
الشعبية الديموقراطية الجزائرية الجمهورية

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of Blida 1
Faculty of Sciences

Department of Computer Sciences

Master’s thesis

Minimizing the rate of false

positives in Intrusion Detection

Systems by considering the

context changes

Abdallah Ould Bechiry

security of Information systems

Supervisor
Pr.Narhimene Boustia

Co-supervisor
Nadjah Chergui

Abstract

Intrusion detection system is a well known security tool, used by companies

to protect their resources and the services they provid from the massive amout of

computer threats these companies are a potential targets for. In this thesis we try

to shed some light on the importance, advantages and disadvantages of IDSs then

we will focus on one of these diadvantages which is the rate of false positive alerts

in an IDS. We chose to work with an open sorce IDS called snort. The approach

we are taking in order to minimize the rate of false positives is to consider the

cotext changes on the protected network like trusted devices inside the network,

network packet timing, which device initiated the comunication..etc. We desinged

our filtering software that takes said context changes inside the network we layed out

as a test bed into consideration. We used wireshark to capture network packets and

passed them to snort to detect any intrusion that may have happened. Snort then

outputs log files containing alerts about any suspicious packets, we then input these

files into our software which analyses the IDS logs in order to filter the false alerts.

We intentionally attacked our network through a known vulnerability to ensure that

some of the packets were malicious and to test that our software does not filter the

alerts generated by the IDS conserning the packets related to this attack. we found

segnificant diffrence in the number of alerts before and after filtering. The process

and results are all mentioned and detailed in the core of this thesis.

Keywords

IDS, Snort, Network packets, Alert, Context, False positive, Filter, Intrusion,

Detection, Attack, Threat.

الملخص

یعد نظام كشف الإختراقات أداة أمنیة معروفة جیدًا ، تستخدمھا الشركات لحمایة مواردھا والخدمات
التي تقدمھا من التھدیدات الحاسوبیة اللامتناھیة التي تمثل ھذه الشركات أھدافاً محتملة لھا. نحاول في

ھذه الأطروحة إلقاء بعض الضوء على أھمیة ومزایا وعیوب أنظمة كشف الإختراقات ومن ثم
سنركز على إحدى ھذه العیوب وھي معدل التحذیرات الكاذبة في أنظمة كشف الإختراقات . اخترنا

التحذیراتمعدللتقلیلنھجاإتخذناالأطروحةھذهفي.snortیسمىالمصدرمفتوحنظاممعالعمل
الكاذبة ھو أخذ المتغیرات و وضعیة الشبكة المحمیة بعین الإعتبار مثل الأجھزة الموثوقة داخل الشبكة
، توقیت حزم الشبكة ، الجھاز الذي أنشأ الاتصال .. إلخ. لقد صممنا برنامج التصفیة الخاص بنا الذي

یأخذ تغییرات المذكورة داخل الشبكة التي وضعناھا كبیئة اختبار في الاعتبار. استخدمنا برنامج
wiresharkقداختراقأيلاكتشافالإختراقاتكشفلنظامبتمریرھاوقمناالشبكةحزملالتقاط

یكون حدث. ثم یقوم النظام بإنشاء سجلات تحتوي على تنبیھات حول أي حزم مشبوھة یجدھا ، ثم
نقوم بإدخال ھذه الملفات في برنامجنا الذي یحلل ھذه السجلات من أجل تصفیة التحذیرات الكاذبة. لقد

ھاجمنا شبكتنا عمدًا من خلال ثغرة أمنیة معروفة للتأكد من أن بعض الحزم كانت ضارة بالفعل
وللتأكد من أن برنامجنا لا یقوم بتصفیة التحذیرات المتعلقة بھذا الھجوم. وجدنا اختلافاً كبیرًا في عدد
التنبیھات قبل وبعد التصفیة. ھذه العملیة و نتائجھا مذكورة بتفصیل أكثر في جوھر ھذه الأطروحة.

Abstrait

Le système de détection d’intrusion est un outil de sécurité bien connu, utilisé
par les entreprises pour protéger leurs ressources et les services qu’elles fournissent
contre la quantité massive de menaces informatiques pour lesquelles ces entreprises
sont des cibles potentielles. Dans cette thèse nous essayons d’apporter un éclairage
sur l’importance, les avantages et les inconvénients des IDS puis nous nous focalis-
erons sur l’un de ces inconvénients qui est le taux d’alertes faussement positives
dans un IDS. Nous avons choisi de travailler avec un IDS open source appelé snort.
L’approche que nous adoptons afin de minimiser le taux de faux positifs consiste à
considérer les changements de cotexte sur le réseau protégé comme les périphériques
de confiance à l’intérieur du réseau, la synchronisation des paquets réseau, quel
périphérique a lancé la communication, etc. Nous avons conçu notre logiciel de fil-
trage qui prend en compte lesdits changements de contexte à l’intérieur du réseau
que nous avons aménagé comme banc d’essai. Nous avons utilisé wireshark pour cap-
turer les paquets réseau et les avons transmis à snort pour détecter toute intrusion
qui aurait pu se produire. Snort génère ensuite des fichiers journaux contenant des
alertes sur tout paquet suspect, nous entrons ensuite ces fichiers dans notre logiciel
qui analyse les journaux IDS afin de filtrer les fausses alertes. Nous avons intention-
nellement attaqué notre réseau via une vulnérabilité connue pour nous assurer que
certains des paquets étaient malveillants et pour tester que notre logiciel ne filtre
pas les alertes générées par l’IDS concernant les paquets liés à cette attaque. nous
avons constaté une différence significative dans le nombre d’alertes avant et après le
filtrage. Le processus et les résultats sont tous mentionnés et détaillés dans le cœur
de cette thèse.

Acknowledgments

Thanks be to Allah, lord of all worlds then i would like to thank my supervisor
Pr.Narhimene Boustia, for being a huge resource and support through my thesis.
Thank you for being helpful and understanding, and being available for needed meet-
ings. I would also like to thank Nadjah Chergui for providing necessary information
and tools needed for my tests . And a special thanks to my family and my friend
mohamed vadhel for providing help with the test bed layout and implementation.

List of Acronyms

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

HIDS Host Intrusion Detection System

IDMEF Intrusion Detection Message Exchange Format

i

List of Figures

3.1 general procedure . 17
3.2 Test-bed . 19
3.3 Test-bed after context changes . 20
3.4 Vulnerability presentation in XML 20
3.5 Reverse Shell . 21
3.6 Snort’s architecture . 23
3.7 Example of an alert presentation in XML file 27
3.8 Example of a machine’s information as presented in XML file 28
3.9 Example of an installed tool’s information as presented in XML file . 28
3.10 Wireshark . 30
3.11 traffic capture . 31
3.12 Configuring the Metasploit module 32
3.13 Sessions opened . 33
3.14 Migrating the connection . 33
3.15 Asking for directories paths . 34

4.1 Displaying all alerts before context change 36
4.2 Displaying relevant alerts before context change 36
4.3 Displaying all alerts after context change 37
4.4 Displaying relevant alerts after context change 37

ii

List of Tables

1.1 Signature based detection and behavior based detection[9] 7

2.1 Comparing various data-sets[10] . 14

3.1 Snort vs Bro vs Suricata.[24] . 25

iii

Contents

Introduction 1

1 Intrusion detection systems overview 2
1.1 Threats, security and IDS . 2
1.2 IDS History . 3
1.3 IDS role . 4
1.4 Types of IDSs . 4
1.5 Classification of IDS By Detection Approach 6
1.6 Subsystems of IDS . 7
1.7 Challenges of Intrusion Detection: . 8
1.8 Context in IDS . 10

2 Evaluation of IDSs 11
2.1 Benchmarks . 11

2.1.1 Traffic replay . 11
2.1.2 Model generation techniques 11
2.1.3 Specific protocols assessment 12
2.1.4 Valgenti and Kim (2011) . 12
2.1.5 Sommers et al. (2005) . 12
2.1.6 Wright et al. (2010) . 12
2.1.7 Sommer and Paxson (2010) 12
2.1.8 real network traces . 13

3 Modeling and realization 16
3.1 Objective . 18
3.2 modeling . 18

3.2.1 Test-bed . 18
3.2.2 Attack scenario: path traversal 19
3.2.3 Traffic generation and capturing 21
3.2.4 Deployed IDS . 22
3.2.5 Context and context’s changes detection 26
3.2.6 Filtering . 28

3.3 Realization . 29
3.3.1 Network setup . 29

iv

3.3.2 Starting traffic . 29
3.3.3 Filtering tool . 31

4 Results and discussions 35

Appendices 40

A Source Code 41
A.1 Functions.java . 42
A.2 DemoJFileChooser.java . 51
A.3 Filter Frame.java . 53

v

Introduction

Intrusion detection is an important component of information security technology
that helps in discovering, determining, and identifying unauthorized use, duplica-
tion, alteration, and destruction of information and information systems. Intrusion
detection relies on the assumption that information and information systems under
attack exhibit several distinguishable behavioral patterns or characteristics to that
of the normal ones. Though intrusion detection technology is becoming ubiquitous
in current network defense; it lacks basic definitions and mathematical understand-
ing. Intrusion detection being subjective; each Intrusion Detection System (IDS)
has a different classification and attack labeling mechanisms. It is most common for
IDSs to alarm on any set of known attack behaviors. In the due course of determin-
ing whether a particular activity is normal or malicious, IDS fail to alarm a harmful
activity (false negative) or alarm a harmless activity as malicious (false positive).

In this thesis we will concentrate on the false positives side. One of the causes
for a false alarm is not considering the context and the context’s alterations of
the protected network which represents the operating systems and the features and
programs on the network’s devices. in the case where the IDS does not take the con-
text into consideration some of the alarms raised will be harmless to the concerned
network therefore increase the rate of false alarms. Our work will involve around
minimizing the rate of false positives in IDSs alarms by filtering these alarms based
on the context of the protected network.

In the first chapter we are going to talk about IDSs in general, the need to
consider the context and it’s alterations, then in the second chapter we are going to
have an eye on how to evaluate an IDS and some of the existing benchmarks and
the problem of these data-sets, in the third chapter we will talk about the attack
scenario, its description and the test bed, and finally in the fourth chapter we have
the results and discussions.

1

Chapter 1

Intrusion detection systems
overview

The most popular way to detect intrusions has been done by using audit data
generated by operating systems and by networks. Since almost all activities are
logged on a system, it is possible that a manual inspection of these logs would allow
intrusions to be detected. It is important to analyze the audit data even after an
attack has occurred, for determining the extent of damage occurred, this analysis
helps in attack trace back and also helps in recording the attack patterns for future
prevention of such attacks. An intrusion detection system can be used to analyze
audit data for such insights. This makes intrusion detection system a valuable real
time detection and prevention tool as well as a forensic analysis tool.

1.1 Threats, security and IDS

The amount of malicious traffic are increasing, and new threats are created ev-
ery day. The threats are getting more and more serious, complex and sophisticated.
There are no longer teenagers playing around creating viruses and worms that are
the biggest problem for companies and organizations. Inside threats and organized
cyber criminals looking for sensitive information, such as social security number and
bank accounts, are some of the biggest problem today. These kinds of threats are
getting worse, and companies need tools to prevent their system from being com-
promised.
When there are so many threats to be aware of, computer security becomes more
and more important. The goal with computer security is to prevent property theft,
corruption and natural disaster, and at the same time make sure that the infor-
mation and property remain accessible for its intended users. As well, to protect
valuable information and services from publication, tampering or collapse by unau-
thorized activities or untrustworthy individuals, and unplanned events.
Firewall is designed to deny or permit traffic based on preset rules. Even though if a
firewall is well designed and configured, there exists threats that can pass through it.
It could be malicious traffic that looks like normal traffic or cyber criminals hacking
into the system. Most organizations find the need of additional hardware, software
and network monitoring tools.

2

Antivirus is another computer security tool, which are designed to detect, prevent
and remove malware. It is able to detect malware based on signatures and by
anomaly detection. However, it is possible for a computer to be infected by new
malware where there are no signature in the antivirus database.
When a new malware is detected, countermeasures can be put in place to block or
rid your computer of this type of code. But sometimes it can be too late and the
harm is already done. It is desirable to stop malware in an earlier phase. Firewall
and antivirus used together gives a certain protection, but the question is if it is
enough. Hackers can get passed a firewall, and computers can be infected and be
compromised before the antivirus program detects it.
Companies need some software and hardware that monitors the network for mali-
cious traffic, and stops it before it does any harm. Intrusion detection system is a
device or software application that monitors the network and/or system activities
for malicious activities or policy violations and produces reports to system admin-
istrator.
There are two ways of setting up an intrusion detection system. One is host based
intrusion detection, and the other is network intrusion detection. A network in-
trusion detection system monitors incoming, outgoing and internal traffic. When
malicious traffic is detected, alarms are created and sent as a report to network
or system administrator. Snort, Bro and Suricata are three different open-source
intrusion detection systems.[1]

1.2 IDS History

Dorothy E. Denning, assisted by Peter G. Neumann, published a model of an IDS
in 1986 that formed the basis for many systems today. Her model used statistics
for anomaly detection, and resulted in an early IDS at SRI International named
the Intrusion Detection Expert System (IDES), which ran on Sun workstations and
could consider both user and network level data. IDES had a dual approach with
a rule-based Expert System to detect known types of intrusions plus a statistical
anomaly detection component based on profiles of users, host systems, and target
systems. The author of ”IDES: An Intelligent System for Detecting Intruders,”
Teresa F. Lunt, proposed adding an Artificial neural network as a third component.
She said all three components could then report to a resolver. SRI followed IDES
in 1993 with the Next-generation Intrusion Detection Expert System (NIDES).[2]

In 1990, the Time-based Inductive Machine (TIM) did anomaly detection us-
ing inductive learning of sequential user patterns in Common Lisp on a VAX 3500
computer.[3] The Network Security Monitor (NSM) performed masking on access
matrices for anomaly detection on a Sun-3/50 workstation.[4] The Information Se-
curity Officer’s Assistant (ISOA) was a 1990 prototype that considered a variety of
strategies including statistics, a profile checker, and an expert system.[5] The Net-
work Anomaly Detection and Intrusion Reporter (NADIR), in 1991, was a prototype
IDS developed at the Los Alamos National Laboratory’s Integrated Computing Net-
work (ICN), and was heavily influenced by the work of Denning and Lunt.[6] NADIR
used a statistics-based anomaly detector and an expert system.

The Lawrence Berkeley National Laboratory announced Bro in 1998, which

3

used its own rule language for packet analysis from libpcap data.[7] Network Flight
Recorder (NFR) in 1999 also used libpcap.

APE was developed as a packet sniffer, also using libpcap, in November, 1998,
and was renamed Snort one month later. Snort has since become the world’s largest
used IDS/IPS system with over 300,000 active users.[8] It can monitor both local
systems, and remote capture points using the TZSP protocol.

1.3 IDS role

An IDS monitors and records events in a computer system, performs analysis to
determine if the events are security incidents, alerts security practitioners of poten-
tial threats, and produces event reports [31]. If the IDS also includes mechanisms
to block detected intrusions from entering the organizational infrastructure, it is
referred to as an intrusion prevention system (IPS). Security practitioners interact
with the IDS through a console, which may be used to either perform administrative
functions, such as configuration of sensors, and/or to support event monitoring and
analysis. Intrusion can be defined as a process of accessing someone‘s personal prop-
erty or data or information without proper access. Since the data or information
is widely available online through websites or computer programs, this method of
storing data increases the security risks in huge quantity. According to Symantec
report , around 60,000 websites are available online, thus a person no longer need
to be a gem in hacking, just download and run the hacking program, make some
settings and you are done. In order to secure the companies or individual‘s data,
firewalls are being installed, but they do not serve the purpose of defending the data
from attacks or intruders. The main aim of the firewall is to filter the traffic but
they cannot block all the traffic. Also once the traffic passed through the firewall
there is no such mechanism available that traffic will be monitored inside the net-
work for rest processing. Also firewall only detects external traffic coming to it, but
does not detect the internal attacks. Thus it became very much important for an
organization to install both firewall and intrusion detection system to secure their
assets and information from attackers.

1.4 Types of IDSs

There are broadly two types of Intrusion Detection systems. These are host
based Intrusion Detection System and network based Intrusion Detection System.
A Host based Intrusion Detection system has only host based sensors for monitoring
and analyzing the internals of a computing system as well as the network packets on
its network interfaces and a network based Intrusion detection system has network-
based sensor that monitors and analyzes all incoming network traffic.

1.4.1 Network based IDSs (NIDS)

Network intrusion detection system analyzes network traffic to detect abnor-
mal traffic based on statistics, or common hacking signatures such as DoS (denial

4

of service) attack, TCP/UDP port scan, ping sweeps, DNS zone transfers, e-mail
reconnaissance, OS identification, account scans, etc.

Characteristics

Lower cost of ownership: Network based IDS can be deployed for each net-
work segment. An IDS monitors network traffic destined for all the systems in a
network segment. This nullifies the requirement of loading software at different hosts
in the network segment. This reduces management overhead, as there is no need to
maintain sensor software at the host level.

Detect network based attacks: Network based IDS sensors can detect at-
tacks, which host-based sensors fail to detect. A network based IDS checks for all
the packet headers for any malicious attack. Many IP-based denial of service at-
tacks like TCP SYN attack, fragmented packet attack etc. can be identified only
by looking at the packet headers as they travel across a network. A network based
IDS sensor can quickly detect this type of attack by looking at the contents of the
packets at the real time.

Retaining evidence: Network based IDS use live network traffic and does
real time intrusion detection. Therefore, the attacker cannot remove evidence of at-
tack. This data can be used for forensic analysis. On the other hand, a host-based
sensor detects attacks by looking at the system log files. Lot of hackers are capable
of making changes in the log files so as to remove any evidence of an attack.

Detection of failed attacks: A network based IDS sensor deployed outside
the firewall (as shown in picture1 above) can detect malicious attacks on resources
behind the firewall, even though the firewall may be rejecting these attempts. This
information can be very useful for forensic analysis. Host based sensors do not see
rejected attacks that could never hit a host inside the firewall.

1.4.2 Host based IDSs (HIDS)

Host intrusion detection system is software running on a computer to detect
anomalous activity. HIDS monitors system, event, and security log files generated
in the operating system to look for attack signatures, specific patterns that usually
indicate malicious intent.

Characteristics

Protects system files: The host based Intrusion detection systems on the
other hand works off the hosts. The host based sensor is software running on the
host being protected. It monitors system audit and event logs. When any of these

5

files change, the IDS sensor compares the new log entry with attack signatures to
see if there is a match. In case a match is found, the sensor notifies the management
console.

Authorization verification: The host-based sensors do not do any packet
level analysis. Instead, they monitor system level activities. For example, an unau-
thorized user (other than administrator) changing registry files in a Windows NT
system, or changing /etc/password or /etc/shadow file in a Unix system, a user
trying to login at 7:00 pm, although he or she is allowed to login only between 9:00
am and 5:00 pm.The host-based sensors monitor these kinds of activities and if it
finds any anomaly, respond with administrator alerts.

Ports and executable scanning: Host based IDS have grown over the years.
Some hosts based IDS systems checks key system files and executables via checksums
at regular intervals for unexpected changes. Some products listen to port based ac-
tivity and alert administrators when specific ports are accessed.

1.5 Classification of IDS By Detection Approach

It is also possible to classify IDS based on detection approach:

1.5.1 Signature-based detection

It is also known as misuse detection. So misuse detection is Signature based
IDS where detection of intrusion is based on the behaviors of known attacks like
antivirus software. Antivirus software compares the data with known code of virus.
In Misuse detection, pattern of known malicious activity is stored in the data-set
and identify suspicious data by comparing new instances with the stored pattern of
attacks.

1.5.2 Anomaly-based detection:

It is different from Misuse detection. Here baseline of normal data in network
data in network for example, load on network traffic, protocol and packet size etc is
defined by system administrator and according to this baseline, Anomaly detector
monitors new instances. The new instances are compared with the baseline, if there
is any deviation from baseline, data is notified as intrusion. For this reason, it is
also called behavior based Intrusion detection system.
Table 1 Compares between signature based detection and behavior based detection.

6

Signature based detection Behavior based detection

(Misuse detection) (Anomaly based detection)

Advantages

-Simplest and effective method. -Higher detection rate.

-Low false alarm rate.
-Detect new and unforeseen vul-
nerabilities.

-Can examine unknown and more
complicated intrusions.

-Rate of missing report is low.

Disadvantages

-Rate of missing report is high.

-It can detect only known attacks.
-Needs to be trained and tuned
model carefully, otherwise it
tends to false positives.

-Need a regular update of the
rules which are used.

-It can’t identify new attacks be-
cause intrusion detection depends
upon latest model.

-Often no differentiation between
an attack attempt and a success-
ful attack.

-Low detection rate and high false
alarm.

Table 1.1: Signature based detection and behavior based detection[9]

1.6 Subsystems of IDS

There are three primary subsystems that make up intrusion detection system:
the packet decoder, the detection engine, and the logging and alerting subsystem.
These subsystems will provide a portable packet sniffing and filtering capability.
Program configuration, rules parsing, and data structure generation takes place
before the sniffer section is initialized, keeping the amount of per packet processing
to the minimum required to achieve the base program functionality.

1.6.1 Packet Decoder

The decode engine will be organized around the layers of the protocol stack
present in the supported data-link and TCP/IP protocol definitions. Each subrou-
tine in the decoder imposes order on the packet data by overlaying data structures
on the raw network traffic. These decoding routines get called in order through the
protocol stack, from the data link layer up through the transport layer, finally end-
ing at the application layer. Speeds get emphasized in this section, and the majority
of the functionality of the decoder consists of setting pointers into the packet data
for later analysis by the detection engine. It will provide decoding capabilities for
Ethernet, raw (PPP) data-link protocols.

7

1.6.2 Detection Engine

System maintains its detection rules in a two dimensional linked list of what
will be termed Chain Headers and Chain Options. These are lists of rules that will
be condensed down to a list of common attributes in the Chain Headers, with the
detection modifier options contained in the Chain Options. For example, if forty five
CGI-BIN probe detection rules are specified in a given detection file, they generally
all share common source and destination IP addresses and ports. To speed the
detection processing, these commonalities are condensed into a single Chain Header
and then individual detection signatures are kept in Chain Option structures. These
rule chains will be searched recursively for each packet in both directions. The
detection engine checks only those chain options which have been set by the rules
parser at run-time. The first rule that matches a decoded packet in the detection
engine triggers the action specified in the rule definition and returns.

1.6.3 Logging and Altering

The alerting and logging subsystem will be selected at run-time. The logging
options can be set to log packets in their decoded, human readable format to an
IP-based directory structure, or in tcpdump binary format to a single log file. The
decoded format logging will allow fast analysis of data collected by the system. The
tcpdump format is much faster to record to the disk and should be used in instances
where high performance is required. Logging can also be turned off completely,
leaving alerts enabled for even greater performance improvements. Alerts may be
sent to system log, logged to an alert text file in two different formats, or sent as
popup messages.

1.7 Challenges of Intrusion Detection:

Intrusion detection systems in theory looks like a defense tool which every e-
organization needs. However there are some challenges the organizations face while
deploying an intrusion detection system. These are discussed below.

1.7.1 necessity for human intervention

IDS technology itself is undergoing a lot of enhancements. It is therefore very
important for organizations to clearly define their expectations from the IDS im-
plementation. IDS technology has not reached a level where it does not require
human intervention. Of course today’s IDS technology offers some automation like
notifying the administrator in case of detection of a malicious activity, shutting the
malicious connection for a configurable period of time, dynamically modifying a
router’s access control list in order to stop a malicious connection etc. But it is still
very important to monitor the IDS logs regularly to stay on top of the occurrence
of events. Monitoring the logs on a daily basis is required to analyze the kind of
malicious activities detected by the IDS over a period of time. Today’s IDS has not
yet reached the level where it can give historical analysis of the intrusions detected

8

over a period of time. This is still a manual activity. It is therefore important for
an organization to have a well-defined Incident handling and response plan if an
intrusion is detected and reported by the IDS. Also, the organization should have
skilled security personnel to handle this kind of scenario.

1.7.2 Various deployment options for various needs

The success of an IDS implementation depends to a large extent on how it has
been deployed. A lot of plan is required in the design as well as the implementation
phase. In most cases, it is desirable to implement a hybrid solution of network based
and host based IDS to benefit from both. In fact one technology complements the
other. However, this decision can vary from one organization to another. A network
based IDS is an immediate choice for many organizations because of its ability to
monitor multiple systems and also the fact that it does not require a software to be
loaded on a production system unlike host based IDS. Some organizations implement
a hybrid solution. Organizations deploying host based IDS solution needs to keep
in mind that the host based IDS software is processor and memory intensive. So it
is very important to have sufficient available resources on a system before installing
a host based sensor on it.

1.7.3 Sensor to manager ratio

It is important to take care of sensor to manager ratio. There is no thumb
rule as such for calculating this ratio. To a large extent it depends upon how many
different kinds of traffic is being monitored by each sensor and in what environment.
Lot of organizations deploy a 10:1 ratio. Some organizations go for 20:1 and some
others 15:1. It is very important to design the baseline policy before starting the
IDS implementation and avoid false positives. A badly configured IDS sensor may
send a lot of false positives to the console and even a 10:1 or even better sensor to
console ratio can be inadequate.

1.7.4 Switched environments and NIDS

While deploying a network based IDS solution, it is important to keep in mind
one very important aspect of the network based IDS in switched environment. Unlike
a HUB based network, where a host on one port can see traffic in and out of every
other port in the HUB, in a switched network however, traffic in and out of one port
can not be seen by a host in another port, because they are in different collision
domains. A network based IDS sensor needs to see traffic in and out of a port to
detect any malicious traffic. In a switched environment, port mirroring or spanning
is required to achieve this. One entire VLAN can be spanned to one port on which
the network based IDS sensor is installed. Although this is a solution, there may
be performance issues for a busy network. If all the 10/100 Mbps ports in a VLAN
are mirrored to another 10/100 Mbps port in the VLAN, the IDS sensor may drop
traffic, as the combined traffic of all the ports could be more than 100 Mbps. Now,
Gigabit port speed being available, this becomes an even more difficult challenge.

9

Cisco systems has an IDS module for Catalyst 6000 series switch which can sit on the
switch back plane and can monitor traffic right off the switch back plane. But this
solution is yet to scale to Gigabit speed. This module supports traffic only up to 100
Mbps as of now. The portability of network based IDS in a switched environment
is still a concern. For that our architecture will contain host-based IDSs.

1.8 Context in IDS

IDSs generate large volumes of data, which subsequently security practitioners
need to inspect. This information is presented in textual form, as is the case for most
of the existing commercial IDSs, then this places a high burden on the practitioners
to make sense of the data. So IDSs require a lot of work and time resources. This
demand for resources happens both in the pre-processing IDS set-up phase and the
monitoring and analysis phases. One of the main reasons for this time consump-
tion is that IDSs generate alerts without considering the stat of the network it’s
deployed for, this results in increase of non-relevant alerts that consume the security
practitioner’s time analyzing them.

1.8.1 Context definition

By saying context we refer to all information about the protected network which
contain informations about the ip address existing inside the network, operating
systems on the network’s machines, opened ports, available protocols, tools and
programs installed each machine.

1.8.2 context Importance

To reduce the amount of time and work required from the security practitioners
we suggest introducing the context detection to automate a filtering process upon the
alerts generated by the IDS. This filtering process improves not only time consump-
tion but also the detection rate and reduces the rate of false positives (non-relevant
alerts) in IDS.

1.8.3 Context changes

The context of a given network is not always consistent as the number of machines
in an organization may increase or decrease and each machine may have changes
concerning it’s operation system, open new ports or close old ones and installing,
uninstalling or updating some tools or programs. If this observation is not taken
into consideration, this filtering approach may become useless in the case where it
does not filter alerts that do not affect the protected network or even worse become
harmful where it filters relevant alerts to the protected network. For that context
changes detection should also be part of this work.
in the next chapter we will discus IDSs evaluation and existing benchmarks.

10

Chapter 2

Evaluation of IDSs

Evaluating intrusion detection systems is very important on enhancing the com-
puter security. It provides essential data and conclusions to help developers improv-
ing their IDS and enable users to know the capability and limitations of the IDS
which is in use. In the real world, most Intrusion Detection Systems are implemented
based on some unproven assumption concerning system performances . Installing
an IDS program without careful evaluation may bring potential risks, since people
may relax vigilance on those assumptions and neglect to construct some effective
security posture that make use of detection and prevention mechanisms. Evaluating
intrusion detection systems enable scientists to study the way an intrusion detection
system detects, monitors and, possibly, prevents attacks in run-time. In addition,
they could collect the result of attacks in the experiment of an evaluation. This is
helpful for scientists to find out the methods about repairing damages of computer
system; they can also study attack mechanisms of the malware.

2.1 Benchmarks

Most existing work on network traffic generation have not focused on applicabil-
ity in the area of Network Security and evaluation of anomaly-based techniques.

2.1.1 Traffic replay

The authors in Hong and Wu (2005) introduce a tool to replay previously
recorded TCP sessions and adjust the replay according to a set of traffic param-
eters. Their work is focused on re-modeling traffic replay.

2.1.2 Model generation techniques

Cao et al. (2004); Lan and Heidemann (2002); Weigle et al. (2006) attempt to
model a set of features from observed real traffic and use it to generate statistically
similar distributions in simulation environments. Apart from the fact that they do
not address actual traffic generation, their center focus is on extracting distributions
on a wide-area scale.

11

2.1.3 Specific protocols assessment

Kayacik and Zincir-heywood (2005); Mutz et al. (2003); Sommers et al. (2004);
Sommers et al. (2005); Valgenti and Kim (2011) explore methods to assess firewalls
and IDSs on specific protocols.

2.1.4 Valgenti and Kim (2011)

Authors use IDS signature sets to create traffic with payloads that partially
match the signatures.

2.1.5 Sommers et al. (2005)

the authors describe a traffic generation framework to evaluate stateful, protocol-
aware intrusion detection systems by employing a trust-based strategy to separate
normal traffic from malicious activity in a given trace. The malicious portion of their
traffic is generated via their previous work (Sommers et al., 2004) which defines a
framework to flexibly compose attack traffic. Their method, however, is limited
to generating simple attack vectors and thus is incapable of being applied to a
test-bed environment for the generation of sophisticated intrusions. These types of
intrusions include reconnaissance, multiple step attacks, host pivoting, tunneling or
the generation of an infrastructure as seen in botnets.

2.1.6 Wright et al. (2010)

authors construct Markov chain models of the way real users interact with each
application in terms of event ID, process ID, and arrival time of each COM (Compo-
nent Object Model) event on a given system. This model is then used to generated
event streams and drive applications. Their central idea revolves around simulating
the behavior of a user at the operating system GUI-based application level while
interacting with lightweight server-side honeypots which simulate local and remote
servers. Thus, network activity is a by-product of application execution.

2.1.7 Sommer and Paxson (2010)

It is worthy to note that this work have made interesting observations on anomaly-
based network intrusion detection mechanisms and have provided recommendations
to further improve research in this field. As part of their recommendations, they
state that the main objective of evaluation is to gain insight into a system’s capa-
bilities and how it functions. They indicate that in order to do so, data-sets play a
key role in demonstrating how well a system behaves. However, they also acknowl-
edge the fact that obtaining such data-sets is very difficult and must be done in
collaboration with network operators in return for potential viable results.

12

2.1.8 real network traces

This includes CAIDA (CAIDA, 2011), PREDICT (RTI International, 2011),
The Internet Traffic Archive (Lawrence Berkeley National Laboratory, 2010), LBNL
traces (Lawrence Berkeley National Laboratory and ICSI,), DARPA datasets(Lincoln
Laboratory, 2011), KDD’99 datasets (University of California, 2011), and DEF-
CON(The Shmoo Group, 2011). Although many of these traces are invaluable to
the research community, many, if not all, fail to satisfy one or more of the objectives.

CAIDA

CAIDA collects many different types of data and makes it available to the re-
search community. Most of CAIDA’s data-sets are very specific to particular events
or attacks. Many of its longer traces are anonymized backbone traces with their
payload, sometimes their protocol information, destination, and so forth completely
removed. All of the data-sets mentioned above have similar shortcomings which will
no doubt affect their effectivity as bench-marking data-sets. From other aspects,
data-sets provided by The Internet Traffic Archive suffer from heavy anonymization
and lack the necessary packet information. In addition, they are mostly from the
90’s which requires further analysis as to whether they still represent today’s traffic
patterns.

LBNL

LBNL’s internal enterprise traces are full header network traces, without payload
and suffer from heavy anonymization to the extend that scanning traffic has been
extracted and separately anonymized as to remove any information which could
identify an individual IP.

DARPA

The series of DARPA data-sets were constructed for network security purposes,
to simulate the traffic seen in a medium sized US Air Force base. Upon careful
examination of DARPA’98 and ’99 in Mchugh (2000) and Brown et al. (2009), many
issues have been raised including their failing to resemble real traffic, and numerous
irregularities due to the synthetic approach to data generation and insertion into
the dataset.

KDD’99

The KDD’99 dataset is also built based on the data captured in DARPA’98
which nonetheless suffers from the same issues.

DEFCON

The DEFCON dataset are also commonly used for evaluation of IDSs. The traffic
produced during their Capture The Flag (CTF) competition is very different from

13

the real-world network traffic since it mainly consists of intrusive traffic as opposed
to normal background traffic. Due to this short-coming, this dataset is usually used
for evaluation of alert correlation techniques.

Table 2.1 summarizes the comparison between the aforementioned datasets All
Datasets except for DEFCON were captured or generated over a realistic network
configuration. However, DARPA-99 and KDD-99 do not contain a consistent trace
due to post-capture synthetic attack traffic insertion. Most available datasets are
unlabeled as labeling is laboursome and requires conducting a comprehensive search
to tag malicious activity. Although Intrusion Detection Systems help to reduce the
work, there is no guarantee that all malicious activity is labeled. This has been a
major issue with all data-sets and one of the reasons behind the post-insertion of
attack traffic in DARPA-99, so that malicious traffic can be labeled in a determin-
istic manner.

Realistic
network
configu-
ration

Realistic
traffic

labeled
data-set

total
inter-
action
capture

complete
capture

Diverse
/ mul-
tiple
attack
scenar-
ios

CAIDA (large
traffic data-sets)

Yes(a) Yes No No(c) No(f) No(b)

Internet Traffic
Archive

BC Yes(a) Yes No Yes No(g) No(b)

The rest No No(e)

LBNL Yes(a) Yes No No(d) No(h) No(b)

DARPA-99
KDD-99

Yes No Yes Yes Yes Yes(i)

DEFCON No No(j) No Yes Yes Yes

Table 2.1: Comparing various data-sets[10]

(a) No network configuration information available.
(b) Basic captured network traces.
(c) Only external traffic seen on the backbone.
(d) Inter-subnet traffic only.
(e) No payload available. Most are simply reduced/summarized trace information.
Local IP addresses are usually renumbered.
(f) No payload available. In some cases, protocol information, destination, and flags
have been also been removed.
(g) Contain no packet contents and no host or protocol information.
(h) No payload available. Suffers from heavy anonymization.

14

(i) Does not necessarily reflect current trends.
(j) Only intrusive traffic.

The most important aspects of evaluating IDSs are the rate of true positives
where the IDS alerts on a malicious activity which is in fact malicious, the rate
of true negatives where the IDS ignores an activity which is in fact harmless, the
rate of false positives where the IDS alerts on a malicious activity which is in fact
harmless and the rate of false negatives where the IDS ignores an activity which is in
fact malicious. The efficiency of an IDS is improved by maximizing the rate of true
positives and minimizing the rate of false negatives and the rate of false positives
which is the focus of our thesis.

15

Chapter 3

Modeling and realization

This chapter consists of two major sections modeling and realization. The first
presents the preparation, tools to be used and then setting up the network for the
realization stage. In the realization section we will go through the details of the
work that’s been done. Figure 4 illustrates in general the steps of this work.

16

Figure 3.1: general procedure

17

3.1 Objective

Our objective here is to propose a method that reduces the number of false
alarms and generate a base of attack that manipulates the change of context. Intru-
sion detection systems aim to analyze the actions that occur in a computer network
to detect intrusion attempts. However, the success of an attack is based on the exis-
tence of vulnerabilities exploited by the attacker. These vulnerabilities are identified
by a set of contextual information such as installed services, applications, network
topology, and so on. One of the biggest problems with IDSs is the sheer number
of alerts generated, which includes a large percentage of false positives. Alerts are
relevant if the attack exploits existing vulnerabilities in that network. However, this
information changes frequently. Therefore, to improve the detection rate and re-
duce the number of false positive alerts, we aim in this project to propose a method
that reduces the number of false alarms and that can detect the change of con-
text. In order to validate this method, we need to generate a context-based attack
database that can describe the context change that does not exist in the other attack
databases.

3.2 modeling

The following subsections will contain details about the network that will be used
as the test-bed, the attack used to evaluate the IDS efficiency, Traffic generation and
capturing, the IDS we used for the purpose of this thesis, how to collect information
about the context of our network and then alerts filtering procedure.

3.2.1 Test-bed

A challenge we encountered during the installation and configuration process was
determining an appropriate test bed environment for the IDS. In general, an IDS
must be installed in a real environment to have a sense of its benefits. To deal with
the complexity of validating IDS configuration, we suggested testing the IDS in a
smaller network, as to reduce the amount of traffic to contend with when testing.
The architecture of our network consists of 4 machines connected to each other and
to the internet through a switched modem.The first machine is the attacker machine
running Kali Linux with the ip address 192.168.8.121, the second one runs windows
7 with the ip address 192.168.8.122 acting as the server and administrator device
for monitoring, the third runs windows 8.1 having 192.168.8.123, the forth also is
running windows 10 with the ip 192.168.8.124. The second and forth machines have
a vulnerable versions of WinRAR installed in them which allows the extraction of
ACE extension files but the third machine has the fixed version of WinRAR that
does not treat ACE files as archive files, so no extraction option is permitted.

Then after running the initial test we made some tweaks on the network to insure
that the idea of detecting context changes is necessary and does work. The changes
made were adding a fifth machine and removing the vulnerability from one of the
vulnerable machines.

18

Figure 3.2: Test-bed

3.2.2 Attack scenario: path traversal

Path traversal attack (also known as directory traversal) aims to access files and
directories that are stored outside the root folder. In the WinRAR tool versions
prior to and including 5.61. when crafting the filename field of the ACE format (in
UNACEV2.dll) there is a path traversal vulnerability. When the filename field is
manipulated with specific patterns, the destination (extraction) folder is ignored,
thus treating the filename as an absolute path. For this purpose we used the Metas-
ploit framework that is preinstalled in Kali Linux distribution.

Metasploit framework

The metasploit framework is a sub project of the open source Metasploit project,
and the metasploit project is known for anti forensics, penetration testing and eva-
sions tools that provide the infrastructure, content, and tools to perform penetration
tests and extensive security auditing. A module in Metasploit is a standalone code,
or software, that extends functionality of the Metasploit Framework, it can be an
exploit, auxiliary, payload, no operation payload (NOP), or post-exploitation mod-
ule. The module type determines its purpose. For example, any module that opens
a shell on a target is an exploit module.[16] The framework is a tool for developing
and executing exploit code against a remote target computer. Some of the most
known exploits can be found in the metasploit framework. It can be used by secu-
rity researchers to find potential vulnerabilities, but it can also be used by cyber

19

Figure 3.3: Test-bed after context changes

Figure 3.4: Vulnerability presentation in XML

criminals to break into systems. When used by security researchers, vulnerabilities
in systems can be found and fixed. From the version 3.0, the metasploit frame-
work have started to include fuzzing tools, which discover software vulnerabilities,
rather than writing exploits for currently public bugs. The framework is run by first
choosing and configuring an exploit, checking whether the intended target system
is susceptible to the chosen exploit, choosing the encoding technique to encode the
payload so that the intrusion prevention system (IPS) will not catch the encoded
payload, and executing the exploit. The possibility to combine any exploit with
any payload is a major advantage, since it facilitates the tasks of attackers, exploit
writers and payload writers.
The module that exploits the ACE vulnerability will attempt to extract a payload
to the startup folder of the current user. It is limited such that we can only go back
one folder. Therefore, for this exploit to work properly, the user must extract the
supplied ACE file from one folder within the user profile folder (e.g. Desktop or
Downloads). User restart is required to gain a shell.

20

Reverse shell

A reverse shell is a type of shell in which the target machine communicates back
to the attacking machine. The attacking machine has a listener port on which it
receives the connection, which by using, code or command execution is achieved.

Figure 3.5: Reverse Shell

3.2.3 Traffic generation and capturing

The traffic that the IDS is going to be tested by must be a combination of normal
traffic and malicious traffic to be able to have realistic result that can be projected
on real world situations.

Background traffic

To determine the rate of non-relevant alerts it’s necessary that the traffic gen-
erated is not just the attack scenario. We had the machines communicating and
downloading files from the server as well as generating normal web and mail traffic.

Capturing

Capturing traffic facilitate the testing procedure, instead of generating traffic
multiple times for multiple tests we can capture the traffic once in a pcap (The
libpcap file format is the main capture file format used in TcpDump/WinDump,
snort, and many other networking tools.[23]) file and then run as much tests as
required to reach our objective. A well known tool for traffic capturing is Wireshark.

Wireshark Wireshark is the world’s foremost and widely-used network proto-
col analyzer. It displays what’s happening on a network at a microscopic level and
is the de facto (and often de jure) standard across many commercial and non-profit
enterprises, government agencies, and educational institutions. Wireshark develop-
ment thrives thanks to the volunteer contributions of networking experts around the
globe and is the continuation of a project started by Gerald Combs in 1998.
Wireshark has a rich feature set which includes the following:

21

• Deep inspection of hundreds of protocols, with more being added all the time.

• Live capture and offline analysis

• Standard three-pane packet browser

• Multi-platform: Runs on Windows, Linux, macOS, Solaris, FreeBSD, NetBSD,
and many others

• Captured network data can be browsed via a GUI, or via the TTY-mode
TShark utility

• The most powerful display filters in the industry

• Rich VoIP analysis

• Read/write many different capture file formats: tcpdump (libpcap), Pcap NG,
Catapult DCT2000, Cisco Secure IDS iplog, Microsoft Network Monitor, Net-
work General Sniffer® (compressed and uncompressed), Sniffer® Pro, and
NetXray®, Network Instruments Observer, NetScreen snoop, Novell LANa-
lyzer, RADCOM WAN/LAN Analyzer, Shomiti/Finisar Surveyor, Tektronix
K12xx, Visual Networks Visual UpTime, WildPackets EtherPeek/TokenPeek/AiroPeek,
and many others

• Capture files compressed with gzip can be decompressed on the fly

• Live data can be read from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Blue-
tooth, USB, Token Ring, Frame Relay, FDDI, and others (depending on your
platform)

• Decryption support for many protocols, including IPsec, ISAKMP, Kerberos,
SNMPv3, SSL/TLS, WEP, and WPA/WPA2

• Coloring rules can be applied to the packet list for quick, intuitive analysis

• Output can be exported to XML, PostScript®, CSV, or plain text[22]

3.2.4 Deployed IDS

To chose which one of the available IDSs fits our needs we should start by compar-
ing them. A vast verity of IDSs are available for commercial, research and personal
use. Open-source IDSs are the easiest IDSs to obtain so we sought the comparison
between three of the most known of them which are Snort, Bro and Suricata.

Snort

Snort was created by Martin Roesch in 1998, and is an open source network in-
trusion detection and prevention system. Snort can be used in three different ways;
as a packet sniffer like tcpdump, a packet logger or as a network intrusion detec-
tion and prevention system. When used as a packet sniffer, Snort will read network
packets and display them on the console, and when used as packet logger Snort

22

will log packets to disk. In intrusion detection mode it will monitor the network
traffic and analyze the traffic against a rule set defined by the user. In intrusion
detection mode, Snort uses a number of rules that define anomalous traffic. Most
of these rules are made by Sourcefire, and other rules are made by the community,
and it is possible to make own rules as well. In addition to rules, Snort has sev-
eral preprocessors which enable modules to view and alter packets before they get
inspected by the intrusion detection system. When running Snort, it works by de-
tecting and reporting malicious traffic or so called events. The process of reporting
events can be configured through event handling. By configuring thresholds one can
reduce the number of logged alerts for noisy rules. This helps Snorts to handle more
traffic. Snort has the capability to or can be configured to send output to various
locations, when certain Snort rules is triggered. The most common output mod-
ule is the alert syslog. Other output modules exist, such as ’alert fast’ and ’alert
full’. ’Alert fast’ put a fast entry to the file specified, while ’alert full’ sends the
entire packet header along with the event message. Snort is capable of performing
real time traffic analysis, which means that it can detect ongoing intrusions. It can
perform logging on IP networks, perform protocol analysis, content searching and
content matching, and it can be used to detect a variety of attacks and probes, such
as bugger overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting
and much more. Snort can be combined with other software, such as SnortSnarf,
OSSIM, sguil, Snorby, Razorback and Basic Analysis and Security Engine (BASE)
to provide visual representation of intrusion data. Another important thing with
Snort is that one need to registrate at Snorts website to be able do download the
ruleset. The official snort rules is the rules maintaiend by the vulnerability research
team (VRT). Sourcefire has to keep Snort as an open platform, and they host rules
submitted by the communiy (Snort users). These rules are distributed under the
GPL and are freely available to all Snort users.

Figure 3.6: Snort’s architecture

Bro

Bro was founded by Vern Paxson in 1998, and is an open source UNIX based
network intrusion detection system. Bro passively monitors network traffic and look
for malicious traffic. It detect intrusions by first parsing network traffic and then

23

execute event oriented analyzers that compare the activity with patterns deemed
malicious. The analyses include detection of specific attacks (signature and events)
and unusual activities (anomalous). Bro is normally placed at a key network junc-
tion, where it can be used to monitor all incoming and outgoing traffic. Bro provides
functionality such as collecting, filtering and analyzing of network traffic. It is capa-
ble of giving a detailed analysis of popular protocols, and the output of this analysis
is several events that describe the observed activity. Bro comes with a set of pol-
icy scripts, which is designed to detect the most common internet attacks, while
limiting the number of false positives, in example, alerts that confuse uninteresting
activity with the important attack activity. Bro policy scripts are programs written
in the Bro language, and the scripts contain rules that describe what kind of traffic
or activities that are looked as malicious. When analyzing the network activity, it
initiates actions based on the analysis. The policy incorporates a signature match-
ing facility that looks for traffic that matches these signatures. These signatures
are expressed as regular expressions, and Bro’ signature matching capability allows
Bro to not only examine network content, but to understand the context of sig-
nature, greatly reducing the number of false positives. In addition to signatures,
Bro can also analyze network protocols, connections, data amounts, incorporating
it into analysis of new activity. The policy script can generate output files of ac-
tivity on the network, and it can generate problem alerts to event logs, including
the operating system syslog. As well, the scripts can execute programs, which, in
turn, send email messages, page the on-call staff, automatically terminate existing
connections, or with appropriate additional software, insert access control blocks
into a routers access control list. A site can adapt Bro’s operation by its specialized
policy language and when new attacks is discovered. If anything is detected, Bro
can generate a log entry, alert the operator in real time and execute an operating
system command (terminate a connection for example). As well, Bro’s detailed log
files can be used to forensics.

Suricata

Suricata is an open source intrusion detection and prevention system developed
by the ’Open Information Security Foundation’. The beta version was released in
December 2009, while the first stable version came in July 2010. Suricata was
created to bring new ideas and technology to the intrusion detection field. Open
Information Security Foundation (OISF) provides Suricata with intrusion detection
and prevention rule set, and the process of maintaining optimal security level is sim-
plified by the Suricata engine. Suricata is able to use rules from different resources,
such as Emerging Threats and Snort VRT rules, to provide the best rule set possible.
As other network intrusion detection systems, Suricata monitor network traffic and
create alarms/alerts logs when malicious traffic is detected. Suricata is designed
to be compatible with other security components, and it offers features such as
unified output functionality, and it is possible to accept calls from other applica-
tions through its pluggable libraries. Suricata offers increased speed and efficiency
in network traffic analysis with its multi-threaded engine. In addition to hardware
acceleration, the engine is build to utilize the increased processing power of the

24

latest multi-core CPU. The engine supports and provides functionality such as the
latest Snort VRT, Snort logging, rule language options, multi-threading, hardware
acceleration, unified output enabling interaction with external log management sys-
tems and IPv6. As well, it supports and provides functionality such as rule based
IP reputation, library plug ability for interaction with other applications, statistics
output, and a simple and effective getting started user manual.[1]
Table 3 summarizes the comparison.

Parameters
Open source tools

Snort Bro Suricata

Developer Sourcefire, Inc.
National Science
Foundation (NSF)

Open Information
Security Foundation
(OISF)

Multi-thread No No Yes

Operating Sys-
tem Compati-
bility

Any Unix like system Any

Rules Support
VRT Snort rules
SO rules Emerging
Threats rules

Contextual Signa-
tures

VRT Snort rules
Emerging Threats
rules

Installation /
deployment

Installation also
available from pack-
ages.

Manual installation Manual installation.

User commu-
nity

Large Small Small

Documentation Well documented Few resources Few resources

GUI Support A lot Few Few

High Network
speed Support

Medium High High

Table 3.1: Snort vs Bro vs Suricata.[24]

Based on the this comparison we chose Snort for it’s compatibility with windows
over Bro and for the availability resource wise over Suricata. When Snort detects a
suspicious behavior, it sends a real-time alert to syslog, a separate ’alerts’ file, or to
a pop-up window. NSS Group, a European network security testing organization,
tested Snort along with intrusion detection system (IDS) products from 15 major

25

vendors including Cisco, Computer Associates, and Symantec. According to NSS,
Snort, which was the sole open source freeware product tested, out-performed the
proprietary products. We installed the IDS on the administrator machines in our
sub-network and configured it to send it’s alerts to a separate alert file of the type
CSV to facilitate the filtering process.

IDMEF:

The purpose of the Intrusion Detection Message Exchange Format (IDMEF) is
to define data formats and exchange procedures for sharing information of interest
to intrusion detection and response systems and to the management systems that
may need to interact with them.
The Intrusion Detection Message Exchange Format (IDMEF) is intended to be a
standard data format that automated intrusion detection systems can use to report
alerts about events that they deem suspicious. The development of this standard
format will enable interoperability among commercial, open source, and research
systems, allowing users to mix-and-match the deployment of these systems accord-
ing to their strong and weak points to obtain an optimal implementation. The
IDMEF data model is an object-oriented representation of the alert data sent to
intrusion detection managers by intrusion detection analyzers.
Two implementations of the IDMEF were originally proposed to the Intrusion Detec-
tion Working Group (IDWG): one using the Structure of Management Information
(SMI) to describe a Simple Network Management Protocol (SNMP) MIB, and the
other using a DTD to describe XML documents. These proposed implementations
were reviewed by the IDWG at its September 1999 and February 2000 meetings; it
was decided at the February meeting that the XML solution was best at fulfilling
the IDWG requirements.[21]
Snort does not provide an option to send alerts in IDMEF, there is another IDS
known as prelude but due to the complexity of it’s setup procedure, lack of clear
documentation and depending on a large number of external packages we opted to
send alerts to a CSV file containing the same attributes needed for IDMEF and then
using a tool that converts CSV files to XML we converted the alert files to XML
which serves the same purpose of IDMEF as it’s essentially an XML implementa-
tion.

3.2.5 Context and context’s changes detection

This part is what our work depend on the most, so it’s critical to be able to
read all necessary information about our network’s machines. For that we’ve found
a tool that can gather a lot of details about any machine that’s running windows.

26

Figure 3.7: Example of an alert presentation in XML file

SIW

Advanced System Information for Windows is a tool that analyzes a computer
and gathers detailed information about system properties and settings (Software
Information, Hardware Information, Network Information and Tools) and displays
it in an extremely comprehensible manner. IT can also create a report file (HTML,
JSON, CSV, TEXT or XML).
The System Information is divided into few major categories:

Software Information:
Operating System, Software Licenses (Product Keys / Serial Numbers), Passwords

Recovery, Installed Programs, Applications, Security, Accessibility, Environment,
Regional Settings, File Associations, Running Processes, Loaded DLLs, Drivers, NT
Services, Autorun, Scheduled Tasks, Databases, Audio and Video Codecs, Shared
DLLs, ActiveX, MMC Snap-Ins, Shell Extensions, Event Viewer, Certificates, etc.

Hardware Information:
System Summary, Motherboard, BIOS, CPU, Memory, Sensors, Devices, Chipset,

PCI/AGP, USB and ISA/PnP Devices, System Slots, Network Adapters, Video
Card, Monitor, Sound Devices, Storage Devices, Logical Disks, Disk Drives, CD/DVD
Devices, SCSI Devices, S.M.A.R.T., Ports, Battery and Power Policy, Printers, etc.

Network Information:
Basic/Extended Information about Configuration, Statistics, Connections, Active

Directory (Computers, Groups and Users), Shares, Open Ports, etc. [20]

27

Figure 3.8: Example of a machine’s information as presented in XML file

Figure 3.9: Example of an installed tool’s information as presented in XML file

3.2.6 Filtering

After gathering all necessary informations about our network using the tools
mentioned above, we can now go to the filtering process, for that we have pro-
grammed a tool that can filter the alerts detected by snort considering our context,
we have considered every alert as relevant if it verifies some conditions and rules:

• First of all the destination ip must be an ip of a machine of our network.

• Second, the destination ip must be an ip of a vulnerable machine.

– A machine is vulnerable when it has one of the vulnerable applications
installed.

– In our work we have just one vulnerable application Winrar 5.60 (64-bit).

• Finally the source ip must be an external ip that means that the connection
that caused the alert comes from a machine which is not in our network

The tool have many functionalities other than filtering, it can also:

• display all alerts without filtering.

• display the total number of alerts.

• display the total number of relevant alerts.

28

• display the rate of non-relevant alerts.

Note that all the functionalities are available before and after context change.

3.3 Realization

In this section we will be going in depth explaining the steps taken to achieve our
final objective. The steps that figure 3.1 page 17 presented as the general procedure
in the section above were also followed here.

3.3.1 Network setup

We started first by connecting our machines to the wireless modem and set their
ip addresses to be static and gave each machine a unique address. This was the first
and basic step that’s necessary for our network to work and to be able to generate
some traffic between the machines themselves or one of them and outside network.

3.3.2 Starting traffic

The second step was to start capturing the traffic that’s going to run through
each machines wireless interface. For that we ran Wireshark on each one of the
machines then selected the interface to capture traffic coming through and leave it
capturing until our scenario is done.
We ran two captures for the purpose of this work, one for the initial configuration
and another one after tweaking some changes on the network to prove the effects
of context changes on the rate of detection. Figure 3.10 shows the home screen of
Wireshark and figure 3.11 shows the capturing screen after selecting the interface
to capture.

Collecting context information

To detect the details about the network’s context we collect informations from
each machine on the network by running the previously mentioned tool (SIW) on
every machine in the network and extracting the necessary informations to an XML
file and combining all the information in the administrator machine to be used when
filtering alerts.

Attack

To run the attack on a machine first we need to generate the malicious file using
the tool Metasploit described above. The exploit we’re using is the path traversal
vulnerability in WinRAR which can be found in Metasploit under ”exploit/win-
dows/fileformat/winrar ace”.
Figure 3.12 shows the commands necessary to configure the exploitation module and
then setting a listener on the attacker machine to wait for a target to start a session

29

Figure 3.10: Wireshark

when setting up this exploit we need to specify the port (LPORT) on which the at-
tacker machine is going to receive returned data on and also the ip address (LHOST)
of the attacker. Then for this exploit to work we need the target to open a reverse
shell session, for this purpose we set the reverse shell payload that is found under
”windows/meterpreter/reverse shell” for the exploit. This payload will be included
in a malicious file that Metasploit generates and archive it inside an ACE format nd
when the target user extract the contents of this archive the malicious file will be ex-
tracted to the startup folder and if harmless files are included they will be extracted
to the same location where the archive file was downloaded. Adding harmless files
to the archive improves the legitimacy of that archive, To add files we should list
the directories of each file we want to add inside a text file and then calling them by
the ”set FILE LIST ..”. Exploit command tells Metasploit to generate the archive
file with the given options. after generating the file we need a way to get the target
users to download it, we suggested sending an email on behalf of admin@.. with a
domain similar to a legitimate company to all the users in the network -to improve
the possibility of finding a vulnerable machine- containing a link to the archive file
on the attacker machine. Now all that’s left is to set a listener to handle the con-
nections from targets and wait. Listener for reverse shell connections in Metasploit
is under ”windows/multi/handler”, it requires similar options to the exploit, so we
need to set the same payload, port and ip address we’ve previously set for the Win-
RAR exploit. When a user of any vulnerable machine download the archive and
extract it then it’s only a matter of time, whenever he restarts his machine a session
will be opened following the execution of the malicious file as a startup program.

30

Figure 3.11: traffic capture

meanwhile each user is using his machine generating normal traffic.
When a session is opened the attacker have a wide variety of interaction options from
listing the running processes to interacting with the machine’s web cam, download-
ing files from the target, uploading files to it also and a lot more, interaction options
can be found by running the command ”help”.

In our case we found two vulnerable machines that opened sessions successively
(figure 3.13), then we can only start interacting with only one machine at a time.
we started interacting with the first one and migrated the obtained connection to
a system process to prevent the session from getting closed if the user notice the
malicious file and stop it (figure 3.14).

3.3.3 Filtering tool

In order to program our filtering tool we have used java as programming lan-
guage and Netbeans as IDE, we have started by creating a user interface using swing
we have added a JTabbedPane to have two tabs one for the before context change
state and the other for the after context change state.
In every tab we have added two JButtons the first one to show all alerts and the
second one to show only the relevant alerts, we have also added some JLabels to
display informations about our network as number of machines, number of intalled
apps...etc, and finally we have added a JTable in each tab to display alerts in.
To gather informations from xml files and verify every xml file validity we have used

31

Figure 3.12: Configuring the Metasploit module

jdom and saxbuilder libraries.
We have programmed a function Is Vulnerable(String pc, String source) which re-
turns true if the pc with machine name ”pc” is vulnerable in the state where xml
files are in the path ”source”, if it’s not it returns false.
In order to know if a pc is vulnerable we test if there is an application installed on
it that is vulnerable and verifies some conditions:

• The version of the installed application must be inferior or equal the version
of vulnerable application.

• The OS platform of the pc must be one of the OS platforms that the vulnerable
application can affect.

• The OS version of the pc must be one of the OS versions that the vulnerable
application can affect.

• If a pc verifies these condition but the application version is unknown it is
considered as vulnerable.

To know if an alert is relevant we test if its destination ip is an ip of a vulnerble
machine and its source ip is not an ip of one of our machines.
When the tool starts it asks the user to enter the paths of the directories where are
located xml files for the before and after context change states then it analyzes the
xml files to get the results(figure 3.15).

32

Figure 3.13: Sessions opened

Figure 3.14: Migrating the connection

33

Figure 3.15: Asking for directories paths

34

Chapter 4

Results and discussions

At the end of our work we have remarked that snort doesen’t detect the metas-
ploit session openning, also we have tried many metasploit functionnalities like down-
loading and uploading files to the victim, taking screen capture of the victim desktop
and making snap record but snort didn’t detect any of these intrusions, however it
had detected the session closing.
After gathring all the informations about our network in xml files using the tools
mentionned above we have used our tool to show all alerts(figure 4.1,figure 4.3),
show relevant alerts(figure 4.2,figure 4.4), and show our network informations as:

• Total number of machines.

• Total number of installed applications.

• Total number of vulnerable applications.

• Total number of vulnerable machines.

• Total number of alerts.

• Total number of relevant alerts.

• The rate of non-relevant alerts.

35

Figure 4.1: Displaying all alerts before context change

Figure 4.2: Displaying relevant alerts before context change

36

Figure 4.3: Displaying all alerts after context change

Figure 4.4: Displaying relevant alerts after context change

37

Bibliography

[1] https://www.duo.uio.no/bitstream/handle/10852/8951/Rodfoss.pdf?sequence=1,
Jonas Taftø Rødfoss, Comparison of Open Source Network Intrusion Detection
Systems, UNIVERSITY OF OSLO Department of Informatics(2011).

[2] Lunt, Teresa F., ”Detecting Intruders in Computer Systems,” 1993 Conference
on Auditing and Computer Technology, SRI International.

[3] Teng, Henry S., Chen, Kaihu, and Lu, Stephen C-Y, ”Adaptive Real-time
Anomaly Detection Using Inductively Generated Sequential Patterns,” 1990
IEEE Symposium on Security and Privacy.

[4] Heberlein, L. Todd, Dias, Gihan V., Levitt, Karl N., Mukherjee, Biswanath,
Wood, Jeff, and Wolber, David, ”A Network Security Monitor,” 1990 Sympo-
sium on Research in Security and Privacy, Oakland, CA, pages 296–304.

[5] Winkeler, J.R., ”A UNIX Prototype for Intrusion and Anomaly Detection in
Secure Networks,” The Thirteenth National Computer Security Conference,
Washington, DC., pages 115–124, 1990.

[6] Jackson, Kathleen, DuBois, David H., and Stallings, Cathy A., ”A Phased
Approach to Network Intrusion Detection,” 14th National Computing Security
Conference, 1991.

[7] Paxson, Vern, ”Bro: A System for Detecting Network Intruders in Real-Time,”
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

[8] Kohlenberg, Toby (Ed.), Alder, Raven, Carter, Dr. Everett F. (Skip) Jr., Esler,
Joel., Foster, James C., Jonkman Marty, Raffael, and Poor, Mike, ”Snort IDS
and IPS Toolkit,” Syngress, 2007.

[9] https://www.irjet.net/archives/V4/i2/IRJET-V4I2366.pdf, Rashmi Ravindra
Chaudhari, Sonal Pramod Patil, Intrusion detection system: classification,
techniques and datasets to implement, International Research Journal of Engi-
neering and Technology(2017).

[10] https://www.journals.elsevier.com/computers-and-security, Ali Shiravi*, Hadi
Shiravi, Mahbod Tavallaee, Ali A. Ghorbani, Toward developing a systematic

38

approach to generate benchmark datasets for intrusion detection, Computers
and Security, Volume 31, Issue 3, May 2012, Pages 357-374.

[11] https://patents.google.com/patent/US20040225877A1/en, Zezhen Huang,
Method and system for protecting computer system from malicious software
operation, United States Patent Application Publication(2004).

[12] https://www.ijcsit.com/docs/Volume 2/vol2issue3/ijcsit2011020309.pdf,
Sapna S. Kaushik, Dr. Prof.P.R.Deshmukh, Detection of Attacks in an
Intrusion Detection System, nternational Journal of Computer Science and
Information Technologies(2011).

[13] https://www.journals.elsevier.com/computer-networks, Richard Lippmann,
Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das, The 1999
DARPA Off-Line Intrusion Detection Evaluation, Computer Networks, Volume
34, Issue 4, October 2000, Pages 579-595.

[14] https://packetstormsecurity.com/files/152618/RARLAB-WinRAR-ACE-
Format-Input-Validation-Remote-Code-Execution.html

[15] https://www.cvedetails.com/cve/CVE-2018-20250/

[16] https://metasploit.help.rapid7.com/docs

[17] https://resources.infosecinstitute.com/icmp-reverse-shell/.

[18] https://dl.acm.org/doi/10.1145/1408664.1408679, Rodrigo Werlinger, Kirstie
Hawkey, Kasia Muldner, Pooya Jaferian, Konstantin Beznosov, The Challenges
of Using an Intrusion Detection System: Is It Worth the Effort?, Association
for Computing Machinery 2008.

[19] https://research.ijcaonline.org/volume76/number17/pxc3890701.pdf, Bilal
Maqbool Beigh, Uzair Bashir, Manzoor Chachoo, Intrusion Detection and
Prevention System: Issues and Challenges, International Journal of Computer
Applications(2013).

[20] https://www.gtopala.com/

[21] https://www.rfc-editor.org/info/rfc4765, H. Debar, D. Curry, B. Feinstein,
The Intrusion Detection Message Exchange Format (IDMEF), The IETF
Trust(2007).

[22] https://www.wireshark.org/

[23] https://wiki.wireshark.org/Development/LibpcapFileFormat

[24] https://www.ijcsit.com/ ijcsitco/docs/Volume 9/vol9issue2/ijcsit2018090201.pdf,
Yakuta Tayyebi, D.S. Bhilare, A Comparative Study of Open Source Network
Based Intrusion Detection Systems, nternational Journal of Computer Science
and Information Technologies(2018).

39

Appendices

40

Appendix A

Source Code

41

A.1 Functions.java

1 /*

2 a class that contains all the functions (methods) used

in this tool

3 */

4 package Functions ;

5

6 import java.io.File;

7 import java.io. FileInputStream ;

8 import java.io. InputStream ;

9 import java.io. InputStreamReader ;

10 import java.io. Reader ;

11 import java.text. NumberFormat ;

12 import java.util. Iterator ;

13 import java.util.List;

14 import javax.swing. JOptionPane ;

15 import javax.swing. JTable ;

16 import javax.swing.table. DefaultTableModel ;

17 import org.jdom. Document ;

18 import org.jdom. Element ;

19 import org.jdom.input. SAXBuilder ;

20 import org.xml.sax. InputSource ;

21

22 public class Functions

23 {

24 static Document document ;

25 SAXBuilder sxb = new SAXBuilder ();

26 public int Show_All_Alerts (String source , JTable tab)

27 {

28 /*in this function we get as entries the path(

source) of xml files

29 and the jtable in which we want to display alerts

30 we parse alerts xml file , we display the alerts

in the jtable then we return the total number

of alerts */

31 int j = 0;

32 DefaultTableModel model = (DefaultTableModel)tab.

getModel ();

33 model. setRowCount (0);

34 try

35 {

36 File file = new File(source + "\\ Alerts .xml")

;

37 InputStream inputStream = new FileInputStream

(file);

42

38 Reader reader = new InputStreamReader (

inputStream , "UTF -8");

39 InputSource is = new InputSource (reader);

40 document = sxb.build(is);

41 Element racine = document . getRootElement ();

42 List listAlerts = racine . getChildren ("Alert")

;

43 Iterator i = listAlerts . iterator ();

44 while(i. hasNext ())

45 {

46 Object [] objects = new Object [8];

47 Element courant = (Element)i.next ();

48 j++;

49 objects [0] = j;

50 objects [1] = courant . getChild (" timestamp "

). getText ();

51 objects [2] = courant . getChild ("msg").

getText ();

52 objects [3] = courant . getChild ("src").

getText ();

53 objects [4] = courant . getChild ("dst").

getText ();

54 objects [5] = courant . getChild ("proto").

getText ();

55 objects [6] = courant . getChild (" srcport ").

getText ();

56 objects [7] = courant . getChild (" dstport ").

getText ();

57 model. addRow (objects);

58 }

59 }catch(Exception e)

60 {

61 int k = 0;

62 boolean f = false;

63 while(k < e. getStackTrace (). length && f ==

false)

64 {

65 if(e. getStackTrace ()[k]. toString ().

substring (0, 3). equals ("Fun"))

66 f = true;

67 else

68 k++;

69 }

70 JOptionPane . showMessageDialog (null , e.

getMessage () + ".\ nException caught on

line " + e. getStackTrace ()[k].

43

getLineNumber () + ".\ nFile: " + e.

getStackTrace ()[k]. getFileName ());

71 System .exit (0);

72 }

73 return j;

74 }

75 public boolean Is_Vulnerable (String pc , String source

)

76 {

77 /*in this function we get as entries the pc name

and the path(source) of xml files

78 we parse xml files then we return true if the pc

is vulnerable , else we return false */

79 boolean bol = false;

80 try

81 {

82 File file = new File(source + "\\ Machines .xml

");

83 InputStream inputStream = new FileInputStream

(file);

84 Reader reader = new InputStreamReader (

inputStream , "UTF -8");

85 InputSource is = new InputSource (reader);

86 document = sxb.build(is);

87 Element racine = document . getRootElement ();

88 List listMachines = racine . getChildren ("

Machine ");

89 Iterator i = listMachines . iterator ();

90 String PC_OsVersion = new String ();

91 while(i. hasNext ())

92 {

93 Element courant = (Element)i.next ();

94 if(courant . getChild (" MachineName ").

getText (). equals (pc))

95 PC_OsVersion = courant . getChild ("

OsVersion "). getText ();

96 }

97 file = new File(source + "\\ VulnerableApps .

xml");

98 inputStream = new FileInputStream (file);

99 reader = new InputStreamReader (inputStream , "

UTF -8");

100 is = new InputSource (reader);

101 document = sxb.build(is);

102 racine = document . getRootElement ();

103 List listApps = racine . getChildren ("App");

44

104 i = listApps . iterator ();

105 String [][] Vuln_Apps = new String [300][4];

106 int h = 0;

107 while(i. hasNext ())

108 {

109 Element courant = (Element)i.next ();

110 Vuln_Apps [h][0] = courant . getChild ("

AppName "). getText ();

111 Vuln_Apps [h][1] = courant . getChild ("

AppVersion "). getText ();

112 Vuln_Apps [h][2] = courant . getChild ("

OsPlatform "). getText ();

113 Vuln_Apps [h][3] = courant . getChild ("

OsVersion "). getText ();

114 h++;

115 }

116

117 file = new File(source + "\\ InstalledApps .xml

");

118 inputStream = new FileInputStream (file);

119 reader = new InputStreamReader (inputStream , "

UTF -8");

120 is = new InputSource (reader);

121 document = sxb.build(is);

122 racine = document . getRootElement ();

123 listApps = racine . getChildren ("App");

124 i = listApps . iterator ();

125 int l = 0;

126 while(l < h && bol == false)

127 {

128 while(i. hasNext () && bol == false)

129 {

130 Element courant = (Element)i.next ();

131 if(courant . getChild (" MachineName ").

getText (). equals (pc)

132 && courant . getChild (" AppName ").

getText (). contains (Vuln_Apps [l

][0])

133 && (courant . getChild (" AppVersion ")

. getText (). substring (8). equals (

" Inconnu ") || courant . getChild (

" AppVersion "). getText ().

substring (8). substring (0,

Vuln_Apps [l][1]. length ()).

compareTo (Vuln_Apps [l][1]) <=

0)

45

134 && PC_OsVersion . contains (Vuln_Apps

[l][2])

135 && (PC_OsVersion . contains (

Vuln_Apps [l][3]) || Vuln_Apps [l

][3]. equals ("All")))

136 bol = true;

137 }

138 l++;

139 }

140 }catch(Exception e)

141 {

142 int k = 0;

143 boolean f = false;

144 while(k < e. getStackTrace (). length && f ==

false)

145 {

146 if(e. getStackTrace ()[k]. toString ().

substring (0, 3). equals ("Fun"))

147 f = true;

148 else

149 k++;

150 }

151 JOptionPane . showMessageDialog (null , e.

getMessage () + ".\ nException caught on

line " + e. getStackTrace ()[k].

getLineNumber () + ".\ nFile: " + e.

getStackTrace ()[k]. getFileName ());

152 System .exit (0);

153 }

154 return bol;

155 }

156 public int Show_Relevant_Alerts (String source , JTable

tab)

157 {

158 /*in this function we get as entries the path(

source) of xml files

159 and the jtable in which we want to display alerts

160 we parse xml files to decide if an alert is

relevant if it is we display it in the jtable

161 then we return the total number of relevant

alerts */

162 int p = 0;

163 DefaultTableModel model = (DefaultTableModel)tab.

getModel ();

164 model. setRowCount (0);

165 try

46

166 {

167 File file = new File(source + "\\ Machines .xml

");

168 InputStream inputStream = new FileInputStream

(file);

169 Reader reader = new InputStreamReader (

inputStream , "UTF -8");

170 InputSource is = new InputSource (reader);

171 document = sxb.build(is);

172 Element racine = document . getRootElement ();

173 String [] Vuln_PCs = new String [50];

174 String [] PCs = new String [50];

175 List listMachines = racine . getChildren ("

Machine ");

176 Iterator i = listMachines . iterator ();

177 int j = 0, y = 0;

178 while(i. hasNext ())

179 {

180 Element courant = (Element)i.next ();

181 PCs[y] = courant . getChild ("IP"). getText ()

;

182 y++;

183 if(Is_Vulnerable (courant . getChild ("

MachineName "). getText (), source))

184 {

185 Vuln_PCs [j] = courant . getChild ("IP").

getText ();

186 j++;

187 }

188 }

189 file = new File(source + "\\ Alerts .xml");

190 inputStream = new FileInputStream (file);

191 reader = new InputStreamReader (inputStream , "

UTF -8");

192 is = new InputSource (reader);

193 document = sxb.build(is);

194 racine = document . getRootElement ();

195 List listAlerts = racine . getChildren ("Alert")

;

196 i = listAlerts . iterator ();

197 while(i. hasNext ())

198 {

199 Element courant = (Element)i.next ();

200 for(int k = 0; k < j; k++)

201 {

202 if(courant . getChild ("dst"). getText ().

47

equals (Vuln_PCs [k]))

203 {

204 boolean b = true;int m = 0;

205 while(m < y && b == true)

206 if(courant . getChild ("src").

getText (). equals (PCs[m]))

207 b=false;

208 else

209 m++;

210 if(b == true)

211 {

212 Object [] objects = new Object

[8];

213 p++;

214 objects [0] = p;

215 objects [1] = courant . getChild

(" timestamp "). getText ();

216 objects [2] = courant . getChild

("msg"). getText ();

217 objects [3] = courant . getChild

("src"). getText ();

218 objects [4] = courant . getChild

("dst"). getText ();

219 objects [5] = courant . getChild

("proto"). getText ();

220 objects [6] = courant . getChild

(" srcport "). getText ();

221 objects [7] = courant . getChild

(" dstport "). getText ();

222 model. addRow (objects);

223 }

224 }

225 }

226 }

227 }catch(Exception e)

228 {

229 int k = 0;

230 boolean f = false;

231 while(k < e. getStackTrace (). length && f ==

false)

232 {

233 if(e. getStackTrace ()[k]. toString ().

substring (0, 3). equals ("Fun"))

234 f = true;

235 else

236 k++;

48

237 }

238 JOptionPane . showMessageDialog (null , e.

getMessage () + ".\ nException caught on

line " + e. getStackTrace ()[k].

getLineNumber () + ".\ nFile: " + e.

getStackTrace ()[k]. getFileName ());

239 System .exit (0);

240 }

241 return p;

242 }

243 public String rate(String source)

244 {

245 /* this function return the rate of non relevant

alerts as a string , it has as entry the source

of xml files */

246 JTable tab = new JTable ();

247 double rate = (double)(100 - (100 * (double)

Show_Relevant_Alerts (source , tab) / (double)

Show_All_Alerts (source , tab)));

248 NumberFormat format = NumberFormat . getInstance ();

249 format . setMaximumFractionDigits (2);

250 String s = format . format (rate);

251 return s;

252 }

253 public int NumberOfElement (String source , String name

)

254 {

255 /* this function get as entry the source of xml

file and the name of the direct child of the

root element

256 and returns the number of element of the xml file

257 */

258 int n = 0;

259 try

260 {

261 File file = new File(source);

262 InputStream inputStream = new FileInputStream

(file);

263 Reader reader = new InputStreamReader (

inputStream , "UTF -8");

264 InputSource is = new InputSource (reader);

265 document = sxb.build(is);

266 Element racine = document . getRootElement ();

267 List list = racine . getChildren (name);

268 n = list.size ();

269 }catch(Exception e)

49

270 {

271 int k = 0;

272 boolean f = false;

273 while(k < e. getStackTrace (). length && f ==

false)

274 {

275 if(e. getStackTrace ()[k]. toString ().

substring (0, 3). equals ("Fun"))

276 f = true;

277 else

278 k++;

279 }

280 JOptionPane . showMessageDialog (null , e.

getMessage () + ".\ nException caught on

line " + e. getStackTrace ()[k].

getLineNumber () + ".\ nFile: " + e.

getStackTrace ()[k]. getFileName ());

281 System .exit (0);

282 }

283 return n;

284 }

285 public int NumberOfVulnerablePCs (String source)

286 {

287 /* this function returns the number of vulnerable

pc , it gets the source directory of xml files

*/

288 int j = 0;

289 try

290 {

291 File file = new File(source + "\\ Machines .xml

");

292 InputStream inputStream = new FileInputStream

(file);

293 Reader reader = new InputStreamReader (

inputStream , "UTF -8");

294 InputSource is = new InputSource (reader);

295 document = sxb.build(is);

296 Element racine = document . getRootElement ();

297 String [] Vuln_PCs = new String [50];

298 List listMachines = racine . getChildren ("

Machine ");

299 Iterator i = listMachines . iterator ();

300 while(i. hasNext ())

301 {

302 Element courant = (Element)i.next ();

303 if(Is_Vulnerable (courant . getChild ("

50

MachineName "). getText (), source))

304 {

305 Vuln_PCs [j] = courant . getChild ("IP").

getText ();

306 j++;

307 }

308 }

309 }catch(Exception e)

310 {

311 int k = 0;

312 boolean f = false;

313 while(k < e. getStackTrace (). length && f

== false)

314 {

315 if(e. getStackTrace ()[k]. toString ().

substring (0, 3). equals ("Fun"))

316 f = true;

317 else

318 k++;

319 }

320 JOptionPane . showMessageDialog (null , e.

getMessage () + ".\ nException caught on

line " + e. getStackTrace ()[k].

getLineNumber () + ".\ nFile: " + e.

getStackTrace ()[k]. getFileName ());

321 System .exit (0);

322 }

323 return j;

324 }

325 }

A.2 DemoJFileChooser.java

1 /*

2 a class that extends jframe to create the dialog that

asks

3 for the directories where are located xml files

4 */

5 package IHM;

6

7 import javax.swing .*;

8 import java.awt.event .*;

9 import java.awt .*;

10

11 public class DemoJFileChooser extends JPanel implements

ActionListener

51

12 {

13 JButton browse1 ;

14 JButton browse2 ;

15 JTextField path1 = new JTextField ();

16 JTextField path2 = new JTextField ();

17 JLabel lab1 = new JLabel (" Before context change : ");

18 JLabel lab2 = new JLabel ("After context change : ");

19 JFileChooser chooser = new JFileChooser ();;

20 String choosertitle ;

21

22 public DemoJFileChooser ()

23 {

24 chooser . setCurrentDirectory (new java.io.File("C

:\\"));

25 browse1 = new JButton (" browse ");

26 browse1 . addActionListener (this);

27 browse2 = new JButton (" browse ");

28 browse2 . addActionListener (this);

29 path1. setEditable (false);

30 path2. setEditable (false);

31 lab1. setPreferredSize (new Dimension (150 , 30));

32 lab2. setPreferredSize (new Dimension (150 , 30));

33 path1. setPreferredSize (new Dimension (300 , 30));

34 path2. setPreferredSize (new Dimension (300 , 30));

35 browse1 . setPreferredSize (new Dimension (100 , 30));

36 browse2 . setPreferredSize (new Dimension (100 , 30));

37 JPanel panel1 = new JPanel (), panel2 = new JPanel

();

38 panel1 .add(lab1);

39 panel1 .add(path1);

40 panel1 .add(browse1);

41 panel2 .add(lab2);

42 panel2 .add(path2);

43 panel2 .add(browse2);

44 setLayout (new BoxLayout (this , BoxLayout . PAGE_AXIS

));

45 add(panel1);

46 add(panel2);

47 }

48 public void actionPerformed (ActionEvent e)

49 {

50 chooser . setCurrentDirectory (chooser .

getCurrentDirectory ());

51 chooser . setDialogTitle (choosertitle);

52 chooser . setFileSelectionMode (JFileChooser .

DIRECTORIES_ONLY);

52

53 // disable the "All files" option .

54 chooser . setAcceptAllFileFilterUsed (false);

55 if (chooser . showOpenDialog (this) == JFileChooser .

APPROVE_OPTION)

56 {

57 if(e. getSource () == browse1)

58 path1. setText (String . valueOf (chooser .

getSelectedFile ()));

59 else if(e. getSource () == browse2)

60 path2. setText (String . valueOf (chooser .

getSelectedFile ()));

61 }

62 }

63 public String getPath1 ()

64 {

65 return path1. getText ();

66 }

67 public String getPath2 ()

68 {

69 return path2. getText ();

70 }

71 }

A.3 Filter Frame.java

1 /* the main frame class */

2 package IHM;

3

4 import Functions . Functions ;

5 import javax.swing. JOptionPane ;

6 import javax.swing. JTable ;

7 import javax.swing.table. TableColumn ;

8

9 public class Filter_Frame extends javax.swing. JFrame

10 {

11 static Functions f1 = new Functions ();

12 static String pathBefore ;

13 static String pathAfter ;

14 public Filter_Frame ()

15 {

16 initComponents ();

17 }

18 @SuppressWarnings (" unchecked ")

19 // <editor -fold defaultstate =" collapsed " desc ="

Generated Code ">//GEN -BEGIN: initComponents

20 private void initComponents () {

53

21 //Auto - generated code by netbeans to create the

main frame

22 .

23 .

24 .

25 }// </editor -fold >// GEN -END: initComponents

26 private void jButton2ActionPerformed (java.awt.event.

ActionEvent evt) {//GEN -FIRST:

event_jButton2ActionPerformed

27 f1. Show_Relevant_Alerts (pathBefore , jTable1);

28 }//GEN -LAST: event_jButton2ActionPerformed

29 private void jButton1ActionPerformed (java.awt.event.

ActionEvent evt) {//GEN -FIRST:

event_jButton1ActionPerformed

30 f1. Show_All_Alerts (pathBefore , jTable1);

31 }//GEN -LAST: event_jButton1ActionPerformed

32 private void jButton3ActionPerformed (java.awt.event.

ActionEvent evt) {//GEN -FIRST:

event_jButton3ActionPerformed

33 f1. Show_All_Alerts (pathAfter , jTable2);

34 }//GEN -LAST: event_jButton3ActionPerformed

35 private void jButton4ActionPerformed (java.awt.event.

ActionEvent evt) {//GEN -FIRST:

event_jButton4ActionPerformed

36 // TODO add your handling code here:

37 f1. Show_Relevant_Alerts (pathAfter , jTable2);

38 }//GEN -LAST: event_jButton4ActionPerformed

39 public static void main(String args [])

40 {

41 try

42 {

43 for (javax.swing. UIManager . LookAndFeelInfo

info : javax.swing. UIManager .

getInstalledLookAndFeels ()) {

44 if (" Nimbus ". equals (info. getName ())) {

45 javax.swing. UIManager . setLookAndFeel (

info. getClassName ());

46 break;

47 }

48 }

49 }catch(ClassNotFoundException ex)

50 {

51 java.util. logging . Logger . getLogger (

Filter_Frame .class. getName ()).log(java.

util. logging .Level.SEVERE , null , ex);

52 }catch(InstantiationException ex)

54

53 {

54 java.util. logging . Logger . getLogger (

Filter_Frame .class. getName ()).log(java.

util. logging .Level.SEVERE , null , ex);

55 }catch(IllegalAccessException ex)

56 {

57 java.util. logging . Logger . getLogger (

Filter_Frame .class. getName ()).log(java.

util. logging .Level.SEVERE , null , ex);

58 }catch(javax.swing.

UnsupportedLookAndFeelException ex)

59 {

60 java.util. logging . Logger . getLogger (

Filter_Frame .class. getName ()).log(java.

util. logging .Level.SEVERE , null , ex);

61 }

62 java.awt. EventQueue . invokeLater (new Runnable ()

63 {

64 public void run ()

65 {

66 Filter_Frame ff = new Filter_Frame ();

67 ff. setVisible (true);

68 DemoJFileChooser panel = new

DemoJFileChooser ();

69 do

70 {

71 JOptionPane . showMessageDialog (null , "

Please select the directories

where xml files are(before and

after context change)");

72 int result = JOptionPane .

showConfirmDialog (null , panel , "

Select Directories : ", JOptionPane

. OK_CANCEL_OPTION);

73 if(result == JOptionPane .

CANCEL_OPTION)

74 {

75 int result2 = JOptionPane .

showConfirmDialog (null , "Are

you sure you want to exit?", "

Exit", JOptionPane . OK_OPTION);

76 if(result2 == JOptionPane .

OK_OPTION)

77 System .exit (0);

78 }

79 if(result == JOptionPane .

55

CLOSED_OPTION)

80 {

81 int result2 = JOptionPane .

showConfirmDialog (null , "Are

you sure you want to exit?", "

Exit", JOptionPane . OK_OPTION);

82 if(result2 == JOptionPane .

OK_OPTION)

83 System .exit (0);

84 }

85 }while(panel. getPath1 (). equals ("") ||

panel. getPath2 (). equals (""));

86 pathBefore = panel. getPath1 ();

87 pathAfter = panel. getPath2 ();

88 JTable tab = new JTable ();

89 jLabel1 . setText (jLabel1 . getText () + f1.

Show_All_Alerts (pathBefore , tab));

90 jLabel2 . setText (jLabel2 . getText () + f1.

Show_Relevant_Alerts (pathBefore , tab))

;

91 jLabel3 . setText (jLabel3 . getText () + f1.

rate(pathBefore)+" %");

92 jLabel4 . setText (jLabel4 . getText () + f1.

Show_All_Alerts (pathAfter ,tab));

93 jLabel5 . setText (jLabel5 . getText () + f1.

Show_Relevant_Alerts (pathAfter ,tab));

94 jLabel6 . setText (jLabel6 . getText () + f1.

rate(pathAfter)+" %");

95 jLabel7 . setText (jLabel7 . getText () + f1.

NumberOfElement (pathBefore +"\\ Machines

.xml"," Machine "));

96 jLabel8 . setText (jLabel8 . getText () + f1.

NumberOfElement (pathBefore +"\\

InstalledApps .xml","App"));

97 jLabel9 . setText (jLabel9 . getText () + f1.

NumberOfElement (pathBefore +"\\

VulnerableApps .xml","App"));

98 jLabel10 . setText (jLabel10 . getText () + f1.

NumberOfVulnerablePCs (pathBefore));

99 jLabel11 . setText (jLabel11 . getText () + f1.

NumberOfElement (pathAfter +"\\ Machines .

xml"," Machine "));

100 jLabel12 . setText (jLabel12 . getText () + f1.

NumberOfElement (pathAfter +"\\

InstalledApps .xml","App"));

101 jLabel13 . setText (jLabel13 . getText () + f1.

56

NumberOfElement (pathAfter +"\\

VulnerableApps .xml","App"));

102 jLabel14 . setText (jLabel14 . getText () + f1.

NumberOfVulnerablePCs (pathAfter));

103 }

104 });

105 }

106

107 // Variables declaration - do not modify //GEN -BEGIN:

variables

108 private javax.swing. JButton jButton1 ;

109 private javax.swing. JButton jButton2 ;

110 private javax.swing. JButton jButton3 ;

111 private javax.swing. JButton jButton4 ;

112 private static javax.swing. JLabel jLabel1 ;

113 private static javax.swing. JLabel jLabel10 ;

114 private static javax.swing. JLabel jLabel11 ;

115 private static javax.swing. JLabel jLabel12 ;

116 private static javax.swing. JLabel jLabel13 ;

117 private static javax.swing. JLabel jLabel14 ;

118 private javax.swing. JLabel jLabel15 ;

119 private javax.swing. JLabel jLabel16 ;

120 private static javax.swing. JLabel jLabel2 ;

121 private static javax.swing. JLabel jLabel3 ;

122 private static javax.swing. JLabel jLabel4 ;

123 private static javax.swing. JLabel jLabel5 ;

124 private static javax.swing. JLabel jLabel6 ;

125 private static javax.swing. JLabel jLabel7 ;

126 private static javax.swing. JLabel jLabel8 ;

127 private static javax.swing. JLabel jLabel9 ;

128 private javax.swing. JPanel jPanel1 ;

129 private javax.swing. JPanel jPanel2 ;

130 private javax.swing. JScrollPane jScrollPane1 ;

131 private javax.swing. JScrollPane jScrollPane2 ;

132 private javax.swing. JScrollPane jScrollPane3 ;

133 private javax.swing. JScrollPane jScrollPane4 ;

134 private javax.swing. JTabbedPane jTabbedPane2 ;

135 private static javax.swing. JTable jTable1 ;

136 private static javax.swing. JTable jTable2 ;

137 // End of variables declaration //GEN -END: variables

138 }

57

