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ABSTRACT

In this thesis, a new diagnosis method for Photovoltaic (PV) systems using Artifi-
cial Intelligence is developed. This diagnosis method uses the Back Propagation Arti-
ficial Neural Networks (BPNN) classifiers to detect and diagnose faults in the Direct
Current (DC) side of Grid Connected Photovoltaic (GCPV) systems. For this, two
BPNNSs are required: the first ANN is necessary for the classification of current from
two input data (solar irradiation level and current at maximal power point), while the
second ANN is called for voltage classification from the two input data (cell temperature
and voltage at maximal power point). The output of both ANNSs represent the input of
a combinational algorithm in order to obtain the diagnosis of the PV generator charac-
terizing the final step of this approach. This algorithm diagnoses the most frequent
faults encountered in PV installations that are: one short-circuited module in PV gen-
erator, two short circuited modules in PV generator, four short circuited modules in PV
generators and one disconnected string in PV generator. The obtained results of the
cited method are excellent with an average overall accuracy of 98.6%.

In the reason to find the best choice of ANNS, five types of algorithms have been
tested that are: Back Propagation Neural Network (BPNN), Probabilistic Neural Net-
work (PNN), Generalized Regression Neural Network (GRNN) and two Radial Basis
Function Neural Network (RBF). These ANNs have been tested and compared using
the same faults and the same work conditions. The obtained results brought a good
clarification and demonstrate that the PNN algorithm takes the top of the list as the
best ANN from the point of view of its response time as well as its displaying of 100%
in all statistical concepts comparing to other algorithms. The efficiency of the devel-
oped method is experimentally evaluated by using real measured data, collected from
real GCPV system located at the Centre Des Energies Renouvelables in Algiers (Al-
geria).

Keywords: Grid connected PV plant, faults detection, diagnosis, Artificial Neural Net-

work (ANN), working conditions, maximum power point (MPPT).



RESUME

Dans cette these, une nouvelle méthode de diagnostic des systemes photovol-
taiques (PV) utilisant l'intelligence artificielle est développée. Cette méthode de dia-
gnostic utilise les classificateurs BPNN (Back Propagation Neural Network) pour dé-
tecter et diagnostiquer les défauts du courant continu (DC) des systemes photovol-
taiques connectés au réseau (GCPV). Pour cela, deux BPNN sont nécessaires : le
premier ANN est nécessaire pour la classification du courant a partir de deux données
d'entrée (niveau d'irradiation solaire et courant au point de puissance maximal), tandis
gue le deuxieme ANN est appelé pour la classification de tension a partir des deux
données d'entrée (température de la cellule et tension au point de puissance maximal).
La sortie des deux ANNs représente I'entrée de l'algorithme combinatoire afin d'obtenir
le diagnostic du générateur PV caractérisant I'étape finale de cette approche. Cet al-
gorithme diagnostique les défauts les plus fréquents rencontrés dans les installations
PV qui sont : un module en court-circuit dans le générateur PV, deux modules en court-
circuit dans le générateur PV, quatre modules en court-circuit dans les générateurs PV
et une chaine déconnectée dans le générateur PV. Les résultats obtenus de la mé-
thode citée sont excellents avec une précision globale moyenne de 98,6 %.

Afin de trouver le meilleur choix d'ANNS, cing types d'algorithmes ont été testés,
a savoir : le réseau neuronal a propagation arriere (BPNN), le réseau neuronal proba-
biliste (PNN), le réseau neuronal a régression généralisée (GRNN) et deux réseaux
neuronaux a fonction de base radiale. (RBF). Ces ANN ont été testés et comparés en
utilisant les mémes défauts et les mémes conditions de travail. Les résultats obtenus
ont apporté une bonne clarification et démontrent que l'algorithme PNN prend la téte
de liste comme le meilleur ANN du point de vue de son temps de réponse ainsi que
de son affichage de 100% dans tous les concepts statistiques par rapport a d'autres
algorithmes.

L'efficacité de la méthode développée est évaluée expérimentalement en utilisant
des données réelles mesurées, collectées a partir d'un systeme PV connecté au ré-

seau GCPV réel situé au Centre Des Energies Renouvelables a Alger (Algérie).

Mots clés: installation photovoltaiqgue connectée au réseau, détection des défauts,
diagnostic, Réseau de neurones artificiels (ANN), conditions de travail, point de puis-
sance maximale (MPPT).
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INTRODUCTION

Nowadays, modern civilization is looking for a profound and global energy
change throughout the world, from fossil fuels such as natural gas, oil, lignite and coal
resources towards renewable energies. The goal of this change is to avoid catastrophic
climate change that affects the health’s deterioration of the current and future human
generations as well as for countless other species. However, reliance on renewable
energies has become an inescapable trend as it plays a key role in decarbonizing the
global energy system for decades to come. In addition, the production of renewable
energy exceptionally photovoltaic energy growing up in staggering rate for its cleanli-
ness, safety, quiet, reduction in energy bills and low maintenance requirement, it will
be the principal source of energy in the world in the coming years increasing from 330
TWh in 2019 to almost 3300 TWh in 2030, according to reference [1].

keen to initiate and succeed its energy transition, Algeria has adopted an ambi-
sous plan to develop and promote renewable energies As reported by Shariket
Kahraba wa Taket Moutadjadida (SKTM), which is a subsidiary of the Algerian com-
pany of electricity and gas (SONELGAZ), Algeria is massively engaged in renewable
energy especially Grid Connected PV systems with 23 grid connected PV plants using
poly crystalline PV modules fixed in: highlands (east: Batna, Souk Ahras, Setif, Bourd]
Bouararidj and Mila; west: Sidi Belabes, Saida, Naama et El Bayodh), center of the
country (M’sila, Djalfa, Laghouat and Ouargla), the south of the country (In Salah, Adrar

and Timimoun) for a total power of approximately 330 MWc [2].

To achieve the best power-generation efficiency, PV systems must work under
particular conditions, unshaded area, high irradiation level, low temperature and PV
panel optimal orientation. In addition, PV panels must be clean enough because the
accumulation of dirt, dust, sand as well as snow mask the solar irradiation and reduce
the efficiency of the global system. For this purpose, the techniques of regular mainte-
nance and detection become more and more crucial. In order to assure a good power
production, reliability, efficiency, safety and quality in global PV systems, fault detection
and diagnosis become necessary and have shown exceptional interest last few times.

Nowadays, real-time fault detection and diagnosis in PV systems is catching the eye



of a large number of researchers in this field, in which various research studies and

investigations have been discussed [3].

The analysis of the developed techniques has made it possible to identify three
different categories. The first category contains diagnostic technigues, which are based
on the system’s model in order to identify the appearance of faults [4]. The simulation
data are compared to the system outputs, where the inputs of the model are particularly
the weather parameters and electrical parameters of the installed PV array [5-12] and
the output of the model consists of the maximum power point of the generator. Sup-
plementary parameters such as AC input/output ratio, DC input/output ratio and refer-
ence yield have been used [13-19]. The second category includes mathematical or
statistical analysis-based methods such as time domain reflectometry and Fourier
analysis [20,21]. Earth capacitance measurement diagnostic method [22, 23] as well
as the stacked auto-encoder and clustering [24], non-parametric kernel density esti-
mation method [25] and learning algorithm [26]. These techniques are based on sev-
eral information which stems generally from (I-V) such as curve open circuit voltage,
short circuit current, ideal factor, fill factor indicator, values of shunt and series resistors
in a PV module, a PV string or branch and a PV Generator [27-31]. Another method
for these category is based on the analysis of three predefined indicators [32]. The
third category is focused on the computational intelligence-based techniques classifier,
including, Artificial Neural Networks (ANNs), Fuzzy Logic (FL), Genetic Algorithms
(GA) and k-Nearest Neighbors (kNN) [33-56].

In accordance with the above presented arguments belonging to different cate-
gories, an original intelligent fault detection and diagnosis method for grid connect PV
systems especially in PV generator is proposed in the present thesis. The main idea
consists to use the Back Propagation Neural Networks, which are identified by their
efficient learning capacities, generalization and good classification applying with excel-
lent results [48] to detect and then identify faults for grid connected PV plant in DC part.
After this, a comparison study is performed to explore the influence of the ANNs choice

on the Diagnosis’ performance and efficiency. For this, five different ANNs have been



considered: Back Propagation Neural Networks, Probabilistic Neural Networks, Gen-
eralized Regression Neural Network and two algorithms of Radial Basis Function Neu-
ral Networks [57].

The thesis is organized into four chapters, where the last three chapters present

the exclusive works, which have been published.

The first chapter presents the problematic related to faults encountered in PV
installations. Then, a literature review on the already proposed methods of faults de-

tection and diagnosis is conducted.

In the second chapter, are presented the experimental setup as well as the devel-
oped model and the results of its simulation and experimental validation. This model has been devel-
oped using Simscape MATLAB/ simulink , followed by the elaboration of pertinent database including
healthy and faulty operations and finally an analytical study presents the faulty behavior based on the

deviation between the desired output and the experimental real output.

The third chapter is devoted in detail to the application of BPNN classifiers for
faults detection and diagnosis. The architecture of both ANN classifying the current
and the voltage at the maximum power point, Impp and Vmpp, are present, in addition
to diagnosis procedure in PV generator and finally, the training, validation phase of
both ANNS.

The last chapter provides a comparative study and analyses the impact of the
Artificial Neural Network choice on the diagnosis performances using four major crite-
rions: accuracy, sensivity, specificity and precision. To achieve this goal, five ANNs are
studied: Back-Propagation Neural Network (BPNN), Probabilistic Neural Network
(PNN), Generalized Regression Neural Network (GRNN) and two Radial Basis Func-
tion Neural Network (RBF1, RBF2).

And finally, a general conclusion summarizes the research results obtained

within the framework of this thesis and the proposed perspectives.



CHAPTER 1 STAT OF ART OF FAULT DETECTION AND DIAGNO SIS
OF GRID CONNECTED PHOTOVOLTAIC SYSTEMS

1.1. Introduction.

Up until now, Renewable energy is one of the biggest and most significant in-
novations of the century. The reason is that most of renewable energies have specific
benefits promoting protection of the biodiversity. In fact, these types of energies are
considered as clean energies by their planet’'s protection from possible climatic up-
heaval. Additionally, renewable energies are a solution to affordable, clean, healthy,
and eco-friendly power contrary to classical energies coming from fossil fuels such as:
petroleum, natural gas, coal or materials like uranium which are limited on the planet
and on the other side pose a huge problem at ecosystems by emitting a lot of green-
house effect which contribute to global warming as well as carbon di-oxide emission
and fine particle pollution [58]. Moreover, the renewable energy’s production growths
exponentially especially photovoltaic energy that plays a key role in the electricity pro-
duction in the future [4].

To achieve the best power-generation efficiency, PV systems must work under
particular conditions; unshaded area, high irradiation level, low temperature and PV
panel optimal orientation. In addition, PV panels must be clean as the accumulation of
dirt masks the solar irradiation and reduces the efficiency of the global system. This
necessitates regular maintenance in addition to the monitoring. In fact, during their long
lifetime, of about 25 years, PV systems can be the subject of numerous faults. That
explains the importance of the diagnosis and fault detection for PV systems which is
necessary not only to increase system power generation reliability but also for operat-
ing costs reduction. Real-time diagnosis of PV system has drawn many researchers
attention nowadays. As a result, a great deal of recent research on PV systems have
been focusing on that area to help to make possible the fault detection and isolation

especially for the PV generator.



1.2.  The various faults encountered in PV systems.

One of the main research objectives on grid connected PV systems is to improve
the efficiency, availability and reliability of the systems. Two principal problems exist in
grid connected PV systems can influence on its performance: external problems that
are not consider in this research and internal problem that is addressed in our study.
However, if these problems are not detected and localized can not only reduce the
production of electricity and improve the hot spots but also threaten the availability,

reliability and effectively the security of the global system.
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Figure 1.1. Faults encountered in PV systems.

1.2.1. External problems
1.2.1.1. The soiling

The dirt has an important influence on the performances of PV systems, partic-
ularly in arid regions. The accumulation of dirt on PV array contribute to reduce the

normal current generation capacity of a PV module, a PV branch or PV generator.




Consequently, the maintaining a clean panel surface is important in order to avoid en-
ergy loss.

Ty

Figure 1.2. Soiling on a PV Generator.

1.2.1.2. Shading

In general, the shading occurs when the buildings, the objects and other things
such as trees is located close the sun and PV generator. This represents one of the
biggest sources of energy loss in the operation of the PV system. The shading can:
contribute to reduce the output power, cause the thermal constraint on the PV modules
due to high cell temperature and even reverse voltage of shaded cells due to overheat-
ing. In order to overcome the influences of shading and minimize energy loss, the by-
pass diodes are wired in parallel to a number of solar cells to continue to conduct cur-
rent around the shaded cells or modules, while they are blocked under normal operat-
ing conditions.
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Figure 1.3. Operation of PV array (a) under uniform insolation (b) under partial shad-
ing (c) the resulting I-V and P-V curve for (a) and (b) [59].

1.2.1.3. Snow cover

The snow cover only occurs on cold winter days. Snowfall has a negative impact

on performance of the PV system such as the reduction of output power. In addition, if

one PV module is blocked by snow, the whole branch will perform poorly, even if there

is a high global radiation available.

Figure 1.4. Snow on a PV Generator.



1.2.1.4. Tree leaves and bird droppings

Due to its exposed surface, tree leaves and bird droppings can fall on PV pan-
els, which can contribute to reduce the energy production of some cells. Bird droppings
and tree leaves will cause a much crucial loss of power than dirt and dust. Therefore,
to avoid this problem, the cleaning and prompt removal of these waste are indispensa-
ble for the PV panels. In these cases, the by-pass diodes are necessary to reduce the

important effect on PV systems cited in paragraph above.

Figure 1.5. Tree leaves and bird droppings on a PV Generator.

1.2.1.5. Power cut from electrical network

The production of electricity is highly dependent on weather conditions and time
of day. If an accident or natural disaster occurs and the grid power is lost, the power
supply to the PV generator will also be cut off. A power cut from the grid does not mean

any energy generation for the PV system during this period.

Figure 1.6. Power outage from the grid.



1.2.1.6. Faults with total failure in PV systems

The total failure is defined as a permanent loss of power during pleasant
weather days. If there is no data sent from the PV system, failures due to the total
blackout can be assumed. Faults in PV systems not only decrease the net performance
of these systems, but can also threaten the safety and reliability of the entire system.
Generally, faults due to total failure are easily diagnosed. However, other faults of PV
system are not easily detectable due to uncertainties on the overall efficiency values

and the absence of reference values.

1.2.2. Internal problem

Usually, the PV generator owns many branches in parallel and the output of
each branch can be connected to junction box. Knowing that the branch can meet a
fault such as the disconnection or the degradation. The principal difference between
both faults is that the disconnection can be defined as a constant loss of energy con-

trary to the degradation that is considered as a changing loss of energy.

1.2.2.1. Disconnection

If a branch has a disconnect problem, the output of this string is zero and the
energy loss is constant. Under these circumstances based on the percentage of energy
loss, the number of disconnected branches can be detected at the location of the in-

verter.
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Figure 1.7. Branch disconnected in PV Generator.

1.2.2.2. Degradation

Power degradation resulting from aging solar cells. It plays a key role in de-
creasing of the output power during its lifetime and it differs from technology to another.
The reason could be the increase in series resistance between modules due to de-
crease in contact adhesion or corrosion caused by water vapor or reduction in shunt
resistance connected parallel to junction PN. Additionally, the loss of the anti-reflective
coating could also lead to degradation of the power. Degradation not only contributes
to declining PV systems performance, such as reducing the output power of a PV mod-
ule, but can also lead to cell damage and early system failure due to corrosion [60]. If
the degradation occurs in a chain, the I-V curve might be distorted, but the branch

would continue to produce power.



Figure 1.8. Degradation of PV Cells.

Therefore, developing a method for detecting faults in a PV system is crucial to
minimize energy loss and improve the performance of the PV system. Several tech-
niques have been proposed for the detection and diagnosis of faults in solar photovol-

taic systems representing in the next section.

1.3.  The different categories of fault detection an  d diagnosis in PV systems.

On the basis of a literature overview, it was concluded that PV diagnosis tech-
niques can be classified in three number of categories: Model based diagnosis tech-
nique, Signal processing based fault diagnosis methods and Artificial intelligence in
fault diagnosis techniques. These methods are based on many crucial between
weather and electrical parameters such as: cell temperature , solar Irradiation , current
and voltage at Maximal Power Point (Impp, Vmpp), Short circuit current lsc, open circuit
voltage Voc, the output of inverter parameter such as alternative current and voltage,
lac and Vac respectively, as well as the current-voltage (I-V) curve characteristics.

1.3.1. Model based diagnosis technique

This category includes model based diagnosis techniques [5] in which the model
of the system is used to decide about the occurrence of faults. For this, the simulation

values are compared to the system outputs. The inputs of the model are mainly the
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meteorological working conditions and the electrical parameters of the installed PV

modules [7].

An efficacious method of fault detection and diagnosis in GCPV systems has
been proposed by Mahmoud Dhimish et al in [6] based on voltage and power ratios.
This approach started by the simulation of the theoretical performance of the PV sys-
tem in goal to compute the theoretical outputs voltage and power. After that, the ratios
between the theoretical and measured voltage and power are calculated and analyzed,
in order to detect the fault occurrence and diagnose its type. This method is entirely
dependent on the power and voltage ratios, although she is recognized by its high
capacity for fault detection and diagnosis. Consequently, it depends on the accuracy
of both the simulation model and the measuring devices.

In reference [7], Chouder et al have developed an automatic supervision and
fault detection procedure for PV systems based on the power losses analysis. The
principal objective of this approach consists to include parameter extraction techniques
to calculate main PV system parameters from monitoring data in real conditions of
work, taking into account the environmental irradiance and module temperature evolu-
tion, allowing simulation of the PV system behavior in real time. The system is consid-
ered under faulty operation if the measured power losses are beyond these bounda-
ries. Finally, in order to diagnose the fault type, current and voltage ratios are evaluated
and monitored. Two novel indicators of power losses have been defined in this work:
Thermal capture losses (Lct) and Miscellaneous capture losses (Lcm). In addition, two
another indicators of the deviation of the DC variables respect to the simulated ones
have been also defined. These indicators are the current and voltage ratios: RC and
RV. The global indicators are used to diagnose the fault types. This method has ap-
proved an efficient result tested for three operating cases: healthy system operation,
faulty string operation and operation in the presence of partial shadowing, aging and
MPPT error.

On the other part, a procedure for automatic supervision, fault detection and
diagnosis for different faults of Grid connected PV systems in real time has been pro-

posed in [8]. A comparative study between measured and simulated yield has been
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achieved to detect faults in the PV plan, while the fault diagnosis is carried out by an-
alyzing and comparing DC current and DC voltage with a set of healthy system thresh-
olds. This approach needs the measured meteorological conditions and the electrical
parameters to develop a LabVIEW-based software of: firstly capture losses computa-
tions, secondly PV system simulation, thirdly online parameters supervision, and finally
fault detection and diagnosis [10]. ELc_refis the error between measured and simulated
capture losses of the healthy system o is standard deviation of this error. The regular
check of this error is required to detect any fault occurrence; i.e. if its value does not
exceed predefined thresholds, the system is considered working under healthy opera-
tion. When the presence of faults is detected, two novels indicators, called current error
Ei and voltage error Ev are computed. In order to process to diagnose the detected
fault, a set of predefined thresholds for Eiand Ev should be computed. This method
has been experimentally tested under an actual GCPV system to detect and diagnose
the occurrence of: partial shading, ground fault, short circuit fault of PV modules, short

circuit of bypass diode and string disconnection in the array.

Additional parameters have been used while dealing with grid connected PV
power plants such as DC input/output ratio, AC input/output ratio and reference yield
measurements [14-15]. Model-based fault detection methods use residuals which in-
dicate changes between the PV generator and its model. This difference is used to
estimate the increase of the series resistance and the decrease of the parallel re-
sistance using fill factor method [16] and can be used to focus on intra-string line-line
fault [17] or to detect the shading using exponentially weighted moving average esti-
mation (EWMA) [18]. Another method to detect and diagnose faults such: short circuit,
open circuit, shading and degradation in PV arrays by residuals using current-voltage
c6urves and ambient conditions based on deep neural network has been also devel-
oped [20].

1.3.2. Signal processing based fault diagnosis meth  ods

This type of category is classified the signal processing based fault diagnosis
methods. This includes methods based on mathematical or statistical analysis such as
time domain reflectometry [21]. In this approach, the time domain reflectometry (TDR)
applies the voltage signal into the string and observes the signal response waveforms,

was applied to the PV strings containing faults to detect the fault and locate its position.
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The results showed the disconnections and the degradations with series resistance
increase between modules were detected with the response signal voltage rise and

the signal rise timing shift.

Moreover, these techniques should be combined to other diagnostic methods
as earth capacitance measurement to expand their faults diagnosis capability [22, 23],
The signal shift from the inputted signal to the reflected signal is translated into the fault
position in the line, and the waveform change is translated into the mismatch type
(open circuit, short circuit, resistance increase, etc.) and the amount of the fault (im-
pedance change). Compared to ECM, which detects only the disconnection in the
string, TDR is more promising because it can detect not only the disconnection but also
the impedance changes with degradation. Moreover, TDR has been used to detect and

localize degradation fault.

Furthermore, Measurements of the current-voltage (I-V) curve are one method
of PV fault detection. This curve can provide crucial information such as short-circuit
current, open circuit voltage, fill factor indicator, ideal factor, series and shunt resistors
values for a PV module, a PVG, a string or branch or PV field [27, 28]. These methods
are known to be very efficient to detect and isolate the presence of shading and soiling
of the PV module, of the degradation of the solar cells and balance of system compo-
nents. Thus, this method consists mainly on three stages.

- The first one relies on measuring the (I-V) curve and the in-plane irradiance (G) of
the tested PV generator (module, string or array). The in-plane irradiance level (G)

could be obtained by using irradiance sensors or mathematical estimations.

- In the second stage, the in-plane irradiance level (G) is analyzed, such that if its
value is lower than 500 W/mz, the diagnosis procedure will be stopped.
The main reason of this limitation is that the power losses, due to the shading and
the increase in series resistance, cannot be visible, using I-V curves under low ir-
radiance level [28]. After that, if the in-plane irradiance is higher than 500 W/m2, the

measured I-V characteristic will be filtered from any noise and used to compute a
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set of diagnostic indicators. The indicators are then normalized to maintain the in-

dependency with the system configuration.

- Finally, the normalized indicators of diagnosis are analyzed automatically, based
on three fuzzy logic classifiers, to detect and diagnose the faults mentioned above
[28]. The indicators that have been used in this method are: the I-V curve inflexion
factor Vs, the maximum power point factor MPPs, the equivalent series resistance
Rse and the fill factor FF.

This method can only be applied for the string inverter topology, which is not the
most frequently used topology nowadays, and it gives efficient results only under high
irradiance level (G>500W/m?).

1.3.3. Atrtificial intelligence in fault diagnosist  echniques

In the third category, are classified computational intelligence-based techniques

involving, amongst other concepts.

1.3.3.1. Artificial Neural Networks (ANNS)

In [33], an Artificial neural network-based modelling and fault detection of partial
shaded photovoltaic modules, It consists to use an artificial neural network in order to
estimate the output photovoltaic current and voltage under variable working conditions,
The comparison between the estimated current and voltage with the ones measured
gives useful information on the operating state of the considered photovoltaic module.
The network inputs are solar irradiance and cell temperature, while its outputs are the
PV current and voltage.

Another searchers cited in Ref [40], An intelligent method for fault diagnosis in
photovoltaic array based on ANN is presented, this approach diagnosed degradation,
shading and short circuit faults with requirement of three parameters in the input set:
current of maximum power point (Impp), Voltage of maximum power point (Vmpp) and the

temperature of the PV modules. The three kinds of fault detected by ANN unit are
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between Normal operation case, short circuit case, shading case and degradation

case.

According to [46], the fault diagnosis of PV systems was important from point of
view of detection, diagnosis and localization of various faults in PV generator based on
ANN. In this approach, PV current, voltage and the number of peaks in the current-
voltage (I-V) characteristic are computed based on a simulation model. The difference
between the measured and simulated PV array output power is firstly calculated and
compared with the threshold value (S), in the goal to detect faults occurrence. Then,
the analysis of the main attributes, derived from (I-V) characteristic of each separate

PV string, is elaborated to diagnose and localize the faults.

This method treated eight types of faults that have been precisely detected, di-
agnosed and localized in: module (short circuit in any cell or module or bypass diode,
inversed bypass diode, shunted bypass diode and open circuit fault in module), con-
nection fault with resistance between PV modules, partial shadow fault, shadow effect
in a group of cells equipped by a faulted bypass diode and shadow effect in a group of

modules connected by a resistance. This approach required two different algorithms:

- The first algorithm calculated the difference between the measured and the simu-
lated PV array output power is compared with a threshold (Th) in order to detect

the possible presence of a fault and it allows the discrimination of six faulty cases.

- While, the second algorithm is devoted to distinguishing between some faulty cases
by the using of two types ANN classifiers (multi-layer perceptron (MLP) and radial
basis function (RBF) classifiers requiring Vmpp, Impp @and Voc as input data.

An interesting method has been studied in Ref [47] under title Artificial Neural
Network based photovoltaic fault detection algorithm integrating two bi-directional input
parameters. The types of neural network in this approach are Radial Basis Function
(RBF) and Multilayer Perceptron Neural Network (MLP), which required two parame-
ters solar irradiation and output power in its input. In this method, 10 various scenarios
have been taken in consideration cited in table 1.1 knowing that the PV plant consists
of 10 PV modules set-up in string topology.
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Table 1.1. Various type of fault.

Cases

Sumber Type of fault
1 Normal operation mode, where no faults were applied to the PV string
2 1 Fault applied to the system; 1 PV module disconnected from the PV string
3 2 Faults applied to the system;2 PV modules disconnected from the PV string
4 3 Faults applied to the system; 3 PV modules disconnected from the PV string
5 4 Faults applied to the system; 4 PV modules disconnected from the PV string
6 5 Faults applied to the system; 5 PV modules disconnected from the PV string
7 6 Faults applied to the system; 6 PV modules disconnected from the PV string
8 7 Faults applied to the system; 7 PV modules disconnected from the PV string
9 8 Faults applied to the system; 8 PV modules disconnected from the PV string
10 9 Faults applied to the system; 9 PV modules disconnected from the PV string

In Reference [50], two algorithms were proposed the first one focused on fault
detection in PV generator using probabilistic neural network. The second diagnosed
and located the frequent faults encountered in PV generator such as short circuit mod-
ules in string of PV array as well as the disconnected string in PV array using PNN.
Both algorithms required in input set four parameters: cell temperature, solar irradia-
tion, current and voltage of maximum power point. The types of faults considered in
this approach are: short circuit diagnosis of three modules in PV string, short circuit
diagnosis of ten modules in PV string and complete string disconnection diagnosis in

PV array.

Other work demonstrates the effectiveness of Particle Swarm Optimization Back
Propagation Neural Network (PSO-BP) which have been successfully used to detect
and localise faults in PV array related to [40]. This approach required four parameters
open-circuit voltage (Voc), short-circuit current (Isc), maximum power (Pmpp) and voltage
at maximum power point (Vmpp) are extracted from the output curve of the PV array as
identification parameters for the fault diagnosis system. This method diagnosed six
different faults in PV generator citing PV temperature fault, partial shade fault, aging
cells, the combination of temperature and shade, the combination of temperature fault
and aging cells, and the combination of shading and aging cells.
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Probabilistic Neural Network algorithm has been combined to Fuzzy C means
and Gaussian kernel algorithms into a novel PV array fault diagnosis method demon-
strated in [51]. Real irradiance and temperature data were input to the model to simu-
late PV array output characteristics under different conditions. The PNN required four
input data Impp, Vmpp, Voc and Isc to diagnose: short circuit fault of two, four and six PV
modules in PV array, open circuit fault of one string and two strings in PV array, shading

fault of two, four and six modules and finally abnormal aging fault with 2, 4 and 6Q.

1.3.3.2. Neuro Fuzzy logic

A hybrid Neuro-Fuzzy approach of fault detection and diagnosis has been pro-
posed in [43]. This approach needs three important steps: firstly a Neuro-Fuzzy model
of PV modules has been developed, secondly the six attributes (Isc, Voc, Impp, Vmpp,
S1 which represents the incremental derivative ratio calculated considering the follow-
ing relevant points in the 1-V curve: short current point (0; Isc) and maximum power
point (Vmpp ; Impp); and S2 which represents the incremental derivative ratio consid-
ering the two points (Vmpp ; Impp) and open circuit (Voc ; 0).) using the I-V character-
istic have been analyzed and extracted, and at last the application of Norm-test has
been used to detect and diagnose faults. According to this work, three Neuro-Fuzzy
models (blocks) have been developed to model the system under ideal, healthy and
faulty conditions. The ideal condition block defines the case when all the inputs and
outputs are considered perfectly constants and noiseless. In this work, five operating
cases: normal operating case, diode short-circuit operating case, lower earth fault op-

erating case, upper earth fault operating case and partial shading operating case .

An interesting comparative method between Mamdani, Sugeno fuzzy logic and
radial basis function RBF ANN network for PV fault detection has been demonstrated
in reference [44]. The fault detection algorithm can detect and locate accurately eleven
different types of faults occurring in PV array that is illustrated in table 1.2.
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Table 1.2. Different type of faults occurring in the examined PV plant [42].

Type of Fault Symbol
Normal Operation and PS effects the PV system F1
One faulty PV module F2
Two faulty PV module F3
Three faulty PV module F4
Four faulty PV module F5
One faulty PV module and PS effects the PV system F6
Two faulty PV module and PS effects the PV system F7
Three faulty PV module and PS effects the PV system F8
Four faulty PV module and PS effects the PV system F9
Faulty PV String F10
Faulty MPPT unit F11

In the other side, a well-functioning procedure has been proposed in ref [45] of fault
detection based on curves modelling and fuzzy classification system. In this approach
LabVIEW software has been used to simulate the meteorological conditions (T and G),
the voltage ratio VR, and the power ratio PR. This method used a third polynomial
function to compute two detection limits (high and low detection limits) of VR and PR
ratios. After that, these limits are compared with real measured data of an actual PV
generator. Samples that lie out of these limits are then introduced to a fuzzy-logic

based classification system to diagnose the fault type.

Noting that, this method could successfully detect the frequent faults such as:
» The presence of partial shading (PS) within the PV generator.
* One short-circuited PV module and PS.
* Two short-circuited PV modules and PS.

* (Q-1) short-circuited PV modules and PS, where Q denotes the total number of

PV modules.



20

The principal weak point of this method depends on power and voltage ratios.
Consequently, its efficiency depends highly on the robustness of the instrumentation

components.

1.3.3.3. Decision Tree

In [52], an attractive method of Al has been proposed to detect and diagnose
fault in GCPV systems based on Decision Tree under title “Fault detection and diag-
nosis based on decision tree algorithm for grid connected PV system”. This method
diagnoses the most frequent faults encountered in PV installations such as: open cir-
cuit fault, short circuit fault and line-line fault and requires three attributes temperature
ambient, irradiation and power ratio calculated from measured and estimated power
collected from Sandia model. Two targets are proposed in this approach: the first target
is between two positions either healthy or faulty state for detection. While the second

target is to diagnose four classes between healthy and the three classes cited above.

1.4. Conclusion

This chapter has exposed the various fault between temporary and permanent
internal or external encountered in PV systems which have an important impact on the
reliability and efficiency in output energy of PV plant. And finally, the three diverse cat-
egories of fault detection and diagnosis in PV systems according to the literature, citing:
Model based diagnosis technique, signal processing based fault diagnosis methods
and atrtificial intelligence in fault diagnosis techniques.

According to the limitations imposed by these categories, our opinion has been
oriented towards the classification of faults in PV array. In this aim, modeling the be-
havior of PV generator in healthy and faulty cases is essential which represents the

objective of the next chapter where Simscape MATLAB/Simulink is present.
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CHAPTER 2 MODELLING AND SIMULATION OF PHOTOVOLTAIC
GENERATOR

2.1. Introduction

The aim of this work is to develop an intelligent tool capable to diagnosis a grid
connected PV plant. For this, the first grid connected PV plant in Algeria has been
considered. In this chapter, a detailed presentation of this PV plant is given, its tech-

nical specification and the experimental data.

The development of the proposed diagnosis method went through several
stages, the first one is the methodology and the strategy which is very important, as it
is considered as the starting phase, where a creation of a significant database under
different cases between healthy and faulty in a PV generator has been elaborated. The
proposed plan is divided under five main process:1- Presentation of experimental PV
plant and physical model of PV cell, 2- Simulation and experimental validation of PV
array using Simscape MATLAB/ simulink as well as the elaboration of pertinent data-
base including healthy and faulty operations such as: one PV module short circuit, two
PV modules short circuit, four PV modules short circuit and faulty string with the same
working conditions, 3- An analytical study will be presented faulty behavior based on
the deviation between the desired output and the experimental real output under the

same working conditions.

2.2.  Methodology

Figure 2.1 shows the principal steps procedure that is considered as the basic
step in this research. This part needs real PV generator and simulated PV generator
with the same PV modules number and the same characteristics of both types. The
aim of this step is firstly to build a database set with different cases between healthy
and faulty models and secondly to proceed to the fault detection procedure by calcu-
lating residual information which require a comparative study between real measured
data collected from PV station and simulated data collected from simulated model. It is

an optimal part that requests the calculation of different criteria.
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PV array Isofoton 106-12

Temperature (°C)

> Optimization

- Impp meas

p RMSE (Impp, Vimpp)
] MAPE {Tmpp, Vmpp)
* _:_.' R (Impp, Vmpp)
———f-
I
C¥ Impp sim L e e o e e P = e s 4. -
’ v
> - ated mpp sim
< Reprocessing

Figure 2.1. Scheme of PV model parameters identification.

2.3. Presentation of experimental PV plant

The current study employs an experimental setup situated in the capital Algiers
of Algeria. The installation of grid connected PV system is part of the Algerian-Spanish
cooperation placed on the roof and is composed by 90 monocrystalline PV modules
divided in three sub-array each one assembles 30 PV modules illustrated in figure 2.2,
where each sub-array is linked to an inverter. The global PV generator provides output
power equal to 9.54 kiloWatt-peak injected in a grid of 220V, which implies that the
output power of each sub-array is equivalent to 3.18kWp. The connection of PV mod-
ules in each sub-array is in 2 parallel strings composed by 15 PV modules arranged is
series. The brand of PV modules in this installation is Isofoton106-12 its characteristics
is mentioned in table 3.1, while for the inverter is IG30 Fronius its - Max Input = 3.6KW
and Max-Output=2.65KW. The PV plant requires two major parameters at its input
setup, PV module temperature that is measured grace to K-type thermocouple as well
as the inclined and horizontal solar irradiation measured by Kipp & Zonen CM11 ther-
moelectric pyranometer. Data acquisition can be configured using Agilent 34970. Fig-
ure 2.3 represents the major’'s components of small grid connected PV systems en-

counter in this study.



Figure 2.2. Roof grid connected PV plant in Algiers, Algeria.

23

Table 2.1. Electrical properties of the Isofoton 106-12 PV module (STD: solar irra-
diation=1000W/m2, cell temperature= 25°C) [17, 37, 77].

Peak power

Short circuit current (Isc)

Open circuit voltage (Voc)

Voltage at Maximum Power Point (Vmpp)
Current at Maximum Power Point (Impp)
Number of cells connected in Series
Number of cells connected in Parallel
Cell Short circuit current

Cell Open circuit Voltage

106 W
6.54 A
216V
17.4V
6.10 A
36

3.27 A
0.6V
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| PV Array Isofoton 106-12 | | Inverter National Distribution Grid

Pilot PV Cell

In-Plane
Irradiance

I Thermocouple I

Figure 2.3. Experimental setup.

Figure 2.4 illustrates the output power of the setup and the corresponding
weather conditions (solar irradiation and ambient temperature) during one day (24

hours) collected from the experimental setup.
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2.4. PV array modelling:

Model based fault diagnosis need accurate models to perform fault diagnosis.
Here, the mathematical model outputs of the PV array are needed to be compared with
the outputs of the PV array under study. It is important to note that model based diag-
nosis is highly dependent on the accuracy and on the complexity of the used model.
PV array modelling has been performed in three steps:

2.4.1. Modeling of PV cell

The PV cells, also called the solar cells is considered as basis device in PV
installation that convert sunlight energy in electrical energy via semi-conductor based
on P-N junction by the PV effect. These PV cell or PV modules can contain one diode

or two diodes, the most popular are one diode model.

In this study, one diode model has been used illustrated in figure 2.5 that repre-
sents the most popular physical model. Mainly, the model was developed for only one
cell. Its generalization to all module involved that all cells are considered strictly iden-
tical. This model contains five important parameters (lo, Iph, Rs, Rsh and n) giving an

output current via an output voltage demonstrated in the following equation [62, 63]:

(2.1)

I = Iph — I, (exp qV+Rs) 1) _ V+IRs

r G Iph Rs I

AN—2-

i

1 dI¥ TIsh Rsh v
Photo
current

Figure 2.5 . Equivalent circuit of solar cell [41].
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Where :

| and V : are respectively the output current and voltage of PV module.
lo : is the diode saturation current.

loh : is the photo generated current.

Rs : serie resistance.

Rsh : shunt resistance (paralléle)

Tc : PV cell or module temperature.

k : Boltzman constant (1.3806503 x 10-23 J/°K)

g :electron charge (1.6 0217646 x 10-19 C)

n : diode ideality factor.

This model is called 5 parameters one diode model. The five parameters are lo,
loh, Rs, Rsh and n. Modelling the PV module/sub array using this model is made by
finding the best combination of these 5 parameters so the output of the model can give

the best fit of the experimental data.

2.4.2. PV module / array modelling and I-V characte ristics:

Figure 2.6 presents a nonlinear I-V characteristic of PV module. These charac-
teristics are dependent on solar irradiation level and ambient temperature as illustrated
by Figure 2.6. These two weather variables are called working conditions that are the
inputs of the PV module/array model while the 1-V curve is its output. The I-V curve is
characterized by three main points; the short circuit current lsc, the open circuit voltage
Voc and the maximum power point (MPP) at which the power is at its maximum. The
current and the voltage at the MPP are called Vmpp and Impp respectively. The knee of
the I-V curve symbolizes the maximum power point (Pmpp) of the PV module that is
generated in standard condition. Knowing that the quality of module technology and

manufacture owns serious influences on efficiency of electrical output power.
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Figure 2.6. I-V and P-V curves.

Figure 2.7 and Figure 2.8 represent the |-V and P-V curve influences by the
weather conditions, the two first (a) and (b) of figure 2.7 represent the different change
of solar irradiation with constant cell temperature that has a remarkable effect on short-
circuit current therefore in the output power, but negligible effect on the open circuit
voltage. The last two (a) and (b) of figure 2.8 represent the different variations of cell
temperature and constant solar irradiation. It is clear that the change in temperature
has a strong effect on the open-circuit voltage also the output power of the PV cell,

contrary to short circuit current, which has negligible effect on the output system.
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Figure 2.8. Effect of Cell Temperature (a) I-V and (b) P-V curves.

2.5. PV array model simulation:

PV array modeling has been carried out using Matlab software. Two simulation
strategies are possible. The first is the simulation of equivalent circuit model by func-
tional equations using the script language of Matlab. The second is the simulation of
the equivalent circuit model blocks using Simscape. The advantage of Simscape is
that it enables to rapidly create models of physical systems within the Simulink envi-
ronment. With Simscape, it is possible to build physical component models based on
physical connections that directly integrate with block diagrams and other modeling
paradigms [61]. For this work, the second option has been chosen because it allows
to simulate the targeted faults as the short circuit and the disconnection faults. Figure
2.9 illustrates the interconnected of 16 PV modules based sub array linked in two
strings, each string is composed by 8 PV modules (2 x 8). Each PV module receives

two climatic data: cell temperature and solar irradiance.
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Figure 2.9. Block diagram of the studied PV sub-array in Simscape /MATLAB.
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2.5.1. PV array data validation:

The validation of the obtained model has been done using experimental data
collected in March month from the experimental setup situated in the capital Algiers of
Algeria. Note that the validation data are the inputs of the models which are the working
condition (the solar irradiation and the ambient temperature), and the output data are
the current and the voltage at the MPP as illustrated by Figure 2.10. Knowing that the

experimental setup received one sample each minute and the efficiency of the studied
model required data above 200 W/m?2.
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Figure 2.10. Experimental validation data.
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2.5.2. Healthy real sub array versus healthy simula  ted sub array

In order to validate and ensure the accuracy and precision of the simulated gen-

erator, the study take in consideration three evaluation criterions to compare the real

measured data with simulated data obtained from the present simulated model, where

each criterion described as follow:

Root Mean Square Error (RMSE) describes the difference between the real experi-
mental data of the PV system and simulated data obtained from Simulink/ PV gen-
erator related to the used number of samples [16, 77].

Mean absolute percentage error (MAPE) describes the difference between the real
experimental data of the PV system and the simulated data obtained from Simulink/
PV generator then the result is divided by the real experimental data of the PV sys-
tem, after its modulus is divided on the used number of samples. The advantage of
this tool is its easy understanding gave in percentage [17, 77].

The coefficient of determination is a statistic that will give some information about
the goodness of fit of a model [60], which explains by linear regression, its range is
0 to 1, if this coefficient is 1 or very close it means that the result is ideal. The result
of this tool is sum of square of difference between the real experimental data of the
PV system and the simulated data obtained from Simulink/ PV generator, the result
is divided on the sum of square of the real experimental data of the PV system, after

that the new result will be put in negative form plus 1.

The equations of these criterions are represented respectively as following [16, 50, 51,
77].

RMSE = J Yme1n — V) (2.2)

MAPE = 23N_ 'y’ll yln' x100% 2.3)

RZ—1_ (le(yn—yAn)Z) (2.4)
Zg=1(.’Vn)2 '
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Where:
yn: the nth measured data.
yn: the nth simulated data.

N: the size of the database (the number of the validation’s samples).

Consequently, the effectiveness of the IFD Approach relies at once on its PV
module’s modelling precision and faults classification accuracy. For the first criterion,
the obtained results show good agreement between the measured data and the model
generated data as illustrated by Figure 2.11.

6 80 ‘ ( { {
——Real data ‘ |
S5 * simulated data 1 1
60—~ o B R EE LR S e
<’ S 1 I 1 1
£ R 7 B R
> | | | |
o | | | |
. ‘ : : :
200/ R R EERREREEEEE SEEEEES
1 | A
* simulated data ! ; ; ;
i i i ' O | 1 1 \¢
00 5 10 15 20 25 0 5 10 15 20 25
Voltage (V) Voltage (V)
a) I-V curve b) P-V curve

Figure 2.11 Measured and simulated PV module output data.

The corresponding error metrics are summarized in Table 2.2. The correlation
coefficient between the real and simulated curves is 99 % for both voltage and current,
while the Root mean square error is around 5 % and Mean Absolute Percentage Error

is between 2 and 5 for both voltage and current of maximum power point.



Table 2.2. Model performance metrics values.
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RMSE (%) MAPE (%) RZ (%)
Impp 04.33 02.06 99.99
Vmpp 06.06 05.23 99.26

2.5.3. Current validation of maximum power point.

Figure 2.12 demonstrates the measured current against the simulated current

of maximum power point on a number of 1000 samples. The result show a high effi-

ciency of simulated model, where its projection on real measured model shows perfect

proof reveals in Figure 2.13 that represents zoom in part of Figure 2.12. The gap by

absolute error between measured and simulated current do not exceed 0.02 A for cur-
rent at MPP as shown in Figure 2.14.
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Figure 2.12. Current of real measured data against simulated data of PV generator.
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Figure 2.13. Part of figures 2.12 zoomed.
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Figure 2.14 . Absolute error between measured and simulated current at MPP.

The PV generator modeling accuracy is the sole guarantee for MPP identifica-
tion and thus of the faults detection. The identification results are traced as simulated

data versus measured data of the MPP current (Class1l) shown in Figure 2.15.
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Figure 2.15. Identification of the current of maximum power point in normal operation

conditions.

2.5.4. Voltage validation of maximum power point.

As represented in Figure 2.16, the obtained results for the second electrical pa-
rameter show a high agreement between the voltage of real measured data and the
simulated data versus 1000 samples, where the Figure 2.17 illustrates a good preci-

sion zoomed of Figure 2.16.

128 I

I
Real data Vmpp
simulated data Vmpp

126

124

118

Voltage (V)

T BRI B NMELS : s A (- g S— -

e AR S L R S— S — ]

A : e — R— -—: o]

1o i i i i
0 100 200 300 400 500 600 700 800 300 1000
samples

Figure 2.16. Voltage Measured real data against simulated data of PV generator.
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The gap by absolute error between measured and simulated data do not sur-
pass 0.11V for voltage at MPP shown in Figure 2.18. The identification results is traced
as simulated data versus measured data of the MPP voltage (Class1V) shown in Fig-

ure 2.19.
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Figure 2.18. Absolute error between measured and simulated voltage at MPP.
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2.5.5. Faulty sub array versus healthy sub array

Usually, the faults occurring in a photovoltaic system are divided into two clas-

ses temporary faults and permanent faults.

2.5.5.1. Temporary faults

Temporary faults like shading may occur due to cloudy weather, snow, dusty
and sandy PV array, in addition to building, trees, leaves and bird excrement. Figure
2.20 illustrates the I-V characteristics of PV string with shading effect. While various

cases of shading in PV generator are exemplified in Figure 2.21.
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Figure 2.20. Example of temporary PV faults.
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Figure 2.21. Various examples of shading PV faults (a).
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Figure 2.21 . Various examples of shading PV faults (b).

In our study, those temporary faults are not taken into consideration where the
fault is automatically reset after a given period of time and the system returns back to

normal operation conditions.

2.5.5.2. Permanent faults

Permanent faults are the most crucial to be analysed notably short circuit and
open circuit since they are enduring and ultimately requiring human intervention. The
open circuit faults are caused by a sudden disconnection between cells or between
modules/strings of the PV array. The |-V characteristics corresponding to these faults
can cause important power losses as illustrated by Figure 2.22. These changes at the

I-V characteristics shape could therefore be used to identify the corresponding faults.
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2.5.6. Mathematical analysis of faulty electrical p  arameters

This developed model has been used to detect the faulty behaviour of the PV
system based on the deviation between the desired output and the real output under
the same working conditions. This difference between the model output and the system

output is the residual information.

2.5.6.1. Faulty current deviation

In Figure 2.23, the studied data show that the string fault leads to a remarkable
diminution of the current. For the 1000 analysed samples, the faulty current has been
decreased by 50 percent. It should be noted that this remarkable diminution of the
current guarantees the corresponding fault detectability and minimize any risk of con-

fusion.

Healthy Current
Faulty String

Different classes of current (A

1000

Samples

Figure 2.23. The impact of the string fault on the current.

Concerning the current, the faulty system shows a 50 % fall compared to the
healthy system as illustrated by Figure 2.24.



45

15
|t Healthy Cument | 3 s
= 0 FaulyString %%/

o | (.9996x0.0039 .

Elo 0s0v3e00055 e

2 | PP
:;5 7777777777777777777777777777 ,-‘ 77777777777777777777

0 _~ i i

0 ) 10 15

Healthy system Current (A

Figure 2.24 . Faulty simulated current via healthy measured current of the system.

2.5.6.2. Faulty voltage deviation

As shown in Figure 2.25, which demonstrates that confusion can arise in the
overlap area between the two voltages in cases of healthy voltage and one short-cir-
cuited PV module. This variation is due to temperature variation, when the temperature
increases the voltage decreases and vice versa. In this case, the MPP voltage of the
healthy PVG varies from 112V to 127 V, while the faulty PVG voltage (one PV module

short circuited) varies between 99V and 116 V.

Figure 2.26 shows that this overlap does not exist when two PV modules are
short-circuited in the same string. In this case, the MPP voltage of the faulty PVG varies
between in the interval 99V and 116 V. This diminution is more remarkable when four
PV modules are short-circuited in the same string. As illustrated by Figure 2.27, the
MPP voltage of the faulty system varies between 65V and 74 V. This close correlation

between the variation’s interval of the faulty PVG voltage and the number of the short-
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circuited modules can to be used to detect and identify the fault as illustrated by Figure

2.28.
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Figure 2.25. The voltage of a PVG with one short-circuited module.
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Figure 2.26. The voltage of a PVG with two short-circuited modules.
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The comparison between these three faults classes and the healthy case has
been used to establish the correlation illustrated by Figure 2.29. The PVG have a 10%
lower voltage when only PV module is short-circuited, 25% and 48% lower voltages

when two and four short-PV modules are short-circuited respectively.
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Figure 2.29. Faulty simulated voltage via healthy measured voltage of the system.

For the fault identification, the IFD algorithm combines the voltage residual in-
formation and the current residual information. This mixed information enables to build

the following correspondence table.

Table 2.3. Faults correspondence table.

Impp (%) Vmpp (%) Pmpp (%)
Healthy system 100 100 100
1PV MSC N 1 N 10 N 11
2 PV MSC N 1 N 25 N 26.5
4 PV M SC N 1 N 48 N 49
Faulty string N 50 100 N 50
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2.6. Conclusion

This chapter presents the experimental PV plant with its different components
followed by PV array modelling study with PV cell modeling presentation as well as I-
V characteristic of PV array under variation of working conditions. Then after, a crea-
tion of simulated PV array using Simpscape / MATLAB Simulink identical to real ex-
perimental PV array has been presented where the comparative study should be dis-
cussed in order to pay attention on the efficiency and precision by residual computa-
tions. The third stage is considered as the interest’s center of our study in order to
elaborate a database with healthy operation and different faults encountered in PV
generator such as open circuit fault and various cases of short circuit citing one PV
module short circuited, two PV modules short circuited and four PV modules short
circuited. The final stage of this chapter has been consecrated to the mathematical
analyze of different faults comparing to healthy operation with both electrical parame-

ters current and voltage of maximal power point.
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CHAPTER 3 FAULT DIAGNOSIS OF PHOTOVOLTAIC GENERATOR
USING BACK PROPAGATION NEURAL NETWORK.

3.1. Introduction

This chapter presents a new intelligent algorithm for PV system’s diagnosis and
fault detection (IFD). This approach requires algorithm that can detect and identify
three recurrent cases between, healthy, short circuit fault as well as disconnected
branch in PV generator using two Back Propagation Neural Networks (BPNN). The
first ANN is deduced for Impp classification and the second ANN for the Vmpp classifica-
tion. Both detection and isolation are simple and fast. The developed model requires
small training period and is based on only four inputs: the maximal power current and

voltage from the output I-V characteristic, the solar irradiation and the cell temperature.

The follow steps are consecrated to give explanation and more detailed about

this approach as well as its efficiency on fault detection in PV systems.

3.2. Methodology

As described by Figure 3.1, the implementation of the present IFD is as a three-
steps procedure: 1) The detection phase demonstrated in detail in chapter 2. 2) The
isolation phase: during this stage, two ANNS’ classifiers are necessitated to classify
the information about the fault which caused the detected residual information. These
two ANNSs have been already trained to separately classify the current and the voltage
at the MPP. 3) The identification phase: during this final stage, the output of the ANNs
is analysed by a combinational algorithm called the logical block whose role is to iden-

tify and recognize the corresponding fault.
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Figure 3.1. Schematic description of the IFD methodology.

3.3. IFD algorithm’s description
3.3.1. The various faults treated in this study

The IFD algorithm is designed to detect, identify and isolate four faulty modes:

1) one PV module short circuit, 2) two PV modules short circuit, 3) four PV modules
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short circuit and 4) faulty string. These faults are illustrated by Figure 3.2 and summa-

rized as well as symbolized by Table 3.1.
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Figure 3.2. Overall scheme of the PV system (a) normal operation conditions (b)

faulty string and short circuits faults.
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(2)

Figure 3.2. Overall scheme of the PV system (a) normal operation conditions (b)
faulty string and short circuits faults (the following).
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Table 3.1. The different state of the system with faults and their symbols.

Fault Symbol

Normal operation conditions C1

Fault detection refers to one panel short circuiti  n PV string _

Fault detection refers to two panels short circuit in PV string C3

Fault detection refers to four panels short circuit in PV string _

Fault detection refers to disconnection string C5

3.3.2. The ANNSs architecture

3.3.2.1. The classifier ANN of Impp

The classification of Impp requires ANN containing two neurons in its input layer,
the first neurons represents the solar irradiation data and the second neuron repre-
sents the current data at maximal power point (Impp). This ANN own one neuron in its
output layer devotes for the classification and localization of current. Between both
layers, it exists two hidden layers including eight neurons for each one. Figure 3.3
illustrates the architecture of ANN current.

Figure 3.3. Architecture of ANN current.
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3.3.2.2. The classifier ANN of Vmpp

This ANN illustrated in Figure.3.4 is deduced for the classification of the voltage
in PV generator. The present ANN requires two neurons in its input layer: the first one
is reserved for cell temperature data and the second neurons is reserved for voltage
data at maximal power point (Vmpp) followed by the second layer that represents the
hidden layer containing forty five neurons, and finally one neuron in output layer des-

ignated for the voltage classification.
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Figure 3.4. Architecture of ANN current.

3.4. Diagnosis procedure in PV generator

The diagnosis is based on a two-stage procedure. In the first stage, the fault is
detected by comparing the PV system’s and its mathematical model outputs. In case
of fault detection, the identification stage is lunched. In both stage ANNs are used.
They are exploited to simulate the PV system in the first stage and for the fault classi-
fication during the second stage. The classification is based on two ANNS, the first one
(ANN-CI) is used for the Impp classification and the second’s (ANN-CV) for the Vmpp
classification. For the identification stage, a combinational algorithm is used to analyse

the findings of the classification stage, which are based on the Impp and Vmpp values
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(codes). The different classes and their combinations are summarized in Tables 3.2

and 3.3 respectively.

Table 3.2. Classifications stage, classes and symbols.

Symbols Description Classes
Impp n Maximum power point current of normal operation condi- | Class1l
tions
Impp str Maximum power point current of faulty string Class2I
Vmpp n Maximum power point voltage of normal operation condi- | Class1V
tions

Vmpp 1sc | Maximum power point voltage of one module short circuit | Class2V

Vmpp 2sc | Maximum power point voltage of two modules short circuit | Class3V

Vmpp 4sc | Maximum power point voltage of four modules short circuit | Class4V

Table 3.3. Different combination of classes obtained.

Impp Vmpp \igglele Global Descrip- Global Clas-

Class Class tion sification
Impp n Classll |Vmppn | ClasslV | Normal operation Classl
conditions

Impp n Classll | Vmpplsc | Class2V One faulty PV Class2
module in string

Impp n Classll | Vmpp2sc | Class3V Two faulty PV Class3
modules in string

Impp n Classll | Vmpp4sc | Class4V Four faulty PV Class4
modules in string

Impp str Class2l | Vmppn | ClasslV Faulty string Class5

Figure 3.5 demonstrates clearly two flowcharts indicating the stages in this
study. The first flowchart shows the first steps procedure starting by the collect of
wheather data from renewable energy station as well as the electrical measured and
simulated data to ANN detection, where if both codes ANNs display 1 mean that the
model is in its normal operation else the activation of fault identification process is nec-
essary. On the other hand, the second flowchart explains precisely the code process

for both ANN to identify the kind of fault encounter in the PV generator.
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Figure 3.5. Flowchart of the IFD algorithm.
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The end of this section consists to simulate the diagnosis of the model using
two ANN's trained and tested, the output of both ANNs represents the input of combi-
national algorithm in order to obtain the final classification. The obtained database pre-
sents 10000 samples of each attribute, divided in two parts: 5000 samples for the ANN

classification current and 5000 samples for the ANN classification voltage.

The first ANN classifies the current of the maximum power point. For the training
phase, 2000 samples have been used. Each sample contains the current value at the
MPP (Impp(A)) and the irradiance level (W/m?) as input data. 50% of the samples rep-
resent healthy operation conditions and remaining 50% represent the disconnected

string with the combination summarized in Table 3.4.

Table 3.4. Faults correspondence table.

Faults Number of samples for each attribute
Healthy current 50 samples for each attribute.
Four PV module short circuited 40 samples for each attribute.
One PV module short circuited 100 samples for each attribute.
Two PV module short circuited 52 samples for each attribute.
Healthy voltage 30 samples for each attribute.
Two PV module short circuited 70 samples for each attribute.
One PV module short circuited 20 samples for each attribute.
Four PV module short circuited 38 samples for each attribute.
Healthy current 11 samples for each attribute.
Disconnected string 58 samples for each attribute.

Healthy current 31 samples for each attribute.
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Table 3.5. Faults correspondence table.

Faults Number of samples for each attribute

Healthy voltage 50 samples for each attribute.
Four PV module short circuited 40 samples for each attribute.
One PV module short circuited 100 samples for each attribute.
Two PV module short circuited 52 samples for each attribute.
Healthy voltage 30 samples for each attribute.
Two PV module short circuited 70 samples for each attribute.
One PV module short circuited 20 samples for each attribute.
Four PV module short circuited 38 samples for each attribute.
Healthy voltage 11 samples for each attribute.
Disconnected string 58 samples for each attribute.
Healthy voltage 31 samples for each attribute.

The second ANN requires in its training, 2000 samples have been used for each
attribute (Vmpp (V), Temperature (°C)) it means (2000 x 2= 4000 data) as input data,
for training phase; 25% samples represent healthy voltage (500 samples for each at-
tribute) and the remaining 75% samples represent different faults divided into three
equal categories which are: 25% for one PV module short circuited, 25% for two PV
modules short circuited and 25% for four PV modules short circuited. For the ANN
diagnosis 500 samples has been employed of each attribute (Vmpp (V), Temperature

(°C)) distributed in eleven cases respectively as summarized in Table 3.5.

3.5. Simulation Results and interpretations

This section is consecrated for the behavior of both ANN, their classification
under different faults, the global diagnosis of the PV generator as well as the perfor-

mance of the system studied.

3.5.1. Behavior of ANNs in PV generator fault diagn  osis

In this sub-section, the classification of each electrical parameter has been an-

alyzed separately.
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3.5.1.1. Current of maximal Power Point (Impp)

a- Training phase

The training stage of this ANN requires Marquardt Levenberg algorithm. In order
to obtain a good quality from point of view of classification, this ANN necessitates 2800
iterations and a performance equal to 0.0001 during 7:52min shown in Figure 3.6.

The curve of ANN'’s training Error of Current shown in figure 3.7 decreases from
10 and stabilized at 0.007 that indicates the precision of the model. In Figure 3.8 the
samples are in their right classes and the coefficient of regression displays 0.9808

value, which proves a top quality of classification.
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Figure 3.6. ANN'’s training phase of Current.
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b- Validation phase

Figures 3.9 illustrates the classification results for the ANN current. This shows
the ability of the obtained ANNSs to introduce the incoming data in their right classes
with high accuracy; 99.6% for the current classification. The accuracy of the current

classification is very important in this stage in order to obtain a good result of diagnosis.
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Figure 3.9. Impp classification using ANN.

3.5.1.2. Voltage of maximal Power Point (Vmpp)

a- training phase

As shown in Figure 3.10. the training stage of this ANN requires Marquardt
levenberg algorithm. In order to obtain a good classification, the number of iterations
is 1750; its performance is equal to 10-° during 6:43 minutes. The figure 3.11 demon-
strates the training error of the voltage issue from the ANN, where the decrease of
curve is clear going from 10 to 0.007 that proves the precision and efficiency of the
classification. The figure 2.12 demonstrates the classification under linear curve dis-

playing the coefficient of regression, which is 0.99934 that proves a high level of pre-
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cision from point of view of classification, where the figure demonstrates that the ma-
jority of samples are in their right classes, the only confusions are with three between

classl and class 2.
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Figure 3.10. ANN's training phase of Voltage.
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b- Validation phase

The classification results are illustrated in Figures 3.13 the second ANN, which
shows that the ability of the obtained ANNs to introduce the incoming data in their right
classes with high accuracy displaying 99% for the voltage classification. Some confu-
sion classes are between the first class and the second as well as between the second

and the third class, this confusion is due to the temperature variation.

4 T T T :
3.8 "~ © class 1Vmust belongs to 1 in graph
3.6/ -~ © class 2V must belongs to 2 in graph
34—~ ©  class 3V must belongs to 3 in graph
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3 | e e |

Voltage Classificatio

Samples

Figure 3.13. Vmpp classification using ANN.

3.5.1.3. Global classification of faults in PV gene rator.

As illustrated by Figure 3.14, the majority of the output decisions are in their
right classes, the few confusion cases are 1) between healthy system (C1) and one
PV module short circuited (C2), and between two PV modules short circuited (C3) and
one PV module short circuited (C2) and 2) two confusion cases for healthy system
(C1) belonging to faulty string (C5). The analysis of these confusion cases revealed
that their causes are the variation of the irradiance and the temperature respectively.
However, notwithstanding these isolated cases of confusion, the final simulation re-

sults show a high performance with a good accuracy equal to 98.6%.
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Figure 3.14 . Global diagnosis of the system.
Table 3.6. Faults correspondence table for ANN test phase.
Algor ithm Levenberg-Marquardt Levenberg-Marquardt
Hidden layer 2 1
Number of neuron in 8x8 45
each hidden layer
Iterations 2800 1750
Performance 0.0001 0.001
Time (min) 7.52 6.43
R (Coefficient of re- 0.9808 0.99934
gression)
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Table 3.7. Device specifications of learning machine.

Device name | Ip 157

Processor Intel(R) Core(TM) i5-4310U CPU@2.00GHz 2.60GHz

Install RAM 8.00GB

Device ID EO7ADB3E-6E21-453A-B746-28B1A825C51A

Product ID 00330-80000-00000-AA288

System type | 32-bit operating system.x32-based processor

Table 3.6 resumes the values of criterions existing in ANNs algorithms, which
plays a significant role in classification of both electrical parameters. In addition, Ta-
ble 3.7 demonstrates the device specifications of learning machine used in this ap-

proach.

3.5.2. Global test Classification

To show the effectiveness of the developed IFD, a test considering new samples
for each attribute has been performed in order to evaluate the obtained results. For
this aim 120 samples are applied for each attribute and split into seventeen cases as
summarized by Table 3.7. The results of this test are illustrated by Figure 3.15. The
robustness of the IFD approach is evident since only two faulty situations among the
120 cases have been wrongly classified. The first case is due to the confusion between
healthy system and one PV module short circuited. This confusion is caused by the
temperature variation, knowing that if the temperature increases the voltage decreases
and vice versa. The second is the result of confusion between the healthy system and

the disconnected string.



Table 3.7. Faults correspondence table for ANN test phase.

Faults

Healthy system

Number of samples for each attribute

10 samples for each attribute.
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One PV module short circuited

8 samples for each attribute.

Healthy system

4 samples for each attribute.

Disconnected string

6 samples for each attribute.

Healthy voltage

6 samples for each attribute.

Two PV module short circuited

8 samples for each attribute.

Healthy voltage

6 samples for each attribute.

Four PV module short circuited

11samples for each attribute.

Healthy system

6samples for each attribute.

Disconnected string

5 samples for each attribute.

Two PV module short circuited

8 samples for each attribute.

Healthy system

7samples for each attribute.

Four PV module short circuited

7samples for each attribute.

One PV module short circuited

4 samples for each attribute.

Healthy system

4 samples for each attribute.

Disconnected string

11 samples for each attribute.

Healthy system 9 samples for each attribute.
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Figure 3.15. IFD approach test results.
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This confusion is due to the irradiance variation, knowing that the irradiance is
proportional to the current in increase or decrease. The accuracy of the IFD approach

for this test is equals to 98.34%.

3.5.3. Performance of the system

The performance’s evaluation of the proposed algorithm is mandatory. In fact,
for each fault, the total samples are used for the test of evaluation. In this case, 524
samples are used for training phase and 500 samples for the classification phase for
each attribute in two ANNSs. The table below Table 3.8 demonstrates the developed
algorithm’s decision for each class in percentage. The best obtained results of the
performance of the system are colored in red on the diagonal with mean global preci-
sion displaying 98.6% that represents the overall accuracy. This percentage signifies

an excellent result of localization and classification of fault diagnosis in PV generator.

Table 3.8. Performance of classification with ANN (%)

Decision Class

Cl1 C2 C3 C4 C5
T- 082 0 0 0
§ C2 0.83 0 0 0
O
= C3 0 4.77 0 0
g

s K
s oo o o

Overall accuracy=98.6%.
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3.6. Conclusion

The fault detection and diagnosis of PV systems is necessary not only to in-
crease system power generation reliability but also for operating costs reduction. This
approach proceeds to elaborate an important database for healthy and faulty opera-
tion, thereatfter, to classify the faults information using two trained ANNs and finally to

identification and recognize the corresponding fault.

In this chapter a new intelligent algorithm for PV systems’ diagnosis and fault
detection (IFD) for grid-connected photovoltaic systems is presented. It guarantees
four faulty operating cases: one PV module short circuited in PV string, two PV mod-
ules short circuited in PV string, four PV modules short circuited in PV string and one
string modules disconnection in a PV array. For a high efficiency of the diagnosis each
electrical parameter, which is considered as the fault signature, is classified separately.
The final diagnostic tests were successful with matching rates equal to 99.6% and 99%
for the classification stage and 98.6% for the fault identification and isolation during the
final phase of the diagnosis process. After obtaining excellent results in diagnostic,
another question has arisen; what is the impact of the choice of ANNs on this diagnosis

approach? That is discussed in the next chapter.
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CHAPTER 4 COMPARATIVE STUDY OF PV GENERAT OR DlI-
AGNOSIS WITH FOUR DIFFERENT NEURAL NETWORKS.

4.1. Introduction

In response to the question asked in the previous chapter, a comparative study
of diagnosis in PV generator has been proposed in this chapter in order to analyze the
impact of the ANN’s choice on the diagnosis quality. For this reason, four types of
Artificial Neural Network have been proposed with five different algorithms that are
substituted in the same IFD algorithms, and their performances are analyzed and com-
pared to provide a well-argued response to the previous question. The five neural net-
works have the same four inputs: solar irradiation, cell temperature, the current and
voltage of the maximum power point of the I-V characteristic corresponding to the first

two inputs (the working conditions).

4.2. Methodology

Presently, fault diagnosis becomes the modern subject in PV installations that
takes an important place in the world in order to guarantee their safety and reliability.
For this reason, the accuracy, the sensivity, the specificity and the precision of fault
detection and isolation are the most pertinent criterions of the diagnosis quality. This
chapter provides analysis of the impact of the Artificial Neural Network choice on these
criterions. To achieve this goal, five ANNs are studied: Back-Propagation Neural Net-
work (BPNN), Probabilistic Neural Network (PNN), Generalized Regression Neural
Network (GRNN) and two Radial Basis Function Neural Network (RBF1, RBF2). These
types of ANNSs are used to identify and locate the most frequently fault encountered in
PV installations such as: open circuit and short circuit fault in PV generator. The com-
parison study used the same PV installation, the same working conditions, the same

data and the same types of faults with the five algorithms.
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4.3. Comparative study

This comparative study is structured in two phases. A first phase aimed at
choosing the ANNs to be tested while the second part concerns their effectiveness

evaluation.

4.3.1. Phase 1: ANNs choice

ANNSs have been used with succeed in classification, pattern recognition, fault
detection and diagnosis. To study the impact of the ANNSs type of the performance of
the IFD algorithm, several ANNs have been considered by maintaining the whole al-
gorithm topology and by using the same learning and testing data and conditions. The
five ANNs chosen for this comparative study are 1) Back Propagation Neural Network
(BPNN), 2) statistical ANNs with two Radial Basis Function Networks which are con-
sidered to be the most important statistical neural networks in the literature. In the pre-
sent study, two RBF ANNSs are used and noted RBF1 and RBF2. The fourth ANN is a
Probabilistic neural network (PNN) and the fifth ANN is a Generalized Regression Neu-

ral network (GRNN) both belonging to the previous family of statistical ANNSs.

4.3.1.1. BPNN

The origin of a back propagation neural network (BPNN) is a multilayer percep-
tron (MLP) that contains three basic parts shown in Figure 4.1, the first part represents
the input layer responsible to receive information, the third part represents the output
layer captures and centralizes process information, while in the second part situated
between the two last parts represents the hidden layer, which is composed of at least

two layers of nodes [65, 66].

The last layer cited above signifies a particular importance in neural network,
which implements the nonlinear transformations to the inputs entry into the network.
Furthermore, the hidden layers are the mathematical functions applied weights to the
input data adding bias v = }j-, x;w; + b; and conduct them via an activation func-
tion as the sigmoid function shown in Equation 4.1 in sequence to bring an output
particular to a considered result.
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Figure 4.1. Architecture of BPNN model of the present work.

In other words, the term Back propagation neural network (BPNN) applied on

MLP is used for the reason that it contributes to adjusting the weights of the neurons

with the objective to achieve a results more and more close to the real result [51].

4.3.1.2. Statistical neural network

This type of neural network uses statistical methods and probability theory to

compare a number of random variables as probability of density function (PDF) aiming

to obtain the exact decision[67].

Class | or
Class V
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a.Radial Basis Function Network (RBF)

The radial basis function network is dissimilar to classical multilayer perceptron
neural network. The particularity of radial basis function is to be the central point of
radial basis function neural network and to be advantageous in classification mode for
nonlinear data, it contains a simple structure and its convergence is speed and fast
[68]. As classical neural network, three layers compose RBF network, each layer com-
prises a specific function different to other layer. Figure 4.2 corresponds to the current
neural network as mentioned by its proper function. In more depth, the first layer rep-
resents the input layer where an equivalent number between the nodes and the dimen-
sions of the input is announced, the third layer characterizes the output layer knowing
that the number of nodes is similar to the size of output data, The particularity of this
layer is mapping the nonlinearity as a linear combiner involved in a novel space. In the
middle, the hidden layer called intermediate layer is introduced, noting that this layer
is nonlinear and each node in this layer is deliberately identified and characterized
through an activation function ¢ [69]. The action between input and hidden layer is
unsupervised contrary to the action between hidden and output layer that is super-

vised.

The radial basis function process estimates each data of the input vectors, the
recoded training data collected from the present network are compared to the input
value in order to produce a similar data, each similarity value is multiplied by weights
in hidden layer and finally the summation is displayed in the output layer. For any new
input data, the network can simply be calculated through to a Euclidean distance meas-
urement between the input and training data. In this kind of cases, it is necessary to
determine the center and the standard deviation or spread ¢ of node coming from the
intermediate layer as well as the weight matrix disposed between the hidden layer and
the output layer. In general, a possibility to determine the center of node in hidden layer
can be ensured by cluster method. This method requires K-Means Clustering Algo-
rithm in sequence to divide data points into diverse categories, the favored center point
Is more particular when a similarity of characteristics and properties exists in the same
type of internal. The activation function is radially symmetric basis function presented

as Gaussian function in Equation 4.2 [70, 71]:
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0:() = exp (—51) @2)

Where x represents the meteorological parameters; cjand oijare center and

spread of the i"™ RBF node, respectively. The spread can be calculated by Equation
4.3 [68]:

_ Amax

01 = NG 4.3)

Where n is the number of the node in the intermediate layer, dmax is the

maximum distance between the cluster centers selected

Then, the outputs of the non-linear activation (¢i(x)) are integrated linearly with the
weight vector wj of the output layer to produce the output network class m Equation
4.4:.

classm =Y, o;w; (4.4)
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Figure 4.2. Architecture of RBF model of the present work.
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Two methods of radial basis function neural network with two functions are pre-

sented below:
« RBF1

This type of neural network is presented by newrbe function. It is very quickly
concepting a radial basis function creating a network with zero error on training vector.
Spread should not be so large that each neuron is effectively responding in the same,

large, area of the input space [72].

* RBF2

This type of neural network is presented by newrb function. It iteratively creates
a radial basis network one neuron at a time. The larger spread is the smoother the
function approximation. Too large a spread means a lot of neurons are required to fit
a fast-changing function. Too small a spread means many neurons are required to fit
a smooth function, and the network might not generalize well. The Call of newrb with

different spreads is necessary to find the best value for a given problem [72].

b. PNN

According to the literature, the probabilistic neural network (PNN) designed by
Specht [58] is considered as favor supervised learning network in reason to its short
period of time training ability, perfect generalization qualification, excellent particularity
in pattern recognition as good as classification and diagnosis [51, 64, 79]. About its
architecture, the PNN contains four layers: the input layer responsible of the data en-
try, the pattern layer destined for calculating the probabilities of each class, the sum-
mation layer destined to sum the probabilities obtained from the last precedent layer
multiplied by their respective weights coefficient given and finally the output layer dis-

plays the final classification where the input data belongs [73,74].

The pattern unit is responsible to receive information from the input units x; and
corresponded it to their respective weights coefficient given W; [51]. In fact, the PNN
performance is guaranteed by two predominant factors, the first one is the number of
neurons in pattern layer and the second one is suitable activation function given by the
Equation 4.5.
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_ (Wi_x)t(Wi_x))
(2012)

@(x) = exp ( (4.5)

Where: o represents the smoothing parameters (spread)

Appropriately, smoothing parameter plays an important role during the PNN
model optimization process, it depends to the input data. The output units of the pattern
layer will be transfer to the units of summation layer, in this part a certain number of
units are existent referring to the number of classes it means one unit per class. Each
output unit in the summation layer calculates probability density function (PDF) of the

input vector given in Equation 4.6 [51, 73, 74]:

1

1 Wi—xa)*(Wi—xqi)
fa(X) = Gz 7 Li=1 €Xp [—

Z (4.6)

20'1

Where: M is the number of patterns, n is learning set size, xa describes the
corresponding it training pattern of a class. The output layer called decision layer con-
tains one unit, which decides and displays the final class coming from summation layer,

which can be defined as:
class(x) = argmax{f,(x)}, 1<is<M 4.7)

Where: M is number of classes, class(x): denotes the predicted class of x.

Figure 4.3 illustrates the architecture of this kind of neural network plus their

functions according to exact layer.

Ensuring the effectiveness of PNNs is attached by the PDF accuracy depending
of the excellent determination value of smoothing parameter oz which symbolizes a

huge advantage for this type of network.
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Figure 4.3. Architecture of PNN model of the present work.

c. GRNN
As probabilistic neural network (PNN) generalized regression neural networks
(GRNN) are recognized by their quick capability in training phase on spare data set
[60]. Its architecture contains four layers: the input layer, the pattern layer, the summa-
tion layer and the output layer as shown in Figure 4.4. The role of input layer is just like
others ANNSs responsible to receive the information data. When in the pattern layer

plays the same role as pattern layer in PNN, its equation is as follows [74, 75]:

590 = g B e [ S22 e [ )

Where:

n is number of simple observations and M is dimension of the vector variable x, o is
smoothing parameter, X is particular measured value of the random variable x which
represents the independent data in the input system, the regression performed by

GRNN products the most probable scalar Y provided from specified input vector X,
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which represents the dependent data in the output system, Yi is desired scalar output
given the observed input Xi.

The summation layer has two kinds of processing units: the first one is called
the “Numerator” (N) neuron representing the sum of the pattern layer outputs, in this
case, each weighted by an observed output scalar, Yi, corresponding to Xi in the train-

ing samples, defined as follow Equation 4.9:

_ (X_Xi)t(X_Xi))

Numerator(N) = Y, Y, exp ( 20,2

(4.9)

While the second one is called the “denominator” (D) neuron representing the sum of
the pattern unit outputs, presented as follow Equation 4.10:

¥\t (x—x-:
_ x=x)tx xa) (4.10)

Denominator(D) = Y1, exp ( 2012

At the end, the output layer contains just one neuron displaying the classification
, receives specifically the two outputs from the summation units and divides the “Nu-
merator” part by the “Denominator” part Equation 4.11 to produce an estimate

for y given X.

A _ Numerator
Clx) = / Denominator (4.11)

C(x) means the final electrical parameter classification.
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4.3.2. Phase 2: Effectiveness evaluation

In order to evaluate the effectiveness of the five IFD algorithms, theirs results

are analyzed using the most frequently used diagnosis performance indicators in sci-

ence and engineering fields [77, 78]:

a. Accuracy: implies how nearest is the results to the real value.

TP+TN
TP+TN+FP+FN

Accuracy =

x 100

(4.12)

b. Sensivity: measures in what way the positive samples are correctly classified.

TP
TP+FN

x 100

Sensivity =

(4.13)
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c. Specificity: measures in what way the negative samples are correctly classified.

TN
FP+TN

Specificity = x 100 (4.14)

d. Precision: implies how nearest the results are to each other.

TP
P+TP

Precision = = x 100 (4.15)

Where:

TP: true positive, signifies that the samples contain characteristics of a specific class

and indeed they are classified in this class.

TN: true negative, signifies that the samples do not contain characteristics of a specific
class and indeed they are not classified in this class.

FP: false positive, signifies that the samples do not contain characteristics of a specific

class and they are classified in this class.

FN: false negative, signifies that the samples contain characteristics of a specific class

and indeed they are not classified in this class.

Table 4.1 summarizes the four major categories as result of binary classification
containing two rows and two columns into confusion matrix called confusion table in
the intension to confirm the performance evaluation related to the classifier. The num-
ber of rows and columns depends on the number of classes. The terms true and false
refer to whether the prediction corresponds to the external criticism conversely to the
terms positive and negative that refer to the prediction of the classifiers.
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Table 4.1. Confusion matrix under intermittent classification troubles.

Classification outcome from real label
e experimental data
Classification outcome True class False class
from ANNs
True class TP FP
predicted
False class FN TN
label

4.4. Results presentation and discussions

This section depicts the central and the most important part of this dissertation,
which consists to simulate the diagnosis of the model with five different algorithms.
Each algorithm diagnoses the model separately from the other to find which one is the
best in terms of response time, efficiency and accuracy. Therefore, two ANN's trained
and tested for each algorithm, the outputs of both ANNs are inserted as the input of
combinational algorithm in the interest to obtain the final classification.

The obtained database presents 12544 samples of each attribute, divided in two
parts: 6272 samples for the ANN current classification and 6272 samples for the ANN
voltage classification.

The first ANN classifies the current of the maximum power point. This ANN con-
tains two neurons in input layer, which represent irradiance and current for the maxi-
mum power point respectively, one neuron in output layer, which represent current
classification, between these two layers, there are two hidden layers of eight neurons
in each one. In the training phase, each sample contains the current value at the MPP
(Impp (A) and the irradiance level (W/m2) that is (2800 x 2 =5600 data) as input. Where,
50% of the samples represent healthy operation conditions and remaining 50% repre-

sent the disconnected string. The step of current ANN diagnosis needs 336 samples
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of each attribute (Irradiance (W/m2) and Impp (A)) divided into thirty-one cases respec-
tively for testing and ensuring the classification stability and efficiency. Table 4. 2 sum-

marizes all treated cases with their number of samples of corresponding manner.

The second ANN classifies the voltage of the maximum power point. This ANN
contains two neurons in input layer and one neuron in the output layer. The input
neurons receive cell temperature and voltage of the maximum power point respectively
when the output neuron gives the voltage classification. The ANN contains one hidden
layer of forty-five neurons. For its training, 2800 samples have been used for each
attribute (Vmpp (V), Temperature (°C)) it means (2800 x 2= 5600 data) as input, for
training phase; 25% samples represent healthy voltage and the remaining 75% sam-
ples represent different faults divided into three equal categories which are: 25% for
one PV module short circuited, 25% for two PV module short circuited and 25% for
four PV module short circuited. For each case there are 700 samples for each attribute.
On the other side, the ANN diagnosis employs 336 samples of each attribute (Vmpp (V),
Temperature (°C)) means (336 x 2 = 672 data) distributed in thirty-one cases respec-

tively resume in Table 4.3.



Table 4.2. Faults correspondence table of current.
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Faults Number of sa mples for each attribute

Healthy voltage

9 samples for each attribute.

Disconnected string

11 samples for each attribute.

Four PV module short circuited

15 samples for each attribute.

Healthy voltage

11 samples for each attribute.

Two PV modules short circuited

30 samples for each attribute.

One PV module short circuited

16 samples for each attribute.

Healthy voltage

11 samples for each attribute.

Disconnected string

9 samples for each attribute.

Two PV modules short circuited

11 samples for each attribute.

Four PV modules short circuited

7 samples for each attribute.

One PV module short circuited

6 samples for each attribute.

Healthy voltage

10 samples for each attribute.

One PV module short circuited

8 samples for each attribute.

Two PV modules short circuited

7 samples for each attribute.

Healthy voltage

5 samples for each attribute.

Four PV modules short circuited

7 samples for each attribute.

Healthy voltage

4 samples for each attribute.

Disconnected string

13 samples for each attribute.

One PV module short circuited

11 samples for each attribute.

Two PV modules short circuited

14 samples for each attribute.

Healthy voltage

5 samples for each attribute.

Disconnected string

13 samples for each attribute.

Healthy voltage

5 samples for each attribute.

One PV module short circuited

9 samples for each attribute.

Four PV modules short circuited

12 samples for each attribute.

Disconnected string

12 samples for each attribute.

Healthy voltage

21 samples for each attribute.

One PV module short circuited

13 samples for each attribute.

Four PV modules short circuited

15 samples for each attribute.

Two PV modules short circuited

10 samples for each attribute.

Healthy voltage

4 samples for each attribute.
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Table 4.3. Faults correspondence table of voltage.

Faults Number of sa mples for each attribute

Healthy voltage

9 samples for each attribute.

Disconnected string

11 samples for each attribute.

Four PV module short circuited

15 samples for each attribute.

Healthy voltage

11 samples for each attribute.

Two PV modules short circuited

30 samples for each attribute.

One PV module short circuited

16 samples for each attribute.

Healthy voltage

11 samples for each attribute.

Disconnected string

9 samples for each attribute.

Two PV modules short circuited

11 samples for each attribute.

Four PV modules short circuited

7 samples for each attribute.

One PV module short circuited

6 samples for each attribute.

Healthy voltage

10 samples for each attribute.

One PV module short circuited

8 samples for each attribute.

Two PV modules short circuited

7 samples for each attribute.

Healthy voltage

5 samples for each attribute.

Four PV modules short circuited

7 samples for each attribute.

Healthy voltage

4 samples for each attribute.

Disconnected string

13 samples for each attribute.

One PV module short circuited

11 samples for each attribute.

Two PV modules short circuited

14 samples for each attribute.

Healthy voltage

5 samples for each attribute.

Disconnected string

13 samples for each attribute.

Healthy voltage

5 samples for each attribute.

One PV module short circuited

9 samples for each attribute.

Four PV modules short circuited

12 samples for each attribute.

Disconnected string

12 samples for each attribute.

Healthy voltage

21 samples for each attribute.

One PV module short circuited

13 samples for each attribute.

Four PV modules short circuited

15 samples for each attribute.

Two PV modules short circuited

10 samples for each attribute.

Healthy voltage

4 samples for each attribute.
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The classification results of the five algorithms are illustrated as follow:

4.4.1. BPNN classification

The classification tests show that all samples for the classification of the Impp are
in their right classes as illustrated by Figure.4.5. While nearly all samples for the clas-
sification of Vmpp are in their correct classes. Only one confusion case has been en-
countered during which, the ANN confused a healthy voltage with a short-circuited PV
module as shown by Figure 4.6. This confusion is due to the temperature variation. As
a result, the combination of the two ANNSs classification results outputs reveals a very
high accuracy. In fact, only one sample is confused (confusion between C1 and C2)

on a dataset that contains 336 samples as illustrated by Figure. 4 7.

ph
ph

Current classificatio

Figure 4.5. Impp classification using BPNN.
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BPNN Voltage Classification
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Figure 4.6. Vmpp classification using BPNN.
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Figure 4.7. Global diagnosis of the system using BPNN.
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4.4.2. RBF classification
4.4.2.1. RBF1

The classification results for this type of neural network are demonstrated in
Figure 4.8 and Figure 4.9 representing the current classification and the voltage clas-
sification respectively. All samples for the classification of Impp by RBF1 are in their
right classes, on one side. On the other side, nearly all samples for the classification
of Vmpp by RBF1 are in their right classes only one confusion between one PV module
short circuited and healthy voltage , the analyze of this case of confusion is due to the

variation the temperature.
The combination of the data of both figures through this neural network is

demonstrated in Figure 4.10 where the outcome reveals a very high accuracy, only

one sample confuses between (C1) and (C2) on dataset of 336 samples.

RBF1 Current Classification
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Figure 4.8. Impp classification using RBF1.
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RBF1 Voltage Classification
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Figure 4.9. Vmpp classification using RBF1.
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Figure 4.10. Global diagnosis of the system using RBF1.
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4.4.2.2. RBF2

The classification results for the second type of neural network are demon-
strated in Figure 4.11 and Figure 4.12 representing the current and the voltage classi-
fication respectively. All samples for the classification of Impp by RBF2 are in their right
classes, on one side. On the other side, most samples for the classification of Vmpp by
RBF2 are in their right classes but three confusion samples are between one PV mod-
ule short circuited and healthy voltage and between two PV modules short circuited
and one PV module short circuit , the analyze of this case of confusion is due to the

variation the temperature.
The combination of the data of both figures through this neural network is

demonstrated in Figure 4.13 where the outcome reveals a good accuracy, only one
sample confuses between (C1) and (C2) on dataset of 336 samples.

RBF2 Current Classification
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Figure 4.11. Impp classification using RBF2.



Voltage classification

Global Classification

RBF2 Voltage Classification

i I il i

class 1V must belongs to 1 in gre
class 2V must belongs to 2 in gre
class 3V must belongs to 3 in gra
qlass 4V must belgngs to4 in gra

M- — — — e — - — e — — — — L - — L _ _[d —

150 200 250 300
Samples
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4.4.3. PNN classification

For this model of neural network, the current and voltage classification are
demonstrated in Figure 4.14 and Figure 4.15 respectively. All samples of the classifi-
cation whether for the current or for the voltage are in their right classes without any
confusion. The global diagnosis through this model of neural network is demonstrated

in Figure 4.16 where the outcome reveals an excellent efficiency.
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Figure 4.14. Impp classification using PNN.
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Figure 4.15. Vmpp classification using PNN.
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PNN Global Classification
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Figure 4.16. Global diagnosis of the system using PNN.

4.4.4. GRNN classification

The current and voltage classification for the last neural network are demon-
strated in Figure 4.17 and Figure 4.18 respectively. All samples for the classification
of Impp by GRNN are in their right classes and most samples for the classification of
Vmpp by GRNN are in their right classes only two confusion samples are between two
PV modules short circuited and one PV module short circuit , the analyze of this case

of confusion is due to the variation the temperature.

The combination of the data of both figures through this neural network is
demonstrated in Figure 4.19 where the outcome reveals a high efficiency, with two

sample confused between (C2) and (C3) on dataset of 336 samples.
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Figure 4.17. Impp classification using GRNN.
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Figure 4.18. Vmpp classification using GRNN.
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GRNN Global Classification
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Figure 4.19. Global diagnosis of the system using GRNN.

4.4.5. Training phase and response time

The table below (Table 4.4) resumes the behavior of the five algorithms for the
two ANNSs representing the five function using in training phase of PV systems diagno-
sis relative to the present study with their different parameters such as: function, acti-
vation function, training spread, training goal and number of neurons in each hidden

layer for the two electrical parameters.



Table 4.4. Parameters adjustable of each neural network.
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ANN RBF1 RBF2 PNN GRNN
Impp -Activation -Activation -Activation -Activation -Activation

function: tan- | function : ex- | function: ex- | function: ex- | function: ex-

gent sigmoid. ponential ponential ponential ponential

-Function: -Function: -Function: -Function: _Function:

newff newrbe newrb newpnn newgrnn

-Algorithm: -training -training -training o

Levenberg spread = 29.7 | goal= 103 spread= -fraining

Marquart -training 1.05 spread=

-two  hidden spread= 35 1.05

layers: 8 x 8 -One hidden

neurons re- layer with

spectively 1600 neu-

-training rons.

goal= 10* -MSE:

-training 0.02816

epochs= 15




Table 4.4. Parameters adjustable of each neural network (the following).
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ANN RBF1 RBF2 PNN GRNN
Vmpp - Activation | -Activation -Activation -Activation -Activa-

function: tan- | function: function: function: tion func-
gent sigmoid. exponential | exponential | exponential | tign: expo-
- Algorithm : Le- | -Function: -Function: -Function: nential
venberg Marquart | newrbe newrb newpnn _Eunction:
-Function: newff | -training -training -training
-One hidden | spread= goal= 102 spread= neV\-/g-rnn
layer: 45 neurons. | 49.14 -training 7.38 -training
-training  goal= spread= 4.9 spread=
10* -One hidden 4.9
-training layer: 50.
epochs = 15 neurons.

-MSE:

0.01325

In order to keep a high quality of diagnosis in PV systems, a very important
criterion should be taken in consideration, which plays a significant role in the time of
respond, it is time factor. This factor changes from one algorithm to another. If the
response time is short with fewer classification errors, it means that the model is per-
fectly efficient. Table 4.5 recapitulates the variation of running time corresponding to
both electrical parameters and global diagnosis of PV systems with the five different

algorithms.
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Table 4.5. The variation of running time for the five algorithms.

Time of (Impp) 13s 12s 26min30s  09s 12s
Time of (Vmpp) 16s 28s 01min36s  15s 25s
Time of (Global diag- 34s 50s 28min20s  30s 45s
nosis)

4.4.6. Analysis the efficiency of the five differen  t algorithms

Table.6 demonstrates the new nomination of the five different algorithms us-

ing IFD in the aim to use it in the next figures of four various criterions.

Table 4.6. The nomination of the five algorithms using IFD.
IFD1 IFD2 IFD3 IFD4 IFD5
BPNN RBF1 RBF2 PNN GRNN

4.4.6.1. Accuracy

The Table.7 represents current Accuracy, where the five algorithms display ex-
cellent results with 100% for both classes meaning that all samples have been classi-
fied in their right classes, the results are proved in Figures 4.5, 4.8, 4.11, 4.12 and
4.17. Table 4.8 represents the voltage accuracy. In this case, the PNN is considered
as the best classifier with 100% for all classes verified in Figure 3.16, the BPNN, RBF1
and GRNN display two classes voltage under 100% while the RBF2 three classes
under 100%.

Table 4.7. Current Accuracy (%)
RBF1 RBF2 GRNN BPNN PNN
Class 11 100 100 100 100 100
Class 2I 100 100 100 100 100




Table 4.8. Voltage Accuracy (%)

100

RBF1 RBF2 GRNN BPNN PNN
Class 1V 100 99.70 100 99.70 100
Class 2V 99.40 98.80 99.399 100 100
Class 3V 100 99.40 99.399 100 100
Class 4V 100 100 100 100 100

Table 4.9 shows the global accuracy according to the five classes of this study,

where at first the PNN confirm its best accuracy with 100% for all classes, the BPNN
represents a better accuracy (99.69%) than RBF2 and GRNN (99.39%) with two con-

fusion classes while the RBF1 effects the rather good classifier with three classes

under 100% accuracy.

Table 4.9. Global Accuracy (%)

BPNN RBF1 RBF2 PNN GRNN
Class 1 99.70 100 99.70 100 100
Class 2 100 99.40 98.80 100 99.40
Class 3 100 100 99.40 100 99.40
Class 4 100 100 100 100 100
Class 5 100 100 100 100 100

Figure 4.20 shows the Confusion of global accuracy according to the five clas-

ses of this study, where at first the PNN confirm its best accuracy with 0% confusion

for all classes, the BPNN represents a better accuracy between 0-0.15 % than GRNN

(0-0.301 %) with two confusion classes. In other hand, the Confusion of accuracy in

RBF1 is between (0-0.301 %) which represents disorientation in three classes while

the RBF1 effects the rather good classifier with confusion accuracy varying between
(0-0.451 %) four classes.
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Figure 4.20. Confusion of the global accuracy in the five different algorithms.

4.4.6.2. Sensivity

Table 4.10 represents the same notes cited in the first paragraph of 4.4.6.1.
section. While Table 4.11 and Table 4.12 illustrate the voltage and global sensivity
respectively. Whereas the PNN presents 100% for all classes, in RBF1, BPNN and
GRNN one class under 100% is presented in one PV module short circuited and two
PV modules short circuited respectively. The voltage sensivity for RBF2 contains two
classes under 100% is presented in one PV module short circuit and two PV modules
short circuit, where Figure 4.21 perfectly illustrates the confusion of global sensivity

with five algorithms under five different classes.

Table 4.10. Current sensivity (%)
RBF1 RBF2 GRNN BPNN PNN

Class 1l 100 100 100 100 100

Class 2I 100 100 100 100 100




Table 4.11. Voltage Sensivity (%)
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RBF1 RBF2 GRNN BPNN PNN
Class 1V 97.70 98.84 100 100 100
Class 2V 100 96.92 100 98.43 100
Class 3V 100 100 96.92 100 100
Class 4V 100 100 100 100 100

Table 4.12. Global Sensivity (%)

BPNN RBF1 RBF2 PNN GRNN
Class 1 100 97.70 98.84 100 100
Class 2 98.43 100 96.92 100 96.92
Class 3 100 100 100 100 100
Class 4 100 100 100 100 100
Class 5 100 100 100 100 100
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Figure 4.21. Confusion of the global sensivity in the five different algorithms.



4.4.6.3. Precision
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Table 4.13 represents the same notes cited in the first paragraph of 4.4.6.1.

section.
Table 4.13. Current Precision (%)
RBF1 RBF2 GRNN BPNN PNN
Class 11 100 100 100 100 100
Class 2I 100 100 100 100 100
Table 4.14. Voltage Precision (%)
RBF1 RBF2 GRNN BPNN PNN
Class 1V 100 100 100 98.82 100
Class 2V 96.82 98.41 100 100 100
Class 3V 100 97.22 97.22 100 100
Class 4V 100 100 100 100 100
Table 4.15. Global Precision (%)
BPNN RBF1 RBF2 PNN GRNN
Class 1 98.82 100 100 100 100
Class 2 100 96.82 98.41 100 100
Class 3 100 100 97.22 100 97.22
Class 4 100 100 100 100 100
Class 5 100 100 100 100 100

The excellent results for precision are in both algorithms (PNN and RBF1) with

100% for all classes, the BPNN and GRNN manifest one class under 100% specifically

in one PV module short circuited, while the RBF2 reveals its poor precision with three

classes under 100% shown in Table 4.14 and Table 4.15 respectively and better prove

in Figure 4.22.
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4.4.6.4. Specificity

Table.16 represents the same notes cited in the first paragraph of Section
4.4.6.1. The best result for the specificity is in the PNN algorithm displaying 100% for
all classes, the rather good result is represented in the BPNN and GRNN algorithms
respectively with one class under 100% demonstrated in Table.16 and Table.17. The
RBF1 and RBF2 reflect their very insufficient specificity displaying two and three clas-

ses respectively under 100%. Where the result is illustrated in Figure 4.23.

Table 4.16. Current Specificity (%)
RBF1 RBF2 GRNN BPNN PNN
Class 11 100 100 100 100 100
Class 2| 100 100 100 100 100




Table 4.17. Voltage Specificity (%)

RBF1 RBF2 GRNN BPNN PNN
Class 1V 100 100 100 100 100
Class 2V 99.26 99.69 100 100 100
Class 3V 100 99.24 97.29 97.29 100
Class 4V 100 100 100 100 100
Table 4.18. Global Specificiy (%)
BPNN RBF1 RBF2 PNN GRNN
Class 1 100 100 100 100 100
Class 2 100 99.26 99.629 100 100
Class 3 97.29 99.69 99.24 100 97.29
Class 4 100 100 100 100 100
Class 5 100 100 100 100 100
. 2.5 ~~. _  Specificity
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Figure 4.23. Confusion of the global specificity in the five different algorithms.
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Figure 4.24 illustrates confusion of the four criterions (accuracy, sensivity, pre-
cision and specificity) in the five different algorithms noting that the highest confusions
focus in the cases of one PV module short circuited and two PV modules short cir-
cuited, some confusion in healthy system and faulty string, while four PV modules

short circuited do not represent any confusion in all algorithms.

AT
_A | ~
P ! AN
35 i
S T ~
S B e
n e
S S
|
2 SRR
225 bt M
e R .
— - \ N
8 2.0 B class 1
| | | P
8 T - I class 2
PE I !
: 150 [ Jclass 3
| | [ | N
S 1l - [ class 4
:
3 o g B ciass 5
o)} | | | | S~ S~ ‘
— . | AR \\‘
§0-5 TR
| |
~ <. |
0-L1 e
0 o B
N
[ L
| s
Accuracy S
] =8
"
|
Sensivity
I~
-
|
|

Precision

specificity 1 2
Classe

Figure 4.24. Confusion of the global criterions in the five different algorithms.

Table 4.7 specifies the localization of confusion in all algorithms, where the con-
fusion is between healthy system and one PV module short circuit and between one
PV module short circuit and two PV modules short circuit. In these cases, the confu-

sions are due to the variation of the temperature.
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Table 4.19. Localization of confusions in all algorithms.

CONFUSIONS
BPNN One sample of healthy system in one PV module short circuit.
RBF1 Two samples of one PV module short circuit in healthy system.
RBF2 - One sample of One PV module short circuit in healthy sys-
tem.
- Two samples of two PV modules in one PV module short
circuit.
PNN No confusion for all samples in all classes.
GRNN Two samples of two PV modules short circuit in one PV mod-

ule short circuit.

45. Conclusion

This chapter has brought up comparative study of fault detection and diagnosis
of PV generator with five different neural networks. The algorithms can locate and
classify the frequent fault encountered in PV system such as: disconnected branch in
PV generator and various cases of short circuit fault. The efficiency and reliability of
these algorithms has been tested under four principal criterions called key statistical
concept that are: accuracy, sensivity, specificity and precision in order to find the best
classifier algorithm. Additionally, this approach has taken another important factor in
consideration playing a significant role to keep a high quality of diagnosis, which is

time of respond.

The results mark a good illustration from point of view of classification with tiny
confusions in some algorithms between healthy, one PV module short circuited and
between one PV module short circuited and two PV modules short circuited. In ac-
cordance with efficiency and response time of these algorithms: the lowest efficient
algorithm is RBF2 as its performance varies between 96.82 and 100% with three con-
fusion classes and its response time is around 28 minutes. While, the satisfactory
algorithms are RBF1 and GRNN with two confusion classes in short response time
followed by BPNN algorithm which represents a very well results of performance and
at the end, the PNN algorithm reveals its high quality of performance displaying 100%
in all key statistical concept with a shortest response time related to the others algo-

rithms.
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General Conclusion

Over the last few years, modern civilisation thinks and discusses profoundly
about energy transition from fossil fuel to renewable energies especially photovoltaic
energy. The aim of this conversion focuses not only in the impact of climate change
but also in the impact of public and individual health due to increasing morbidity and
mortality.

However, the production of photovoltaic energy growing up in staggering rate
for its cleanliness, safety, quiet, reduction in energy bills and low maintenance require-
ment. With a view to achieve a maximum harvest of energy supplied by PV systems,
diagnosis presents an indispensable and crucial tool to maximize power production,

reliability, efficiency, safety and quality in global PV systems.

In the present thesis, a new intelligent diagnosis solution is presented. This so-
lution uses one type of Artificial Intelligence which is the Artificial Neural Network.
Thereunto, the choice of ANN has been done for its simplicity, flexibility, established
usage as well as its rapidity. The developed method for PV grid connected systems’
fault diagnosis requires two ANNSs that classify separately the current and the voltage
of maximal power point respectively. The outputs of both ANNs are the input of a com-
binational algorithm where its output provides the global diagnosis of PV generator.
The global diagnosis of the studied PV system was able to prove its quality by its
excellent accuracy and efficiency from the point of view of fault localization in accord-

ance to an average overall accuracy of 98.6%.

The last part in this thesis examines the impact of the Artificial Neural Network
choice on the performance of an IFD diagnosis algorithm, which is designed to detect
and isolate faults in grid connected PV installation. Four most pertinent criterions are
considered in this analysis: the accuracy, the specificity, the sensitivity and the rapidity.
The goal is to choose the best ANN to ensure the IFD diagnosis efficiency and conse-

quently PV system’s safety, durability and reliability. For this propose, five different
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ANNs have been used and tested: Back Propagation Neural Network, Probabilistic
Neural Network, Generalized Regression Neural Network and two Radial Basis Func-
tion Neural Network. The performances of these ANNs have been analyzed and com-
pared. These five Neural Networks have the same inputs as the first part of the work:
cell temperature, solar irradiation, voltage and current of the maximal power point of
the |-V characteristics. The same faults treated in the last ANN (BPNN) as well as the

same working conditions.

For their comparison, the five ANNs based IFD algorithms has been tested us-
ing 336 different functioning cases enclosing healthy functioning cases and different
faulty functioning cases. These investigations demonstrate that the RBF2 based algo-
rithm presents the lowest efficiency with a response time equal to 28 min. noting that
its performance varies from 96.82% to 100% on all criterions with three confusion
cases for faults classification. While the obtained results from GRNN and RBF1 have
presented good results on all criterions with a short response time and a good classi-
fication with two confusion classifications cases. Concerning the BPNN based IFD al-
gorithm, the tests reveal very good results on all criterions varying from 97.27% to
100% with a very good classification’s score (one confusion sample). Finally, the PNN
based IFD algorithm displaying 100% of success score on all key statistical concepts
compared to other ANNs with no confusion cases. This places it at the top of the list
and qualifies it as the best intelligent diagnosis algorithm for the studied grid connected

PV installation.

The efficiency of the developed method is experimentally evaluated by using
real measured data, collected from real Grid Connected PV system is part of the Al-
gerian-Spanish cooperation placed on the roof and is composed by 90 monocrystalline
PV modules provides output power equal to 9.54 kWp located at the Centre Des En-

ergies Renouvelables in Algiers (Algeria).

In this study, the focus was on the fault detection and diagnosis of PV generator

in small grid connected PV system. For that, five algorithms using ANNs were studied
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and analyzed. In order to guarantee perfect and more accurate methods of fault de-
tection and diagnosis of PV systems, more advanced methods are introduced by the
researchers for numerous purposes. Therefore, a significant future work is investigat-
ing other of Al and signal processing techniques for many failures cases in PV systems
installations at a high scale in real time. In addition, improved Al fault diagnosis tech-
niques can be applied in a more in-depth way from generator to PV cell by integrating
artificial intelligence hybridization for certain fault cases requiring a high precision. In
other words, the used of technics citing above in fault detection and diagnosis can be
not only in PV stations but also in smart grid, electric vehicle or in electrical machines

employing PV systems.
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1. Introduction

In the last few decades, renewable energies have gained great
importance around the world, their development increases expo-
nentially to the detriment of conventional energy sources such as:
oil, coal, lignite and natural gas which are the original source of
climate change phenomenon, environmental pollution, human
health degradation and the growth of the greenhouse effect [1].
Furthermore, renewable energies, in particular photovoltaic energy
is safe and clean, with no carbon di-oxide emission, widely avail-
able and environment-friendly. The growth of photovoltaic energy
production will have a very important role in the electricity pro-
duction in the future. It has been proven that solar irradiance is the
biggest source nowadays, it has achieved a cumulative capacity of
137.5 Giga Watt were newly installed in 2019 with a forecast of 750
Giga Watt by end of 2020 (2].

To achieve the best power-generation efficiency, PV systems
must work under particular conditions; inshaded area, high

* Corresponding author. SET Laboratory, Electronics Department, Blida 1 Uni-
versity, BP 270, Blida, Algeria.
E-mail addresses: c.karamostefa@univ-blidadz, karasolar@yahoo.fr (C. Kara
Mostefa Khelil).

https://doi.org/10.1016/j.energy.2020.118591
0360-5442/© 2020 Elsevier Ltd. All rights reserved.

irradiation level, low temperature and PV panel optimal orienta-
tion. In addition, PV panels must be clean because the accumulation
of dirt masks the solar irradiation and reduces the efficiency of the
global system. This necessitates regular maintenance in addition to
the monitoring. In fact, during their long lifetime, of about 25 years,
PV systems can be the subject of numerous faults. That explains the
importance of the diagnosis and fault detection for PV systems
which is necessary not only to increase system power generation
reliability but also for operating costs reduction. Real-time diag-
nosis of PV system has drawn many researchers attention nowa-
days. As a result, a great deal of recent research on PV systems have
been focusing on that area to help to make possible the fault
detection and isolation especially for the PV generator.

On the basis of a literature overview, it was concluded that PV
diagnosis techniques can be classified in a number of categories.
The first category includes model based diagnosis techniques [3] in
which the model of the system is used to decide about the occur-
rence of faults. For this, the simulation values are compared to the
system outputs. The inputs of the model are mainly the meteoro-
logical working conditions and the electrical parameters of the
installed PV modules [4-9,12]. The output of the model is the
maximum power point of the PV generator. Additional parameters
have been used while dealing with grid connected PV power plants
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such as DC input/output ratio, AC input/output ratio and reference
yield measurements [10,11]. Model-based fault detection methods
use residuals which indicate changes between the PV generator and
its model. This difference is used to estimate the increase of the
series resistance and the decrease of the parallel resistance using
fill factor method [13], and can be used to focus on intra-string line-
line fault [ 14] or to detect the shading using exponentially weighted
moving average estimation (EWMA) [15]. Another method to
detect and diagnose faults such: short circuit, open circuit, shading
and degradation in PV arrays by residuals using current-voltage
curves and ambient conditions based on deep neural network has
been also developed [16].

In the second category, are classified the signal processing based
fault diagnosis methods. This includes methods based on

[ PV array Isofoton 106-12

Impp meas

Irradiance (W/nj2)

PV array
Simulated

Table 1

Electrical properties of the Isofoton 10612 PV module [14,32).
Solar Panel electrical characteristics Value
Peak power 106 W
Short circuit current (Isc) 654 A
Open circuit voltage (Voc) 216V
Voltage at Maximum Power Point (Vmpp) 174V
Current at Maximum Power Point (Impp) 6.10A
Number of cells connected in Series 36
Number of cells connected in Parallel 2
Cell Short circuit current 327A
Cell Open circuit Voltage o6V

mathematical or statistical analysis such as time domain reflec-
tometry [17] and Fourier analysis [ 18], which are used to identify

Temperature (°C)

Impp si

Irradiance (W/

!

'

mpp '

ANN-CV !
1

1

1

Fault
Identification

Fig. 1. Schematic description of the IFD methodology.

Fig. 2. Roof grid connected PV plant in Algiers, Algeria.
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and locate open circuit faults in grid connected PV plant for
example. Whoever, these techniques should be combined to other
diagnostic methods as earth capacitance measurement to expand
their faults diagnosis capability [19,20). Measurements are gener-
ally the current-voltage (1-V) curve. This curve can provide crucial
information such as short-circuit current, open circuit voltage, fill
factor indicator, ideal factor, series and shunt resistors values for a
PV module, a PVG, a string or branch or PV field [21,22,26,27]. These
methods are known to be very efficient to detect and isolate the
presence of shading and soiling. Currently, the new generation of
PV modules with integrated converters, are fully or partially able to
sweep the IV curve of the photovoltaic generator [23—25].

In the third category, are classified computational intelligence-
based techniques involving, amongst other concepts, Artificial
Neural Networks (ANNs), Fuzzy Logic (FL), Genetic Algorithms (GA)
and k-Nearest Neighbors (KNN) [28—38]. In Ref. [ 39] Bayesian ANNs
and polynomial regression method are used to estimate the effect
of soiling in large-scale PV systems. While Fuzzy Logic approach has
been proposed to detect possible solar panel abnormalities
[33,40,41]. In Ref. [42] an interesting comparison is presented be-
tween Mamdani Sugeno fuzzy logic and RBF ANN for PV systems to
detect faulty module, two faulty modules and partial shading,
Other works demonstrate the effectiveness of ANNs which have
been successfully used to detect and localise short circuit in PV
array [43-45], partial shading, by-pass diode, open circuit, short
circuits systems and increased series resistance using the ration
information existing between the measured and the simulated data
for both current and voltage [28,44,46). Other PV array Fault
Diagnostic Techniques (FDT) have been adopted and validated for
Building Integrated PV Systems (BIPV) using Artificial Bee Colony
(ABC) algorithm and differential evolution (DE) algorithm method

PV Array Isofoton 106-12

[27]). A Heuristic Diagnostic Method has been proposed for a PV
System combining Particle Swarm Optimization (PSO) algorithm
and ANNs [47]. In Ref. [48], a probabilistic ANN has been proposed
to detect short circuit fault and disconnection fault in the string.
The inputs of the ANN are the temperature, the irradiance, the
voltage and the current at the MPP. In Ref. [49], a probabilistic ANN
has been proposed to diagnose open circuit, short circuit, shading
and abnormal aging faults. The inputs of the last ANN are open
circuit voltage, short circuit current, current of Maximal Power
Point and Voltage of Maximal Power Point. In Ref. [50], a decision
tree method has been proposed to detect different types of faults
such as: open circuit faults, short circuit faults, line-line faults,
degradation faults, and partial shading.

The analysis of the abovementioned methods show that each
category targets specific faults and has its own strengths. The
present work presents a new IFD method combing the best assets
of the three categories. In fact, it combines the use of the model
from the first category, the measured 1-V curve from the second
category and finally the use of an intelligent bloc as described from
the third category. This allows the identification of a wide range of
faults. The proposed algorithm is able to detect and identify four
recurrent faults: open and short circuit faults, as well as string
disconnection in PV array using ANNs. Both detection and isolation
are simple and fast. The developed model requires small training
period and is based on only four inputs: the maximum power
current and voltage from the output I-V characteristic, the solar
irradiation and the cell temperature.

The remainder of this paper is organized as follow. Section 2
describes the methodology. Section 3 presents the experimental
setup and data. Section 4 presents the PV sub array model. This
model is used to study the residual information of the studied faults
and the results are presented in Section 5. Section 6 gives a detailed

Fig. 4. Experimental setup.
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description of the proposed IFD algorithm while Section 7 is
devoted to the presentation of the obtained results and their dis-
cussion. Finally, the conclusions and the perspectives of this
approach are given in Section 8.

2. Methodology

As described by Fig. 1, the implementation of the present IFD is
as a four-step procedure: 1) The detection phase: the detection of
the fault is performed by calculating residual information by
comparing the measurements from the system to the model out-
puts. This is an optimization problem which requires the calcula-
tion of the difference cost criteria. 2) The isolation phase: during

124

5
1(A)
A
4 ------- s et SELCES o L LR .
T=60°C —
T S
T=26°C — :
A )i o ' 1% T
T=0C = :
L S M o v -4 i o
; (V) i '
o. 4 1 1 1
0 5 10 15 20 2 ,
1(A)
G = 1000 Wim?
°0 5 10 15 20 25
(b)

Fig. 6. Effect of (a) temperature and (b) irradiance on the 1-V curve.

this stage, two ANNs' classifiers are used to classify the information
about the fault which caused the detected residual information.
These two ANNs have been already trained to separately classify the
current and the voltage at the MPP. 3) The identification phase:
during this final stage, the output of the ANNs is analysed by a
combinational algorithm called the logical block whose role is to
identify and recognize the corresponding fault.

3. Experimental setup and data description

The present study uses an experimental setup located at Algiers,
Algeria. This is a roof grid connected PV plant which contains, as
illustrated by Fig. 2, 90 monocrystalline PV modules. The electrical
properties of the PV modules are summarized in Table 1. Fig. 3 il-
lustrates the output power of the setup and the corresponding
weather conditions (solar irradiation and ambient temperature)
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Fig. 7. One diode model of the PV module.

during one day. The experimental setup has been designed to and the corresponding data have been measured using an Agilent
contain four sub arrays to meet the needs of different research 34970 A data logger switch unit. The working conditions, the solar

topics. The PV array under study is a sub array which contains 16 PV irradiation and the temperature have been measured using ther-
modules interconnected in two string connected in parallel, each moelectric pyranometer and a K-type thermocouple respectively.
one contains 8 modules interconnected in series. Fig. 4 shows the Experimental setup.

The studied faults have been simulated on this sub array model
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Fig. 8. Block diagram of the studied PV sub-array in Simscape.
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4. PV array modelling
-
2000 - 'l!lldly syst H H Model based fault diagnosis need accurate models to perform
——1PVMSC . ": fault diagnosis. Here, the mathematical model outputs of the PV
N H o array are needed to be compared with the outputs of the PV array
1500 2PVMSC ... - under study. It is important to note that model based diagnosis is
——4PVMSC H highly dependent on the accuracy and on the complexity of the
——F mil! used model. PV array modelling has been performed in three steps:
1000 Fesa
4.1. PV array modelling
500 s
Fig. 5 presents a nonlinear 1-V characteristic of PV module.
These characteristics are dependent on solar irradiation level and
ambient temperature as illustrated by Fig. 6. These two variables

are called working conditions and are the inputs of the PV module/

=
0 30 N 100 150 200 array model while the I-V curve is its output. The 1=V curve is
v °1°!° Y characterized by three main points; the short circuit current Iy, the
open circuit voltage Vo and the maximum power point (MPP) at
which the power is at its maximum. The current and the voltage at
14 r - . the MPP are called Vippp and Ipypp respectively.
e ’ H In the literature, several models have been developed and pre-
1f--mm--- IR, i, . 3= L EE—— sented to describe the behaviour of PV modules [51,52]. Here, the
5 ’ k! one diode based model described by Fig. 7 and Equation (1) is used.
10F=--=-=-- adas )‘, e _f\- _______ . Where | and V are respectively the output current and voltage of
' . 'y the PV module, o is the diode saturation current, lpy, is the photo
"\ S—— - - y _'\‘ ______ i generated current, Rs and Rgp, are the series and shunt resistance
. : respectively, Tc is the cell or module temperature, k is the Boltz-
p . . mann constant (13806503 x 1023 J/K), q is electron charge (1.6
or—— healdrysyst] L: & N | 0217,646 x 107" C) and n is the diode ideality factor. This model is
Sys! called 5 parameters one diode model. The five parameters are lo, lpn,
4] — IPVMSC |---fi------R-rQ-5----1 Rs, Rsh and n. Modelling the PV module/sub array using this model
—+—2PVMSC is made by finding the best combination of these 5 parameters so
] —pVvMSC |- %----- ahted the output of the model can give the best fit of the experimental
g . data.
oL ——E string ' _
0 50 100 150 00 (oaVeRD L\ VIR 1
Volage (¥ w0 ® 1) - »

Fig. 11. Examples of permanents PV faults.
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that it enables to rapidly create models of physical systems within
the Simulink environment. With Simscape, it is possible to build
physical component models based on physical connections that
directly integrate with block diagrams and other modelling para-
digms [53]. For this work, the second option has been chosen
because it allows to simulate the targeted faults as the short circuit
SIRING1  STRING 2 and the disconnection faults. Fig. 8 illustrates the interconnected
16 PV modules based sub array.
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4.2. PV array model simulation Table 2
The different state of the system with faults and their symbols.

PV array modelling has been carried out using Matlab software. Fault Symbol
Two simulation strategies are possible. The first is the simulation of Normal operation conditions a
equivalent circuit model by functional equations using the script Fault detection refers to one panel short circuit @
language of Matlab. The second is the simulation of the equivalent Fault detection refers to two panels short circuit («}
circuit model blocks using Simscape. The advantage of Simscape is Fault detection refers to four panels short circuit 4

Fault detection refers to string (&)
1PV +] Table 3
? J - Classifications stage. classes and symbols.
' ~N
firn ‘m H I Symbols Description Classes
: 3 INVERTER
e .m ! Impp n Maximum power point current of normal operation Class1l
T ! conditions
f— oveare | Impp str Maximum power point current of faulty string Class2l
. Vmpp n Maximum power point voltage of normal operation Class1v
= : ' conditions
E Im Im.. H Vmpp 1sc Maximum power point voltage of one module short Class2v
: H circuit
> H Vmpp 2sc Maximum power point voltage of two modules Class3V
0 'wlu .mu E‘”v short circuit
; . : Vmpp 4sc Maximum power point voltage of four modules Class4V
= ' short circuit
L Vs vM13 |
I lm lmu 5

4.3. PV array model validation

The validation of the obtained model has been done using
~nN experimental data from the experimental setup. For this, three
model comparison metrics are used: root mean square error
(RMSE), mean absolute percentage error (MAPE) and the coefficient
of determination according to equation (2), equation (3) and
equation (4) respectively [14,44). Where y, is the nth measured
data, y, is the nth simulated data and N is the size of the database
(the number of the validation’s samples). Note that the validation
data are the inputs of the models which are the working condition
(the solar irradiation and the ambient temperature), and the output
data are the current and the voltage at the MPP as illustrated by
Fig. 9.

N
RMSE \%Z(yn—y]) )
n=1

1 yn = ¥nl
MAPE - — E —————x100% 3
nos Wl * o

= INVERTER

l"'.

STRING-1 STRING-2

N _ =2
R2 1- (Zn lN'.yn yzn) ) (4)
Zn I(}'n'

£ 5. Faulty sub array versus healthy sub array

Fig. 12. Overall scheme of the PV system (a) normal operation conditions (b) faulty . . . .
string and short circuits faults. Usually, the faults occurring in a photovoltaic system are divided
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Different combination of classes obtained.

129

Impp Impp Class Vmpp Vmpp Class Global Description Global Classification
Impp n Class1l Vmpp n Class1V Normal operation conditions Class1
Impp n Class1l Vmpplsc Class2V One faulty PV module in string Class2
Impp n Class1l Vmpp2sc Class3V Two faulty PV modules in string Class3
Impp n Class1l Vmpp4sc Class4V Four faulty PV modules in string Class4
Impp str Class2l Vmpp n Class1V Faulty string Class5
&=
Data from data acquisition PV module variables, Measured data from data
(Sun Irradiance and PV number of strings and acquisition (Imppmeass
module temperature) number of modules Vmppmess)
L,/ PV Modules simulation
With (lmppsim, Vmppsim)
ANN’s Classification
No Yos
Normal operation
Fault identification i
process activation Next sample measurement
(Fault detection stage)

a) Fault detection stage

l

< avee > ey

Report (file.xls) Alarm

Next measurement (Fault
detection stage)

b) Fault identification stage

Fig. 13. Flowchart of the IFD algorithm.



C. Kara Mostefa Khelil et al. / Energy 211 (2020) 118591

-

)

Current (A)

L

——Real data t
' simulated data

5 10 15
Voltage (V)

20

a) I-V curve

130

80 I 1
—— Real data
* simulated data
60
1 e sy e L L LT T CEE T

00 10 15 20 25
Voltage (V)
b) P-V curve

Fig. 14. Measured and simulated PV module output data.
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Fig. 15. Identification of the maximum power point in normal operation conditions.

Table 5
Model performance metrics values.
RMSE MAPE (%) R?
Impp 0.0433 206 0.9999
Vmpp 0.0606 523 0.9926

into two classes: temporary faults and permanent faults. Tempo-
rary faults like shading may occur due to cloudy weather, snow,
dusty and sandy PV array, in addition to building, trees, leaves and
bird excrement. The 1-V characteristics of PV string with shading
effect are illustrated by Fig. 10. In this paper, those temporary faults
are not taken into consideration where the fault is automatically
reset after a given period of time and the system returns back to
normal operation conditions. However, permanent faults are the
most crucial to be analysed notably short circuit and open circuit
since they are enduring and ultimately requiring human

intervention. Faults due to short circuits have an important impact
on cells, bypass diodes and modules/strings. These faults can be
originated by humidity invasion, loss of wiring connection between
modules/strings and aging process. However, open circuit faults are
caused by a sudden disconnection between cells or between
modules/strings of the PV array. The I-V characteristics corre-
sponding to these faults can cause important power losses as
illustrated by Fig. 11. These changes at the -V characteristic’s shape
could therefore be used to identify the corresponding faults.

6. IFD algorithm’s description

The IFD algorithm is designed to detect, identify and isolate four
faulty modes: 1) PV module short circuit, 2) two PV modules short
circuit, 3) four PV modules short circuit and 4) faulty string. These
faults are illustrated by Fig. 12 and summarized by Table 2.

The diagnosis is based on a two-stage procedure. In the first
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Fig. 16. Absolute error between measured and simulated voltage and current at MPP.
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Fig. 17. The impact of the string fault on the current.

step, the fault is detected by comparing the PV system’s and its
mathematical model outputs. In case of fault detection, the iden-
tification stage is launched, In both stages (ANN) are used. They are
exploited to simulate the PV system in the first stage and for the
fault classification during the second stage. The classification is
based on two ANNSs, the first one (ANN-CI) is used for the Impp
classification and the second's (ANN-CV) for the Vmpp classifica-
tion. For the identification stage, a combinational algorithm is used
to analyse the findings of the classification stage which are based
on the Impp and Vmpp values (codes). The different classes and
their combinations are summarized in Tables 3 and 4 respectively,

130 T T r T
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®* 1PVMSC
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Fig. 18. The voltage of a PVG with one short-circuited module.

Two different classes of Voltage (V)

90 o= 1
*  Healthy System
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Fig. 19. The voltage of a PVG with two short-circuited modules.

)
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g

Fig. 20. The voltage of a PVG with four short-circuited modules.
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Fig. 21. The voltage of global different short-circuited modules in PVG.
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Fig. 22. Faulty simulated voltage via healthy measured voltage of the system.
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while the flowchart of the IFD algorithm is illustrated in Fig. 13.

7. Test results and discussion

The effectiveness of the IFD Approach relies at once on its PV
module’s modelling precision and faults classification accuracy. For
the first criterion, the obtained results show good agreement be-
tween the measured data and the model generated data as illus-
trated by Fig. 14. The PV module/generator modelling accuracy is
the sole guarantee for MPP identification and thus of the faults
detection. The identification results of the MPP voltage (Class1V)
and current (Class11) are shown in Fig. 15. The corresponding error
metrics are summarized in Table 5. The correlation coefficient be-
tween the real and simulated curves is 0.99 for both voltage and
current, which leads to an absolute error which do not exceed
0.11 V and 0.02 A for the voltage and current at MPP respectively as
shown in Fig. 16.

This developed model has been used to detect the faulty

Healthy Current
Faulty String
0.9996x-0.0039
0.50943x+0.00575

5

10 15

Healthy system Current (A)

Fig. 23. Faulty simulated current via healthy measured current of the system.
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behaviour of the PV system based on the deviation between the
desired output and the real output under the same working con-
ditions. This difference between the model output and the system
output is the residual information. In Fig. 17, the studied data show
that the string fault leads to a remarcable diminution of the current.
For the 1000 analysed samples, the faulty current has been
decreased by 50%. It should be noted that this remarcable dimi-
nution of the current guarantees the corresponding fault detect-
ability and minimize any risk of confusion. However, this does not
extend to the voltage residual information as shown by Fig. 18
which shows that confusion can arise in the overlap area be-
tween the two voltages in case of one short-circuited PV module. In
fact while MPP voltage of the healthy PVG varies from 112 V to
127 V, the faulty PVG voltage varies between 99 V and 116 V. Fig. 19
shows that this overlap does not exist when two PV modules are
short-circuited in the same string. In this case, the MPP voltage of
the faulty PVG varies between in the interval 99 V and 116 V. This
diminution is more remarcable when four PV modules are short-
circuited in the same string. As illustrated by Fig. 20, the MPP
voltage of the faulty system varies between 65 V and 74 V. This
close correlation between the variation's interval of the faulty PVG
voltage and the number of the short-circuited modules can be used
to detect and identify the fault as illustrated by Fig. 21.

The comparison between these three faults classes and the
healthy has been used to establish the correlation illustrated by
Fig. 22. The PVG have a 10% lower voltage when only PV module is
short-circuited, 25% and 48% lower voltages when two and four
short-PV modules are short-circuited respectively. Concerning the
current, the faulty system shows a 50% fall compared to the healthy
system as illustrated by Fig. 23.

For the fault identification, the IFD algorithm combines the
voltage residual information and the current residual information.
This mixed information enables to build the following correspon-
dence Table 6.

The end of this section consists to simulate the diagnosis of the
model using two ANN's trained and tested, the output of both ANNs
represents the input of combinational algorithm in order to obtain
the final classification.

The obtained database presents 10,000 samples of each attri-
bute, divided in two parts: 5000 samples for the ANN current
classification and 5000 samples for the ANN voltage classification.

Both ANNs used tangent sigmoid as the activation function. In
the training phase, both ANNs have been trained using Levenberg
Marquart algorithm taking 2000 samples for each attribute
whether electric or climatic.

The first ANN classifies the current of the maximum power
point. This ANN contains two neurons in input layer, which
represent irradiance and current for the maximum power point
respectively, one neuron in output layer, which represent current
classification, between these two layers, there are two hidden
layers of eight neurons in each one. As mentioned in the paragraph
above, in the training phase, each sample contains the current value
at the MPP (Impp (A) and the irradiance level (W/m?) that is

Table 6
Faults correspondence table.
Impp (%) Vmpp (%) Pmpp (%)

Healthy system 100 100 100
1PVMSC Y 1 a4 10 & 1
2PVMSC a 1 a 25 a 26.5
4PVMSC & 1 Y 48 Y 49
Faulty string a 50 100 a 50

Table 7
Faults correspondence table.

Faults

Number of simples for each attribute

Healthy current

Four PV module short circuited
One PV module short circuited
Two PV module short circuited
Healthy voltage

Two PV module short circuited
One PV module short circuited
Four PV module short circuited
Healthy current

Disconnected string

Healthy current

50 samples for each attribute.
40 samples for each attribute.
100 samples for each attribute.
52 samples for each attribute.
30 samples for each attribute.
70 samples for each attribute.
20 samples for each attribute.
38 samples for each attribute.
11 samples for each attribute.
58 samples for each attribute.
31 samples for each attribute.

(2000 x 2 = 4000 data) as input. 50% of the samples represent
healthy operation conditions and remaining 50% represent the
disconnected string with the combination summarized in Table 7.

The second ANN classifies the voltage of the maximum power
point. This ANN contains two neurons in input layer and one
neuron in the output layer. The input neurons receive cell tem-
perature and voltage of the maximum power point respectively
when the output neuron gives the voltage classification. The ANN
contains two hidden layers of thirteen and twenty neurons
respectively. For its training, 2000 samples have been used for each
attribute (Vmpp (V), Temperature (°C)) it means (2000 x 2 = 4000
data) as input, for training phase; 25% samples represent healthy
voltage (500 samples for each attribute) and the remaining 75%
samples represent different faults divided into three equal cate-
gories which are: 25% for one PV module short circuited, 25% for
two PV module short circuited and 25% for four PV module short
circuited. For the ANN diagnosis 500 samples has been employed of
each attribute (Vmpp (V), Temperature (°C)) distributed in eleven
cases respectively as summarized in Table 8.

The evolution of the training error of both ANNs is shown in
Fig. 24. The classification results are illustrated by Figs. 25 and 26
for the first ANN and the second ANN respectively. This shows
the ability of the obtained ANNs to introduce the incoming data in
their right classes with high accuracy: 99.6% for the current clas-
sification and 99% for the voltage classification. The accuracy of the
current and voltage classification is very important for the whole
algorithm since it is the first step of diagnosis on which depends the
fault class identification, the second and final step of the diagnosis.
As illustrated by Fig. 27, the majority of the output decisions are in
their right classes, the few confusion cases are 1) between healthy
system (C1) and one PV module short circuited (C2), and between
two PV modules short circuited (C3) and one PV module short
circuited (C2) and 2) two confusion cases for healthy system (C1)
belonging to faulty string (C5). The analysis of these confusion cases
revealed that their causes are the variation of the irradiance and the

Table 8
Faults correspondence table.

Faults Number of simples for each attribute

Healthy voltage
Four PV module short circuited

50 samples for each attribute.
40 samples for each attribute.

One PV module short circuited
Two PV module short circuited
Healthy voltage

Two PV module short circuited
One PV module short circuited
Four PV module short circuited
Healthy voltage

Disconnected string

Healthy voltage

100 samples for each attribute.
52 samples for each attribute.
30 samples for each attribute.
70 samples for each attribute.
20 samples for each attribute.
38 samples for each attribute.
11 samples for each attribute.
58 samples for each attribute.
31 samples for each attribute.
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Fig. 26. Vmpp classification using ANN.

temperature respectively. However, notwithstanding these isolated
cases of confusion, the final simulation results show a high per-
formance with a good accuracy equal to 98.6%.

To show the effectiveness of the developed IFD, a test consid-
ering new samples for each attribute has been performed in order
to evaluate the obtained results. For this aim 120 samples are

applied for each attribute and split into seventeen cases as sum-
marized by Table 9. The results of this test are illustrated by Fig. 28.
The robustness of the IFD approach is evident since only two faulty
situations among the 120 cases have been wrongly classified. The
first case is due to the confusion between healthy system and one
PV module short circuited. This confusion is caused by the
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Fig. 27. Global diagnosis of the system.
Table 9
Faults correspondence table for ANN test phase.
Faults Number of simples for each attribute
Healthy system 10 samples for each attribute.
One PV module short circuited 8 samples for each attribute.
Healthy system 4 samples for each attribute.
Disconnected string 6 samples for each attribute.
Healthy voltage 6 samples for each attribute.
Two PV module short circuited 8 samples for each attribute.
Healthy voltage 6 samples for each attribute.
Four PV module short circuited 11samples for each attribute.
Healthy system 6samples for each attribute.

Healthy system 7samples for each attribute.
Four PV module short circuited 7samples for each attribute.
One PV module short circuited 4 samples for each attribute.
Healthy system 4 samples for each attribute.
Disconnected string 11 samples for each attribute.
Healthy system 9 samples for each attribute.
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Fig. 28. IFD approach test results.

temperature variation, knowing that if the temperature increases
the voltage decreases and vice versa. The second is the result of
confusion between the healthy system and the disconnected string.
This confusion is due to the irradiance variation, knowing that the
irradiance is proportional to the current in increase or decrease. The
accuracy of the IFD approach for this test is equals to 98.34%.

8. Conclusion

The present work proposes a new intelligent algorithm for PV
systems’ diagnosis and fault detection (IFD) for grid-connected
photovoltaic systems. The fault detection and diagnosis of PV sys-
tems is necessary not only to increase system power generation
reliability but also for operating costs reduction. The proposed
approach is proceed in four steps: 1) the comparison of the
measured data from the system to the model output based on
Simscape/Simulink MATLAB, 2) the elaboration of an important
database for healthy and faulty operation, 3) the classification of the
faults information using two trained and finally 4) the identifica-
tion and recognition of the corresponding fault.

The proposed work, which is based on measured data, guaran-
tees four faulty operating cases: one PV module short circuited in
PV string, two PV modules short circuited in PV string, four PV
modules short circuited in PV string and one string modules
disconnection in a PV array. For a high efficiency of the diagnosis
each electrical parameter, which is considered as the fault signa-
ture, is classified separately. The final diagnostic tests were suc-
cessful with matching rates equal to 99.6% and 99% for the
classification stage and 98.6% for the fault identification and
isolation during the final phase of the diagnosis process.

Author contribution

Chérifa Kara Mostefa Khelil: State of the art; experimental test,
Programming; Results interpretation; Manuscript writing. Badia
Amrouche: Diagnosis problematic explanation; Methodology
conception; Paper writing and correction; General orientations.
Abou soufiane Benyoucef: Programming. Kamel Kara: This work is
part of his research project. The idea; The laboratory equipments;
Work and results validation. Aissa Chouder: Context explanation;
Experimental test and data; Results analysis; Results validation

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1) Burnham L Renewable energy: sources for fuels and electricity. Island Press;
1993. p. 1160.

[2] IEA. A snapshot of global markets 2020: Report IEA-PVPS T1-37.

[3]) Harrou F, Fillatre L, Nikiforov I. Anomaly detection/detectability for a linear

model with a bounded nuisance parameter. Annu Rev Contr 2014;38(1):32-4.

Benyoucef A, Chouder A, Kara K, Silvestre S. Artificial bee colony based algo-

rithm for maximum power point tracking (MPPT) for PV systems operating

under partial shaded conditions. ppl. Soft Comput 2015:32:8-38.

Chouder A, Silvestre S. Automatic supervision and fault detection of PV sys-

tems based on power losses analysis. Energy Convers Manag 2010;51:

1929-37.

Gokmen N, Karatepe E, Celik B, Silvestre. Simple diagnostic approach for

determining of faulted PV modules in string based PV arrays. Sol Energy

2012:86:3364-77.

[7] Chouder A, Silvestre S. Analysis model of mismatch power losses in PV sys-

tems. Sol Energy 2009:131(2). 024504-4.

Silvestre S, Chouder A, Karatepe E. Automatic fault detection in grid connected

PV systems. Sol Energy 2013:94:119-27.

[9] Spataru S, Sera D, Kerekes T, Teodorescu T. Photovoltaic array condition

4

5

6

8



137

18 C. Kara Mostefa Khelil et al. / Energy 211 (2020) 118591

monitoring based on online regression of performance model. In: Proceedings
of the 39th IEEE photovoltaic specialists conference; 16—21 June 2013. Tampa,
Florida; 0815-20.

[10] Chine W, Mellit A, Pavan AM, Kalogirou SA. Fault detection method for grid-
connected photovoltaic plants. Renew Energy 2014;66. 99—-10.

[11] Platon R, Martel J, Woodruff N, Chau TY. Online fault detection in PV systems.
IEEE Trans. Sustain. Energy 2015;6(4):1200—7.

[12] Drews A, de Keizer AC, Beyer HG, Lorenz E, Betcke ], van Sark WGJHM,
Heydenreich W, Wiemken E, Stettler S, Toggweiler P, Bofinger S, Schneider M,
Heilscher G, Heinemann D. Monitoring and remote failure detection of grid
connected PV systems based on satellite observations. Sol Energy 2007;81:
548-64.

[13] Bastidas-Rodriguez JD, Franco E, Petrone G, Ramos-Paja CA, Spagnuolo G.
Quantification of photovoltaic module degradation using model based in-
dicators. Math Comput Simulat 2017;131:101-13.

[14] Dhoke A, Sharma R, Kumar Saha T. An approach for fault detection and
location in solar PV systems. Sol Energy 2019;194. 197-08.

[15] Garoudja E, Harrou F, Sun Y, Kara K, Chouder A, Silvestre S. Statistical fault
detection in photovoltaic systems. Sol Energy 2017;150:485—-99.

[16] Chen Z, Chen Y, Wu L, Cheng S, Lin P. Deep residual network based fault
detection and diagnosis of photovoltaic arrays using current-voltage curves
and ambient conditions. Energy Convers Manag 2019;198:111793.

[17] Takashima T, Yamaguchi ], Ishida M. Fault detection by signal response in PV
module strings. In: Proceedings of the 33rd IEEE photovoltaic specialists
conference. vols. 1-5; 11—-16 May 2008.

[18] Johnson J, Kuszmaul S, Bower W, Schoenwald D. Using PV module and line
frequency response data to create robust arc fault detectors. In: Proceedings
of the 26th European photovoltaic solar energy conference and exhibition;
05-09 September 2011. p. 3745-50. Hamburg, Germany.

[19] Takashima T, Yamaguchi J, Otani K, Oozeki T, Kato K, Ishida M. Experimental
studies of fault location in PV module strings. Sol Energy Mater Sol Cell
2009;1079-82.

[20] Solérzano J, Egido MA. Automatic fault diagnosis in PV systems with distrib-
uted MPPT. Energy Convers Manag 2013;76:925-34.

[21] Sera D, Teodorescu R, Rodriguez P. Photovoltaic module diagnostics by series
resistance monitoring and temperature and rated power estimation. In:
Proceedings of the 34th annual conference of IEEE industrial electronics
(IECON); 10—13 November 2008. p. 2195-9.

[22] Tina GP, Cosentino F, Ventura F. Monitoring and diagnostics of photovoltaic
power plants. London, United Kingdom: World Renewable Energy Congress;
2014.

[23] SolarEdge. Performance of PV topologies under shaded conditions (white
paper). SolarEdge; 2013.

[24] Kjar SB, Oprea O, Borup U. Adaptive sweep for PV applications. In: 26th Eu-
ropean photovoltaic solar energy conference and exhibition; 2011.
p. 3708—10. Hamburg, Germany.

[25] Swingler A. Photovoltaic string inverters and shade-tolerant maximum power
point tracking: toward optimal harvest efficiency and maximum ROI (white
paper). Burnaby, Canada: Schneider Electric; 2010.

[26] Spataru S, Sera D, Kerekes T, Teodorescu R. Diagnostic method for photovol-
taic systems based on light [-V measurements. Sol Energy 2015;119:29-44.

[27] Hachana O, Giuseppe Marco Tina, Hemsas K. PV array Fault diagnostic tech-
nique for BIPV systems. Energy Build 2016;126:263—74.

[28] Mekki H, Mellit A, Salhi H. Artificial neural network-based modelling and fault
detection of partial shaded photovoltaic modules. Simulat Model Pract Theor
2016;67:1-13.

[29] Shrikhande S, Varde P, Datta D. Prognostics and health management: meth-
odologies & soft computing techniques. In: Current trends in reliability,
availability, maintainability and afety. Springer; 2016. p. 213-27.

[30] Hare], Shi X, Gupta S, Bazzi A. Fault diagnostics in smart micro-grids: a survey.
Renew Sustain Energy Rev 2016;60:1114—24.

[31] Suganthi L, Iniyan S, Samuel A. Applications of fuzzy logic in renewable energy
systems — a review. Renew Sustain Energy Rev 2015;48. 585-07.

[32] Silvestre S, daSilva M, Chouder A, Guasch D, Karatepe E. New procedure for
fault detection in grid connected PV systems based on the evaluation of
current and voltage indicators. Energy Convers Manag 2014;86:2 41—-49.

[33] Tadj M, Benmouiza K, Cheknane A, Silvestre S. Improving the performance of
PV systems by faults detection using GISTEL approach. Energy Convers Manag
2014;80. 298—-04.

[34] ZhaoY, dePalma J, Mosesian J, Lyons R, Lehman B. Line—line fault analysis and
protection challenges in solar photovoltaic arrays. [EEE Trans Ind Electron
2013;60(9):3784-95.

[35] Yuchuan W, Qinli L, Yaqin S. Application of BP neural network fault diagnosis
in solar Photovoltaic System. In: Proceedings of the IEEE international con-
ference on mechatronics and automation; 2009. p. 9—12. Changchun, China.

[36] Syafaruddin S, Karatepe E, Hiyama T. Controlling of artificial neural network
for fault diagnosis of photovoltaic array. In: Proceedings of the 16th inter-
national conference on intelligent system Application to power systems.
Greece: ISAP); 2011. p. 1-6.

[37] Li Z, Wang Y, Zhou D, Wu C. An intelligent method for fault diagnosis in
photovoltaic array. ICSC Part II CCIS 2012;327:10-6.

[38] Madeti Siva Ramakrishna, Singh SN. Modeling of PV system based on
experimental data for fault detection using kNN method. Sol Energy
2018;173:139-51.

[39] Bastidas-Rodriguez |D, Petrone G, Ramos-Paja A, Spagnuolo G. Photovoltaic
modules diagnostic: an overview. In: 39th IEEE annual conference on indus-
trial electronics society. Vienna: IECON; 2013. 96-01.

[40] Ducange P, Fazzolari M, Lazzerini B, Marcelloni F. An intelligent system for
detecting faults in photovoltaic fields. In: Proceedings of the 11th interna-
tional conference on intelligent systems design and applications (ISDA);
22-24 November 2011. p. 1341—6. Cordoba.

[41] Bonsignore L, Davarifar M, Rabhi A, Tina GM, Elhajjaji A. Neuro-Fuzzy fault
detection method for photovoltaic systems. Energy Procedia 2014;62:
431-41.

[42] Dhimish M, Holmes V, Mehrdadi B, Dales M. Comparing Mamdani Sugeno
fuzzy logic and RBF ANN network for PV fault detection. Renew Energy
2018;117:257—-74.

[43] Karatepe E, Hiyama T. Controlling of artificial neural network for fault diag-
nosis of photovoltaic array. In: 2011 16th international conference on intel-
ligent system application to power systems (ISAP). [EEE; 2011. p. 1-6.

[44] Chine W, Mellit A, Lughi V, Malek A, Sulligoi G, Massi Pavan A. A novel fault
diagnosis technique for photovoltaic systems based on artificial neural net-
works. Renew Energy 2016;90:501—12.

[45] Hussain M, Dhimish M, Titarenko S, Mather P. Artificial neural network based
photovoltaic fault detection algorithm integrating two bi-directional input
parameters. Renew Energy 2020;155:1272—92.

[46] Belaout A, Krim F, Mellit A, Talbi B, Arabi A. Multiclass adaptive neuro-fuzzy
classifier and feature selection techniques for photovoltaic array fault detec-
tion and classification. Renew Energy 2018;127:548—58.

[47] Zhenghai L, Dazheng W, Liangliang T, Jinli R, Zhuming L. A heuristic diagnostic
method for a PV system: triple-layered Particle Swarm optimization—back-
propagation neural network. Energies 2017;10:226.

[48] Garoudja E, Chouder A, Kara K, Silvestre S. An enhanced machine learning
based approach for failures detection and diagnosis of PV systems. En Con
Man 2017;151:496—513.

[49] Zhu H, Lub L, Yao J, Daia S, Hu Y. Fault diagnosis approach for photovoltaic
arrays based on unsupervised sample clustering and probabilistic neural
network model. Sol Energy 2018;176. 395—05.

[50] Zhao Y, Yang L, Lehman B, De Palma JF, Mosesian |, Lyons R. Decision based
fault detection and classification in solar photovoltaic arrays. In: Twenty
seventh annual IEEE applied power electronics conference and exposition;
2012. p. 93—9. Orlando, FL.

[51] Amrouche B, Guessoum A, Belhamel M. A simple behavioural model for solar
module electric characteristics based on the first order system step response
for MPPT study and comparison. Appl Energy 2012;91(1). 395-04.

[52] Amrouche B. Improvement and experimental validation of a simple behav-
ioural model for photovoltaic modules. Sol Energy Mater Sol Cell 2014;(128):
204-14.

[53] Mathworks éehttps://fr.mathworks.com/products/simscape.html. Modélisa-
tion et simulation de systémes physiques multi-domaines. Consulté le jeudi
07 juin 2018.



138

APPENDIX ‘B’

Second Publication

Kara Mostefa Khelil, C ., Amrouche, B., Kara, K., Chouder, A. (2021).
The impact of the ANN’s choice on PV systems diagnosis quality. Energy
Conversion and Management, 240, 114278.

Source Normalized Impact Per Paper (SNIP): 2.375
Eﬂer’gy SCimago Journal Rank (SJR): 2.743

e%ann\;{a%::sriﬁgnt Impact Factor: 9.709 (2020 Journal Citation Reports)

5 Year Impact Factor: 8.954 (2020 Journal Citation Reports)

Cite Score: 15.9




139

Energy Conversion and Management 240 (2021) 114278

Contents lists available at ScienceDirect

Energy Conversion and Management

‘R journal homepage: www.elsevier.com/locate/enconman

Letter to the Editor @
The impact of the ANN’s choice on PV systems diagnosis quality

ARTICLE INFO ABSTRACT

Keywords Fault diagnosis has become an indispensable part of PV installations to ensure their safety and reliability. The
Photovoltaic installations accuracy, rapidity, specificity, sensitivity and the precision of faults detection and isolation are the most perti-
Faults diagnosis

nent criterions of the diagnosis quality. The present work examines the impact of the Artificial Neural Networks
choice on these criterions. For this, five ANNs are studied: back-propagation ANNs (BPNN), generalized
regression ANNs (GRNN), probabilistic ANNs (PNN) and two radial basis function ANNs (RBF). These ANNs are
used to identify and locate the most frequently faults encountered in PV installations: short-circuit cases and
open-circuit string cases in PV generator. Comparison study using the same PV installation, working conditions,
data and the same diagnosis algorithm have been carried to confront the five ANNs to the same faults. Based on
experimental data, the study shows that RBF ANNs affect the rate of reaction of the algorithm in presence of
faults while BPNNs and GRNN present the best results from the point of view of its speed and its important high
precision with good classification efficiency. In the other hand, the PNN marks its importance by its best results

Artificial Neural Network
Probabilistic ANNs
Generalized regression ANNs
Radial basis function ANNs

displaying 100% for all key statistical concepts comparing to the other algorithms.

1. Introduction

Nowadays, modern civilization is looking for a profound and global
energy change throughout the world, from fossil fuels such as: natural
gas, oil, lignite and coal resources to renewable energies. The goal of this
change is to avoid catastrophic climate change that affects the health’s
deterioration of the current and future human generations as well as for
countless other species. However, reliance on renewable energies has
become an inescapable trend as it plays a key role in decarbonizing the
global energy system for decades to come. In addition, the production of
renewable energy exceptionally photovoltaic energy growing up in
staggering rate for its cleanliness, safety, quiet, reduction in energy bills
and low maintenance requirement, it will be the principal source of
energy in the world in the coming years increasing from 330 TWh in
2019 to almost 3300 TWh in 2030, according to reference [1].

In order to achieve a maximum harvest of energy supplied by PV
systems, certain factors must be ensured such as the best irradiance
level, low PV cell temperature, a good PV panels’ fixation and orienta-
tion through sunlight and avoiding the shaded area. The PV modules
connections and the cleanliness of PV panels contribute significantly in
energy production knowing that dirt, snow and sand hide the solar
irradiance and consequently reduce the reliability and the efficiency of
the whole PV installation. For this purpose, regular maintenance and
diagnosis become more and more crucial.

Diagnosis has become an indispensable and crucial tool to maximize
power production, reliability, efficiency, safety and quality in global PV
systems PV systems. That explains why real-time fault detection and
identification is attracting researchers worldwide as demonstrated by
the large number of studies and investigations in the field [2-21]. The
analysis of the developed techniques has made it possible to identify
three different categories. The first category includes model based
diagnosis methods. The basic idea of this kind of diagnosis techniques is

https://doi.org/10.1016/j.enconman.2021.114278
Received 26 February 2021; Accepted 10 May 2021
0196-8904/© 2021 Elsevier Ltd. All rights reserved.

the use of the difference between the real PV system’ outputs and those
of its model to detect and then isolate the faults when they happen. This
difference, called the residual information, provides information and
quantifies the mismatch between the PV generator and its model. In all
study, the PV system and its model have the same inputs, the working
conditions and/or the electrical parameters of the PV system
[2-9,22-25]. However, for the outputs, the focus differs since it depends
on the studied faults.

The second category treats the classification of PV systems in
accordance with signal processing procedure. This includes all methods
based on mathematical or statistical analysis [ 10,26-29]. In general, this
type of diagnosis focus on measured output data insinuating the current
versus voltage (I-V) curve which can bring key information about
numerous faults [ 11,12,30,31]. Right now, the new series of PV modules
containing integrated converters are completely or fractionally able to
sweep the IV curve of the photovoltaic generator [32-34] that makes
them very well suited to this kind of diagnosis methods.

In the third category, are classified all diagnosis methods that inte-
grate computational intelligence based techniques including Fuzzy
Logic (FL) [14,17,35-38], Particle Swarm Optimization [ 18], k-Nearest
Neighbours (KNN) [15], Decision Tree [39] and Artificial Neural Net-
works (ANNs) [16,19,20,38,40-45]. The literature presents an impres-
sive number of diagnostic techniques which exploit ANNs possibilities
and advantages such as their learning and generalization abilities, the
rapidity of their convergence speed without forgetting the major point
representing their rigor in classification [16,18-20,30,41,44-47].

In a previous work [21], a new Intelligent Fault Diagnosis (IFD)
Approach for grid connected PV systems has been developed and pre-
sented. Excellent diagnosis results have been obtained. For this, two
back-propagation ANNs have been used to detect then to identify the
open circuit fault, one PV module short-circuit, two PV modules short-
circuit and four PV modules short circuit. Since then, another question
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has arisen; what is the impact of the choice of ANNs on this diagnosis
approach?

The present work analyses the impact of the ANNs choice on the
diagnosis quality. For this, five different types of ANNs are substituted in
the same IFD algorithms, and their performances are analysed and
compared to provide a well-argued response to the previous question.
The five neural networks have the same four inputs: solar irradiation,
cell temperature, the current and voltage of the maximum power point
of the I-V characteristic corresponding to the first two inputs (the
working conditions).

The remainder of this article is organized into four parts. Section 2
gives a preview on the IFD algorithm presentation. Section 3 exposes the
details of the comparative study and the methodology. Section 4 pre-
sents the results and their discussion. At the end, the conclusions and
recommendations are set out in Section 5.

2. IFD algorithm presentation

To detect and identify faults occurring in grid connected PV system,
an approach to faults classification has been developed and adopted. As
expanded in [21], this solution is based on two ANNs which after being
trained using a rich experimental database, they became able to guar-
antee the detection and the identification of three recurrent cases be-
tween healthy, three different situations of short circuit modules in PV
string in addition to string disconnection in PV array. To ensure this
classification, the first ANN requires two input data the current of
maximum power point Impp of the PV generator as well as the irradi-
ation level, while the second ANN also needs two input data the voltage
at maximum power point Vmpp of the PV generator and the ambient
temperature. The ANNs outputs, which are the classification results, are
then uses as inputs to a combinational block whose role is to combine the
ANN s outputs to identify the corresponding faults as described by Fig. 1.
The global diagnosis of the studied PV system was able to prove its

[ PV array Isofoton 106-12 ’
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quality by its excellent accuracy and efficiency from the point of view of
fault localization. Table 1 lists the classification results and shows a good
global performance with an average overall accuracy of 98.6%.

3. The comparative study

This comparative study is structured in two phases. A first phase
aimed at choosing the ANNs to be tested while the second part concerns
their effectiveness evaluation.

3.1. Phase 1: ANNs choice

ANNSs have been used with succeed in classification, pattern recog-
nition, fault detection and diagnosis. To study the impact of the ANNs
type of the performance of the IFD algorithm, several ANNs have been
considered by maintaining the whole algorithm topology and by using
the same learning and testing data and conditions. The five ANNs chosen
for this comparative study are 1) Back Propagation Neural Network
(BPNN), 2) Statistical ANNs which are considered to be the most
important statistical neural networks in the literature. In the present
study, two RBF ANNs are used and noted RBF1 and RBF2. The fourth
ANN is a Probabilistic neural network (PNN) and the fifth ANN is a

Table 1
Performance of classification with ANN (%).

Decision Class

Input Class c1 c2 Cc3 c4 (635)
c1 99.18 0.82 0 0 0
G2 0.83 99.16 0 0 0
C3 0 4.77 95.23 0 0
Cc4 0 0 0 100 0
C5 0 0 0 0 99.6

Overall accuracy = 98.6%.

o Im (
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Irradiance (W/nj2) Vmpp meas = i
> 1
| RMSE (Impp, Vmpp) !
T MAPE (Impp, Vmpp) N
i
i R? (Impp, Vmpp) 1
—
| |
& PV array Impp sim | —— ;
=4 Simulated JALEL
¢ P Reprocessing
___________________________ .
1
|
1
x > Impp Class
Vmpp sim HA ¢
Temperature (°C) ﬁ:
: Combinational Fault
| Algorithm Identification
1
Impp sI;T ’ o
> r _ . Vmpp Class
Irradiance (W/m2)

—_—

Detection & Diagnosis

Fig. 1. Schematic description of fault diagnosis methodology [21].
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Generalized Regression neural network (GRNN) both belonging to the
previous family of statistical ANNs.

3.1.1. BPNN

The BPNN is an multilayer perceptron (MLP) that contains three
basic parts: the input layer, at least one hidden layer and the output layer
as described by Fig. 2. The middle layer is the dominant part in the
network which implements a non-linear transformation to the inputs of
the network. This non-linear transformation includes mainly weighting,
adding a bias and applying a nonlinear limiting function such as a
sigmoidal function. This transformation is described by (Eqs. (1) and
(2)). With xi is the ith input of the ANN, wi is its weight, and b its bias.

V= inwi+bi m
=0

1
@;(x) = TF ey 2

3.1.2. Statistical neural network
This type of neural network uses statistical methods and probability
theory to compare a number of random to obtain the exact decision.

3.1.2.1. RBF. Radial Basis Function Networks (RBF) are the most
popular ANNs belonging to this family due to their capabilities and
advantages which include better approximation capabilities, simple
network structures and faster learning algorithms that make them ad-
vantageous in classification mode for nonlinear data [48]. As classical
neural network, three layers compose RBF network as illustrated by
Fig. 3. The particularity of these ANNs is their activation function, which
is a Gaussian function as described by (Eq.(3)) [49,50]

P (x) = exp( —”"6—”) ©)
where x represent; the meteorological parameters, ci and oi are the
center and the spread of the ith RBF node respectively. The spread ¢ of
node coming from the intermediate layer is calculated by (Eq.(4)) [49].

/
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With n the number of the node in the intermediate layer, dmax is th
maximum distance between the selected cluster centers. The outputs o
the non-linear activation ¢i(x) are integrated linearly with the weigh
vector wi of the output layer to produce the network output class ac
cording to (Eq.(5))

d,
6=—"= 4
2n
class m = Z QWi (65
=0

In the present study two radial basis ANNs are considered. RBF1
which uses newrbe as activation function to create a network with zer«
error on training vector [51], and RBF2 which uses newrb activatio1
function. The particularity of this RBF ANN is the size of the spread
which is dependent of the number of neurons and influences the qualit;
and generalization of changing function [51].

3.1.2.2. PNN. According to the literature, the probabilistic neura
network (PNN) designed by Specht [52] contains four layers: the inpu
layer, the pattern layer, the summation layer and finally the output laye
displays the final classification a described by Fig. 4 [53]. The PN}
performance is guaranteed by two predominant factors, the number o
neurons in pattern layer and the suitable activation function given by
(Eq.(6)) [46]. Where wi represents the weight of the information comin
to the pattern unit from the input units xi and o represents the smoothiny
parameters (spread) and depends on the input data.

_(Wi_x)t(wi_x)) ®

(20%)

o=

The output units of the pattern layer is transferred to the units o
summation layer which calculate their probability density functio
(PDF) according to (Eq. (7)) [19,52,53]. Where P is the number of pat
terns, n is learning set size, x,; describes the corresponding iy, training
pattern of a class.
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Fig. 2. BPNN architecture.
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The output layer called decision layer contains one unit, which de-
cides and displays the final class coming from summation layer as
follow:

class(x) = argmax{f,(x)}, 1 <i<M (8)

where: M is number of classes, class(x): denotes the predicted class of x.

3.1.2.3. GRNN. Like probabilistic neural networks (PNN), generalized
regression neural networks (GRNNs) are recognized by their quick
capability in training phase on spare data set [54]. They are organized in
four layers: the input layer, the pattern layer, the summation layer and
the output layer as shown in Fig. 5. The input layer receives the infor-
mation data. The pattern layer plays the same role as pattern layer in
PNN, its equation is described by (Eq.(9)) [54,55].

| (X —X)' (X - X)) Y-Y
) = G 3o ] - g e -1

i=1
©

Where n is the number of simple observations and M is the dimension
of the variable vector x, ¢ is a smoothing parameter, X is a particular
measured value of the random variable x which represents the inde-
pendent data in the input vector. The regression performed by GRNN
products the most probable scalar Y provided from specified input
vector x, which represents the dependent data in the output vector. Y; is
the desired scalar output corresponding to the observed input X;. The
summation layer has two kinds of processing units, the Numerator
neuron (N) and denominator neuron (D) which are described by (Egs.
(10) and (11)) respectively. At the end, the sole neuron of the output
layer receives, at its inputs, the two outputs from the summation units
and divides the Numerator part by the Denominator to produce its
output and then displays the classification results which the final

Table 2
Confusion matrix under intermittent classification troubles.

Classification outcome from experimental data

Classification outcome from ANNs ~ real label
True class  False class
predicted label  True class TP FP
False class FN TN

electrical parameter classification for the present classification study
C(x) according to (Eq. (12)).

n '
Numerator(N) = Z Y;exp( - W) (10)
=1 =
n t
Denominator(D) = Z exp( - W ) an
i=1 =
6’(x) = Numerator | Denominator (12)

3.2. Phase 2: effectiveness evaluation

In order to evaluate the effectiveness of the five IFD algorithms,
theirs results are analyzed using the most frequently used diagnosis
performance indicators in science and engineering fields [56]:

3.2.1 Accuracy: implies how nearest is the results to the real value.

TP + TN

_ 00
TP+ IN T+ FP+FN |

Accuracy = 13)

3.2.2 Sensitivity: measures in what way the positive simples are
correctly classified.
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TP+ FN a4

3.2.3 Specificity: measures in what way the negative simples are
correctly classified.

Specificity = % x 100 (15)

3.2.4 Precision: implies how nearest the results are to each other.

Precision = x 100 (16)

TP
FP+TP
where:

TP: true positive, signifies that the samples contains characteristics of
a specific class and indeed they are classified in this class.

TN: true negative, signifies that the samples does not contain char-
acteristics of a specific class and indeed they are not classified in this
class.

FP: false positive, signifies that the samples does not contain char-
acteristics of a specific class and they are classified in this class.

FN: false negative, signifies that the samples contains characteristics
of a specific class and indeed they are not classified in this class.

Table 2 summarizes the four major categories as result of binary
classification containing two rows and two columns into confusion
matrix called confusion table in the intension to confirm the perfor-
mance evaluation related to the classifier. The number of rows and
columns depends on the number of classes. The terms true and false refer
to whether the prediction corresponds to the external criticism
conversely to the terms positive and negative that refer to the prediction
of the classifiers.

4. Results presentation and discussions

The IFD algorithm is based on two ANNs in addition to a combina-
tional block whose role is to give the final classification. Therefore, to
compare the effectiveness of the five chosen ANNs, two ANNs are
trained for each IFD algorithm. The training database contains 12,544
samples of each attribute. It is divided in two parts: 6272 samples for the
first ANN training and 6272 samples for the second ANN training task.
The first ANN classifies the current at the maximum power point. This
ANN contains two neurons in the input layer. Its inputs are the irradi-
ance level and the current at the maximum power point. The output
layer contains only one neuron. It gives current classification, between
these two layers, there are two hidden layers of eight neurons each. The
training is achieved using 50% of healthy samples and the remaining
50% represent the disconnected string. The neural current classification
(diagnosis) needs 336 samples of each attribute (Irradiance (W/mz2) and
Impp (A)) divided into thirty-one cases respectively for testing and
ensuring the classification stability and efficiency. Table 3 summarizes
all treated cases with their number of samples.

The second ANN classifies the voltage at the maximum power point.
This ANN contains two neurons in input layer and one neuron in the
output layer. The input neurons receive cell temperature and voltage at
the maximum power point while the output neuron gives the voltage
classification. The ANN contains one hidden layer of forty five neurons.
For its training, 2800 samples have been used for each attribute (Vmpp
(V), Temperature (°C)) it means (2800 x 2 = 5600 data) as input, for
training phase; 25% samples represent healthy voltage and the
remaining 75% samples represent different faults divided into three
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Table 3

Faults correspondence table of current.

Faults

Number of simples for each attribute

Healthy voltage

Disconnected string

Four PV module short circuited
Healthy voltage

Two PV modules short circuited
One PV module short circuited
Healthy voltage

Disconnected string

Two PV modules short circuited
Four PV modules short circuited
One PV module short circuited
Healthy voltage

One PV module short circuited
Two PV modules short circuited
Healthy voltage

Four PV modules short circuited
Healthy voltage

Disconnected string

One PV module short circuited
Two PV modules short circuited
Healthy voltage

Disconnected string

Healthy voltage

One PV module short circuited
Four PV modules short circuited
Disconnected string

Healthy voltage

One PV module short circuited
Four PV modules short circuited
Two PV modules short circuited
Healthy voltage

9 samples for each attribute.

11 samples for each attribute.
15 samples for each attribute.
11 samples for each attribute.
30 samples for each attribute.
16 samples for each attribute.
11 samples for each attribute.

9 samples for each attribute.

11 samples for each attribute.

7 samples for each attribute.
6 samples for each attribute.

10 samples for each attribute.

8 samples for each attribute.
7 samples for each attribute.
5 samples for each attribute.
7 samples for each attribute.
4 samples for each attribute.

13 samples for each attribute.
11 samples for each attribute.
14 samples for each attribute.

5 samples for each attribute.

13 samples for each attribute.

5 samples for each attribute.
9 samples for each attribute.

12 samples for each attribute.
12 samples for each attribute.
21 samples for each attribute.
13 samples for each attribute.
15 samples for each attribute.
10 samples for each attribute.

4 samples for each attribute.

Table 4
Voltage faults correspondence.

Faults

Number of simples for each attribute

Healthy voltage

Disconnected string

Four PV module short circuited
Healthy voltage

Two PV modules short circuited
One PV module short circuited
Healthy voltage

Disconnected string

Two PV modules short circuited
Four PV modules short circuited
One PV module short circuited
Healthy voltage

One PV module short circuited
Two PV modules short circuited
Healthy voltage

Four PV modules short circuited
Healthy voltage

Disconnected string

One PV module short circuited
Two PV modules short circuited
Healthy voltage

Disconnected string

Healthy voltage

One PV module short circuited
Four PV modules short circuited
Disconnected string

Healthy voltage

One PV module short circuited
Four PV modules short circuited
Two PV modules short circuited
Healthy voltage

9 samples for each attribute.

11 samples for each attribute.
15 samples for each attribute.
11 samples for each attribute.
30 samples for each attribute.
16 samples for each attribute.
11 samples for each attribute.

9 samples for each attribute.

11 samples for each attribute.

7 samples for each attribute.
6 samples for each attribute.

10 samples for each attribute.

8 samples for each attribute.
7 samples for each attribute.
5 samples for each attribute.
7 samples for each attribute.
4 samples for each attribute.

13 samples for each attribute.
11 samples for each attribute.
14 samples for each attribute.

5 samples for each attribute.

13 samples for each attribute.

5 samples for each attribute.
9 samples for each attribute.

12 samples for each attribute.
12 samples for each attribute.
21 samples for each attribute.
13 samples for each attribute,
15 samples for each attribute.
10 samples for each attribute.

4 samples for each attribute.
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Fig. 6. Impp classification using BPNN.
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Fig. 7. Vmpp classification using BPNN.

equal categories which are: 25% for one PV module short circuited, 25%
for two PV module short circuited and 25% for four PV module short
circuited. For each case there are 700 samples for each attribute. On the
other side, the ANN diagnosis employs 336 samples of each attribute
(Vmpp (V), Temperature (°C)), which means (336 x 2 = 672 data)
distributed in thirty-one cases respectively resume in Table 4.

The obtained classification results of the five algorithms are as
follows:
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Fig. 9. Impp classification using RBF1.

4.1. Detailed analysis of the performance of the five ANNs

4.1.1. BPNN classification

All samples for the classification of the Impp are in their right classes
as illustrated by Fig. 6. While nearly all samples for the classification of
Vmpp are in their correct classes. Only one confusion case has been
encountered during which, the ANN confused a healthy functioning case
with a short-circuited PV module as shown by Fig. 7. This confusion is
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Fig. 10. Vmpp classification using RBF1.
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Fig. 11. Global diagnosis of the system using RBF1.

due to the temperature variation. As a result, the combination of the two
ANNs classification results outputs reveals a very high accuracy. In fact,
only one sample is confused (confusion between C1 and C2) among 336
tested cases as illustrated by Fig. 8.

4.1.2. RBF classification

4.1.2.1. RBFI. The classification results for this type of neural network
are demonstrated in Figs. 9 and 10, representing the current classifica-
tion and the voltage classification respectively. Impp has been success-
fully classified by RBF1 in any cases while only one confusion case for
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Fig. 12. Impp classification using RBF2.
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Fig. 13. Vmpp classification using RBF2.

Vmpp classification has been pointed. The analysis of this confusion case
reveals that it is due to the variation of the temperature. As a result the
logical combination of the outputs of the two RBF ANNs managed to
rank all cases in their right classes except the confusing cases between
(C1) and (C2) among the 336 tested cases (see Fig. 11).

4.1.2.2. RBF2. The classification results for the second type of the RBF
ANNs are illustrated by Figs. 12 and 13 representing the current and the
voltage classification respectively. 100% of Immp are classified in their
right classes while Vmpp classification presents three confusion cases. In
fact the ANNs confuses between a healty functioning case and one short
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Fig. 14. Global diagnosis of the system using RBF2.
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Fig. 15. Impp classification using PNN.

circuited PV module and also between two short circuited PV modules
and one short circuit PV module. As in the previous confusion cases, the
variation of the temperature is the origin of the problem. As conse-
quence, the combination of the ANNs outputs allowed to obtain the
results illustrated by Fig. 14. The whole IFD algorithm shows a good
accuracy; only three samples are in their wrong classes among 336
samples. The confusions are one sample between (C1) and (C2) and two
samples between (C2) and (C3).

4.1.3. PNN classification

All samples of the classification whether for the current or for the
voltage are in their right classes without any confusion as illustrated by
Figs. 15 and 16 respectively. Fig. 17 shows the diagnosis results of the
whole IFD algorithm. The outcome reveals an excellent efficiency.

4.1.4. GRNN classification

The current and voltage classification for the last neural network is
demonstrated in Figs. 18 and 19 respectively. All samples for the clas-
sification of Impp by GRNN are in their right classes and most samples
for the classification of Vmpp by GRNN are in their right classes only two
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Fig. 16. Vmpp classification using PNN.
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Fig. 17. Global diagnosis of the system using PNN.

confusion samples are identified. The IFD diagnosis’ results are illus-
trated by Fig. 20 where the outcome reveals a high efficiency, with two
confusing cases between (C2) and (C3).

4.2. Comparison of the performance of the five ANNs

For real time diagnosis solution, timeliness of the algorithm has to be
taken in consideration. Table 5 lists the running time corresponding to
the classification of both electrical parameters and the global diagnosis
of PV systems for the five IFD algorithms. It is clear that RBF2 based
algorithm can only be used if the diagnosis frequency is greater than one
test per 28 min and 20 s while the other algorithms need less one minute
to give the diagnosis result.

According to the obtained results, all IFD algorithms present a good
accuracy ranging from 98.7% for IFD3 to 100% for IFD4 illustrated in
Fig. 21. This little variation is induced by the number of confusion cases
which varies from an IFD to another. It is clear that the PNN based al-
gorithm is the best considering this criteria. Regarding the sensitivity, it
varies from 96.92% for IFD5 to 100% for IFD4 as shown by Fig. 22. It is
clear that this variation is function of the number of the confusion cases
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Fig. 18. Impp classification using GRNN.
GRNN Voltage Classification
4 — N —— T A TH—
+ class 1V must belong to 1 in graph
3 + class 2V must belong to 2 in graph
3 class 3V must belong to 3 in graph
5 class 4Y must belong to 4 in graph
'é 3 [rommmenn P -~ il e o -l =]
H :
525
o
o
o0
3
'B 2 B N Sp—— T Sy ———
> : i
1.5
1 e -0 —— nssun——ene- +
50 100 150 200 250 300 350
Samples

Fig. 19. Vmpp classification using GRNN.

for each classes. This puts the PNN algorithm at the top of the list with
zero confusion case and besides thanks to that this algorithm obtains the
best results for the precision and sensitivity tests as illustrated by
Figs. 23 and 24 respectively.

Fig. 25 shows that globally for accuracy criterion there are not
remarkable classes confusion for the five algorithms, while a significant
confusion is noticed in class 2 followed by class 1 for sensitivity criterion
in all algorithms except IFD4, which does not represent any confusion.
For precision and specificity criterions, the confusions are in class 2 and
class 3. Additionally, for the four criterions there are no confusion in
class 4 and class 5 for the five IFD algorithms. All confusion cases, listed
in Table 6 are due to the variation of the temperature.

5. Conclusion

The present paper examines the impact of the Artificial Neural
Network choice on the performance of an IFD diagnosis algorithm,
which is designed to detect and isolate faults in grid connected PV
installation. Four most pertinent criterions are considered in this anal-
ysis: the accuracy, the specificity, the sensitivity and the rapidity. The
goal is to choose the best ANN to ensure the IFD diagnosis efficiency and
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Fig. 20. Global diagnosis of the system using GRNN.
Table 5
The running time for the five IFD algorithms.
BPNN RBF1 RBF2 PNN GRNN
Designation IFD1 IFD2 IFD3 IFD4 IFD5
Time of (Impp) 13s 12s 26min30s 09s 12s
Time of (Vmpp) 16 s 28s 01min36s 15s 25s
Time of (Global diagnosis) 34s 50s 28min20s 30s 45s
Accuracy

I class 1
N class 2
[ Jclass3
I class 4
B Coass 5

Confusion cases(%)

Classes

Fig. 21. Confusion of the global accuracy in the five different algorithms.

consequently PV system'’s safety, durability and reliability. For this
propose, five different ANNs have been used and tested: Back Propa-
gation Neural Network, Probabilistic Neural Network, Generalized
Regression Neural Network and two Radial Basis Function Neural
Network. The performances of these ANNs have been analyzed and
compared. The five Neural Network have the same inputs: cell tem-
perature, solar irradiation, voltage and current of the maximum power
point of the I-V characteristics.

The IFD algorithm is based on two ANNs to identify and locate the
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Fig. 23. Confusion of the global precision in the five different algorithms.

most frequent fault encountered in PV installations: one PV module
short circuit in PV string, two PV modules short circuit in PV string, four
PV modules short circuit in PV string and one string modules discon-
nection in PV generator. For their comparison, the five ANNs based IFD
algorithms has been tested using 336 different functioning cases
enclosing healthy functioning cases and different faulty functioning
cases. These investigations demonstrate that the RBF2 based algorithm
presents the lowest efficiency with a response time equal to 28 min.
noting that its performance varies from 96.82% to 100% on all criterions
with three confusion cases for faults classification. While the obtained
results from GRNN and RBF1 have presented good results on all crite-
rions with a short response time and a good classification with two
confusion classifications cases. Concerning the BPNN based IFD
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Fig. 25. Confusion of the global criterions in the five different algorithms.

Table 6

Localization of confusions in all algorithms.

CONFUSIONS

BPNN
RBF1
RBF2

PNN
GRNN

One sample of healthy system in one PV module short circuit.

Two sample of one PV module short circuit in healthy system.

- One sample of One PV module short circuit in healthy system.

- Two samples of two PV modules in one PV module short circuit.
No confusion.

Two samples of two PV modules short circuit in one PV module short
circuit.
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algorithm, the tests reveal very good results on all criterions varying
from 97.27% to 100% with a very good classification’s score (one
confusion sample). Finally, the PNN based IFD algorithm displaying
100% of success score on all key statistical concepts citing accuracy,
sensitivity, specificity and precision compared to other ANNs with no
confusion cases. This places it at the top of the list and qualifies it as the
best intelligent diagnosis algorithm for the studied grid connected PV
installation.
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