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 ملخص

ب  التصميمي  ها إطار  في  الأطروحة  هذه  تقدم قمنا    F-16  المقاتلة  الطائرة  نموذج  محاكاة  لتنفيذ  تسلسلية  خطوات حيث 

  رياضي   نموذج  على  لحصولل  F-16طائرة    على  نظرية  دراسة  تقديم  تمو  .MATLAB / Simulink  بيئة  باستخدام

بتحويل  .  أويلر  نيوتن  صيغة  باستخدام خطي  إلى   خطي  غير  النموذجوقمنا    الطولية   الاتجاهات  من  كل  النوفص  نموذج 

  إلى   العمل  هذا  يهدف.  فضاءال  حالة  ذجونم  على  للحصولللتعديل وهذا    معينةبمراعاة شروط    التوازن  نقاط  حول  والجانبية

  (GA-PID, ةوالجديد   (LQR, PID, FLC)الكلاسيكية  التحكم  لوحدات  كاملة  أداء  ومراقبة  وتصميم  وتحليل  دراسة

(𝐻2/𝐻∞ , Self-tuning Fuzzy PID بناء .  خطرانال  لحركة  الاستقرار  وزيادة  الرحلة  لمسار  المرجعي  التتبع  حيث  من

  .مقارن تحليلإجراء   سيتم المحققة النتائجعلى 

 . خطرانال حركة الاستقرار، القوية،/الكلاسيكية التحكم أدوات المحاكاة، الخطية،/  الخطية غير النماذج: الرئيسية الكلمات

 

Abstract 

This thesis presents within the framework of a conceptual context simulation of our F-16 

fighter aircraft model using the MATLAB/Simulink environment. A theoretical study on the 

aircraft F-16 will be presented in which a mathematical model was obtained using Newton-

Euler formulism. The non-linear model was linearized and decoupled for both longitudinal 

and lateral directions around equilibrium points at certain trim conditions to obtain state 

space models. This work aims at a complete study, analysis, design and performance 

monitoring of the classical (LQR, PID, FLC) and the new robust generation controllers (Self-

tuning Fuzzy PID, GA-PID, 𝐻2/𝐻∞) in terms of flight trajectory reference tracking and 

stability augmentation of the pitch motion. From the results achieved a comparative analysis 

will be investigated. 

Keywords: Non-linear/linear models, Simulation, classical/robust controllers, stability, pitch 

motion.



 
 
 

 

Résumé 

Cette thèse présente dans le cadre d'un contexte conceptuel, un enchainement des 

étapes pour réaliser la simulation de notre modèle d'avion de chasse F-16 à l'aide de 

l'environnement MATLAB/Simulink. Une étude théorique sur l’avion F-16 sera présentée 

dans laquelle un modèle mathématique a été obtenu en utilisant le formalisme de Newton-

Euler. Le modèle non linéaire a été linéarisé et découplé pour les directions longitudinale et 

latérale autour des points d'équilibre à certaines conditions d'ajustement pour obtenir des 

modèles d'espace d'état. Ce travail vise à une étude complète, une analyse, une conception 

et un suivi des performances des contrôleurs classiques (LQR, PID, FLC)  et de nouvelle 

génération robuste (Self-tuning Fuzzy PID, GA-PID, 𝐻2/𝐻∞)  en termes de suivi de référence 

de trajectoire de vol et d'augmentation de la stabilité du mouvement de tangage. À partir 

des résultats obtenus, une analyse comparative sera faite. 

Mots clés : Modèles non-linéaires/linéaires, Simulation, contrôleurs classiques/robustes, 

stabilité, mouvement de tangage. 
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                             coordinate system (roll, pitch, and yaw, respectively). 

𝑈,̇  �̇�, �̇�              Components of linear acceleration expressed in the body 

                             coordinate system. 

𝑋𝑎, 𝑌𝑎, 𝑍𝑎            Components of aerodynamic force vector. 

𝐿𝑎, 𝑀𝑎 , 𝑁𝑎          Components of aerodynamic moment vector. 

𝑋𝑔, 𝑌𝑔, 𝑍𝑔           Components of gravitational force vector. 

𝐿𝑔, 𝑀𝑔, 𝑁𝑔          Components of gravitational moment vector. 

𝑋𝑐, 𝑌𝑐, 𝑍𝑐           Components of aerodynamic control force vector. 

𝐿𝑐, 𝑀𝑐, 𝑁𝑐           Components of aerodynamic control moment vector. 

𝑋𝑝, 𝑌𝑝, 𝑍𝑝           Components of power effects force vector. 

𝐿𝑝, 𝑀𝑝, 𝑁𝑝          Components of power effects moment vector. 

𝑋𝑑, 𝑌𝑑, 𝑍𝑑           Components of atmospheric disturbances effects force vector. 

𝐿𝑑 , 𝑀𝑑 , 𝑁𝑑          Components of atmospheric disturbances effects moment vector. 

 

𝑋𝑢                        A shorthand notation to denote the dimensionless derivative 𝜕�̂�/𝜕�̂�. 

X̊𝑢                        A shorthand notation to denote the dimensional derivative 𝜕𝑋/𝜕𝑢. 



Notations and acronyms 

 
 

Xu                        A shorthand notation to denote the American normalised dimensional 

                             derivative X̊𝑢/𝑚. 

𝐿′𝑣                       A shorthand notation to denote a modified North American lateral– 

                             directional derivative 

�̂�                          A shorthand notation to denote that the variables 𝑢 is dimensionless. 

(◦)                        A dressing to denote a dimensional derivative in British notation. 

(ˆ)                        A dressing to denote a dimensionless parameter. 

𝐶𝑚                       Aerodynamic pitch moment coefficient about center of mass. 

𝐶𝑛                        Aerodynamic yaw moment coefficient about center of mass. 

𝐶𝐿                        Aerodynamic roll moment coefficient about center of mass. 

𝐶𝐷                        Aerodynamic drag coefficient. 

𝐶𝐷𝛼
                      Slope of curve formed by drag coefficient 𝐶𝐷  versus angle of attack 𝛼. 

𝐿                          Magnitude of aerodynamic lift force vector. 

𝐷                         Magnitude of aerodynamic drag force vector. 

𝐶𝑚𝛼
                     Slope of curve formed by pitch moment coefficient 𝐶𝑚  versus angle of 

                             attack α. 

𝐶𝑚0
                     Pitch moment coefficient at zero AOA. 

𝐶𝑚𝛿𝑒
                    Slope of curve i.e pitching moment coefficient 𝐶 versus control- 

                             surface  deflection 𝛿𝑒. 

𝐶𝐷𝑢
                      Drag coefficient variation versus velocity. 

𝐶𝐿𝛼
                       Slope of curve formed by lift coefficient 𝐶𝐿 versus angle of attack 𝛼. 

𝐶𝑙                         Aerodynamic roll moment coefficient about center of mass. 

 



Notations and acronyms 

 
 

𝐶𝑙𝛽
                       Roll damping derivative relative to angle-of sideslip rate. 

𝐶𝑙𝛿𝑎
                      Slope of curve i.e rolling moment coefficient 𝐶 versus control- 

                             surface  deflection 𝛿𝑎. 

 𝐶𝑙𝑣                          Lift coefficient for vertical tail . 

𝐶𝐿𝑚𝑎𝑥
                  Maximum lift coefficient. 

𝜏𝑎                        Aileron control surface effectiveness parameter. 

𝐶𝑛𝛽
                      Slope of curve formed by yawing moment coefficient Cn versus 

                            angle of sideslip. 

A                          State matrix. 

B                          Input matrix. 

I                           Identity matrix. 

u(t)                      Input vector. 

x(t)                      State vector. 

y(𝑡)                    column vector of 𝑟 output variables called the output vector. 

C                         (𝑟 × 𝑛) output matrix. 

D                        (𝑟 × 𝑚) direct matrix.  

M                      Mass matrix. 

𝐾                         LQR gain matrix. 

𝑄                         LQR weight matrix. 

𝑅                         The weighing matrix of control variables. 

𝐾𝑝                        Proportional gain. 

𝐾𝐼                         Integral gain. 

𝐾𝐷                        Derivative gain. 

𝑘𝑑                        Derivative gain. 

𝑇𝑑                        Derivative time. 

 

 



 

 
 
 

General Introduction 

The F-16 is a fighter aircraft requires a high stability in flight for both offensive and 

defensive purposes. The military aircrafts demand a high performances, it has introduced 

areas of concern associated with the aircraft's handling qualities, control and safety. Studies 

conducted previously show that there are two types of control problems when flying at high 

angles of attack, these are the 'pitch departures' caused by coupling and the 'deep stall trim'. 

However avoidance of these problems requires that the airplane have sufficient pitch and 

roll control. In this approach the introduction of autopilots was one of the great step in 

aviation development, they were used with the purpose to replace the human pilot during 

cruise modes , When an aircraft had a deviation form a  particular flight  path,  the  

autopilots  alter  the  roll,  pitch  and  heading  angles  of  an  aircraft. 

In recent decades, enormous techniques including linear and non-linear approaches are 

investigated to propose control schemes for F-16, such as proportional-integral-derivative 

(PID), linear quadratic regulator (LQR) and fuzzy logic; they have been studied to stabilize the 

aircraft during flight operations. The LQR is a well-known controller for minimizing cost 

functions. Indeed PID controller is another commonly used controller, implemented 

successfully to enhance the response times of systems, popular by it simple structure that 

can be easily applied with sufficient performance. Fuzzy logic controllers fall into the class of 

intelligent control systems; it’s a mathematical tool for dealing with uncertainty by providing 

a technique to deal with imprecision and information granularity. 

 As aircraft handling and performance requirements increased so did the complexity of 

the flight control system, now the big question to ask is: “Can the classical controllers keep 

the aircraft stable in critical situations?” Of course, the short answer is that technology does 

not stand still: new solution capabilities are always emerging. The focus of this study is to 

develop the design of mixed controllers, in addition to that, our main problematic is based 

on the following questions: “will these controllers be reliable to meet the required stability?”, 

“will they be able to guarantee control adaptive convergence must occur in less than 8.5 

seconds”, “will it be possible to maintain the pitch control under a variety of complex 

maneuvers conditions including approach, subsonic cruise and supersonic cruise?”. 

Therefore this project proposes three robust controllers based on combining different 

design schemes and new algorithms such as genetic algorithm assuring better optimization 



 

 
 

for the PID controller. The objective of this thesis is to demonstrate and present a 

comparative study of the proposed new technology by completing the conceptual design 

with simulation results using MATLAB/Simulink environment, and all the conclusions and 

hypotheses achieved will be discovered later during this scientific research. 

This thesis is organized as follows: 

 

Firstly, Chapter 1 provides a brief description about our aircraft model F-16 Fighter 

Falcon. 

 

Then, Chapter 2 introduces the development of the equations of motion considering the 

main moments and forces acting on the aircraft, stating some assumptions, presenting the 

coordinate systems and then developing the mathematical non-linear dynamic model, after 

that we introduce the linearization method based on small perturbations theory , finally the 

decoupled equations of motion are determined. 

 

Furthermore, Chapter 3 discusses the stability and control analysis includes static and 

dynamic stability for longitudinal, lateral and directional motions. Indeed military flying 

qualities have been introduced. 

 

Control design constitutes one of the main topics approached in this work and is 

presented in chapter 4.  First, a control architecture of the classical controllers PID, LQR , FLC 

is proposed , followed by the combined architecture of new controllers self-tuning PID , GA-

PID and finally mixed H2/H∞ . 

 

Finally, chapter 5 concludes this work by highlighting the main results and discussing the 

comparative analysis between the traditional controllers and the mixed robust new 

controllers.



 

 
 
 

 

 

 

 

Chapter 1:   An overview about fighter 

aircraft F-16   



Chapter 1                                                                             An overview about fighter aircraft F-16 

25 
 

Chapter 1: An overview about fighter aircraft F-16 

1.1 Introduction  

This chapter will cover an overview about the fighter aircraft F-16 which will be applied as 

a dynamic model of our study in the next chapters. A brief introduction to the technology 

and flight equipment systems and design history of the aircraft will be discussed. 

1.2 Description 

The Lockheed F-16 Fighting Falcon which is shown in Figure 1.1 , is a single-engine , 

supersonic ,multi-role fighter aircraft originally developed by General Dynamics for the 

United States Air Force (USAF) , It was initially ridiculed and rejected by both the company 

and the Air Force for being too small and too light to go anywhere or carry anything 

significant. Nevertheless, the F- 16 has proven to be an extraordinary fighter. The F-16 has 

been ordered by 24 countries and is operating in the air forces of more than 20 countries.  

 

The F-16 and the F-15 Eagle were the world’s first aircraft able to withstand higher g-

forces than the pilot’s .The judicious application of advanced technologies combined with 

design innovations gives the airplane its unprecedented combat performance at an 

affordable cost, designed as an air superiority day fighter, it evolved into a successful all-

weather multi-role aircraft. Over 4,500 aircraft have been built since production was 

approved in 1976. Although no longer being purchased by the U.S. Air Force, improved 

versions are still being built for export customers. In 1993, General Dynamics sold its aircraft 

manufacturing business to the Lock-heed Corporation, which in turn became part of 

Lockheed Martin after a 1995 merger with Martin Marietta. 
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Figure 0.1:  F-16 aircraft model  [2]. 

1.3 Design properties  

The F-16 is a revolutionary aircraft designed by Harry Hillaker. It represents a major 

change in fighter design; its fine blend of high technology and common sense requirements 

emphasizes flight performance-range, persistence, and maneuverability right in the heart of 

the flight envelope where air combat takes place. The structural criteria were fully 

compatible with the aerodynamic capacity of the airplane and the pilot’s physical tolerance. 

The structural design which is shown in Figure 1.2 load factor was set at 9.0 g’s at start of 

combat with full internal fuel, as contrasted to the normal military specification of 7.33 g’s 

with only 60 percent internal fuel. F-16 models are denoted by increasing block numbers to 

denote upgrades. The blocks cover both single- and two-seat versions. A variety of software, 

hard-ware, systems, weapons compatibility and structural enhancements have been 

instituted over the years to gradually upgrade production models and retrofit delivered 

aircraft. While many F-16s were produced according to these block designs, there have been 

many other variants with significant changes, usually due to modification programs. Other 

changes have resulted in role-specialization, such as the close air support and 

reconnaissance variants. Several models were also developed to test new technology. The F-

16 design also inspired the design of other aircraft, which are considered derivatives.  

The F-16 introduced many successful technologies. Fly-by-wire and relaxed static stability 

gave the F-16 a quantum leap in air combat capability over other fighters when it was 

introduced and this technology still makes the aircraft an unmatched competitor today. Its 
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provides excellent flight control through its “fly-by-wire” system, side-stick controller, highly 

accurate inertial navigation system, UHF/VHF radios, instrument landing system, AN/APG-

66/68 radar warning system, and modular countermeasure pods, a notable product of 

advanced technology. Flight control system is the link that integrates the pilot and the 

airframe into a highly responsive and effective combat fighter, this advanced system is a 

radical departure from previous systems. Indeed With a fly-by-wire system, the pilot 

commands roll, pitch, or yaw rate—not surface deflection, as in a conventional system. 

When the pilot makes a roll input, for instance, he commands a roll rate that varies with the 

force of his input. If he releases his input, the airplane maintains the resultant bank angle 

until he makes another control input; he doesn’t have to center the “control stick” to 

maintain the bank angle as he does with a conventional system.  

Beyond the necessary control of flight, the pilot has precise response control. The 

reduced lags and overshoots afforded by the better kinematics of the electronic circuitry 

results in greatly improved and expanded flying qualities, which, in turn, significantly 

improve the response and tracking accuracy of the pilot-airframe system. A much higher 

level of precise, non-varying control response is possible throughout the flight envelope with 

the fly-by-wire system than with conventional flight control systems. The resulting system is 

a quad-redundant (fail-operative, fail-safe), high-authority, command-and-stability 

augmentation system. The system consists of a series of sensors (accelerometers, rate gyros, 

air data converter), computers, selectors, transducers, and inverters that collectively 

generate the pitch, roll, and yaw rates that are transmitted as electronic signals to the five 

triplex electrohydraulic, servo actuators that control the flappers (roll and flaps), elevens 

(pitch and roll), and rudder. 

 

All F-16s delivered since November 1981 have built-in structural and wiring provisions 

and systems architecture that permit the multi-role flexibility to perform precision strike, 

night attack and beyond-visual-range interception missions. The weight saving resulting from 

the absence of cables, linkages, bell cranks, and the ratio changer was translated into 

redundancy. The redundancy level and the freedom of routing afforded by wire harnesses 

improved the reliability and increased the operational survivability of the airplane and 

contributed to its compactness and small size. 
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Figure 0.2:  3D view of the General Dynamic F-16 aircraft  [3]. 

 

1.4 Flight equipment  

1.4.1 F-16 missiles and weapons 

The aircraft has nine hard points for weapons payloads: one at each wing tip, three under 

each wing, and one centerline under the fuselage. The ordnance is launched from Raytheon 

LAU-88 launchers, MAU-12 and Organ bomb ejector racks. The port wing is fitted with a 

20mm General Electric M61A1 multi-barrel cannon and the gunsight is interfaced to the 

cockpit HUD. 

Air-to-air missiles carried on the F-16 include the Lockheed Martin / Raytheon AIM-9 

Sidewinder, Raytheon AMRAAM, Raytheon Sparrow, MBDA (formerly Matra BAe Dynamics) 

Skyflash and ASRAAM, and the MBDA R550 Magic 2. In April 2004, the F-16 first fired the 

new-generation AIM-9X Sidewinder, which is in full-rate production for the USAF. Air-to-

surface missiles carried on the F-16 include Maverick, HARM and Shrike missiles, 

manufactured by Raytheon, and anti-ship missiles include Boeing Harpoon and Kongsberg 
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Penguin. Flight tests with the Lockheed Martin joint air-to-surface stand-off missile (JASSM) 

have been conducted from the F-16. 

The first guided launch of the new joint direct attack munition (JDAM) was successfully carried out 

from an F-16. It was the first USAF aircraft to be fitted with the joint stand-off weapon (JSOW) in 

April 2000. 

The F-16 can be fitted with Lockheed Martin wind-corrected munitions dispenser (WCMD), which 

provides precision guidance for CBU-87, -89, and 97 cluster munitions. The system corrects for 

launch transients, ballistic errors, and winds aloft. 

The F-16 is the first aircraft to use the USAF’s new weapon rack, the Edo Corporation BRU-57. The 

BRU-57 is a vertical ejection rack which doubles the aircraft’s capacity for precision-guided weapons 

such as the JDAM and WCMD. 

All-weather stand-off weapons, such as the AGM-84E stand-off land-attack missile (SLAM) and the 

AGM-142 Popeye II, are planned to be included in future upgrades to the aircraft. Other advanced 

weapons include MICA, IRIS-T, Python IV, Active Skyflash air-to-air missile, ALARM anti-radiation 

missile, Apache multimission stand-off weapon, autonomous free-flight dispenser system and AS30L 

laser-guided missile. 

 

1.5 Targeting 

The F-16 carries the Lockheed Martin LANTIRN infrared navigation and targeting system. This is 

used in conjunction with a BAE Systems holographic display. Block 50/52 aircraft are equipped with 

the HARM targeting system, AN/ASQ-213 from Raytheon. US Air National Guard F-16 aircraft are 

fitted with Northrop Grumman Litening II / Litening ER targeting pods. 

In August 2001, Lockheed Martin was selected to provide the Sniper XR as the new advanced 

targeting pod for USAF F-16 and F-15E aircraft. Sniper XR (extended range) incorporates a high-

resolution mid-wave FLIR, dual-mode laser, CCD TV, laser spot tracker and laser marker combined 

with advanced image processing algorithms , deliveries began in March 2003. 

1.6 Radar 

The Northrop Grumman AN/APG-68 radar provides 25 separate air-to-air and air-to-ground 

modes, including long-range, all-aspect detection and tracking, simultaneous multiple-target 

tracking, and high-resolution ground mapping. The planar antenna array is installed in the nose of 

the aircraft. 

https://www.airforce-technology.com/projects/agm-158-jassm-standoff-missile/
https://www.airforce-technology.com/contractors/navigation/
https://www.airforce-technology.com/features/featurege-smartsignal-helping-military-maintenance-fix-before-failure-4316508/
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An upgraded version of the radar, AN/APG-68(V)9, has begun flight testing. The upgrade features 

a 30% increase in detection range, five times increase in processing speed, ten times increase in 

memory, as well as significant improvements in all modes, jam-resistance and false alarm rate. 

 

1.7 Navigation and communications of F-16 Fighting Falcon 

The F-16 was the first operational US aircraft to receive a global positioning system (GPS). The 

aircraft has an inertial navigation system and either a Northrop Grumman (Litton) LN-39, LN-93 ring 

laser gyroscope or Honeywell H-423. 

Other navigation equipment includes a BAE Systems Terprom digital terrain navigation system, 

Gould AN/APN-232 radar altimeter, a Rockwell Collins AN/ARN-118 tactical air navigation system 

(TACAN) and Rockwell Collins AN/ARN-108 instrument landing system. 

The communications systems include the Raytheon UHF AN/ARC-164 receiver / transmitter and 

Rockwell Collins VHF AM/FM AN/ARC-186 together with AN/APX101 identification friend or foe (IFF) 

and encryption / secure communications systems. The AN/APX-101 is being upgraded with BAE 

Systems AN/APX-113. 

 

1.8 Engines 

The aircraft is powered by a single engine: the General Electric F110-GE-129 or Pratt and Whitney 

F100-PW-229. The fuel supply is equipped with an inert gas anti-fire system. An inflight refueling 

probe is installed in the top of the fuselage. 

Lockheed Martin completed developmental flight testing on new conformal fuel tanks (CFT) for 

the F-16, which will significantly add to the aircraft’s mission radius. The first flight of the F-16 

equipped with the new tanks was in March 2003. Greece is the launch customer for the CFT [2]. 

1.9 Aircraft Specifications 

In this section we will describe the properties used with certain assumptions and 

indicated values to be able to perform further calculations in further chapters. Table 1.1 

shows the assume values of specific parameters. 
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Table 0.1: Mass and geometric properties of F-16 [7]. 

 

 

 

 

 

 

 

1.10 Summary  

In this chapter we have described the F-16 aircraft, it was designed to be relatively 

inexpensive to build and simpler to maintain than earlier-generation fighters and it showed 

advantageous performances effectiveness in completing military missions. One of the 

revolutionary features of the F-16 is its flight control system, a notable product of advanced 

technology, “flyby-wire” was the star technology. New versions are improved over years and 

a large number of variants and derivative designs have been produced significantly 

influenced by the F-16. 

      

Parameter Symbol Value 

aircraft mass  (Kg) 

reference wing span  (m) 

reference wing area  (m² ) 

mean aerodynamic chord  (m) 

roll moment of inertia  (Kg. m² ) 

pitch moment of inertia  (Kg. m² ) 

yaw moment of inertia (Kg. m² ) 

product moment of inertia  (Kg. m² ) 

product moment of inertia  (Kg. m² ) 

product moment of inertia  (Kg. m² ) 

c.g. location  (m) 

reference c.g. location  (m) 

engine angular momentum  (Kg. m² /s) 

m 

b 

S 

c ̄

𝐼𝑥 

𝐼𝑦 

𝐼𝑧 

𝐼𝑥𝑧 

𝐼𝑥𝑦 

𝐼𝑦𝑧 

𝑥𝑐𝑔 

𝑥𝑐𝑔𝑟 

ℎ𝐸  

9295.44 

9.144 

27.87 

3.45 

12874.8 

75673.6 

85552.1 

1331.4 

0.0 

0.0 

0.3c ̄

0.35c ̄

216.9 
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2 Chapter 2:  Aircraft equations of motion 

2.1 Introduction  

The performance of an aircraft can adequately be described by assuming the aircraft is a point 

mass concentrated at the aircraft's center of gravity (𝑐𝑔). The flying qualities of an aircraft, on the 

other hand, cannot be described in such a simple manner. The flying qualities of an aircraft must 

instead be described analytically as motions of the aircraft's 𝑐𝑔 as well as motions of the airframe 

about the 𝑐𝑔, both of which are caused by aerodynamic, thrust and other forces and moments.  

In addition, the aircraft must be considered a three dimensional body and not a point mass. The 

applied forces and moments on the aircraft and the resulting response of the aircraft are traditionally 

described by a set of equations known as the aircraft equations of motion (EOM).  

This chapter presents the form of the aircraft equations of motion used in our aircraft dynamic 

model. The purpose is to provide an understanding of the different sets of equations used for 

describing the dynamics of the aircraft system and to express them in the state-space form. The 

equations will be derived with respect to an inertial Earth-based frame as well as a body reference 

frame. 

2.2 Systems of axes and control notation 

To build a mathematical model it is necessary to introduce the aircraft axes and notation in which 

the (EOM) can be developed in an orderly way. As we know aircraft have six degrees of freedom 

which make the description of their motion more complex. Therefore for analyzing the rigid body 

dynamics of an airplane, three axis systems have to be defined. 

2.2.1 Description of the F-16 model coordinate system (OVERVIEW) 

First let introduce the F-16 body axes model which are conventional. The x-axis is positive 

out the nose of the aircraft. The 𝑦-axis is positive out the right wing as you sit in the cockpit 

and face out the front of the aircraft. The 𝑧-axis is positive normal to the 𝑥 and 𝑦 axis and 

points vertically downward when the aircraft is in the level flight. The moment axes obey the 

right hand rule about each axis. Moments about 𝑥, 𝑦  and 𝑧-axis are labeled 𝑀, 𝐿, and 𝑁, 

respectively. The body rates (𝑝, 𝑞 and 𝑟) and Euler angles (ɸ, 휃 and 𝜓) are also measured 

positively using the right-hand rule about each axis. The Figure 2.1 describes the F-16 body 

axes.  
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Figure 2.1:  F-16 body axes  [2]. 

 

2.2.2 Reference frames and assumptions: 

In this section we will produce a development to the reference frames that will be used to 

determine the equations of motions with listing some assumptions used to facilitate the 

solution. 

2.2.3 Reference frames 

When working with a flight dynamics’ problem it is crucial to choose a proper reference 

frame (RF) that specifies the needs of the problem. There is several reference frames, which 

one is most convenient to use depends on the circumstances. We will examine a few, the 

most common known frames are the earth-fixed inertial reference frame which is written 

as  (FE) and the body-fixed reference frame which is noted as  (FB) . Both references are 

shown in Figure 2.2. 
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Figure 2.2:  Aircraft reference frames [5]. 

 

 

Before advancing to the equations of motion (EOM), several reference frames will be 

presented: 

 

➢ Earth-based inertial frame:   

An inertial coordinate system Figure 2.2 is defined as a system in which Newton's second 

law is valid. The equations of motion must, therefore, be determined in an inertial 

coordinate system. Another way of defining the inertial coordinate system is to assume it is 

an axis system fixed in space that has no relative motion. 

Experience with physical observations can be used to determine whether a particular 

reference system can properly be assumed to be an inertial coordinate system for the 

application of Newton's laws to a particular problem. For space dynamics in our solar 

system, the sun axis system is a sufficient approximation for an inertial system. For aircraft, 

the earth axis system is usually a sufficient approximation for an inertial coordinate system. 

The selection of this frame implies that the effects of the rotational velocity of the earth can 

be neglected within this context. 
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➢ Aircraft-based body frame:   

There are many different types of body frame which are used to describe aircraft 

motion which are: 

- Generalized body axes: 

The aircraft based body frame  (oxb, yb, zb) is located at the center of gravity (𝑐𝑔) which 

is fixed in the aircraft as shown in Figure 2.2. Thus when the aircraft is disturbed from its 

initial flight condition the axes move with the airframe and the motion is quantified in terms 

of perturbation variables referred to the moving axes. The (oxb, zb) plane defines the plane 

of symmetry of the aircraft and the oxb axis is arranged such that it is parallel to the 

geometrical horizontal fuselage datum. Thus in normal flight attitudes the oyb axis is 

directed to starboard and the ozb axis is directed downwards. The origin o of the axes is 

fixed at a convenient reference point in the airframe which is usually, but not necessarily, 

coincident with the center of gravity (𝑐𝑔). 

 

- Aerodynamic, wind or stability axes: 

It is often convenient to define a set of aircraft fixed axes such that the 𝑜𝑥 axis is parallel 

to the total velocity vector 𝑉0 as shown in Figure 2.2. Such axes are called aerodynamic, wind 

or stability axes. In steady symmetric flight wind axes (𝑜𝑥𝑤 , 𝑦𝑤, 𝑧𝑤)  are just a particular 

version of body axes which are rotated about the 𝑜𝑦𝑏  axis through the steady body 

incidence angle 𝛼 until the 𝑜𝑥𝑤 axis aligns with the velocity vector. 

The 𝑥-stability axis is the projection of the velocity vector of the aircraft on the plane of 

symmetry. The angle between the velocity vector and the 𝑥-stability axis is defined as the 

slide slip 𝛽 (beta). The angle between the 𝑥-stability axis and the 𝑥-body axis is defined as 

angle of attack angle 𝛼 (alpha). The 𝑧-stability axis is in the plane of symmetry of the aircraft. 

The stability-axes are used for analyzing the effect of perturbations from steady-state flight. 
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2.2.4 Steady-state conditions and perturbation variables 

Assuming that the airplane to be a rigid body, the motion is described in terms of force, 

moment, linear and angular velocities and attitude determined into components. Thus 

initially, the aircraft is assumed to be in steady rectilinear, but not necessarily level, flight 

when the angle of attack is 𝛼 and the steady velocity 𝑉0 resolves into components  𝑈𝑒 𝑉𝑒  

and  𝑊𝑒  as indicated in Figure 2.3. The steady-state flight conditions are defined as those 

conditions where the linear and angular accelerations are zero and it is referred to as 

trimmed equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Motion variables notation [6]. 

 

 

 

Now the perturbed flight conditions are defined in which all the motion variables of the 

aircraft dynamics deviate from the steady-state values. The disturbance from the equilibrium 

is presented by a set of perturbed variables terms that are shown in Figure 2.3 and 

summarized in Table 2.1. 
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Table 2.1:  Summary of motion variables [6]. 

 Trimmed equilibrium Perturbed 

Aircraft axis 

Force 

Moment 

Linear velocity 

Angular velocity 

Attitude 

𝑜𝑥          𝑜𝑦           𝑜𝑧 

0              0             0 

0              0             0 

𝑈 𝑒        𝑉 𝑒         𝑊 𝑒 

0              0             0 

0              휃𝑒           0 

𝑜𝑥          𝑜𝑦           𝑜𝑧 

𝑋              𝑌             𝑍 

𝐿              𝑀             𝑁 

𝑈              𝑉            𝑊 

𝑝              𝑞              𝑟 

𝜙              휃             𝜓 

 

 

A simple description of the perturbation variables is given in Table 2.2. Note that the 

components of the total linear velocity perturbations (𝑈, 𝑉,𝑊) are given by the sum of the 

steady equilibrium components and the transient perturbation components (𝑢, 𝑣, 𝑤) thus: 

𝑈 = 𝑈𝑒 + 𝑢 

𝑉 = 𝑉𝑒 + 𝑣 

                                                                         𝑊 =  𝑊𝑒 + 𝑤                                                               (2.1) 

 

 

 

Table 2.2:  The perturbation variables [6]. 

𝑋                                Axial  “drag” force                              Sum of the components of 
Y                                 Side force                                             aerodynamic , thrust and 
Z                                 Normal “lift” force                              weight forces 
L                                 Rolling moment                                   Sum of the components of 
M                                Pitching moment                                aerodynamic , thrust and 
N                   Yawing moment          weight forces 
p            Roll rate                                                Component of angular 
q               Pitch rate                                              velocity 
r            Yaw rate 
U                                 Axial velocity          Total linear velocity 
V                                 Lateral velocity          components of the cg 
W                                Normal velocity 
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2.2.5 Angular relationships in symmetric flight 

With reference to Figure 2.4, the steady velocity vector  𝑉0 defines the flight path and 𝑦𝑒 

is the steady flight path angle and 휃𝑒 is the steady pitch attitude of the aircraft. At a given 

moment during the disturbance it is clearly seen at the figure that the axes have displaced 

from its origin, also the relative angular has changed.   

 

 

Figure 2.4: Generalized body axes in symmetric flight [6]. 

 

Thus the steady flight path angle is given by: 

                                                      𝑦𝑒 = 휃𝑒 − 𝛼                                                                                 (2.2) 

                                                                                                                                                    

In the case when the aircraft fixed axes are wind axes rather than body axes, then: 

                                                        𝛼 = 0                                                                                          (2.3)                               

 

and in the special case when the axes are wind axes and when the initial condition is level 

flight, 

                                                   𝛼 = 휃𝑒 = 0                                                                                     (2.4)                                                                              

 

It is also useful to note that the perturbation in pitch attitude 휃 and the perturbation in the 

angle of attack  𝛼 are the same thus: 
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                          tan(𝛼𝑒 + 휃) =
𝑊

𝑈
=

𝑊+𝑤

𝑈𝑒 +𝑢 
                                                                  (2.5)                            

 

2.2.6 Choice of axes 

As we have seen before there are many coordinate systems , now the most frequent 

question to ask is : what axe is the most appropriate to use for analyzing aircraft motion ?  

The answer to this question depends on which axe facilitates the analysis of the (EOM), so it 

is preferable to use the generalized body axes. While Wind axes are not generally used in the 

analysis of the motion of a rigid body, because, as in the case of the earth axes, the moment 

of inertia and product of inertia terms in the three rotational equations of motion vary with 

time, 𝛼 and 𝛽. 

Aerodynamic measurements are referenced to the free stream velocity vector and the 

measuring equipment is installed in the aircraft, its location is precisely known in terms of 

body axis coordinates, which therefore determines the best choice of axis system.  

Thus, to summarize, we don’t really interest particularly to which axis system is chosen. 

So it becomes necessary to have the mathematical tools to transform data between 

different reference axes.  

 

2.2.7 Assumptions 

The aircraft mass is subjected to the gravity acceleration. According to the “flat-Earth”; 

assumption, the 𝑔 vector is aligned with the 𝑍 axis of the Earth-based reference frame. In 

addition, the following assumptions are in place for the derivation of the aircraft equations 

of motion: 

• We consider the aircraft as a rigid-body, where a rigid body is is a system of particles 

for which the distances between the particles and the angle between the lines remain 

unchanged. Thus, if each particle of such a body is located by a position vector from 

reference axes attached to and rotating with the body, there will be no change in any 

position vector as measured from these axes. Of course this is an idealization since all 
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solid materials change shape to some extent when forces are applied to them. This 

assumption is quite valid for fighter aircrafts. 

• The earth is at and non-rotating and regarded as an inertial reference, this is valid 

when dealing with control design of aircraft, but not when analyzing inertial guidance 

systems. 

• The mass is constant during the time interval over which the motion is considered that 

is, the fuel consumption is neglected during this time-interval. 

• The mass distribution is assumed to be time constant with time. This implies that the 

inertial characteristics of the aircraft (that is, the moments and the products of inertia) 

can be assumed constant over a limited amount of time. In reality, these inertial 

characteristics change with fuel consumption; however, the rate of change for these 

parameters is low because, by design, the center of gravity of the fuel tanks is located 

close to the aircraft cg. Nevertheless, rapid changes in the moments of inertia can be 

experienced due to different reasons, such as fuel slosh, dropping of wing stores for 

military aircraft, or non-nominal events, such as sudden shifts of cargos within the 

fuselage. 

• The aircraft is symmetric. 

• There is constant wind. 

2.2.8 Euler angles and aircraft attitude 

In flight dynamics the orientation of any reference frame relative to another can be given by 

three angles, Euler angles (𝜙, 휃, 𝜓) .A function of these angles allow the mutual 

transformation from a fixed reference frame (coordinate system, FE)) to the local reference 

frame (fixed-body frame,  FB), for small angles, each of the Euler angles has the following 

designation:  

• Roll angle :  𝜙 ∈ [−𝜋, 𝜋] (rad) 

• Yaw angle : 𝜓 ∈ [0,2𝜋] (rad) 

• Pitch angle : 휃 ∈ [−
𝜋

2
,
𝜋

2
] (rad) 

 

The aircraft attitude is the angular orientation of the airframe fixed axes with respect to 

earth axes. Therefore attitude angles are a particular application of Euler angles. As shown in 

Figure 2.5 (𝑜𝑥0, 𝑦0, 𝑧0)  are reference axes and (𝑜𝑥3, 𝑦3, 𝑧3)  are aircraft fixed axes, referred 
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to the generalized body axes or wind axes. The attitude of the aircraft may be obtained 

considering the rotation about each axis and bringing (𝑜𝑥3, 𝑦3, 𝑧3) into coincidence with 

(𝑜𝑥0, 𝑦0, 𝑧0) . Thus, first rotate about 𝑜𝑥3 through the roll angle 𝜙 to (𝑜𝑥2, 𝑦2, 𝑧2) . Second, 

rotate about 𝑜𝑦2 through the pitch angle 휃 to (𝑜𝑥1, 𝑦1, 𝑧1) and third, rotate about 𝑜𝑧1 

through the yaw angle 𝜓 to (𝑜𝑥0, 𝑦0, 𝑧0) . Clearly, with the respect of earth axes the attitude 

is considered, then (𝑜𝑥0, 𝑦0, 𝑧0)  and (𝑜𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸) are coincident.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  The Euler angles [6]. 
 

 

2.2.9 Controls notation 

To control an aircraft, control surfaces are generally used. Examples are elevators, flaps 

and spoilers. When dealing with control surfaces, we can make a distinction between 

primary and secondary flight control surfaces. When primary control surfaces fail, the whole 

aircraft becomes uncontrollable, (examples are elevators, ailerons and rudders).However, 

when secondary control surfaces fail, the aircraft is just a bit harder to control. (Examples  

are aps and trim tabs).The whole system that is necessary to control the aircraft is called 

the control system. When a control system provides direct feedback to the pilot, it is called a 

reversible system. 
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2.2.9.1 Aerodynamic controls 

An aircraft typically has three aerodynamic controls, each capable of producing moments 

about one of the three basic axes as shown in Figure 2.6. The elevator consists of a trailing-

edge flap on the horizontal tail. Elevator deflection is characterized by the deflection 

angle 𝛿𝜂. Elevator deflection is defined as positive when the trailing edge rotates downward, 

so for a configuration in which the tail is aft of the vehicle center of mass. 

The rudder consists of a trailing-edge flap on the vertical tail. Rudder deflection is 

characterized by the deflection angle  𝛿𝜁. Rudder deflection is defined as positive when the 

trailing edge rotates to the left. 

The ailerons consist of a pair of trailing-edge flaps, one on each wing, designed to deflect 

differentially. Aileron deflection is characterized by the deflection angle 𝛿𝜉. Aileron 

deflection is defined as positive when the trailing edge of the aileron on the right wing 

rotates up (and, correspondingly, the trailing edge of the aileron on the left wing rotates 

down). 

Aileron, elevator and rudder surface displacements are denoted 𝜉, 휂 and 휁 respectively as 

indicated in Figure 2.6. 

By vehicle symmetry, the elevator produces only pitching moments, but there invariably 

is some cross-coupling of the rudder and aileron controls, means that rudder deflection 

usually produces some rolling moment and aileron deflection usually produces some yawing 

moment. 

 

 

 

 

 

 

 

 

 

Figure 2.6:  Aerodynamic controls [6]. 
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2.2.9.2 Aerodynamic controls of F-16 model 

The F-16 model allow for control over thrust, elevator, aileron and rudder. The thrust is 

measured in pounds and acts positively along the positive body 𝑥 −axis. Positive thrust 

causes an increase in acceleration along the body 𝑥 −axis. For the other control surfaces a 

positive deflection gives a decrease in the body rates. A positive aileron deflection gives a 

decrease in the roll rates , 𝑝,  this requires that the right aileron deflect downward and the 

left aileron deflect upward. A positive elevator deflection results in a decrease in pitch 

rate , 𝑞 , thus elevator is deflected downwards. Positive deflection of the rudder decreases 

the yaw rate , 𝑟, and can be described as a deflection to right. The positive orientation for 

each control surface is shown in Figure 2.7 the maximum values and units are listed in table 

2.3. It is important to understand the motion of the airplane and the basic parts that make 

an airplane move, Figure 2.7 shows the basic three parts that moves the airplane. 

 

 

 

Figure 2.7: Control Surfaces of an F-16 Model [7]. 
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Table 2.3: The control input units and maximum values [7]. 

 

 UNITS  

Control Input Used by nplant Min Max. 

Thrust  

Elevator 

Aileron 

Rudder 

Leading Edge Flap 

lbs. 

deg. 

deg. 

deg. 

deg 

Lbs. 

deg. 

deg. 

deg. 

           deg 

1000 

-25 

-21.5 

-30 

0 

19000 lbs. 

25 deg. 

21.5 deg. 

30 deg. 

25 deg. 

 

2.2.9.3 Engine control 

Engine thrust is controlled by throttle lever displacement ε. It is usually in the forward 

push sense and results in a positive increase in thrust. For a turbojet engine the relationship 

between thrust and throttle lever angle is approximated by a simple first order lag transfer 

function: 

 

 

                                                 
𝜏(𝑠)

휀(𝑠)
=

𝑘𝜏

(1 + 𝑠𝑇𝜏)
                                                                                (2.6) 

              

 

Where 𝑘𝜏 is a suitable gain constant and 𝑇𝜏 is the lag time constant which is typically of the 

order of 2–3 s. 

 

2.3 The Nonlinear equations of motion of a rigid symmetric aircraft 

The equations of motion for a rigid symmetric aircraft starts from the well-known 

Newton’s second law of motion for each of the six degrees of freedom given by: 

 

𝐹 = 𝑚𝑎                                                                          (2.7) 
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For a rotational motion the mass and acceleration are evaluated to moment of inertia and 

angular acceleration respectively while the disturbing force becomes the disturbing moment 

or torque. Thus the derivation of the EOM requires that equation (2.7) be expressed in terms 

of the motion variables defined previously.  

2.3.1 The components of inertial acceleration 

In result from the application of disturbing force components to the aircraft, the inertial 

acceleration components are defined. Consider the motion referred to an orthogonal axis 

set (𝑜𝑥𝑦𝑧) with the origin 𝑜 coincident with the 𝑐𝑔 of the arbitrary .The body, and hence the 

axes, are assumed to be in motion with respect to an external reference frame such as earth 

(or inertial) axes.  

The components of velocity and force along the axes 𝑜𝑥, 𝑜𝑦 and 𝑜𝑧 are denoted 

(𝑈, 𝑉,𝑊) and (𝑋, 𝑌, 𝑍) respectively as presented in Figure 2.8. The components of angular 

velocity and moment about the same axes are denoted (𝑝, 𝑞, 𝑟) and (𝐿,𝑀,𝑁) respectively. 

The point  𝑝 is an arbitrarily chosen point within the body with coordinates (𝑥, 𝑦, 𝑧). The 

local components of velocity and acceleration at 𝑝 relative to the body axes are denoted  

 (𝑢, 𝑣, 𝑤) and (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) respectively. The velocity components at 𝑝 (𝑥, 𝑦, 𝑧) relative to 𝑜 

are given by: 

 

𝑢 = �̇� − 𝑟𝑦 + 𝑞𝑧 

                                                               𝑣 = �̇� − 𝑝𝑧 + 𝑟𝑥                                                         (2.8) 

𝑤 = �̇� − 𝑞𝑥 + 𝑝𝑦 
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Figure 2.8: Motion referred to generalized body axes [6]. 

 

Now, since the generalized body shown in Figure 2.8 represents the aircraft which is 

assumed to be rigid then: 

 

                                                                        �̇� = �̇� = �̇� = 0                                                          (2.9) 

 

and equations (2.8) reduce to: 

𝑢 = 𝑞𝑧 − 𝑟𝑦 

                                                                       𝑣 = 𝑟𝑥 − 𝑝𝑧                                                              (2.10) 

𝑤 = 𝑝𝑦 − 𝑞𝑥 

 

The corresponding components of acceleration at 𝑝(𝑥, 𝑦, 𝑧) relative to 𝑜 are given by: 

 

 

 

𝑎𝑥  = �̇� − rv + qw 

                                                              𝑎𝑦  = �̇� − 𝑝𝑤 + 𝑟𝑢                                                        (2.11) 

a𝑧  = �̇� − qu + pv 
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By superimposing the velocity components of the 𝑐𝑔 (𝑈, 𝑉,𝑊) on to the local velocity 

components (𝑢, 𝑣, 𝑤) the inertial, velocity components (𝑢′, 𝑣′, 𝑤′) of the point 𝑝(𝑥, 𝑦, 𝑧) are 

obtained. Thus: 

 

𝑢′ = 𝑈 + 𝑢 = 𝑈 − 𝑟𝑦 + 𝑞𝑧 

                   𝑣′ = 𝑉 + 𝑣 = 𝑉 − 𝑝𝑧 + 𝑟𝑥                                                 (2.12) 

  𝑤′ = 𝑊 + 𝑤 = 𝑊 − 𝑞𝑥 + 𝑝𝑦 

 

where the expressions for (𝑢, 𝑣, 𝑤) are substituted from equations (2.10). Similarly, the 

components of inertial acceleration (𝑎𝑥
′  , 𝑎𝑦 

′ , 𝑎𝑧
′ ) at the point 𝑝(𝑥, 𝑦, 𝑧) are obtained simply 

by substituting the expressions for (𝑢′, 𝑣′, 𝑤′)  , equations (2.12), in place of (𝑢, 𝑣, 𝑤) in 

equations (2.11). Whence: 

 

𝑎𝑥
′ = �̇�′ − 𝑟𝑣′ + 𝑞𝑤′ 

                              𝑎𝑦
′ = �̇�′ − 𝑝𝑤′ + 𝑟𝑢′                                                      (2.13) 

𝑎𝑧
′ = �̇�′ − 𝑞𝑢′ + 𝑝𝑣′ 

 

Differentiate equations (2.12) with respect to time and note that since a rigid body is 

assumed equation (2.9) applies then: 

 

�̇�′ = �̇� − �̇�𝑦 + �̇�𝑧 

                                                                   �̇�′ = �̇� − �̇�𝑧 + �̇�𝑥                                                        (2.14) 

�̇�′ = �̇� − �̇�𝑥 + �̇�𝑦 

 

Thus, by substituting from equations (2.12) and (2.14) into equations (2.13) the inertial 

acceleration components of the point 𝑝(𝑥, 𝑦, 𝑧) in the rigid body are obtained which, after 

some rearrangement, may be written: 

 

𝑎𝑥
′  = �̇� − 𝑟𝑉 + 𝑞𝑊 − 𝑥(𝑞2 + 𝑟2) + 𝑦(𝑝𝑞 − �̇�) + 𝑧(𝑝𝑟 + �̇�) 

                       𝑎𝑦
′  = �̇� − 𝑝𝑊 + 𝑟𝑈 + 𝑥(𝑝𝑞 + �̇�) − 𝑦(𝑝2 + 𝑟2) + 𝑧(𝑞𝑟 − �̇�)                  (2.15) 

𝑎𝑧
′  = �̇� − 𝑞𝑈 + 𝑝𝑉 + 𝑥(𝑝𝑟 − �̇�) + 𝑦(𝑞𝑟 + �̇�) − 𝑧(𝑝2 + 𝑞2) 
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2.3.2 The generalized force equations 

Consider now an incremental mass 𝛿𝑚 at point 𝑝(𝑥, 𝑦, 𝑧) in the rigid body. Applying 

Newton’s second law, equation (2.7) to the incremental mass the incremental components 

of force acting on the mass are given by (𝛿𝑚𝑎𝑥
′ , 𝛿𝑚𝑎𝑦

′ , 𝛿𝑚𝑎𝑧
′ ). Thus the total force 

components (𝑋, 𝑌, 𝑍) acting on the body are given by summing the force increments over 

the whole body, whence: 

∑𝛿𝑚𝑎𝑥
′  = 𝑋 

                                                                      ∑𝛿𝑚𝑎𝑦
′  = 𝑌                                                             (2.16) 

∑𝛿𝑚𝑎𝑧
′  = 𝑍    

Substitute the expressions for the components of inertial acceleration (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) from 

equations (2.15) into equations (2.16) and note that since the origin of axes coincides with 

the cg: 

                                                 ∑𝛿𝑚𝑥 = ∑𝛿𝑚𝑦 = ∑𝛿𝑚𝑧 = 0                                         (2.17) 

 

Therefore the resultant components of total force acting on the rigid body are given by: 

 

𝑚(�̇� − 𝑟𝑉 + 𝑞𝑊) = 𝑋 

                                                                𝑚(�̇� − 𝑝𝑊 + 𝑟𝑈) = 𝑌                                                    (2.18) 

                                                                𝑚(�̇� − 𝑞𝑈 + 𝑝𝑉) = 𝑍 

 

where 𝑚 is the total mass of the body. 

 

2.3.3 The generalized moment equation 

Consider now the moments produced by the forces acting on the incremental mass 𝛿𝑚 at 

point 𝑝(𝑥, 𝑦, 𝑧) in the rigid body. The moment equations are the realization of the rotational 

form of Newton’s second law of motion. The total moments 𝐿,𝑀 , 𝑁 about the 𝑜𝑥, 𝑜𝑦  and 

𝑜𝑧  axes respectively are given by summing the incremental moment components over the 

whole body: 
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                                                     ∑𝛿𝑚 (𝑦𝑎𝑧
′ − 𝑧𝑎𝑦

′ ) = 𝐿                                                            

                                                            ∑𝛿𝑚 (𝑧𝑎𝑥
′ − 𝑥𝑎𝑧

′  ) = 𝑀                                                   (2.19) 

                                                       ∑𝛿𝑚 (𝑥𝑎𝑦
′ − 𝑦𝑎𝑥

′ )  = 𝑁                                                          

 

Equations (2.19) may therefore be rewritten and using the definition of the inertia that 

will be introduced as set out in Table 2.4. 

 

    𝐼𝑥�̇� − (𝐼𝑦 − 𝐼𝑧)𝑞𝑟 + 𝐼𝑥𝑦(𝑝𝑟 − �̇�) − 𝐼𝑥𝑧(𝑝𝑞 + �̇�) + 𝐼𝑦𝑧(𝑟
2 − 𝑞2) = 𝐿                                

   𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟 + 𝐼𝑦𝑧(𝑝𝑞 − �̇�) + 𝐼𝑥𝑧(𝑝
2 − 𝑟2) − 𝐼𝑥𝑦(𝑞𝑟 + �̇�) = 𝑀                        (2.20) 

  𝐼𝑧�̇� − (𝐼𝑥 − 𝐼𝑦)𝑝𝑞 − 𝐼𝑦𝑧(𝑝𝑟 + �̇�) + 𝐼𝑥𝑧(𝑞𝑟 − �̇�) + 𝐼𝑥𝑦(𝑞2 − 𝑝2) = 𝑁                                

 

 

Table 2.4: Moments and Products of Inertia [6]. 

 

 

Equations (2.20) represent the moment equations of a generalized rigid body and 

describe the rotational motion about the orthogonal axes through its 𝑐𝑔. 

The moment equations may be simplified since it is assumed that the aircraft is 

symmetric about the 𝑜𝑥𝑧 plane and that the mass is uniformly distributed. As a result the 

products of inertia 𝐼𝑥𝑦 = 𝐼𝑦𝑧 = 0. 

Thus the moment equations simplify to the following: 

 

                                                           𝐼𝑥�̇� − (𝐼𝑦 −  𝐼𝑧)𝑞𝑟 − 𝐼𝑥𝑧(𝑝𝑞 + �̇�) = 𝐿 

                    𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟 + 𝐼𝑥𝑧(𝑝
2 − 𝑟2) = 𝑀                                (2.21) 

𝐼𝑥=∑𝛿𝑚 (𝑦2 + 𝑧2)                                                 Moment of inertia about 𝑜𝑥 axis 

𝐼𝑦=∑𝛿𝑚 (𝑥2 + 𝑧2)                                                 Moment of inertia about 𝑜𝑦 axis 

𝐼𝑧=∑𝛿𝑚 (𝑥2 + 𝑦2)                                                 Moment of inertia about 𝑜𝑧 axis 

𝐼𝑥𝑦=∑𝛿𝑚𝑥𝑦                                                             Product of inertia about 𝑜𝑥 and 𝑜𝑦 axes 

𝐼𝑥𝑧= ∑ 𝛿𝑚𝑥𝑧                                                             Product of inertia about 𝑜𝑥 and 𝑜𝑧 axes 

𝐼𝑦𝑧=∑𝛿𝑚𝑦𝑧                                                              Product of inertia about 𝑜𝑦 and 𝑜𝑧 axes 
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             𝐼𝑧�̇� − (𝐼𝑥 − 𝐼𝑦)𝑝𝑞 + 𝐼𝑥𝑧(𝑞𝑟 − �̇�) = 𝑁 

 

The equations (2.21), describe rolling motion, pitching motion and yawing motion 

respectively. 

 

2.3.4 Disturbance forces and moments 

According to Bryan (1911), is to assume that the disturbing forces and moments are due 

to aerodynamic effects, gravitational effects, movement of aerodynamic controls, power 

effects and the effects of atmospheric disturbances. Thus bringing together equations (2.18) 

and (2.21) they may be written as follows: 

 

 𝑚(�̇� − 𝑟𝑉 + 𝑞𝑊)  = 𝑋𝑎 + 𝑋𝑔 + 𝑋𝑐 + 𝑋𝑝 + 𝑋𝑑 

                   𝑚(�̇� − 𝑝𝑊 + 𝑟𝑈) = 𝑌𝑎 + 𝑌𝑔 + 𝑌𝑐 + 𝑌𝑝 + 𝑌𝑑                                   (2.22) 

𝑚(�̇� − 𝑞𝑈 + 𝑝𝑉)  = 𝑍𝑎 + 𝑍𝑔 + 𝑍𝑐 + 𝑍𝑝 + 𝑍𝑑 

 

                𝐼𝑥�̇� − (𝐼𝑦 − 𝐼𝑧)𝑞𝑟 − 𝐼𝑥𝑧(𝑝𝑞 + �̇�)  = 𝐿𝑎 + 𝐿𝑔 + 𝐿𝑐 + 𝐿𝑝 + 𝐿𝑑  

                                   𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟 + 𝐼𝑥𝑧(𝑝
2 − 𝑟2)  = 𝑀𝑎 + 𝑀𝑔 + 𝑀𝑐 + 𝑀𝑝 + 𝑀𝑑 

                                   𝐼𝑧�̇� − (𝐼𝑥 −  𝐼𝑦)𝑝𝑞 + 𝐼𝑥𝑧(𝑞𝑟 − �̇�)  = 𝑁𝑎 + 𝑁𝑔 + 𝑁𝑐 + 𝑁𝑝 + 𝑁𝑑 

 

 

 

Now the equations developed in (2.22) describe the moments and forces, these 

equations are nonlinear and coupled nonlinear, however they can only be solved 

numerically and they must be linearized. Linearization is very simply accomplished by 

constraining the motion of the airplane to small perturbations about the trim condition. 

2.4 The linearized equations of motion 

The nonlinear equations are really complex to solve with numerical method, so we will 

linearize them which will give us the good understanding of aircraft dynamics and stability in 
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control. Initially we will be deriving the nonlinear equations respecting the steady-state 

conditions. 

The small perturbation theory is based on a simple technique used for linearizing a set of 

differential equations, thus the velocity of the airplane is 𝑉0, the components of linear  

 

velocity are (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒)  and the angular velocity components are all zero. Since there is no 

sideslip  𝑉𝑒 = 0. A stable undisturbed atmosphere is also assumed such that: 

 

                                  𝑋𝑑 = 𝑌𝑑 = 𝑍𝑑  = 𝐿𝑑  = 𝑀𝑑  = 𝑁𝑑  = 0                                                     (2.23) 

 

If now the airplane experiences a small perturbation about trim, the components of the 

linear disturbance velocities are (𝑢, 𝑣, 𝑤) and the components of the angular disturbance 

velocities are (𝑝, 𝑞, 𝑟) with respect to the undisturbed aeroplane axes (𝑜𝑥𝑦𝑧).  

Thus the total velocity components of the 𝑐𝑔 in the disturbed motion are given by: 

 

𝑈 = 𝑈𝑒 + 𝑢 

                                                                           𝑉 = 𝑉𝑒 + 𝑣 = 𝑣                                                       (2.24) 

𝑊 = 𝑊𝑒 + 𝑤 

 

Now, by definition (𝑢, 𝑣, 𝑤) and (𝑝, 𝑞, 𝑟) are small quantities such that terms involving 

products and squares of these terms are insignificantly small and may be ignored. Thus, 

substituting equations (2.23) and (2.24) into equations (2.22), note that (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) are 

steady and hence constant, and eliminating the insignificantly small terms, the linearized 

equations of motion are obtained: 

 

                                              𝑚(�̇� + 𝑞𝑊𝑒)  = 𝑋𝑎 + 𝑋𝑔 + 𝑋𝑐 + 𝑋𝑝 

                                𝑚(�̇� − 𝑝𝑊𝑒 + 𝑟𝑈𝑒)  = 𝑌𝑎 + 𝑌𝑔 + 𝑌𝑐 + 𝑌𝑝 

                     𝑚(�̇� − 𝑞𝑈𝑒) = 𝑍𝑎 + 𝑍𝑔 + 𝑍𝑐 + 𝑍𝑝                                                 (2.25) 

 

𝐼𝑥�̇� − 𝐼𝑥𝑧�̇�  = 𝐿𝑎 + 𝐿𝑔 + 𝐿𝑐 + 𝐿𝑝 

                  𝐼𝑦�̇� = 𝑀𝑎 + 𝑀𝑔 + 𝑀𝑐 + 𝑀𝑝 

 𝐼𝑧�̇� − 𝐼𝑥𝑧�̇� = 𝑁𝑎 + 𝑁𝑔 + 𝑁𝑐 + 𝑁𝑝 
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2.4.1 Gravitational terms 

The weight force 𝑚𝑔 acting on the airplane can be decomposed into three components. 

In case of any disturbance they will vary within the perturbations in attitude. Since the origin 

of the body axes is coincident with the 𝑐𝑔 then the weight moments are all zero. Therefore: 

 

                                      𝐿𝑔 = 𝑀𝑔 = 𝑁𝑔 = 0                                                                        (2.26) 

 

Since the aircraft flies horizontally in the initial symmetrical flight condition, the 

components of weight appear only in the plane of symmetry as shown in Figure 2.9. Thus in 

steady state the weight components resolved in aircraft axes are: 

 

                                              [ 

𝑋𝑔𝑒

𝑌𝑔𝑒

𝑍𝑔𝑒

 ] =  [
−𝑚𝑔 sin 휃𝑒  

0
𝑚𝑔 cos 휃𝑒 

]                                                            (2.27) 

 

Thus, the gravitational force components in the small perturbation equations of motion 

are given by: 

                                           𝑋𝑔  = −𝑚𝑔 sin 휃𝑒 − 𝑚𝑔휃 cos 휃𝑒  

                                              𝑌𝑔 = 𝑚𝑔 𝜓 sin 휃𝑒 + 𝑚𝑔𝜙 cos 휃𝑒                                               (2.28) 

                                                𝑍𝑔  = 𝑚𝑔 cos 휃𝑒 − 𝑚𝑔휃 sin 휃𝑒  

 

 

 

 

 

 

 

 

 

Figure 

2.9: Steady state weight components in the plane of symmetry [6]. 
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2.4.2 Aerodynamic terms 

The aerodynamic force and moment terms in equations (2.22) depend only on the 

disturbed motion variables and their derivatives. Mathematically, this is expressed as a 

function comprising the sum of a number of Taylor series, each series involving a motion 

variable or a derivative of a motion variable. (𝑢, 𝑣, 𝑤) are the motion variables and (𝑝, 𝑞, 𝑟) 

the aerodynamic term 𝑋𝑎 in the axial force equation. The simplified form of this equation is: 

 

 

               𝑋𝑎 = 𝑋𝑎𝑒
+ X̊𝑢𝑢 + X̊𝑣𝑣 + X̊𝑤𝑤 + X̊𝑝𝑝 + X̊𝑞𝑞 + X̊𝑟𝑟 + X̊�̇��̇�                                 (2.29) 

 

Where: 

 𝑋𝑎𝑒
 is a constant term . 

( X̊𝑢, X̊𝑣, X̊𝑤, X̊𝑝,  X̊𝑞  ,X̊�̇� ) are aerodynamic stability derivatives . 

(◦) denotes the derivatives to be dimensional.  

 

2.4.3 Thrust terms 

Thrust 𝜏 is the force which moves an aircraft through the air. Thrust is used to overcome 

the drag of an airplane. It is generated by the engines of the aircraft through some kind 

of propulsion system. It is generated most often through the reaction of accelerating 

a mass of gas. Since thrust is a force, it is a vector quantity having both a magnitude and a 

direction. 

Thrust 𝜏 is controlled by throttle lever angle 휀 and the relationship between the two 

variables is given by equation (2.6). Thrust change is caused by the movement of the throttle 

lever which leads to a change in the force and moment. As an example the normal force due 

to thrust may be expressed: 

 

                                                      𝑍𝑝 = Z̊𝜏𝜏                                                                                        (2.30) 

 

 

https://www.grc.nasa.gov/www/k-12/airplane/forces.html
https://www.grc.nasa.gov/www/k-12/airplane/drag1.html
https://www.grc.nasa.gov/www/k-12/airplane/bgp.html
https://www.grc.nasa.gov/www/k-12/airplane/newton3.html
https://www.grc.nasa.gov/www/k-12/airplane/mflow.html
https://www.grc.nasa.gov/www/k-12/airplane/vectors.html
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2.4.4    The equations of motion for small perturbations 

To complete the development of the linearized equations of motion using the 

aerodynamic, gravitational, and thrust terms, the EOM may be written: 

 

 𝑚(�̇� + 𝑞𝑊𝑒) =  𝑋𝑎𝑒
+ X̊𝑢𝑢 + X̊𝑣𝑣 + X̊𝑤𝑤 + X̊𝑝𝑝 + X̊𝑞𝑞 + X̊𝑟𝑟 + X̊�̇��̇�  − 𝑚𝑔 sin 휃𝑒 

− 𝑚𝑔휃 cos 휃𝑒 + X̊𝜉𝜉 + X̊𝜂휂 + X̊𝜁휁 + X̊𝜏𝜏  

 

𝑚(�̇� − 𝑝𝑊𝑒 + 𝑟𝑈𝑒  ) =   𝑌𝑎𝑒
+ Y̊𝑢𝑢 + Y̊𝑣𝑣 + Y̊𝑤𝑤 + Y̊𝑝𝑝 + Y̊𝑞𝑞 + Y̊𝑟𝑟 + Y̊�̇��̇� +

                                            𝑚𝑔 𝜓 sin 휃𝑒  +  𝑚𝑔𝜙 cos 휃𝑒 + Y̊𝜉𝜉 + Y̊𝜂휂 + Y̊𝜁휁 + Y̊𝜏𝜏   

 

𝑚(�̇� − 𝑞𝑈𝑒)  =  𝑍𝑎𝑒
+ Z̊𝑢𝑢 + Z̊𝑣𝑣 + Z̊𝑤𝑤 + Z̊𝑝𝑝 + Z̊𝑞𝑞 + Z̊𝑟𝑟 + Z̊�̇��̇�  + 𝑚𝑔 cos 휃𝑒 −

                             𝑚𝑔휃 sin 휃𝑒 +  Z̊𝜉𝜉 + Z̊𝜂휂 + Z̊𝜁휁 + Z̊𝜏𝜏   

 

 

𝐼𝑥�̇� − 𝐼𝑥𝑧�̇� = 𝐿𝑎𝑒
+ L̊𝑢𝑢 + L̊𝑣𝑣 + L̊𝑤𝑤 + L̊𝑝𝑝 + L̊𝑞𝑞 + L̊𝑟𝑟 + L̊�̇��̇�  + 

                                       L̊𝜉𝜉 + L̊𝜂휂 + L̊𝜁휁 + L̊𝜏𝜏  

 

𝐼𝑦�̇� =  𝑀𝑎𝑒
+ M̊𝑢𝑢 + M̊𝑣𝑣 + M̊𝑤𝑤 + M̊𝑝𝑝 + M̊𝑞𝑞 + M̊𝑟𝑟 + M̊�̇��̇� + 

                                                  M̊𝜉𝜉 + M̊𝜂휂 + M̊𝜁휁 + M̊𝜏𝜏  

 

𝐼𝑧�̇� − 𝐼𝑥𝑧�̇� =  𝑁𝑎𝑒
+ N̊𝑢𝑢 + N̊𝑣𝑣 + N̊𝑤𝑤 + N̊𝑝𝑝 + N̊𝑞𝑞 + N̊𝑟𝑟 + N̊�̇��̇� + 

                     N̊𝜉𝜉 + N̊𝜂휂 + N̊𝜁 + N̊𝜏𝜏                                                                                     (2.31) 

 

 

Now, by definition all the perturbation variables and their derivatives are assumed to be 

zero .Thus in the steady state equations (2.31) reduce to: 

 

   𝑋𝑎𝑒
= 𝑚𝑔 sin 휃𝑒  

 𝑌𝑎𝑒
 = 0 

 

                                                     𝑍𝑎𝑒
= −𝑚𝑔 cos 휃𝑒                                                      (2.32) 
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𝐿𝑎𝑒
 = 0 

 

 𝑀𝑎𝑒
 = 0 

 𝑁𝑎𝑒
 = 0 

 

The new rearrangement may be written as follows : 

𝑚�̇� − X̊𝑢𝑢 − X̊𝑣𝑣 − X̊𝑤𝑤 

−X̊𝑝𝑝 − (X̊𝑞 − 𝑚𝑊𝑒)𝑞 − X̊𝑟𝑟 + 𝑚𝑔휃 cos 휃𝑒 =  X̊𝜉𝜉 + X̊𝜂휂 + X̊𝜁휁 + X̊𝜏𝜏 

− Y̊𝑢𝑢 + 𝑚�̇� − Y̊𝑣𝑣 − Y̊�̇��̇� − Y̊𝑤𝑤 − ( Y̊𝑝 + 𝑚𝑊𝑒 )𝑝   

−Y̊𝑞𝑞 − (Y̊𝑟  − 𝑚𝑈𝑒  )𝑟 − 𝑚𝑔𝜙 cos 휃𝑒 −   𝑚𝑔 𝜓 sin 휃𝑒  =  Y̊𝜉𝜉 + Y̊𝜂휂 + Y̊𝜁휁 + Y̊𝜏𝜏   

−Z̊𝑢𝑢 − Z̊𝑣𝑣 + ( 𝑚 − Z̊�̇�) �̇� − Z̊𝑤𝑤 

 − Z̊𝑝𝑝 − (Z̊𝑞 + 𝑚𝑈𝑒  ) 𝑞 − Z̊𝑟𝑟 +  𝑚𝑔휃 sin 휃𝑒   =  Z̊𝜉𝜉 + Z̊𝜂휂 + Z̊𝜁휁 + Z̊𝜏𝜏   

−L̊𝑢𝑢 − L̊𝑣𝑣 − L̊�̇��̇� − L̊𝑤𝑤  

+𝐼𝑥�̇� − L̊𝑝𝑝 − L̊𝑞𝑞 − 𝐼𝑥𝑧�̇� −  L̊𝑟𝑟 = L̊𝜉𝜉 + L̊𝜂휂 + L̊𝜁휁 + L̊𝜏𝜏  

− M̊𝑢𝑢 − M̊𝑣𝑣 − M̊�̇��̇�  

 

−M̊𝑤𝑤 − M̊𝑝𝑝 + 𝐼𝑦�̇� − M̊𝑞𝑞 − M̊𝑟𝑟 =   M̊𝜉𝜉 + M̊𝜂휂 + M̊𝜁휁 + M̊𝜏𝜏  

−N̊𝑢𝑢 − N̊𝑣𝑣 − N̊�̇��̇� − N̊𝑤𝑤 

−𝐼𝑥𝑧�̇� − N̊𝑝𝑝 − N̊𝑞𝑞 + 𝐼𝑧�̇� −  N̊𝑟𝑟 = N̊𝜉𝜉 + N̊𝜂휂 + N̊𝜁 + N̊𝜏𝜏                             (2.33) 

 

With the expanded general equations of motion (2.33) defined on the body axis reference 

frame , and with a defined steady-state , it is possible to begin the decoupling of these 

equations for lateral and longitudinal movement. 

 

2.5 The decoupled equations of motion 

2.5.1 The longitudinal equations of motion 

The development of the longitudinal equations of motion which for the most general case 

are referred to the body axis , recognizing that the aerodynamic contributions to the EOM 

are determined with respect to the disturbance. The motion is described by the axial force 

𝑋, the normal force 𝑍 and the pitching moment 𝑀 equations only. Therefore the lateral 

motion variables 𝑣, 𝑝 and 𝑟 and their derivatives are all zero whence: 
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            X̊𝑣  =  X̊𝑝 = X̊𝑟  =  Z̊𝑣  = Z̊𝑝 = Z̊𝑟  =  M̊𝑣  =  M̊𝑝 = M̊𝑟  = 0                                 (2.34) 

 

 

Similarly, since aileron or rudder deflections do not usually cause motion in the 

longitudinal plane of symmetry the coupling aerodynamic control derivatives may also be 

taken as zero thus: 

           X̊𝜉 = X̊𝜁 = Z̊𝜉  =  Z̊𝜁  =  M̊𝜉  = M̊𝜁  = 0                                                                         (2.35) 

 

The longitudinal equations are given: 

                    𝑚�̇� − X̊𝑢𝑢 − X̊�̇��̇� − X̊𝑤𝑤 − (X̊𝑞 − 𝑚𝑊𝑒)𝑞 + 𝑚𝑔휃 cos 휃𝑒  = X̊𝜂휂 + X̊𝜏𝜏 

               − Z̊𝑢𝑢 + (𝑚 − Z̊�̇�)�̇� − Z̊𝑤𝑤 − (Z̊𝑞 + 𝑚𝑈𝑒  )𝑞 +  𝑚𝑔휃 sin 휃𝑒  =   Z̊𝜂휂 +  Z̊𝜏𝜏   

                                   −M̊𝑢𝑢 − M̊�̇��̇�  −  M̊𝑤𝑤 + 𝐼𝑦�̇� −  M̊𝑞𝑞 =  M̊𝜂휂 + M̊𝜏𝜏                       (2.36) 

 

 

 

 

Equations (2.36) are the most general form of the dimensional decoupled equations of 

longitudinal symmetric motion. If it is assumed that the aeroplane is in level flight and the 

reference axes are wind or stability axes then: 

 

                                                    휃𝑒  = 𝑊𝑒  = 0                                                                                 (2.37) 

 

and the equations simplify further to: 

𝑚�̇� − X̊𝑢𝑢 − X̊�̇��̇� − X̊𝑤𝑤 − X̊𝑞𝑞 + 𝑚𝑔휃 = X̊𝜂휂 + X̊𝜏𝜏 

 − Z̊𝑢𝑢 + (𝑚 − Z̊�̇�)�̇� − Z̊𝑤𝑤 − (Z̊𝑞 + 𝑚𝑈𝑒  )𝑞 = Z̊𝜂휂 +  Z̊𝜏𝜏 

                   −M̊𝑢𝑢 − M̊�̇��̇�  −  M̊𝑤𝑤 + 𝐼𝑦�̇� −  M̊𝑞𝑞 =  M̊𝜂휂 + M̊𝜏𝜏                                       (2.38) 
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2.5.2 The lateral–directional equations of motion 

Decoupled lateral–directional motion involves roll, yaw and sideslip only. The motion is 

therefore described by the side force 𝑌, the rolling moment Land the yawing moment 𝑁 

equations. As no longitudinal motion is involved the longitudinal motion variables 𝑢, 𝑤 and 𝑞 

and their derivatives are all zero. Whence: 

 Y̊u = Y̊ẇ = Y̊w = Y̊q = L̊u = L̊ẇ = L̊w = L̊q = N̊u = N̊ẇ = N̊w = N̊q = 0               (2.39) 

 

Since the airframe is symmetric, elevator deflection and thrust variation do not usually 

cause lateral–directional motion and the coupling aerodynamic control derivatives may also 

be taken as zero thus: 

       Y̊𝜂 = Y̊𝜏  = L̊𝜂 = L̊𝜏  = N̊𝜂 = N̊𝜏  = 0                                                               (2.40) 

 

The lateral equations are given by: 

 

(
𝑚�̇� − Y̊𝑣𝑣 − (Y̊𝑝 + 𝑚𝑊𝑒 )𝑝 − (Y̊𝑟  − 𝑚𝑈𝑒  ) 𝑟

−𝑚𝑔𝜙 cos 휃𝑒 − 𝑚𝑔 𝜓 sin 휃𝑒 
) = Y̊𝜉𝜉 + Y̊𝜁휁 

 

        −L̊𝑣𝑣 + 𝐼𝑥�̇� − L̊𝑝𝑝 − 𝐼𝑥𝑧�̇� − L̊𝑟𝑟 = L̊𝜉𝜉 + L̊𝜁휁                                      (2.41) 

−N̊𝑣𝑣 − 𝐼𝑥𝑧�̇� − N̊𝑝𝑝 + 𝐼𝑧�̇� − N̊𝑟𝑟 = N̊𝜉𝜉 + N̊𝜁휁 

 

If it is assumed that the airplane is in level flight and the reference axes are wind or 

stability axes then, as before, 

                                                휃𝑒  = 𝑊𝑒  = 0                                                                                   (2.42) 

 

and the equations simplify further to: 

 

𝑚�̇� − Y̊𝑣𝑣 − 𝑝Y̊𝑝 − (Y̊𝑟  − 𝑚𝑈𝑒  ))𝑟 − 𝑚𝑔𝜙 = Y̊𝜉𝜉 + Y̊𝜁휁 

                                        −L̊𝑣𝑣 + 𝐼𝑥�̇� − L̊𝑝𝑝 − 𝐼𝑥𝑧�̇� − L̊𝑟𝑟 = L̊𝜉𝜉 + L̊𝜁휁                               (2.43) 

−N̊𝑣𝑣 − 𝐼𝑥𝑧�̇� − N̊𝑝𝑝 + 𝐼𝑧�̇� − N̊𝑟𝑟 = N̊𝜉𝜉 + N̊𝜁휁 
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2.6   The equations of motion in state space form 

As systems and equations becomes more complex, solving them is more difficult .Today 

the numerical methods give rise  , this is more true if the system has multiple inputs and 

outputs. We will introduce the state space method which is largely used and alleviates this 

problem. The state space representation of the system replaces an nth order differential 

equation with a single first order matrix differential equation. However, it is first necessary 

to arrange the EOM in a suitable format, the equation of motion, or state equation, of the 

linear time invariant (LTI) multi-variable system is written: 

 

                                     �̇�(𝐭) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡)                                                                             (2.44) 

Where : 

 

 

𝐱(𝑡) is the column vector of 𝑛 state variables called the state vector. 

𝐮(𝑡) is the column vector of 𝑚 input variables called the input vector. 

𝐀 is the (𝑛 × 𝑛) state matrix. 

𝐁 is the (𝑛 × 𝑚) input matrix. 

 

 

 

Now for many systems some of the state variables may be inaccessible or their values 

may not be determined directly. Thus a second equation is required to determine the system 

output variables. The output equation is written in the general form: 

                                                           

  𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡)                                                                         (2.45) 

Where : 

𝐲(𝑡) is the column vector of 𝑟 output variables called the output vector. 

𝐂 is the (𝑟 × 𝑛) output matrix. 

𝐃 is the (𝑟 × 𝑚) direct matrix.  

 



Chapter 2                                                                                                 Aircraft equations of motion 

60 
 

and, typically, 𝑟 ≤ 𝑛 , for a LTI system the matrices 𝐂 and 𝐃 have constant elements. 

Together equations (2.44) and (2.45) provide a complete description of the system. For most 

aeroplane problems it is convenient to choose the output variables to be the state variables. 

Thus: 

𝐲(𝑡) = 𝐱(𝑡)  and   𝑟 = 𝑛 

and consequently 

 

𝐂 = 𝐈, the (𝑛 × 𝑛)   identity matrix 

𝐃 = 𝟎, the (𝑛 × 𝑚)   zero matrix 

As a result the output equation simplifies to: 

                                                                        

 𝐲(𝑡) = 𝐈𝐱(𝑡) ≡ 𝐱(𝑡)                                                                 (2.53) 

 

The longitudinal equation of motion in the state space format may be written as follows:  

 

𝐌�̇�(𝑡) = 𝐀′𝐱(𝑡) + 𝐁′𝐮(𝑡)                                                                     (2.54) 

Where : 

 

𝐱𝑇(𝑡) = [𝑢   𝑤   𝑞   휃  ]             𝐮𝑇 (𝑡) = [휂   𝜏] 
 
 
 
 
 
 

                          𝐌 =

[
 
 
 
 
𝑚 −X̊�̇�  0 0

0 (𝑚 − Z̊�̇�) 0 0

0 −M̊�̇�  𝐼𝑦 0

0 0 0 1]
 
 
 
 

 

 

           𝐀′ =

[
 
 
 
 
X̊𝑢 X̊𝑤 (X̊𝑞 − 𝑚𝑊𝑒) −𝑚𝑔 cos 휃𝑒 

Z̊𝑢 Z̊𝑤 (Z̊𝑞 + 𝑚𝑈𝑒 ) −𝑚𝑔 sin 휃𝑒 

M̊𝑢 M̊𝑤 M̊𝑞 0

0 0 1 0 ]
 
 
 
 

             𝐁′ =

[
 
 
 
 
X̊𝜂 X̊𝜏

Z̊𝜂 Z̊𝜏

M̊𝜂 M̊𝜏

0 0 ]
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The longitudinal state equation is derived by pre-multiplying equation (2.56) by the 

inverse of the mass matrix 𝐌  whence : 

 

�̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡)                                                                    (2.55) 

 

Where:  

 

                     𝐀 = 𝐌−𝟏  𝐀′ = [

𝑥𝑢 𝑥𝑤 𝑥𝑞 𝑥𝜃

𝑧𝑢 𝑧𝑤 𝑧𝑞 𝑧𝜃

𝑚𝑢 𝑚𝑤 𝑚𝑞 𝑚𝜃

0 0 1 0

]                   𝐁 = 𝐌−𝟏  𝐁′ = [

𝑥𝜂 𝑥𝜏

𝑧𝜂 𝑧𝜏

𝑧𝜂 𝑚𝜏

0 0

] 

 

Thus the longitudinal state equation may be written out in full: 

                  

   [

𝑢
𝑤
𝑞

휃̇

̇
̇
̇

] = [

𝑥𝑢 𝑥𝑤 𝑥𝑞 𝑥𝜃

𝑧𝑢 𝑧𝑤 𝑧𝑞 𝑧𝜃

𝑚𝑢 𝑚𝑤 𝑚𝑞 𝑚𝜃

0 0 1 0

] [

𝑢
𝑤
𝑞
휃

] + [

𝑥𝜂 𝑥𝜏

𝑧𝜂 𝑧𝜏

𝑧𝜂 𝑚𝜏

0 0

] [
휂
 𝜏
]                                                      (2.56) 

 

and the output equation is: 

                                     

 𝐲(𝑡) = 𝐈𝐱(𝑡) = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

𝑢
𝑤
𝑞
휃

]                                                                       (2.57) 

 

Clearly the longitudinal small perturbation motion of the airplane is completely described 

by the four state variables 𝑢,𝑤, 𝑞 and 휃.  

 

2.7 The equations of motion in American normalized form 

The preferred North American form of the equations of motion expresses the axial 

equations of motion in units of linear acceleration, rather than force, and the angular 

equations of motion in terms of angular acceleration, rather than moment. This is easily 

achieved by normalizing the force and moment equations, by dividing by mass or moment of 

inertia as appropriate. Re-stating the linear equations of motion (2.25): 
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                                                                      𝑚(�̇� + 𝑞𝑊𝑒)  = 𝑋 

   𝑚(�̇� − 𝑝𝑊𝑒 + 𝑟𝑈𝑒)  = 𝑌                                                 (2.58) 

              𝑚(�̇� − 𝑞𝑈𝑒)  = 𝑍 

                 𝐼𝑥�̇� − 𝐼𝑥𝑧�̇�  = 𝐿 

                              𝐼𝑦�̇� = 𝑀 

               𝐼𝑧�̇� − 𝐼𝑥𝑧�̇� = 𝑁 

 

The normalized form of the decoupled longitudinal equations of motion from equations 

(2.58) are written: 

�̇� + 𝑞𝑊𝑒  =
𝑋

𝑚
 

        �̇� − 𝑞𝑈𝑒 =
𝑍

𝑚
                                                           (2.59) 

             �̇� =
𝑀

𝐼𝑦
 

and the normalized form of the decoupled lateral–directional equations of motion may also 

be extracted from equations (2.58): 

�̇� − 𝑝𝑊𝑒 + 𝑟𝑈𝑒  =
𝑌

𝑚
 

          �̇� −
𝐼𝑥𝑧

𝐼𝑥
�̇� =

𝐿

𝐼𝑥
                                                      (2.60) 

         �̇� −
𝐼𝑥𝑧

𝐼𝑧
�̇� =

𝑁

𝐼𝑧
 

 

Now the decoupled longitudinal force and moment expressions may be expressed in 

terms of American normalized derivatives as follows: 

 

 

�̇� = X𝑢𝑢 + X�̇��̇� + X𝑤𝑤 + (X𝑞 − 𝑚𝑊𝑒)𝑞 − 𝑔휃 cos 휃𝑒 + X𝛿𝑒𝛿𝑒 + X𝛿𝑡ℎ𝛿𝑡ℎ    

   �̇� = Z𝑢𝑢 + Z�̇��̇� + Z𝑤𝑤 + (Z𝑞 + 𝑈𝑒)𝑞 − 𝑔휃 𝑠𝑖𝑛휃𝑒 + Z𝛿𝑒𝛿𝑒 + Z𝛿𝑡ℎ𝛿𝑡ℎ                    (2.61) 

                      �̇� = M𝑢𝑢 + M�̇��̇� + M𝑤𝑤 + M𝑞𝑞 + M𝛿𝑒𝛿𝑒 + M𝛿𝑡ℎ𝛿𝑡ℎ      

 

and the control inputs are stated in American notation, elevator angle 𝜹𝒆 ≡ 𝜼 and thrust  

𝜹𝒕𝒉    ≡ 𝝉. 

 



Chapter 2                                                                                                 Aircraft equations of motion 

63 
 

In a similar way, the decoupled lateral–directional force and moment expressions 

may Be given by: 

�̇� = Y𝑣𝑣 + (Y𝑝 + 𝑊𝑒)𝑝 + (Y𝑟  − 𝑈𝑒)𝑟 + Y𝛿𝑎𝛿𝑎 + Y𝛿𝑟𝛿𝑟   + 𝑔𝜙 cos 휃𝑒 + 𝑔𝜓 𝑠𝑖𝑛휃𝑒 

                  �̇� = L′𝑣𝑣 + L′𝑝𝑝 + L′𝑟𝑟 + L′𝛿𝑎𝛿𝑎 + L′𝛿𝑟𝛿𝑟                                                              (2.62) 

                �̇�  = N′𝑣𝑣 + N′𝑝𝑝 + N′𝑟𝑟 + N′𝛿𝑎𝛿𝑎 + N′𝛿𝑟𝛿𝑟  

 

2.8 Summary 

In this chapter we have described how the aerodynamic forces and moments acting on an 

aircraft are created, how they are modeled mathematically. Next, the equations of motions 

have been characterized for two specific flight conditions: steady-state flight conditions and 

perturbed flight conditions under the small perturbation assumptions. In particular, the 

small perturbation equations of motion are important for setting up the mathematical 

framework for a simplified solution because of the assumption of neglecting the nonlinear 

terms associated with the products of small perturbation terms. 

 It has been shown that the equations of motion can be linearized around a steady-state 

condition and that they can then be separated into two decoupled sets, one of these sets 

describes the longitudinal motion of an aircraft, and the other describes the lateral-

directional motion. The linear equations have been expressed in terms of the aerodynamic 

derivatives, and the significance of these derivatives has been explained. We also introduced 

the EOM in the state space representation that we will be using in our simulation. 

All of the chapters following this one will make use of the mathematical models 

presented in this chapter in some form and thus demonstrate the importance of modeling in 

the design of aircraft control systems. 

  



 

 
 
 

 

 

 

 

 

 

Chapter 3:   Aircraft stability and           

      control analysis   
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3 Chapter 3: Aircraft stability and control analysis  

3.1 Introduction  

Stability and control analysis is an important discipline to consider when designing an 

aircraft, the efficiency of the control surfaces is really important remaining the aircraft safe 

and stable during the flight. The definition of the stability of an aircraft motion got many 

standards, it is essential to begin with the notion of “equilibrium flight” which refers to a 

steady motion of flight.  

Stability is a property of the state of equilibrium and tendency to return to its equilibrium 

point after a disturbance applied on it and it can be an input of the pilot or atmospheric 

phenomena such as:  wind guts, wind gradients, turbulence. In order to that an airplane can 

remain stable during its phase of flight, it is necessary that the result of forces and moments 

in its 𝑐𝑔 are equal to zero. 

An aircraft followed by a small perturbations is divergent and said to be dynamically 

unstable, it becomes stable if it returns to it equilibrium flight path. In this chapter two types 

of stability are presented for an airplane, static and dynamic. These two concepts are divided 

into longitudinal, lateral and directional modes.  

3.2 What is stability and control? 

To achieve the best performance in flight, an aircraft must have sufficient stability to 

maintain a uniform flightpath and a proper response to the movement of the pilot controls 

surfaces. When an aircraft is said to be controllable it means that it responds easily to 

movement of the controls, moving the control surfaces changes the airflow over the 

aircraft’s surface causing changes in the balance of the forces acting to keep it flying straight 

and level. 

Three nomenclatures are used in the stability and control topic: stability, controllability, 

maneuverability. Understanding of those terminologies is more critical to develop more 

complex systems without considering the type, stability can be described by the tendency of 

an airplane to return to a trimmed position after disturbance in an air stream. Controllability 

is the response in a steady flight on the pilot control input. Maneuverability is the 

characteristic of an aircraft to be directed along a desired flightpath and to withstand the 

stresses imposed. 
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Controllability is the capacity to respond to the pilot’s commands and maneuverability is 

the quality of the aircraft that can easily controlled in the given space region. If something is 

very stable it is more difficult to change the altitude of that, and in the contrary if it’s 

unstable it is easier to change its altitude. 

As a conclusion stability and controllability have an inverse relationship as stability can be 

increased by expensing the controllability. So that the military aircrafts are more controllable 

and less stable which make it more difficult to handle by pilots , thus artificial stability 

methods such as computerized controlling are used. On the contrary commercial aircrafts 

are more stable and less controllable to ensure the comfortability. 

3.3 Linear and non-linear stability systems 

The study of the stability analysis has taken an important place for engineers, it is 

important to ensure a good stability and control in order to achieve good flight 

performances. Now the stability  for a linear system is simply the classical theory of 

linearization : we assume that the perturbations arbitrarily small and in the equations and 

boundary conditions of the problem, we neglect terms non-linear in the perturbations 

quantities as compared to the linear ones, hence the disturbance inputs must be small to 

consider the system is linear. However this is not often the case for example fighter aircrafts 

such as F-16 , big perturbations inputs are applied due to the rotational and difficult combat 

movements in the air with high altitude and supersonic speed which lead to a non-linearity 

response  systems. The non-linear problems of stability require special mathematical 

techniques, today understanding the non-linearity behavior is developing to enquiry stability 

criteria for a more complex and high performances fighter aircrafts.   

3.4 Static and dynamic stability  

3.4.1 static stability  

Static stability is the initial tendency of an object to return to its original position after 

being disturbed, an example is shown in Figure 3.1.  
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Figure 3.1: stable, unstable, neutral systems behaviors [8]. 

 

When the controls are changed and release, the ball initially moves back to the original 

position is the positive static stability. When it stays where it is after changing the controls, 

that shows neutral stability and when it tends to move further away from the original 

position that means negative stability. 

3.4.2 Dynamic stability  

After presenting the static stability of an aircraft, it is necessary to look at it dynamic 

stability. While static stability deals with the tendency of a displaced body to return to 

equilibrium, dynamic stability deals with the resulting motion with time as a result dynamic 

stability is the main part of study of stability, it allows seeing if there is resistance to 

movement and if there is a loss of energy (positive damping). In the case of energy loss the 

system is considered dynamically stable, the airplane, however, may pass through level flight 

and remain oscillation. If the oscillations lessen over time, the airplane is still classified as 

having positive dynamic stability. If the oscillations increase over time, the airplane is 

classified as having negative dynamic stability. If the oscillations remain the same over time, 

the airplane is classified as having neutral dynamic stability. 
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Figure 3.2 shows the concept of dynamic stability. In view A, the displacement from 

equilibrium goes through three oscillations and then returns to equilibrium. In view B, the 

displacement from equilibrium is increasing after two oscillations, and will not return 

to equilibrium. In view C, the displacement from equilibrium is staying the same with each 

oscillation. 

 

 

 

 

Figure 3.2: Dynamic systems behaviors [8]. 

 

3.5 Aerodynamic properties of airfoils  

Airfoil is a shaped surface, such as an airplane wing, tail or propeller blade that produces 

lift and drag when moved through the air. An airfoil produces a lifting force that acts at right 

angles to the airstream and dragging force that acts in the same direction as the airstream. 

Its shape will determine the behavior of lift, drag and moments coefficients. 

3.5.1 Lift coefficient (𝑪𝑳) 

The lift coefficient relates the angle of attack (AOA) to the lift force. If the lift force is 

known at a specific airspeed the lift coefficient can be calculated from: 

𝐶𝐿 =
2𝐿

𝜌𝑣2𝑆
                                                                                       (3.1) 

 

3.5.2 Drag coefficient (𝑪𝑫) 

Drag coefficient is due to friction, pressure, and induced drag. The friction component is 

associated to the boundary layer development; its magnitude depends on the characteristics 
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of the fluid and the Reynolds number. The pressure component is due to the pressure 

difference between the leading and trailing edge of the profile. The induced drag is 

produced by the eddies that are generated at the tip of the blade. The drag coefficient is 

calculated as: 

   𝐶𝐷 =
2𝐷

𝜌𝑣2𝑆
                                                                                          (3.2) 

 

3.5.3 Moment coefficient (𝑪𝒎) 

The moment coefficient is obtained by the same way of the drag and lift coefficients but 

instead of a force, a moment is the result of the aerodynamic equation. During the stability 

analysis the pitch moment coefficient (𝐶𝑚) is used but in some steps it will be necessary to 

use the yaw moment coefficient (𝐶𝑛). 

3.6 The F-16 aircraft stability 

The design of flight control systems has evolved from purely mechanical to active over 

the past two decades. The advent of high-performance airplanes in the mid-1950's that were 

required to operate over larger performance envelopes necessitated the development of 

three-axis electronic stability augmentation systems. The functions of the F-16 flight control 

system are very similar to those of most other new high performance aircraft, the basic 

functions of the flight control system that are common are air data scheduled gains, stability 

augmentation (dynamic) , interconnects between roll and yaw axis and command 

augmentation. The unique features and functions of the flight control system are static 

longitudinal stability augmentation (RSS), minimum displacement side-stick controller (SSC), 

total Fly-By-Wire implementation (FBW) and angle-of-attack and normal acceleration 

limiting. 

The basic RSS concept can be stated in a very simple way: 

 1. Balance the airplane for optimum performance. 
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 2. Rely on the flight control system to provide the desired level of static stability as well     

as dynamic characteristics. 

 Illustrations of the differences between a conventionally-balanced airplane and an 

airplane with relaxed static stability are given in Figures 3.3. In the subsonic flight regime the 

conventionally balanced airplane is shown to have its wing-body lift acting forward of the 

center of gravity and the total lift acting aft of the center of gravity, Since in a stable system 

the moment produced by the wing-body lift as a function of angle of attack must be less 

than that produced by the tail, the tail must be deflected in a direction to reduce the total 

tail lift in order to trim the system. Therefore, the total trimmed lift available at a given angle 

of attack is reduced for a conventionally-balanced aircraft. The RSS-balanced aircraft has 

both the wing-body and the total lift acting forward of the center of gravity. In this case the 

moment produced by the wing-body lift as a function of angle of attack is greater than that 

produced by the tail and the tail must be deflected in a direction to increase the total tail lift 

in order to trim the system. Therefore, the total trimmed lift available at a given angle of 

attack is increased for an RSS configuration. Note that the benefits are most pronounced at 

the higher lift coefficients, which is an extremely important region for the YF-16. A 

secondary benefit of the RSS balance is a somewhat reduced weight because of reduced tail 

loads [5, 9].  

 

 

 

 

 

 

 

Figure 3.3: Subsonic balance comparison [9]. 
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3.7 Static stability and control 

3.7.1 Longitudinal Static stability  

The pitch behavior of the aircraft is defined by the longitudinal stability. A stable state 

significates that in case of small variations in the AOA(𝛼) , this will produce small variations 

in the pitch moment that will bring the aircraft back to equilibrium conditions , this is 

possible only if the (𝐶𝑚) decreases with the AOA passing through  a state of equilibrium  

(𝐶𝑚 = 0) as shown in Figure 3.4. Otherwise (positive slope) the aircraft will constantly move 

away from it equilibrium position. 

Figure 3.4: pitching moment in terms of AOA. 

 

Thus the longitudinal static stability is verified compared to the coefficient of the pitch 

moment derivative in terms of the variation of the AOA (𝐶𝑚𝛼
). This coefficient gives the first 

static stability condition given by the equation 3.3: 

                                                                 

  𝐶𝑚𝛼
=

𝜕𝐶𝑚

𝜕𝛼
< 0                                                                                   ( 3.3) 

 

The criterion used by the various regulations to guarantee longitudinal static stability is 

the static margin (SM) presented in equation (3.4). A typical transport aircraft has a 
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positive static margin of approximately 5-10% of the MAC. The negative static margin (0 to 

-15%) is also used in fighters like the F-16 and F-22, this concept is known as “relaxed static 

stability” and uses a control system to deflect the elevator, providing an artificial stability 

which is explained in the previous section of this chapter. 

                                                             

 𝑆𝑀 =
(𝑥𝑎𝑐 − 𝑥𝑐𝑔)

𝑀𝐴𝐶
                                                                                (3.4) 

 

Now we are going to represent the static margin (SM) in terms of 𝐶𝑚𝛼
. Firs we must 

express the 𝐶𝑚 with equation (3.5) that shows the approximation of the pitching moment 

coefficient with: 

𝐶𝑚 : Pitch moment coefficient. 

𝐶𝑚0
: Pitch moment coefficient at zero AOA generated by the wing. 

𝑥𝑐𝑔 − 𝑥𝑎𝑐: The distance between the 𝑐𝑔 and the aerodynamic center and MAC mean           

aerodynamic chord. 

          𝐶𝑚 = 𝐶𝑚0
+ 𝐶𝐿

(𝑥𝑐𝑔 − 𝑥𝑎𝑐)

𝑀𝐴𝐶
                                                                          (3.5) 

We must therefore now define 𝐶𝑚𝛼
: 

𝐶𝑚𝛼
=

𝜕𝐶𝑚

𝜕𝛼
=

𝜕𝐶𝑚0

𝜕𝛼
+

𝜕𝐶𝐿

𝜕𝛼

(𝑥𝑐𝑔 − 𝑥𝑎𝑐)

𝑀𝐴𝐶
+

𝐶𝐿

𝑀𝐴𝐶

𝜕𝑥𝑐𝑔

𝜕𝛼
−

𝐶𝐿

𝑀𝐴𝐶

𝜕𝑥𝑎𝑐

𝜕𝛼
                                    ( 3.6) 

 

𝐶𝑚0
 and 𝑥𝑐𝑔 are constant values ,so they don’t depend on the AOA . While 𝑥𝑎𝑐  varies in 

depending to the AOA but these variations are neglected. 

 𝐶𝑚𝛼
= 0 + 𝐶𝐿𝛼

(𝑥𝑐𝑔 − 𝑥𝑎𝑐)

𝑀𝐴𝐶
− 0 =  𝐶𝐿𝛼

(𝑥𝑐𝑔 − 𝑥𝑎𝑐)

𝑀𝐴𝐶
                                              (3.7) 
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The equation (3.7) becomes: 

                                                                 

 𝐶𝑚𝛼
= 𝐶𝐿𝛼

𝑆𝑀                                                                                         (3.8) 

Thus 𝐶𝑚𝛼
 must be  (𝐶𝑚𝛼

< 0) to ensure the longitudinal static stability, also that 𝐶𝐿𝛼
 is 

always positive up to the stall angle of attack. 

3.7.2 longitudinal control  

The elevator stabilizes the aircraft longitudinally. Its efficiency is an important factor for 

the control of the plane. The variation of the moment is presented by 𝐶𝑚𝛿𝑒
 generated by the 

tail when the elevator is deflected by an angle δ. The larger is the value of 𝐶𝑚𝛿𝑒
 the more 

effective is the generation of pitching moment for the stabilization. The value of 𝐶𝑚𝛿𝑒
   is 

1.02 𝑟𝑎𝑑−1  , there are no specific ranges for this value. The representation of the 

characteristics of longitudinal control is therefore: 

                                                            

   𝐶𝑚 = 𝐶𝑚𝛿𝑒
. δ𝑒 + 𝐶𝑚𝛼

. 𝛼 + 𝐶𝑚0
                                                           ( 3.9) 

Where: 

𝐶𝑚0  is the moment coefficient for δ = 0 = 0 and 𝛼 = 0. 

𝐶𝑚𝛼
 is the derivative of moment coefficient with respect to the angle of attack. 

         𝐶𝑚𝛿𝑒
 is the derivative moment coefficient with respect to the elevator deflection. 

δ𝑒 is the deflection of the elevator. 

 

3.7.3 Lateral Static stability  

Previously the pitch behavior is defined by the longitudinal stability, now the roll behavior 

is defined by lateral stability. Thus the lateral static stability is verified with respect to the 

derivative of rolling moment coefficient 𝐶𝑙 in terms of the variation of the sideslip angle 𝛽 

which should be negative to ensure the lateral stability. Equation (3.10) represents this 
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condition, it is also possible to verify that the derivative of the roll moment coefficient with 

respect to the variation of the roll angle 𝜙 is also negative. 

                                                                      

 𝐶𝑙𝛽
=

∂𝐶𝑙

𝜕𝛽
< 0                                                                                 (3.10)  

3.7.4 Lateral control  

The control surfaces of the roll are ailerons and they are  located at the wings ,when the 

pilot gives a roll command the ailerons deflects to opposite directions modifying the lift 

distribution at the wing and making the aircraft roll. 

A simple way to calculate the roll power control for an aileron is to solve an integral to 

compute all the moment it can generate. The roll control power 𝐶𝑙𝛿𝑎
can be calculated as 

follows:  

                                                   

𝐶𝑙𝛿𝑎
=

2𝐶𝑙𝑎𝑤
𝜏𝑎

𝑆𝑏
∫ 𝑐

𝑦1

𝑦2

 𝑦𝑑𝑦                                                                                (3.11) 

Where: 

𝑐 is the chord of the aileron. 

𝑦 is the aileron span. 

𝑦1 and 𝑦2 are the beginning and the end of the aileron. 

𝑆 is the wing area. 

𝑏 is the wing span. 

𝜏𝑎   is the aileron control surface effectiveness parameter. 

 

3.7.5 Directional Static stability  

Finally the aircraft’s yawing behavior is defined by directional stability. It is a stability 

along the 𝑧-axis and concerns the ability of the airplane to return to it equilibrium conditions 

after undergoing a yaw disturbance𝜓. The directional static stability is verified with respect 

to the derivative of yawing moment coefficient 𝐶𝑛 in terms of the variation of the sideslip 

angle 𝛽. This must be positive in order to ensure the directional static stability, this condition 

is represented in equation (3.12). 
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 𝐶𝑛𝛽
=

∂𝐶𝑛

𝜕𝛽
> 0                                                                               (3.12)  

 

3.7.6 Directional control  

The control surfaces of the yaw is the rudder, it is a movable surface that is mounted on 

the trailing edge of the vertical stabilizer or fin. The rudder control effectiveness is the rate 

of change of yawing moment with rudder deflection angle:   

                                                        
𝜕𝐶𝑙𝑣

𝜕𝛿𝑟
= 𝐶𝑙𝑣𝜏𝑟                                                                             (  3.13) 

Where:  

𝐶𝑙𝑣  is the lift coefficient for vertical tail . 

𝜏𝑟  is the rudder control surface effectiveness parameter.       

2.1 Dynamic stability and control 

To be able to analyze the temporal responses of dynamic stability, first we have to study 

the aircraft movement which is described by a set of non-linear equations, they are generally 

linearized using small displacements with small angle variations. The linearized equations of 

motion for a mechanical system “Mass-Spring-Damper” are presented in the equation (3.14) 

with: 

𝐌 : Mass matrix. 

𝐂 : Structural damping matrix. 

𝐊 : Stiffness matrix. 

𝐱 : Nodal displacement vector. 

𝐟 : Vector of the aerodynamic forces applied to the system  

                                                        

𝑴�̈� + 𝑪�̇� + 𝑲𝒙 = 𝒇(𝑡)                                                                                (3.14) 
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Using an incompressible aerodynamic linear model, it is possible to rewrite the vector 𝐟  

according to the nodal displacement vector 𝐱 as well as the dynamic pressure of the free 

flow𝑞∞: 

  

                                                           

𝒇 =  𝒒∞ ∗ 𝑨 ∗ 𝒙                                                                                           (3.15) 

 

In equation (3.15) the matrix 𝐀 represents the matrix of the aerodynamic coefficients of the 

system. The eigenvalues of the matrix 𝐀 define the dynamic stability. In order to find the 

eigenvalues, we have first to solve the equation (3.16) as well for the longitudinal and lateral 

movements. Each of the movements is defined by its own matrix 𝐀. 

𝒅𝒆𝒕|𝝀𝑰 − 𝑨| = 0                                                                                      (3.16) 

 

The matrix 𝐈, which is an identity matrix, is in this case a 4 × 4 matrix. By solving equation 

(3.16) for the two movements, we obtain characteristic polynomials depending only on the 

different eigenvalues. Equation (3.17) corresponds to both longitudinal movement and 

lateral movement. In this equation, the 𝑎𝑖 represent the coefficients. 

                             𝜆4 + 𝒂𝟏𝜆
3 + 𝒂𝟐𝜆

2 + 𝒂𝟑𝜆 + 𝒂𝟒 = 0                                                                 (3.17) 

The airplane is considered dynamically stable if all the eigenvalues 𝜆𝑖  have a negative real 

part. If only one of the eigenvalues has a positive real part, then the airplane will be 

dynamically unstable. In general, equation (3.17) is factored in order to show the different 

modes of movement. Longitudinal motion has two modes: Short Period and Phugoid, see 

equation (3.18). While the lateral movement has three modes: Roll, Spiral and Dutch-Roll, 

see equation (3.19). These different modes will be explained in detail in the next sections. 

  (𝜆2 + 2ζ𝑠𝑝𝜔𝑠𝑝𝜆 + 𝜔2
𝑠𝑝)(𝜆2 + 2 ∗ ζ𝑝ℎ𝜔𝑝ℎ𝜆 + 𝜔2

𝑝ℎ) = 0                                                 (3.18) 

(𝜆 + 𝑐𝑠𝑝𝑖𝑟𝑎𝑙)(𝜆 + 𝑐𝑟𝑜𝑙𝑙)(𝜆
2 + 2ζ𝐷𝑅𝜔𝐷𝑅𝜆 + 𝜔2

𝐷𝑅) = 0                                                          (3.19) 
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In the previous equations, ζ and 𝜔 respectively represent the damping rate and the 

natural frequency not damped. For Roll and Spiral modes, since the eigenvalue contains only 

a real part, the stability calculations are based on the calculation of the roll damping time 

equation (3.20) and the time to reduce to halve the amplitude equation (3.21). 

                                                           

 𝑇2𝑟𝑜𝑙𝑙 =
1

𝑐𝑟𝑜𝑙𝑙
                                                                                              (3.20)  

  𝑇1
2
𝑠𝑝𝑖𝑟𝑎𝑙

=
ln 2

𝑐𝑠𝑝𝑖𝑟𝑎𝑙
                                                                                         (3.21) 

Before talking in more detail about the stability conditions of the different modes, it is necessary 

to present each of these modes in order to see what its influence on the behavior of the aircraft. 

First, we will present the longitudinal modes then the lateral modes. 

 

3.7.7 Longitudinal modes  

3.7.7.1 Short Period  

The short period is characterized by a fast and strongly damped oscillatory mode. In this 

mode the altitude and the flight direction remains constant while the angle of attack know 

some variations. 

An oscillation is created due to the derivative of the pitch moment coefficient with 

respect to the variation of the AOA, which provides longitudinal static stability which tends 

to return the aircraft to its initial position. The Figure 3.5 illustrates this mode:  

 

 

 

 

 

 

Figure 3.5: Movement associated to the Short Period mode [8]. 
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3.7.7.2 Phugoid 

The phugoid is a constant angle of attack but varying pitch angle exchange of airspeed 

and altitude. It can be excited by an elevator pulse (a short, sharp deflection followed by a 

return to the centered position) resulting in a pitch increase with no change in trim from 

cruise condition. As speed decays, the nose will drop below the horizon, speed will increase 

and the nose will climb above the horizon Figure 3.6. Periods can vary from under 30 

seconds for light aircraft to minute for larger aircraft.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Schematic representation of Phugoid effect [8]. 

 

3.7.7.3 CAP 

The control anticipation parameter (CAP) is not a mode but it is an important criterion for 

verifying longitudinal stability. CAP is based on the pilot’s ability perceiving and anticipating 

pitch and vertical acceleration. It is a function of the natural frequency of the Short Period 

mode in terms of acceleration sensitivity 𝑛𝑧𝛼 as shown in equation (3.22). 

                                                                       

  𝐶𝐴𝑃 =  
𝜔2

𝑠𝑝

𝑛𝑧𝛼 
                                                                                 (3.22) 
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The acceleration sensitivity is defined as follows: 
 

𝑛𝑧𝛼  = −
𝑈0

𝑔𝑍𝑤
                                                                                    ( 3.23) 

Where:    
                                                          

𝑍𝑤 =
−𝜌. 𝑆. 𝑈0. (𝐶𝐿𝛼 + 𝐶𝐷)

2.𝑚
                                                                      (3.24) 

 

3.7.8 Lateral modes  

3.7.8.1 Dutch Roll 

The Dutch roll is a coupled dynamic lateral and directional mode of motion .It is 

characterized by a slight damping and a low frequency oscillation.  Frequency similar to 

longitudinal short period mode, not as well damped (fin less effective than horizontal tail).  

 

Figure 3.7: Schematic representation of Dutch Roll effect [8]. 
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The heading and sideslip angles in a Dutch roll are out of phase with each other with the 

heading and sideslip motions being consistent with those in a relatively flat yawing 

oscillation, implying that rolling component is relatively less significant. However, the bank 

angle cannot be totally ignored and it leads the sideslip and lags behind the yaw, indicating 

that the sideslip follows the roll motion, which follows the yaw motion as shown in Figure 

3.7 above. 

3.7.8.2 Roll 

Roll mode is a non-oscillating mode that has a high damping factor. It occurs after the 

appearance of lateral perturbation which may be due to an action to the stick or lateral 

wings. During this mode there is a roll angle variation 𝜙, even they exist the variations of 

sideslip and yaw angles are neglected as they are very small in the calculation of Roll mode, 

Figure 3.8 illustrates this phenomena. 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 3.8: Movement associated to the Roll mode [8]. 
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3.7.8.3 Spiral 

Spiral mode is like Roll mode a non-oscillating mode. It’s a mode that converges or 

diverges very slowly and often unstable, which makes it the least important mode in the 

stability calculations. It is characterized by the variation of the roll and yaw angles when the 

aircraft is inclined.  It is usually excited by a disturbance in sideslip, which typically follows a 

disturbance in roll and causes a wing to drop. Assume that the aircraft is initially in trimmed 

wings level flight and that a disturbance causes a small positive roll angle 𝜙 to develop. Left 

unchecked, this result in a small positive sideslip velocity 𝑣 as indicated at (a) in Figure 3.9. 

The sideslip puts the fin at incidence 𝛽, which produces lift and in turn, generates a yawing 

moment to turn the aircraft into the direction of the sideslip. The yawing motion produces 

differential lift across the wing span, which in turn results in a rolling moment, causing the 

starboard wing to drop further there by exacerbating the situation. This developing 

divergence is indicated at (b) and (c). Simultaneously, the dihedral effect of the wing 

generates a negative restoring rolling moment due to sideslip that acts to return the wing to 

a level attitude; the fin lift force also generates some additional restoring rolling moment 

when it acts at a point above the roll axis ox, which is usual. 

 

Figure 3.9: Schematic representing the Spiral mode effect [8]. 

 

https://www.sciencedirect.com/topics/engineering/roll-angle-phi
https://www.sciencedirect.com/topics/engineering/dihedral-effect
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3.8 Military flying qualities requirements  

In the aircraft design it is necessary to know what levels of stability and control are 

desirable and performance criteria are available, so that the pilot can evaluates the aircraft 

in different ways depending on the type of aircraft and phase of flight, also he can keep the 

aircraft safe and controllable. However, in order to standardize all of these 

recommendations, both national and international authorities, such as the JAR or the FAA, 

have published a list of specifications that deal with flight qualities.  

A survey and a large bibliography covering twenty-five years of handling qualities 

research has been given by Ashkenas (1984). The “background information and user guides” 

for the military flying qualities specifications MIL-F-8785B and MIL-F-8785C (Chalk et al., 

1969; Moorhouse and Woodcock, 1982) also provide much useful information. The military 

specification defines airplane classes, flight phases, and flying qualities levels, so that 

different modes can be specified for the various combinations. The airplane classes and the 

flight phases are defined in Table 3.1, Table3.2 respectively; the flying qualities levels are 

linked to the Cooper-Harper ratings as shown in Table 3.3 [3]. 

 

Table 3.1: Airplane classes [3]. 

Class I Small, light airplanes. 

Class II Medium weight, low-to-medium-maneuverability airplanes.  

Class III Large, heavy, low-to-medium-maneuverability airplanes. 

Class IV High-maneuverability airplanes. 

 

Table 3.2: Flight phases [3]. 

Categories Flight phases 

Category A Nonterminal flight phases generally requiring rapid maneuvering. 

Category B Nonterminal flight phases normally accomplished using gradual 
maneuvers 
without precision tracking, although accurate flight-path control may 
be required. 

Category C Terminal flight phases normally accomplished using gradual 
maneuvers and 
usually requiring accurate flight-path control. 
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Table 3.3: Flying qualities [3]. 

Levels Flying qualities 

Level 1 Flying qualities adequate for the mission flight phase. 
 

Level 2 Flying qualities adequate to accomplish the mission flight phase, but some 
increase in pilot workload or degradation in mission effectiveness exists. 
 

Level 3 Flying qualities such that the airplane can be controlled safely, but pilot 
workload is excessive, or mission effectiveness is inadequate, or both. 
 

 

3.8.1  Nelson stability matrix 

3.8.2 Longitudinal stability matrix 

In order to construct the stability matrix A, we must first define the state vector 𝑥.in this 

section two state vectors are presented. The calculation of derivatives is summarized in 

Appendix A. 

The first vector is:  

                                                                           

 �⃗� = (

𝑢
𝑤
𝑞
휃

)                                                                                    (3.25) 

From this state vector, it is possible to obtain the stability matrix given by equation (3.26). 

This matrix has been constructed in such a way as to minimize approximations. Table 3.4 

describes in detail the different coefficients of this matrix. 

 

𝐀 =

[
 
 
 
𝑋𝑢 𝑋𝑤  𝑋𝑞 −𝑔𝑐𝑜𝑠(𝛼)

Zu Zw 𝑈0 + 𝑍𝑞 −𝑔𝑠𝑖𝑛(𝛼)

�̃�𝑢 �̃�𝑤 �̃�𝑞 −𝑀�̇�𝑠𝑖𝑛(𝛼)

0 0 1 0 ]
 
 
 

                                                            ( 3.26) 
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Table 3.4: Definition of the different coefficients of longitudinal matrix A [8]. 

Variables Equations 

 

 

 

 

X 

𝑋𝑢 =
𝜌𝑆𝑢

2𝑚
(−2𝐶𝐷 cos(𝛼) + 2𝐶𝐿 sin(𝛼) − 𝐶𝐷𝑢

cos(𝛼) + 𝐶𝐷(sin(𝛼)2) 

−𝐶𝐿 cos(𝛼) sin(𝛼) + 𝐶𝐿𝑢
sin (𝛼)) 

𝑋𝑤 =
𝜌𝑆𝑈0

2𝑚
(𝐶𝐿𝛼

sin(𝛼) + 𝐶𝐿 cos(𝛼) − 𝐶𝐷𝛼
cos(𝛼) − 𝐶𝐷 sin(𝛼)) 

𝑋𝑞 =
𝜌𝑆𝑈0𝑐̅

4𝑚
𝐶𝑥𝑞

 

 

 

𝑍 

𝑍𝑢 = −
𝜌𝑆𝑢

2𝑚
(2𝐶𝐿(cos(𝛼)2) + 𝐶𝐷𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼) + 𝐶𝐿𝑢

𝑐𝑜𝑠(𝛼)

+ 𝐶𝐿(sin(𝛼)2)) 

𝑍𝑤 = −
𝜌𝑆𝑈0

2𝑚
(𝐶𝐿𝛼

cos(𝛼) − 𝐶𝐿 sin(𝛼) + 𝐶𝐷𝛼
sin(𝛼) + 𝐶𝐷 cos(𝛼)) 

𝑍𝑞 = −
𝜌𝑆𝑈0𝑐̅

4𝑚
𝐶𝑧𝑞

 

 

 

�̃� 

�̃�𝑢 =
𝜌𝑆𝑈0𝑐̅

2𝐼𝑦𝑦
(𝐶𝑚𝑢

+ 2𝐶𝑚𝑐𝑜𝑠(𝛼)) + 𝑀�̇�𝑍𝑢   𝑤𝑖𝑡ℎ  𝑀�̇� =
𝜌𝑆𝑐̅2

4𝐼𝑦𝑦
 𝐶𝑚�̇�

 

�̃�𝑤 =
𝜌𝑆𝑈0𝑐̅

2𝐼𝑦𝑦
𝐶𝑚𝛼

+ 𝑀�̇�𝑍𝑢    

�̃�𝑞 =
𝜌𝑆𝑈0𝑐̅

2

4𝐼𝑦𝑦
 𝐶𝑚𝑞

+ 𝑀�̇�𝑈0    

 

3.8.3 Lateral stability matrix 

The state vector is defined as: 

  �⃗� = (

𝛽
𝑝
𝑟
𝜓

)                                                                                    (3.27) 

 

It is also possible to meet this state vector with the speed 𝑣 instead of the sideslip angle 

𝛽. However, it is easier to find the derivatives of the different coefficients with respect  to 

the sideslip angle than the speed 𝑣. The link between these two variables is given by the 
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approximation  𝛽 = tan (
𝑣

𝑈0
) ≈

𝑣

𝑈0
. From this state vector, it is possible to obtain the stability 

matrix presented in equation (3.28), Table 3.5 describes in detail the different coefficients of 

this matrix. 

 

    𝐀 =

[
 
 
 
 
 
𝑌𝛽

𝑈0

𝑌𝑝

𝑈0
  

𝑌𝑟

𝑈0
− 1 𝑔

𝑐𝑜𝑠(𝛼)

𝑈0

𝐿′𝛽 𝐿′𝑝 𝐿′𝑟 0

𝑁′𝛽 𝑁′𝑃 𝑁′𝑟 0

0 1 sin (α) 0 ]
 
 
 
 
 

                                                                   (3.28) 

 

 

 

Table 3.5: Definition of the different coefficients of lateral matrix A [8]. 

Variables 𝑣 𝑝 𝑟 

𝑌 𝑌𝑣 =
𝜌𝑆𝑈0

2𝑚
𝐶𝑦𝛽

 𝑌𝑝 =
𝜌𝑆𝑈0

4𝑚
𝐶𝑦𝑝

 𝑌𝑟 =
𝜌𝑆𝑈0𝑏

4𝑚
𝐶𝑦𝑟

 

𝐿 𝐿𝑣 = −
𝜌𝑆𝑈0𝑏

2𝐼𝑥𝑥
𝐶𝑙𝛽

 𝐿𝑝 =
𝜌𝑆𝑈0𝑏

2

4𝐼𝑥𝑥
𝐶𝑙𝑝  𝐿𝑟 =

𝜌𝑆𝑈0𝑏
2

4𝐼𝑥𝑥
𝐶𝑙𝑟  

𝑁 𝑁𝑣 = −
𝜌𝑆𝑈0𝑏

2𝐼𝑧𝑧
𝐶𝑛𝛽

 𝑁𝑝 =
𝜌𝑆𝑈0𝑏

2

4𝐼𝑧𝑧
𝐶𝑛𝑝

 𝑁𝑟 =
𝜌𝑆𝑈0𝑏

2

4𝐼𝑧𝑧
𝐶𝑛𝑟

 

𝐿′𝑖 𝐿′𝑖 = 𝐿𝑖 +
𝐼𝑥𝑧

𝐼𝑧𝑧
𝑁𝑖 

𝑁′𝑖 𝑁′𝑖 = 𝑁𝑖 +
𝐼𝑥𝑧

𝐼𝑧𝑧
𝐿𝑖  

 

3.9   Summary 

In this chapter we have presented the importance of the aircraft’s stability analyses in 

control systems design. We have introduced the static stability and control for longitudinal, 

lateral and direction motions as well as the lateral and longitudinal dynamic stability and 

control has been discussed with a clear description of Short Period, Ducth Roll, Roll, Spiral 

dynamic modes. 
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The important points to recognize from this chapter are: A stable aircraft is an aircraft 

that can be established in an equilibrium flight condition where it will remain showing no 

tendency to diverge. It must be made statically stable, either through inherent aerodynamic 

characteristics or by artificial means through the use of an automatic control system as our 

F-16 aircraft’s model that demand high stability and equilibrium because of the complex 

maneuvers. Flying Qualities have a critical bearing on the safety of flight and on the ease of 

controlling an aircraft in both steady and maneuvering flights. An aircraft with poor flying 

qualities can result in undesirable response characteristics potentially leading to catastrophic 

loss of vehicle and life. 
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4 Chapter 4:  Controller design   

4.1   Introduction  

The design of an automatic flight control generally begins with selecting the appropriate 

desired functions of the autopilots. The next step involves choosing an appropriate control 

structure. Many controllers exists from a simplest to a more complex controller structure, 

adaptive or self-tuning, internal model or even a sophisticated non-linear control structure. 

The choice depends on the flying requirements, safety, stability margins, robustness and 

handling qualities that were introduced in chapter 3. The final stage of control design 

provides choosing an appropriate architecture of a modern controller implemented digitally 

dedicated for civil or military aircrafts. 

In the previous chapters, we have succeeded obtaining the mathematical linear and non-

linear model, which can be used to determine control derivatives and stability that are 

utilized in control surfaces and designing flight control systems and simulation.  

This chapter will cover the design and evaluation of the different controllers: LQR, PID, 

Fuzzy logic, used to design controller of the F-16 model, as well as some mixed controllers 

technology will be introduced. Each of these techniques has its proponents and each one has 

its advantages and disadvantages. Our strategy in developing modern control system is 

explained in details showing examples how it is used in aircraft controls, we now discuss 

some controllers’ background.   

4.2  Background 

4.2.1 Linear Quadratic Regulator (LQR)  

Linear quadratic regulator or LQR is commonly used technique to find the state feedback 

gain for a closed loop system. This is the optimal regulator, by which the open-loop poles 

can be relocated to get a stable system with optimal control and minimum cost for given 

weighting matrices of the cost function. On the other hand, by using the optimal regulator 

technique, that freedom of choice is lost for both discrete-time and continuous-time 

systems, because, in order to get a positive definite Riccati equation solution, there are 

some areas where the poles cannot be assigned [12]. 
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Consider the state feedback controller is given by: 

      

                                                    𝑢(𝑡) = 𝐾𝑥(𝑡)                                                                                    (4.1) 

That stabilized the closed loop system and minimizes  

                                      𝐽: =  ∫ 𝑥(𝑡)𝑇
∞

0

𝑄𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡)𝑑𝑡                                                     (4.2) 

 

Where 𝑥 and 𝑢 are the state and control of the LTI system 

                            

                           �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)     ,          𝑥(0) = 𝑥0                                                         (4.3) 

 

Assumption:  

a) 𝑄 ≥ 0 , 𝑅 > 0 ; 

b) (𝐴, 𝐵) stabilizable ; 

A first step toward a solution,  

The closed loop cost is: 

 

                           𝐽: =  ∫ 𝑥(𝑡)𝑇
∞

0

(𝑄 + 𝐾𝑇𝑅𝐾)𝑥(𝑡)𝑑𝑡                                                                      (4.4) 

And the closed loop system (Figure 4.1) is:                       

      

      �̇�(𝑡) = (𝐴 + 𝐵𝐾)𝑥 ,               𝑥(0) = 𝑥0                                                                      ( 4.5) 

 

But for a given gain 𝐾 and 𝑥0 

                                         

            𝑥(𝑡) = 𝑒(𝐴+𝐵𝐾)𝑡𝑥0                                                                                                                   (4.6) 
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Figure 4.1: The closed loop LQR system [12]. 

 

Hence:                                                         

     𝑱 =  ∫ 𝒙𝟎
𝑻

∞

𝟎

𝒆(𝑨+𝑩𝑲)𝑻𝒕  (𝑸 + 𝑲𝑻𝑹𝑲)𝒆(𝑨+𝑩𝑲)𝒕𝒙𝟎𝒅𝒕                                            (4.7) 

 

          = 𝒙𝟎
𝑻 (∫ 𝒆(𝑨+𝑩𝑲)𝑻𝒕

∞

𝟎

(𝑸 + 𝑲𝑻𝑹𝑲)𝒆(𝑨+𝑩𝑲)𝒕𝒅𝒕  ) 𝒙𝟎                            

 

This means that 𝐽 can be computed as:                                                                     

  𝐽 = 𝑥0
𝑇𝑋 𝑥0                                                                                        (4.8) 

Where 𝑋  is the solution to the Lyapunov equation 

 

               (𝑨 + 𝑩𝑲)𝑻 𝑿 + 𝑿(𝑨 + 𝑩𝑲) + 𝑸 + 𝑲𝑻 𝑹𝑲 = 𝟎                                                      (4.9) 

 

Before proceeding we need to learn how to solve the above Lyapunov equation in 𝑋 

and 𝐾. This is not always possible. In this case, because 𝑅 ≻  0, we can complete the 

squares, rewriting the above equation in the form 
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  𝑨𝑻 𝑿 + 𝑿𝑨 − 𝑿𝑩 𝑹−𝟏 𝑩𝑻 𝑿 + 𝑸 + (𝑿𝑩𝑹−𝟏 + 𝑲𝑻) 𝑹(𝑹−𝟏𝑩𝑻 𝑿 + 𝑲) = 𝟎                 (4.10) 

 

 

    Note that 𝐾 is confined to the term  

 

   (𝑋𝐵𝑅−1 + 𝐾𝑇)𝑅(𝑅−1𝐵𝑇𝑋 + 𝐾) ≥ 0                                                                     (4.11) 

 

In addition, that for: 

𝑘 = −𝑅−1𝐵𝑇𝑋                                                                                       (4.12) 

 

We have: 

                                   

    𝑄 + (𝑋𝐵𝑅−1 + 𝐾𝑇)𝑅(𝑅−1𝐵𝑇𝑋 + 𝐾) = 𝑄                                                              (4.13) 

 

This reduces the above equation to: 

 

    𝐴𝑇𝑋 + 𝑋𝐴 − 𝑋𝐵𝑅−1𝐵𝑇𝑋 + 𝑄 = 0                                                              (4.14) 

 

This is an Algebraic Riccati Equation (ARE) in 𝑋. 

As we learn more about AREs we shall prove that the above choice of 𝐾 and 𝑋 is so that  

1-  𝐴 + 𝐵𝐾 is Hurwitz (asymptotically stable);  

2-  𝑋 is “minimum” in a certain sense;  

3-  The associated 𝐽 is minimized. 

 

4.2.2 Proportional Integral Derivative (PID)  

PID controllers are the most widely used type of controller for industrial applications. 

They are structurally simple and exhibit robust performance over a wide range of operating 
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conditions. In the absence of the complete knowledge of the process, these types of 

controllers are the most efficient of choices. The three main parameters involved are 

Proportional (P), Integral (I) and Derivative (D) in which the proportional term is for 

providing an overall control action proportional to the error signal through the constant gain 

factor, the integral term is to reduce steady-state errors through low-frequency 

compensation by an integrator, The derivative term improves transient response through 

high-frequency compensation by a differentiator.  

In this section, we will be discussing the PID structures, presenting his three parts and the 

PID controller parameters; also, we described few tuning methods used in control design 

[14]. 

4.2.2.1   PID structure: 

The general form for of the PID controller output  𝑢(𝑡) is given by equation (4.15) and 

presented in a schematic in Figure 4.2: 

                               𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑 
𝑡

0

𝑑𝑒(𝑡)

𝑑𝑡
                                              (4.15)   

Where: 

𝐾𝑝 : Proportional gain. 

𝐾𝐼 : Integral gain. 

𝐾𝐷 : Derivative gain. 

𝑒(𝑡): Is the error (𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)). 

𝑡 : Is the present time. 

𝜏: Is the variable of integration (takes value from 0 to the present time𝑡). 
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Figure 4.2: Block diagram of  PID controller system [14]. 

 

There are four types of controllers that belong to the family of PID controllers: the 

proportional (P) controller, the proportional plus integral (PI) controller, the proportional 

plus derivative (PD) controller and the proportional plus integral plus derivative (PID) 

controller.  

 

- The proportional part: 

The proportional part (P-part) of the control signal is proportional to the control 

error, 

                        𝑢𝑝(𝑡) = 𝐾𝑒𝑝(𝑡) + 𝑢0, 𝑒𝑝(𝑡) = 𝑏𝑟(𝑡) − 𝑦(𝑡)                         (4.16) 

 

Such that it reacts to present deviations from the set point. The proportional gain, 𝐾, is 

the parameter normally associated with the P-part. A P-controller alone cannot 

guarantee zero static control errors, the control signal becomes zero for 𝑒𝑝(𝑡) = 0. The 

bias term 𝑢0 is used to reduce this effect in controllers that lack an integral part. The 

magnitude of the static error depends on 𝐾. The speed and noise sensitivity of the 

closed-loop system will typically increase with an increasing 𝐾 at the same time as the 

robustness decreases. The P-part is sensitive to noise since 𝐾 is multiplied directly with 

the measurements 𝑦(𝑡) unless filtered first. Abrupt changes in the set point can be 

smoothed out in the control signal by choosing a set-point weight 0 ≤  𝑏 <  1. 

- Integral  part: 

The integral part (I-part) integrates past values of the control error, 
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𝑢𝑖(𝑡) =
𝐾

𝑇𝑖 
∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

= 𝑘𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

,        𝑒𝑖(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)                         (4.17) 

and will thus remove static control errors due to step load disturbances and set-point 

changes. It introduces the integral time  𝑇𝑖  , but also depends on the proportional gain 

𝐾 unless the fraction 
𝐾

𝑇𝑖 
 is replaced by an independent parameter 𝑘𝑖  called the integral 

gain. Reducing  𝑇𝑖  normally leads to a faster, although less robust, closed-loop system. 

The summation of past control errors makes the I-part insensitive to noise. 

- Derivative  part: 

The derivative part (D-part) of the PID controller, 

𝑢𝑑(𝑡) = 𝐾𝑇𝑑

𝑑𝑒𝑑(𝑡)

𝑑𝑡
= 𝑘𝑑

𝑑𝑒𝑑(𝑡)

𝑑𝑡
,        𝑒𝑑(𝑡) = 𝑐𝑟(𝑡) − 𝑦(𝑡)                            (4.18) 

Predicts future behavior of the controlled variable. It introduces the derivative time 𝑇𝑑, 

but also depends on 𝐾 unless 𝐾𝑇𝑑 is replaced by the derivative gain 𝑘𝑑. Closed-loop 

robustness will typically increase with an increasing 𝑇𝑑 at the same time as the 

performance decreases. This is a consequence of the damping properties of the D-part. 

The system as a whole can still obtain better performance, since the proportional and 

integral gains can be increased to balance robustness. It is thus important to use a low-

pass filter together with the D-part. The set-point weight c is normally set to zero to 

avoid large transients in the control signal. 

 

4.2.2.2 PID design methods 

In this section, we will be distinguishing PID design based on tuning methods. Tuning 

methods are a set of formulas from which one can determine the controller parameters and 

they typically depend on the parameters of some specific process model.  

 

- Ziegler-Nichols Method 

Two classical methods for determining the parameters of PID controllers were 

presented by Ziegler and Nicholas in 1942. They are still widely used, either in their 
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original form or in some modification, this method remains a popular technique for 

tuning controllers. 

1- Closed-loop tuning method: This method has given simple formulas for the 

parameters of the controller in terms of the ultimate 𝐾𝑢 gain and the ultimate 

period 𝑇𝑢, This basic test requires that the response of the system be recorded, 

preferably by a plotter or computer, once certain process response values are found, 

they can be plugged into the Ziegler-Nichols equation with specific multiplier 

constants for the gains of a controller with either P, PI or PID actions. The PID 

parameters obtained from this method are presented in Table 4.1.  

 

Table 4.1: PID control parameters obtained from  

Closed-loop Ziegler-Nichols method [15]. 

Controller 𝐾 𝑇𝑖 𝑇𝑑 𝑇𝑝 

P 0.5𝐾𝑢   𝑇𝑢 

PI 0.4𝐾𝑢 0.8𝑇𝑢  1.4𝑇𝑢 

PID 0.6𝐾𝑢 0.5𝑇𝑢 0.125𝑇𝑢 0.85𝑇𝑢 

 

2- Open-loop tuning method: The Ziegler-Nichols open-loop method is also referred to 

as a process reaction method, because it tests the open-loop reaction of the process to 

a change in the control variable output. The parameters determined from this method 

are given in Table 4.2. 

 

Table 4.2: PID control parameters obtained from Open loop Ziegler-Nichols method [15]. 

Controller 𝐾𝑐 𝑇𝑖 𝑇𝑑 

P 𝐾0   

PI 0.9𝐾0 3.3𝜏𝑑𝑒𝑎𝑑  

PID 1.2𝐾0 2𝜏𝑑𝑒𝑎𝑑 0.5𝜏𝑑𝑒𝑎𝑑 

 

 

Where: 

𝜏𝑑𝑒𝑎𝑑 is the transportation lag or dead time and 𝐾0 is given by the equation ( 4.19): 
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 𝐾0 =
𝑋0

𝑀𝑢

𝜏

𝜏𝑑𝑒𝑎𝑑
                                                                                     (4.19) 

 

    𝑋0is the step change in the input and 𝑀𝑢 the ultimate value that the response reaches at 

steady-state. 

 

- Cohen-Coon Method 

The Cohen-Coon tuning rules are suited to a wider variety of processes than the 

Ziegler-Nichols tuning rules. The Ziegler-Nichols rules work well only on processes where 

the dead time is less than half the length of the time constant. The Cohen-Coon tuning 

rules work well on processes where the dead time is less than two times the length of 

the time constant. In addition, it provides one of the few sets of tuning rules that has 

rules for PD controllers. 

Like the Ziegler-Nichols tuning rules, the Cohen-Coon rules aim for a quarter-

amplitude damping response. Although quarter-amplitude damping-type of tuning 

provides very fast disturbance rejection, it tends to be very oscillatory and frequently 

interacts with similarly tuned loops. Quarter-amplitude damping-type tuning also leaves 

the loop vulnerable to going unstable if the process gain or dead time doubles in value. 

These settings are shown in Table 4.3. 

 

Table 4.3: Standard recommended equations to optimize Cohen Coon predictions [15]. 

Controller 𝐾𝑐 𝑇𝑖 𝑇𝑑 

P 
(

𝑃

𝑁𝐿
) ∗ (1 + (

𝑅

3
)) 

  

PI 
(

𝑃

𝑁𝐿
) ∗ (0.9 + (

𝑅

12
)) 𝐿 ∗

(30 + 3𝑅)

(9 + 20𝑅)
 

 

PID 
(

𝑃

𝑁𝐿
) ∗ (1.33 + (

𝑅

4
)) 𝐿 ∗

(30 + 3𝑅)

(9 + 20𝑅)
 

4𝐿

11 + 2𝑅
 

 

Where the variables 𝑃, 𝑁, and 𝐿 are defined below in Table 4.4. 
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Table 4.4: PID control parameters obtained from Ziegler-Nichols method [15]. 

𝑃 Percent change of input 

𝑁 Percent change of output/𝜏 

𝐿 𝜏𝑑𝑒𝑎𝑑 

𝑅 𝜏𝑑𝑒𝑎𝑑

𝜏
 

 

Remark:  
𝑃

𝑁𝐿
 can be replaced with 𝐾0. 

It exist other PID tuning methods that are used: 

• Analytical methods: At these methods, the PID parameters are calculated with 

analytical or algebraic relations based in a plant model representation and in some 

design specification. 

• Heuristic methods: These methods are evolved from practical experience in manual 

tuning and are coded with artificial intelligence techniques, like expert systems, fuzzy 

logic and neural networks. 

• Frequency response methods: the frequency response characteristics of the 

controlled process are used to tune the PID controller. Frequently these are offline 

and academic methods, where the main concern of design is stability robustness 

since plant transfer function have unstructured uncertainty. 

• Optimization methods: these methods utilize an offline numerical optimization 

method for a single composite objective or use computerized heuristics or, yet, an 

evolutionary algorithm for multiple design objectives. According to the 

characteristics of the problem, an exhaustive search for the best solution may be 

applied. Some kind of enhanced searching method may be used also. These are often 

time-domain methods and mostly applied offline. This is the tuning method used at 

the development of this work. 

• Automatic tuning methods: these methods are based in automated online tuning, 

where the parameters are adjusted in real-time through one or a combination of the 

previous methods. System identification may be used to obtain the process dynamics 

over the use of the input-output data analysis and real time modelling in MATLAB 

using PID objects or in Simulink using PID Controller blocks. 
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4.2.3 Fuzzy Logic Controller (FLC)  

Fuzzy logic controllers (FLCs) are used in control system design for processes that do not 

admit a mathematical model or where the data is imprecise. FLCs are fuzzy expert systems 

that can model the human operator of a process. They are based on a linguistic description 

of the process variables.  

A fuzzy logic controller is a fuzzy expert system that is a generalization of the expert 

systems widely used in artificial intelligence (AI). An intelligent control system combines the 

techniques from the fields of artificial intelligence (AI), with those of control engineering to 

design autonomous systems that can sense, reason, and plan, learn and act in an intelligent 

manner applications. The main difference between fuzzy expert systems and AI expert 

systems is in the way they handle uncertainty. In an AI expert system, uncertainty is handled 

using a probabilistic approach. A fuzzy expert system attempts to handle uncertainty in the 

way humans do, using linguistic variables and fuzzy sets. The knowledge of the human 

operator is embedded in the fuzzy rule base. The inference engine and the defuzzifier 

approximate the response of the human operator to a given set of inputs. Initially fuzzy logic 

controllers were applications characterized by slow time applied in process control constants 

and lacking the mathematical models of the process, but reasonably controlled by a human 

[18]. 

4.2.3.1 Structure of Fuzzy Logic Controller 

Basically, fuzzy controller comprises of four main components, fuzzification interface, 

knowledge base, inference mechanism and defuzzification interface. Figure 4 shows 

components of fuzzy logic controller. 

 

 

 

 

 

 

Figure 4.3: 
Components of Fuzzy Logic Controller [18]. 
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In order to understand the concept of the fuzzy logic controller (FLC) controller, we will be 

describing it components as follows:  

- Fuzzy: A qualitative value rooted in conceptual ideas and abstract constructs used 

to approximate a crisp value. 

- Crisp: A quantitative value rooted in mathematical ideas carrying specific values 

represented by real or complex numbers. 

- Rule-base: A set of IF-THEN rules used by the interface system to infer input values 

to output values as part of the inference system. 

- Membership Function: A distribution function, which maps linguistic values to crisp 

values. 

- Universe-of-Discourse: The set of values over which an input or output is valid. This 

includes real or complex numbers, a finite set of integers, a closed-infinite set, or 

any other group of values.  

-Linguistic Values and Variables: The concept of linguistic variables plays a 

fundamental role in modelling fuzzy systems. It provides a good means of describing 

the behavior of complex systems by representing uncertain variables in terms of 

propositions that humans use. These propositions expressed in natural language are 

then converted into fuzzy meaning (fuzzy sets or fuzzy numbers). An example of a 

linguistic variable might be controlling the desired pitch angle  θ𝑑 based on the 

Automatic Landing System data which is shown in Figure 4.4. The linguistic variable, pitch 

angle, is defined as a base variable on a specified universe of real numbers, it is 

abstract terms used to describe the value of an input or output. These constitute the 

descriptive terms of a fuzzy logic system; they are linguistic variables.   

A linguistic value is the numerical value associated with a linguistic variable. It is 

expressed as seven linguistic values: Negative small, Zero, Positive small, Negative big, 

Positive big, Negative, Positive. These linguistic values are represented by specific fuzzy 

numbers defined on the base variable universe.        
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Figure 4.4: Illustration of linguistic variable of the desired pitch angle [20]. 

 

- Fuzzification: It is a process of converting data of the input variable into a fuzzy 

format in order to incorporate the necessary uncertainty into the input variable. 

That is, to determine a fuzzy set representing all membership degrees of the 

linguistic values corresponding to the input variable data. The input to the 

fuzzification process can be a crisp or fuzzy value but the output. 

 

- Defuzzification: Unlike fuzzification, defuzzification is a process of converting fuzzy 

output value into a single crisp value as needed in many real-world application. 

Many methods have been proposed in literature to perform defuzzification. Among 

the commonly used defuzzification methods are: Weighted Average method, 

Centroid method, and Mean-Max method.  

The formula presented in equation (4.20) describes the defuzzification process 

mathematically where 𝑦𝑐𝑟𝑖𝑠𝑝the crisp output is, µ𝑖 is a specific inference rule, and 𝑦𝑖 

is the output singleton associated with the given rule. 

 

   𝑦𝑐𝑟𝑖𝑠𝑝 =
∑ 1µ𝑖

𝑛
𝑖 𝑦𝑖

∑ 1µ𝑖
𝑛
𝑖

                                                                                (4.20) 
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- Inference system: Fuzzy inference system is classified into three types on the basis 

of the consequent of the fuzzy rules that are required for the inference procedure: 

- Mamdani fuzzy inference system : It was initially developed by using a set of 

linguistic variables. The fuzzy rules in such control system are obtained from 

experienced human operator .The fuzzy rules in Mamdani fuzzy inference 

system are of the form: 

 If 𝑥 is small then 𝑦 is small. 

 If x is small then y is medium.  

Here antecedent and consequent of the rules are linguistic variables and both 

are fuzzy. Mamdani fuzzy inference system generates output in fuzzy form so 

there is a need to convert this fuzzy output into crisp form. For this purpose 

different defuzzification techniques are used to defuzzify fuzzy output into 

crisp . 

- Takagi Sugeno Kang fuzzy inference system: It was proposed by Takagi, 

Sugeno and Kang for developing systematic approach that can generate 

fuzzy rules from given input output data set .A typical fuzzy rule in this 

model is of the form: 

If 𝑥 is 𝐴 and 𝑦 is 𝐵 then 𝑧 = 𝑓(𝑥, 𝑦).  

Where antecedent of the rule is in fuzzy form and consequent of rule is 

represented by a function in 𝑥 and 𝑦 fuzzy input. 𝑧 = 𝑓(𝑥, 𝑦) is a crisp 

function. 𝑓(𝑥, 𝑦) is a polynomial in 𝑥 and 𝑦. If 𝑓(𝑥, 𝑦) is a first order 

polynomial then the inference system is called as first order Sugeno fuzzy 

model. If 𝑓 is constant then the inference system is zero order Sugeno 

fuzzy model which is a special case of Mamdani fuzzy model, then its order 

changes with the polynomial.  

-  Tsukamoto fuzzy inference system: In this interface, the consequent of 

fuzzy if-then rule is represented by a fuzzy set with monotonically 

membership function. So the output of each rule is defined as a crisp value. 

However, Tsukamoto fuzzy inference system is not used often in 

applications because this system is not much transparent in comparison to 

Mamdani fuzzy model and Takagi Sugeno fuzzy model. The rules in this 

inference system are represented as: 
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 If 𝑥 is small then 𝑦 is 𝑐1.  

 If 𝑥 is medium then 𝑦 is 𝑐2.  

Here the consequent of the rules are fuzzy sets such that the output of 

Tsukamoto fuzzy inference system is crisp even if the input is fuzzy [20]. 

 

4.2.4 Mixed controllers  

The controller design always depends on the plant’s mathematical model, whether it is 

based on linear system theory or non-linear design methods like feedback linearization. The 

classical controllers has been largely used, but for a complex non-linear system with 

uncertainty and big effect of disturbance a novel control design is presented systematically 

to synthesize a robust nonlinear feedback controller. A robust and fast-response control 

system plays an important role in designing and developing a high-performance aircraft.  

In our study, we will be introducing some modern intelligent controllers design 

methodology to examine their overall performance primarily based on time response 

specification for controlling movement of aircraft. This new technology consists of 

combining the different controllers and tuning methods using specific structures such as: 

PID, FLC, LQR and H. Moreover, this intelligent controller can be developed using algorithms 

such as some specific algorithms are used can be optimized using various optimization 

techniques such as Genetic Algorithm, Artificial intelligence. Some mixed controllers design 

is reviewed in which we will be used in implementations. 

4.2.4.1   PID-Fuzzy controller design 

Fuzzy PI type control is known to be more practical than fuzzy PD type, since it is difficult 

for the fuzzy PD to remove the steady state error. The fuzzy PI type control is however 

known to give poor performance in the transient response for higher order process due to 

the internal integration operation. To improve the performance of the fuzzy PI type and 

fuzzy PD type at the same time we want to design a Fuzzy controller that process the fine 

characteristics of the PID controller only by using the error and the rate of change of error as 

its inputs 

The structures of PID-Fuzzy controllers which have been developed for the aircraft pitch 

and roll control model, it is developing to control the rigid body motion of the system. The 
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common structure of PID-type fuzzy controller that has two inputs and rules base is depicted 

in Figure 4.5, as can be seen, the output from controller, 𝑢𝑐  is fed by integrator output, 𝑢1 

and gain  𝑢2 [21]. 

 

 

 

 

Figure 4.5: PID-type fuzzy logic controller [21]. 

 

The output of PID-type fuzzy controller is given by equation (4.21): 

                     𝑢𝑐 = 𝛼𝑈 + 𝛽 ∫𝑈𝑑𝑡                                                                               

= 𝛼(𝐴 + 𝑃𝐾𝑒𝑒 + 𝐷𝐾𝑑�̇�  ) +  𝛽 ∫(𝐴 + 𝑃𝐾𝑒𝑒 + 𝐷𝐾𝑑�̇�  )𝑑𝑡          

                                        = 𝛼𝐴 + 𝛽𝐴𝑡 + (𝛼𝐾𝑒𝑃 + 𝛽𝐾𝑑𝐷)𝑒 + 𝛽𝐾𝑒𝑃 ∫𝑒 𝑑𝑡 + 𝛼𝐾𝑑𝐷�̇�        (4.21)  

Where: 

             Proportional:   𝛼𝐾𝑒𝑃 + 𝛽𝐾𝑑𝐷 . 

             Integral:   𝛽𝐾𝑒𝑃 . 

             Derivative:   𝛼𝐾𝑑𝐷 . 

4.2.4.2   Genetic algorithm based PID controller 

The novelty of this mixed controller is achieved by the development of a new 

methodology based on creating to find a PID controller that gives the smallest overshoot, 

fastest rise time or quickest settling time. However, in order to combine all of these 

objectives it was decided to design an objective function that will minimize the error of the 

controlled system instead. Each element in the population is passed into the objective 

function one at a time, which is obtained by optimizing all the five parameters by using an 

evolutionary algorithm optimization technique known as a genetic algorithm which is a very 

powerful search tool and carrying heuristic characteristics.  
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4.2.4.3 Preliminary and background of Genetic Algorithm (GA) 

Genetic algorithm (GA) uses the principles of evolution, natural selection and genetics 

from natural biological systems in a computer algorithm to simulate evolution. Essentially, 

the genetic algorithm is an optimization technique that performs a parallel, stochastic, but 

directed search to evolve the fittest population. John Holland formally introduced this 

method in the United States in the 1970 at the University of Michigan, the continuing 

performance improvements of computational systems have made them attractive for some 

types of optimization. 

Biological evolution is an appealing source of inspiration for addressing optimization 

problems. Evolution is a method of searching among an enormous number of possibilities 

for "solutions." In biology the enormous set of possibilities is the set of possible genetic 

sequences, and the desired "solutions" are highly favorable organisms—organisms, which 

are able to survive and reproduce in their environments. 

The idea, in all the system based on Genetic algorithm as shown in Figure 4.6, was to 

evolve a population of candidate solutions to a given problem, using operators inspired by 

natural genetic variation and natural selection, such that most important step in applying 

genetic algorithm is the selection of the fitness function. The fitness criteria continually 

change as creatures evolve, so evolution is searching a constantly changing set of 

possibilities and searching for solutions in the face of changing conditions is precisely what is 

required for adaptive computer programs. 

In this way, GA has been shown to be capable of locating high performance areas for 

designing innovative solutions to complex problems [23]. 

The most challenging part of creating a GA is writing the objective function. However, in 

order to combine all of these objectives it was decided to design an objective function that 

will minimize the error of the controlled system instead. Each chromosome in the population 

is passed into the objective function one at a time. The chromosome is then evaluated and 

assigned a number to represent its fitness, the bigger its number the better its fitness. The 

genetic algorithm uses the chromosomes fitness value to create a new population consisting 

of the fittest members. 
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Figure 4.6: The genetic cycle [17]. 

 

4.2.4.4 Principles of GA-PID controller 

Genetic algorithm is a robust optimization technique based on natural selection. The 

basic objective of GA is to optimize fitness function. In genetic algorithms, the term 

chromosome typically refers to a candidate solution to a problem. In our work, GA works 

directly on real parameters. Decimal type GA are equivalent to the traditionally used binary-

type GA’s in optimization. Decimal-type GA’s for computer-based numerical simulation lead 

to high computational efficiency, smaller computer requirements with no reduction of 

precision and greater freedom in selecting genetic operator. GA has been successfully 

implemented in the area of industrial electronics, for instance, parameter and system 

identification, control robotics, pattern recognition, planning and scheduling. For its use in 

control engineering, GA can be applied to a number of control methodologies for the 

improvement of the overall system performance [24]. 
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4.2.4.5 Structure and design of GA-PID controller 

The structure of a control system with GA-PID as a controller is shown in the Figure 4.7 

below. It consists of a conventional PID controller with its parameter optimized by genetic 

algorithm. The initial population of size 𝑁 is generated randomly to start the optimization 

process; the next generation can be obtained through the genetic operators. The genetic 

operators are the most important features of GA and are described below: 

- Genetic operator: The decision to make during implantation of genetic algorithm is the 

choice of genetic operators that are to be used. The basic genetic operators are: 

1- Reproduction: By using the values of the performance fitness functions, select the best 

𝑁/2 individuals of the current generation to be the parents for producing the next 

generation. This means that only genetically good individuals are selected to become 

parents. 

2- Crossover : Two parents are randomly selected to exchange the genetic information 

with each other and two new individuals are generated so as to keep the population 

size at constant value N. Cross over operation can be mathematically described as 

follows : 

If parents are (𝑤𝑛1, 𝑘𝑓1) and (𝑤𝑛2, 𝑘𝑓2)), then 

Child-1: 𝑤𝑛 =  𝑟 ∗ 𝑤𝑛1  + (1 − 𝑟) ∗ 𝑤𝑛2 

                𝑘𝑓 =  𝑟 ∗  𝑘𝑓1  + (1 − 𝑟) ∗ 𝑘𝑓2 

Child-2: 𝑤𝑛  = (1 − 𝑟)  ∗ 𝑤𝑛1  + 𝑟 ∗ 𝑤𝑛2 

 𝑘𝑓  =  (1 − 𝑟) ∗ 𝑘𝑓1 +  𝑟 ∗ 𝑘𝑓2                                                                                          (4.21 )  

 

Where 𝑟 𝜖 (0,1) is a random number.  

Here the crossover operator works with real decimal pairs instead of any coded strings. 

3- Mutation: It plays a secondary role in genetic algorithms. It is needed because, 

occasionally, chromosomes may lose some potentially useful genetic material. 

Mutation takes place with a certain probability; thus genetic content of a particular 

individual gets changed and a new generation is produced. Mutation is important in 

nature as it brings a change in genetic content of the individuals in order to enable 

them to adapt to a different environment. In the same way, in artificial systems the 

mutation will direct the search algorithm to a new search space so that a global 

minima can be found. In our simulations, mutation rate is set to be 0.1. After mutation, 



Chapter 4                                                                                                                     Controller design 

107 
 

we get a modified mating pool 𝑀(𝑘). To form the next generation for the population, 

we let: 

𝑃(𝑘 + 1) = 𝑀(𝑘)                                                                                (4.22) 

 

Where 𝑀(𝑘) is the one that was formed by selection and modified by crossover and 

mutation. Then the above steps repeat, successive generations are produced, and the 

evolution is modelled. 

- Fitness function:  A fitness function takes a chromosome as an input and returns a 

number that is a measure of the chromosome’s performance on the problem to be 

solved. Fitness function plays the same role in GA as the environment plays in natural 

evolution. The interaction of an individual with its environment provides a measure of 

fitness to reproduce. Similarly, the interaction of a chromosome with a fitness function 

provides a measure of fitness that the GA uses while carrying out reproduction. Genetic 

algorithm is a maximization routine; the fitness function must be a non-negative figure of 

merit. In this particular situation, our main aim is to minimize error and reduce the rise 

time and overshoot. Hence, the fitness function, in this case, is a function of error and rise 

time. 

  𝐽 = ∫ (𝑤1|𝑒(𝑡)| + 𝑤2𝑢
2(𝑡))𝑑𝑡 + 𝑤3

∞

0

𝑡𝑟                                                               (4.23) 

 

Where 𝑤1, 𝑤2, 𝑤3  are the weight coefficients. 𝑈(𝑡) is the output of the controller, 𝑒(𝑡) is 

the error. 

The square term of control output is added to overcome the large energy of the 

controller. The fitness function is presented by:  

𝑓 =
1

𝐽 + 10−8
                                                                                       ( 4.24) 

 

The term 10−8 is added in the denominator of fitness function to avoid it from becoming 

zero. 
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Figure 4.7: Diagram for auto-tuning GA-PID controller [24]. 

 

4.2.4.6 LMI based 𝑯𝟐/𝑯∞ regional pole constraints 

In many real-world applications, the designed system needs to meet multiple 

performance requirements. This makes multi-objective synthesis highly desirable in practice, 

and the Linear Matrix Inequalities LMI theory is a relatively new field of research for analysis 

and design of control systems. It offers powerful tools to attack such problems, many control 

problems can be expressed in the form of LMI and solved with recently developed efficient 

convex optimization techniques. Mixed 𝐻2/𝐻∞ is a robust controller with combined 

constraints on pole locations and they serve an LMI based method to find the optimal output 

or state feedback control  in which, 𝐻∞ controller is good at performance and robustness,  

𝐻2 controller is good at minimizing the consumed energy for control effort. 
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Therefore, the study on output feedback control is more practical. Moreover this 

controller indicates the relationship between robust stability and nominal performance by 

specifying the 𝐻2/𝐻∞ constraints and criterion, which makes it possible to adequately 

capture multiple design specifications, it could also allow for direct placement of closed-loop 

poles, which is related to the time response and transient behavior of the closed-loop 

dynamics, in this section we will be presenting the mixed 𝐻2/𝐻∞ controller design but 

before that we will be viewing some useful definitions. 

 

4.2.4.7 Basics of Linear Matrix Inequality 

- Introduction of Linear Matrix Inequality   

A wide variety of problems in control theory and system can be reduced to a handful 

of standard convex and quasi-convex optimization problems that involve linear matrix 

inequalities (LMIs), they are mathematical tools that have various applications in control 

theory, especially in the robust control area [25].  

The general form of LMI is given by: 

  𝐹(𝑥) = 𝑀0 + ∑𝑥𝑖

𝑙

𝑖=1

𝑀𝑖 > 0                                                                    (4.25) 

 

Where: 𝑀 is positive (negative) if 𝑥𝑇𝑀𝑥 > (<) 0 ,   ∀𝑥 ≠ 0. Also 𝑀 is called positive 

(negative) semi-definite if  𝑥𝑇𝑀𝑥 ≥ (≤) 0 , ∀𝑥 . 

𝑥𝑖  are real scalar variables,  𝑿 = [𝑥1, … , 𝑥𝑙]
𝑇 , and 𝑀0 and 𝑀 𝑖 are constant symmetric 

matrices of dimension 𝑛 ×  𝑛 .  

 

For control system design, it is more preferable to formulate the LMI as follows:  

      𝐹(𝑋1, … , 𝑋𝑘) = 𝑀0 + ∑ 𝐺𝑖
𝑘
𝑖=1 𝑋𝑖𝐻𝑖 >

0                                                                                (4.26)  

 

 Where:  𝑋𝑖 are matrix variables to be found,  𝐺𝑖  and 𝐻𝑖 are known matrices . 

- LMI formulation of poles placement  

For purposes of pole placement, it is important to define regions in a linear matrix 

inequality, Firstly a convex region for poles is defined using performance properties and 
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desired characteristics of the closed loop system. The clustering regions for pole are on 

the left half-plane and using transient response characteristic of a second order system 

with poles shown in equation (4.30): 

 λ = −ζ𝜔𝑛 ± 𝑗𝜔𝑑                                                                                     (4.27) 

 

     With: 

         𝜔𝑛  is the undamped natural frequency, ζ is the damping ratio and 𝜔𝑑 is the damped 

frequency. 

One can put on the specific bounds on these characteristics to ensure a satisfactory 

transient response. Regions of pole clustering include an 𝛼-stability regions on the left 

half plan such that 𝑅𝑒(𝑠) ≤ −𝛼 vertical strips, disks, conic sectors or any convex 

geometry. Another interest in region is 𝑠(𝛼, 𝑟, 휃) of complex numbers 𝑥 + 𝑗𝑦 such that: 

 

   𝑥 < −𝛼 < 0 , |𝑥 + 𝑗𝑦| < 𝑟 ,           tan(휃) . 𝑥 < −|𝑦|                                                     (4.28) 

 

The region of equation (4.28) is given in Figure 4.8. If all of the closed loops are in the 

shaded region, one can guarantee that a minimum decay rate is, a minimum damping 

ratio is ζ = cos (θ) and a maximum undamped natural frequency is 𝜔𝑑 = 𝑟. sin (휃). It is 

known that these values bound the maximum percent overshoot, the frequency of the 

oscillatory modes in transient response, the delay time, the rise time and the settling 

time. After convex region is defined (𝛼, 𝑟, 휃) , the mixed 𝐻2/𝐻∞ problem can be easily 

formulated in LMI  form, then the obtained problem can be solved extended Lyapunov theorem. 

The main improvement according to preceding methods, it eliminates Riccati based approaches 

and proposes a simpler algorithm for computer programs.  
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Figure 4.5: Region (α,r,θ)  [25]. 

 

 

4.2.4.8   𝑯𝟐/𝑯∞  Controller design  

Treating difficult mathematical problems, especially for differential equations and matrix 

type inequalities provides robust controller synthesis with numerical solutions. The mixed 

𝐻2/𝐻∞ controller output feedback model is presented in Figure 4.9, where 𝑃and 𝐾are the 

linear time-invariant (LTI) plant and output feedback controller, respectively. The 𝑢, 𝑦, and 𝑤 

are the control signal, measured output signal, and external disturbance signal, respectively. 

The output channel 𝑍∞ is associated with the 𝐻∞ performance, while the channel 𝑍2 is 

associated with the 𝐻2 performance [26].  

 

 

The state space representations of the variables shown in Figure 4.10 are: 

 

 

                     �̇� = 𝐴𝑥 + 𝐵𝑤 + 𝐵𝑢𝑢                               

   𝑍∞ = 𝐶∞𝑥 + 𝐷∞𝑤 + 𝐷∞𝑢𝑢 

     𝑍2 = 𝐶2𝑥 + 𝐷2𝑤 + 𝐷2𝑢𝑢                                                        (4.29) 

𝑦 = 𝐶𝑦𝑥 + 𝐷𝑦𝑤 + 𝐷𝑦𝑢𝑢 
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Moreover, the picking 𝑃,𝐾  matrices for the generalized system and controller respectively 

in equations (4.33) and (4.34): 

 

 

  𝑃 =

(

 
 

[𝐴] [𝐵 𝐵𝑢]

[

𝐶∞

𝐶2

𝐶𝑦

] [

𝐷∞ 𝐷∞𝑢

𝐷2 𝐷2𝑢

𝐷𝑦 𝐷𝑦𝑢

]

)

 
 

                                                                (4.30) 

 

 

 𝐾 = (
𝐴𝑓 𝐵𝑓

𝐶𝑓 𝐷𝑓
)                                                                                  (4.31) 

 

 

 

 

 

 

 

Figure 4.9: Generalized plant for mixed  𝑯𝟐/𝑯∞ [27]. 

 

The closed loop state space equations are given below: 

                                                                    �̇�𝑐𝑙 = 𝐴𝑐𝑙𝑥𝑐𝑙 + 𝐵𝑐𝑙𝑤 

                                                        𝑍∞ = 𝐶𝑐𝑙∞𝑥𝑐𝑙 + 𝐷𝑐𝑙∞𝑤                                                 (4.32) 

                                                                    𝑍2 = 𝐶𝑐𝑙2𝑥𝑐𝑙 + 𝐷𝑐𝑙2𝑤 

 

𝑇∞ and 𝑇2 are the closed-loop transfer functions from 𝑤 to 𝑍∞ and 𝑍2 respectively. The 

problem definition of the mixed 𝐻2/𝐻∞ is to find an output feedback controller such that it 

internally stabilizes the plant  𝑃. 
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The approach used in this study is the method proposed by Math works Corporation in 

MATLAB software, this software tool uses linear matrix inequalities (LMI). Therefore, for an 

output feedback mixed 𝐻2/𝐻∞ controller case in LMI technique, the solution is formulated 

as two parts that have and performance bounds that will be defined next and these two 

problems are given as inequalities. Then, these two inequalities generate a convex 

optimization problem and the solution can be obtained via simultaneous solution of two 

distinct constraints. 

 

 

 

• 𝑯∞ Performance:  

The closed loop root mean square (RMS) gain for 𝑇∞ does not exceed 𝛾 if and only 

if there exist as symmetric matrix 𝑥∞ such that: 

 

  [

𝐴𝑐𝑙𝑥∞ + 𝑥∞𝐴𝑇
𝑐𝑙 𝐵𝑐𝑙 𝑥∞𝐶𝑇

𝑐𝑙∞

𝐵𝑇
𝑐𝑙∞ −𝐼 𝐷𝑇

𝑐𝑙∞

𝐶𝑇
𝑐𝑙∞𝑥∞ 𝐷𝑐𝑙∞ −𝛾2𝐼

] < 0                                                    (4.33) 

  

                   With 𝑥∞ > 0  

• 𝑯𝟐 Performance:  

The closed loop 𝐻2 norm of 𝑇2 where (‖𝑇2‖
2
2
= 𝑡𝑟𝑎𝑐𝑒 (𝐶𝑐𝑙2𝑄𝐶𝑇

𝑐𝑙2))  does not 

exceed 𝑣 if and only if 𝐷𝑐𝑙2 = 0 there exist two symmetric matrices  𝑥2 > 0 and 

𝑄 such that: 

 

                      [
𝐴𝑐𝑙𝑥2 + 𝑥2𝐴

𝑇
𝑐𝑙 𝐵𝑐𝑙2

𝐵𝑇
𝑐𝑙2 −𝐼

] < 0                                                                  (4.34) 

 

4.3   Methodology 

In this section, we will be presenting the methodology for designing controllers for our 

plant model F-16. To achieve this design an understanding of fundamental principles and 

analytical mathematical developments was introduced in the previous sections that helped 
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us in our controllers design architecture and simulation using MATLAB/Simulink software. 

However the technics used are explained in details starting with F-16 linear and non-linear 

aircraft modeling and furthermore, For the purpose of our work we have concentrated our 

analysis on controller design for the two inputs: pitch rate and velocity, by adjusting two 

control inputs, the elevator and the thrust. 

 

4.3.1 F-16 modeling and linearization  

The equations governing the motion of an aircraft are a very complicated set of six non-

linear coupled differential equations. However, under certain assumptions, they can be  

decoupled and linearized into longitudinal and lateral equations. In this section, we will be 

presenting the non-linear and linear models mentioning all the state space representations  

and the transfer functions values of linear ones, indeed the lateral and longitudinal in which 

the measuring of the decoupled dynamic equations will be easy through specifying the state 

variables. 

 

4.3.1.1 Non-linear F16 model 

The non-linear F16 model is a 6-DOF model based the equations-of-motion.Model 

dynamics are solved via a fourth order Runge-Kutta or Jacobin method. 

Having all the parameters of the non-linear F-16 model properly identified, a Simulink 

block diagram was built, as shown in Figure 4.10. This model generates 16 outputs. 
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Figure 4.6: Simulink model of the non-linear F-16 aircraft. 

 

4.3.1.2 Linear F-16 model 

The state space representation of our F-16 linear model is presented in equation (4.36), 

which represents a model linearized under certain trim conditions using Jacobi methods. 

4.3.1.3 Longitudinal F-16 dynamics model 

The longitudinal dynamic matrix form is: 

 

 𝑥 = [𝑣 𝛼 𝑞 휃]𝑇     𝑢 = [𝛿𝑒]     𝑦 = [𝑣 𝛼 𝑞 휃]𝑇                                   (4.35) 

 

Thus the longitudinal state space representation is:  

 

𝐴 = [

0 0 0 1
−32.1 −0.013 −2.66 −1.18

0 0 −0.67 0.93
0 0 −0.57 −0.87

]                  𝐵 = [

0
0.0387

−0.0014
−0.1188

] 
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                        𝐶 = [

57.2958 0 0 0
0 1 0 0
0 0 57.2958 0
0 0 0 57.2958

]      𝐷 = [

0
0
0
0

]                                    (4.36) 

 

 

In order to extract the longitudinal state variables from equations (4.37), we will convert 

them to the equivalent transfer functions form in MATLAB using the command “ss2tf”. The 

state variables are summarized in Table 4.5. 

 

Given input of elevator pitch angle (𝛿𝑒), the transfer functions of the longitudinal state 

variables of the F-16 linear model are: 

 

               𝐻𝑠𝑦𝑠1(𝑠) = 𝑣 =
    −6.8067𝑠2 − 4.6033𝑠 − 0.0587

𝑠4 + 1.553𝑠3 + 1.133𝑠2 + 0.0145𝑠
                                             (4.37) 

 

               𝐻𝑠𝑦𝑠2(𝑠) = 𝛼 =
2.2173𝑠3 + 11.6600𝑠2 + 243.3159𝑠 + 144.9249

𝑠4 + 1.553𝑠3 + 1.1330𝑠2 + 0.0145𝑠
                  (4.38) 

 

             𝐻𝑠𝑦𝑠3(𝑠) = 𝑞 =
  −0.0802𝑠3 − 6.4011𝑠2 − 0.0832𝑠

𝑠4 + 1.553𝑠3 + 1.133𝑠2 + 0.0145𝑠
                                               (4.39) 

 

            𝐻𝑠𝑦𝑠4(𝑠) = 휃 =
   −6.8067𝑠3 − 4.6033𝑠2 − 0.0587𝑠

𝑠4 + 1.553𝑠3 + 1.133𝑠2 + 0.0145𝑠
                                               (4.40) 
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Table 4.5: Longitudinal state variables. 

 Longitudinal 

Rates 𝛼: Angle of attack (AOA) 

𝑞: Pitch rate  

𝑣: Velocity 

Positions 휃: Pitch angle 

Controls  𝛿𝑒: elevator deflection 

 

 

                         

4.3.1.4 Lateral F-16 dynamics model 

The lateral dynamic matrix form is: 

    𝑥𝑇(𝑡) = [𝛽 𝑝 𝑟 𝜙]𝑇     𝑢𝑇(𝑡) = [𝛿𝑎 𝛿𝑟]     𝑦 = [𝛽 𝑝 𝑟 𝜙]𝑇                      (4.41) 

 

 

Thus the lateral state space representation is:  

 

 

𝐴 = [

0 0 1 0.078
0.064 −0.202 0.078 −0.99

0 −22.92 −2.25 0.54
0 6.00 −0.04 −0.31

]                      𝐵 = [

0 0
0.0002 0.0005

−0.4623 0.0569
−0.0244 −0.0469

] 

 

 

 

       𝐶 = [

57.29 0 0 0
0 57.29 0 0
0 0 57.29 0
0 0 0 57.29

]                           𝐷 = [

0 0
0 0
0 0
0 0

]                      (4.42) 
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Given inputs of aileron roll angle (𝛿𝑎) and rudder yaw angle (𝛿𝑟) the transfer functions of 

the lateral state variables of the F-16 linear model are: 

 

               𝐻′𝑠𝑦𝑠1(𝑠) = 𝛽 =
   3.0502𝑠2 − 0.9491𝑠 − 42.1252

𝑠4 + 2.762𝑠3 + 8.964𝑠2 + 0.0145𝑠
                                            (4.43) 

 

               𝐻′𝑠𝑦𝑠2(𝑠) = 𝑝 =
0.0286𝑠3 + 2.9876𝑠2 + 6.2956𝑠 − 0.059

𝑠4 + 2.762𝑠3 + 8.964𝑠2 + 0.0145𝑠
                                (4.44) 

 

        𝐻′𝑠𝑦𝑠3(𝑠) = 𝑟 =
  3.2598𝑠3 − 0.4385𝑠2 − 41.8044𝑠 + 0.2098

𝑠4 + 2.762𝑠3 + 8.964𝑠2 + 0.0145𝑠
                                 (4.45) 

 

         𝐻′𝑠𝑦𝑠4(𝑠) = 𝜙 =
  −2.6869𝑠3 − 6.5468𝑠2 − 4.1125𝑠 − 2.6896

𝑠4 + 2.762𝑠3 + 8.964𝑠2 + 0.0145𝑠
                              (4.46) 

 

 

The lateral state variables are summarized in Table 4.6 below: 

 

Table 4.6: Lateral state variables. 

 Lateral 

Rates 𝛽: Side slip angle 

𝑝: Roll rate  

𝑟: Yaw rate 

Positions 𝜙: Roll angle 

Controls  𝛿𝑎: Aileron deflection 

𝛿𝑟: Rudder deflection 
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After specification of the transfer functions of lateral and longitudinal dynamic models, 

we can begin to analyze and simulate the outputs for the open-loop response of the linear F-

16 model with MATLAB in which the results will be discussed in the next chapter. 

4.3.1.5 Stability analysis of F-16 model 

1- F-16 longitudinal stability analysis  

One of the first things we want to do is to analyze whether the open-loop system of the F-

16 longitudinal linear model (without any control) is stable. To know whether the aircraft is 

stable or no we use the eigenvalues of the system matrix 𝐴 (equal to the poles of the 

transfer function) to determine stability. The eigenvalues of the 𝐴 matrix are the values 

of 𝑆 that are solutions of det(𝑠𝐼 − 𝐴) = 0 .  

Using the MATLAB function ‘eig(A)’, below is the MATLAB script code that will calculate 

the poles of matrix 𝐴: 

 

The code script to analyze the longitudinal stability is: 

%F-16 Stability Analysis 

%F-16 Longitudinal Model  

clear all 

clc 

A_long = [0 0 0 1; -32.1 -0.013 -2.66 -1.18; 0 0 -0.67 0.93; 0 

0 -0.57 -0.87]; 

B_long = [0; 0.0387;-0.0014;-0.1188]; 

C_long =[57.2958 0 0 0; 0 1 0 0;0 0 57.2958 0; 0 0 0 57.2958 

]; 

D_long = [0;0;0;0]; 

poles = eig(A_long) 

 

This will give the following results:  

poles = 

 -0.0130 + 0.0000i 

  0.0000 + 0.0000i 

 -0.7700 + 0.7212i 

 -0.7700 - 0.7212i 
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From this results, it can be seen that one of the poles is in the right-half plane (i.e. has 

positive real part), which means that the longitudinal F-16 linear model system is unstable. 

 

2- F-16 lateral stability analysis  

The code script to analyze the lateral stability is: 

%F-16 Stability Analysis 

%F-16 Lateral Model  

clear all 

clc 

A_lat = [0 0 1 0.078; 0.064 -0.202 0.078 -0.99; 0 -22.92 -2.25 

0.54; 0 6.00 -0.04 -0.31]; 

B_lat = [0 0; 0.0002 0.0005 ; -0.4623 0.0569; -0.0244 -

0.0469]; 

C_lat =[57.29 0 0 0; 0 57.29 0 0;0 0 57.29 0; 0 0 0 57.29 ]; 

D_lat = [0 0;0 0;0 0;0 0]; 

poles = eig(A_lat) 

 

 

 

 

This will give the following results:  

poles = 

-0.3176 + 2.7366i 

 -0.3176 - 2.7366i 

 -0.0109 + 0.0000i 

  -2.1158 + 0.0000i 

 

We can conclude from this results that all the real part poles are negative, which means 

that the F-16 lateral model system is stable. 

 

4.2.2 Design process of LQR and PID controllers 

Aircraft pitch is governed by the longitudinal dynamics and aircraft roll is governed by the 

lateral dynamics. In this section, we will be designing Proportional-Integral-Derivative (PID) 

and Linear Quadratic Regulator (LQR) controllers that control the pitch and roll of the F-16 

aircraft. The performance of the LQR will then be compared with that of PID controller. 
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We will simulate the linearized aircraft model with the state-feedback controller. We will 

specifically use the linearized state-space model obtained in equations (4.36) and (4.42) of 

longitudinal and lateral dynamics respectively using Simulink aerospace block diagram. 

 

4.2.2.1 PID controller for pitch control 

In basic PID controller measures the error signal value which gives the difference between 

reference signal and output of the system .The PID controller regulates the pitch control 

input in order to reduce the error signal. The parameters of PID controller consists of three 

variables known as the Proportional, the Integral and Derivative ( 𝐾𝑝 , 𝐾𝑖  and 𝐾𝑑 ). For the 

PID controller Simulink design is shown in Figure 4.11, the system was set at initial 

conditions [𝛿𝑒= 25 deg] and the output data will be exported to MATLAB workspace for 

plotting graph. The requirement of these gains components achieved by proper tuning of the 

PID using the ‘MATLAB PID Tuner application’ for pitch control of an aircraft and they are 

shown in Table 4.7. 

 

 

 

Figure 4.7: Simulink model of PID pitch control. 
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Table 4.7: PID tuning parameters for pitch angle autopilot. 

PID parameters Values 

𝐾𝑝  6.3 

𝐾𝑖  4.9 

𝐾𝑑  1.4 
 

 

4.2.2.2 LQR controller for pitch control 

In the state space form, the obtained LQR controller is expressed as = −𝐾𝑥 . For this 

solution, an LQR controller was first derived using the MATLAB “lqr” command then created 

in Simulink and finally the data of pitch angle will be exported to MATLAB workspace for 

plotting the output graph. The cost weighting matrices Q and R were selected as unit 

matrices and the LQR was realized. Simulink blocks for the designed LQR pitch controller 

with full state feedback is shown in Figure 4.12. 

Where: 

 

                  Q =  xCTC ,     R = 1  

 

 

 

The value of x for LQR controller is chosen 𝑥 = 500 which gives the best possible result. The 

MATLAB script code for calculating the gain matrix K and the value of gain (reference point) 

𝑁𝑏𝑎𝑟 is: 
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clc 
clear all 
%Lineat F-16 Model 
%LQR pitch controller design  
A_long = [0 0 0 1; -32.1 -0.013 -2.66 -1.18; 0 0 -0.67 0.93; 0 

0 -0.57 -0.87]; 
B_long = [0; 0.0387;-0.0014;-0.1188]; 
C_long =[57.2958 0 0 0; 0 1 0 0;0 0 57.2958 0; 0 0 0 57.2958 

]; 
D_long = [0;0;0;0]; 
%LQR gain K 
x = 500; 
Q = x*(C_long')*C_long; 
R = 1; 
[K] =lqr(A_long,B_long,Q,R) 
%Calculating Nbar 
Acl=A_long-B_long*K; 
Nbar=inv(C_long*inv(Acl)*B_long) 
 

 

This will give the following results:  

 

K=1.0e+03 * 

  -1.8682    0.0216   -0.2583   -1.2778 

Nbar = -0.6800 

 

 

 

The following Simulink model for LQR pitch controller is: 

 

 

 

 



Chapter 4                                                                                                                     Controller design 

124 
 

 

Figure 4.8: Simulink model of LQR pitch control. 

 

    

4.2.3 Fuzzy logic / PID controllers design 

 

4.2.3.1 FLC/ PID controllers design for pitch 

In this section, we will be designing the FLC/PID controllers for comparative analysis 

purposes for the longitudinal control system. 

We will be focusing Fuzzy Logic Controller (FLC) design, in which the methodology is 

described in detail using MATLAB/Simulink. The concept of (FLC) is a problem-solving control 

system methodology that will act as a feedback controller which is programmed to accept 

noisy, FLC's approach to control problems mimics how a person would make decisions, only 

much faster. The fuzzy controller is composed of four elements, these are fuzzification, rule 

base, inference mechanism and defuzzification.  

 

A diagram which shows the designing steps of a fuzzy control system is given in Figure 

4.13 and the Simulink model of FLC controller using the state space matrices of the 

longitudinal system is shown in Figure 4.14. 
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Figure 4.9: Diagram of Fuzzy logic controller. 
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Figure 4.10: Simulink model of Fuzzy logic and PID controllers for pitch. 

 

 

Remarks:  

 - The PID tuning parameters for pitch angle autopilot are the same values introduced before 

in Table 4.7. 

-  We used the simulation Data Inspector for a combined plotting of both PID/FLC and 

reference Scope data.  

- The check linear step response characteristics is used to extract the PID/FLC simulation 

performance characteristics that will be shown in details in the next chapter. 

 

 

4.2.3.2 Fuzzy Logic parameters structure  

Now to formulate the FLC structure parameters we need to follow these construction 

steps of FLC: 

 

 

1) Construction of the FLC designer application: 
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We use the command ‘fuzzy’ in MATLBA workspace to open the FLC designer application  

we will be getting this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: FLC designer Application. 

 

FLC can be designed to add or remove input or output, fuzzy membership function, and 

IF-Then rules and select fuzzy inference functions using the Fuzzy Logic designer 

application of the system shown in Figure 4.15. 
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2) Construction membership function: 

The membership functions should be chosen such that they cover the whole universe of 

discourse. Now the algorithm is implemented with two inputs (error and change in error) 

and one output (control). A Mamdani-type fuzzy inference approach is utilized. The setup is 

as shown in Figure 4.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Membership functions of the input to the fuzzy logic controller. 

 

3)  Construction of rules and rule viewer : 

Fuzzy ‘If-Then’ rules are shown and in Figure 4.17 and Figure 4.18 shows the rules 

viewer .There are total 9 rules output variables, in which (el=low error , eh= high 

error, em= medium error) and (ecl= low error control, ecm= medium error control, 

ech= high error control). 
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Figure 4.13: ‘If-Then’ FLC rules. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: ‘If-Then’ FLC rules viewer. 



Chapter 4                                                                                                                     Controller design 

130 
 

To see the entire output surface of our system, that is the entire span of the output 

set based on the entire span of the input set, we need to open up the Surface Viewer as shown in 

Figure 4.19 This is the last of the five basic GUI tools in the Fuzzy Logic Toolbox.  

 

 

Figure 4.19: FLC surface viewer. 

 

4.2.4 Self-tuning fuzzy PID controller 

Self-tuning fuzzy PID subsystem block for pitch control consists of Fuzzy pid system and 

PID system for comparison and conventional PID block. The values of 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 are 

introduced previously in Table 4.7. While, the complete Simulink block for whole system 

including the Fuzzy PID and PID controllers are shown in Figure 4.20. 
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Figure 4.14: Simulink model of Fuzzy PID and conventional  PID  pitch control. 

 

 

4.2.5 PID optimization using Genetic Algorithm (GA) 

Genetic algorithms are substantially different to the more traditional search and 

optimization techniques. The objective is to use the (GA) as a solver to optimize the PID 

parameters (𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 ) , for that we are going to use the MATLAB optimization application, 

we will be seeing how to use the optimization tool to evaluate the performance of PID 

controller. First, we will generate the PID controller for linear F-16 plant model using 

MATLAB code script (Appendix B), the optimization process needs an objective function or 

cost function. In most of the case cost function defined to minimize the values of the 

parameter, to minimize the cost of the system. The Figure 4.21 presents the optimization 

tool application: 
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Figure 4.15: Optimization tool application. 

 
The Genetic Algorithm has to be initialized before the algorithm can proceed. The 

Initialization of the population size, variable bounds and the evaluation function are 

required. These are the initial inputs that are required in order for the Genetic Algorithm 

process to start. The different (GA) initializing parameters are explained as: 

• Population Size: The first stage of writing a Genetic Algorithm is to create a population. 

This command defines the population size of the (GA). Generally the bigger the 

population size the better is the final approximation. 

• Variable Bounds: Since this project is using genetic algorithms to optimize the gains of a 

PID controller there are going to be three strings assigned to each member of the 

population, these members will be comprised of a 𝑃, 𝐼 and a 𝐷 string that will be 

evaluated throughout the course of the (GA) processes.  
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• Bounds: The variables bound are for the genetic algorithm to search within a specified 

area. These bounds may be different from the ones used to initialize the population and 

they define the entire search space for the genetic algorithm. 

By selecting the parameters and specifying (GA) options, we get: 

 

 

Figure 4.16: GA initialization parameters. 

 

 

4.3.2 Mixed 𝑯𝟐/𝑯∞ controller design 

The mixed controller is generated by using the MATLAB function ‘h2hinfsyn’ which 

returns guaranteed 𝐻∞ and 𝐻2 performances. This function ‘h2hinfsyn’ employs LMI 

techniques to compute an output-feedback control law  𝑢 =  𝐾(𝑠) ∗ 𝑦 . The LTI plant P has 

partitioned state-space form as described before in equation (4.30).  
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Now let’s descript the code used for generating this mixed robust controller: 

1)- To define the partitioned  state space plant model P we will use the MATLAB function  

‘ 𝑃 = 𝑝𝑐𝑘(𝐴_𝑙𝑜𝑛𝑔, 𝐵_𝑙𝑜𝑛𝑔, 𝐶_𝑙𝑜𝑛𝑔, 𝐷_𝑙𝑜𝑛𝑔)’. 

2)- To Compute a controller for P using the LMI region to restrict the closed-loop pole 

locations , we Apply an H2 norm constraint to one signal (Nz2 =  1) and give 

the H2and H∞ norms equal weight 

3)- Calculate the poles of the closed loop system and Confirm that the poles of the closed-

loop system have Re(s) < –1. 

4)-  Nmeas — Number of measurement signals positive integer 

Ncon — Number of control signals positive integer 

             Nz2 — Number of signals subject to H2 constraint positive integers 

       Wz — Weights for H∞ and H2 performance 

After setting all the parameters we now can Compute the new controller and confirm the 

locations of the closed-loop poles. 

 

 

4.4   Summary 

A variety of control systems have been proposed for the F-16 fighter aircraft autopilot 

systems from classical controllers to a novel mixed controllers providing the state-space 

representations of F-16 modeling. 

 We started from mathematical comprehension and modeling to design procedures 

methodology based on MATLAB/Simulink, all of the developments have been illustrated with 

applications to aircraft, in which they were explained and illustrated. The obtained 

controllers design will be implemented and discussed in details in the next chapter.  
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5 Chapter 5:  Simulation results and implementation   

5.1   Introduction 

Simulation is an important part of this project, the F16 Fighting Falcon model was chosen 

for the simulation environment. It was performed using linear models, trimmed at different 

operation points, and a full six degree-of-freedom (6-DOF) non-linear model and as well as 

the decoupled (EOM) for both longitudinal and lateral models. 

The simulation environment was created using MATLAB/Simulink. Each model was 

simulated with both classical controllers (LQR, PID, FLC) and mixed controllers (Self-tuning 

fuzzy PID, GA-PID, 𝐻2/𝐻∞). The diagrams used in implementations were presented in 

chapter 4 and the MATLAB codes are in Appendix B. 

 

5.2   Discussions and simulation results  

5.2.1  Simulation of F-16 model  

5.2.1.1 Non-linear simulation  

The Non-linear simulation was implemented using Simulink in addition to a MATLAB 

coding shown in Appendix B. The results for the non-linear study are shown in the figures 5.1 

and 5.2 below, where the Figure 5.1 shows the variation of the thrust or elevator as a 

function of time for an altitude of 1500 𝑓𝑡 and a velocity of 152.4 𝑚/𝑠, in a similar manner  

Figure 5.2 shows for the same conditions of velocity and altitude but this time it shows the 

rudder and aileron. It is noted that these two figures are plotted for a 5 degree elevator. 

Moreover the plots of the model outputs are shown in Figure 5.3. 
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Figure 5.1: Variation of thrust and elevator as a function of time. 

Figure 5.2: Variation of rudder and aileron as a function of time 

 

. 
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Figure 5.3: Variation of some non-linear F-16 outputs. 
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5.2.1.2 Linear simulation  

The non-linear model of F-16 has been linearized as mentioned in the previous chapter 

around certain trim conditions. The advanced simulation will include the linear decoupled 

state -space matrices. 

The Figures 5.4, 5.5 shows the outputs of the open-loop longitudinal and lateral motions 

respectively. 

 

Figure 5.4: open-loop step responses of the longitudinal motion. 
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Figure 5.5: open-loop step responses of the lateral motion. 

 

According to the simulations results analyzed for the linear decoupled motion. Firstly, the 

responses outputs of the open-loop systems of both longitudinal and lateral system show 

instability and a big divergence. However it can be seen that the system is not stable and it is 

approaching infinity as the time increases. Therefore, a feedback controller needs to be 

designed in order to stabilize the linear system which will be discussed in the next sections.  

 

5.2.2 LQR/PID control discussion  

 A Control system for pitch control is simulated using LQR and PID and the results of 

simulation are analyzed and presented for comparison. We only considered elevator 

deflection as an input for pitch control. For roll control we considered aileron and rudder 

deflections. The responses of each controller were plotted in one figure and a step size of 

one radian is given as elevation reference trajectory and applied to the PID, LQR 

components.  
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5.2.2.1 Pitch control 

Figure 5.8 shows the response of the pitch control system using PID and LQR respectively. 

 
 
 

 

Figure 5.6: step response of the PID and LQR for pitch control. 

 

 

From the above graphs we can analyze the performances of the controllers by specifying 

the response characteristics as shown in Table 5.1. 

 

 

Table 5.1: Comparison of PID and LQR performance for longitudinal motion. 

Performance characteristics PID (longitudinal) LQR (longitudinal) 

Settling time (s) 2.2 s 4.1 s 

Rise time (s) 0.65 s 3.5 s 

Peak overshoot (%) 25 % 0 % 
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By comparing the performance characteristics in Table 5.1, as we can see that the settling 

time of LQR is higher than the PID by time difference of 1.9 seconds, which is the time 

required for the response to reach the steady state and stay within the specified tolerance 

bands around the final value.  

The rise time of LQR is slightly larger as compared to PID by a time difference of 3 

seconds. On the other hand the peak overshoot for PID is high which represents the 

deviation of the response at peak time from the step finale value, however the PID’s peak 

overshoot is increased at the start (25 %) then drops remarkably till reaching the desired 

value, while it remains zero for LQR. 

 

5.2.2.2 Simulation results  

Based on the results and the analysis, a conclusion has been made that both of the 

control method, modern controller (LQR) and conventional controller (PID) are capable of 

controlling the pitch and roll of the closed-loop linearized system. 

Simulation results show that The PID provides a very fast response, whereas the LQR 

controller is the slowest to reach the desired output. PID controller has better performance 

compared to LQR controller for settling and rise time.  

Further improvement need to be done for both of the controllers for longitudinal and 

lateral autopilots. PID controller should be improved so that the percentages overshoot does 

not have very high range as required by the design criteria. On the other side, LQR controller 

can be improved so that it’s settling time might be reduced as faster as PID controller. 

 

5.2.3 Fuzzy logic / PID controllers  

5.2.3.1 Discussion  

Control system for pitch control is simulated using PID and FLC. The output response of 

both the PID and FLC is illustrated in Figure 5.10 and a unit step command is required in 

order for pitch angle to follow the reference value of 0.2 radian =11.5 degree. The summary 
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for the performance characteristics of the step response for the pitch angle between PID and 

FLC controller is shown in Table 5.3. 

 

Figure 5.7: Pitch response with PID and FLC controllers. 

 

Table 5.2: Comparison of PID and FLC performance for pitch angle. 

Performance characteristics PID  FLC 

Settling time (s) 3.05 s 1.5 s 

Rise time (s) 2.1 s 1.1 s 

Peak overshoot (%) 25 % 0 % 

Steady-state error (%) 0.001 % 0.001 % 
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Remark: The steady-state error is computed by comparing graphically the difference 

between the desired value and the actual value of a system when the response has reached 

the steady state. 

 

According to the previous results when comparing both of the controllers , the FLC got a 

faster response with settling time about 1.5 s and rise time about 1.1 s ,the PID with 3.05 s 

and 2.1 s respectively. The FLC controller is able to give a good response without produce 

any peak overshoot compared to the PID with 25 % of peak overshoot. Meanwhile, the 

steady-state error for both controllers is 0.001%. 

 

5.2.3.2 Simulation Results  

For comparative assessment, the results clearly shows that FLC controller has the best 

performance and achieved better tracking response than conventional PID controller and 

the best controller to enhance the pitch motion of the aircraft. It is indicated from 0% 

overshoot, faster settling time and faster rising time. At the same time, both control 

schemes produces the output response with less steady-state error. However, further 

improvement needs to be done on the FLC controller in order to improve its performance 

such that it becomes more robust and much better response can be achieved. The limitation 

in the FLC controller design should be eliminated by adding more membership functions to 

the controller. 

 

5.2.4 Self-tuning fuzzy PID controller 

5.2.4.1 Discussion 

The response of the classical PID and the self-tuning fuzzy PID controllers to a step input is 

shown in Figure 5.8, and the performance characteristics are summarized in Table 5.3 
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Figure 5.6: Pitch response with PID and Fuzzy PID controllers. 

  

 

Table 5.3: Comparison of PID and Fuzzy PID performance for pitch angle. 

Performance characteristics PID  Fuzzy PID 

Settling time (s) 1.35 s 0.8 s 

Rise time (s) 0.2 s 0.33 s 

Peak overshoot (%) 25 % 0 % 

Steady-state error (%) 0.002 % 0 % 
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The result shows better control performance for Fuzzy PID controller than the classical 

PID controller, without peak overshoot and steady-state error and with a settling time of 

0.8s and rise time of 0.33 s, while the PID got a better rise time 0.2 s but with a longer  

 

 

settling time then the Fuzzy PID about 0.5 s time difference, we also observe a high peak 

overshoot and a low percentage of steady-state error. 

 

5.2.4.2 Simulation results  

The simulation results shows that compared with the traditional PID controller, fuzzy self-

tuning PID controller has a better dynamic response curve, performs with better accuracy, it 

means zero overshoot and zero steady-state error, and settles faster than traditional PID 

controllers.  

The aim of the proposed fuzzy logic-based PID controller is to tune the controller gains 

automatically to overcome the pitch control and also to eliminate the overshoot without 

much increase in rise time and eliminate the steady-state error in the response system so 

that the pitch tracking follows the desired reference.  

 

5.2.5 GA-PID controller  

5.2.5.1 Discussion 

The results of the implemented Genetic Algorithm PID for pitch controller are shown in 

Figure 5.9 and the performance characteristics in Table 5.4 above. 
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Figure 5.9: Pitch response with GA-PID controller. 

 

 

Table 5.4: performance characteristics of GA-PID  for pitch angle. 

Performance characteristics GA-PID  

Settling time (s) 1.66 s 

Rise time (s) 0.592 s 

Peak overshoot (%) 12 % 

Steady-state error (%) 0.002 % 

 

 

 

From one look, the above response is definitely much better than the classical PID tuning 

method as shown in the previous simulations. In this response, the overshoot value has 

improved. The settling time has reduced from 2.2s (as shown in Table 5.1) to 1.66 s. The rise 

time has improved slightly that is 0.592 s as compared to 0.65 s. 
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5.2.5.2 Simulation results 

The simulation response had showed to us that the designed PID with GA has much faster 

response than using the classical method. Moreover we can add that the GA designed 

controller has a significant improvement with a much impact in the system optimization over 

the PID designed controller. The improvement has implication on the efficiency of the 

system performing the faster response to research stability in the pitch control motion.  

 

5.2.6 𝑯𝟐/𝑯∞  with pole placement constraints controller  

5.2.6.1 Discussion  

The Simulink response implementation of the mixed 𝐻2/𝐻∞ with regional pole 

placement controller is shown in Figure 5.10, we used the step response of the LQR for pitch 

angle for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Pitch response with mixed 𝑯𝟐/𝑯∞  and LQR controllers. 
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We summarize the performance characteristics in Table 5.5 below: 

 

Table 5.5: performance characteristics of mixed  𝑯𝟐/𝑯∞  controller for pitch angle. 

Performance characteristics 𝐻2/𝐻∞ (longitudinal) LQR (longitudinal) 

Settling time (s) 2.6 s 4.1 s 

Rise time (s) 0.65 s 3.5 s 

Peak overshoot (%) 0 % 0 % 

 

 

From the results observed from the Table 5.5 and Figure 5.10 , the step response of the 

mixed controller have no overshoot and faster settling time and rise time comparing to the 

classical controller LQR. 

 

 

5.2.6.2 Simulation results  

Mixed 𝐻2/𝐻∞ control has been developed such that the closed-loop poles are located in 

a class of regions in the complex plane. The simulation results enhance that the pitch control 

has improved using the mixed controller 𝐻2/𝐻∞ output feedback controller based on the 

LMI method comparing to the LQR. The 𝐻2/𝐻∞  controller could attenuate the desired 

response at least 1.5 s faster than the traditional LQR which gives better performance for 

controlling pitch angle.  

 

5.3   Summary 

The non-linear and linear control of the F-16 aircraft has been implemented within 

simulation environment in MATLAB/Simulink. However from both of the non-linear and 

linear models simulations presented, we clearly observed instability, particularly in the non-

linear model due to the non-linearity which led to instability.  
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The development and investigation of the proposed controllers for the longitudinal motion 

control has been evaluated. The proposed controllers consisted of three classical controllers 

and three mixed controllers schemes. Performances of the controllers have been studied in 

term of time domain response characteristics specifications. The comparison of controllers 

considered the aspects of settling time, rise time, overshoot, and steady-state error for some 

controllers. The comparison results obtained can be summarized in the Figure 5. 11. 

 

Figure 5.8: Histogram of the controllers performance characteristics. 
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General Conclusion 

The emphasis of this thesis is to constitute a basis for the ongoing research on intelligent 

controllers in the aim of augmenting the pitch control to avoid deep stall conditions of the F-

16 fighter aircraft. Therefore, our study consisted of moving from aircraft mathematical 

modeling included a full non-linear model and a linearized model to the controllers’ 

techniques and concepts designs. 

After completing the design process of both types of controllers, a comparative analysis 

has been examined and compared in terms of settling time, rise time, peak overshoot, 

steady-state error. The results had showed to us that the mixed controllers had better 

characteristics performance and much faster response than using the classical ones. The 

classical method is good for giving us as the starting point of what are the PID values or LQR 

gain.  

However, an optimized algorithm was implemented in the system to see and study the 

system response. Thus the results obtained through the comparative study are as follows: 

that fuzzy PID controller generally outperforms the conventional PID controller by 

eliminating the overshoot; the GA designed PID is much better in terms of the rise time and 

the settling time; the mixed H2/H∞  response was very fast and robust comparing to the 

LQR it has improved the settling time and rise time with zero overshoot. All this 

developments led to enhance the pitch control by keeping it following the desired tracking. 

On the other hand, it must be emphasized that these mixed types of controllers are not 

exactly comparable; in fact, it is generally impossible to have exactly the same conditions for 

a fair comparison of these controllers. The point to make here is that as long as for example 

fuzzy PID controller work for some control problems on some systems and processes where 

the conventional PID controller does work or does not work so well. As a consequence that 

is not to claim that all the methods discussed will replace existing technologies, but the new 

intelligent controllers achieved good results and therefore they merit and should be further 

developed and applied. 

Finally this project has knowledge in control engineering and its contribution to the 

improvement of the reliability, safety and security of flight. I hope this work will be of benefit 

to future students, and I will leave the door of this research open for further developments.
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Appendix A 

Appendix 

A.1    Longitudinal and lateral derivatives 

A.1.1     Longitudinal derivative 

W-derivatives:          

𝑿𝒘 
−

(𝑪𝑫𝜶
− 𝑪𝑳𝟎

)𝑸𝑺

𝒎𝒖𝟎

 

 

𝒁𝒘 
−

(𝑪𝑳𝜶
− 𝑪𝑫𝟎

)𝑸𝑺

𝒎𝒖𝟎

 

 

𝒁𝒘 𝑪𝒎𝜶

(𝑸𝑺�̅�)

𝒖𝟎𝑰𝒚
 

 

 

�̇�- derivatives:          

𝑿�̇� 
𝑪𝒙�̇�

�̅�

𝟐𝒖𝟎
 𝑸𝑺/(𝒖𝟎𝒎) 

 

𝒁�̇� 
𝑪𝒛�̇�

�̅�

𝟐𝒖𝟎
 𝑸𝑺/(𝒖𝟎𝒎) 

 
 

𝑴�̇� 
𝑪𝒎�̇�

�̅�

𝟐𝒖𝟎

𝑸𝑺�̅�

(𝒖𝟎𝑰𝒚)
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q-derivatives :          

 

𝑿𝒒 
𝑪𝒙𝒒

�̅�

𝟐𝒖𝟎
 𝑸𝑺/(𝒎) 

 

𝑿𝒒 
𝑪𝒛𝒒

�̅�

𝟐𝒖𝟎
 𝑸𝑺/(𝒎) 

 
 

𝑴𝒒 
𝑪𝒎𝒒

�̅�

𝟐𝒖𝟎

𝑸𝑺�̅�

(𝑰𝒚)
 

 

 
 
 

𝛂 and  �̇� derivatives: 
 

𝒁𝜶 
 

𝒖𝟎𝒁�̇� 

𝑴𝜶 
 

𝒖𝟎𝑴𝒘 

𝒁�̇� 
 

𝒖𝟎𝒁�̇� 

𝑴�̇� 
 

𝒖𝟎𝑴�̇� 

 

A.1.1     Lateral derivatives 

𝜷 derivatives:  

𝒀𝜷 

 
𝑸𝑺𝑪𝒚𝜷

𝒎
 

 

𝑵𝜷 

 

𝑸𝑺𝑪𝒏𝜷

𝑰𝒛
 

 

𝑳𝜷 

 
𝑸𝑺𝑪𝒍𝜷

𝑰𝒙
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𝜷 derivatives:  

𝒀𝒑 

 
𝑸𝑺𝑪𝒚𝒑

𝟐𝒎𝒖𝟎
 

 

𝑵𝒑 

 
𝑸𝑺𝒃𝟐𝑪𝒏𝒑

𝟐𝑰𝒛𝒖𝟎
 

 

𝑳𝒑 

 
𝑸𝑺𝒃𝟐𝑪𝒍𝜷

𝟐𝑰𝒙𝒖𝟎
 

 

𝒓 derivatives:  

𝒀𝒓 

 
𝑸𝑺𝑪𝒚𝒓

𝟐𝒎𝒖𝟎
 

 

𝑵𝒓 

 
𝑸𝑺𝒃𝟐𝑪𝒏𝒓

𝟐𝑰𝒛𝒖𝟎
 

 

𝑳𝒑 

 
𝑸𝑺𝒃𝟐𝑪𝒍𝒓

𝟐𝑰𝒙𝒖𝟎
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Appendix B 

Appendix 

B.1    MATLAB programs 

B.1.1     F-16 non-linear model 

The following code presents the function to find the trim conditions for straight and level 

flight at given velocity and altitude. 

 

B.1.1.1    find-trim function code 

 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %F-16 non-linear model 
3 %Code to find intial trim conditions 
4 %--------------------------------------------------------------------

------------% 
5 clear all 
6 clc 
7 %%default initial conditions chosen : V=152.4 m/s , h=1500 ft , 

xcg=0.3 

 
8 function [ state_trim, control_trim ] = find_trim( velocity, 

altitude, xcg ) 

 
9 %---- flight constraints -------------------------- 
10 global climb_angle; % rate-of-climbing constraint 
11 % climb_angle = input( 'Input the climb angel(deg)' ); 
12 climb_angle = 0.0; 
13 global coordi_turn; % coordinate turn constraint 
14 coordi_turn = 0; 
15 global stab; % stability-axis roll constraint   
16 stab = 0; 
17 global skid_turn; % skidding turn constraint 
18 skid_turn = 0; 
19 global rad_gamma; % flight path angle gamma in radian 
20 rad_gamma = 0; 
21 global phi_r; % reference phi 
22 phi_r = 0; 
23 global roll_rate; % reference roll rate 
24 roll_rate = 0; 
25 global pitch_rate; % reference pitch rate 
26 pitch_rate = 0; 
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27 %---- data --------------------------- 
28 rtod = 57.29577951; % radian to degree 

 
29 no_step = 5000; % no. of iteration steps for trimming 
30 disp('  '); 
31 read_no = input('Please input the # of trim iterations ( default = 

5000 ):  '); 
32 if read_no == [] 
33 no_step = read_no; 
34 end 
35 disp('  '); 
36 disp('----------------------------------------------------'); 
37 disp('Please wait while computing the trim data ......'); 
38 disp('----------------------------------------------------'); 
39 epsilon = -1.0; 

 
40 %---- initial condition ---- 
41 x0 = [ velocity 

a. 0.0 
b. 0.0 
c. 0.0 
d. 0.0 
e. 0.0 
f. 0.0 
g. 0.0 
h. 0.0  
i. 0.0  
j. 0.0  
k. altitude 
l. 90 ]; 

 
42 u0 = [  0.73 

a. -1.0 
b. 0.0   

i. ];  

 
43 %---- define initial simplex -------------------- 
44 s = [ u0(1); u0(2); x0(2); u0(3); u0(4); x0(3) ]; 
45 ds = [ 0.2; 1.0; 0.02; 1.0; 1.0; 0.02 ]; 

 
46 %---- simplex algorithm ----------------- 
47 init_cost =  cost_f16( x0, u0, s, xcg ); 
48 [ s_trim, f_final ] = simplex( s, ds, x0, u0, no_step, epsilon, xcg 

); 

 
49 %---- output the trim result ------------ 
50 control_trim = u0; 
51 control_trim(1) = s_trim(1); 
52 control_trim(2) = s_trim(2); 
53 control_trim(3) = s_trim(4); 
54 control_trim(4) = s_trim(5); 
55 state = x0; 
56 state(2) = s_trim(3); 
57 state(3) = s_trim(6); 
58 final_cost = cost_f16( state, control_trim, s_trim, xcg ); 
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59 state(13) = tgear( control_trim(1) ); 
60 state_trim = constraint( state ); 
61 control_trim; 

 

 

 

B.1.1.2    cost_f16  function code 

 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 %Cost function  
3 %This is to define & compute the cost of the current simplex where 

the states are constrained by different flight condition 
4 function cost = cost_f16 (state, control, s, xcg ) 

 
5 % state   - states before constrained 
6 % control - current control 
7 %  s      - current simplex 

 
8 control = [ s(1); s(2); s(4); s(5) ]; 
9 state(2) = s( 3 ); 
10 state(3) = s( 6 ); 
11 state(13) = tgear( control(1) ); 
12 %---- constraints ------------------------------- 
13 state_constr = constraint( state ); 
14 time = 0; 
15 % global xcg; 
16 [ xd, an, alat, qbar, amach, q, alpha ] = f16_dynam ( time, 

state_constr, control, xcg ); 

 
17 cost = xd(1)^2 + 100 * ( xd(2)^2 + xd(3)^2 ) + ... 

1. 10 * ( xd(7)^2 + xd(8)^2 + xd(9)^2 ); 
 

 

 

B.1.1.3    simplex  function code 

 
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %Simplex function this is to set up a function minimization 

algorithm( simplex search )to determine a steady-state trim 

3 function [ s_trim, y_low ] = simplex( s, ds, x0, u0, no_step, 

epsilon, xcg ) 

 

4 % ---- construct the simplex 'vertices' ---- 

5 vertices = [];  

6 for i = 1 : 6 

7 for j = 1 : 7 

a. vertices( i, j ) = s( i ); 
b. vertices( i, i+1 ) = s( i ) + ds( i ); 

8 end 

9 end 

10 % ------------------------------------------------- 
11 %    compute the cost at the vertices of the  
12 %    initial simplex and sort them to get the  
13 %    'best' and the 'worst' vertices. 
14 % ------------------------------------------------- 
15 y = []; % Here y represents the cost value 
16 y0 = cost_f16( x0, u0, s, xcg ); % initial cost 
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17 y(1) = y0; 
18 for j = 2 : 7 
19 y(j) = cost_f16( x0, u0, vertices( :,j ), xcg ); 
20 end 
21 k = 7;  
22 y_high = y(1); 
23 y_low = y(1); 
24 no_high = 1; 
25 no_low = 1; 
26 for j = 2 : 7 
27 if y(j) > y_high 

a. y_high = y( j ); 
b. no_high = j; 

28 elseif y(j) < y_low 
a. y_low = y( j ); 
b. no_low = j; 

29 end 
30 end 
31 % ------------------------------------------------- 
32 %    compute the second 'worst' vertices at which 
33 %    f = max(f(s(i))) for i ~= no_high. f here is 
34 %    computed for later comparison with the  
35 %    reference point s_ref. 
36 % ------------------------------------------------- 
37 if no_high == 1 
38 y_temp = y( 2 : 7 ); 
39 else 
40 y_temp_1 = y( 1 : no_high-1 ); 
41 y_temp_2 = y( no_high+1 : 7 ); 
42 y_temp = [ y_temp_1'; y_temp_2' ]; 
43 end 
44 y_second = y_temp(1); 
45 for j = 2 : 6 
46 if y_temp(j) > y_second 

a. y_second = y_temp( j ); 
47 end 
48 end 

 

49 % ------------------------------------------------- 
50 %    compute the standard deviation to   
51 %    set up the iteration terminate criteria. 
52 % ------------------------------------------------- 
53 y_sum = y(1); 
54 for j = 2 : 7 
55 y_sum = y_sum + y(j); 
56 end 
57 y_mean = y_sum / 7; 
58 deviation = 0.0; 
59 for i = 1 : 7 
60 deviation = deviation + ( y(j) - y_mean )^2; 
61 end 
62 devia_stand = sqrt( deviation / 7 ); 

 

63 %----------------------------------------------------- 
64 %  simplex search algorithm 
65 %----------------------------------------------------- 
66 while k <= no_step & devia_stand > epsilon  
67 s_centroid = []; 
68 s_ref = []; 
69 %---- compute the centroid point ---- 
70 for i = 1 : 6 
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a. s_centroid(i) = 0.0; 
b. for j = 1 : 7 

i. if j ~= no_high 

ii. s_centroid( i ) = s_centroid( i ) + vertices( i, j );  

iii. end 

c. end 
71 s_centroid(i) = s_centroid(i) / 6;     
72 end 
73 %---- compute the reflection point ---- 
74 for i = 1 : 6 

a. s_ref(i) = 2 * s_centroid( i )- vertices( i, no_high );  
75 end 
76 y_ref = cost_f16( x0, u0, s_ref, xcg );    
 

77 %---- compute the new point for the simplex ------------------ 
78 if y_ref < y_low         %---- case I   ---- 

a. s_exp = 2 * s_ref - s_centroid; 
b. y_exp = cost_f16( x0, u0, s_exp, xcg ); 
c. if y_exp < y_ref 

i. s_new = s_exp; 

d. else  
i. s_new = s_ref; 

e. end 
79 elseif y_ref < y_second    %---- case II  ---- 

a. s_new = s_ref; 
80 else                       %---- case III ---- 

a. if y_ref >= y_high    
i. s_new = 0.5 * ( vertices( :, no_high )' + s_centroid ); 

b. else 
i. s_new = 0.5 * ( s_ref + s_centroid ); 

c. end 
81 end 
82 %---- form the new simplex with the max point no_high 
83 %     replaced by the new point derived above ------------------ 
84 vertices( :, no_high ) = s_new'; 
85 %---- upgrade step k ----------- 
86 k = k + 6; 
87 % ------------------------------------------------- 
88 %    compute the cost at the vertices of the  
89 %    new simplex and sort them to get the  
90 %    'best' and the 'worst' vertices. 
91 % ------------------------------------------------- 
92 y = []; % Here y represents the cost value 
93 y0 = cost_f16( x0, u0, vertices( :, 1 ), xcg ); % new cost 
94 y(1) = y0; 
95 for j = 2 : 7 

a. y(j) = cost_f16( x0, u0, vertices( :,j ), xcg ); 
96 end 
97 y_high = y(1); 
98 y_low = y(1); 
99 no_high = 1; 
100 no_low = 1; 

101 for j = 2 : 7 

a. if y(j) > y_high 
i. y_high = y( j ); 

ii. no_high = j; 

b. elseif y(j) < y_low 
i. y_low = y( j ); 

ii. no_low = j; 

c. end 
102 end 
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103 % ------------------------------------------------- 

104 %    compute the second 'worst' vertices  

105 % ------------------------------------------------- 

106 if no_high == 1 

a. y_temp = y( 2 : 7 ); 
107 else 

a. y_temp_1 = y( 1 : no_high-1 ); 
b. y_temp_2 = y( no_high+1 : 7 ); 
c. y_temp = [ y_temp_1'; y_temp_2' ]; 

108 end 

109 y_second = y_temp(1); 

110 for j = 2 : 6 

a. if y_temp(j) > y_second 
i. y_second = y_temp( j ); 

b. end 
111 end 

112 %---- calculate the standard deviation again ---- 

113 y_sum = y(1); 

114 for j = 2 : 7 

a. y_sum = y_sum + y(j); 
115 end 

116 y_mean = y_sum / 7; 

117 deviation = 0.0; 

118 for i = 1 : 7 

a. deviation = deviation + ( y(j) - y_mean )^2; 
119 end 

120 devia_stand = sqrt( deviation / 7 ); 

121 end 

 

122 epsilon = devia_stand; 

123 no_step = k; 

124 % terminate_text = [ ' The iteration is terminated successfully 

at step = ',... 

125 %             num2str(k-1), ' and the standard deviation 

epsilon = ' num2str(epsilon) ]; 

126 % display( terminate_text ); 

127 y_low = y( no_low ); 

128 s_trim = vertices( :, no_low ); 

 

 

 

 

B.2.1     F-16 linear stability analysis 

B.2.1.1   Longitudinal stability  

 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 %F-16 Linear Model Stability Analaysis 
3 %F-16 longitudinal model 
4 clear all 
5 clc 
6 A_long = [0 0 0 1; -32.1 -0.013 -2.66 -1.18; 0 0 -0.67 0.93; 0 0 -

0.57 -0.87]; 
7 B_long = [0; 0.0387;-0.0014;-0.1188]; 
8 C_long =[57.2958 0 0 0; 0 1 0 0;0 0 57.2958 0; 0 0 0 57.2958 ]; 
9 D_long = [0;0;0;0]; 
10 poles = eig(A_long) 
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B.2.1.2   Lateral stability  

 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 %F-16 Linear Model Stability Analaysis 
3 %F-16 lateral model 
4 clear all 
5 clc 
6 A_lat = [0 0 1 0.078; 0.064 -0.202 0.078 -0.99; 0 -22.92 -2.25 0.54; 

0 6.00 -0.04 -0.31]; 
7 B_lat = [0 0; 0.0002 0.0005 ; -0.4623 0.0569; -0.0244 -0.0469]; 
8 C_lat =[57.29 0 0 0; 0 57.29 0 0;0 0 57.29 0; 0 0 0 57.29 ]; 
9 D_lat = [0 0;0 0;0 0;0 0]; 
10 poles = eig(A_lat) 

 

B.2.2     PID optimal function  

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 %F-16 Linear Model Stability Analaysis 
3 %F-16 linear model 
4 %GA-PID controller design 
5 close all 
6 clear all 
7 clc 
8 function [J] = pid_optim(x) 
9 s = tf('s'); 
10 pitch=(-6.8067*s^3-4.6033*s^2-

0.0587*s)/(s^4+1.553*s^3+1.133*s^2+0.0145*s); % Pitch Angle  
11 Kp = x(1); 
12 Ki = x(2); 
13 Kd = x(3); 
14 cont = Kp + Ki/s + Kd * s; 
15 step(feedback(pitch*cont,1)); 
16 dt = 0.01; 
17 t = 0:dt:1; 
18 e = 1 - step(feedback(pitch*cont,1),t); 
19 J = sum(t'.*abs(e)*dt); 

 

 

B.2.3     Mixed 𝐻2/𝐻∞   

%F-16 Linear Model 
%Mixed H2/Hinf code 
% clear all 
% clc 
A_long = [0 0 0 1; -32.1 -0.013 -2.66 -1.18; 0 0 -0.67 0.93; 0 0 -0.57 -

0.87]; 
B_long = [0; 0.0387;-0.0014;-0.1188]; 
C_long =[57.2958 0 0 0; 0 1 0 0;0 0 57.2958 0; 0 0 0 57.2958 ]; 
D_long = [0;0;0;0]; 
Pp=pck(A_long,B_long,C_long,D_long); 
P = ss(Pp);% plant 
LeftRealPart = -5;  
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RightRealPart = -3; 
region = [-2*RightRealPart + 1i 0 1 0; 
           0 2*LeftRealPart + 1i 0 -1]; 
ncont = 1;%Number of control signals, 
nmeas = 1;%Number of measurement signals 
Nz2 = 1 ;%Number of signals subject  
Wz = [0 0];%Weights for H? and H2 performance, specified as a 1-by-2 vector 
[K,CL] = h2hinfsyn(P,nmeas,ncont,Nz2,Wz,'Region',region);  
pole(CL) 
CL = lft(P,K);%Closed-loop system with synthesized controller, returned as 

a state-space (ss) model 
step(CL(4))% closed-loop step response of pitch 
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