Université de BLIDA 1
Faculté des Sciences

Département d’ Informatique

MASTER THESIS

Option : Traitement Automatique de la Langue

CONTRIBUTION TO THE CONSTRUCTION OF AN
OPENSOURCE PLATFORM DEDICATED TO THE
SIMULATION OF NLP TOOLS FOR THE ARABIC LANGUAGE

By:

Zidane Nouredine
Zidoun Mohamed Abdelrrahmane

In front of a jury composed of:

President: Mme TOUBALINE Nesrine University of Blida 1
Examiner: Ms NASERI Ahlem University of Blida 1
Supervisor: Mr HOCINI Hatem Algerian Academy of Arabic Language
Supervisor: Ms YKHLEF Hadjer University of Blida 1
Guest: Mme KHELOUT Fatiha Algerian Academy of Arabic Language

Année universitaire 2018/2019

MA-004-525-1

l
i
|

Abstract

Arabic Natural Language Processing has quickly grown into an active field of research
during the last decade. Working on the Arabic language is challenging due to its morphological
richness and fiexibility. Thereby, the processing of the Arabic language requires the development
of appropriate tools. To this end, our primary goal is to construct an opensource platform dedicated
to the simulation of natural language processing tools for the Arabic language. Our platform

amalgamates various tools, which ensures their interoperability and their reusability.

Keywords: Arabic natural language processing (ANLP), Platforms, Interoperability, Reusability.

Résumé

Le traitement automatique de la langue arabe est rapidement devenu un domaine de
recherche actif au cours de la derniére décennie. Travailler sur la langue arabe est un défi en raison
de sa richesse morphologique et de sa flexibilité. De ce fait, le traitement de la langue arabe
nécessite le développement d'outils appropriés. A cette fin, notre objectif principal est de construire
une plateforme opensource dédiée a la simulation d'outils de traitement du langage naturel pour la
langue arabe. Notre plateforme regroupe divers outils, ce qui assure leur interopérabilité et leur

réutilisabilité.

Mots clés : Traitement du langage naturel arabe, Plates-formes, Interopérabilité, Réutilisabilité.

oy Ay el Zalll o Jaall | oaaball diadl A Canll Unii Yilaa el Ao oy Ay pall Aalll Aadlaa oo

el o2 Wit Apuliall il gal1 y lal callali Ay padt Aall e i ¢ Jiillyg 4539 pa g (o ol o8) gall 4315 sy LanS

Laa ¢ Aliaall il g1 o Uiaie mand A jall Lalll dallae <ol pal BSaad diainie diaie oL 3 oulul) Lias Jichy ¢
Lol sale 5) Qe AL (e

Al sale] ¢ Jalaiell Judill ¢ cliaiall ¢ Ay jlt 221l dalles sriliadl clols

QTR LS
B
4 X}
hy \:3 = \, \

) 17y

B\ l
.A"“ b /
‘\ ‘.” \ ¥] ” /
L% 7

Acknowledgement

Above all, we thank Allah to have given us faith, strength and courage.

We wish to express our gratitude to all the people who helped us to accomplish

this thesis:

First, we would like to express our gratitude to our supervisors, Mr. HOCINI

Hatem for his guidance, advice and patience.

Many thanks to Ms. YKLEF Hadjer for the time and the effort she has dedicated
Jor us, she has always been there lo enlighten us the way and she did not hesitate with

her constructive advice.
We also thank all the teachers who contributed in our education.

We express our gratitude to the board of examiners for reading and evaluating

our work.

Contents

INTRODUCTION 1

PART I. CONCEPTS AND GENERALITIES 4

CHAPTER 1. THE GENERAL PRINCIPLES OF AUTOMATIC PROCESSING OF THE ARABIC

LANGUAGE ... 5
1.1 INETOQUCHIONeveee ettt ettt ettt et neenans 5
1.2 Particularity of the Arabic languagecooovveveieeieieeeecee e 5
1.3 Arabic [anguage Srammar...............c.eoveieriiviiieiiireresiesesiesessessiesissesssssessssessesessenes 6
1.4 LoBETEA0E ROBOTIOBE i s emnsonsee s i 5645556055 04544555 9555550 60565 s Fhmsns sbaan feamwmna Frnsiian 7
1.5 Maint to0lS OF ANLPcocvioieieeieeeee et 9
1.6 CONCIUSIONvviiiiniicii et sttt sttt enenanisnannn 12

CHAPTER 2. PLATFORMS AND TOOLS FOR AUTOMATIC PROCESSING OF THE ARABIC

LANGUAGE sussssssasssssesssassnss 14
2.1 INITOAUCHION. ...ttt ettt e e 14
e LS TR, occummnssonmnmmmsmass s S O B O e 14
2.3 ANLP PIAETOIINS........oovoeeeieeeeieeeeeeee ettt e et ea s eeeeaesaesenens 16
2.4 Criticism of the existing and problems of interoperabilityccocoovvvreriiirciinnnnn 23
2.5 For a standard and flexible solution dedicated to ANLP.........ccccoovviiicininnieine. 23
2.6 CONCIISION ..ottt ettt es et es et e s b s ee e s s se e b s ens 24

PART II. STUDY, MODELING AND IMPLEMENTATION 25

CHAPTER 3. DESIGN OF A FLEXIBLE ARCHITECTURE FOR ANLP TOOLS PLATFORM.....26
3.1 INrOAUCHION ..o bbb 26
3.2 Architecture of the platformcccooviiiiiiiiie e 26
3.3 Interoperability & reusability between toolsccooevevieeeieeeecce e 38
3.4 CONCIUSION ...ttt ettt e e st et e e eneane s 41

CHAPTER 4. IMPLEMENTATION 42
4.] TOAPOHIECTIONL......ccro o mmn s inansinssinis Snammans ensibiasis simmanss v oamemns sasasaxks nansanme s anss o mssm o s e 42
4.2 Development ENVITONMENLovrerieririeiiieriareerieeseeseeiesaesensessssssssesssasessesseneens 42

4.3 Description of AAAL platform..........cocoooiiiiiiiiiieie s 43

..

CONCLUSION

REFERENCES.........c.....

APPENDIX.....ccceeeuee.

List of Figures

FIGURE 1.1: DERIVATION OF THE ROOT <3S [13]. 1.t et 7
FIGURE 1.2: EXAMPLE OF AN ARABIC MORPHOLOGICAL ANALYZER [17]. c..eveveeeeeeeeeeeeeeeeen, 9
FIGURE 1.3: AN EXAMPLE OF ARABIC SENTENCE PARSED USING STANFORD PARSER [29].........c..c... 11
FIGURE 2.1: MADAMIRA ARCHITECTURE [9]. ... veeueeieeeeeeeeeeeeeeee e 17
FIGURE 2.2: THE SUITE OF MADA AND THE SUITE OF AMIRA [40].coooiovirereeeee oo 18
FIGURE 2.3: ARCHITECTURE OF SAFAR PLATFORM [42]. ...oeieioeeeeee oo 20
FIGURE 2.4: TYPICAL PROCESSING PIPELINE OF ARANLP [12].....ovviieeeeieieeeee e 22
FIGURE 3.1: GLOBAL ARCHITECTURE OF THE AAAL PLATFORM.ccvuiiereiierereeeeeeneeeeeeeeeneneeanes 27
FIGURE 3.2: PROCESS OF SEGMENTING MODULE.cocuiviuiteiececeeeeeiesceeteseesseesseseseees e eses e ene 29
FIGURE 3.3: PROCESS OF STEMMING MODULE.cuouruiuiueiiueresieieeeiesssececssiseesecesesasasoseeesesseneesanenees 31
FIGURE 3.4: PROCESS OF POS TAGGING MODULE........c.ccoovviuitiiiteteieseseieseessss et seesens e seennes 33
FIGURE 3.5: PROCESS OF PARSING MODULE........c.cccrtiuiieiiuiiararesisetesesesesessssssseesesesssssesessesessesessesns 35
FIGURE 3.6: PROCESS OF NER MODULE.covrviviriteniiiieieseseieseseiesee st sesens s ens 36
FIGURE 3.7: PROCESS OF THE MID-VOCALIZATION.ccouiuitiuiuiuimiaesisesesessessnsssenssesesessesssesessneseenes 38
FIGURE 4.1: MAIN WINDOW IN SIMPLE MODE.ccoeiuiuirinieiaiscsisesesesesssssessssssesesssess s 45
FIGURE 4.2: MAIN WINDOW IN ADVANCED MODE........c.ccvetiuitirmunieuireseresiesensrenssesesssessesosssseseieseees 46
FIGURE 4.3: TOKENIZATION MODULE.c.c0euttiteietieteisiesessieseseses sttt sese s sesessesssssesessseseseseses s 47
FIGURE 4.4: SEGMENTATION MODULE.cucutuauriatrtainieiarasasesiasseseseesessssesessessesssssssssssssesssseseesseenens 48
FIGURE 4.5: STEMMING MODULE.c0cevrtiitsrisisesesesesesesesesesesesesesesesesssssesesstsssssssssssnsssasssissssnses 49
FIGURE 4.6: POS TAGGING MODULE.covtuiirerensesiensesesesssesesesesesetesssssssssssssesesssssesssesssasesssasns 50
FIGURE 4.7: PARSING MODULE.oevvtieisiisiisisiesee ettt st ses st 51
FIGURE 4.8: NER MODULE.c.ovutueintirisinitsimnnassssssnssssssssssessssssssessosssssssseesssasassssesnnsesoseseses 52
FIGURE 4.9: NUMBERS FUNCTIONS.0etittitetisttereeesesesessesesesresessesessesessssessssessssessesesssssessssssssssenas 53
FIGURE 4.10: VOCALISATION MODULE.cucuvuitiuiuesiaesaseassenesessesssesesssssssesssssesesesasesessenseseseseseseseeees 54

FIGURE 4. 1 I; OUTPUT FILES. 5555050 s sssninsinsasonnsnisssshunsnsessnsinserspasisnsas sovsansasmss s sravers snsassssessos sssssseses 54

List of Tables

TABLE 2.1: SAFAR PLATFORM INTEGRATED TOOLS [43]

TABLE 3.1: EXAMPLES AND RESULTS [507]. ... cucuetieieteet ettt s e e e 37

TABLE 3.2: COMPARISON BETWEEN TOOLS BEFORE AND AFTER THEIR INTEGRATION IN OUR
PEATFORME wesmosne nsssassnsisss s s siss s ss it rsnnsmassssxmesamasssones oy Sl a4 S SRR SR s 40

INTRODUCTION

1. Context and aim of the project

Natural Language Processing (NLP) has gained increasing attention during the last decade
[1]. It is widely acknowledged that the construction of a flexible platform dedicated mainly to the
NLP is highly needed. Moreover, these platforms can be merged within other frameworks in order
to produce high-level applications such as machine translation [2], text classification [3], automatic

summarization [4] and question answering [5].

Our project is part of the work related to the Arabic Natural Language Processing (ANLP)
field. The primary goal is to construct an opensource platform dedicated to the simulation of

NLP tools for the Arabic language. We aim at addressing two major tlaws:

€ Working on the Arabic language is challenging due to its morphological richness and
flexibility. Thereby, the processing of the Arabic language requires the development of
appropriate tools dedicated to ANLP. Nowadays, many tools for ANLP have been developed,
for instance: morphological analyzers, syntactic parsers, search engines, machine translation
systems, etc. Meanwhile, the development of ANLP applications requires the use of several
tools at once, each one of them dealing with a different level of language (morphology, syntax,
semantics and pragmatics). However, these lools are not always encapsulated in homogeneous
and interoperable architectures. Also, the output of one tool is not directly exploitable by
another tool. It is mainly due to the individuality of researchers work. Their main purpose is
the result and not the interoperability, the reusability and the shareability of the integrated tools.
€ Many platforms have been constructed in the field of NLP such as GATE [6], NLTK [7] and
‘OpenNLP [8]. These platforms are more or less mature for the Latin languages. Furthermore,
they cannot be easily adapted for the Arabic language. To this end, the ANLP community has
built some platforms that are dedicated mainly to the Arabic language such as MADAMIRA
[9], ATKS [10], SAFAR [11] and AraNLP [12]. However, these platforms do not contribute in

solving the problems of interoperability and reusability except for SAFAR platform, which was
developed recently and it still suffers from many problems [11].

In order to address the aforementioned limitations, we have developed a flexible platform
that gathers ANLP tools leaning on the aspects of interoperability and reusability. Our

platform guarantees:

= The reuse of the integrated tools in other tasks such as the segmenting task that was used as
preprocessor of the parsing task.

® The improvement of the result obtained from tasks like the Named Entity Recognition (NER)
by adding a new category of named entities. We have also added a backup lists in order to give

the ability to developers to integrate new named entities.

2. Structure of the thesis
The reminder of this thesis is structured into two parts.
Part one: Concepts and Generalities

This part introduces the field of ANLP and its principles. It also includes a description of the
existing platforms in both fields NLP and ANLP.

Chapter 1: The general principles of the automatic processing of the Arabic language

In this chapter, we first discuss the particularity of the Arabic language; then we present the
grammatical levels of it and the resources of the language in the NLP filed. Finally, we define some

of the main ANLP tools that are widely used by developers.
Chapter 2: Platforms and tools for automatic processing of the Arabic language

In the second chapter, we describe existing platforms of NLP and ANLP, presenting their
architectures if available, mentioning their composed modules. Then, we criticize existing
platforms in ANLP field. Based on our analysis, we propose a solution for a flexible ANLP

platform.

Part two: Study, conception and implementation
In this part, we thoroughly present our work and contributions in this part.
Chapter 3: Design of a flexible architecture for ANLP tools platform

This chapter presents the conception of our platform. We first introduce our architecture and
we describe the modules integrated in it. We also illustrate our work with examples and schemes
of each module. Finally, we provide a comparative study among the integrated tools for the aspects

of interoperability and reusability.
Chapter 4: Implementation

In this chapter, we present the development environment and the libraries used to implement
each module. Then, we describe the progress steps of processing in our platform and illustrate it

with screenshots.
Conclusion and perspectives

We synthesize the construction of our platform and integrated modules. We also offer

perspectives. A user manual is provided at the end as an appendix.

4

PART I. CONCEPTS AND

GENERALITIES

Chapter 1. The general principles
of automatic processing of the Arabic
language

1.1 Introduction

Natural Language Processing is a crucial part in the field of artificial intelligence. Its main
purpose is to make the natural language understandable to the machine. The machine can not
understand the language as a human being. However nowadays technologies allow to developers
to extract many available information from many resources using programs to build platforms and

libraries that save a lot of time and effort.

The Arabic language is one of the most used languages (nearly 422 million person).
Therefore, it is interesting and challenging because it is rich linguistically and completely different
from occidental languages, also due to the region it occupies. It splits up to classic Arabic and
modern Arabic (MSA). The modern Arabic comes from the classic Arabic and it is used in many

fields such as the press, scientific texts, political debates. .. etc.
1.2 Particularity of the Arabic language

The increasing development of the Arabic language in the field of NLP has led to the
emergence of different tools at all levels of the language (morphological, syntaxial, semantical).
The Arabic language is one of the toughest and most complex languages because of many
challenges, such as the agglutination in Arabic and dispensability of vowel diacritics. Also, the

Arabic language is written from right to left.

The Arabic alphabet contains 28 letter and all of those letters are consonants and each
consonant has a different pronunciation. Most of its letters change their form depending on its
position in the word. Contrary to the French or English languages the vowels in Arabic are not

letters; they are diacritics singes.

In Arabic language the sentence does not have a regular form like in English or in French.
For example, a verb on its own can be considered as a sentence <lizeu (I heard you). Moreover,
Arabic does not have capital letters. Many ambiguities such as Derivational ambiguity, Inflectional
ambiguity, Morphological ambiguity. Therefore, the Arabic is a rich and a complex morphological
language.

1.3 Arabic language grammar

The traditional grammar of the Arabic language includes two categories of rules, syntax and
morphology. The latter is divided into:
° Flexional morphology: which deals with variations of morpho-phonological forms
and not with variations of meaning.
e Derivational morphology: with the root-and-schema model, where the root provides
a general abstract meaning and the schema assigns the grammatical category

simultaneously with functional and semantic features
1.3.1 Morphology:

Morphology is the study, identification, analysis and description of the minimal meaning bearing
units that constitute a word. The minimal meaning bearing unit of a word is called a morpheme.
> The root: Roots are at the origin of most Arabic words; it is the basis of all forms of
verbs and certain Arabic names as it shown in Figure 1.1.
» The scheme: It is a predefined form that characterizes a class of verbs or nouns:
verbal schemas and nominal schemes. Schemes are models with different structures that

are applied to the root to create a word.

> The lemma: It can be analyzed as a root inserted into a schema. It is the intersection
between a graphic form and a meaning. The knowledge of the lemma or the couple (root,

schema) makes it possible to deduce the different inflected forms of a verb or a noun.

Generated
lemmas

Figure 1.1: Derivation of the root «<s [13].

1.3.2 Syntax

Syntax is the linguistic discipline interested in modeling how words are arranged together to
make larger sequences in a language. It describes the proper order of the words to make phrases
and sentences [14]. In Arabic, there are two types of sentences:

o Verbal sentences: It has three elements which are the verb, the subject and the object.

o Nominal sentence: It is a sentence with no verb in it (verbless sentence).
1.3.3 Semantic

Semantics is the study of the meaning of linguistic expressions [14]. It is used to study the
changes in the meaning by analyzing the linguistic structure (phonetically, morphologically,
lexically and syntactically).

The morphological richness of the Arabic language leads to more ambiguity than the other
languages such as English. As the other languages, Arabic contains the basic concepts of
synonymy, homonymy and semantic roles [14].

A first level of modeling consists of constituting classes of words (semantic categories).
These classes include words whose meaning is similar, or at least (for general classes) words that

have some common semantic properties.

1.4 Language Resources

Language Resources play a vital role in the applications of languages since they feed the

different processes of NLP systems. We can classify them into two categories:

1.4.1 Lexicons

A lexicon is a collection of information about the words of a language, about the lexical
categories to which they belong. In practice, a lexical entry can include further information about
the roles the word plays, such as feature information; for example, whether a verb is transitive,

intransitive, ditransitive, etc., what form the verb takes (e.g. present participle, or past tense, etc.).

A Monolingual lexicon
A monolingual dictionary explains the meaning of a word in the language that you are

learning,

B Multilingual Lexicons

There are two types of multilingual lexicons: Those who are interested in matching two
languages, often for a specific purpose (bilingual lexicons), and those whose more ambitious goal
is to develop a generic mechanism that allows the parallelization of information lexical for a

seemingly arbitrary number of languages.

1.4.2 Corpus

A corpus is a very large collection of text (often many billions of words) produced by real
users of the language and used to analyze how words, phrases and language are used in general. It
is used by linguists, lexicographers, social scientist, experts in NLP and in many other fields. It is
also used for generating various language databases employed in software development such as
predictive keyboards, spell check, grammar correction, text/speech understanding systems, text-to-

speech modules and many others.

A Corpus categories
Many categories of the corpus are used inn NLP field and there are some of the most used

corpora [15]:

> Monolingual corpus: It is the most frequent type of corpus. It contains texts in one
language only. The corpus is usually tagged for parts of speech and is used by a wide
range of users for various tasks from highly practical ones, e.g. checking the correct

usage of a word or looking up the most natural word combinations.

> Multilingual corpus: It contains texts in several languages, which are all translations

of the same text and are aligned in the same way as parallel corpora.

> Learner corpus: It is a corpus of texts produced by learners of a language. The
corpus is used to study the mistakes and problems that learners have when learning a

foreign language.
> Specialized: It contains texts limited to one or more subject areas, domains, topics etc.
Such corpus is used to study how the specialized language is used.

1.5 Main tools of ANLP

1.5.1 Morphological analyzers

Morphological analyzers are preprocessors for text amalysis. Many Text Analytics
applications invoke them to perform their tasks [16]. It is a group of methods that share the same
structure. The purpose of morphological analyzers is to produce and develop tools and resources
that expand the area of the Arabic word structure analysis, particularly, morphological analysis as

it shown in Figure 1.2.

P-‘:}ngﬂrd} Arablc word

SARF
Suffixes rih Stcm ‘ Prefixes
2 S)
;. ' S, - WL T e LI e
a b LBR) Wk Lede] (0] [0
ObjPro SubjPro Morphological Part of speech Root Future (will) Conj (and)

(them) {they} pattern

Figure 1.2: Example of an Arabic morphological analyzer [17].

10

A Arabic morphological analyzers
° Buckwalter Arabic Morphological Analyzer (BAMA): works on standard Arabic and
English, applied in NLP, machine translation and information retrieval [18].
e Arabic Lexeme-based Morphological Generation and Analysis (AIMORGEANA) [19].
e Xerox Arabic: morphological analysis and generation, it accepts typed Modern Standard
Arabic words and returns morphological analyses [20].
e Functional Arabic Morphology (ElixirFM) [21].

Morphological Analysis and Generation for Arabic and its Dialects (MAGEAD) performs an
on-line analysis or generation from a root+pattern+features representation. It has separate

phonological and orthographic representations [22].

1.5.2 Stemming

Stemming is the process of producing morphological variants of a root/base word. Also, it
is the process of reducing a word to its word stem that affixes to suffixes and prefixes or to the
roots of words known as a lemma. Stemming is important in natural language understanding (NLU)
and NLP. It is a part of linguistic studies in morphology, artificial intelligence, information retrieval

and extraction.

A Arabic stemmers
e Khoja Arabic stemmer [23].
e Sebawai & Al-Stem [24].
e Tashaphyne [25].

1.5.3 POS tagging

POS tagging is the process of selecting the most likely sequence of syntactic categories
for the words in a sentence. It determines grammatical characteristics of the words, such as part of

speech, grammatical number, gender, person, etc.

11

A Arabic part of speech taggers
o Arabic Part-of-speech Tagger (APT): It was developed using a combination of both
statistical and rule-based techniques. It is widely acknowledged that hybrid taggers
produce the highest accuracy rates [26].

o Stanford Log-linear Part-Of-Speech Tagger: This software is a Java implementation of
the log-linear part-of-speech taggers [27].

° Toolkit for POS tagging “AMIRA”: The POS tagging system optionally produces the
PATB standard tag set of 25 tags or uses the extended set that has 72 tags. The user has
the flexibility to request tokenized or non-tokenized POS tagged output [28].

1.5.4 Parsing

Parsing is the automatic analysis of a sentence with respect to its syntactic structure.
Given a CFG (context-free grammar) as it shown in Figure 1.3. It consists of deriving a phrase
structure tree assigned to the sentence by the grammar with ambiguous grammars. Each sentence

may have many valid parse trees.

S
|
BN
| / N / \
b DTNNP
| | | T
oc Slizeodi 8 N!NP
as s

Figure 1.3: An example of Arabic sentence parsed using Stanford parser [29].

12

B Arabic parsers

The Stanford parser: A natural language parser is a program that works out the
grammatical structure of sentences. For instance, which groups of words go together (as
"phrases") and which words are the subject or object of a verb. Probabilistic parsers use
knowledge of language gained from hand-parsed sentences to try to produce the most

likely analysis of new sentences [30].

MaltParser: It is a system for data-driven dependency parsing, which can be used to
induce a parsing model from treebank data and to parse new data using an induced model
[31].

FARASA dependency & constituency parsers: FARASA (which means “insight” in
Arabic), is a fast and accurate text processing toolkit for Arabic text. It consists of the
segmentation/tokenization module, POS tagger, Arabic text Diacritizer, and Dependency
Parser [32].

1.5.5 Tokenization

A tokenizer divides text into a sequence of tokens, which roughly correspond to "words".

It is a preprocessing step for many applications in the field of NLP. It is helpful for many

applications such as language modeling (LM) and information retrieval (IR).

A Arabic tokenizers

Pyarabic: It is a specific Arabic language library for Python. It provides basic functions to
manipulate Arabic letters and text [33].

NLTK word tokenizer [7].

Polyglot tokenizer [34].

1.6 Conclusion

In this chapter, we have first described the field of Arabic Natural Language Processing,

giving some generalities of the Arabic language. In addition, we have mentioned the particularity

of the Arabic language and its challenges in the field of ANLP. Then we have presented about the

Arabic language grammar and have defined its main areas (morphology, syntax and semantic). We

13

have mentioned the language resources needed in NLP such as corpora and lexicons. Finally, we

have reviewed some ANLP tools; for each tool we have given a definition and illustrated their

use through figures.

14

Chapter 2. Platforms and tools for
automatic processing of the Arabic
language

2.1 Introduction

Working on NLP nowadays is a big challenge especially for Arabic language. This is mainly
due to diversity of the domain tools in different levels such as developing languages, manipulated
inputs or outputs, internal and external representations of results. This leads to a lot of
complications in interoperability between these different tools and their reusability in new contexts.
The main objective is to propose a solution to standardise the whole aspects shared by the
processing tools of Arabic language. Moreover, the solution should guarantee different services
with better flexibility, and address the problematic of interoperability and reusability. The solution
combines several tools and platforms such as NLTK, OpenNLP, GATE...

2.2 NLP platforms

Various NLP tools and platforms have been proposed in the literature. The following sections

summarize the most relevant ones.

2.2.1 NLTK:

NLTK is a platform for building Python programs to work with human language data. It
provides corpora and lexical resources such as WordNet, also libraries for classification,
tokenization, stemming, tagging, parsing, and semantic reasoning [35].

It adapts linguists, engineers, students, educators and researchers [36].
NLTK ensures [37]:

Simplicity: To provide an intuitive framework along with substantial building blocks, giving users
a practical knowledge of NLP without getting bogged down in the tedious house-keeping usually

associated with processing annotated language data.

/1

Consistency: To provide a uniform framework with consistent interfaces and data structures, and

easily-guessable method names.

Extensibility: To provide a structure into which new software modules can be easily

accommodated, including alternative implementations and competing approaches to the same task.

Modularity: To provide components that can be used independently without needing to understand
the rest of the toolkit.

NLTK provides many modules such as: Parsing, tagging, Finite State Automata, Type Checking,
Type Checking and Text Classification [35].

2.2.2 GATE

General Architecture for Text Engineering is an open source java suite of tools which
provides many natural languages processing tasks. It includes a community for students, developers
and researchers.

Languages currently handled in GATE include English, Chinese, Arabic, Bulgarian,
French, German, Hindi, Italian, Cebuano, Romanian, Russian, and Danish [6]. It is stable, robust,

and scalable infrastructure for Natural Language Engineering.

GATE components are one of three types [38]:
 Language Resources (LRs) represent entities such as lexicons, corpora or
ontologies.
° Processing Resources (PRs) represent entities that are primarily algorithmic, such
as parsers, generators or ngram modellers.
e Visual Resources (VRs) represent visualization and editing components that
participate in GUIS.

A Processing Resources
GATE provides the following processing resources [38]:
e ANNIE
e The tokenizer
e The sentence splitter

e The tagger

16

o The gazetteer
e The semantic tagger
e The orthomatcher

e The coreferencer

2.2.3 OpenNLP

OpenNLP is a natural language processing toolkit based on machine learning. It offers
many NLP tasks such as language detection, tokenization, sentence segmentation ...etc. [8].
The absence of a global architecture is the major issue of the OpenNLP toolkit. In addition, the
absence of modules that handle the Arabic language [8].

OpenNLP provides many components such as: sentence detector, tokenizer, name finder,

part-of-speech tagger, chunker, parser...etc.

A OpenNLP tasks

It provides many tasks that deals with the natural language:
e Named Entity Recognition
e Summarize
e Searching
e Tagging (POS)
o Feedback Analysis

e Translation
2.3 ANLP platforms

Even that there is a lack in the field of NLP in dealing with the Arabic langnage, there are some
ANLP platforms that have been developed.

2.3.1 MADAMIRA

MADAMIRA is a java toolkit for morphological analysis and disambiguation of Arabic
and its dialects. It combines two Arabic processing systems MADA and AMIRA [9].
MADAMIRA uses machine learning algorithms to select the linguistic features. It provides seven

tasks of NLP as it shown in Figure 2.1: Tokenization, morphological disambiguation, Part-of-

Speech tagging, lemmatization, diacritization, named entity recognition and base phrase

chunking.

B MADA

PREPROCESSOR
Cleans and Preps Input Data

2

MORPHOLOGICAL ANALYSIS
Generates Analysis Lists

N\

FEATURE MODELING
Predicts Morphological Feature Valuas via Context

:: <Languaga Madels> l

3

ANALYSIS RANKING
Ranks Analysis Lists Basad on Model Predictions

i

TOKANIZATION
Usad Morphological Features to Tokenize

¥

BASE PHRASE CHUNKING
Predicts Base Phrases {Shallow Syntactic Parsing)

| <SUM Model>

v

NAMED ENTITY RECOGNIZER
Marks and gorizes Named Entities

Figure 2.1: MADAMIRA Architecture [9].

Is a system for Morphological Analysis and Disambiguation for Arabic. Given raw Arabic

text [39], MADA adds morphological and lexical information by disambiguating in one
operation. TOKAN is a general tokenizer dedicated to the Arabic. It tokenizes the MADA

disambiguated text.

C AMIRA

Is a set of tools that includes a tokenizer, a part of speech tagger (POS) and a base phrase
chunker (BPC) and a light syntactic parser [39] as it shown in Figure 2.2. Contrarily to MADA,

AMIRA tools use a unified framework that classify every constituent problem. It includes two

functionalities:

18

a. AMIRA-POS works through an SVM based classification approach using the character
n-grams as feature, the POS tag set has 72 tags [40] and it is the set of tags that the
AMIRA wuses as a first step. It provides the flexibility at the input level, either input a
raw or a tokenized text.

b. AMIRA-TOK learns clitic tokenization generalizations from the clitic segmentations
present in the Penn Arabic Treebank (PATB) [39]. It segments off many clitics such as
(conjunction proclitics +5 w+, + < £+, prepositional proclitics +&lk+, +J 1+, + b+, future
marker proclitic +u s+, verbal particle proclitic+d I+. . etc. [39].

¢. AMIRA-BPC (Base Phase Chunking) forms syntactic phrases (NP, VP or PP) and it is
appropriate for the Arabic language. It recognizes nine types of chunked phrases using
a phrase IOB tagging scheme (Inside, Outside and Beginning of the phrase) [40]. Also,
it accepts any level of pretreatment on the input text and produce BPC tags on raw input
text or the form of AMIRA-TOK consistent schemes [40].

[ALMORGEANA

MAGEAD f
{ AMIRATOK 8 AMIRA POS —E{ AMIRA BPC ll

Figure 2.2: The suite of MADA and the suite of AMIRA [40].

2.3.2 ATKS (Arabic Toolkit Service)

ATKS provides a set of APIs for basic processing of the Arabic written language. ATKS
was designed to be useful for the Arabic developer by offering many NLP APIs. It was proposed

by Microsoft; all its components are available for academic use through a web service [41].

A ATKS components
The ATKS offers reliable and quality components for Arabic NLP researchers [10]:
% Colloquial to Arabic Converter provides translation of Egyptian colloquial text

into modern standard Arabic along with rich mapping information.

19

< Diacritizer: The automatic Diacritizer component performs vowel restoration on
input Arabic text.

% Named Entity Recognizer (NER) Detects and classifies named entities for
persons, locations and organizations categories.

% Arabic Parser determines the grammatical structure of Arabic sentences. The
Parser relies heavily on the Part-of-Speech (POS) Tagger and the Named-Entity
Recognizer to identify the correct part of speech and to identify the entities.

< Part of Speech Tagger identifies the correct part of speech. It resolves the
ambiguity on both the stem and the case-ending levels.

< SARF (Morphological Analyzer) provides all possible morphological analyses
for an input Arabic word. It provides all possible morphological analyses for any given
input Arabic word.

< Speller Detects and corrects misspelled words, provides correction candidates.
Also, improves the accuracy of Arabic text processing components.

< Transliterator converts text from Romanized Arabic (Arabic written in English
characters) to native Arabic script and vice versa. A common example of that is the

transliteration of named entities.
2.3.3 SAFAR (Software Architecture for Arabic language pRocessing)

It is a Java-based framework dedicated to ANLP. It is open source, portable, modular,
extensible, flexible and offers an integrated development environment (IDE) [42] as it shown in

Figure 2.3.

20

/‘mmmmmw% ’. 1
\ e r Applications: IR, NMT, NER, ...] '

- oy

! — i

Client ! Basic Services i !
applications: 1 o '
8 l Semantic \I i { '

GDE : o >

§i 4]

Wb M . [Syntactic j g .

Web2.0 i ; if '

Nobile : l MNorphology \' i :

Soap client P R L/ e

: | 5 | 2 B

- (Resouroesservic&s: = il s

b, it i

’ M L l Rersource: lexicon, corpus,] 'J .

i =

I '

s & B 33 s e T 12 e 6 e e B W 6 A F SR e o e b e a

Figure 2.3: Architecture of SAFAR platform [42].

The utility of these layers can be summarized as follows [43]:

® The client application layer contains the applications that use the service of the other
layers.

® The applications layer contains a high-level that used the layers listed above.

® The basic service layer contains the main three regular layers for processing the language.
® The resource services layer provides the necessary resources such as corpora and lexicon.

e The tools layer includes a set of technical services.

A Tools in SAFAR platform
SAFAR platform provides many tools in one layer and the user can call any method that
suits his input text. We cite below some the main tools used in SAFAR [11] as it shown in Table
2.1;
e Stemmers:
SAFAR provides the following stemmers: ISRI, Khoja, Light10, Tashéphyne, and Motaz
stemmer.
e Morphological analyzers:
From many morphological analyzers SAFAR provides: Alkhalil, BAMA and
MADAMIRA morphological analyzer.

e Syntactic parsers:

21

SAFAR provides the most common parser: Stanford Parser.
e Applications:
Stem Counter, Sentence Processor, Morpho-Syntactic Processor, Summarizer, Moajam
Tafaoli and Moajam Moaassir.
e Utilities:
Normalization, Sentence splitter, Tokenization, Transliteration and Benchmark.
e Resources:

Particles lexicon, Al wassit dictionary, Contemporary dictionary and Ontology.

Table 2.1: SAFAR platform integrated tools [43].

SAFAR layers | Type Name of the tool

Morphological analyzers | Alkhalil, BAMA

Khoja, Light10, ISRI,
Motaz stemmer, Tashaphyne
Syntax Syntactic parsers Stanford Parser

SAFAR Normalizer,
SAFAR Sentence Splitter,
Utilities Utilities SAFAR Tokenizer,
SAFAR Transliterator,
SAFAR Benchmark
Sentence processor,

Stem counter,

Morphosyntactic processor,
Q/A application [12]

Morphology Stemmers

Applications Applications

2.3.4 AraNLP

It is a java-based toolkit for the processing of Arabic text. AraNLP brings together most
of the vital Arabic text preprocessing tools into one single library that can be accessed easily. It
includes a sentence detector, tokenizer, light stemmer, root-based stemmer, part-of-speech tagger

(POS-tagger), word segmenter, normalizer and diacritic remover [12] as it shown in Figure 2.4.

22

Those tools are developed as java classes in the AraNLP either they were existed and integrated or

developed from the scratch.

FTokenization |

-

| POS Tagger i
) i
i i

Figure 2.4: Typical processing pipeline of AraNLP [12].

A AraNLP modules
It provides the following modules [12]:

o Tokenization: the developers built a model that detects token boundaries using
MaxEnt machine learning, basing on a training corpus.

e Sentence Boundary Detection: the model was built by the developers of AraNLP
because of the lack of Arabic sentence separators.

e Stemming: AraNLP support both light stemmers and root stemmers in order to take
in all the potential.

e Word Segmentation & POS Tagging: the AraNLP links up to the Stanford Arabic
word segmenter and POS tagger.

° Arabic Normalization: it removes all the diacritics (Vowel Diacritics, Nunation

Diacritics and the Shadda) also, it removes the punctuation.

23

2.4 Criticism of the existing and problems of interoperability

The different tools and platforms that we have seen above have proven their efficiency in the
field of NLP. Except that in dealing with the Arabic language these platforms show a big lack,
aside from the platforms that are dedicated mainly to ANLP. The main purpose is to improve these
platforms in order to have tools that are interoperable and reusable to apply them on the Arabic

language.

In general, these tools do not offer an architecture for the Arabic language which makes the
integration of new tools harder. The ANLP community has not offered any platform similar to the
platforms mentioned such as GATE, OpenNLP, NLTK...etc. The same problem with tools. Till
now, ANLP community did not developed any promising tools that can solve the problem of
interoperability and reusability. This latter makes the cohabitation of tools even harder because of
the disconnection of the different developers who work in separated laboratories and using different

techniques, different platforms, different languages.

These limitations make the development of ANLP tougher but knowing the problem is half
of the solution. Leaning on these limitations ANLP community must develop proper platforms for
the Arabic language. Lately there are some platforms that have seen the light and they are looking
very promising, Many tools have been integrated in these platforms and they are dedicated to the

Arabic language.

The problem of interoperability and reusability between the tools is the main challenge that
all developers of the ANLP community must work on in order to save time and work with the tools
that are already developed. Platforms such as GATE, NLTK and OpenNLP do not show any
problem of interoperability between their tools because the tools in these platforms are

homogeneous, which makes the creation of a complex application easier.

The Arabic language is one of the challenges that the developers have faced because it is a
rich language comparing to the Latin languages. Also, these platforms do not cover the need of the

ANLP community because they do not integrate modules and resources for ANLP.

2.5 For a standard and flexible solution dedicated to ANLP

The aim of this work is to develop a platform that covers these points:

24

e Open source and multi-platform

o Flexibility

e Opening, to integrate new modules that proven their efficiency

e Extensibility, to develop new applications according to the need

e Perfect match with the nature of the Arabic language and its constraints
o Diversity at the output level (XML, HTML, CVS etc.)

The existence of a platform for the ANLP is highly needed for the standardization and to
solve the problems of reusability, of interoperability and the integration of all the tools of

development in the field.

Nowadays, we have seen some evolution in the field of ANLP with the appearance of some
platforms that provide some of the tools that are used in the platforms mentioned before and deal

with Arabic language and its complexity.
2.6 Conclusion

In this chapter, we have described some of the existing platforms such as NLTK, GATE and
the platforms that are dedicated to the Arabic language such as SAFAR, AraNLP and ATKS. We
have also represented the architecture platforms if it’s available by mentioning their components,
tools and applications. Then we have given a criticism about the existing and about the problems
of interoperability and reusability between tools. In addition, we have mentioned the limitation that
faced the ANLP community. The Arabic language is a very complex and ambiguous language as
we have mentioned above. It rises a big challenge ahead of us and ahead any developer in the field
of ANLP. Finally, we have introduced a standard and a flexible solution for a platform that will

may solved some of the ANLP community problems.

25

PART IIL. STUDY, MODELING

AND IMPLEMENTATION

26

Chapter 3. Design of a flexible
architecture for ANLP tools platform

3.1 Introduction

NLP platforms provides many functionalities in dealing with the language by integrating
the necessary tools that suits the architecture of the platform. The main goal of our work is to
build a flexible platform combining numerous ANLP tools and different resources. The proposed
platform must be interoperable and reusable in order to get a homogeneous structure, In addition,

it must deal with different types of inputs.

In order to show the difference of tools features before and after integrating them in our
platform, we have done a comparative study between the ANLP tools for the aspects:
interoperability and reusability by defining these aspects. Then, we illustrate the comparative study

with tables.

3.2 Architecture of the platform

The combination of these tools will produce high-level applications such as machine
translation, named entity recognition and sentiment analysis that will be presented in a global
architecture. The platform will be used by researchers and developers in the field of NLP and it
will be open sourced with the intention of doing more improvements on the platform. Figure 3.1
shows the global architecture of the AAAL platform.

P 114z cUr

2,

27

(g

=

[Slemmlnq {POS mgglq [Pm‘singj [;’xepmressin;}

NER f Numbers Vocalisatio
= l functions functious

)

sy — s I
]
; v = ——
1 -y Segmenting e Tokenization
Vo module || module
’ !
S
\ 4 4' y l 1 4
.. POS tagging : ‘?Parshig » .. Stemming ..-Q-,NER A .. vocatisation
- module © module - modute © modute || - module
|
l 5 v 7
Figure 3.1: Global architecture of the AAAL platform.
3.2.2 Inputs

Our platform deals with several types of resources and gives many choices to users and

developers to process different types of files with no need to convert the files each time. It
processes Txt files, HTML (HyperText Markup Language) files, XML (Extensible Markup

Language) files. In addition, it allows processing input text manually set by the end user. It also

provides advanced tools available only when processing input files.

28

3.2.3 Tools

A Preprocessing

It is the first step for many applications. Our platform provides the following

preprocessing modules:

Tokenization module is the process that identifies the text boundaries of words and
sentences. We have used Polyglot tokenizer [34] that basically splits the input text into
sentences or words. It also gives the morphemes of one only word as an input. 7%e
advantage of our platform is that the user is able to get list of morphemes from not only
one word but any type of resource mentioned above. Therefore, we have reused the tool of
Polyglot tokenizer in combination with Polyglot morphology (word morphemes).

Stop words removal is the process that verify and remove the useless words in the text.
We have used the NLTK Arabic bag of words (Arabic stop words). In addition, our
platform allows developers to add new stop words in case of their absence in NLTK.
Segmentation module: Due to their complexity, many languages such as Arabic and
Chinese require another preprocessing tool including tokenization. The segmentation

process is based on splitting the text into meaningful units.

In our platform, we have used the Stanford Segmenter [44] which segments clitics from

words (only). Segmenting clitics attached to words reduces lexical sparsity and simplifies

syntactic analysis. However, the ordinary Stanford Arabic segmenter processes stop words and

NER that are not listed in its corpus. This latter problem deteriorates the result and can negatively

affect the upcoming processing blocks. In order to address this shortcoming, we have combined

Name entity Recognition (NER) from Polyglot and stop words from NLTK. Our combination

improves the performance of the ordinary segmenter as indicated in the following examples. The

main steps are shown in Figure 3.2.

Pl Lagsh o S L) LS Uity oy il Aipa

Before After

@Ehd‘héhﬁa%}uuﬂhﬂhé el CilS b ol S Witk o gadl a.u".\aéﬂ
A Lo s A L

Lellany B oguia (o 9 pllaily Lagah (il Adsna o o

dlex 5 spaia b 5, pllail Loy (pail Aiyae i s oseie (o0 5. pblail o Lo Gail Alae el
la b Jles

{ NER ||
|backup lists| |

|NLTK Aradic|

Output

Figure 3.2: Process of segmenting module.

29

30

B Stemming

In our platform, we have used Tashaphyne Arabic light stemmer that proved a
configurable stemmer for Arabic text. It offers many functionalities and features from which we
have chosen [45]:

e [Extracting roots.

e Extracting stem.

e Star word (getting the rest of word except its root).
e Affixes (getting the rest of word except its stem).

The results of stemming show a lack in dealing with entity named, vocalized texts and
stop words. To cope with this shortcoming, we have introduced a preprocessing step to the
stemmer which combines Polyglot NER, PyArabic strip vocalization and NLTK bag of stop
words. This process begins with strip vocalization of the input text. Then by stemming all the
words except the entity named and the stop words to get the best results from the stemmer as

indicated by the following the example. The main steps are shown in Figure 3.3.

Milih a8l (g aaiBS (A LS 9T A8k upaally g) 3 o6

Before After

Aol add,dpul ,Jd £ 5 DI i i B8 Lyl iy By i
lailid Cagin A

31

Input

.| |NLTK Arabic|
stop words list
Ouitput

Figure 3.3: Process of stemming module.

C Pos tagging module

A Part-Of-Speech Tagger is a piece of software that reads text and assigns parts of speech
to each token, such as noun, verb, adjective, etc. However, computational applications generally
use more fine-grained POS tags like 'noun-plural’.

In our platform, we have used the Stanford Arabic POS tagger [27] because it provides
a set of tags for many languages including the Arabic language. In addition, it is open source and
available to be used in different programming languages.

After using the Stanford Arabic POS tagger, we have noticed that it does not process the
related pronounces to Arabic word which is solved by segmentation. In order to avoid the use of
the Stanford Arabic Segmenter then the Stanford Arabic POS tagger, we have managed to use
the Stanford Arabic Segmenter as preprocessing step of the Stanford Arabic POS tagger which

has improved result of the tagging, as shown in Figure 3.4.

32

It is worth noting that the set of tags is defined in English (JJ for adjective, VBD for verb

in past tense). In our platform we have been able to define the set of tags in Arabic (J]: 44a,
VBD: u=le J=4), Furthermore, our platform offers access to developers to the set of tags and the

ability to set them as shown in the following example.

Laaladl i Jadly a83 A 5 it Alisa 8L 5 codd

BEFORE

<wd/VBD
305NN
4ua/NN
JY/DTNNP
>3/PRP
&3/VBP
2y DTNNP

iwalll/DTNN

After

ke Jab il

Judlia s 10

A ha ol 34)

ke pad ALe

ple a3 jie puad | o pud ;L)
Jualia pada ;g

uilall of cubliall paa ;0
Qi el 3 g2y pidala Jed S
Jaia e

ple a3 pud | o ad 1 il 3l

ke a3 pued dasalell

33

Input
j L
lS anfordAmbtc
 segmenter
|
| Stansford
s bt QTG . o
 Arabic POS | S
o tagTer | in Arabic
Output
Figure 3.4: Process of POS tagging module.
D Parsing module

Parsing of Arabic sentences is a necessary process for many NLP applications such as
machine translation [2], question answering [46] and information retrieval [47]. The Stanford
Arabic parser [30] is one of the best parsers used in the field of NLP as it has proved efficiency
and flexibility. For these characteristics we have chosen to use it in our platform. Arabic parsers
are based on the Penn Arabic Treebank (PATB).

In order to improve the results of Stanford Arabic parser, we have introduced the
Stanford Arabic segmenter as preprocessor like we did before with the Stanford Arabic POS

tagger as shown in Figure 3.5. The following example illustrates the results of our parser.

Lellany B pgedin (0 . alalail Lag (aid Adyaa U o

Before After
(ROOT (ROOT
(S (S
(VP (VP
(VBP i) (VBP was5)
(NP (NN 4i24) (NP (NNP 021))) (NP (NN 2324) (NP (NNP ¢2il)))
(NP (NN Loz (JJ pllaily))y) (NP (NN Lez38) (JJ plaily)))))
(ROOT (ROOT
(S (S
(NP (PRP) (CC
(NP (JJ &y 5680)) (NP (PRP »))
(NP (NN Lelesy)) (NP (J7 5 se-dia))

(PP (IN)

(NP (NN Jws=) (NP (PRPS 1))

34

35

N

Input

!

Stanford Arabic
segmenter

Il
<~/
N
Stansfbrd ‘
Arabic parser

Qutput Parse trees

Figure 3.5: Process of parsing module.

3.2.4 Applications

A Named entity recognition module
The Polyglot NER is a task that aims to extract from plain text phrases that correspond to
entities. It currently supports 40 languages including the Arabic language. It recognizes three
categories of entities [48]:
e Locations (cities, countries, regions, continents, neighborhoods, administrative divisions
o)
e Organizations (sports teams, newspapers, banks, universities, schools, non-profits,
companies, ...).
e Persons (politicians, scientists, artists, athletes ...).
We have integrated the Polyglot NER in our platform by adding a preprocessing step
represented in text tokenization (Polyglot tokenizer) to split the text into sentences then into

words as shown in Figure 3.6. In case Polyglot NER fails to recognize entities, we have

36

incorporated a mechanism which uses a backup lists, allowing developers to add a new entry in
the named entities record as it is shown in Figure 3.6. In addition, we have provided developers
with the ability to add new categories of named entities. For instance, we have created a new
category called Money (428l =Seall) which contains money units as indicates in the example.
b il 13n A oy Aaalal) il ol i a9 g5 dlaa (R84 810 JAda o al) S ol oy
L g ad yal) g jLisall Jia 40083 @Dlanlf

Before After

I-ORG [1(3_.\‘)1_“; '@Ji.“‘ "d&g’] -LOC I-ORG ['g-,l).dl' a‘E‘-"B‘“‘ ,'eﬁg'] I-LOC [el
['a..u_::\.d\' 'JIIIJ-L“'] aML:.“"] I-LOC ['EJ:_):L\'] I-MONEY ['JLL\..J.“']
I-MONEY ['p8 ,all]

N

Input

!

Polyvglor
fokerizer

................................

J’VER ‘
: baefcap lists

b ™

Money
| _category |

Ouiput

Figure 3.6: Process of NER module.

37

B Number functions
The number.py is a software library that combines the characteristics and functions
required by the programmer to deal with Arabic texts. It provides many functionalities such as
[49]:
e Convert number to words.
e Convert words into numbers.
e Extract numerical expressions.
e Extract numerical expressions with their context.
We have used this library in our platform to manipulate Arabic letters and numbers, and

to provide the user with an additional feature to analyze texts.

C Sentence and Word splitter

The purpose of this module is to identify the boundaries of sentences first, and then tokenize
each sentence to identify the words that compose it. In order to achieve this task, we have used the
Polyglot tokenizer. It is worth noting that our platform offers various preprocessing tools which

are required for many tasks in NLP. We can cite NER.

D Vocalisation module

We have integrated the Shakkala project in our platform that use recurrent neural
network for Arabic text vocalization. This tool can be used in many applications such as enhance
text-to-speech systems or search results. The accuracy of this version has reached almost 95%

and more in some cases. Table 3.1 shows an example of this module [50].

Table 3.1: Examples and results [50].

Real output Predicted output
311383 JBN 4uils Ly EN P AETH 31130 JAY 4t Loy) ETCEP VT

YAl aaml Bha A il b gl Lad Bl ot 0B (Y AT A B (A Gl 0 L8 Lad 213y 5 sl)18

S 556 Al SR 25 gl

38

We have applied the PyArabic function “reduce Tashkeel” to get the text mid-vocalizer
as shown in Figure 3.7. Furthermore, we have added the strip vocalization and normalize
Hamza functions from PyArabic to enrich our platform and to reuse these functions in other

tools.

N e EEE,
Input ﬂi Shakkala \:\/ Ay red"ce\t:‘._—“_\> Ountput

N fashkeel /

Figure 3.7: Process of the mid-vocalization.

3.3 Interoperability & reusability between tools

3.3.1 Interoperability between tools

It is challenging to integrate some existed tools in building new applications and platforms,
Moreover, it is difficult to use the output of a tool as an input of another tool. This is owing to their
differences at the inputs/outputs level and architecture. Some tools are standalone tools that process
only one task for example a syntactic parser relies separately on tokenizer and POS tagger. The

combination of these tools into platforms cannot be done easily.

Once the tool is integrated into a processing framework. It becomes a component that adapts
with the framework. The framework specifies the resource and the processing models allowing
interoperability between components; hence, getting homogeneous components in their
architecture. The ANLP community deals with the same challenge of interoperability. This is
mainly due to the lack of mature and flexible platforms such GATE, OpenNLP and NLTK and the

lack of Arabic processing components within these platforms.

3.3.2 Reusability between tools

The availability of NLP tools and linguistic resources has led to the development of reusable
and shareable tools. Most of the tools were built depending on the necessity of applications or
platforms that reduce their reusability. One of the solutions is to standardize the input/output (XML

or lately JSON) of the tool that will be integrated into the platform architecture.

39

Due to the diversity of Arabic tools that have been developed lately, the choice of a reusable
tool became much easier than before. This is due to the diversity of programming languages that

have been used; for instance, Python and Java.

3.3.3 Comparison between AAAL platform tools

Now that we have presented the modules used in the AAAL platform, we address hereafter
the comparative study of the modules before and after their integration in our platform. This study

is presented in Table 3.2.

t Segnlenﬁng

Module

Parsing
module

module

POS
tagging
module

Stemming
module

T akeniiing |
module

Table 3.2: Comparison between tools before and after their integration in our platform.

i

i

|

Reusable
. Before After |
v v
- e

Interoperable !

Before | After
v v
v v
v v
.- "3

“only
with

python

. éﬁly
with

python

‘onl‘y =

with
python

“only
with
python

blnputs
. After

Before |

Txt

files

Txt
files

.-
files

Txt

oy

|

and XML
files

and XML
files

and XML
files

Txt, HTML =~

and XML
files

and XML
files

{

" Txt, HTML |

Txt, HTML |

Outputs
Before | After |
“Txt | Txtand |
JSON files
Parse trees
Txt | Txtand
JSON files
Txt = Txtand |
JSON files |
Txt | Txtand
JSON files
Txt Txtand
JSON files |

‘Before |

NLTK

functions

NLTK

' NLTK functions

i
|

i

functions |

'NLTK
functions

. PyAurabic strip vocalization

40

Prerequisites

After

Stanford Arabic segmenter

NLTK functions
NER backup lists

'NLTK functions

Stanford Arabic segmenter
Arabic set of tags

Polyglot NER corpus
NLTK Arabic stop words list

41

Table 3.2 presents the tools used in our platform before the integration. It shows that the
inputs and the outputs of each tool were only Txt files or written text. The process of other types
of inputs such as XML and HTML files is not available within these tools. In addition, the outputs
are only written texts which leads to reusability issues when we need to reuse a tool as a
preprocessor of an application or another tool. The reusability of Tashaphyne stemmer and Polyglot
tokenizer depend on using Python programming language. The Stanford Arabic tools (parser,

segmenter and POS tagger) require NLTK functions in order to process Arabic language texts.

Table 3.2 also presents the modules used in our platform. We notice the variety of the inputs
in our modules (Txt, HTML and XML files), which guarantees the process of a large type of files.
We also notice the variety at the output level of each module (Txt, JSON files and parse trees an
additional output of Parsing module) which leads to get reusable and shareable modules that can
be used in other applications, projects and preprocessors of other tools. In addition, the Parsing,
Segmenting module, POS tagging and stemming modules require preprocessing tools, lists and
corpora in order to improve the results obtained. These combinations yield interoperable tools that

will be the foundation for building a flexible platform.
3.4 Conclusion

In this chapter, we have described our platform where the purpose is to build a platform
that gathers ANLP tools in a homogeneous architecture. In addition, we have presented a

comparative study between ANLP tools.

The conception of our platform has also been described in this chapter. This conception will

be put in function in the next chapter.

42

Chapter 4. Implementation

4.1 Introduction

In this chapter, we present the implementation of the AAAL platform. First, we begin with
presenting the development environment and describing the used programming language. Then we
describe the main functionalities of our platform, providing the primary steps of text analysis and

mentioning the used libraries.
4.2 Development environment

We have used Python programming language along with PyCharm Integrated Development

Environment.

4.2.1 Python

Python is an interpreted, object-oriented programming language. It is an easy to learn,
powerful programming language. It has efficient high-level data structures and a simple but

effective approach to object-oriented programming.

It was created by Guido van Rossum in the late 1980s as a successor to the ABC language.
Python 2.0 released in 2000, introduced features like list comprehensions and a garbage collection
system capable of collecting reference cycles. Python 3.0 released in 2008, was a major revision
of the language that is not completely backward-compatible, and much Python 2 code does not run
unmodified on Python 3.

Python’s elegant syntax and dynamic typing, together with its interpreted nature, make it an
ideal language for scripting and rapid application development in many areas on most platforms.
It is commonly used in artificial intelligence projects with the help of libraries like TensorFlow,
Keras and Scikit-learn. As a scripting language with modular architecture, simple syntax and rich

text processing tools, Python is often used for natural language processing.

43

4.2.2 PyCharm

PyCharm is an Integrated Development Environment (IDE) used for programming in
Python. It provides code analysis, a graphical debugger, an integrated unit tester, integration with
version control systems (VCSes), and supports web development with Django. It is developed by

the Czech company JetBrains.

PyCharm is cross-platform working on Windows, Mac OS X and Linux. PyCharm has a
Professional Edition and a Community Edition. It integrates with IPython Notebook, has an
interactive Python console, and supports Anaconda as well as multiple scientific packages
including matplotlib and NumPy.

It has many features such as:

e Coding Assistance and Analysis, with code completion, syntax and error highlighting,

linter integration, and quick fixes.

e Project and Code Navigation: specialized project views, file structure views and quick

Jumping between files, classes, methods and usages.
e Integrated Unit Testing, with line-by-line coverage.

e Version Control Integration: unified user interface for Mercurial, Git, Subversion,

Perforce and CVS with changelists and merge.

4.3 Description of AAAL platform

Our platform was developed with Python 3.6 using the environment PyCharm that allows to
use different Application Programming Interfaces (API) from several programing languages

such as Java. We have used many functions supplied by different libraries:

» Tokenization
o Polyglot [48]
o PyICU [51]

o PyCLD2 [52]

Segmenting

o NLTK [7]

o StanfordSegmenter.jar [44]
Stemming

o PyArabic [33]

o Setuptools [53]
POS tagging

o StanfordPOStagger jar [27]
Parsing

o StanfordParser.jar [30]
Named Entity Recognizing

o Polyglot [48]
Numbers functions

o PyArabic [33]
Vocalisation functions

o Tensorflow [54]

o Keras [55]

o Shakkala [50]

o PyArabic [48]

4.4 Flow

44

In this section, we present the different stages of the process of the AAAL platform, from the

input until the output, going through the processing steps.

First, we start with the Main window of the platform that offers two modes:

< Simple mode that allows users to enter a text written in the text box provided in the

interface of the platform in order to process it as it is shown in Figure 4.1.

45

% Advanced mode that allows users to import files in different formats such as Txt, HTML

and XML as it is shown in Figure 4.2.

The Algerian Academy Of the Arabic Language

Please enter your text:

AAAL €&

: aixdlas sl yosll JBB5| (s

|
le pro-processing syt st

Process Text youll axllas

| @ Detais e | O@ Print

Figure 4.1:

Main window in simple mode.

46

AAAL &

The Algerian Academy Of the Arabic Language

&% Get File

pre-processing &gV lspdi

Process Text youll axlize @, petais wm" O Print

|
|

| 51 SIMPLE

Figure 4.2: Main window in advanced mode.

4.4.2 Processing modules

Our platform offers the possibility of processing texts such as Segmentation and Parsing, as

well as the display of treated texts.

The processing modules implemented in the AAAL platform are:

A Preprocessing modules

It splits up into two modules:

Tokenization module

It plays a fundamental role in our platform as a pre-processor of other modules such as the

NER module and the Stemming module. It guarantees more efficient results for the tokenization

module and for the modules depend on it.

It provides 4 tasks that are shown in Figure 4.3:
e Word token.

e Sentence token.

47

e Morphemes.

e Stop words removal.

AAAL &

The Algerian Academy Of the Arabic Language

Please enter youir text: ¢ dixles 3l0ll gaill Js| ooy
" P lossd Lo CulS Uil 1S itk usd Auto gii l

|
|
| |

‘, A SO e word token sentence token morphemes Removing Stop-Words
7 preprocesshigdiall bl Bl ich ot D ool et 2 il sl @ a1 oSl £

Process Text yoall dxllso .Q Detats L 1 Print

L L T ——

™ oldacl! ™ Mload' ! 3 eSS il foaalt auaot faas']

Extracting Tokens

[Sentence("Lilluyw v dua gai."), Sentence("ol) " 1osad (o culf Ll S ™))

| ?EADVME
v ! i

Figure 4.3: Tokenization module.
Segmentation module
It is a crucial task in our platform. It is a preprocessor of POS tagging module and Parsing

module. From the Stanford Arabic segmenter, we have developed our module which provides

better results using the preprocessors. It is shown in Figure 4.4.

48

AAAL &

The Algerian Academy Of the Arabic Language

Please enter your text: : aizelas Slyoll yadl Jlss] o

" Al " Lash i Gl Lpaf 1S by 02 Autn g

| S e Steip-Vocatsation ExCept HER EXCUpt STop-Words
| 7 pUSTpsiid: Segmentation Ll slol cliicwt B GlalSil clitiu

Process Text uodl asdlas | & petmis it & Print

" AU " w8 s Sl 1wl le o L Lol o cadd R0 s 245

Figure 4.4: Segmentation module.
B Stemming module

It was built from the Tashaphyne stemmer. We have improved the results of the stemmer by
using several preprocessors, which has led to the improvement of the obtained results.
It provides the following tasks which are given in Figure 4.5:

e Extract root.
e Extract stem.
e (et star word.

e Get affixes.

49

3 anal) -
The Algerian Academy Of the Arabic Language
Please enter your text: : axdles shall ol Ja] sy
TULO Cigis 09 B D § BRSNS LS S s yusswlis g, UM p16
i
|
|
|
e) Extrac fook Extract Stem Get Star Word Get Affixes
= A woms“ml'“m 8 il oMol Edxll yoliaiwl & Qazuioll Aolsl Qla)l.mlg S SlalSIl o yiuwl
Strip-Vocalisation Except HER Except Stop-Words
. Sl g3 = pdall pleswd ebdiwl T 8211 ClalS el =
Tomes er ol . Qe O Print
A mmmmesesesssensne oo EXPACNG WOTGS SHEMS ~e-e-m e en e n e
2 |
o'y |
sy !
o] !
a8y
LSy
wd
wasils | i
s [1 3
s i gmvmn‘ !
Figure 4.5: Stemming module.
C POS tagging module

It is the task that links the morphological level to the syntactic level. We have developed the
module starting from the Stanford Arabic POS tagger that we have improved. It also offers a set of
Arabic tags that are shown in Figure 4.6.

AAAL &

The Algerian Academy Of the Arabic Language

Please enter your text: : aizdlas 3ol yoaull Jra] oo
| Qouolalt Jlsall g oy jlulll Auls 6yl Cod

|
|
{
1

|
i
|
|

Strip-Vocalisati word tok: o
L R R I i
i : i ‘
Process Text yaal] daxllae i & bembs e O Print

[POS Tagging f

l | wogain polo Jab 1cand

1 WJain yuns

1 eayke pl 185Uy

1 syas pod tauae

SN E-37 5000 YT S0 SO B A |

i WTA‘ is

| wdlil) gl claleal) yona toa -
| eh0 penl sear Sole Job gl

| deze o 1 &%, ADVANCED
¥ ple sl 2340 pd oy o 3zl

Figure 4.6: POS tagging module.

D Parsing module

This module represents the results as Txt and JSON files, also as a parse tree that reflects the
syntax of the input. The results obtained by the Parsing module are more precise owing to the use
of the Stanford Arabic segmenter as preprocessor. In addition, we have added other tasks such as
“Strip-Vocalisation” and “Word token” as it is shown in Figure 4.7.

51

AAAL &

The Algerian Academy Of the Arabic Language

@ e ' - o
Please enter your text: | File Zooen 2
R o Eloal DL I P e S e B ROO "
!ww: Hoal 885 D8 bl Auss 6yl uod i
Y
? clc 5
= .=
vio op e vib Pp
e W NP AN NP
| o | SN
e . e NN He - B Wp
‘ Nu/\ﬁp nn‘mp DT‘NH
y . y =
i L Stip-Vocalisation waord token morphology &
v I Pa gy .
e f"‘y_A'i"g Sl g5 Gl oM aalS pluwst ,‘_ D]jnu Ig _“
: iy
v
Process Text gaull dxllas '@ pews s, 05 Print
PR
(PP
(

f
‘ {VBD cnt)
™)
I (HP (HN 8,03) (HP (NN o) (HP (DTHN L 1))
CCs)

(VBP gas)
(PP (TN <) (NP (NP (DTNNP Jii=l)) (HP (DTHN aaolali})))))))

]

{

: |
(HP {FRP s}

VP l

‘ & ADVANCED

Figure 4.7: Parsing module.
E NER module

The NER module is for the purpose of extracting named entities from predefined categories
in Polyglot NER (location, person and organization). The integration of the new category
“Money” enriches the NER module, which also improves the results of the modules that requires
NER in our platform. The backup lists that we have integrated also enhance the results of the NER

module. The results of these improvements are shown in Figure 4.8.

52

AAAL

The Algerian Academy Of the Arabic Language

Please enter your tesxt: ¢ aixllas shyall paill Ja] oo

12,189 A2;41 3 Sl Jio Auadl Clloall ULt CLll 138 w09 o Aowslall sl viss 1595 Ao LADs,Aigi sk o1 whayall pulil vlo iy

_ Strip-Vocalsation word token . morphology

i el EaRy Re i R] 1 e ol ol 7Rt plansi

Process Text ol asdise

@), petals L

Hamed Entity Recog

8,83 ol jall § jloall Fo soadidl wilanll dalas L) i (o8 pos ,Rosolall yiliadl wpd 1595 Ruis (BL&E5,L Join wall palsl ol gis
FORG ['eoyall' oteell' fal]

FLOC [anolall’ =11

-LOC [ainiyt']

-MONEY [l

F-MONEY [Yas,ail']

O Print

Figure 4.8: NER module.

F Numbers functions

In order to increase the diversity of the modules used in our platform, we have integrated the

shown in Figure 4.9.

Numbers functions that offers many tasks. The execution of these tasks in the AAAL platform is

53

AAAL &

The Algerian Academy Of the Arabic Language

C:/Users/PC/Desktop/eg.txt € Get File {

.V""""’ T ~ ""‘,".“ Convert Number to Words Convert text to number
Lo Bninnncn iy B 3 oN i s B 1l (s Aol Jogos
[] Extract number words with context = Extract number words
:‘ Lpdtuw go Aasall Chball Golsuaw) Quvaa)l whball ozt S
| Process Text yaill axllas '@ pemb | @6 Print
PRE— Extract B e e —
--------------------------- Extract Numbers Text =-sse-ss-sesomeescmmenaeeaeee.

['yatic B sy ey SV it 21

55 SMpLE

[(185" ' yiee @36" "y iils") (yliss’ oyt @Ay @bz '] i

Figure 4.9: Numbers functions.
G Vocalisation module

It is one of the most interesting and challenging tasks in the ANLP field. We have integrated
“Shakkala” project in our platform, which is a deep learning Arabic text vocalization. In addition
to other tasks such as Normalise_Hamza, Text Mid-vocalisation and strip vocalisation that are

shown in Figure 4.10.

54

AAAL &2

The Algerian Academy Of the Arabic Language

Please enter your text: : aixlino Sholl gadl Js| (oo

{10,489 A, 01 5 Ul o &rskall bl Il Ll 155 0 o, Roalih Al 8 145 Quts By, Rigisks S s vyl pulsl oLy s

e T e Text Vocalisation Text Mid-Vocalisation
|7, Vocalisation functions .St wailos| B 0,00 By S JuS i
- = \ Strip Vi fisation Normalize_Hamza
{ | JaSaiasll @5 650001 Lo R ——
Process Text yaul axilao | @ pewais uyai | (12 Print

| NB: Enter at most 315 character on vocalisation fonctions

Text

(a.25 BT 5 3 (o 22250 <G IS 1 155 oo 5 e 501 35 3565 B0 ot il U545 Sl AL

‘ ---------------------------------- Text Semi-vocallsation ~---------=---- o sy

v

Figure 4.10: Vocalisation module.

4.5 Outputs:

The AAAL platform provides a text box for processing results. In addition, it outputs files into two
formats: Txt and JSON files that will be stored in the user's computer as it shown in Figure 4.11.

The files will be stored only when the user checks the print box.

tPC » Disquelocal (D) » PycharmProjects » test-project-betad » output

~ (&) Photo Print
Mom Moadifie le Type Taille

|| Extracting Morphemes

P Fichier ISON

WG

- o
thocument

Extracting Morphemes

/i Removing Stop Words By Fichier JSON
=l Removing Stop Words Pr

ooy U obh
L

§ A W

i
A

i Document texte
1

] Word Sentences Fichier 150N

1

] Word Sentences 2
Word Tokens 274
=] Word Tokens 2

Document texte

Figure 4.11: Output files.

o W W

iy a3 5 3Ll Jap Basll 2 Mamll U510 Lol 138 (08 g nslall ilioell iy Song5 Btsam a5 3Ly Joan Enysll Fialocl oLy B3 ’ AT, ADVANCED |

39

4.6 Conclusion

Throughout this chapter, we have presented the development environment as well as the
programming language used in the developing of the platform. We have also mentioned the

different libraries used in each module.

Our platform role is to process several integrated modules on different types of input files.
These modules were presented in a Graphical User Interface (GUI). We have described the

processing steps of the AAAL platform and we have illustrated them with screenshots.

56

CONCLUSION

Through our project, we have developed a platform, named AAAL, that amalgamate various
ANLP tools. Most importantly, our platform ensures the interoperability and the reusability of these

tools. We summarize below our main contributions:

v" We have proposed a homogeneous and interoperable architecture that represents the used
modules.

v" We have improved the results of each module integrated in our platform by adding
preprocessors and new entities in modules such as the Parsing, POS tagging and NER modules.

v" We have also varied the inputs, which guarantees the diversity of resources (Txt, HTML, XML

files) processed in our platform.

Limits and future work

One of the limitations of all the tools developed in the field of ANLP is that they are still
premature due to the challenges that the developers face up in dealing with the Arabic language.
Moreover, the integration of more tools and applications in our platform such as Lemmatizer, Spell

checker and automatic summarizer, increases the variety of the integrated modules.

One appealing work direction consists of presenting the developed platform in a Web
interface rather than a desktop application; this is due to the lack of time but it is a work that remains

to be done.

Working on this project taught us that the field of NLP is a crucial part in developing many
applications such as Automatic Translation, Named Entity Recognition and Discourse Analysis, in
many computing science fields such as Artificial Intelligence. In case of the Arabic language, it
puts a challenge ahead of every developer working in the ANLP field owing to its morphological

richness, the agglutination and dispensability of vowel diacritics.

[1]

[2]

[3]

[4]

[5]

[6]

57

REFERENCES

C.Ronan, W. Jason , B. Léon, K. Michael , K. Koray and K. Pavel , "Natural language
processing (almost) from scratch," Journal of machine learning research, vol. 12, pp.
2493-2537, 2011.

P. Kishore , S. Roukos, W. Todd and Z. Wei-Jing , "BLEU: a method for automatic
evaluation of machine translation," In Proceedings of the 40th annual meeting on

association for computational linguistics, pp. 311-318, 2002,

Z. Xiang , Z. Junbo and L. Yann , "haracter-level convolutional networks for text
classification," In Advances in neural information processing systems, pp. 649-657,
2015.

N. Ani and M. Kathleen , "Automatic summarization," Foundations and Trends® in
Information Retrieval, vol. 5, pp. 103-233, 2011,

H. Abdelnasser, M. Ragab, R. Mohamed, A. Mohamed, B. Farouk, N. El-Makky and
M. & Torki, "Al-Bayan: an Arabic question answering system for the Holy Quran," In
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing
(ANLP), pp. 57-64, 2014,

"GATE," The University of Sheffield, 1995. [Online]. Available: https://gate.ac.uk/.
[Accessed 7 March 2019].

58

[7] "NLTK3.4.3 documentation," [Online]. Available:
https://www nltk.org/api/nltk.tokenize.html. [Accessed 06 Juin
2019].

[8] "OpenNLP Tutorial," Tutorials Point India Private Limited, [Online]. Available:
https://www tutorialspoint.com/opennlp/. [Accessed 9 March 2019].

[9] A. Pasha, M. Al-Badrashiny, M. Diab, A. El Kholy, R. Eskander, N. Habash, M.
Pooleery, O. Rambow and R. Roth, "MADAMIRA: A Fast, Comprehensive Tool for
Morphological Analysis and Disambiguation of Arabic," LERC, vol. 14, pp. 1094-
1101, May 2014.

[10] "ATKS," "Arabic Nlp Toolkit Service (Atks), [Online]. Available:
https://www.microsoft.com/en-us/research/project/arabic-toolkit-service-atks/.
[Accessed 10 May 2019].

[11] K. Bouzoubaa, "SAFAR," 2013. [Online]. Available:
http://arabic.emi.ac.ma/safar/?q=node/13. [Accessed 13 May 2019].

[12] M. Althobaiti, U. Kruschwitz and M. & Poesio, "AraNLP: A Java-based library for the
processing of Arabic text," 2014.

[13]1M. A. B. MOHAMED, S. ZRIGUI, A. ZOUAGHI and M. Zrigui., "N-scheme model:
An approach towards reducing Arabic language sparseness," 5th International
Conference on Information & Communication Technology and Accessibility (ICTA),
pp. 1-5, 2015.

[14] N. Y. Habash, Introduction to Arabic natural language processing, Synthesis Lectures
on Human Language Technologies, 2010.

59

[15] "Corpus types," SKETCH ENGINE, [Online]. Available:
https://www.sketchengine.eu/corpora-and-languages/corpus-types/. [Accessed
07 Juin 2019].

[16] SAWALHA and M. S. Salem, "Open-source resources and standards for Arabic word
structure analysis: Fine grained morphological analysis of Arabic text corpora,”
University of Leeds, 2011.

[17] E. Kamal, "Microsoft," [Online]. Available: https://www.microsoft.com/en-

us/research/project/sarf-morphological-analyzer/. [Accessed 05 Juin 2019].

[18] T. Buckwalter, "Linguistic Data Consortium," University of Pennsylvania, 15
December 2004. [Online]. Available: https://catalog.ldc.upenn.edu/LDC2004102.
[Accessed 05 Juin 2019].

[19] N. Habash, "ALMORGEANA - Arabic Lexeme-based Morphological
Generation/Analysis," Colombia University, 2005. [Online]. Available:
https://clipdemos.umiacs.umd.edu/ALMORGEANA/. [Accessed 05 Juin 2019].

[20] K. R. Beesley, "Xerox Arabic Home Page," [Online]. Available:
file:///C:/Users/ASUS/Downloads/home.html. [Accessed 05 Juin 2019].

[21] O. Smrz, V. Bielicky and T. Buckwalter, "ElixirFM Online Interface," 2002. [Online].
Available: http://quest.ms.mff. cuni.cz/cgi-bin/elixir/index.fcgi. [Accessed 06 Juin
2019].

[22] N. Habash and O. Rambow, "MAGEAD: a morphological analyzer and generator for
the Arabic dialects," Proceedings of the 2lst International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, pp. 681-688, 2006.

60

[23]M. N. Al-Kabi, "Towards improving Khoja rule-based Arabic stemmer," Jordan
Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
pp. 1-6, 2013.

[24] k. darwish, "Software," [Online]. Available:
https://tides.umiacs.umd.edu/software html. [Accessed 06 Juin 2019].

[25] T. Zerrouki, "Pypi," 2012. [Online]. Available: https://pypi.org/project/Tashaphyne/.
[Accessed 06 Juin 2019].

[26] S. Khoja, "APT: Arabic part-of-speech tagger," Proceedings of the Student Workshop
at NAACL, pp. 20-25, 2001.

[27] K. Toutanova, C. Manning and D. K. a. Y. Singer, "The Stanford Natural Language
Processing Group," 2003. [Online]. Available:
https://nlp.stanford.edu/software/tagger.shtml. [Accessed 06 Juin 2019].

[28] M. Diab, "Second generation AMIRA tools for Arabic processing: Fast and robust
tokenization, POS tagging, and base phrase chunking," 2nd International Conference
on Arabic Language Resources and Tools, vol. 198, p. 110, 2009.

[29] R. MOHAMED, N. M. EL-MAKKY and K. and NAGI, "ArabRelat: Arabic Relation
Extraction using Distant Supervision," KEOD, pp. 410-417, 2015.

[30] "The Stanford Natural Language Processing Group," [Online]. Available:
https://nlp.stanford.edu/software/lex-parser.html. [Accessed 06 Juin 2019].

[31]7J. Hall and J. N. a. J. Nivre, "MaltParser," Véxjo University and Uppsala University,
Sweden, [Online]. Available: http://maltparser.org/. [Accessed 06 Juin 2019].

61

[32] A. Abdelali, K. Darwish, N. Durrani and H. Mubarak, "FARASA: Advanced Tools
for Arabic," Qatar Computing Research Institute, 2016. [Online]. Available:
http://qatsdemo.cloudapp.net/farasa/. [Accessed 06 Juin 2019].

[33] T. Zerrouki, "Pyarabic," 2010. [Online]. Available:
https://pypi.python.org/pypi/pyarabic/. [Accessed 06 Juin 2019].

[34] M. Davis, "Polyglot," 15 02 2019. [Online]. Available:
https://polyglot.readthedocs.io/en/latest/ Tokenization. html. [Accessed 13 Juin 2019].

[35] A. Farkiya, P. Saini, S. Sinha and S. Desai, "Natural Language Processing using NLTK
and WordNet," vol. 6 (6), 2015.

[36] "NLTK 3.4 documentation," [Online]. Available: https://www .nltk.org/#. [Accessed 28
February 2019].

[37] in Natural Language Processing with Python, United States, 2014.

[38] H. Cunningham, D. Maynard, K. Bontcheva and V. Tablan, "GATE: an Architecture
for Development of Robust HLT," University of Sheffield, Sheffield.

[391 N. Y. Habash, Introduction to Arabic Natural Language Processing, Synthesis
Lectureson Human Language Technologies, 2010.

[40] J. OLIVE, C. CHRISTIANSON and J. (. and MCCARY, Handbook of natural language
processing and machine translation: DARPA global autonomous language exploitation,

Springer Science & Business Media, 2011.

[41] L. AlAgha, "USING LINGUISTIC ANALYSIS TO TRANSLATE ARABIC
NATURAL LANGUAGE QUERIES TO SPARQL," arXiv preprint arXiv, 2015.

62

[42] Y. Souteh and K. Bouzoubaa, "SAFAR platform and its morphological layer,"

Proceeding of the Eleventh Conference on Language Engineering ESOLEC, pp. 14-
15,2011.

[43] Y. Jaafar and K. Bouzoubaa, "Arabic natural language processing from software
engineering to complex pipeline," First International Conference on Arabic
Computational Linguistics (ACLing), pp. 29-36, 2015.

[44] "The Stanford Natural Language Processing Group," 2014. [Online]. Available:
https://nlp.stanford.edu/software/segmenter.shtml. [Accessed 21 Juin 2019].

[45] T. Zerrouki, "Pypi," 2012. [Online]. Available: https://pypi.org/project/Tashaphyne/.
[Accessed 19 Juin 2019].

[46] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick and D. &
Parikh, "Vqa: Visual question answering," In Proceedings of the IEEE international
conference on computer vision, pp. 2425-2433, 2015.

[47] C. Manning, P. Raghavan and H. & Schiitze, "Introduction to information retrieval,"
Natural Language Engineering, vol. 16, no. 1, pp. 100-103, 2010.

[48] R. Al-Rfou, V. Kulkarni, B. Perozzi and S. and Skiena, "POLYGLOT-NER: Massive
Multilingual Named Entity Recognition," Proceedings of the 2015 {SIAM}
International Conference on Data Mining, pp. 586-594, 2015.

[49] T. Zerrouki, "Pyarabic," 2010. [Online]. Available:
https://pypi.python.org/pypi/pyarabic/. [Accessed 21 Juin 2019].

[50] Zerrouki and Barqawi, "Shakkala, Arabic text vocalization," 2017. [Online]. Available:
https://ahmadai.com/shakkala/lang_en. [Accessed 21 Juin 2019].

63

[51] "PyICU," [Online]. Available: https://pypi.org/project/PyICU/. [Accessed 1 July
2019].

[52] D. Sites, "pycld2," 28 July 2013. [Online]. Available: https://pypi.org/project/pycld2/.
[Accessed 1 July 2019].

[53] "setuptools," 2013. [Online]. Available: https://pypi.org/project/setuptools/. [Accessed
1 July 2019].

[54] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean and M. ... and Kudlur,
"Tensorflow: A system for large-scale machine leamning," In 12th {USENIX}
Symposium on Operating Systems Design and Implementation, pp. 265-283, 2016.

[55]F. Chollet, "Keras," 2015. [Online]. Available: https://keras.io/. [Accessed 1 July
2019].

—
(=)

N e I

Keys:

First interface (simple mode)

Seconde interface (Advanced mode)

Text area for entered text

Button to get the input file

Text field for the file source

Button to switch to simple mode

Button to switch to advanced mode
ComboBox to select the processing module
Button to show the tasks of each module

. CheckBoxes to choose tasks

11. CheckBoxes showing hidden details in modules

12. Button to start the processing and show the result

13. Text area for output text

14. Checkbox to get the output as files

N N

How to use?

Go to (3) and write your text if you are in simple mode.

Click on (8) to select a module then press on (9)
Select the tasks you want to process in (10)

Press on (14) if you want to get the output as files
click on (12) to get results in (13)

Press on (7) to switch to advanced mode

Click on (4) to get your file

Repeat steps from 2 to 5 to get results

Press on (6) to switch to simple mode.

64

APPENDIX

