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Abstract

Optimization is one of the important categories of engineering problems, con-
cerned with the search for better solutions of maximum or minimum ways in
a certain areas. Because of its complexity, the meta-heuristique algorithms
are usually used and applied because these algorithms don’t require prior
knowledge of the search space and because they also depend on theories
based on randomness. A large group of this algorithms (optimization tech-
niques) compete to find a better solution, the most prominent of which is
particle swarm optimization (PSO), and given its good performance in many
optimization problems, it is considered a modern method and is relatively
close to experimenting with swarms. This thesis aims to provide a review
and discussion of the application of the PSO algorithm and its projection
to plan the path of drone swarms and we analyze its present situation of
research and parameter selection, topology structure, Basic PSO algorithm
and multi-objective optimization PSO and its simulations. Finally, current
problems are analyzed and future research directions are presented.
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Resumé

L’optimisation est l’une des catégories importantes de problèmes d’ingénierie,
concernés par la recherche de meilleures solutions de manières maximales
ou minimales dans certains domaines. En raison de sa complexité, les al-
gorithmes méta-heuristiques sont généralement utilisés et appliqués car ces
algorithmes ne nécessitent pas de préconnaissance de l’espace de recherche
et parce qu’ils dépendent également de théories basées sur l’aléatoire. Un
grand groupe de ces algorithmes (techniques d’optimisation) rivalisent pour
trouver une meilleure solution, dont la plus importante est l’optimisation
par essaim de particules (PSO), et compte tenu de ses bonnes performances
dans de nombreux problèmes d’optimisation, elle est considérée comme une
méthode moderne et est relativement proche à expérimenter avec des es-
saims. Cette thèse vise à fournir une revue et une discussion de l’application
de l’algorithme PSO et de sa projection pour planifier le chemin des es-
saims de drones et nous analysons sa situation actuelle de recherche et de
sélection des paramètres, la structure topologique, l’algorithme PSO de base
et l’optimisation multi-objectifs PSO et ses simulations. Enfin, les problèmes
actuels sont analysés et les directions de recherche futures sont présentées.
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General Introduction

Due to the high complexity of real-world optimization problems, often it is
not easy to solve them using traditional or deterministic optimization meth-
ods. There are many real-world optimization problems for which one can
afford near-optimal solution rather than an exact solution. Therefore, a class
of robust algorithms is required, which does not depend upon the particular
characteristics of the problems and hence can be applied to a wide variety of
problems. Evolutionary computation and swarm intelligence-based optimiza-
tion algorithms serve the purpose. Swarm and evolutionary algorithms are
probabilistic algorithms, which are often very effective with problems that
are not easy to deal with classical optimization methods. However, we want
to emphasize that it is not our intention to say that these families provide
a set of all-cure solutions. In fact, because of the stochastic nature of the
search process, reproducibility may become a challenging issue unless one
is careful about the experiments. Often, the computational overhead could
be very high also. If a problem can be tackled with a classical optimization
method for which the characteristics of the solutions can be analyzed easily,
our prescription is not to use swarm or evolutionary algorithms for such a
problem. This thesis provides a detailed study and working procedure of one
of the algorithms in the area of swarm intelligence which will be applied in
the field of Aeronautics.
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Chapter 1

Drones and Swarm Intelligence

1.1 Introduction

Moving from a place to another is considered a simple task for humans, they
decide how to go from a place to another in a split second. For air-crafts,
such a task has been a challenging problem for decades since the era of air-
crafts. However scientists made a lot of efforts and developed many ways so
that an air-craft can navigate from a starting position to reach it’s target
by following an optimal path that fits the conditions of the trip. Also with
the technology advance that our world reached today, researches reached a
high level so that they started imitating the behaviour of animals...etc to
make intelligent machines that makes things easier. In aeronautics, an air-
craft is invented by imitating birds, it’s form, it’s shape, even some of its
characteristics are token from birds, so scientists concluded that the best
way to solve a problem in this field or to invent something new, we better
return to the source, which is birds or any other related source, especially
when talking about Drones or UAVs.

1.2 Definition of Drones

The Meriam-Webb Dictionary describes drones as “an unmanned aircraft or
ship guided by remote control or onboard computers”. Drones are character-
ized by their remote and automatic nature. Drones are generally abbreviated
as Unmanned Aerial Vehicle (UAV), emphasizing that there is no man on
board and there is a remote pilot on the ground. It is unclear why the UAV
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was called a drone. The typical aircraft, such as airplanes, helicopters, bal-
loons and gliders, requires a pilot or a crew controlling the aircraft in the
sky. Unmanned aircraft does not need a human pilot to operate the aircraft
in the sky. These drones are either fully automatic (i.e. controlled by com-
puter onboard) or controlled remotely from the ground. There are various
expressions of drones in English, and the official names are not unified. Due
to the wide variety of design and performance of unmanned aerial vehicles,
legal definition is not easy. The drone covers the meanings of various types
of aircraft such as UAV, RPA (Remotely Piloted Aircraft), RPV (Remotely
Piloted Vehicle), UAS (Unmanned Aircraft Systems) which are divided ac-
cording to each purpose [1].

1.3 History of Drones

As the proverb says, ‘war accelerates human development’, The first pilot-less
vehicles were developed in Britain and the USA during the First World War.
Britain’s Aerial Target, a small radio-controlled aircraft, was first tested in
March 1917 while the American aerial torpedo known as the Kettering Bug
first flew in October 1918. Although both showed promise in flight tests,
neither were used operationally during the war. During the inter-war period
the development and testing of unmanned aircraft continued. In 1935 the
British produced a number of radio-controlled aircraft to be used as targets
for training purposes. It’s thought the term ’drone’ started to be used at
this time, inspired by the name of one of these models, the DH.82B Queen
Bee. Radio-controlled drones were also manufactured in the United States
and used for target practice and training. Reconnaissance UAVs were first
deployed on a large scale in the Vietnam War. Drones also began to be used
in a range of new roles, such as acting as decoys in combat, launching mis-
siles against fixed targets and dropping leaflets for psychological operations.
Following the Vietnam War other countries outside of Britain and the United
States began to explore unmanned aerial technology. New models became
more sophisticated, with improved endurance and the ability to maintain
greater height. In recent years models have been developed that use tech-
nology such as solar power to tackle the problem of fuelling longer flights.
Drones now have many functions, ranging from monitoring climate change to
carrying out search operations after natural disasters, photography, filming,
and delivering goods. But their most well-known and controversial use is
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by the military for reconnaissance, surveillance and targeted attacks. Since
the 9/11 terrorist attacks, the United States in particular has significantly
increased its use of drones. They are mostly used for surveillance in areas
and terrains where troops are unable to safely go. But they are also used as
weapons and have been credited with killing suspected militants. Their use
in current conflicts and over some countries has raised questions about the
ethics of this kind of weaponry, especially when it results in civilian deaths,
either due to inaccurate data or because of their proximity to a ‘target’.[7].

1.4 Uses of Drones

1.4.1 Military

Probably the oldest, most well-known and controversial use of drones is in
the military. The British and U.S. militaries started using very basic forms
of drones in the early 1940’s to spy on the Axis powers. Today’s drones are
much more advanced than the UAVs of yesteryear, equipped with thermal
imaging, laser range finders and even tools to perform airstrikes.

1.4.2 Delivery

Delivery drones are usually autonomous UAVs that are used to transport
food, packages or goods to your front doorstep. These flying vehicles are
known as “last mile” delivery drones because they are used to make deliveries
from stores or warehouses close by. Retailers and grocery chains all over the
country are turning to drones as more efficient delivery alternative, instead
of relying on delivery drivers with inefficient trucks.

1.4.3 Emergency rescue

Sometimes it’s just not safe enough to send humans into a rescue situation
due to the scope or severity of the disaster. That’s where drones come in.
In the case of a capsized boat or drowning individual, officials can throw
an Autonomous Underwater Vehicle (AUV) into the water to assist in the
rescue. If there’s an avalanche, drones are deployed to look for those caught
in the snow.
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1.4.4 Photography

Drones have been a boon for photographers, who use the UAVs to take
expansive aerial photos. Ever wonder what it’s like to get a bird’s eye view
of your favorite city, beach or building? There are drones made specifically
for photography that provide a new way to photograph some of your favorite
destinations from above [2].

1.5 From Drones to Swarms

Unmanned vehicles and autonomously operating cyber-physical systems con-
tinue to gain popularity for a wide range of applications . Especially un-
manned aerial vehicles (UAVs), often referred to as drones, are a trending
technology , for which the number of applications is rapidly rising . Generally
speaking, autonomous devices can be used as (a) mobile sensing platforms ,
(b) actors or (c) service providers . For all three, the deployment of multiple
UAVs together as a single collaborative multi-robot systems (MRS) , known
as a swarm , has become possible due to increasing device performance com-
bined with more favourable unit costs [3]. The question really is not if, but
when and where drone swarms, which is the next evolution of robotic war-
fare, will be utilised in real-time operations. It is pertinent to note that while
drone swarms may not be ready as an end state ‘product’, proliferation of ba-
sic swarming technology is inevitable in the coming decade across the world.
Here advances in drone swarming, which is the next evolution of robotic war-
fare are mostly classified, though governments have given glimpses of their
progress over the years. The question is when and where drone swarms will
be utilised as part of a mature concept of operations (ConOps)[4].

1.6 Flocking of Birds

When living in a group of individuals (flock), there are several risks that
a bird can be exposed to.There is an increased intensity of competition of
the resources in the group and the individuals have to share the amount of
food with the rest of the flock. In some cases also predators conspicuousness
increase since a large group is more visible and noisy . Why do individuals
choose to live in a flock? According to Rob Nelson [1] there is two main
reasons for flocking. Primarily it contributes to protection from predators,
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the flock can both keep predators away by using aggressive group defence
and individuals can use the group as cover.Secondly it is easier to find food
and detect predators the more eyes that are looking. As a result the birds
can reduce their vigilance and therefor spend more time finding food. Or
in other words, they can take full time to reach their objectives. There-
fore optimization is the main act of obtaining the best result under given
situations[5].

1.7 Swarm Intelligence

Swarm intelligence (SI) is based on the collective behavior of decentralized,
selforganized systems. It may be natural or artificial. Natural examples of
SI are ant colonies, fish schooling, bird flocking, bee swarming and so on.
Besides multirobot systems, some computer program for tackling optimiza-
tion and data analysis problems are examples for some human artifacts of SI.
The most successful swarm intelligence techniques are Particle Swarm Opti-
mization (PSO) and Ant Colony Optimization (ACO). In PSO, each particle
flies through the multidimensional space and adjusts its position in every
step with its own experience and that of peers toward an optimum solution
by the entire swarm. Therefore, the PSO algorithm is a member of Swarm
Intelligence[6].

1.8 Particle Swarm Optimization PSO

The Particle Swarm Optimization algorithm (abbreviated as PSO) is a novel
population-based stochastic search algorithm and an alternative solution to
the complex non-linear optimization problem. The PSO algorithm was first
introduced by Dr. Kennedy and Dr. Eberhart in 1995 and its basic idea was
originally inspired by simulation of the social behavior of animals such as
bird flocking, fish schooling and so on. It is based on the natural process of
group communication to share individual knowledge when a group of birds
or insects search food or migrate and so forth in a searching space, although
all birds or insects do not know where the best position is. But from the
nature of the social behavior, if any member can find out a desirable path to
go, the rest of the members will follow quickly.
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1.9 Scientific community works

In the past two decades, the scientific community also neutralized or rather
found solutions to obstacles that prevent drones from flying in self-driving
UAVs. The majority of research and military applications focused more on
the path planning problem of reconnaissance mission assisted by UAV swarms
without any prior knowledge of target positions. The past two decades also
have seen a very rapid and unprecedented development in the field of compu-
tational intelligence with the emergence of many powerful optimization algo-
rithms that provide solutions through efficient and very effective hypotheses
about the nature of the problem. Particle swarm optimization (PSO) is one
such technique that has received wide interest by researchers to adress the
problems of poorly structured, constrained continuous/discrete functional
optimization. As the researchers learned about this technique, they created
and developed a set of new applications with different features and different
requirements as well, starting from the first theory of PSO, some of which
saw success and others needed to add some changes in the algorithm struc-
ture. they published theoretical studies of the effects of different parameters
and suggested many variants of the algorithm. Agents in a natural com-
puting paradigm are decentralized entities with generally no perception of
the high-level goal in pursuit yet can model complex real-world systems.
This is made possible through several low-level goals which when met facili-
tate meaningful collective behavior arising from these seemingly unintelligent
and noninfluential singular agents. An early motivation can be traced from
Reeves’ introduction of particle systems in the context of modeling natural
objects such as fire, clouds and water in computer-based animations while at
[36]. In the course of development, agents or ‘particles’ are generated, un-
dergo transformations in form and move around in the modeling environment
and eventually are rejected or ‘die’. Reeves concluded that such a model is
able to represent the dynamics and form of natural environments that were
rendered infeasible using classical surface-based representations . Subsequent
work by Reynolds in the Boid Model (1986) established simple rules that in-
creased autonomy of particle behavior and laid down simple low-level rules
that boids (bird-oid objects) or particles could obey to give rise to emergent
behavior[35]. Today, the scientific community works to solve problems in a
separate context, problems of scheduling, allocation, and resource manage-
ment. Sometimes there are algorithms that can handle it perfectly but have
very high time complexity. Methods have been developed to solve this type of
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approximation problem, among which is the conditioning of multi-objective
particle swarm optimization. whose applications are still very limited.

1.10 Conclusion

Collective behaviour of large groups of animals, or flocking, is a natural
behaviour that has puzzled many people. Examples of this is not only flocks
of birds, but even fish schools and mammal herds. On the other hand, the
PSO method does not always work well and still has room for improvement.
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Chapter 2

UAVs Path planning

2.1 Introduction

Unmanned aerial vehicles (UAVs) are used in groups often to detect tar-
gets and keep them within range of sensors. The need for communication
is fundamental and absolutely essential to the missions of a drones team.
Human supervisors must be in continuous contact with informations about
the target even when there are obstacles. Indeed, path planning is one of
the primary tasks in the process of automating a drones system that moves
in the air (environment) While avoiding obstacles and respecting various re-
strictions and physical limitations . But so far, the possibility of creating
an effective path from a given initial point to an undefined final destination
in real-time conditions remains one of the biggest challenges and a difficult
goal to achieve. This is due to the lack of comprehensive investigation and
intuitive presentation of UAV trajectory planning in an unknown complex
environment. As path planning plays an important role in enhancing UAV’s
autonomy level, it has to be considered in the design of a UAV.

2.2 Path Planning for Multi-UAV Formation

The multi-UAV path planning is a process that the UAVs find their own paths
from their starting points to their destinations cooperatively. It has been a
research focus in recent years. Of course, it is based on the path planning
of the single UAV. Comparing to the single UAV path planning, the multi-
UAVs need to deal with their cooperative relationships. As the formation
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fly is an important cooperative way in many situations, the concept of the
formation path planning is presented to solve the multi-UAV path planning
problem. Specifically, the formation path planning means each UAV finds
its own collision free path and simultaneously tries to keep their formation
structure[38].

2.3 Path Planning Overview

From a technical perspective, path planning is a problem of determining a
path for a vehicle in a properly defined environment from a starting point to
a target point such that the vehicle is free from collisions with surrounding
obstacles and its planned motion satisfies the vehicle’s physical/kinematic
constraints . In a report by [37] and [39], There are a number of terms
associated with path planning which are used in different ways by different
people. Some are clarified here:

2.3.1 Motion planning

This term is frequently associated with manipulator robotics. It involves
deliberative high level and low level planning of a way to move a robotic
manipulator.

2.3.2 Trajectory planning

Planning the robot’s next movement. This term is synonymous with motion
planning.

2.3.3 Navigation

A very diverse term which can have a variety of meanings. Generally it
means “getting from here to there”, but it also encompasses the fields of
path planning, motion planning, obstacle avoidance, and localization.

2.3.4 Global path planning

The planning is done prior to vehicle movement. It uses the information from
the surrounding environment to reach a target point from a starting point.
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As the information contains global data, the process is slow, but the planned
path may be optimal.

2.3.5 Local navigation

The process of using only the UAVs current sensed information of its imme-
diate world to avoid obstacles and to ensure vehicle stability and safety. It is
much more reactive than path planning and runs in real time. The speed at
which a vehicle can fly is limited by the speed at which the local navigator
can operate.

2.3.6 Obstacle Avoidance

Used in a very similar manner to local navigation, but where local navigation
considers vehicle stability, safety, and goal directness, obstacle avoidance is
concerned with merely getting around objects that are in the drone way.

2.4 Criteria of Path Planning

Important criteria for path planning that are commonly taken into account
are the computational time, path length and completeness. A path planning
algorithm with less computational time is vital in real time application, which
is desirable in dynamic environments. The generated optimal path in terms of
path length by a path planning technique will minimise UAV flight time and
hence prolongs the UAV’s endurance and life cycle, minimises fuel/energy
consumption and reduces exposure to possible risks. On the other hand, a
path planning approach satisfies the completeness criterion if it is able to find
a path if one exists. However, sometimes, there are trade-offs between such
criteria. For example, a path planning method has to disregard the path’s
optimality in order to increase the computational efficiency. It means that
finding a slightly longer path with less computational time may be prefer-
able. On the other hand, higher computational complexity is necessary if an
optimal path is required for some reasons. These criteria have to be con-
sidered before any path planning technique/algorithm design process takes
place [36].
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2.4.1 Single Vehicule Path Planning

One of the main functions of an autonomous vehicle is to move itself from
some initial location to locations that are required for the vehicle to execute
assigned tasks. This simple function actually involve several issues. First, the
vehicle must know where it currently is and the next location it should go.
Secondly, it must also have the ability to plan a route between the locations
and then navigate itself along the planned route.

2.4.2 Multi-Vehicule Path Planning

The driving force in the research related to planning for multiple autonomous
vehicles is increasing demand of autonomous systems in the applications
where a single vehicle is no longer capable of performing the necessary tasks.
In most real-world applications, autonomous vehicles operate in dynamic
uncertain environments. Therefore, a practical planning system must have
the ability to dynamically re-plan in the face of unexpected circumstances
[40].

2.5 Collision-avoidance Model for Multi-UAVs

The UAVs may collide with each other without a proper arrangement in
the formation. The repulsion field of the artificial potential field method is
introduced to handle this problem. When the distance between each two
UAVs is less than the danger value, the repulsion field of UAV works only
on the other UAVs and won’t work on itself. At the same time, the path
planning of the lead plane won’t be affected by the repulsion fields of the
wingmen so as to keep the dependence of the lead plane path planning.
Therefore, the wingman is subjected to the repulsion field of other wingmen
and the lead plane. the safe radius of the collision avoidance potential field
is 20m. It means the UAV will be subjected to the repulsion when it gets
into the other UAVs’ safe radius [38].

2.6 Conclusion

It can be said as a conclusion that the UAV path planning is the trajec-
tory planning of the UAV platforms, for example; The problem of trajectory
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planning, speed, altitude, etc. is very complex and the reason for this is due
to the necessity of adjusting the relationship between this study and various
research fields such as control, robotics, data integration and artificial intel-
ligence...etc., as a projection of it. Trajectory planning aims to choose and
achieve the optimum path for the flight with the shortest distance and time,
taking into consideration the need to bypass and ensure the most important
factor, which is the safety of the vehicle throughout the flight. That is why
the main techniques in path planning must include obtaining and processing
information on terrain and obstacles. In this chapter, we touched on a sim-
ple introduction to drones path planning in particular, as an introduction to
what comes next.
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Chapter 3

Particle Swarm Optimization
(PSO)

3.1 Introduction

For almost all the human activities, there is a desire to deliver the most
with the least. For example, in the business point of view maximum profit
is desired from least investment; maximum number of crop yield is desired
with minimum investment on fertilizers. The concept of optimization has
great significance in both human affairs and the laws of nature, which is the
inherent characteristic to achieve the best or most favorable (minimum or
maximum) from a given situation. In addition, all aspects of optimization
can be viewed and studied as design optimization without any loss of gener-
ality. This makes it clear that the study of design optimization can help not
only in the human activity of creating optimum design of products, processes
and systems, but in the understanding and analysis of mathematical/physical
phenomenon and in the solution of mathematical problems. The constraints
are inherent part if the real world problems and they have to be satisfied
to ensure the acceptability of the solution. There are always numerous re-
quirements and constraints imposed on the designs of components, products,
processes or systems in real-life engineering practice, just as in all other fields
of design activity. Therefore, creating a feasible design under all these diverse
requirements/constraints is already a difficult task, and to ensure that the
feasible design created is also ‘the best’ is even more difficult.
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3.2 Contemporary Optimization Approaches

There are several mathematical optimization techniques being practiced so
far, for example gradient methods, Integer Programming, Branch and Bound,
Simplex algorithm, dynamic programming, etc. These techniques can effi-
ciently solve the problems with limited size. In addition, they could be more
applicable to solve linear problems. In addition, as the number of variables
and constraints increase, the computational time to solve the problem, may
increase exponentially. This may limit their applicability. Furthermore, as
the complexity of the problem domain is increasing solving such complex
problems using the mathematical optimization techniques is becoming more
and more cumbersome. In addition, certain heuristics have been developed
to solve specific problem with certain size. Such heuristics have very limited
flexibility to solve different class of problems. In past few years, a number
of nature-/bio-inspired optimization techniques (also referred to as meta-
heuristics) such as Evolutionary Algorithms (EAs), Swarm Intelligence (SI),
etc. have been developed[9].

3.3 Meta-heuristic algorithms

Meta-heuristic algorithms work independently of the mathematical features
of the problems of whether the function involved in the problem is differen-
tiable, continuous, or convex, etc. The algorithms just evaluate the objective
function at given decision variables and consider the optimization problem as
a black box. These algorithms can be classified into three categories: evolu-
tionary algorithms, physics-based algorithms, and swarm-intelligence-based
algorithms[10].

3.4 Swarm Intelligence Algorithms

Swarm intelligence is a discipline that deals with natural and artificial sys-
tems composed of many individuals that coordinate based on the decen-
tralized, collective and self-organized cooperative behavior of social entities
like flock of birds, or school of fishes, ant colonies, animal herding, bacte-
rial growth, and microbial intelligence. The members of a swarm must be
active, dynamic and simple (with no or very little inherent knowledge of
the surroundings). Within the swarm, due to this cooperative behavior, a
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search strategy, better than random search, emerges. The so obtained intel-
ligent search strategy may be referred to as swarm intelligence, in general.
A well-accepted definition of swarm intelligence is , the emergent collective
intelligence of groups of simple agents [15]. In addition, Swarm-intelligence-
based algorithms mimic the concept of food foraging behaviour of a swarm
of various creatures like ants, fish, and birds. They shared the information
of visited the best places among the other creatures to find the food loca-
tion. This intelligent behaviour has been observed by the researchers and
the algorithms to solve the optimization problems[10]. Some examples are:

1. Particle Swarm Optimization (PSO)[11].

2. Artificial Bee Colony Algorithm (ABC)[12]

3. Ant Colony Optimization (ACO)[13]

4. Whale optimization algorithm (WOA)[14]

Where The Particle Swarm Optimization (PSO) is inspired by birds flocking
or fish schooling, the Artificial Bee Colony (ABC) is motivated by foraging
behavior of honeybees, while the Ant Colony Optimization (ACO) is inspired
by foraging behavior of ants. An intelligent swarm can, therefore, be defined
as a population of interacting individuals that optimizes a function or goal by
collectively adapting to the local and/or global environment. In the area of
global optimization, the swarm intelligence first appeared with PSO in 1995
and ant colony optimization (ACO) in 1992. After their invention, there was
an exponential growth in the number of scientific works related to swarm
intelligence and the appearance of new journals devoted to the innovations
in swarm intelligence.

3.5 Particle Swarm Optimization

PSO in most basic terms belongs to the swarm intelligence paradigm, which
studies the collective behavior and social characteristics of organized, decen-
tralized, and complex systems known as “swarms.” A swarm is an apparently
disorganized collection (population) of moving individuals that tend to clus-
ter together while each individual seems to be moving in a random direction.
Each individual in the swarm has the capability of interaction with the other
individuals, or the so-called “agents” (or “particles” in PSO), although the
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capabilities of each agent are rather limited by certain set of rules. Therefore,
the behavior of an agent in a swarm is often insignificant, but their collective
and social behavior is of paramount importance, in that, the swarm intel-
ligence comes from both the collective adaptation and stochastic nature of
the swarm. The main motivation stems directly from the organic swarms in
nature such as bird flocks, fish schools, ant colonies, and other animal herds
and packs, which exhibit an amazing self-organization and collective/social
adaptation capabilities. This cannot be explained simply by the aggregated
behavior of each individual members in the swarm but their collective adapta-
tion to the environment, which in turn makes the survival in nature possible.
In a PSO process, a swarm of particles, each of which represents a potential
solution to the optimization problem in hand, navigates through the search
space. The particles are initially distributed randomly over the search space,
and the goal is to converge to the global optima of a function or a system.
Each particle keeps track of its position in the search space and its best solu-
tion so far achieved. This is the personal best value (the so-called pbest) and
the PSO process also keeps track of the global best solution so far achieved
by the swarm with its particle index (the so-called gbest). So during their
journey with discrete time iterations, the velocity of each agent in the next
iteration is computed as a function of the best position of the swarm (posi-
tion of the particle gbest as the social component), the best personal position
of the particle (pbest as the cognitive component), and its previous velocity
(the memory term). Both social and cognitive components contribute ran-
domly to the position of the agent in the next iteration. This is illustrated
in Fig. 2.1 where particle a has a new velocity update (at time t1), which
can evade the nearby local optimum. This is of course an optimistic illustra-
tion and there is absolutely no guarantee that it will happen as such, since
the cognitive and social components’ contributions to the velocity update
are all random; however, the tendency toward local and global best (similar
to the “survival of the fittest” paradigm in the other EAs), and repeated
trials with random scales may yield a convergence to the global optimum
sooner or later. Note that its probability of success further rises due to the
numerous number of particles in the swarm, since it does not matter if all
fail to achieve this but one. This is the main philosophy behind the PSO
and the next section is devoted to its detailed description and formulation[1].
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Figure 3.1: Illustration of the basic velocity update mechanism in PSO.

xa,j(t): jth dimensional component of the position of particle a, at time
t.
va,j(t): jth dimensional component of the velocity of particle a, at time t.
ya,j(t): jth dimensional component of the personal best (pbest) of particle a,
at time t.
ŷj(t): jth dimensional component of the global best position of swarm at
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time t.

3.6 PSO over other optimization algorithms

Over the ages, nature has constantly been a rich source of inspiration for sci-
ence, with much still to discover about and learn from. Swarm Intelligence
(SI), a major branch of artificial intelligence, was rendered to model the col-
lective behavior of social swarms in nature. Ultimately, Particle Swarm Opti-
mization algorithm (PSO) is arguably one of the most popular SI paradigms.
Over the past two decades, PSO has been applied successfully, with good re-
turn as well, in a wide variety of fields of science and technology with a
wider range of complex optimization problems, thereby occupying a promi-
nent position in the optimization field. Through in- depth studies, a number
of problems with the algorithm have been detected and identified; e.g., issues
regarding convergence, diversity, and stability. Consequently, since its birth
in the mid-1990s, PSO has witnessed a myriad of enhancements, extensions,
and variants in various aspects of the algorithm, specifically after the twenti-
eth century, and the related research has therefore now reached an impressive
state. The main advantages of the PSO algorithm are summarized as:

1. Simple concept

2. Easy implementation

3. Robustness to control parameters, and computational efficiency when
compared with mathematical algorithm and other heuristic optimiza-
tion techniques [11].

Also, in modern sciences like Artificial Intelligence, most of complex problems
are solved by inspiring from narture, which makes PSO the best algorithm
to apply for objects like drones since this algorithm is inspired from the
movements of flock of birds, which makes it a good choice in this field[1].

3.7 Basic PSO Algorithm

Particle swarm optimization (PSO) is a population-based search algorithm
and searches in parallel using a group of particles similar to other AI-based
heuristic optimization techniques. The original PSO suggested by Kennedy
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and Eberhart is based on the analogy of swarm of bird and school of fish
[12]. Each particle in PSO makes its decision using its own experience and
its neighbor’s experiences for evolution. That is, particles approach to the
optimum through its present velocity, previous experience, and the best ex-
perience of its neighbors. The main advantages of the PSO algorithm are
summarized as: simple concept, easy implementation, robustness to control
parameters, and computational efficiency when compared with mathemati-
cal algorithm and other heuristic optimization techniques[41]. In a physical
n-dimensional search space, the position and velocity of particle-i are repre-
sented as the vectors: Xi = (xi1...xin) and Vi = (vi1...vin) In the PSO algo-
rithm, let: P − best(ti) = (xPbest

i1 ...xPbest
in and G − best(ti) = (xGbest

i1 ...xGbest
in .

be the best position of particle i and its neighbors’ best position so far,
respectively. The modified velocity and position of each particle can be cal-
culated using the current velocity and the distance from Pbesti to Gbest as
follows[15]:

V k+1
i = ω ∗ V k

i + c1 ∗ r1 ∗ (Pbestki −Xk
i ) + c2 ∗ r2 ∗ (Gbestkt −Xk

i ) (3.1)

Xk+1 = Xk
i + V k

i + 1 (3.2)

Where:
V k
i : velocity of particle i at iteration k
ω: inertia weight factor
c1, c2: acceleration coefficients
r1, r2: random numbers between 0 and 1
Xk

j : position of particle i at iteration k
Pbestkt : best position of particle i until iteration k
Gbestki : best position of the group until iteration k.

In the PSO world, there exist global and local PSO versions. Instead
of learning from the personal best and the best position achieved so far by
the whole population, in the local version of PSO, each particle’s velocity is
adjusted according to its personal best and the best performance achieved
so far within its neighborhood. Focusing on improving the local version of
PSO, different neighbourhood structures are proposed and discussed[41].
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3.8 Some PSO variants

The first set of improvements has been proposed for the problem-dependent
performance of PSO due to its strong parameter dependency. There are
mainly two types of approaches: The first one is through self-adaptation,
which has been applied to PSO by Kenji Yasuda[45], Miqin Zhang[47], Yuhui
Shi[46] and Eberhart[44]. The other approach is via performing hybrid tech-
niques, which are employed along with PSO by Angeline, Reynolds, Higashi
and Iba, Esquivel and Coello, and many others. Some of the other improved
PSO algorithms we can find:

3.8.1 Attractive and Repulsive PSO (ARPSO)

Attractive and Repulsive PSO (ARPSO) proposed[18] alternates between
attraction and repulsion phases. During attraction, ARPSO allows fast in-
formation flow between particles causing a low diversity but a better conver-
gence to the solution. It is reported that 95% fitness improvements can be
obtained within this phase. In the repulsion phase, the particles are pushed
away from the GB solution so far achieved to increase diversity. ARPSO
exhibits a higher performance compared to both PSO and GA.

3.8.2 Guaranteed Convergence PSO (GCPSO)

In this algorithm, the velocity of the gbest particle will only depend on the
memory term since xgbest = ygbest = ŷ. To address this problem Van den
Bergh introduced a new PSO variant, the PSO with guaranteed convergence,
(GCPSO)[19]. In GCPSO, a different velocity update equation is used for the
gbest particle based on two threshold values that can be adaptively set during
the process. It is claimed that GCPSO usually performs better than the
bPSO when applied to unimodal functions and comparable for multimodal
problems; however, due to its fast rate of convergence, GCPSO can be more
likely to trap to a local optimum with a guaranteed convergence, whereas the
bPSO may not. Based on GCPSO, Van den Bergh proposed the Multi-start
PSO (MPSO)[19], which repeatedly runs GCPSO over randomized particles
and stores the (local) optimum at each iteration. Yet, similar to basic PSO
and many of its variants, the performance still degrades significantly as the
dimension of the search space increases.
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3.8.3 Self-Organized Criticality PSO (SOCPSO)

In another approach, Lovberg and Krink presented Self Organized Criticality
(SOC) PSO[20][21]. The criticality measures the proximity of particles, so
that the particles that are too close to each other can be relocated in the
search space to improve the diversity of the swarm. They propose two types
of relocation: The first one is random initialization and the second one is
random displacement of particles further in the search space. SOC PSO
outperformed basic PSO only in one out of four cases.

3.9 Multiswarms

PSO was initially proposed as an optimization technique for static environ-
ments; however, many real problems are dynamic, meaning that the envi-
ronment and the characteristics of the global optimum can change in time.
Therefore, such problems require systematic re-optimizations due to system
and/or environmental changes. Even though it is possible to handle such
dynamic problems as a series of individual processes via restarting the op-
timization algorithm after each change, this may lead to a significant loss
of useful information, especially when the change is not too drastic. The
main problem of using the basic PSO algorithm in a dynamic environment
is that eventually the swarm will converge to a single peak—whether global
or local. When another peak becomes the global maximum because of an
environmental change, it is likely that the particles keep moving near the
peak to which the swarm has converged earlier, and thus they cannot find
the new global maximum. Blackwell and Branke have addressed this prob-
lem in [22] and [23] by introducing multiswarms that are actually separate
PSO processes. Each particle is now a member of one of the swarms only
and it is unaware of other swarms. This is one of the main differences com-
pared to “Tribes”, which otherwise is another good example of multiswarms.
The main idea is that each swarm can converge to a separate peak. Swarms
interact only by mutual repulsion that keeps them from converging to the
same peak. For a single swarm, it is essential to maintain enough diversity,
so that the swarm can track small location changes of the peak to which it
is converging. For this purpose Blackwell and Branke introduced charged
and quantum swarms, which are analogs to an atom having a nucleus and
charged particles randomly orbiting it. The particles in the nucleus take care
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of the fine-tuning of the result while the charged particles are responsible of
detecting the position changes. However, it is clear that, instead of charged
or quantum swarms, some other method can also be used to ensure sufficient
diversity among particles of a single swarm, so that the peak can be tracked
despite of small location changes. As one might expect, the best results are
achieved when the number of swarms is set equal to the number of peaks.
However, it is then required that the number of peaks is known beforehand.
In [24], Blackwell presents self-adapting multiswarms, which can be created
or removed during the PSO process, and therefore it is not necessary to fix
the number swarms beforehand. The repulsion between swarms is realized
by simply reinitializing the worse of two swarms if they move within a certain
range from each other. Using physical repulsion could lead to equilibrium,
where swarm repulsion prevents both swarms from getting close to a peak.

Figure 3.2: Static Neighborhood Topologies.

3.10 Geometrical illustration of PSO

The PSO algorithm begins by initializing the population first. The second
step is calculating the fitness values of each particle, followed by updating
individual and global bests, and later, the velocity and the position of the
particles get updated. The second to fourth steps get repeated until the
termination condition is satisfied. The update velocity for particles consist
of three components in equation (3.1). Consider a movement of a single
particle in a two dimensional search space.
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Figure 3.3: velocity and position update for a particle in a two-dimensional
search space.

Figure 3.3 illustrates how the three velocity components contribute to
move the particle towards the global best position at time steps and respec-
tively.

Figure 3.4: velocity and position update for a particle in a two-dimensional
search space.

Figure 3.4 shows the position updates for more than one particle in a
two dimensional search space and this figure illustrates the gbest PSO. The
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optimum position is denoted by the symbol *. Figure 3.4.1 shows the ini-
tial position of all particles with the global best position. The cognitive
component is zero at t = 0 and all particles are only attracted toward the
best position by the social component. Here the global best position does
not change. Figure 3.4.2 shows the new positions of all particles and a new
global best position after the first iteration i.e. at t = 1.

3.11 Advantages and Disadvantages of PSO

It’s said that A PSO is considered as one of the most powerful methods for
resolving the non-smooth global optimization problems and has many key
advantages as follows[15]:

1. PSO is a derivative-free technique just like as other heuristic optimiza-
tion techniques.

2. It is easy to implementation, so it can be applied both in scientific
research and engineering problems.

3. PSO is less sensitivity to the nature of the objective function compared
to the conventional mathematical approaches and other heuristic meth-
ods.

4. PSO techniques can generate high-quality solutions within shorter cal-
culation time and stable convergence characteristics than other stochas-
tic methods.

5. The calculation in PSO algorithm is very simple.

6. It is conceptually very simple

While there are some disadvantages of the PSO algorithm[13]:

1. The method easily suffers from the partial optimism, which causes the
less exact at the regulation of its speed and the direction.

2. Problems with non-coordinate system (for instance, in the energy field).
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3.12 Path Planning using Particle Swarm Op-

timization

path and deterministic search algorithms were used to find the very shortest
path. The definition of the problem has since evolved and the best path is now
associated with the path that minimizes the distance travelled, the average
altitude, the fuel consumption, the radar exposure, etc. These are a few
examples of the factors to be considered and clearly show that the complexity
of the problem has grown. To cope with this complexity, researchers have
slowly moved from using deterministic algorithms to using nondeterministic
algorithms[18].

Figure 3.5: Flowchart of the path planning process using Particle Swarm
Optimization.

Fig 3.5 shows the process flowchart of the path planning using PSO.
It shows that the algorithm consists of 3 basic phases before the general
algorithm of PSO. The path planning process begins with identifying a target
location for a specific UAV. Once the current and target positions are defined,
this becomes the initial solution of the problem. From this initial solution,
a search space is defined to scan and locate other UAVs within range and
identify possible threats. The size of the search space is left open to the
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user’s judgment, setting it too large will incur a longer computation time,
while having a search space that is too small might cause some UAVs to be
unaccounted for. Once position data of the UAVs within range are obtained,
enemy entities are singled out and a 3D threat zone is generated for each of
them. A threat zone is defined as a sphere (a hemisphere for ground vehicles)
of radius R (user defined) surrounding the obstacle that the path needs to
avoid. Threat zones are also generated for non-enemy (friendly) entities to
avoid collision, but with a smaller radius[19].

3.13 Conclusion

This chapter discussed the basic Particle Swarm Optimization algorithm, ge-
ometrical and mathematical explanation of PSO, particles’ movement and
the velocity update in the search space, the acceleration coefficients and par-
ticles’ neighborhood topologies. It also discussed the possibility of employing
these theory to solve the path planning problems.
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Chapter 4

PSO characteristics analysis
and application

4.1 Introduction

Recently, the attention of some scientists turned to imitate the behavior
of birds in a fleet in order to make an autonomous flying formation as we
mentioned before, some solutions use leader, and in these approaches, there
are various flight training control strategies : Leader-follower (hierarchical
approach), Virtual Leader and control based on behavior (decentralized ap-
proach), the method considered in our approach consists in replacing the
head of the formation of the leader-follower approach by a virtual leader.
All training entities receive the path of the mission which is considered as
the virtual leader itself. A major disadvantage of the classical leader-follower
strategy is that the risk of collision between UAVs increases,because there
is no return (feedback) training. In our approach, each UAV also receives
information from its neighbors. The PSO algorithm includes some tuning pa-
rameters that greatly influence the algorithm performance,often stated as the
exploration–exploitation tradeoff: Exploration is the ability to test various
regions in the problem space in order to locate a good optimum, hopefully
the global one. Exploitation is the ability to concentrate the search around
a promising candidate solution in order to locate the optimum precisely.
Despite recent research efforts, the selection of the algorithm parameters re-
mains empirical to a large extent. A complete theoretical analysis of the
algorithm has been given by Clerc and Kennedy .Based on this analysis, the
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authors derived a reasonable set of tuning parameters, as confirmed by [18]
and other researchers.The reference contains a good deal of mathematical
complexity, however, and deriving from it simple user-oriented guidelines for
the parameter selection in a specific problem is not straightforward[27].
PSO made use of huge memory to keep both the local and global solution
found. In this project, the UAVs did not need to remember its past experi-
ence because the movement of bird cannot be predicted.

4.2 UAV Assumptions

• UAV swarms are equipped with short-range wireless communication
devices. Any pair of UAVs separated a distance smaller than range
restrain will be able to establish a communication link with each other.

• UAV swarms are equipped with optical sensors which have the fixed
detection range and circular projection on the ground.

• Two common types of UAV are the rotor and the fixed wing. the rotor
UAV can hover, the turn radius is smaller and the maneuverability is
better, which is more in line with the mission requirements. The kinetic
characteristic of the rotor UAV is considered as dynamic constraint in
problem modeling[28].

4.3 The method of using particle swarm op-

timization technique

The PSO is used to obtain an optimal solution using a group of particles
where every particle is known minimal knowledge and sensing of the envi-
ronment.Here in this project the group of UAVs are associated as a swarm
of elements in the PSO. Swarm size is the number of coordinating UAVs
involved in searching.A maximum number of iterations is the parameter to
determine the number of time instances[29].
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4.3.1 Standard algorithm

Velocity vector at time instance (t + 1) for a particle i is updated using
particle swarm optimization as follows:

V k+1
i = ω∗V k

i + c1 ∗ r∗1(Pbestki −Xk
i ) + c2 ∗ r∗2(Gbestk −Xk

i ) (4.1)

Note: The symbol ∗ denotes element-by-element vector multiplication.

4.3.2 One-dimensional algorithm

It appears from Eq. (3.2) and (3.3) that each dimension is updated indepen-
dently from the others. The only link between the dimensions of the problem
space is introduced via the objective function, i.e., through the locations of
the best positions found so far p1 and p2. Thus, without loss of general-
ity, the algorithm description can be reduced for analysis purposes to the
one-dimensional case:

V k+1
i = ω ∗ V k

i + c1 ∗ r∗1(P1 −Xk
i ) + c2 ∗ r∗2(P2 −Xk

i ) (4.2)

Xk+1
i = Xk

i + V k+1
i (4.3)

Where, ω is the coefficient of inertia weight, c1 and c2 two real representing
the intensity of attraction or acceleration coefficients and r1 ,r2 two ran-
dom values between 0 and 1. They are usually selected as uniform random
numbers in the range [0, 1].

4.4 PSO Algorithm Parameters

There are some parameters in PSO algorithm that may affect its performance.
For any given optimization problem, some of these parameter’s values and
choices have large impact on the efficiency of the PSO method, and other
parameters have small or no effect[30].

The basic PSO parameters are swarm size or number of particles, number
of iterations, velocity components, and acceleration coefficients illustrated
bellow. In addition, PSO is also influenced by inertia weight, velocity clamp-
ing, and velocity constriction.
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4.4.1 Swarm size

Historical discussion

In the first paper on PSO Kennedy and Eberhart referred to the zoological
studies in which the movements of flocks composed of 15–30 birds were sim-
ulated. This seems to be an initial guess as Kennedy and Eberhart use 20
particles in their first PSO tests. In a subsequent study[31] one may find
information that the results discussed there were obtained with 20 particles,
even though the authors used 10–50 particles for other applications. Also, 20
particles were used by Shi and Eberhart , who introduced an inertia weight
into PSO, which is now considered a standard approach (PSO-iw). This ini-
tial guess seems to be reproduced in the vast majority of subsequent PSO
studies, even though some empirical tests were eventually performed at the
edge of the new millennium, as will be discussed below.

In 2004 van der Bergh and Engelbrecht tested a number of early PSO
variants on five classical benchmark functions (also in the rotated framework)
with the population size set to 10, 15 and 20 particles. The results depended
on the specific algorithm, but the basic PSO performed best with 20 particles
(the highest tested value). showing that better results are generally obtained
with larger swarm sizes. However, as the population size settings were limited
to low values, the conclusions from this study are limited too[32].

4.4.2 Number of iterations

The PSO algorithm is an iterative optimization process and repeated itera-
tions will continue until a stopping condition is satisfied. Within one itera-
tion, a particle determines the personal best position, the local or global best
position, adjusts the velocity, and a number of function evaluations are per-
formed. Function evaluation means one calculation of the fitness or objective
function which computes the optimality of a solution. If n is the total num-
ber of particles in the swarm, then n function evaluations are performed at
each iteration[33]. The maximum number of iterations is taken as the stop-
ping criterion, and the best, the mean and the worst values of the objective
function are presented to compare the performance of all candidates, where
the maximum number of iterations is set to 1000 for most of algorithms.
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4.4.3 Inertia weight

The inertia weight, denoted by ω, is considered to replace by adjusting the
influence of the previous velocities in the process, i.e. it controls the mo-
mentum of the particle by weighing the contribution of the previous velocity.
The inertia weight “ω” will at every step be multiplied by the velocity at
the previous time step, i.e. V k

i . The inertia weight was first introduced by
Shi and Eberhart in 1999 to reduce the velocities over time (or iterations),
to control the exploration and exploitation abilities of the swarm, and to
converge the swarm more accurately and efficiently.
Inertia component weight ω = 1. In this phase, UAVs haven’t encounter
with any targets, they search in the initial direction with fixed value of speed.
The parameter setting can also show the characteristic of UAVs in this phase
which is to try their best in exploration to find targets as soon as possible[25].

4.4.4 Velocity Components

The velocity components are very important for updating particle’s velocity.
There are three terms of the particle’s velocity in equation (3.2):

1. The term V k
i is called inertia component that provides a memory of

the previous flight direction that means movement in the immediate
past. This component represents as a momentum which prevents to
drastically change the direction of the particles and to bias towards the
current direction.

2. The term c1∗r∗1(Pbestki −Xk
i ) is called cognitive component which mea-

sures the performance of the particles i relative to past performances.
This component looks like an individual memory of the position that
was the best for the particle.

3. The term c2 ∗ r∗2(Gbestk −Xk
i ) is called social component which mea-

sures the performance of the particles i relative to a group of particles
or neighbors. The social component’s effect is that each particle flies
towards the best position found by the particle’s neighborhood[6].

4.4.5 Setting parameters

The algorithm includes several setting parameters to act on the compromise
Exploration - Exploitation. To simplify the study, we consider the determin-
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istic version of the algorithm, where random numbers are replaced by their
average values 1

2
With simplifications, the algorithm can be written as:

V k+1
i = ω ∗ V k

i + c ∗ (P k −Xk
i ) (4.4)

Xk+1
i = Xk

i + vk+1
i (4.5)

where:

P (k) =
c1 ∗ p1 + c2 ∗ p2

c1 + c2
and c =

c1 + c2
2

(4.6)

To make a dynamic analysis of the algorithm, the equations (4.4) and (4.5)
are rewritten in the matrix form:

V k+1
i = −c ∗Xk

i + ω ∗ V k
i + c ∗ P k (4.7)

Xk+1
i = Xk

i + [−c ∗Xk
i + ω ∗ V k

i + c ∗ P k] (4.8)

Then:
V k+1
i = −c ∗Xk

i + ω ∗ V k
i + c ∗ P k (4.9)

Xk+1
i = (1 − c) ∗Xk

i + ω ∗ V k
i + c ∗ P k (4.10)

The equation of the algorithm can be written in the following matrix form:(
Xi(k + 1)
Vi(k + 1)

)
= A ∗

(
Xi(k)
Vi(k)

)
+B ∗ P (k) (4.11)

Where:

(
Xi(k + 1)
Vi(k + 1)

)
is the state of the system, consisting of the position

of the particle and its velocity, P is the system input,

A =

[
1 − c ω
−c ω

]
is the dynamical matrix, and B =

[
c
c

]
is the input

matrix.
The equilibrium point of the system is such that the particle is positioned in
P . Xi(k)andP (k) has a zero velocity Vi(k) = 0.
Behaviors of the particle depend on the eigenvalues of the matrix A are the
solutions of: det(λ ∗ I − A) = 0.

λ2 − (ω − c+ 1) ∗ λ+ ω = 0 (4.12)

The behavior and the convergence of the algorithm depend on the parameters
ω and c. The analysis of the equation (4.12) leads to determine the area of
convergence of the PSO according to their values[25].
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Figure 4.1: PSO convergence area.

Figure 4.1 shows the values (plain area) that should have the parameters
ω and c. for a convergence of the algorithm.
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4.5 Organigram of the PSO

Figure 4.2: Organigram of PSO algorithm.

4.5.1 Block details

Swarm initialization

The UAVs are randomly scattered in the initial step of swarm production
without a specific criterion. Given subsequent iterations in the program ,
PSO begins with a randomly generated swarm of dimensional UAVs sim-
plified with real-valued position vectors representing the initial candidate
solutions by initializing each particle’s (UAV) position x0i (at iteration k = 0
) to a random position in the search space. And there is a possibility of
an instability problem in the whole swarm, therefore we need another infor-
mation that must be added in the algorithm which is personal fitness. In
PSO algorithm, initialization of the swarm is very important because proper
initialization may control the exploration and exploitation trade-off in the
search space more efficiently and find the better result.

Fitness evaluation

The swarm particles are evaluated at the end of each iteration for their own
fitness values as well as global optimum fitness. It is assumed that each UAV
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i has a unique fitness value f(Xk
i ) at each iteration k , which is calculated

through an objective function evaluation. PSO memorizes the personal best
solution (candidate global best solution) which every particle has ever met
until the current iteration k.

Velocity initialization (calculate velocity)

All particles are frequently moving through the search space with a veloc-
ity (step size) that reflects particles experiential knowledge as well as so-
cially exchanged information about the promising areas visited in the search
space, thereby driving the optimization process to the most feasible regions.
Similarly to position initialization, without this velocity information in the
searching space the process will be prone to explode and particles’ positions
change rapidly.

Velocity and position updating

At each current iteration, k + 1 for example, the kth UAV’s velocity Vk is
first regulated by sending its parameters soaring in the positive or negative
direction, contingent on the convergence of the current position, attracting
the particle towards positions in the search space that are known to be good
from past personal experience, as well as from the ex- perience of other
particles in the neighborhood of the particle. In fact, the original PSO was
implemented for two different neighborhood topologies, global best (Gbest)
PSO and local best (Lbest) PSO as we mentioned before.

4.6 Primary results

In this section, we’ll discuss the primary results of the program by showing
the implementation of the algorithm using Python as a programming lan-
guage.
Note: The parameters values in this try are:

• ω = 0.5

• c1 = 1

• c2 = 2
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• γ = 0.0001

after executing we get the following results:

(a) Initial position (b) Changing the target’s position

(c) Particles looking for the Global best
position (d) Particles convergence to the target

Figure 4.3: The results of the PSO program

4.7 Results discussion

We can say from the first view that the algorithm works as we want with
the previous parameters; the particles converge to the target as we expected,
but during the simulation we saw that the particles move slowly and they
were almost stuck to each other. The main reason to this is because of the
parameters values that we chose. First, we have the WeightInertiaω = 0.5,
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we can see that this value is little bit small which will lead to the slow
movement of the particles since it’s a main factor in the velocity update, so
increasing this factor to an acceptable value will make a good difference on
the performance of the algorithm. Also the coefficients c1 and c2, those two
doesn’t affect the particles a lot since they’re in the convergence area, but
every value has it’s influence on the particles even thought sometimes it’s
not remarkable, for that we will give those two there standard values used
by most of the researchers which is 2.Finally the last and the most sensible
factor γ, the factor has a big influence on the algorithm such that a small
change of it’s value can make the particles diverge completely, it’s similar to
factor ω, which means it affects the velocity of the particles but unlike ω it’s
much more effective. So for this purpose we made a lot of tries to find the
domain of convergence for this factor and we found that it vary from 0.0001
to 0.00019.

4.8 Improved results

By modifying the previous parameters to: ω = 0.6 c1 = c2 = 2 γ = 0.00013
we get the following results:
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(a) Initial position (b) Changing the target’s position

(c) Particles looking for the Global best
position (d) Particles convergence to the target

Figure 4.4: The improved results of the PSO program

4.8.1 Comments

In this simulation, the convergence speed is reasonable and in the order of 5s.
The simulation is also repeated 15 times with different initial conditions and
different parameters within their affinity domain. The results are equivalent
to the case illustrated in the above example. The approach considered in our
simulation is able to reproduce without difficulty geometric configurations
and flight training, but we need to ensure more the constraint of the anti
collision.
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4.9 Discussion of the results

From this results, we can see that there’s a remarkable improvement in the
algorithm due to the change of the previous parameters, we saw a relatively
fast convergence by the particles to the target which means the algorithm
took less time, and also we saw that the particles were more free than the
previous time, that can be translated to less collision between the particles.
However, we still need to improve the algorithm more, until we get the least
of collisions between particles. For that problem to be solved we need a more
improved technique of the PSO.

4.10 Multi-Objective Particle Swarm Opti-

mization (MOPSO)

In multi-objective problems, we can distinguish two fundamental approaches
for designing PSO algorithms (Reyes-Sierra and Coello, 2006a). The first
approach consists of algorithms that consider each objective function sepa-
rately. In these approaches, each particle is evaluated only for one objective
function at a time, and the determination of the best positions is performed
similarly to the single-objective optimization case. The main challenge in
such cases is the proper manipulation of the information coming from each
objective function in order to guide the particles towards Pareto optimal solu-
tions. The second approach consists of algorithms that evaluate all objective
functions for each particle, and, based on the concept of Pareto optimal-
ity, they produce non-dominated best positions (often called leaders) that
are used to guide the particles. In these approaches, the determination of
leaders is not straightforward, since there can be many non-dominated so-
lutions in the neighborhood of a particle, but only one is usually selected
to participate in the velocity update. In the aforementioned approaches,
the problem of maintaining the detected Pareto optimal solutions must be
addressed. The most trivial solution would be to store non-dominated so-
lutions as the particles’ best positions. However, this choice is not always
valid, since the desirable size of the Pareto front may exceed the swarm size.
Moreover, two non-dominated solutions are equally good, arising questions
regarding the selection of the one that will be used as the best position of
a particle. The size problem can be addressed by using an additional set,
called the external archive, for storing the non-dominated solutions discov-
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ered during search, while the problem of selection of the most proper archive
member depends on the approach. Nevertheless, an external archive has also
bounded size, thereby making unavoidable the imposition of rules regarding
the replacement of existing solutions with new ones[34].

4.11 MOPSO Algorithm

Figure 4.5: Multi-Objective PSO

By Executing the algorithm using Python as a programming language we
get the following results:
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(a) Initial phase (b) Searching the targets

(c) Particles starting to converge to the
targets (d) Final results

Figure 4.6: Multi-Objective PSO results

4.12 Discussion of the results

From the results, we can say that the particles are well positioned around the
targets solving the problem of collision between them. We also solved the
problem of the weight inertia and the other coefficients by evaluating them
in every iteration making it stop at the best value of each parameter that
fits the particles.

4.13 Conclusion

This chapter presents a swarm UAVs control strategy and it’s application
based on a multi-agent system.The use of the PSO algorithm allowed us to
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have better results in terms of convergence speed and optimal solution. This
approach has been tested in the first simulation on a group of 25 UAVs. In
our simulations, both the cases of the parameters standing and in motion
has been considered. We added a multi-objective subprogram to the main
program to solve the collision avoidance problems we encountered in the
first simulation. Currently, A future application of control strategy on non-
linear complex systems and implementations on real systems are planned.
An improvement would be to introduce the dynamics of controlled systems
in the optimization algorithms to better find the most appropriate one for
the studied systems solutions.
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General Conclusion

Future Works and Advanced Topics of PSO

The devlopement works will focus on evaluating PSO theory on benchmark-
ing functions and exploring its capability to solve other complex optimization
problems. This algorithm needs to work more on the exploration phase be-
cause the development of this phase is associated with a key factor which is
increasing the swarm size, but scaling this parameter in our application is
limited, especially when it comes to the application of UAVs path planning
because it creates swarm stability problems that may lead to severe conse-
quences Thus, as developers of this algorithm, we need to ensure stability
between parameters as an essential step that cannot be ignored. And we
may find in the series of research published on this theory from 1995 to 2004
and then to this day that we often find the addition of a new coefficient to
the velocity equation to ensure more control. Nevertheless, PSO may need to
increase the swarm size and number of iterations if the search space increases
. In this scenario, parallel implementation is required to effectively reduce
the computation time, and hence, improve the scalability of the proposed
algorithm for largescale systems.

Basic PSO

In the basic PSO, one of the major problems is lack of diversity when particles
start to converge to the same point. . . .

To prevent this problem of the basic PSO, several methods have been
developed to continually inject randomness, or chaos, into the swarm. These
types of methods are called the Multi-start (or restart) Particle Swarm Op-
timizer (MSPSO).

54



Multi-Start PSO (MSPSO)

The Multi-start method is a global search algorithm and has as the main
objective to increase diversity, so that larger parts of the search space are
explored . It is important to remember that continual injection of random
positions will cause the swarm never to reach an equilibrium state that is
why, in this algorithm, the amount of chaos reduces over time. Kennedy and
Eberhart first introduced the advantages of randomly reinitializing particles
and referred to as craziness.[06] In view of the time difference of 25 years, it
is not a long period, and the theory has received an amazing development
during a quarter of a century, but it still lacks the methods of its application
because these methods change with the change in the field of their applica-
tions. This is what we, as students and researchers, are required to do in the
field of aeronautics.

PSO convergence

It is interesting to note that global convergence can be proved without re-
quiring the local part to be a guaranteed local search algorithm. All that
is required is that the local part of the algorithm must be able to satisfy
some termination criterion not necessarily convergence onto a local minimiser
which means that it is not necessary for all drones to converge at the same
rate, but rather what matters to us is the final method of convergence of the
swarm while maintaining the condition of the safety distance between the
drones.

Conclusion

We have presented a new application algorithm, the particle swarm optimiza-
tion PSO, to solve the problem of optimal search for a static target using
UAVs. Through extensive simulations, as described in this thesis, we can say
that PSO presents better performance than other state-of the-art heuristic
algorithms in most search scenarios and is suitable for practical UAV search
operations. The rationale for the success of PSO lies in the exploitation and
learning of information taken from the external environment and nearby in-
dividuals just as birds do in the sky and fish in the sea that prevents the
algorithm from generating invalid paths during the searching process so that
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it can avoid the need for re-initialization, and as such, to accelerate the con-
vergence. The PSO algorithm has some problems that ought to be resolved.
Therefore, the future works on the PSO algorithm will probably concentrate
on the following:

• Find a particular PSO algorithm which can be expected to provide
better performance.

• Combine the PSO algorithm with other optimization methods to im-
prove the accuracy.

• The evolution of drone technology has to parallel the evolution of PSO’s
algorithms so that we can ensure feasibility.
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Appendix A

Appendix A

List of abbreviations

UAV: Unmanned Aerial Vehicle.
RPA: Remotely Piloted Aircraft.
RPV: Remotely Piloted Vehicle.
UAS: Unmanned Aircraft Systems.
USA: United States of America.
AUV: Autonomous Underwater Vehicle.
MRS: Multi-Robot Systems.
SI: Swarm Intelligence.
PSO: Particle Swarm Optimization.
ACO : Ant Colony Optimization.
EAs : Evolutionary Algorithms.
WOA: Whale Optimization Algorithm.
ABC : Artificial Bee Colony.
ARPSO: Attractive and Repulsive Particle Swarm Optimization.
GCPSO : Guaranteed Convergence Particle Swarm Optimization.
MPSO: Multi-start Particle Swarm Optimization.
SOCPSO: Self-Organized Criticality Particle Swarm Optimization.
MOPSO: Multi-Objective Particle Swarm Optimization.
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Appendix B

Appendix B

Symbols

Xa,j(t): jth dimensional component of the position of particle a, at time t.
V a, j(t): jth dimensional component of the velocity of particle a, at time t.
Ya,j(t): jth dimensional component of the personal best (pbest) of particle a,
at time t.
yj(t): jth dimensional component of the global best position of swarm at
time t.
V k
i : velocity of particle i at iteration k.
Gbest: global best.
Lbest: local best.
ω: inertia weight factor.
c1, c2: acceleration coefficients which are used to level the contribution of the
cognitive and social components respectively.
r1, r2: random numbers between 0 and 1.
Xk

j : position of particle i at iteration k.
Pbestki : best position of particle i until iteration k.
Gbestk: best position of the group until iteration k.
∗ : Denoted the optimum position.
t : Denotes time or time steps.
A: the dynamical matrix.
B: the input matrix.
P : the system input.
f (Xk

i ) : fitness value of particle i at iteration k.
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Y : fitness value included in the program.
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