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Abstract

The primary goal of this thesis is to conduct extensive experimental comparisons among
Sound Event Detection systems using a combination of DCASE 2016 and DCASE 2017 datasets.
We have carried out two sets of experiments. First, We have examined 3 different types of
features extracted from short time frames of each audio recording (Mel frequency cepstral
coefficients MFCCs, Log Mel-band Energy and a combination of MFCCs with AMFCCs and
AAMFCCs) and 4 classification paradigms while varying their parameters (Support Vector
Machine, Convolutional Neural Network, Adaboost and Random Forest). We have supported our
analysis and discussion with numerous statistical tests to analyze and compare the effect of the
above mentioned features and classifiers on the detection performance. Our experimental
findings indicate the effectiveness of the ensemble-based classifiers (Random Forest and
Adaboost) along with MFCCs and the Support Vector Machine classifier along with MFCCs +
AMFCCs + AAMFCCs. More specifically, for both classifiers, we have obtained an overall class-
based detection accuracy of 83% using 1 second segment based evaluation technique. Second,
we have investigated the effect of the number of features on the generalization performance of
the Random Forest classifier through invoking a feature selection approach, namely Minimum
Redundancy—Maximum Relevance. However due to the lack of data in this field of research,
this technique has caused a slight degradation in the performance of the system as the selected

features were not sufficient for learning an effective model.

Keywords: Sound Event Detection, Feature Engineering, Feature Selection, Machine Learning.




Résumé

L'objectif principal de ce mémoire est de réaliser une étude expérimentale pour analyser et
comparer les performances des systémes de détection d'événements sonores. Durant ce travail,
nous avons utilisé une combinaison deux bases de données DCASE 2016 et DCASE 2017. Dans
un premier temps, pour comparer les performances de nos systémes, nous avons examiné trois
méthodes d’extraction des caractéristiques (Mel Frequency Cepstral Coefficients MFCC,
I’énergie Mel de bande et une combinaison des coefficients MFCC, AMFCC, et AAMFCC) et
quatre méthodes d’apprentissage automatique en variant leurs paramétres (machine a vecteurs de
supports, les réseaux de neurones convolutif, les foréts aléatoires et Adaboost). Nous avons
utilisé des méthodes statistiques pour interpréter et comparer les résultats obtenus. Cela nous a
permis de démontrer I'efficacité des méthodes d’ensembles (Foréts aléatoires et Adaboost) qui
utilisent les coefficients MFCC et la méthode de machine & vecteurs de supports qui utilise les
coefficients MFCC+AMFCCH+AAMFCC .En effet, la performance de ces méthodes a été
démontrée avec une moyenne de précision égale 4 83%. Ensuite, en utilisant I’algorithme des
foréts aléatoires nous avons mené une 2™ expérience ou nous avons réduit le nombre des
caractéristiques contenant I’ensemble des coefficients MFCC+AMFCC+AAMFCC en invoquant
une méthode de sélection des caractéristiques nommé mRMR (minimisation de redondance-
maximisation de la pertinence) pour étudier son effet sur la performance de notre systéme.
Cependant, en raison du manque de données dans ce domaine, cette technique a mené a une

légere dégradation des performances du systéme.

Mots clés : Détection d’éveénements sonores, extraction des caractéristiques, sélection des

caractéristiques, apprentissage automatique.
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Notation and Acronyms

SED

DCASE

DCT

FFI

MFCC

DCT

SVM

CNN

TP

FP

: Sound Event Detection

: Detection and Classification of Acoustic Scenes and Events

: Discrete Fourier Transform

: Fast Fourier Transform

: Mel Frequency Cepstral Coefficients

: Discrete Cosine Transform

: Support Vector Machine

: Convolutional Neural Network

: Mnimum Redundancy-Maximum Relevance

: True Positive

: True Negative

: False Positive

: False Negative
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Introduction 1

INTRODUCTION

1. Context and problem statement

Sounds carry a great deal of information about our everyday environment and the events
that take place in it. These sounds collected by acoustic sensors allow computers to perceive the
world as human. In addition, with the raise of machine learning and deep learning fields that have
given computers the ability to learn, many solutions have emerged to improve the lives of human
beings. Recently, Sound Event Detection (SED) has become a very popular research area. It
involves recognizing the sound events present in an audio recording and determining their
corresponding start and end times. A sound event is a sound that we perceive as a separate,

individual entity that we can name and recognize [1] such as footsteps, car passing by, speech etc.

SED has made enormous contributions in myriad of applications such as audio surveillance
[2], urban sound analysis [3], multimedia event detection [4] and smart home devices[S,6].For
instance smart home systems utilize SED to detect sound events [7] such as glass breaking,
gunshot, etc. It is worth noting that audio surveillance can be advantageous in many scenarios,
since sounds travel through obstacles, is not affected by lighting conditions, and capturing sound

typically consumes less power [8].

A SED system can be categorized as monophonic or polyphonic. We consider a detection
problem as monophonic in cases where SED systems can detect maximum one sound event at
any time (the most prominent event) regardless of the actual number of sound events present in
the audio recording. However in real environments recording, it is common to have multiple
events occurring at the same time such as a busy street where we have car passing while people
are speaking and walking. This problem is known as polyphonic detection. In this case the SED
system is trained to detect all the overlapping sound events that are simultaneously present at a

certain time within the audio recording.
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The process of SED consists of 2 main stages: Feature extraction and Classification. First,
the feature extraction stage involves dividing the audio signal into equal overlapping frames in
order to perform feature extraction and obtain a feature vector per frame. The most common
types of features used in the literature include Mel-frequency cepstral coefficients [9], Log Mel-
band Energy [10, 11] and spectral centroid [12]. Second, classification is concerned with the
development of learning algorithms that are able to learn from an exemplary set of labeled data
and to generalize their behavior to new unseen instances. The resulting model, known as
classifier or learner, enables us to predict the class label of an unseen sample. In the case of SED,
the classifier takes the feature vector of each frame and output the event presence predictions for
each sound event class. The outputs are combined for consecutive time frames in order to
determine the onmset (starting time) and offset (ending time) of the predicted event. The classifiers
that are commonly used in the literature are the neural networks [10, 11] and Hidden Markov
models [13].

The majority of SED datasets are proprietary and the only available datasets do not contain
sufficient data to learn the characteristics of each sound event. To address this issue, previous
efforts have used data augmentation techniques to improve the generalization ability of their
classifiers. This technique consists of artificially expand the size of the training dataset by

creating modified versions of the audio recordings [14, 15].

The main problem in the detection of real-life sound events is that features and
classification approaches are not able to efficiently reflect the different characteristics of each
sound event, since the features extracted from an audio recording usually composed of multiple
overlapping events are not as representative as the features of an individual sound event. A
possible solution would be to introduce feature selection. It aims at finding a representative
subset of features. The challenge consists of reducing the number of features, while maintaining
or even improving the generalization power of the system. The problem of feature selection has
been demonstrated to be NP-complete [16]. To cope with this issue, many approaches have been
developed such as Mutual Information Feature Selection (MIFS) [17], Joint Mutual Information
(JMI) [18], and the well-known min-Redundancy Max-Relevance (mnRMR) [19].
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2. Related work

SED has been an active field of research in recent years. Various solutions have been
proposed using different methodologies. S. Chu et al. [9] have investigated the effect of the
number of features on the performance of SED system using 3 classification methods: KNearest
Neighbor (KNN), Gaussian Mixture Models (GMM) and Support Vector Machine (SVM). They
have concluded that a high number of features is not always beneficial to classification and
feature selection leads to higher accuracy. Most recently, E. Cakir [10] have proposed to use log
Mel-band energy features along with a Convolutional Recurrent Neural Network (CRNN). They
have used multiple datasets to highlight the improvement in the performance of their proposed
method. Moreover, A. Mesaros et al. [13] have used a Hidden Markov Model (HMM) to study
the effect of ambient background noise on event classification performance. Table 1 provides a

summary of the achieved performance of SED systems in each of the above mentioned works.

Table 1. SED related works

Ref Dataset Features Classifier Performance
[10] TUZTOleD 40 Log Mel-band Energies CNN Fscore=26.4%
CRNN Fscore= 30.3%
CLEAR -
[13] 2007 48 MFCC+48 AMFCC+48 AAMFCC HMM Accuracy=23.8%
Private 9 MFCCs+3 AMFCCs+Spectral Flatness + Energy -
] Dataset range+A Energy range+ Frequency roll off b PSR 0.0

3. Contributions

This thesis is about building a monophonic SED system that is able to indicate whether the
event is present or not within the given set of polyphonic recordings. This problem has been
addressed by the research community using various methodologies. Most of them have focused
on finding relevant features and the suitable classifier to improve the performance of SED
systems. In order to derive guidelines for practitioners and researchers, we have conducted
extensive experimental comparisons among sound analysis methods based on DCASE datasets.

In what follows, we summarize our main contributions.
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First, we have conducted extensive experimental comparison among sound analysis methods
using a set of event sounds [2]. We have thoroughly examined 3 different types of features
(Mel frequency cepstral coefficients MFCCs, Log Mel-band Energy and a combination of
MFCCs with AMFCCs and AAMFCCs). We have also examined 4 classification paradigms
(Support Vector Machine, Convolutional Neural Network, Adaboost and Random Forest)
while varying their parameters. We have supported our analysis and discussion with
numerous statistical tests.

Second, we have investigated the effect of the number of features on the generalization
performance. Specifically, we have invoked a feature selection approach, namely mRMR
[19], in order to automatically determine the optimal set of extracted features. To the extent of
our knowledge, only very few attempts have considered incorporating feature selection step
into the design of their systems.

Third, in many attempts, the research community has considered the use of complex deep
learning architectures along with data augmentation step in order to address the overfitting
problem. However, due to the lack of dedicated computational platform, we have run our
experiments using strong learners that work well in this context. Specifically, we have tested

Ensemble-based inducers such as Adaboost and Random Forest.

4. Thesis structure

This thesis consists of two primary parts. The first part covers the state-of-the-art notions

that are necessary for understanding the ideas developed in this thesis. We give in Chapter 1 an

overview of acoustic features used to represent audio signals. Specifically, we present the

different feature extraction techniques that are frequently used in literature. In Chapter 2, we

review some relevant classification concepts, providing a brief description of the supervised

classifiers, evaluation metrics and statistical tests invoked in this work. The second half of this

thesis describes the methodology that we have followed for comparing event detection systems.

We provide in Chapter 3 detailed description of the experimental setup, including framing,

windowing and parameters setting. In Chapter 4, we present the obtained results through

performance tables and statistics-based plots. Most importantly, we have backed our discussion

based on well-known statistical tests. Finally, we conclude by summarizing the contributions of

this thesis, the lines of limitations and future work.
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PART I: FUNDAMENTALS OF SOUND

EVENTS DETECTION

In this part we explain the notions that are necessary for understanding the ideas developed
in this thesis. It is composed of two chapters. We give in Chapter 1 an overview of acoustic
features used to represent audio signals. Specifically, we describe data required for the
development of sound event detection systems and highlight the importance of feature
engineering to transform the signal into a suitable representation. Furthermore, we present the
different feature extraction techniques that are frequently used in literature. In Chapter 2, we
review some relevant classification concepts, providing a brief description of the supervised
classifiers, feature selection techniques, evaluation metrics and statistical tests invoked in this

work.



Chapter 1: Sound Representation 6

Chapter 1: Sound Representation

1.1 Introduction

This chapter is organized as follows: Section 1.2 introduces the sound collection principle
motivating the choice made in the recording and annotating stages. Section 1.3 deals with the
transformation of the signal into the frequency domain in order to allow further sound processing.
Section 1.4 highlights the importance of feature engineering to transform the signal into a suitable
representation and explains the different feature extraction techniques that are frequently used in

literature. The chapter is concluded in Section 1.5.
1.2 Sound Acquisition

The performance of the SED system is dependent on the data used to develop it .Therefore,
the acquisition of data is an important step in the development process. The collected data should
be as realistic as possible, recorded in conditions which are close to the target application. It
should also have sufficient amount of representative examples of all sound event classes
necessary to enable the machine learning models to learn parameters and generalize well [21]
(discussed in more detail in Section 2.3). However, the availability of SED datasets are limited,
this problem affects the performance of the system and makes the SED development process
really challenging. Generally, data is collected from sound libraries or databases. It includes
audio materials and reference metadata associated with it. The reference metadata is required
for the supervised learning approaches because it contain the class labels [21] (discussed in more
detail in section 2.3). It is often manually annotated during the data collection process and
provides temporal information about the onset and offset of each event class within the audio

sound as depicted in Figure 1.1.
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Audio signal

l; - e e WW
|

Annotation with full temporal information

T B 2 G G @ 6 B

( car passing by )

[ F e ) ) ) ) ( people walking )

4

time”

Figure 1.1: Annotation with full temporal information [21].

1.3 Time and frequency representation

1.3.1 Notation

Let K be a set of possible frequencies and N the total number of samples in a given sound
signal, where k; € K denotes the i*" frequency and n; € N denotes the i*" sample of the signal.
We define x(k;) as the amount of the i frequency in the signal, x(n;) as the amplitude of the
signal at the i*" sample. We also denote by M the total number of samples in each frame and

m; the i*" sample of the frame. The resulting value w(m;) represents the windowed value.

1.3.2 Fourier Transform

Signal is defined as any physical quantity that varies as a function of time. It conveys
information in its patterns of variation. The manipulation of this information involves the
acquisition, storage, transmission, and transformation. In order to find the different frequencies
that are present in a signal we apply the Fourier transform. The goal of Fourier transform is to
turn a function of time into a function of frequency. This is done by breaking up the signal into
summations of sinusoidal or complex exponential components. The representation of magnitude

as a function of frequency is known as the spectrum of a signal [22].

In order to make it possible for an audio signal to be stored and processed , we deal with
discrete time signals these signals are obtained by sampling the original audio sequence at
uniformly spaced times with a specific sampling rate. The exact form of the Fourier transform
used to determine the spectrum from the discrete time signals is known as the discrete Fourier

transform (DFT) and it is given by the mathematical formula:
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N-1

. _kn;
x(k) = Y x(m)e N (B

n;=0
It is worth underscoring that the DFT algorithm has a complexity of O(N?), whereas, the
Fast Fourier transform (FFT) implementation has a quasi-logarithmic complexity O(N log, N)

For this reason, the FFT implementation is commonly used in practice.
1.4 Feature engineering

1.4.1  The process of feature engineering

The audio analysis is commonly based on acoustic features extracted from audio signal to
provide a numerical representation of the signal that is relevant for machine learning (discussed
in more detail in Chapter 2), characterizing the signal with values which have connection to its

physical properties: signal energy, its distribution in frequency and change over time [21].

The necessary property of the acoustic features is low variability among features extracted
from examples assigned to the same class, and at the same time high variability allowing
distinction between features extracted from example assigned to different classes [23]. This

property will help making the learning problem easier.

We can classify acoustic features into 3 main categories: temporal features, spectral
features and prosodic features. Before performing the extraction of the above mentioned features

we need to perform Framing and windowing.

142 Framing

The properties of audio signals change rapidly over time (non-stationary) which will make
the analysis process hard. In order to solve this issue we perform a short-time processing
approach where the analysis is done periodically in short-time frames shifted with a fixed
timestamp. This shift needs to ensure that the consecutive frames are overlapping at least 50%

[21] in order to capture the signal in a quasi-stationary state.
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1.43 Windowing

Windowing is used in order to reduce the effect of spectral leakage (sudden changes in
frequency at the frame boundaries) which will cause an insignificant peak in frequency in the
spectrum. This is done by multiplying each frame with a window function generally hamming

window function.

The hamming window function has a sinusoidal shape .It smooths discontinuities at the

beginning and at the end of the sampled signal. It is defined as:

wiinig)= {0.54 — 0.46cos(2mrm;/M) ,0<m; <M 12)
' 0 , otherwise

The following Figure shows the shape of this function.

Hamming window

10

Amplitude

T T
0 10 20 30 40 50
Sample

Figure 1.2: Hamming window.
1.44  Temporal features

Temporal features are represented as amplitude fluctuation with time (waveform signal)

.They are extracted directly from the audio signals [24].

1.4.5  Spectral features

Audio signals rely on spectral / cepstral features these features characterize the short-time
spectrum and allow us to have the spectral energy distribution which is an effective feature for
event detection. They are based on a spectral representation of the audio signal. This
representation is computed based on two main processes: The Fourier transform and logarithm

which will grant the identification of the basis frequency elements of an audio signal.
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Log Mel-band energy and Mel-frequency cepstral coefficients (MFCCs) are commonly
used in the literature. This is due to the fact that they mimic the human auditory perception of
sounds that focuses only on magnitudes of frequency components. The following subsections

provide brief description of these techniques.

A Mel Frequency Cepstral Coefficients (MFCC)

It is a very common and efficient technique for signal processing. It models the spectral
energy distribution and provides a compact representation of the spectrum taking into
consideration the nonlinear human perception of frequencies as described by the Mel scale (the
human system perceives and interprets frequency that are in 0-1000Hz range linearly and above
1000Hz the perception becomes logarithmic) [8, 25]. The overall extraction process of MFCCs is
shown in Figure 1.3.

Input audio Framing and windowing with 50% overlapping
signal
Signal - )
ot r 1 i A I— (P EET
{ ! 1 1 ! t | S RS |
Frame n 50 4%
Frame n+1 50 %! s
Framens2 sl | Me! Aiter banks |

Frame n+3 50% |

Logarithm
MFCC coefficients DCT |

Figure 1.3: The overall extraction process of MFCCs.

Mel filter banks: A filter bank is an array of band-pass filters used to separate the input audio
signal into multiple frequency bands. This is done by passing frequencies within a certain range
and attenuating frequencies outside that range. We use filter banks in order to mimic the two
main characteristics of the human auditory system: the Mel scale and critical bands. The concept
of critical bands is used to quantify the ability of the human ear to distinguish between individual

frequency tones. The Mel scale as shown in Figure 1.4 indicates how to space the filter banks
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which will produce a bunch of frequency bands, in each frequency band we sum the energy and
take their logarithm to obtain an estimate of how much energy exist in various frequency regions.

We convert between Hertz and Mel using the following equations.

frequency)

mel = 2595log,, (1 + 700

1.3)

frequency = 700(10™€/259 — 1)

2500 |

2000 |

21500 |

Mel frequency

1000 |

500 ¢

) ——m——— S|
0 1 2 3 4 5 6

Frequency (kHz)
Figure 1.4: Kilo Hertz vs Mel scale [8].
Discrete cosine transform (DCT) The goal of taking the DCT of the log filter bank energies is

to extract the MFCCs. The DCT has an important property called energy compaction which will

allow the distribution of most signal energy in the lower-order coefficients.

B Log Mel band energy features

The log Mel-band energy features represent the energy distribution within the frame .The

steps involved for their extraction are similar to the MFCCs steps but without computing the

DCT.

1.4.6 Prosodic features

Prosodic features indicate information with semantic meaning in the content of human
listeners. They are organized according to semantically meaningful aspects of sounds including

pitch (fundamental frequency), loudness and rhythm (the duration of pitch) [24].



Chapter 1: Sound Representation 12

1.4.7  Other approaches

Delta and delta-deltas MIFCCs were proposed to add dynamic information to the MFCCs. The
delta features are computed by taking the first derivative of the MFCCs. They provide
information about the trajectories of the MFCCs over time (velocity). On the other hand, the
delta-deltas features provide information about the acceleration of the MFCCs over time. They

are calculated by taking the first derivative of the delta features.
1.5 Conclusion

Through this chapter, we reviewed three important stages required to prepare the audio
signals for machine learning algorithm. The first one deals with the importance of sound
recording and annotating during the sound acquisition process as it influences directly the
performance of the SED system. The second one deals with the frequency representation of the
signal to allow further manipulation and processing of sounds .The last one is the most crucial
stage, it concerns feature engineering where we presented several types of features used in

literature.
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Chapter 2: Machine Learning for
Sound Event Detection

2.1 Introduction

In the previous chapter we have discussed the notions of sound acquisition and
representation required to prepare the audio signals for machine learning and deep learning
approaches. Machine learning is the field of study that gives computers the ability to learn
without been explicitly programed [26]. In the other hand, deep learning is a subset of machine
learning. It consists of a set of models known as neural networks that unlike the machine
learning models are hungry which means they need a large amount of data to perform well. There
are many machine learning approaches that fall into three major categories supervised,
unsupervised and semi supervised learning. We largely focus on the supervised learning
approach as it is the most frequently used for the analysis of sound events. It consists of building
models to learn a mapping between the extracted features and class labels for sound classes,

where the labels are predefined in advance and determined from the reference annotations.

The rest of this Chapter is structured as follows. We present in Sections 2.2 and 2.3
common supervised classifiers used in our study, providing a short introduction to the relevant
concepts of classification. Moreover, in Section 2.4 we explain the concept of feature selection
then we discuss in Section 2.5 some challenges related to SED research. Furthermore, in Sections
2.6 and 2.7 we talk about model evaluation techniques and statistical tests. Finally in Section 2.8

we conclude this chapter by summarizing the main concepts that we have discussed.
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2.2 Fundamentals of classification

Classification is considered as the most common task in machine learning [27].It is
concerned with the problem of attributing class labels to unseen objects. An object (also called
pattern, sample and instance) is characterized by a feature vector x € X and by its class labels
yeY ={cy, ¢y, ..., cyn}. We can formally express a classification problem as a mapping from the
feature space X to the space of class labels Y [28]. In supervised learning, the role of any given
classification algorithm is to learn predictive model from a set of m data samples” =
{Cx1, ¥1), (22, V2), vr s (X Ym)} Which have been labeled beforehand, where x; € X and y; € Y.
A classification model (also called classifier, learner and hypothesis) is the estimated mapping

function f which takes in a feature vector x € X , some parameters T and produces an output y.

¥=7f(x1) @1
We can distinguish between 3 types of outputs [29]:
— Class labels: e Y
— Probability distribution: The classifier returns a probability vector over the m class
labels p = [y, gy -, txel” € [0,1]%.
— Oracle output: It is defined as a Boolean vector Z = [z, ..., Zz,]7 ,where m is the size of
the training set I', with z; =1 if the learner correctly classifies instance i, and 0

otherwise.

Usually a classifier is seen as a two-step algorithm: training phase and testing phase. The
first phase concerns the task of learning a hypothesis from the training data. Learning is the
process of optimizing for an objective to increase the generalization ability of the model (the
ability to perform well on unseen data). This objective is known as a loss function that calculates
the difference between the actual and the predicted outputs. The model is updated in order to
decrease this loss through various optimization techniques such as gradient descent until it
reaches convergence (more details can be found in Section 2.3.4). In the second phase, the
produced model is used to predict the class labels of unseen objects drawn from a testing set.
Numerous learning models have been introduced by the machine learning community. For the
remainder of this thesis, we will focus on learning Support Vector Machines, Random Forests,

Adaboost and Convolutional Neural Network models. The first three models produce oracle
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outputs while the last model produces probability outputs. These models are just a few examples
of supervised learning algorithms. They are all based on different paradigms Section 2.3 provides

an extended explanation of these approaches.

The aim of any learning algorithm is to find the model parameters t (Equation 2.1) that
give the best predictive performance. However, there is no single learning algorithm that induces
the most accurate classifier. The natural approach is to try many learners and select the one with
the best performance on a separate sample set. For this purpose, we need to measure the
performance of a classifier. This is done using multiple evaluation metrics (more details can be
found in Section 2.6) with the most common being the error rate i.e. the ratio between the number
of misclassified samples to the total number of samples. It is assumed that a classifier that
accurately predicts the training samples is expected to perform well on testing examples.
However, a model that fits the training data perfectly can have worse performance than a simple
model with higher training error. This paradox is known as overfitting [28]. Given multiple
learning algorithms, model evaluation aims at identifying which algorithm produces the most
accurate classifiers. This concern is one among the fundamental issues in machine learning. In
order to address it, Dietterich [30], Demsar [31], Garcia et al. [32, 33], and Japkowicz et al.[34]
introduced several statistical tests such as Friedman and Nemenyi for performance comparison.
In Section 2.7 we briefly review the statistical tests that we have invoked in our experiments [31,

34].
2.3 Common classifiers

2.3.1  Support Vector Machines

Let’s consider a binary classification problem formalized as
I ={(x,y1), (x2,92)s e, X, Ym)} where x; €X and y; € Y ={—1,1}. Support vector
Machines classifiers (SVMs) find an optimal separating hyperplane that maximizes the margin
between the two classes, where the margin is defined as the distance of the closest point in each

class to the separating hyperplane [35] as illustrated in Figure 2.1.
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Figure 2.1: Support vector machine [36].

If the learning problem is linearly separable then constructing the optimal hyperplane
implies solving an optimization problem where the optimization criteria are the width of the
margin between the classes as defined by the following system:

1
T a2
mmzllw I an

Yyow.x,+b)=>1 ,n=1,..,m
resulting in an optimal hyperplane decision function (or classification rule) represented as a linear

combination of the training samples. Where f(x) determines the class of the test sample x.

m
flx) = Z Yoy (X, %) + b @3)
n=1

As we can observe from the mathematical formula, constructing this optimal hyperplane is
equivalent to finding the nonzero a,,. Any data point x,, corresponding to nonzero a,, is termed
“support vectors”. Support vectors are the training patterns closest to the separating

hyperplane.

Generally, the samples of different classes cannot be linearly separable. In order to solve
this kind of classification problems we use a concept known as the kernel trick to enable the

SVMs to handle nonlinear separating hyperplanes defined by the following equation:

m
fx) = Z Vulnk(x,x,) + b @.4)
n=1
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where k(x, x,,) is the kernel function . Popular kernel functions include:

— Gaussian (RBF) kernel with the standard deviation o of the Gaussian function:

—|lx, x,, ||?
k(x,x,) = exp (M) 2.5)

202

— Polynomial kernel function with the polynomial order p:

k(x,x,) = ((x.x, + 1))P (2.6)

2.3.2 Random Forest

Random Forest classifier is an ensemble algorithm that combines a set of decision trees
and aggregates their votes for each label to decide the final class of the test sample. A decision
tree is a hierarchical model for supervised learning. It is composed of a root node connected by
successive branches to other internal nodes that are similarly connected until we reach the leaf
nodes [37]. Let us consider a binary classification problem formalized as
r = {(x1,y1), (X2, V2), eo, Xm, Ym)} Where x; € X and y; € Y = {—1,1}. The classification of
training samples begins at the root node which takes I" as an input and asks for the value of a
particular feature of the samples that can split I" into different possible subsets. Different links
from the root node correspond to the different possible subsets of I and based on the answer we
follow the appropriate link to a descendent node. The links must be distinct i.e. one and only one
link will be followed. The next step is to ask for the value of a particular feature that can split the
chosen subset of I' into other different subsets. We continue this way until we reach a leaf node,
which has no further questions. Each leaf node bears a class label and the test samples are
assigned to the class of the leaf node reached [27]. The way I" is split is based on two important
concepts that form our objective function that we are optimizing for to improve the performance

of our model. These concepts are: entropy and information gain.

The entropy measures the impurity of the node to find the best value of the feature x; that
allows splitting I' into different subsets. These subsets should minimize their entropies. This
process is repeated reclusively until we reach a leaf. Impurity means that each subset of features

represents one type of class, in this case the entropy = 0 and the information gain reaches its
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maximum value of 1 .However, some percentage of impurity is tolerated in order to stop further
division to reduce the training time. The entropy H and information gain are computed using the

following mathematical formulas.

m
HX) = Z —x;log, (x;) @7

i=1
Information gain = H (parent ) — (weighted average).H (children)

2.3.3 ADABOOST

ADABOOST, short for “Adaptative boosting” ,was initially proposed by Freund and
Schapire [38] as an ensemble method for improving the performance of a weak learner i.e. a
classifier that performs better than random guessing such as decision trees. Adaboost is a
sequential algorithm in which each new inducer is built by taking into account the performance of

the previously trained ensemble members. At stage t, every training sample x; receives a weight

wi(t) that indicates its probability of being selected to train a new weak classifier. The first
classifier is built by setting these weights to 1/m, where m denotes the number of training
samples, i.e. all samples initially have the same importance. If a training sample is correctly
classified, then its chance of being reused in the next stage is decreased. Conversely, if a sample
is misclassified, then its chance of being reselected is increased. In this way, the subsequent
classifiers focus on examples that are difficult to classify. Adaboost assigns to the new trained
classifier a weighting coefficient a; : accurate members receive higher weights. This process
continues until the desired number of base learners or the overall accuracy has been reached. The
final classification decision of a test sample is based on the weighted linear combination of these

weak classifiers.

2.34 Convolutional Neural Networks

Convolutional neural networks (CNNs) are biologically-inspired from the animal’s visual
cortex that is composed of a collection of cells (also called neurons) connected to each other and
organized in hierarchical layers. Each set of neurons responds very specifically to specific
patterns (also called the cell’s receptive field). In general, all CNNs architectures consist of a set

of layers. The first one is called the convolutional layer followed by the activation and pooling
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layer, these three layers form a hidden layer. The last layer is the dense layer (known as a fully

connected layer). The architecture of the CNN is depicted in Figure 2.2
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Figure 2.2: Convolutional neural network architecture [39].

Notation

We denote x! as a single feature value within the feature map. We also define x; as a
single probability value within the normalized feature map W. This normalization is done by
applying the softmax function to each x* of the feature map. We represent the resulted loss of

ajw)

the cross entropy loss function over the feature map W as J(W) and we denote 1 X el the

partial derivative of the loss function (also called the gradient), multiplied by n where 1
represents the value of the learning rate. We also denote the oracle output of the classifier as y;

which is equal to 1 to represent the presence of the class and 0 otherwise.

The Convolutional layer

It consists of a set of filters (also called feature matrix, kernel, weight, and feature map).
The filter moves over each portion of the input with a certain stride value and a mathematical
operation called convolution is computed. It consists of a dot product between the matrix that
represents the portion p of the input and the feature map matrix. This process is repeated until the
entire input is traversed. The resulting matrix is known as the convolved feature matrix (or

simply feature map), it consists of a set of feature values that matches the input exactly and a set



Chapter 2: Machine Learning for Sound Event Detection 20

of zeros that represents the irrelevant parts where there were no match. The objective of
convolution is to enable the CNN model to learn only the most relevant features. An illustration

of this operation is depicted in Figure 2.3.
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Figure 2.3: Convolution in CNN [40].
Activation layer

The activation layer applies an activation function over the entire convolved feature matrix
to enable the model to learn nonlinear mapping function f to classify nonlinear data. The most
commonly used activation function in known as Rectified linear Units activation function

(Relu). It is defined as follows.

0 ,x'<0 2.8
xt ,otherwise

R(xH) = {

Pooling layer

It is employed to reduce the dimensions of the convolved feature matrix by extracting only
the most relevant and dominant features. Furthermore, it is useful to decrease the computational
power required to process the data. The most common type of pooling operation is known as
maximum pooling which returns the maximum value from each portion of the convolved feature

matrix. To perform pooling a window is used over each portion of the convolved feature matrix
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and is moved with a specific window stride value. An illustration of this operation is depicted in

Figure 2.4.

lAax
Pooling

Figure 2.4: Pooling [40].
Dense layer

The convolutional and maxpooling layers output a feature map. The dense layer which is
the last layer in the CNN flatten this matrix and normalize it using a softmax function into a
vector of probability values € [0,1] whose total sums up to 1. This vector is then used to train the
CNN in order to perform classification. The training is done by finding the weights (feature map)
that minimize the loss between the actual and the predicted output in the training set using the
cross entropy loss function. This process is known as gradient descent (also called
backpropagation) that will be repeated over a series of epochs (iterations) to update the feature
map until convergence. After the learning step, the dense layer outputs a probability distribution

for each predefined class. The mathematical formula of the softmax function is shown below:

x®

. e
x; = softmax(x®) = ——4 2.9)

Gradient descent

Gradient descent is the process of finding the weights that minimize the loss function over a
series of epochs during the training phase until convergence. This optimization algorithm is said
to converge when, as the iterations over a series of epochs proceed, the gradient get closer to 0

and remains stable.
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In order to measure the performance of a classification model that produces oracle outputs
we use the binary cross entropy loss function. The gradient descent algorithm and the binary

cross entropy mathematical formulas are shown below.

1 n
Jw) = ;2(}& log(x;) + (1 — y)log(1 — x,)) (2.10)
i=1

Algorithm 1 Gradient Descent

L. Initialize weights randomly
2. Loop until convergence :
2.1. Compute gradient :
i)
an’

2.2 Update weights :
e T ) -
' oW %)

3. Return weights

Hyper parameters: Learning rate

Gradient descent is based on an important hyper-parameter called the learning rate 1 .It is

ajw)
ow

assumed that for a sufficient small j the value of should decrease on every iteration until

convergence. If 1j is too small, gradient descent can be slow to converge, whereas, if 1 is too
large, the gradient descent may not decrease at every iteration and consequently it may not

convergence.

Hyper parameters: Dropout

One of the most fundamental problems in machine learning is overfitting. To address this
problem, we use regularization techniques to improve the generalization ability of our model. The
most popular regularization technique in neural networks in called dropout. Dropout forces the
network to take several paths in the process of learning to increase its generalization ability. This

is done by randomly dropping a set of neurons in each epoch.

Hyper parameters: Batch size

In order to train our model we need to specify the batch size. It is the number of samples in

the input data that will be passed through the network at one time. The larger the batch size, the
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faster our model will be trained. However, the quality of our model may degrade as we set our

batches larger.
2.4 Feature selection

Feature selection aims at finding a compact and effective subset of features. The challenge
consists of reducing the number of features while maintaining or even improving the
generalization power of the system. Given a set of n features, one straightforward and naive
strategy consists of searching for a subset that best optimizes a criterion indicative of the
generalization accuracy. This task involves evaluating 2™ — 2 subsets (excluding the empty set
and the entire set), which becomes intractable for moderate and large number of features. This
problem has been demonstrated to be NP-complete [16]. To cope with the computational burden,
numerous approaches have been developed in the literature such as Mutual Information Feature
Selection (MIFS) [17], Interaction Gain Feature Selection [41], Conditional MIFS (CMIFS) [42],
Joint Mutual Information (JMI) [18], and the well-known min-Redundancy Max-Relevance
(mRMR) [19].

24.1 Forward Selection and Minimum Redundancy—Maximum Relevance criterion
(MRMR)

The minimum redundancy-maximum relevance (mRMR) criterion has been proposed in
[19, 43]. Given a set X of selected variables (features), the criterion consists of updating X5 with
the variable X; € X_g that maximizes u; —z;, where u; is a relevance term and z; is a
redundancy term. More precisely, u; is the relevance of X; to the output Y alone and z; is the

average redundancy of X; to the selected variable X; € Xs.

u; = I(X5Y) @i}
1
zi =~ z I1(X;Y) (2.12)
XjEXS

where 1(X;;Y) is the Mutual Information. It represents the amount of shared information between
2 random variables. We denote by d the size of X5 during each iteration of forward search. At
each step d, this method selects the feature which has the best trade-off between relevance and

redundancy. This selection criterion is fast and efficient. [44].
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2.5 Challenges

It can be claimed that the research progress on SED has been stagnant until the recent
years. One of the reasons is that there are several challenges for a robust SED system that can

operate in real-life conditions [8]. Some of the challenges are listed below.

2.5.1 Intra-class Variability

Sound events for SED systems are often defined broadly such as phone ringing, doorbell
etc., this latter presents a challenge for SED methods in the form of intra-class variability. For
instance, doorbell class can be used to represent all types of doorbells. The acoustic features can
vary significantly among the examples of this class. Therefore, in order to claim that a SED
system can robustly detect doorbells, it should be able to detect or extract the acoustic features

that are found in common among a variety of doorbell sounds [8].

2.5.2 Overlapping Events

The earlier research on SED has been focused on the detection of individual sound events
recorded in isolated environments [45]. However, in the real world, sound events often occur
simultaneously. For instance, a recording from a children’s park may include children shouting,
adults speaking, footsteps and birds singing; all happening at the same time. Therefore, the SED
system should be able to distinguish the acoustic characteristics of each individual sound event

among this mixture [8].
2.6 Evaluation of sound event detection models

2.6.1 Cross-validation

A common approach for evaluating SED is to learn a hypothesis from a training set and to
measure its generalization error on a test set. It is worth underscoring that the training and testing
data should not overlap, otherwise the estimated performance can be overoptimistic. This
approach requires a large amount of data in order to obtain a reliable estimate of the
generalization error, which is rare in most situations. A possible alternative consists of invoking a
resampling technique such as k-fold cross validation. Figure 2.5 illustrates the way the data is

divided using 4-cross validation technique.
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Figure 2.5: Four-cross validation [20].
2.6.2 Performance evaluation approaches

Evaluation of SED system is done by comparing the system output with the reference
annotations available for the test data. Metrics used in detection of sound events include:
accuracy, precision, recall, F-score, acoustic event error rate (AEER).However, there is no
consensus over which metric is universally good for measuring performance of sound event
detection as they each reflect a different perspective on the ability of the system [21]. The way
these metrics are computed is based on the evaluation approach used to evaluate the system. We
can distinguish two evaluation approaches: segment-based evaluation and event based
evaluation. For each we need to define what constitutes correct detection and what type of errors

the system produces. We refer to these as intermediate statistics [46].

A Segment-based evaluation

The evaluation of SED system performance using the segment-based approach shows how
good the system is at correctly detecting the temporal regions where the sound event is present.
This is done by comparing the system output and reference in one second long segment to
determine the active/inactive state for each event. The intermediate statistics can be summarized

in a confusion matrix as shown in Figure 2.6 and are defined as follows [46].

— True positive( TP) the reference and system output both indicate an event to be active in that

segment.
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— TFalse positive (FP) the reference indicates an event to be inactive in that segment, but the
system output indicates it as active.

— Talse negative (FN) the reference indicates an event to be active in that segment, but the
system output indicates it as inactive.

— True negative (TN) the reference and system output both indicate an event to be inactive.

classifier outcome

P n total
; , True False pr
L )] i -
= 1 positive negative
"_;
° False True
< n’ ) N‘I
positive negative |-
total P N

Figure 2.6: Confusion matrix [25].
Segment-based Accuracy, Precision, Recall and F-score are calculated based on 1 second

long segment-based intermediate statistics using instance based averaging or class-based

averaging. The calculation is illustrated in Figure 2.7.
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Figure 2.7: Calculation of segment-based-metrics [46].
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In instance based averaging (micro-averaging) intermediate statistics are accumulated
over the entire data and the overall performance is calculated, the values of the resulting metrics
are affected by the performance of the most common event classes. In class-based averaging
(macro-averaging), intermediate statistics are accumulated separately for each event class and are
used to calculate class-wise metrics. Overall performance is then calculated as the average of
class-wise performance, resulting in values that emphasize the system behavior on the smaller

event classes [46].

B Event based evaluation

The evaluation of SED system performance using the event-based approach shows how
good the system is at correctly detecting the event instances with their corresponding onset and
offset. This is done by comparing event instances one to one but since the onset-offset of the
system output may not match the reference exactly, a time misalignment threshold is allowed to
be applied to the onset and offset. In their study, Giannoulis et al. [47] have set this threshold to
+100 ms allowing an event to be considered as correctly detected if its onset-offset were within
+100 ms of the corresponding reference event. The event based intermediate statistics are

defined as follows [46].

— True positive (TP) an event in the system output that has a temporal position overlapping
with the temporal position of an event with the same label in the reference. A collar is usually
allowed for the onset and offset, or a tolerance with respect to the reference event duration.

— False positive (FP) an event in the system output that has no correspondence to an event with
same label in the reference within the allowed tolerance.

— False negative (FN) an event in the reference that has no correspondence to an event with

same label in the system output within the allowed tolerance.

2.6.3 Performance metrics

A Accuracy

Accuracy measures how often the classifier makes correct decisions; it is defined as the

ratio of correct system outputs to total number of outputs [46]. Formally it is computed as:
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TP+TN

- (2.13)
TP+ TN+ FP + FN

ACC

B Precision, Recall and F-score

Precision is defined as the ratio of the correctly detected events among all the detection
made by the system [8]. It reaches its highest value of 1 when no false alarms occur. It is

calculated as:

B e TP
" TP+FP
Recall is an indication for missed detections; it reaches its highest value of 1 when all the

(2.14)

active events are detected and decreases when the active events are missed [25]. It is calculated

as:
R= 1 __ @.15)
TP+ FN
F-score is defined in terms of precision and recall. It is given by:
_ 2XPXR (2.16)

P+R
It is worth noting that adapting these metrics to the segment-based evaluation is based on

the definitions of the intermediate statistics depicted in Figure 2.6. More formally:

2XTP

_ (2.17)
2XTP+FP+FN

F

C Acoustic event error rate (AEER)

The acoustic event error rate has been specifically defined for SED system [48]. Three

types of errors were introduced [25].

— Deletion (D) An event was not detected at all (missed event).
— Imsertion (I) An event was detected although it didn’t really occur (extra event).

— Substitution (S) An event was detected but not the correct one.

To calculate segment-based error rate, errors are counted segment by segment. We obtain

the following formulas:



Chapter 2: Machine Learning for Sound Event Detection 29

S(k) = min(FN (k), FP(k))
D (k) = max(0, FN (k) — FP(k)) 218
I(k) = max(0, FP(k), FN(k))
S(k) denotes the number of substitutions errors in the segment,D(k) is the number of

deletions in the segment k and I (k) designates the number of insertions in the segment k.

Total error rate is calculated by integrating segment-wise counts over the total number of
segments K. with N(k) being the number of sound events marked as active in the reference in

segment k [46].

K_1S(k) + Xk_1 D(k) + Xk, (k) @.19)

ER =
NG

2.7 Statistical tests

2.7.1 Friedman test

The Friedman test is useful for comparing several algorithms over multiple sound events. It first
ranks the techniques for each sound event separately according to the generalization accuracy in

descending order. The best performing technique gets the rank 1, the second best gets rank 2...etc.

In case of ties, average ranks are assigned. Let rij be the rank attributed to the j* system on the

event; and let R; =% M

ith

j .
i 7y denote the average rank of system j € {1, ...,t} over N events.

Under the null hypothesis, it is assumed that all techniques are equivalent; hence, their average
ranks should be equal. The statistic y7 follows chi-squared distribution with £ — 1 degrees of
freedom for sufficiently large N and t (usually N > 10 and t > 5). In their study, Iman and
Davenport reported that yZ is conservative and derived a new statistic Fr which is distributed

according to the F-distribution with t — 1 and (¢t — 1)(N — 1) degrees of freedom.

k
12N t(t+ 1)? N = 1)X2
12 = E gz, HEELY _ W= DXr 220)

tt+1) £ J 4 * P N@E-1) — X?
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This test provides only an assessment whether the observed differences in the performances
are statistically significant. In order to have a zoomed-in view of what these differences
correspond to precisely i.e. identify pairs of techniques with significant different performances,
usually we perform a post hoc test when Friedman test rejects the null hypothesis. Nemenyi is an

example of post hoc tests that are widely used in conjunction with Friedman test.
2.7.2 Nemenyi test

This test is invoked when all techniques are compared with each other. The performance of
two methods is significantly different if their corresponding average ranks differ by at least the

critical difference

t(t+1) @21
6N

where the critical value g, is defined based on the Studentized range statistic divided by /2.

CD =q,

2.7.3 Wilcoxon signed-ranks test

Wilcoxon signed-ranks test is a non-parametric test and is considered the best strategy to
compare two algorithms over multiple domains. The formulation of this test is the following. We
designate by d; the difference between the performance scores of two techniques on N datasets.
i € {1,...,N}. We first rank these differences according to their absolute values; in case of ties
average ranks are attributed. Then, we compute the sum of ranks for the positive and the negative

differences, which are denoted as R* and R~, respectively. Their formal definitions are given by:

- 1
Rt = Z rank(d;) + 5 Z rank(d;) R™ = Z rank(d;) + 5 Z rank(d;). (222
d;=0 di=0

d;>0 d;<0
Notice that the ranks of d; = 0 are split evenly between R* and R™. Finally the statistics T,

is computed as T,, = min(R*,R™). For small N, the critical value for T;, can be found in any

textbook on general statistics [34], whereas for larger N, the statistics:

7— %N(N +13
zZ= (2.23)

J%N(N +1)2N +1)
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follows the normal distribution with 1 mean and 0 variance. For instance the hypothesis which

states that two approaches perform equally is rejected if z < —1.96 at a 5% significance level.
2.8 Conclusion

Through this chapter, we have reviewed the important concepts of classification. First, we
have presented the main classifiers used in our work. Then we have discussed the challenges
related to SED research. Furthermore we have presented the most common evaluation metrics
and approaches used in the literature, highlighting the importance of resampling techniques in
order to obtain a reliable estimate of the generalization ability of the SED systems. Finally, we
have briefly reviewed the statistical tests used for comparing the performance of multiple

classifiers.
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PART II: EXPERIMENTS

In this part we describe the methodology that we have followed for evaluating and
comparing sound event detection approaches. It is composed of two chapters. In the first chapter
we present the experimental setup defined to evaluate the performance of our SED system,

whereas in the second chapter, we discuss the results of our experiments.
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Chapter 3: Experimental setup

3.1 Introduction

This chapter presents the experimental setup defined to conduct our experiments. First, in
Section 3.2 we present our dataset. Next, in Section 3.3 we present the tools that we have used to
conduct our experiments. Then in Section 3.4 we describe our implemented SED system.
Furthermore, in section 3.5 we explain partitioning our dataset into training and testing sets.
Finally in Sections 3.6 and 3.7 respectively we discuss the features and machine learning models

used in our experiments.

3.2 Dataset

The dataset used for this task is a combination of DCASE 2017 and DCASE 2016 datasets.
Both of them were collected in Finland by Tampere University of Technology between June
2015 and January 2016 [2, 20] and contain multiple overlapping sound events. The DCASE
2017 dataset consists of recordings of street with various levels of traffic and other activity.
However, the DCASE 2016 dataset consist of recordings in Home and Residential area. The
recordings were selected as representing an environment of interest for detection of sound events
related to human activities and hazard situations. They were captured using 44.1 kHz sampling
rate and are 3-5 minute long. Individual sound events in each recording were annotated by the
same person, he was instructed to annotate all audible sound events, decide the start time and end

time of the sounds and chose event labels freely [20].

In order to avoid the problem of rare events that are hard to detect which affect the
performance of the system, we have decided to work with sound classes taken from residential
areas and streets as they are the most dominant. Table 3.1 gives an overview of the number of
recordings in each event class and the actual frequency of occurrence of each event. On the other
hand, Figure 3.1 and 3.2, respectively, represent two sounds taken from our dataset. One sound

was recorded in a street and the other in a residential area.
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Table 3.1: Frequency of occurrence of each sound event within the dataset.

Event class Occurrence
Brakes squeaking 287
Car 5116
Children 607
People speaking 1908
People walking 2691
Total # of events 10609

residential_area sound events (a) residential sound events power spectrum {(b)

0.08

000 025 050 115 140 205 230 255 320 040
Time nime

Figure 3.1: Residential area: (a) time domain, (b) frequency domain.

Street sound events (a) street sound events power spectrum (b)
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Figure 3.2: Street: (a) time domain, (b) frequency domain.
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3.3 Tools

We have carried our experiments using Python 3.6 which is an object-oriented open source
programming language [49]. First, Feature extraction was performed using Spyder 3.3.4 which is
a scientific environment based on Python [S0] and a collection of Python DCASE (Detection and
Classification of Acoustic Scenes and Events) utilities created for the DCASE challenge 2017
and 2016 [2]. We have displayed our features using Librosa 0.6.3 which is a Python package for
audio analysis [51]. Moreover, the machine learning process was performed using a set of Python
packages such as Scikit-learn which is a machine learning library; it exposes a wide variety of
machine learning algorithms [52]. Other libraries that were invoked include Numpy, Seaborn
0.9.0, Pandas, Keras, Tensorflow [53, 54].

We have trained our classifiers using Google Colaboratory which is a free Cloud service. it

consists of executable Python notebooks stored within Google Drive and connected to a Cloud-
based runtime to perform the execution of the Python code on Nvidia Tesla K80 GPUs and
TPUs.

A SYMRBFipynb %
CO H

Fichier = Modifier Affichage Insérer Exécution Outils Aide

CODE [E3 TEXTE | 4 CELLULE  CELLULE

print(“Working on fold : “+str(fold))
key __class labels:
# START TRAINING THE MODEL
print("Training the model on : " +key)
Y train=Y[:, class labels[key]]
model = SVC(C=1.0,kernel="rbf’, gamma=1.2,max iter=1859800)
model.fit(X,Y train)

Ypredict=model .predict(X test)
y_test=Y test[:, class labels[key]]

Figure 3.3: Screenshot of online Google Colab platform.
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3.4 System description

We aim at building different monophonic SED systems that are able to indicate whether
the event is present or not within the given set of polyphonic recordings described by feature
vectors. Each system utilizes a specific feature extraction technique along with different
classification paradigms. We have carried out two sets of experiments. First, we have examined 3
different feature extraction techniques (MFCCs, Log Mel-band Energy and MFCCs + AMFCCs +
AAMEFCCs) and 4 classification paradigms (SVM, CNN, Adaboost and Random Forest), while
varying their parameters. We have utilized the 1 second segment-based approach along with
the Fscore and Accuracy metrics to perform the evaluation of our systems and have supported
our analysis and discussion with numerous statistical tests. Second, we have investigated the
effect of the number of features on the generalization performance of the Random Forest
classifier where we have invoked a feature selection approach, namely minimum redundancy
maximum relevance (MRMR) [55], in order to automatically determine the optimal set of
extracted features. The process of SED is described in Figure 3.4. Additional details on the
feature extraction techniques and the machine learning models that were used can be found in

Sections 3.6 and 3.7.
3.5 Cross-validation

For evaluating our SED system, we have performed a stratified 10-cross validation to
divide the whole dataset into non-overlapping training and testing sets. We have shuffled our
data to generate different combinations in order to ensure that the events are present in the testing
set. Cross validation leads to a considerable computation time increment, but it is a very common
test used to evaluate the flexibility of the system when different training data are used. When all
models are trained, an overall performance score is calculated by taking the average of the results

over the 10 folds. We have performed 10 cross validation using Scikit-learn.
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3.6 Feature extraction and selection

We have used the frequency domain features log Mel-band energies, MFCCs and a
combination of MFCCs + AMFCCs + AAMFCCs. Figure 3.5 presents the feature engineering

process that we have followed in our work.

Input audio Framing and windowing with 75% overlap
signal
Signal

y i - 2 ! x' y , X , e M@ i FFT v

Framen 75%

Frame n+1  75%:

: { )
Frame n+2 75% i Mel filter banks f

Frame n+3 75%

—

Log Mel-band energy | Logarithm |

N — \g\:-m‘-ﬂthll.'H'.uv“"r:uA-ﬂl’
Delta MFCCs ? .1St . t
| derivative |

bbbt d e

e tozht o MFCC coefficients E DCT
an 3 R r——

Delta delta MFCCs

7,
|
 derivative |

Figure 3.5: The process of feature engineering.

3.6.1 Log Mel-band energy

Table 3.2 summarizes the parameters used for extracting the Log Mel-band energy
features. Figures 3.6 and 3.7 depict the Log Mel-band energy features for 2 sounds taken from

our dataset.

Table 3.2: Log Mel-band energy setup.

Parameter Value
Sample rate 44100Hz
Frame length 40 ms
Overlap (%) 75%
#Mel band filters 40
#Log Mel energy 40
Window function Hamming

Total # of features 40
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Figure 3.8: MFCCs of a residential areas recording.
3.6.3 MFCC and AMFCC and AAMFCC

The setup is summarized in Table 3.4

Table 3.4: MFCC+AMFCC+AAMFCC setup.

- Paiﬁa}imé't‘er’l‘i”:“'-' e Value
Sample rate 44100Hz
Frame length 40 ms
Overlap (%) 75%
#Mel band filters 40
#MFCC coefficients 40
#AMFCCs 40
#AAMFCCs 40
Window function Hamming
Total # of features 120

delta MFCC

0.00 050 140 230 320 410 500 550 640
Time

Figure 3.9: AMFCCs of a residential area recording.
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Mel band energy
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Figure 3.6: Log Mel band energies for a residential area recording.
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Figure 3.7: Log Mel band energies for a street recording.

3.6.2 Mel Frequency Cepstral Coefficients

After calculating the log Mel band energies, DCT of the 40 log Mel band energies is taken

and 40 MFCC coefficients are obtained. Table 3.3 summarizes the parameters used for

extracting the above features. Figure 3.8 displays the MFCC coefficients of a sound taken from

our dataset.

Table 3.3: MFCC setup.

Parameter Value
Sample rate 44100Hz
Frame length 40 ms
Overlap (%) 75%
#Mel band filters 40
#MFCC coefficients 40
Window function Hamming

Total # of features 40
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delta delta MFCC
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Figure 3.10: AAMFCCs of a residential area recording.

3.6.4 Feature selection

We have invoked a feature selection approach, namely minimum redundancy maximum
relevance (MRMR) to automatically determine the optimal 40% , 60% and 80% sets of 120
extracted MFCC+AMFCC+AAMFCC using Random Forest classifier in order to investigate the

effect of the number of features on its generalization performance.
3.7 Classification approaches

The Classification process for sound event detection is illustrated in Figure 3.11. It is
performed based on feature vectors composed of a set of acoustic features x, extracted from
t =1,..., T frames. Each model takes as input acoustic feature x, € R* extracted from a single
frame and is trained to learn a single event among the 5 available event classes. We define
y: €Y = {0,1} as the class label associated to each frame. If the event class is present in frame t
then y; is set to 1 and 0 otherwise. A classifier is seen as a two-step algorithm: training phase and
testing phase. In the training phase the model is trained to learn the mapping from I' =
{Ce160¥16)s (2, ¥26)s -0 s (Xt Yme)} and produces probability distribution output vector § €
[0.1] (CNN model) or oracle output vector § € {0,1} (SVM, Adaboost and Random Forest
models). In the testing phase, the produced model is used to predict the class labels for unseen
sound recordings from the testing set. When the predicted outputs consist of probability
distributions, a post-processing step is performed to obtain oracle outputs. This is done by using a

threshold value equal to 0.5. The oracle outputs represent the frame-level binary estimate for
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each sound event class in consecutive frames and allow us to obtain the temporal activity

information i.e. Extract the onset and offset of each sound event class.
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Figure 3.11: The training and testing phase of a SED system [21].

To compare the performance of each SED system, we have examined 7 supervised machine
learning classifiers as described in Table 3.5. We have implemented the first 5 classifiers in
Python using the Scikit learn library [52], whereas for the CNN classifier, we have employed
Keras and Tensorflow libraries.It is worth underscoring that we have performed a feature scaling
to our feature vectors using Scikit learn preprocessing standard scaler before training our models

in order to make sure that our feature takes similar range of values.
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Table 3.5: Machine learning setup.

Classifier

Parameter Value
Random :
Foresi(RF_1) N_estimators 50
Random 3
Forest(RF 2) N_estimators 200
N_estimators 50
Adaboosi{AR) Max depth 40
Gaussian Max _iteration 100 000
SVM(SVM 1) Gamma 1.0
: Max _iteration 100 000
Polynomial Gamma 1.0
ML) Order 3:0
#Epochs 400
Batch size 128
Dropout rate 0.3
#Hidden layers 3
Sl Pool size 5.2.2)
Filters 128
Activation function Relu
Threshold 0.5
#Epochs 1000
Batch size 128
Dropout rate 0.3
#Hidden layers 3
N2 Pool size (22)
Filters 128
Activation function Relu
Threshold 0.5

3.8 Conclusion

This chapter introduced the experimental setup defined to conduct our experimental

comparisons. We have presented our dataset and the way we split it into training and testing set

in order to perform the evaluation of our system. We have also presented the tools that we have

used for conducting our experiment and the topology of our SED system. We have highlighted

the fact that our experimental study is based different set of spectral features and machine

learning models and have exposed their parameters.
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Chapter 4: Experimental results
and discussion

4.1 Introduction

This chapter discusses the experimental results that we have obtained during our
experiments. In Sections 4.2 and 4.3 we analyze and discuss the results of the first and second set

of our experiments. In Section 4.4 we talk about the training time of our experimental studies.

4.2  First set of experiment

We have conducted extensive experimental comparison among sound analysis methods
using 5 types of event sounds. We have thoroughly examined 3 different feature extraction
techniques: MIFCCs for the first case study, Log Mel-band Energy for the second case study
and a combination of MFCCs + AMFCCs + AAMFCCs for the last case study to examine the
performance of the 7 classifiers described in Table 3.5 for each type of the above mentioned
features. We have utilized the 1 second segment-based approach along with the Fscore and
Accuracy metrics to perform the evaluation of our systems and have supported our analysis and

discussion with numerous statistical tests.

4.2.1 Casestudy 1

In this case study, we compare the performance of 7 classifiers (SED Systems) using
MFCCs. Table 4.1 gives the average accuracy (%) results that we have obtained. The first
column represents the event class and the rest of the columns designates the type of classifiers
that are used in our experiment. The last row specifies the mean rank of each classifier over all

events.
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Table 4.1: Average classification accuracy (%) results based on MFCCs.

Event SVM 1 SVM 2 CNN_1 CNN_2 RF 1 RF 2 AB
Brakes squeaking 83.00+0.28 82.94+0.28 9243+0.04 9243+0.04 9243+ 0.04 9243 £0.04 92.45+0.04
Car 67.01+£0.24 58.71+0.20 69.53+0.07 69.37+0.07 73.80+0.08 74.20+0.08 74.19 +0.08
Children 80.03+£0.29 80.15+0.29 8830%0.11 88.07+0.11 89.51+0.11 89.53+0.11 89.53+0.11
People speaking 72.21+£030 71.51+0.29 7742+0.18 77.52+0.18 81.11+019 81.22+0.19 8120+ 0.19
People walking 73.99+£0.27 67.82+0.24 7674%+0.10 7735+0.10 81.02+0.11 81.09+0.11 81.06+0.11
Overall accuracy

Instance-based(%) 7948+ 0.07 74.13+0.06 75.71+0.07 757540.07 79.28 + 0.07 79481+ 0.07  79.47 £0.07

Overall accuracy

Class-based(%) 7525+0.26 7223+0.25 80.88+0.06 80.95+0.06 83.57+0.07 83.69 £ 0.07 83.69 +0.07

Mean ranks 6.20 6.80 4.30 4.30 3.10 1.60 1.70

We statistically compare the performances of these techniques using Friedman test. Under
the null hypothesis, we have assumed that all classifiers are equivalent and the observed
differences are due to chance. Friedman test rejects this hypothesis with FF = 30.15 >
F(6,24) = 30.05for a = 5 x 10 — 10 (FF is distributed according to the F distribution with
7—1=6and (7 — 1) x (5 — 1) = 24 degrees of freedom), and therefore confirms the
existence of at least one pair of techniques with significantly different performances.We have
followed up the previous findings with a Nemenyi test at a 10% significance level with the

critical value qo; = 2.69 and the critical difference CD = 3.68. The results of this test are

dipicted in Figure 4.1.
CD=3.68
? ? 7 i 3 : !
SVM 2 L RF2
SVM_1 AB
CNN_1 RF 1
CNN 2

Figure 4.1: Comparison of all systems against each other with the Nemenyi test. Groups of techniques that are not

significantly different (at « = 0.10) are connected.
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The analysis of the previous results can be summarized as follows. Nemenyi test
indicates that there is no significant difference between SVM classifiers, and the observed
differences are merely due to random behavior. We also observe that the ensemble-based
classifiers (Random Forest and Adaboost) perform significantly better than SVM. However, data
are not sufficient to reach the same conclusion regarding CNN. Most importantly, CNN
classifiers strangely show weak performances compared to Random Forest and Adaboost. This
behavior is expected since CNN require more data to improve its generalization ability [27],
whereas, ensemble-based learners are able to adapt well and learn from class-imbalanced data
[37], which is the case of SED.

The Box plot depicted in Figure 4.2 represents the distribution of the mean accuracy scores
over all events for each SED system. We observe that the ensemble-based approaches have the
lowest variance and demonstrate the best performance as the majority of the accuracy scores are
between 81% and 89% followed by CNNs. Moreover, the performance of the SVM Polynomial

is very weak compared to the rest as it has the largest variance.

85

75

Accuracy (%)

70

65

SVM 1 SVM_2 CNN_1 CNN_2 RF_1 RF_2 AB
Classifier

Figure 4.2: The average accuracy scores (%) over all events for each SED system
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4.2.2  Case study 2

In this case study, we compare the performance of the 7 SED systems using the Log Mel-
band energy features. Table 4.2 gives the average accuracy (%) results that we have obtained.
The first column represents the event class and the rest of the columns designates the type of
classifiers that are used in our experiment. The last row specifies the mean rank of each classifier

over all events.

Table 4.2: Average classification accuracy (%) results based on Log Mel-band energy.

Event SVM 1 SVM 2 CNN_1 CNN 2 RF_1 RF_2 AB
Brakes squeaking 92.43+0.04 90.511+0.07 92.43+£0.04 92.431+0.04 92.43+0.04 92.43+0.04 9236+ 0.04
Car 7241£0.07 57.92+0.11 67.58+0.07 68.05+0.07 73.97+0.08 74.19+0.08 74.13+0.08
Children 88.86+0.11 85.45+0.11 89.00+0.11 87.92+0.11 89.44+011 89.53+0.11 89.51+0.11
People speaking 79.27 £0.18 71.31+0.15 7740+0.17 77.731+0.18 8115+0.19 81.22+0.19 81.19+0.19
People walking 78.86 £ 0.10 5842+ 0.18 7638+0.10 76.65+0.10 80.91+0.11 81.09%+0.11 81.04%0.11

Overall accuracy

77.74 £ 0.06 65.63 + 0.08 7490+ 0.06 75.15+0.07 79.32+0.07 79.47+0.07 79.42+0.07
Instance-based (%)

Overall accuracy

Class-based (%) 8237 +£0.06 72.7240.07 80.56+0.06 80.55+0.07 83.58+0.07 83.69+0.07 83.65%0.07

Mean ranks 4.00 7.00 5.00 4.80 3.00 1.40 2.80

Following Demsar’s recommendations [31], we have first conducted a Friedman test to
statistically compare the performance of these systems. We have assumed that all systems
perform similarly and the observed differences are merely due to chance. Friedman test rejects
this hypothesis with FF = 9.73 > F(7,203) = 855 for a = 50X 10—5 (FF is
distributed according to the F distribution with 7 — 1 = 6and (7 - 1) X (5 —-1) =
24 degrees of freedom), and therefore confirms the existence of at least one pair of techniques

with significantly different performances.

Then, we have tested the pairwise significance differences using a Nemenyi test at a
10% significance level with the critical value qo; = 2.69 and the critical difference CD =
3.68.
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CD =3.68
7 6 5 4 3 2 1
SVM 2 L RF2
CNN_1 AB
CNN 2 RE |
L SVM 1

Figure 4.3: Comparison of all systems against each other with the Nemenyi test. Groups of techniques that are not

significantly different (at @ = 0.10) are connected.

The analysis of the test results illustrated by Figure 4.3 can be summarized by three main

observations:

— The results of the Ensemble-based learners are in the lead followed by SVM with Gaussian
kernel (SVM_1) and CNNss in the third place. This latter observation confirms our previous
assemption i.e. Convolutional Neural Network classifiers may not have been well-trained
due to the lack of sound events data.

— Similary to our previous findings, there is no statistical difference between CNN 1 and
CNN_2.

— SVM with polynamial kernel (SVM_2) exhibits very poor performance compared to the
gaussian one (SVM_1). A possible cause of this behavior may be related to the nature of
Log Mel Band Energy data and the procedure of projecting samples into high dimentional

space (kernel).

The Box plot depicted in Figure 4.4 represents the distribution of the mean accuracy scores
(%) over all events for each SED system. We observe that the ensemble-based approaches have
the lowest variance and demonstrate the best performance as the majority of the accuracy scores
are between 81% and 89% followed by the SVM_1 with an accuracy score between 79% and
88% and CNNs. Moreover, similarly to our previous findings the performance of the SVM_ 2 is

still very weak compared to the rest as it has the largest variance.
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Accuracy (%)

SVM_1  SVM_2 CNN_1  CNN_2 RF_1 RF_2 AB
Classifier

Figure 4.4: The average accuracy scores (%) over all events for each SED system

423 Casestudy 3

This section is devoted to investigate the influence of AMFCC + AAMFCC on the
generalization ability of SVM_1, SVM_2, RF_1, RF_2, and Adaboost. To this end, we have
carried out pairwise comparisons between the aforementioned techniques with and without
adding AMFCC + AAMFCC features. Due to its robustness, we have considered using the
Wilcoxon signed-ranks tests. A summary of this experiment and test statistics is shown in Table
43 and 4.4. Row 9 specifies the number of win/tie/loss of the system trained with
MFCC+AMFCC + AAMFCC (column highlighted in grey) over the system which uses only
MFCC features. Row 10 shows the associated p — value; it is worth noting that p — values <
0.05 indicates that the system in the column highlighted in grey is significantly better than the
system trained only with MFCC features at 5% significance level i.e. adding AMFCC +
AAMFCC significantly improves the predictive performance.
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Table 4.3: Average classification accuracy (%) results of SVMs using MFCC and MFCC+AMFCC+AAMFCC

The

SVM_1 SVM_2
Event iy MFCC i}'[?(’:—é MFCC
+AMFCC+AAMFCC +AMFCC+AAMFCC
o
Brakes squeaking 83.00 + 0.28 92.43 + 0.04 82.94 + 0.28 92434004 2
Car 67.01 + 0.24 74.20 + 0.08 58.71+ 0.20 74124008 / / /
\'/\I'
Children 80.03 + 0.29 89.53 +0.11 80.15 + 0.29 89.53+0.11 /3,
People speaking 72.21 + 0.30 81.22 +0.19 71.51+ 0.29 81.26 + 0.19 \\—.
A\
People walking 73.99 +0.27 81.09 + 0.11 67.82 + 0.24 81.05+0.11 "\ \
Overall accuracy \\
Instance.based (%) | 79481007 79.48 + 0.07 74.13 +0.06 79.45 + 0.07
Overall accuracy
Class-based (%) 75.25 +0.26 83.69 + 0.07 72.23 +0.25 83.68 + 0.07
W/T/L 5/0/0 5/0/0
p —value 0.044 0.044
results shown in Table 4.3 indicate that training SVMs with

MFCC+AMFCC+AAMFCC considerably improves the generalization ability with p — value <

0.044; whereas, introducing additional features did not demonstrate any improvement in the

performance of ensemble-based learners as depicted in Table 4.4.

Table 4.4: Average classification accuracy (%) results of ensemble leaners using MFCC and MFCC+AMFCC+AAMF CC.

RF_1 RF 2 AB
Event NI:FFEIC MFCC N;Rg(—:zc MFCC M‘;‘é . MFCC
+AMFCC+AAMFCC +AMFCC+AAMFCC +AMFCC+AAMFCC

Brakes squeaking 92.43 + 0.04 92.43 + 0.04 92.43 + 0.04 92.43 + 0.04 92.45 + 0.04 92.43 + 0.04
Car 73.80 + 0.08 74.01 + 0.08 74.20 + 0.08 74.20 + 0.08 74.19 + 0.08 74.20 + 0.08
Children 89.51+0.11 89.47 + 0.11 89.53 4 0.11 89.53 + 0.11 89.53 + 0.11 89.53 + 0.11
People speaking 81.11+0.19 81.09 + 0.18 81.22+0.19 81.22+ 0.19 81.20 + 0.19 81.22 +0.19
People walking 81.02 + 0.11 80.85 + 0.11 81.09 + 0.11 81.09 + 0.11 81.06 + 0.11 81.09 + 0.11
Overall accuracy

79.28 + 0.07 79.31  0.07 79.48 + 0.07 79.48 + 0.07 79.47 +0.07 79.48 £ 0.07
Instance-based (%)
Overall accuracy
Class-based (%) 83.57 + 0.07 83.57 £ 0.07 83.69 £ 0.07 83.69 + 0.07 83.69 + 0.07 83.69 £ 0.07
W/T/L 1173 0/5/0 3/1/1
p —value 0.59 1 0.28
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Based on these observations, we believe that adding AMFCC+AAMFCC features provides a
better representation of the sound events. More specifically, the projection of these features into a
higher dimensional space using a kernel trick has improved both the decision boundary and
margins determined by SVM; which was not possible using only MFCCs. From this experiment,

we can derive two lessons:

— AMFCC+AAMEFCC features have a major impact on the generalization ability of SVM-
based systems.
— Adding AMFCC+AAMFCC do not have any significant influence on the performance of

ensemble learning classifiers.

4.2.4 Summary of results

In order to investigate the results of our first set of experiment, we present in Figure 4.5 the
F-score of the 7 SED systems for each sound event. We can observe that all systems show very
low detection rates of the event “brakes squeaking” with an Fscore value < 6% . This is due to
the fact that the numbers of instances of this event is very low (as shown in Table 3.1), which is
not sufficient for learning an effective model. We can also note that CNN-based systems exhibit
very poor performance in case of “brakes squeaking” and “children”. This behavior is expected
since CNN model requires more data than the other classifiers to improve its performance.
Furthermore, because the numbers of instances of the three remaining events are higher
comparing to the above mentioned events, we can observe a beiter performance with an
Fscore value < 37 for people speaking followed by an Fscore value < 48 for people walking

and Fscore value < 50 for car.
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Figure 4.5: Overall Fscore results (%) of SED systems for 1* case study (left), the 2 (right).
Table 4.5: Overall Fscore (%) results for each case study.
Case studies SVM 1 SVM_ 2 CNN_1 CNN_2 RF_1 RF_2 AB
Overall Fscore
- 45.0 +£0.17 2359+ 0.08 32.61+0.15 33.18+0.14 44.17+0.17 45.0+£0.17 45.01+0.17
2 =z Instance-based
S B Overall Fscore
® Classbased 30.88+0.16 1898 +0.11 17.45+0.08 17.69 % 0.07 31.2+0.14 3193+0.15 32.06+0.15
Overall Fscore
% Tnstance-based 3491+ 0.15 18.67 +0.12 28.06+0.13 3394014  4434+017 44994017 45.07+0.17
2 %, nstance-base
© B Overall Fscore
2 Class-based 19.58 + 0.09 12.05+0.06 14.6+0.08 17.724+0.07 31.15+0.14 31.93+0.15 32.03+0.15
Overall Fscore
S Tostance-based 45004+ 0.09 45.14+0.06 26.78+0.08 32.33+0.07 44.22+0.14 45.0%£0.15 45.01+0.15
2 _:, Stance-base
O B Overall Fscore
® (Class-based 3193+ 0.09 32.03+0.06 1535+0.08 17.324+0.07 31.33+0.14 31.93+0.15 31.94%0.15
Table 4.5 summarizes the overall F-scores (%) obtained during the first set of our

experiments. We can observe that Adaboost demonstrates the best detection performance in both

of case study 1 and 2. However in case study 3 SVM_2 demonstrates a better detection

performance which is expected as discussed Section 4.2.3.
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Based on the results of our experimental enquiries, we can derive the following lessons. :

— The SED system based on the ensemble learning classifiers (RF_2 and AB) along
with MFCCs achieve the best detection performance with an overall class-based
accuracy of 83% and an overall instance-based Fscore of 45%.

— SVMs along with MFCCs + AMFCCs + AAMFCs achieve a significant
improvement in the detection performance with an overall class-based accuracy of
83% and an overall instance-based Fscore of 45%.

— The lack of sound event data influences negatively the performance of CNNs.

— The MFCCs and MFCCs + AMFCCs + AAMFCs features significantly improve the
predictive performance of SED systems compared to the log Mel-band energy

features.
4.3 Second set of experiment

In this case study, we have investigated the effect of the number of features on the
generalization performance of Random Forest (RF_2) classifier. Specifically, we have invoked a
feature selection approach, namely mRMR in order to automatically determine the optimal 40% ,
60% and 80% sets of 120 extracted MFCC+AMFCC+AAMFCC. However due to the lack of
data in our dataset, this techniques did not demonstrate any improvement in the performance our
SED system as the selected features were not sufficient for learning an effective model. We
believe that applying this feature selection technique along with data augmentation can lead to

better performance.
4.4 Training time

The GPU requirement for SVMs training and testing was enormous. The training and
testing time per each event took approximatively 7 hours for SVM_1 and approximatively 4
hours for SVM 2. Moreover, in the case of RF_1, RF_2 and AB classifiers it took
approximatively seven hours to train and test a single fold whereas it took 1 hour to train and

test all of the 10 folds for CNN_2 and approximatively 30 minutes for the CNN_1 classifier.
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CONCLUSION

1. Contributions and summary of experimental findings

The primary goal of this thesis was to conduct an empirical analysis and comparisons
among monophonic Sound Event Detection systems. To this end, we have carried out two set
of experiments to analyze their behavior using a combination of DCASE 2017 and DCASE 2016
datasets. First, we have examined 3 different feature extraction techniques (MFCCs, Log Mel-
band Energy and MFCCs + AMFCCS + AAMFCCs) and 4 classification paradigms (SVM, CNN,
Random Forest and Adaboost), while varying their parameters. We have chosen one second
segment based F-score and accuracy as our performance evaluation metrics and have founded our
analysis and discussion with numerous statistical tests. From this experimental study, we can

derive the following conclusions:

— The SED system based on the ensemble learning classifiers (RF_2 and AB) along with
MFCCs is the best in term of computational cost and detection performance with an overall
class-based accuracy of 83% and an overall instance-based Fscore of 45%. Our reasoning
on this is based on the fact that the ensemble learners are able to adapt well and learn from
class-imbalanced data which is the case of SED.

— The SED systems based on SVMs along with MFCCs + AMFCCs + AAMFCs achieve a
significant improvement in the detection performance with an overall class-based accuracy
of 83% and an overall instance-based Fscore of 45%. We believe that the projection of
these features into a higher dimensional space using a kernel trick has improved both the
decision boundary and margins determined by SVM.However the computational cost of
these classifiers is enormous.

— The MFCC and MFCCs + AMFCCs + AAMFCCs features significantly improve the
predictive performance of SED systems compared to the log Mel-band energy features.

This is due to the fact that the MFCCs extracted from a mixture of sounds are more relevant
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and representative compared to log Mel-band energy. We believe that the log Mel-band
energy features may represent well an individual sound event.

— The lack of sound event data influences negatively the performance of CNNs.

In the second set of experiments, we have investigated the effect of the number of features
on the generalization performance of Random Forest classifier through invoking a feature
selection approach, namely mRMR. However, from the experimental findings, we have noticed
that due to the lack of data in this field of research, the selected features were not sufficient for
learning an effective model. We believe that applying this technique along with data

augmentation can yield better performance.
2. Limits and Future work

This thesis has revealed several interesting areas for improvement. Based on the insights
gained from the experimental findings, we have concluded that the lack of data can negatively
affect the performance of SED systems. A natural extension of this work would be to exploit data
augmentation techniques along with feature selection for a possible improvement in the behavior
of such systems and analyze their effect on neural networks. Another appealing work direction

would to apply preprocessing techniques to diminish the effect of ambient background noise.

During this work we have faced several difficulties since the overlapping sound events in
the audio recording cannot be well represented by the extracted features. Moreover, the process
of framing in the SED area leads to imbalanced data which affect the performance of such

systems. Also, even with the use of Nvidia Tesla K80 GPUs, the training time is still enormous.

This field of research is interesting as it contributes directly to the development of smart
cities. We have acquired knowledge and many skills throughout the past 8 months, such as:
fundamentals of Machine Learning and key steps for conducting proper Machine Learning
experiments. We have also learned analyzing experimental findings based on statistical tests.
Moreover, we have mastered Python and have discovered Google Collaboratory platform that we

will continue using for future machine learning projects.
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