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Abstract

In this thesis we have discussed on one of the recent topics in physics,
in particular in quantum mechanics, which is ”the non-Hermitian Hamilto-
nians”, and the conditions that make the spectra of these Hamiltonians real.
Initially, the Hermeticity was a necessary and sufficient condition for the re-
ality of the Hamiltonian spectrum. Then a new quantum theory called the
”PT -symmetry” started to emerge, this theory was developed in 1998 by
Carl Bender and Stefan Boettcher, where they revealed the existence of a
class of non-Hermitian Hamiltonians with real spectra. These Hamiltonians
are invariant under the transformation of PT -symmetry, where P is the par-
ity operator and T is the time reversal operator. A few years later, another
alternative approach was developed in 2002 by Mostafazadeh who works on
pseudo-Hermitian Hamiltonians and he showed that every Hamiltonian with
a real spectrum is pseudo-Hermitian. We have found from an application on
two examples of a pseudo-Hermitian Hamiltonians ” shifted harmonic oscil-
lator ” and ” cubic anharmonic oscillator ” that the energy spectrum of these
Hamiltonians are real and positive.

Keywords: Hermiticity, PT -symmetry, Pseudo-Hermiticity, Quasi-Hermiticity.



Résumé

Dans ce mémoire, nous avons discuté l’un des sujets récents de la physique,
notamment en mécanique quantique, qui est ”les Hamiltoniens non Hermi-
tiens”, et les conditions qui rendent les spectres de ces Hamiltoniens réels.
Initialement, l’Herméticité était une condition nécessaire et suffisante pour la
réalité du spectre Hamiltonien. Puis une nouvelle théorie quantique appelée
”la symétrie PT ” a commencé à émerger, cette théorie a été développée en
1998 par Carl Bender et Stefan Boettcher, ils ont révélé l’existence d’une
classe d’Hamiltoniens non Hermitiens avec des spectres réels. Ces Hamil-
toniens sont invariants sous la transformation de la symétrie PT , où P est
l’opérateur de parité et T est l’opérateur de renversement du temps. Quelques
années plus tard, une autre approche alternative a été développée en 2002
par Mostafazadeh qui travaille sur des Hamiltoniens pseudo-Hermitiens et il
a montré que chaque Hamiltonien avec un spectre réel est pseudo-Hermitien.
Nous avons trouvé à partir d’une application sur deux exemples d’Hamil-
toniens pseudo-Hermitiens ”l’oscillateur harmonique décalé” et ”l’oscillateur
anharmonique cubique” que les spectres d’énergie de ces Hamiltoniens sont
réels et positifs.

Mots Clés : Herméticité, PT -symétrie, Pseudo-Herméticité, Quasi-Herméticité.
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Introduction

Quantum mechanics (QM) is one of the most important achievements of the
twentieth century theoretical physics, it was developed by Heisenerg, Pauli,
Schrödinger, Dirac and many other physicists [1].

Indeed, among the postulates of quantum mechanics which has been the
subject of several debates between the physicists and mathematists of the
world, we find that of Hermiticity, the latter states that if a Hamiltonian H
is Hermitian, then there eigenvalues are real [2].

However, several years ago, Bessis conjectured on the basis of numerical
studies that the spectrum of the Hamiltonian H = p2 + x2 + ix3 is real and
positive [3], which allowed us to note that the Hermiticity of the Hamiltonian
is only a sufficient condition and not necessary for the reality of the spectrum.

The Hamiltonian studied by Bessis is just one example of a huge and
remarkable class of non-Hermitian Hamiltonians whose energy levels are real
and positive. A more recent attempt generalizing QM , is due to Carl Ben-
der and his collaborators with adopting all its axioms except the one that
restricted the Hamiltonian to be Hermitian, where they replaced the latter
condition with there requirement that the Hamiltonian must have an exact
PT -symmetry [4, 5].

But the latter was proved insufficient to formulate a valid quantum theory,
since the norm of the PT -inner product is not necessarily positive, hence the
probability of presence is not definite positive and therefore it cannot be
physically acceptable. To overcome the problem of negative norms, Bender
et al constructed a new operator denoted by C. The latter makes it possible
to define a inner product where all the norms are then positive, this inner
product is called ”CPT -inner product” [6].

However, in general there are Hermitian Hamiltonians with a real spec-
trum that are not PT -symmetric and there are PT -symmetric Hamiltonians
that do not have a real spectrum. Therefore, PT -symmetry is neither a nec-
essary nor a sufficient condition for a Hamiltonian to have a real spectrum
[7, 8, 9]. During the last two decades, several articles have been published
and international conferences have been organized annually on the subject.
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A few years after Bender’s work, Mostafazadeh introduced the notion of
pseudo-Hermeticity [10]. He explored the basic structure that is responsible
for the spectral reality of non-Hermitian Hamiltonians. He established that
all PT -symmetric Hamiltonians are pseudo-Hermitians. He also showed that
a Hamiltonian is pseudo-Hermitian if and only if his eigenvalues are real or
there are complex-conjugate pairs of complex eigenvalues. Therefore, pseudo-
Hermiticity is a generalization of Hermiticity and PT -symmetry. So pseudo-
Hermiticity is only a necessary condition for the reality of the spectrum, but
it’s not a sufficient.

Our work is more interested in pseudo-Hermiticity and especially in the
way that we calculate the metric operator, we have therefore prepared this
master thesis which is composed of an introduction, four chapters and a
conclusion.

In the first chapter, we gived the necessary mathematical tools and the
postulates of quantum mechanics with a brief history of the non-Hermitian
Hamiltonians. In the second chapter, we recalled the essential properties of
the parity operator P and of the time reversal operator T and their product
PT , then we presented the PT -symmetric quantum mechanics.

In chapter 3, we will talk about the new quantum theory of pseudo-
Hermiticity which has been studied by Ali Mostafazadeh, where we started
with a definition and some of its principles, then we presented the action of
the metric operator, and finally we introduced the quasi-Hermiticity.

In chapter 4 we made simple applications for a Hamiltonian Pseudo-
Hermitian using the perturbation method, then we ended our work with a
conclusion.

2



Chapter 1

Switch from Hermitian to
non-Hermitian Hamiltonians

1.1 Introduction

The purpose of this chapter is to show the basis of ordinary quantum me-
chanics and their necessary components, where any quantum theory would
be understood and well established and by virtue of this review the following
topics do make sense. The first section will give some mathematical prop-
erties of Hilbert space which assigned any quantum theory, the second one
reserved to mention the fundamental postulates of quantum mechanics. The
last section is about an historical approach of the non-Hermitian Hamiltoni-
ans subject, where it became very attractive area of research.

1.2 Mathematical tools of quantum mechan-

ics

One of the axioms of quantum mechanics is that the pure physical states of
a quantum system are vectors in the Hilbert space H. Each vector can be
determined from a unique way by an element ψ of H, the latter is called the
state vector. The physical quantities related to a pure state are calculated
using the corresponding state vector and the inner product of the Hilbert
space.
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1.2.1 Inner product

Consider a complex vector space V and a function 〈.|.〉 : V × V → C : that
assigns to any pair ψ, φ of elements of V a complex number 〈ψ|φ〉 [10]

〈ψ|φ〉 =

∫ +∞

−∞
ψ∗ (x)φ (x) dx. (1.1)

Suppose that 〈.|.〉 is positive-definite, Hermitian, and linear, then 〈.|.〉 is
called an inner product on V , and the pair (V , 〈.|.〉) is called an inner product
space [10]. ‖ψ‖ :=

√
〈ψ|ψ〉 is called the norm of ψ (we can use the norm to

define a notion of distance between elements of V) [10].

1.2.2 Hilbert space

A Hilbert space (H, 〈.|.〉) over C (or R) is an inner product space which meets
an additional technical condition, namely that its norm defines a complete
space. In other words, a Hilbert space is a complete inner product space [10].

1.2.3 Orthonormal basis

A basis (a sequence of vectors) |Vn〉 ∈ H, n ∈ {1, 2, 3, · · · , N}, forms an
orthonormal basis of the space H if for all m,n ∈ {1, 2, 3, · · · , N} [10]

〈Vn|Vm〉 = δnm, (1.2)

where δnm denotes the Krönecker delta symbol δnm := 1 if n = m and
δnm := 0 if n 6= m.
Any vector |ψ〉 decomposes in the form

|ψ〉 =
∑
n

cn|Vn〉, (1.3)

where the coefficients cn of the basis ψ are given by

cn = 〈Vn|ψ〉 , cn ∈ C. (1.4)

Furthermore for all φ, ψ ∈ H, we have

〈φ|ψ〉 =
N∑
n=1

〈φ|Vn〉〈Vn|ψ〉. (1.5)

In particular for all ψ ∈ H, we have

‖ψ‖2 =
N∑
n=1

|〈Vn|ψ〉|2 =
N∑
n=1

|cn|2. (1.6)

4



Completeness relation

From Eq. (1.3)

|ψ〉 =
∑
n

(〈Vn|ψ〉) |Vn〉 =

(∑
n

|Vn〉〈Vn|

)
|ψ〉. (1.7)

As we know, the operator which leaves the vector unchanged is the identity
operator ∑

n

|Vn〉〈Vn| = 11. (1.8)

This expression is called the completeness relation [10, 17].

Expression of an operator in a basis

Â is an operator, we associate its matrix elements in an orthonormal basis
{Vn} [17]

Ânm = 〈Vn|Â|Vm〉. (1.9)

Bi-orthonormal systems

Let {ψn} be a basis of an N -dimensional separable Hilbert space H and {Vk}
be a orthonormal basis, such that for all n, k ∈ {1, 2, 3, · · · , N} [10, 17]

|ψn〉 =
N∑
k=1

〈Vk|ψn〉|Vk〉 =
N∑
k

B−1kn |Vk〉, (1.10)

such that, for all m ∈ {1, 2, 3, · · · , N}, the vectors |φm〉 are defined by

|φm〉 :=
N∑
j=1

B∗mj|Vj〉. (1.11)

A sequence (ψn, φn) of ordered pairs of elements ofH for allm,n ∈ {1, 2, 3, · · · , N}
satisfy the condition

〈φm|ψn〉 = δmn, (1.12)

and are called a bi-orthonormal system [10, 17].
The generalization of the more familiar completeness relation [10]

N∑
n=1

|ψn〉〈φn| = 11. (1.13)

A bi-orthonormal system satisfying this relation is said to be complete [10].
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1.2.4 Operators

In general we call an operator a mathematical object that transforms one
element of a set to another element of the same set [14]. Indeed, operators
are linear maps of the Hilbert space H onto itself. If Â is an operator, then
for any |ψ〉 in H, Â|ψ〉 is another element in H

Â|ψ〉 = |ψ′〉. (1.14)

And the inverse of an operator Â−1 satisfies the following relation

|ψ〉 = Â−1|ψ′〉. (1.15)

Linear operators

An operator Â is called a linear operator if ∀ |ψ〉,|φ〉 ∈ H, and λ ∈ C, the
relation following is verified [10, 14, 17]

Â (λ|ψ〉) = λÂ|ψ〉. (1.16)

Â (λ1|ψ1〉+ λ2|ψ2〉) = λ1Â|ψ1〉+ λ2Â|ψ2〉. (1.17)

Properties :
An operator Â is antilinear operator if

Â (λ1|ψ1〉+ λ2|ψ2〉) = λ∗1Â|ψ1〉+ λ∗2Â|ψ2〉. (1.18)

If Â1,Â2 are two linear operators, then Â1Â2 is also linear.
The set of linear operators on H form a vector space, denoted by L (H).

Adjoints operators

If Â is a linear operator, the adjoint operator of Â is a linear operator,
denoted by Â† which satisfies [10, 14, 17]

〈Âφ|ψ〉 = 〈φ|Â†ψ〉, ∀|φ〉, |ψ〉 ∈ H. (1.19)

Properties : (
Â†
)†

= Â. (1.20)(
Â1Â2

)†
= Â†2Â

†
1. (1.21)(

Â1 + Â2

)†
= Â†1 + Â†2. (1.22)(

Ân
)†

=
(
Â†
)n
. (1.23)
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Hermitian operators

The linear operator hatA is self-adjoint or Hermetian if Â† = Â, i.e.

〈Âψ1|ψ2〉 = 〈ψ1|Âψ2〉. (1.24)

The adjoint of an operator Â is the Hermitian conjugate of Â.

Theorem 1 All the eigenvalues of a Hermitian operator are real [14].

Theorem 2 Two eigenvectors of a Hermitian operator, corresponding to
distinct eigenvalues, are orthogonal to each other [14].
Hermitian operators in quantum mechanics are used to represent physical
variables, quantities such as energy, momentum, angular momentum, posi-
tion, . . .. The operator representing the energy is the Hamiltonian Ĥ.

Commutators

The commutator of two operators Â and B̂ is[
Â, B̂

]
= ÂB̂ − B̂Â. (1.25)

The Anti-commutator of two operators Â and B̂ is

{Â, B̂} = ÂB̂ + B̂Â. (1.26)

Additional relations: [
Â, B̂Ĉ

]
= B̂

[
Â, Ĉ

]
+
[
Â, B̂

]
Ĉ. (1.27)[

Â, B̂Ĉ
]

=
[
ÂB̂, Ĉ

]
+
[
ĈÂ, B̂

]
. (1.28)[

ÂB̂Ĉ, D̂
]

= ÂB̂
[
Ĉ, D̂

]
+ Â

[
B̂, Ĉ

]
D̂ +

[
Â, D̂

]
B̂Ĉ. (1.29)

Normal operators

A normal operator Â on a Hilbert space is an operator which commutes with
its adjoint

Â†Â = ÂÂ†. (1.30)

7



Unitary operators

An operator Â is said to be unitary if it satisfies the following relation

Â†Â = ÂÂ† = 11, (1.31)

which means that it commute with its adjoint, therefore, the operator Â is
normal [16].
In this case, the inverse operator Â−1 coincides with the adjoint operator Â†.
An important property of unit operators is that they keep invariant the inner
product [16]

〈Âψ|Âφ〉 = 〈ψ|φ〉. (1.32)

Eigenvectors and eigenvalues

Let Â be a linear operator
Â|ψ〉 = λ|ψ〉. (1.33)

We say that |ψ〉 is an eigenvector of operator A and the number λ is called
the eigenvalue of v relating to the eigenvector |ψ〉. The set of eigenvalues of
operator Â constitutes the spectrum of this operator [14].
When the same eigenvalue corresponds to several eigenvectors, we say that
the eigenvalue is degenerate, and the number of eigenvectors associated with
an eigenvalue is the order of degeneration [14].

1.2.5 Observables

In physics, an observable is a physical quantity that can be measured. Exam-
ples include position and momentum. In quantum physics, it is an operator,
where the property of the quantum state can be determined by some se-
quence of operations.

By definition, an operator Â is said to be observable, if it is Hermitian
and diagonalizable, then the eigenvalues of an observable are real [16].

1.3 Postulates of quantum mechanics

It is known in quantum mechanics that it is not possible to determine ex-
actly the trajectory of particles, one however can access the probability of
finding system at giving point of space. Instead of talking about the position
of particles, we introduce a distribution function of their possible position is

8



called the wave function ψ(x, t). This wave function is a probability ampli-
tude which in a way represents the generalization of the notion of wave to
material particles.

1.3.1 State of system

Postulate 1

Quantum state at time t would be represented by a state vector |ψ〉 which
belong to a vector space, which is the space of states. This space is a Hilbert
space and is built on the field of the set of the complex numbers C [14].

1.3.2 Operator corresponding to physical quantity

The various physical quantities can be represented by operators. This is
the case for example with energy, momentum,. . ., etc. These operators are
Hermitians. In quantum mechanics, all physical quantities A capable of
being measured are represented by Hermitian operator Â.

Postulate 2

To any measurable physical quantity A, we can match an operator Â which
acts on the state vectors of space H; this operator is an observable [14].

1.3.3 Measurement of physical quantity

All the results of Measurement of observables are the eigenvalues of the cor-
responding operator. Each eigenvalue corresponds to one or more eigenfunc-
tions which represent the stationary states of the system.

Postulate 3

The eigenvalue of the observable Â, corresponding to a physical quantity A,
are the only Measurement values [14].

9



1.3.4 Schrödinger’s equation

For any system, the Schrödinger equation is obtained from the classical ex-
pression of the Hamiltonian.

Postulate 4

The Hamiltonian operator Ĥ of a system is the observable associated with
the total energy of this system. The evolution over a time of the state vector
|ψ (t)〉 is governed by the Schrödinger equation [14].

Ĥ|ψ (t)〉 = i~
d

dt
|ψ (t)〉. (1.34)

1.3.5 Probability of obtaining an eigenvalue

Consider a system which is in any state described by the normalized vector
|ψ〉. Denote by |Vn〉 the orthonormal eigenvectors of the Hamiltonian of the
system. The vector |ψ〉 can be written on the basis {|Vn〉}n∈N

|ψ〉 =
∑
n

cn|Vn〉. (1.35)

The energy En of the system is given by the matrix element of the Hamilto-
nian Ĥ

En = 〈Vn|Ĥ|Vn〉. (1.36)

Postulate 5

Let A be a physical quantity of a quantum system and Â the correspond-
ing observable whose spectrum contains only non-degenerate eigenvalues an
associated with orthonormal eigenvectors |Vn〉. When we measure A on the
system in any state |ψ〉 with unity norm [14]

|ψ〉 =
∑
n

cn|Vn〉. (1.37)

The probability P (an) of obtaining as a measurement result an is giving by
[14]

P (an) = |cn|2 = |〈Vn|ψ〉|2. (1.38)

10



Postulate 6

Let A be a physical quantity of a system and Â the corresponding observable;
let an be an eigenvalue of Â degenerated gn times and associated with the
orthonormal eigenvectors |V k

n 〉 (each eigenvalue gn corresponds to orthonor-
mal eigenvectors |V k

n 〉, with k = 1, 2, 3, . . . , gn). When we measure A on the
system in the state |ψ〉 of unity norm [14]

|ψ〉 =
∑
n

gn∑
k=1

ckn|V k
n 〉. (1.39)

The probability P (an) of obtaining the measurement result an is given by
[14]

P (an) =

gn∑
k=1

|ckn|2 =

gn∑
k=1

|〈V k
n |ψ〉|2. (1.40)

1.4 Non-Hermitian Hamiltonians

It is known in algebra that if an operator defined on a Hilbert space is Her-
mitian, then its eigenvalues are all real and the corresponding eigenfunctions
form an orthogonal basis. On the other hand, if it’s non-Hermitian, its own
eigenvalues are not guaranteed to be real, but rather they are generally com-
plex.

In quantum mechanics, the dynamics of a physical system is completely
governed by its Hamiltonian operator, such that any physical system must
satisfy the following fundamental conditions :

� The Hamiltonian must be Hermitain for his spectrum to be real.

� The inner products of state vectors in Hilbert space must have a positive
norm.

� The time evolution operator must be unitary.

As we have already said about the condition of Hermiticity, Ĥ is said to
be Hermitian if it satisfies Ĥ = Ĥ†. In the contrary case it is said to be
non-Hermitian, and it satisfies the following relation

Ĥ 6= Ĥ†. (1.41)
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The use of non-Hermitian Hamiltonians in physics goes back a long time.
One of the earliest use of non-Hermitian Hamiltonians was by Wu in 1959.
Wu described the sphere of Bose using a non-Hermitian Hamiltonian, she
discovered that the energies of this system are real. In 1967, Wong pre-
sented some results on the spectral properties of a class of non-Hermitian
Hamiltonians called physically reasonable. In 1975, Haydock and Kelly used
non-Harmitian Hamiltonians to determine the density of states of chemical
pseudo-potentials [15]. In 1980, Caliceti were studying Borel summation of
divergent perturbation series arising from classes of anharmonic oscillators,
were astonished to find that the eigenvalues of an oscillator having an imag-
inary cubic self-interaction term are real [5]. In 1981, Faissal and Moloney
established a quantum formulation of the process of decline by converting
Schrodinger equation for Hermitian Hamiltonians to the non-Hermitians case
[15]. In 1992, Hollowood and Scholtz discovered in their own areas of research
surprising examples of non-Hermitian Hamiltonians having real spectra [5].
In 1997, Hatano and Nelson justified the use of a complex spectrum to in-
terpret the existence of an imaginary part in the energy of a semiconductor
on which an external magnetic field is applied [15].

All this work which uses non-Hermitian Hamiltonians does not belong to
any fundamental basis of a non-Hermitian theory. Indeed, the first basis of
non-Hermitian quantum theories did not emerge until 1998, when Bender and
Boettcher studied the Bessis-Zin Justin conjuncture about the reality of the
spectrum of the non-Hermitian Hamiltonian p̂2 + (ix̂)N [3], where N is real.
It has been shown that the Hermiticity of a Hamiltonian is not a necessary
condition to guarantee a real eigenvalues for the Hamiltonian. There are two
other approaches that can be taken. The first has been developed primarily
in 1998 by Bender and associates and utilizes space-time reflection symme-
try. This is known as PT -symmetry. Then an alternative approach was
developed by Mostafazadeh since 2002, who works with pseudo-Hermitian
Hamiltonians.

We will discuss more about these two approaches in the next chapters.
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Chapter 2

PT -symmetric Hamiltonians

2.1 Introduction

The pioneering work of Carl Bender and his student Stefan Boettcher re-
vealed the existence of a class of non-Hermitian Hamiltonians whose eigen-
values are real [3]. These Hamiltonians are invariant under a physical sym-
metry called (PT -symmetry), where P is the parity operator and T is the
time reversal operator [3, 5, 7, 17].
Indeed, in the original article in 1998, C Bender and S Boettcher studied the
following Hamiltonian [3]

Ĥ = p̂2 − (ix̂)N , (2.1)

where N is real.

Figure 2.1: Energy levels of the Hamiltonian Ĥ = p̂2 − (ix̂)N as a function
of the parameter N [3]

13



In general case, this Hamiltonian is non-Hermitian, the authors showed
that :

� For N ≥ 2, the spectrum is infinite, discrete and entirely real and
positive.

� For 1 < N < 2, there are only finite number of real positive eigenvalues
and infinite number of complex conjugate pairs of eigenvalues.

� For N ≤ 1, there are no real eigenvalues.

In this chapter, we first give a review on discrete symmetries in quantum
mechanics, and we’ll briefly recall the essential properties of both of parity
P and time reversal T operators and their product PT , then we’ll present
the PT -symmetric quantum mechanics.

2.2 Some symmetric transformations

In physics, there are several types of transformations, including spatial trans-
formations such as: translation, rotation, parity. And other transformations
those involve time such as the time translation or time reversal, when a sys-
tem is invariant under the effect of a transformation this implies that the
system has symmetry [18]. Let Û be a Hilbert space operator corresponding
to a symmetry transformation, ψ and ψ

′
are the wave functions describing

the system before and after the transformation, such that:

ψ
′
= Ûψ. (2.2)

If the mean value of an operator Â is invariant with respect to this transfor-
mation

〈ψ′
∣∣∣Â∣∣∣φ′〉 = 〈ψ

∣∣∣Û †ÂÛ ∣∣∣φ〉 = 〈ψ
∣∣∣Â∣∣∣φ〉, (2.3)

then Â commutes with Û ,i.e. [
Â, Û

]
= 0, (2.4)
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and the operator Û is linear and unitary

Û † = Û−1 and Û (λψ) = λÛψ, (2.5)

or anti-unitary (anti-linear and unitary)

Û † = Û−1 and Û (λψ) = λ∗Ûψ. (2.6)

If the dynamics of the system described by the Hamiltonian Ĥ is invariant
under the action of this transformation, then Ĥ commutes with Û[

Ĥ, Û
]

= 0, (2.7)

the fact that Û † = Û−1, so

Ĥ = ÛĤÛ−1 = ÛĤÛ †. (2.8)

2.2.1 Parity operator P
The parity P is a transformation which corresponds to a reflection in space,
that is to say, it is a symmetry with respect to the origin of the coordinates.
The action of P on the position vector |x〉 is :

P|x〉 = | − x〉. (2.9)

and its hermitian conjugate relation gives

〈x|P† = 〈−x|. (2.10)

The action of P2 on the position vector |x〉 give back to |x〉, i.e.

P2|x〉 = P (P|x〉) = P |x〉 = |x〉. (2.11)

This relation allows us to identify P2 as the identity operator (unit operator):

P2 = 11. (2.12)

The parity operator P change the sign of the position x and leave the t time
unchanged

x→ x
′
= −x, and t→ t

′
= t. (2.13)

This implies that the momentum transforms as follows

p→ p
′

= m
dx
′

dt′
= −m dx

dt
= −p. (2.14)
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The position and momentum operators, and the complex number i transform
under the action of the operator P as follows [3]

Px̂P = −x̂, Pp̂P = −p̂, P iP = i. (2.15)

And the wave functions transform as follows

ψ (x, t) → ψ
′
(x, t) = Pψ (x, t) = ψ (−x, t) . (2.16)

If ψ (x, t ) is an eigenfunction of P , i.e.

Pψ (x, t) = λψ (x, t) , (2.17)

then after a second reflection from space, the wave function remains un-
changed since P2 = I

P2ψ (x, t ) = λ2ψ (x, t ) = ψ (x, t ) , (2.18)

and the eigenvalues of P can take the following values{
λ = 1, if ψ (x, t ) is even ;

λ = −1, if ψ (x, t ) is odd.
(2.19)

We noticed that the parity operator P is linear, i.e.

P (a1|ψ1〉+ a2|ψ2〉) = a1P|ψ1〉+ a2P|ψ2〉 (2.20)

2.2.2 Time reversal operator T
The time direction reversal operator is denoted by T . The latter changes the
sign of the time t and leave the x position unchanged

t→ t
′
= −t and x→ x

′
= x. (2.21)

This implies that the momentum is transformed in this way

p→ p
′

= m
dx
′

dt′
= −m dx

dt
= −p. (2.22)

The position and momentum operators, and the complex number i transform
under the action of the operator T as follows [3]

T x̂T = x̂, T p̂T = −p̂, T i T = −i, (2.23)

16



and it leads to:
T [x̂, p̂] T = [x̂,−p̂] = −i~. (2.24)

The time reversal operator T can be decomposed into a product of a unitary
operator Û and an anti-linear operator K̂, where K̂ is the complex conjugate
operator

T = ÛK̂. (2.25)

The action of the operator T on a state |ψ〉 is written

T |ψ〉 = ÛK̂|ψ〉 = Û |ψ〉∗. (2.26)

The product of T by an operator Â is

T Â = ÛK̂Â = ÛÂ∗. (2.27)

Indeed
T (a1|ψ1〉+ a2|ψ2〉) = a∗1T |ψ1〉+ a∗2T |ψ2〉. (2.28)

The preceding relations imply that the operator T has an important property
which is the anti-unitarity

〈T φ|T ψ〉 = 〈φ| Û †Û |ψ〉∗ = 〈φ|ψ〉∗ = 〈ψ|φ〉. (2.29)

Since T is an involution, therefore the double action of T on a state |ψ〉 leave
the latter unchanged exept for a factor phase :

T 2|ψ〉 = eiφ|ψ〉 = ÛK̂ÛK̂|ψ〉 = Û Û∗|ψ〉

⇒ eiφ = Û Û∗, (2.30)

eiφ = Û Û∗ Transposet−−−−−−−−→ eiφ = Û †ÛT

⇒ Ûeiφ = Û Û †ÛT = ÛT , (2.31)

ÛT = Ûeiφ Transposet−−−−−−−−→ Û = ÛT eiφ =
(
Ûeiφ

)
eiφ = Ûe2iφ, (2.32)

e2iφ = 1⇒ eiφ = ±1, (2.33)

which means
T 2|ψ〉 = ±1|ψ〉 ⇒ T 2 = ±1. (2.34)

Note that, T 2 = ±1 depending on the spin of the particles, namely

� T 2 = +1 is the case of the reversal symmetry of even time, which
corresponds to the integer spin (bosonic case)

� T 2 = −1 is the case of the odd-time reversal symmetry, which corre-
sponds to the half-integer spin (fermionic case).
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2.2.3 PT -Operator

The operator PT is the composition of the two previous transformations. By
combining the previous properties, we can conclude that the operator PT
acts on the operators of the position x, the momentum p and on the complex
number i as follows [3, 16]

(PT ) x̂ (PT ) = −x̂, (PT ) p̂ (PT ) = p̂, (PT ) i (PT ) = −i. (2.35)

The action of the operator (PT ) and (T P) on a state |ψ〉 is written as

PT |ψ〉 = λU |ψ〉∗, T P|ψ〉 = Uλ |ψ〉∗ = PT |ψ〉, (2.36)

and this implies that the operators P and T commute, i.e

[P , T ] = 0. (2.37)

The PT operator is an anti-linear operator

(PT ) (a1|ψ1〉+ a2|ψ2〉) = P ( T (a1|ψ1〉+ a2|ψ2〉))

= P ( a∗1T |ψ1〉+ a∗2T |ψ2〉)

= a∗1 (PT ) |ψ1〉+ a∗2 (PT ) |ψ2〉. (2.38)

As the operator P is a unit operator and the operator T is an anti-unit
operator, then the product PT is an anti-unit operator.

〈PT φ | PT ψ〉 = 〈φ |ψ〉∗ = 〈ψ|φ〉. (2.39)

2.3 PT -Symmetric Hamiltonians

The PT -symmetric quantum theory introduced by Carl Bender and Stefan
Boettcher in 1998, they has offered us a large class of non-Hermitian Hamil-
tonians which have real spectra [3]. These Hamiltonians are invariant under
the transformation of the symmetry PT .

Definition

A Hamiltonian Ĥ is said to be PT symmetric if it satisfies [2, 3, 5, 10]

Ĥ = ĤPT = PT Ĥ PT . (2.40)
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Thus, if a Hamiltonian Ĥ is PT -symmetric, then it must commute with the
discrete product PT , i.e. [

Ĥ,PT
]

= 0. (2.41)

In the general case, Ĥ can be written in the form

Ĥ = P̂ 2 + V (x̂) , (2.42)

where the potential V (x) can be complex.
Therefore, the action of the operator PT on V (x) is

(PT )V (x) (PT ) = V ∗ (−x) . (2.43)

Therefore
V (−x) = (PT )V (−x) (PT ) = V ∗ (x) . (2.44)

where x is real.
In the case where V (x) is a real potential, i.e. the Hamiltonian Ĥ is Hermi-
tian, then the condition of PT -symmetry is equivalent to

V (−x) = V (x) . (2.45)

Which mean that V (x) is an even function.

2.3.1 Broken and unbroken PT -symmetry

In quantum mechanics, if a linear operator Â commutes with the Hamiltonian
Ĥ, then the eigenstates of Ĥ are also eigenstates of Â [2].

For the case of a PT -symmetric Hamiltonian, the PT operator commutes
with the Hamiltonian Ĥ. However, because PT is not linear PT -symmetry
is more subtle than parity symmetry and the eigenstates of Ĥ may or may
not be eigenstates of PT [5].

� The first case
We assume that an eigenstate ψ of the Hamiltonian Ĥ is also an eigen-
state of the PT operator with eigenvalues E and λ.

Ĥψ = Eψ,

and

PT ψ = λψ,

(2.46)

multiply the two equations by PT and use the property that PT 2 = 11,
so : {

(PT ) Ĥψ = (PT )E (PT )2 ψ = (PT )E (PT )λψ,

ψ = (PT )λ (PT )2 ψ = λ∗λψ,
(2.47)
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recalling that PT commutes with Ĥ, we get

(PT ) Ĥψ = Ĥ (PT )ψ = Ĥλψ = (PT )E (PT )λψ, (2.48)

finally
Eλψ = E∗λψ. (2.49)

Since λ is nonzero, we conclude that the eigenvalue E is real

E = E∗. (2.50)

� The second case
There are eigenstates of the PT -symmetric Hamiltonian which are not
eigenstates of the PT operator:

Ĥψ = Eψ,

and

PT ψ 6= λψ,

(2.51)

multiply the first equation by PT

(PT ) Ĥψ = (PT )Eψ, (2.52)

we use the property that PT commutes with Ĥ and since the PT
operator is anti-linear

Ĥ (PT ψ) = E∗ (PT ψ) . (2.53)

which implies that (PT ψ) is also an eigenfunction of the Hamiltonian
Ĥ with the eigenvalue E∗.

So the spectrum of any PT -symmetric Hamiltonian consists of pairs of
energy complexes conjugated to each other (E,E∗).

The reality of spectrum

If the PT -symmetric Hamiltonian has eigenfunctions invariant under the
operation of PT , then the corresponding eigenvalue spectrum is real, we
say here that the PT -symmetry of Ĥ is unbroken. Conversely, if some of
the eigenfunctions of a PT -symmetric Hamiltonian are not simultaneously
eigenfunctions of the PT operator, the invariance of a non-Hermitian opera-
tor Ĥ under the action of the operator PT gives a spectrum which consists
of pairs of complex energies conjugated to each other, we say here that the
PT symmetry of Ĥ is broken [5].
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Remarks

� In the case where the energy spectrum of a PT -symmetric Hamiltonian
consists of a real part and conjugated complex pairs, the PT -symmetry
is partially broken. On the other hand, if the whole energy spectrum
is complex, then the PT -symmetry is totally broken [16].

� For the Hamiltonian which is studied by Bender and Boettcher (2.1),
the PT -symmetry of H is unbroken for N ≥ 2, and broken for N < 2
[16].

We summarize the role played by PT -symmetry in figure 2:

Figure 2.2: PT -symmetry and real spetrum
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2.3.2 PT -symmetric-inner product

In conventional quantum mechanics, the norm of a vector in Hilbert space
must be positive. In addition, the inner product of any two vectors in Hilbert
space must be constant over the course of the evolution of time as is the
probability (unitarity). These two requirements constitute a fundamental
property for quantum theory to be valid. Since the standard Hermitian-

inner product
(
Ĥ = Ĥ†

)
is given by [5, 10]

〈ψ, φ〉 =

∫
dx [ψ (x)]∗ φ (x) . (2.54)

Bandar is the first who introduced an inner product called ”PT -inner prod-
uct” associated with PT -symmetric Hamiltonians, defined by [6, 5]

〈ψ, φ〉PT =

∫
c

dx [ψ (x)]PT φ (x) =

∫
c

dx [ψ (−x)]∗ φ (x) , (2.55)

c is a contour in the complex plane.
The PT -inner product for the two eigenfunctions φn (x) and φm (x) yields:

〈φm, φn〉PT =

∫
c

dx [φm (x)]PT φn (x)

=

∫
c

dx [φm (−x)]∗ φn (x)

= (−1)n δmn. (2.56)

However, when m = n, we see that the PT -norms of the eigenfunctions are
not always positive:

〈φn, φn〉PT =

∫
c

dx [φn (−x)]∗ φn (x) = (−1)n , (2.57)

and the completeness relation is written as a function of these eigenfunctions
as ∑

n

(−1)n |φn〉〈φn|. (2.58)

The norm (−1)n of a state is not necessarily positive, i.e. the relation defining
the PT -inner product is insufficient to formulate a valid quantum theory,
because the PT -norm of a state is not definite positive.
So it is necessary to build a new inner product where the norm is positive.
This prompted Bender to construct a new inner product with a positive
norm. It’s called the CPT -inner product.

22



2.4 The operator C and the inner-product

CPT
To solve this negative norm problem, and construct an inner product

with a positive norm for a complex non-Hermitian Hamiltonian having an
unbroken PT -symmetry, Bender introduced another symmetry generated
by a new linear operator denoted C [5], which helps to reconstruct a new
inner product which solves the probability violation in the case of PT -inner
product.

2.4.1 C operator

The use of the symbol C to represent this new symmetry and the properties
of C are similar to those of the charge conjugation operator in particle physics
[6]. C Operator is an observable, linear, complex and it is represented in co-
ordinate space by a sum of products of the eigenfunctions of the Hamiltonian
considered as follows [6]

C (x, y) =
∞∑
n=0

φn (x)φn (y) , (2.59)

where C commutes with the Hamiltonian Ĥ and the operator PT , i.e.[
C, Ĥ

]
= [C,PT ] = 0, (2.60)

therefore
C2 = 11. (2.61)

thus the eigenvalues of C are ±1.
The action of C on the eigenfunctions of Ĥ is given by

Cφn (x) = (−1)n φn (x) . (2.62)

The parity operator P can be constructed in terms of the eigenfunctions of
Ĥ, the linear operator P is represented in coordinate space by

P (x, y) = δ (x+ y) =
∑
n≥0

(−1)n φn (x)φn (y) . (2.63)

As the operator C, the square of the parity operator is also unity, P2 = 1
and C2 = 1, but P and C are not identical. Indeed, the parity operator P is
real, while C is complex (P 6= C), furthermore, these two operators do not
commute [6]; specifically, in the position representation

(CP) (x, y) =
∑
n

φn (x)φn (−y) , (2.64)
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whereas
(PC) (x, y) =

∑
n

φn (−x)φn (y) , (2.65)

which shows that
(CP) = (PC)∗ . (2.66)

Hence C commutes with the operator PT , which means that the linear op-
erator CPT solves the problem of negative norm.

2.4.2 CPT -inner product

Finally, by having obtained the operator C, we can define a new inner product
structure having positive definite norm [6]

〈ψ, φ〉CPT =

∫
c

dx [ψ (x)]CPT φ (x) =

∫
c

dx [CPT ψ (x)]φ (x) , (2.67)

where

CPT ψ (x) =

∫
c

dy [CPT ψ (x, y)]φ∗ (−y) . (2.68)

The CPT -inner product for the two eigenfunctions φn (x) and φm (x) is

〈φm, φn〉CPT =

∫
c

dx [CPT φm (x)]φn (x) = δmn. (2.69)

And this CPT -inner product is definite positive.
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2.5 Conclusion

We have seen that there exists a class of non-Hermitian Hamiltonians whose
eigenvalues are real [3]. These Hamiltonians are invariant under PT -symmetry,
if only if the latter is unbroken. Indeed, the PT -symmetric Hamiltonians are
invariant under the action of the operator C which is solved the problem of
the negativity of the norm of the PT -inner product.
However in general, there are Hermitian Hamiltonians with a real spectrum
that are not PT -symmetric and there are PT -symmetric Hamiltonians that
do not have a real spectrum. Therefore, PT -symmetry is neither a necessary
nor a sufficient condition for a Hamiltonian to have a real spectrum [7]. We
will see in the next chapter a more general theory than PT -symmetry, which
is the notion of pseudo-Hermeticity.
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Chapter 3

Pseudo-Hermitian
Hamiltonians

3.1 Introduction

The notion of pseudo-Hermiticity was born in the forties thanks to Dirac and
Pauli, then it was targeted in value by Lee and Sudarshan [10], in quantifi-
cation in electrodynamics and lots of quantum theories of field.

In 2002, Mostafazadeh revolutionized the concept of pseudo-Hermiticity
and he published three first articles, in which he presented an alternative
theory to conventional quantum mechanics and the PT -symmetric quan-
tum theory, for non-Hermitian Hamiltonians whose spectrum is real. This
theory is called pseudo-Hermitian quantum theory. He showed that every
real-spectrum Hamiltonian is pseudo-Hermitian [10].

In this chapter we will introduce the main definitions and properties of
the pseudo-Hermitian Hamiltonians.

3.2 Pseudo-Hermiticity

Let Ĥ : H → H be a linear operator acting in a Hilbert space H and
η : H → H be a linear Hermitian automorphism (invertible transformation)
Then, the η-pseudo-Hermitian adjoint of Ĥ is defined by

Ĥ# := η−1Ĥ†η. (3.1)

Ĥ is said to be pseudo-Hermitian with respect to η or simply η-pseudo-
Hermitian if Ĥ# = Ĥ.
Ĥ is said to be pseudo-Hermitian if it is pseudo-Hermitian with respect to
all linear Hermitian automorphism η [7].
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3.2.1 Fundamental theorems of pseudo-Hermiticity

Let Ĥ be a non-Harmitian Hamiltonian having a discrete spectrum and ad-
mitting a complete bi-orthonormal basis. Ĥ is Peudo-Hermitian if and only
if one of the following conditions is verified [17].

� The eigenvalues of Ĥ are real.

� The eigenvalues of Ĥ consist of pairs of complex.

To understand these two conditions, we will explain in the following subsec-
tion.

3.2.2 Spectral properties of pseudo-Hermitian Hamil-
tonians

Let Ĥ be a pseudo-Hermitian Hamiltonian with discrete spectrum. Accord-
ing to the last theorems, the eigenvalues of Ĥ are real or consist of pairs
of complex eigenvalues conjugated to each other with the same multiplicity.
From the equations Ĥ† = ηĤη−1, we have

Ĥ
(
η−1 |φn,a〉

)
= η−1Ĥ† |φn,a〉 = E∗n

(
η−1 |φn,a〉

)
. (3.2)

The operator η−1 is invertible, η−1 |φn,a〉 is an eigenvector of Ĥ with eigen-
value E∗n, so En and E∗n have the same multiplicity. We can represent the
Hamiltonian Ĥ spectrally as follows [10].

Ĥ =
∑
n0

dn0∑
a=1

En0 |ψn0,a〉 〈φn0,a|

+
∑
n+,n−

dn+∑
α=1

(
En+

∣∣ψn+,α

〉 〈
φn+,α

∣∣+E∗n+

∣∣ψn−,α〉 〈φn−,α∣∣) . (3.3)

Note that, we use the notation n0 for real eigenvalues and the corresponding
eigenstates and the notation n± for complex eigenvalues with an imaginary
part ± and the associated eigenstates.

In this case, the eigenvectors of Ĥ† are related to the eigenvectors of Ĥ
by the following relations

|φn0,a〉 = η |ψn0,a〉 ,
∣∣φn±,α〉 = η

∣∣ψn±,α〉 . (3.4)
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Than, we have the relations of the metric operator η and its inverse η−1 as
follows

η =
∑
n0

dn0∑
a=1

|φn0,a〉 〈φn0,a|+
∑
n+,n−

dn+∑
α=1

(
|φn−,α〉

〈
φn+,α|+ |φn+,α

〉 〈
φn−,α

∣∣) (3.5)

η−1 =
∑
n0

dn0∑
a=1

|ψn0,a〉 〈ψn0,a|+
∑
n+,n−

dn+∑
α=1

(∣∣ψn−,α〉 〈ψn+,α|+ |ψn+,α

〉 〈
ψn−,α

∣∣)
(3.6)

3.2.3 Pseudo-Hermitian Hamiltonians with a complete
biorthonormal eigenbasis

Let Ĥ be an η-pseudo-Hermitian Hamiltonian with a complete bi-orthonormal
eigenbasis {|ψn, a〉 , |φn, a〉} and a discrete spectrum. Then, by definition

Ĥ |ψn, a〉 = En |ψn, a〉 , Ĥ† |φn, a〉 = E∗n |φn, a〉 (3.7)

〈φm, b|ψn, a〉 = δmnδab (3.8)∑
n

dn∑
a=1

|φn, a〉〈ψn, a| =
∑
n

dn∑
a=1

|ψn, a〉〈φn, a| = 11 (3.9)

where dn is the multiplicity (degree of degeneracy) of the eigenvalue En, and
a and b are degeneracy labels [7].

3.3 Mapping from pseudo-Hermitian Hamil-

tonian to Hermitian Hamiltonian

The notion of pseudo-Hermiticity is based on the Hermiticity of the Hamilto-
nian equivalent of the pseudo-Hermitian Hamiltonian of the physical system
under study, because every pseudo-Hermitian Hamiltonian with associated
positive metric operation has an equivalent Hermitian Hamiltonian and both
of them have the same energy spectrum , i.e. they are iso-spectrale. So we
can derive an equivalent pseudo-Hermitian Hamiltonian Ĥ from a Hermitian
Hamiltonian ĥ by the relation

ĥ = ρĤρ−1. (3.10)
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where ρ is a linear invertible and Hermitian operator.
The Hermitian Hamiltanian ĥ is diagonalizable (symmetric) and preserve the
inner product.

〈ϕn | ϕm〉 = δnm, (3.11)

and the eigenvectors of ĥ satisfy the following relation

〈ϕn | hϕm〉 = εm〈ϕn | ϕm〉, (3.12)

〈ĥϕn | ϕm〉 = εn〈ϕn | ϕm〉. (3.13)

The new inner product of the pseudo-Hermitian Hamiltonian is defined by

〈φn | φm〉η = 〈φn | ηφm〉, (3.14)

When ρ2 = η, we get the relation φ = ρ−1ϕ if φ and ϕ are the eigenvectors
of Ĥ and ĥ respectively. Then

〈φn | φm〉η = 〈φn | ηφm〉 = 〈ρ−1ϕn | ρ ϕm〉

= 〈ϕn | ϕm〉. (3.15)

As ĥ is Hermitian, so

ĥ = ρĤρ−1 = ĥ† = ρ−1Ĥ†ρ, (3.16)

it is given that ρĤρ−1 = ρ−1Ĥ†ρ. Therefore

Ĥ† = ρ2Ĥ(ρ−1)2 = ηĤη−1. (3.17)

This relation is nothing than but the pseudo-Hermitian relation that we
mentioned in (3,1) [20].

3.4 Pseudo-metric operator

A pseudo-Hermitian quantum system is defined by a (Quasi-Hermitian) Hamil-
tonian operator and an associated metric operator η. This makes the con-
struction of η the central problem in pseudo-Hermitian quantum mechanics.
And that is why there are various methods of calculating a metric operator
[12].
In this section, we talk about the definition of the metric operator and one
of its method of calculation.
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3.4.1 Metric operator

There is a metric operator η who can makes Ĥ to a pseudo-Hermitian Hamil-
tonian. This metric operator has the following properties :
- Defined positive if all its eigenvalues are positive. If the last one is not,
realized the metric operator will be undefined positive.
- Hermitian η† = η.
- Invertible.
- Linear.
- Not unique.

3.4.2 Different methods to calculate the metric oper-
ator

There are different methods to find the final result, we can find :
- Perturbation theory.
- Spectral method.
- Differential representation of pseudo-Hermiticity.
- Lie algebraic method.
We select one method to use it in the next section which is the perturbation
method [11].

3.4.3 Perturbation method

Consider a Hamiltonian of the form

Ĥ = Ĥ0 + εĤ1, (3.18)

where ε is a real perturbation parameter and Ĥ0 and Ĥ1 are respectively
Hermitian and anti-Hermitian. ε independent operator, Suppose that for
sufficiently small values of ε, the Hamiltonian Ĥ has a real spectrum and a
complete set of eigenvectors, so that a positive definite metric operator η+
exists such an operator has a well defined Hermitian logarithm we shall let
Q = − ln η+, or alternatively

η+ = e−Q. (3.19)

And employ the pseudo–Hermiticity relation Ĥ† = ηĤη−1, to obtain a per-
turbative expansion for Q in the form:

Q =
∞∑
i=0

Qiε
i. (3.20)
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where Qi is ε-independent Hermitian operator that we can calculate it by
using the Baker-Campbell–Hausdorff formula, i.e.

e−QHeQ = H+
∞∑
n=1

1

n!
[H,Q] = H+[H,Q]+

1

2!

[
[H,Q]Q

]
+

1

3!

[[
[H,Q]

]
, Q], Q]+· · ·

(3.21)
and n: is the number of copies of Q.

Then we have for more explicitly the result of each commutator

[H0, Q1] = −2H1. (3.22)

[H0, Q2] = 0. (3.23)

[H0, Q3] =
1

6

[
[H1, Q1], Q1

]
. (3.24)

[H0, Q4] =
−1

6
(
[
[H1, Q1], Q2

]
+
[
[H1, Q2], Q1

]
). (3.25)

Remarks :

• Note that if the operator η is equal to the identity operator 11 than
Ĥ† = Ĥ. The pseudo-Hermiticity reduce to Hermiticity.

• If the operator η is equal to the parity operator P then the condition
Ĥ† = ηĤη−1 reduces to Ĥ† = PĤP−1 on the pseudo-Hermiticity re-
duce to the PT symmetry that we have discussed about it in the first
chapter.

• In the case of a positive deduced metric, there exists an operator ρ such
that η = ρ2, where ρ is a Hermitian linear operator and invertible.

Then Ĥ admits a corresponding Hermitian Hamiltonian ĥ which satisfies the
similarity relation ĥ = ρĤρ−1. In this case, we say that Ĥ is said to be a
quasi–Hermitian that we will discuss now.

3.5 Quasi-Hermitian Hamiltonian

Schooltz were probably the first physicist who discovered that whenever the
standard quantization happen to produce a probability complicated version
of a realistic Hamiltonian operator Ĥ = Ĥ† in usual Hilbert space it still
possible. To try to simplify the equation by make a mapping into another
space and we can go to the quasi-Hermitian Hamiltonian by written in the
right notation with

ρ = η
1
2 . (3.26)
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3.5.1 Definition of quasi-Hermitian Hamiltonian

Ĥ it is a liner operator Ĥ : H → H is said to be quasi-Hermitian if there exist
an invertible bounded self-adjoint positive operator η

1
2 : H → H satisfying

[19]

Ĥ† = η
1
2 Ĥη

−1
2 . (3.27)

3.5.2 Fundamental theorem of quasi-Hermitian

Let Ĥ be non-Hermitian Hamiltonian having a discrete spectrum and admit-
ting a basis complete bi-orthonormal Ĥ is quasi-Hermitian if and only if one
of the condition following is verified [17].

• Ĥ is pseudo-Hermitian with a metric operator of the form η = ρ2,
where ρ is a linear invertible and Hermitian operator.

• Ĥ admit a real spectrum.

• Ĥ admit a corresponding Hermitian Hamiltonian ĥ via the similarity
relation ĥ = ρĤρ−1 and ĥ† = η

1
2 Ĥη

−1
2 , such that Ĥ and ĥ are isospec-

tral.

3.6 Conclusion

After knowing the pseudo-Hermitian and mentioning some of its properties,
we see that the relation between it and the concept of PT -symmetry is
that any PT -symmetric Hamiltonian implies the pre-presence of the pseudo-
Hermiticity, because the PT -symmetry is an anti-linear symmetry know-
ing that the PT -symmetry is a physical condition contrary to the pseudo-
Hermitian which is a mathematical condition. The metric operator allows
us to treat in a simple way the quasi-Hermiticity, which is the result of the
mapping of the pseudo-Hermiticity.
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Chapter 4

Applications

4.1 Introduction

As we said in the previous chapter, Mostafazadeh observed that the square
root of the positive operator ρ = η1/2 can be used to construct a similarity
transformation ĥ = ρĤρ−1 = η1/2Ĥη−1/2 that maps a non-Hermitian Hamil-
tonian Ĥ to an equivalent Hermitian Hamiltonian ĥ, and both have the same
spectral energy [5, 10, 11].
The classical Hamiltonian is obtained by expressing ĥ in terms of x̂ and p̂
and replacing the latter with the classical position x̂c and momentum p̂c ob-
servables. The classical Hamiltonian Ĥc is then obtained by evaluating this
expression in the limit ~→ 0, i.e., assuming that this limit exists [13],

Ĥc (x̂c, p̂c) := lim
~=0

ĥ (x̂c, p̂c) (4.1)

The aim of this chapter is to calculate the operator η of each of the following
two Hamiltonians to determine the new Hermitian Hamiltonian ĥ and The
classical Hamiltonian Ĥc, then to calculate its energy which is the same
energy of Ĥ by using the Maple-soft application

� The shifted harmonic oscillator

Ĥ = p̂2 + x̂2 + iεx̂. (4.2)

� The cubic anharmonic oscillator

Ĥ = p̂2 + x̂2 + iεx̂3. (4.3)
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4.2 The shifted harmonic oscillator

We have the following Hamiltonian

Ĥ = p̂2 + x̂2 + iεx̂. (4.4)

According to the perturbation method we assume that

η = e−Q, Q =
∞∑
j=1

εjQj. (4.5)

Ĥ† = e−QHeQ = H + [H,Q] +
1

2
[[H,Q] , Q] + · · · . (4.6)

p̂2 + x̂2 − iεx̂ = p2 + x̂2 + iεx̂+
[
p̂2 + x̂2 + iεx̂, Q

]
+ · · · . (4.7)

−2iεx̂ =
[
p̂2, Q

]
+
[
x̂2, Q

]
+ iε [x̂, Q] + · · · . (4.8)

−2iεx̂ =
[
p̂2, εQ1 + ε2Q2 + · · ·

]
+
[
x̂2, εQ1 + ε2Q2 + · · ·

]
+iε

[
x̂, εQ1 + ε2Q2 + · · ·

]
· · · . (4.9)

We will eliminate the formulas which contain εj with j ≥ 2. The previous
relations will be:

−2iεx̂ = ε
[
p̂2, Q1

]
+ ε
[
x̂2, Q1

]
, (4.10)

we pose that Q1 = αx̂+ γp, then

−2ix̂ =
[
p̂2, αx̂+ γp̂

]
+
[
x̂2, αx̂+ γp̂

]
,

−2ix̂ = α
[
p̂2, x̂

]
+ γ

[
p̂2, p̂

]
+ α

[
x̂2, x̂

]
+ γ

[
x̂2, p̂

]
. (4.11)

By using the following results[
p̂2, p̂

]
=
[
x̂2, x̂

]
= 0, (4.12)[

p̂2, x̂
]

= p̂ [p̂, x̂] + [p̂, x̂] p̂ = −2i~p, (4.13)[
x̂2, p̂

]
= x̂ [x̂, p̂] + [x̂, p̂] x̂ = 2i~x̂, (4.14)

then the equation (4.7) will be

−2ix̂ = −2iα~p̂+ 2iγ~x̂, (4.15)

therefore 
α = 0,

and

γ = −1
~ ,

(4.16)
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and the operator Q the metric operator η will be{
Q = εQ1 = − εp̂

~ ,

η = e−Q = e
εp̂
~ .

(4.17)

There exist a Hermitian Hamiltonian ĥ which can be mapped from Ĥ and
satisfies similarity relation

ĥ† = ĥ = η1/2Ĥη−1/2, (4.18)

by substituting Ĥ into the expression of ĥ, we get

ĥ = e
εp̂
2~ (p̂2 + x̂2 + iεx̂) e−

εp̂
2~ , (4.19)

by simplification ĥ becomes

ĥ = p̂2 + x̂2 − ε~p̂+
ε2

2
. (4.20)

Using the Maple-soft application, we find that the corresponding energy spec-
trum (details are on Appendix A)

En = 2n+ 1 +
ε2

2
. (4.21)

Having calculated the Hermitian operator ĥ we can determine the classical
Hamiltonian Ĥc for this system using Eq. (4.1) (details are on Appendix A)

Ĥc (x̂c, p̂c) := lim
~=0

ĥ (x̂c, p̂c) = p̂2 + x̂2 +
ε2

2
. (4.22)
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4.3 The cubic anharmonic oscillator

We have the following cubic Hamiltonian

Ĥ = p̂2 + x̂2 + iεx̂3. (4.23)

From the perturbation method and using the formula of Baker-Campbell-
Hausdorff, we assume that

Ĥ† = e−QHeQ = H + [H,Q] +
1

2
[[H,Q] , Q] + · · · , (4.24)

p̂2 + x̂2 − iεx̂3 = p̂2 + x̂2 + iεx̂3 +
[
p̂2 + x̂2 + iεx̂3, Q

]
+

1

2

[[
p̂2 + x̂2 + iεx̂3, Q

]
, Q
]
· · · . (4.25)

We replace Q by its expression, Q = εQ1 + ε2Q2 + ε3Q3 · · · , the previous
equation will be

−2iεx̂3 =
[
p̂2 + x̂2 + iεx̂3, εQ1 + ε2Q2 + ε3Q3 · · ·

]
+

1

2

[[
p̂2 + x̂2 + iεx̂3, εQ1 + ε2Q2 + ε3Q3 · · ·

]
, εQ1 + ε2Q2 + ε3Q3 · · ·

]
· · · .
(4.26)

We will calculate the operator Qj for = 1, 2, 3, from the following relations{
Q2i = 0,

Q2i+1 =
∑i+1

j,k=0 cijk{x̂2j, p̂2k+1},
(4.27)

and 
[H0, Q1] = −2H1,

[H0, Q2] = 0,

[H0, Q3] = −1
6

[[H1, Q1] , Q1] .

(4.28)

Using the Maple-soft application (details are on Appendix B), we find that
Q1 = −2p̂3

3~ −
{x2,p̂}
2~ ,

Q2 = 0,

Q3 = ~p̂+ 16
15~ p̂

5 + 5
6~{x̂

2, p̂3}+ 1
2~{x̂

4, p̂},
(4.29)

and the operator Q(x̂, p̂) will be

Q(x̂, p̂) = ε

(
−2p̂3

3~
− {x̂

2, p̂}
2~

)
+ ε2

(
~p̂+

16

15~
p̂5 +

5

6~
{x̂2, p̂3}+

1

2~
{x̂4, p̂}

)
.

(4.30)

36



Substituting Q(x̂, p̂) in η = e−Q(x̂,p̂) we get

η = exp

[
ε

(
2p̂3

3~
+
{x̂2, p̂}

2~

)
− ε2

(
~p̂+

16

15~
p̂5 +

5

6~
{x̂2, p̂3}+

1

2~
{x̂4, p̂}

)]
,

(4.31)

such that 
{x̂2, p̂} = 2x̂p̂x̂,

{x̂2, p̂3} = 2x̂p̂3x̂− 6p̂,

{x̂4, p̂} = 2x̂2p̂x̂2.

(4.32)

The mapped Hermitian Hamiltonian ĥ is gotten by similarity relation.

ĥ† = ĥ = η1/2Ĥη−1/2, (4.33)

and by substituting ĥ (details are on Appendix B), it becomes

ĥ = p̂2 + x̂2 +
(
−3~x̂2p+ 3i~2x̂

)
ε

+

(
−2~2 − 6i~x̂p̂+ 3x̂2p̂2 − 9~2p̂2 +

3x̂4

2
− 6i~x̂p̂3

)
ε2 + o(ε3) (4.34)

Using the Maple-soft application, we find that the corresponding energy spec-
trum (details are on Appendix B)

En = 2n+ 1 + (
30n2 + (−72~2 + 72~ + 30)n− 52~ + 60~ + 3

8
)ε2. (4.35)

If ~ = 1 we find

En = 2n+ 1 + (
11

8
+

15

4
n+

15

4
n2)ε2. (4.36)

Having calculated the Hermitian operator ĥ we can determine the classical
Hamiltonian Ĥc for this system using Eq. (4.1)

Ĥc (x̂c, p̂c) := lim
~=0

ĥ (x̂c, p̂c) = p̂2c + x̂2c +

(
3x̂2c p̂

2
c +

3x̂4c
2

)
ε2. (4.37)

37



Conclusion

This master thesis is devoted to the study of quantum systems described by
non-Hermitian Hamiltonians having real spectra.

We recalled in the first chapter the mathematical tools and the postulates
of quantum mechanics and a brief history on the non-Hermitian Hamiltoni-
ans.

Then, in the second chapter, we presented the PT -symmetric quantum
mechanics introduced by Carl Bender and Stefan Boettcher in 1998 for non-
Hermitian Hamiltonians invariants under the action of the transformation of
the PT -symmetry, if the latter is not broken then these Hamiltonians have
real spectra.

In the third chapter, we presented pseudo-Hermitian quantum theory for
non-Hermitian Hamiltonians whose spectrum is real and which is a general-
ization of PT -symmetric quantum mechanics. This quantum theory intro-
duced by Ali Mostafazadeh in 2002, states that all real spectrum Hamilto-
nians are pseudo-Hermitians. In particular, all PT -symmetric Hamiltonians
belong to the class of pseudo-Hermitian Hamiltonians.

In the last part, we made an application of the perturbation method
to calculate the metric operator for two non-Hermitian Hamiltonian sys-
tems ”The shifted harmonic oscillator” Ĥ = p2 + x̂2 + iεx̂ and ” The cubic
anharmonic oscillator ”Ĥ = p2 + x̂2 + iεx̂3. In all these applications, we
looked for the Hermitian Hamiltonians equivalent to the Hermitian pseudo-
Hamiltonians ĥ = η1/2Ĥη−1/2 which has the same energy spectrum of Ĥ,
and we have proved that the spectra of these two examples are real.
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Appendix A

The shifted harmonic oscillator
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Appendix B

Cubic anharmonic oscillator
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