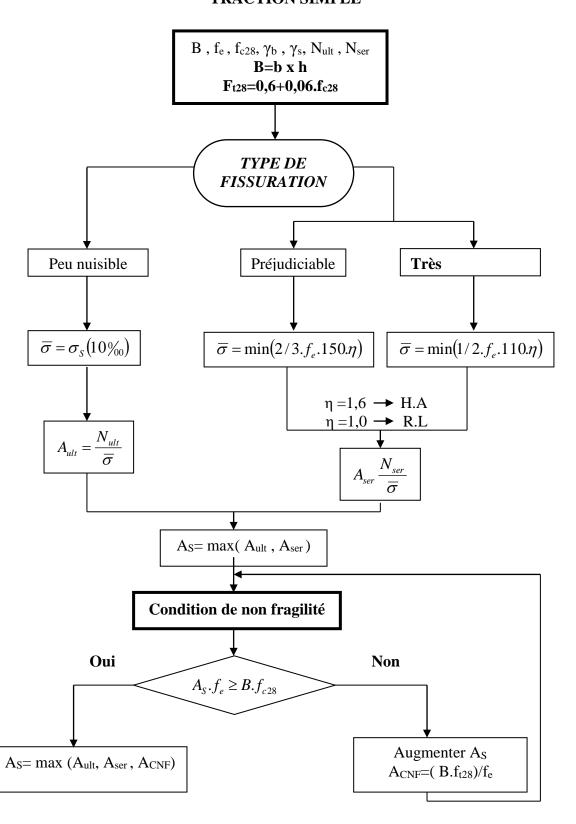



# **ORGANIGRAMME -III-**

# CALCUL D'UNE SECTION RECTANGULAIRE A L'E.L.U EN FLEXION COMPOSEE

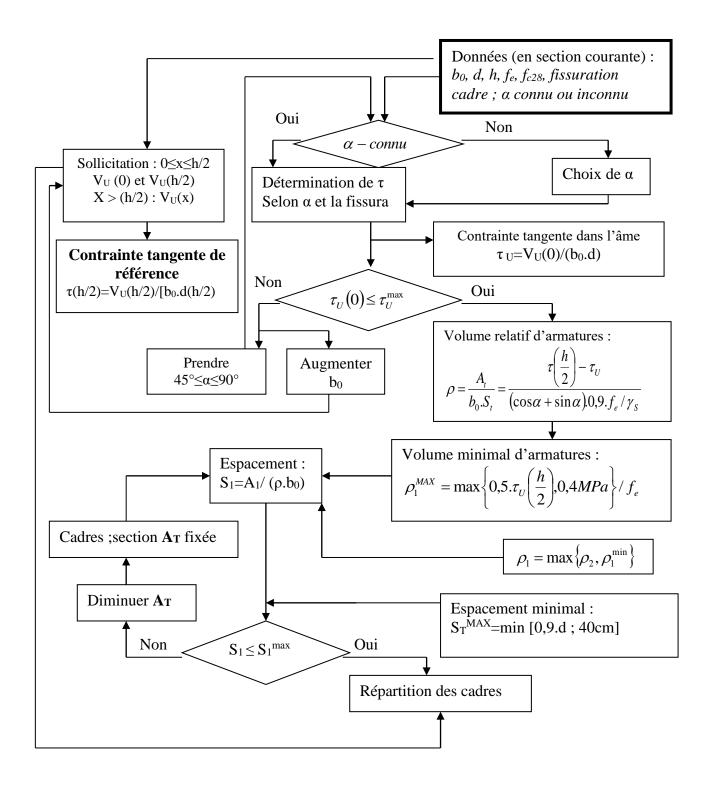



# **ORGANIGRAMME - IV-**


# VERIFICATION D'UNE SECTION RECTANGULAIRE A L'E.L.S



# ORGANIGRAMME-V-FLEXION COMPOSEE A L' E.L.S




# ORGANIGRAMME -VI-TRACTION SIMPLE



# **ORGANIGRAMME -VII-**

### CALCUL DES ARMATURES D' UNE POUTRE SOUMISE A L'EFFORT TRANCHANT



# Section en $cm^2$ de N armatures de diamètre $\phi$ en mm

| N  | 5    | 6    | 8     | 10    | 12    | 14    | 16    | 20    | 25    | 32     | 40     |
|----|------|------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| 1  | 0.20 | 0.28 | 0.50  | 0.79  | 1.13  | 1.54  | 2.01  | 3.14  | 4.91  | 8.04   | 12.57  |
| 2  | 0.39 | 0.57 | 1.01  | 1.57  | 2.26  | 3.08  | 4.02  | 6.28  | 9.82  | 16.08  | 25.13  |
| 3  | 0.59 | 0.85 | 1.51  | 2.36  | 3.39  | 4.62  | 6.03  | 9.42  | 14.73 | 24.13  | 37.70  |
| 4  | 0.79 | 1.13 | 2.01  | 3.14  | 4.52  | 6.16  | 8.04  | 12.57 | 19.64 | 32.17  | 50.27  |
| 5  | 0.98 | 1.41 | 2.51  | 3.93  | 5.65  | 7.70  | 10.05 | 15.71 | 24.54 | 40.21  | 62.83  |
| 6  | 1.18 | 1.70 | 3.02  | 4.71  | 6.79  | 9.24  | 12.06 | 18.85 | 29.45 | 48.25  | 75.40  |
| 7  | 1.37 | 1.98 | 3.52  | 5.50  | 7.92  | 10.78 | 14.07 | 21.99 | 34.36 | 56.30  | 87.96  |
| 8  | 1.57 | 2.26 | 4.02  | 6.28  | 9.05  | 12.31 | 16.08 | 25.13 | 39.27 | 64.34  | 100.53 |
| 9  | 1.77 | 2.54 | 4.52  | 7.07  | 10.18 | 13.85 | 18.10 | 28.27 | 44.18 | 72.38  | 113.10 |
| 10 | 1.96 | 2.83 | 5.03  | 7.85  | 11.31 | 15.39 | 20.11 | 31.42 | 49.04 | 80.42  | 125.66 |
| 11 | 2.16 | 3.11 | 5.53  | 8.64  | 12.44 | 16.93 | 22.12 | 34.56 | 54.00 | 88.47  | 138.23 |
| 12 | 2.36 | 3.39 | 6.03  | 9.42  | 13.57 | 18.47 | 24.13 | 37.70 | 58.91 | 96.51  | 150.80 |
| 13 | 2.55 | 3.68 | 6.53  | 10.21 | 14.70 | 20.01 | 26.14 | 40.84 | 63.81 | 104.55 | 163.36 |
| 14 | 2.75 | 3.96 | 7.04  | 11.00 | 15.83 | 21.55 | 28.15 | 43.98 | 68.72 | 112.59 | 175.93 |
| 15 | 2.95 | 4.24 | 7.54  | 11.78 | 16.96 | 23.09 | 30.16 | 47.12 | 73.63 | 120.64 | 188.50 |
| 16 | 3.14 | 4.52 | 8.04  | 12.57 | 18.10 | 24.63 | 32.17 | 50.27 | 78.54 | 128.68 | 201.06 |
| 17 | 3.34 | 4.81 | 8.55  | 13.35 | 19.23 | 26.17 | 34.18 | 53.41 | 83.45 | 136.72 | 213.63 |
| 18 | 3.53 | 5.09 | 9.05  | 14.14 | 20.36 | 27.71 | 36.19 | 56.55 | 88.36 | 144.76 | 226.20 |
| 19 | 3.73 | 5.37 | 9.55  | 14.92 | 21.49 | 29.25 | 38.20 | 59.69 | 93.27 | 152.81 | 238.76 |
| 20 | 3.93 | 5.65 | 10.05 | 15.71 | 22.62 | 03.79 | 40.21 | 62.83 | 98.17 | 160.85 | 251.33 |

**Tableau des armatures** 

# Références

- [1]. Charges Permanentes et Charges d'Exploitation, DTR B C 2 2.
- [2]. DTR B-C 2.42 Règles de conception et de calcul des parois et murs en béton banché.
- [3]. Règles Parasismiques Algériennes RPA99/Version2003.
- [4]. BAEL 91modifié 99, DTU associés, par Jean pierre mougin ,deuxième Edition eyrolles 2000.
- [5]. Règles de Conception et de Calcul des Structures en Béton Armé. CBA93, Ministère de l'Habitat.
- [6]. Conception et calcul des structures de bâtiment ; Henry Thnier (tome1 ; tome2).

# Références bibliographiques

Pour l'élaboration du présent document nous avons utilisé :

# **Règlements:**

- [1]:BAEL91 modifié: béton armé aux états limites.
- [2]:RPA99V2003: règlement parasismique algérienne
- [3]:CBA93: règles de conception et de calcul des structures en béton arme
- [4]: DTR B.C.2.2: Document technique réglementaire (charges et surcharges)
- [5]:D.T "EUROCODE 2".
- [6]: M.BELAZOUGUI calcul des ouvrages en béton armé, CGS.
- [7]: BA13NF120/260.
- [8].Y L Liew. Quality Control Testing of Plasterboard for Bracing Applications , The University of Melbourne and Swinburne University of Technology, 2008.
- [9].Liew YL, Duffield CF and Gad EF. 2002. The influence of plasterboard clad walls on the structural behavior of low rise residential buildings. The Electronic Journal of Structural Engineering, 2: 1–16.
- [10]. ([Liew, Y. L. (2004). Plasterboard as a bracing material: from quality control to wall performance. PhD thesis, Department of Civil and Environmental Engineering, The University of Melbourne.)
- [11]. (Saifullah.I and Gad .I and al .,Structural Behaviour Of Ceiling Diaphragms In Steel –Framed Residential Structure, australasian structural engineering conference 23-25noveber 2016brisbane).