TECHNOSUP

Les FILIÈRES TECHNOLOGIQUES des ENSEIGNEMENTS SUPÉRIEURS

ELECTRONIQUE

Bases de l'électronique analogique

Du composant au circuit intégré Cours et exercices corrigés

Laurent PICHON

La côte de l'ouvrage : 2-621-820

Résumé

Support de cours progressif pour étudiant débutant ou confirmé, l'ouvrage est aussi un recueil de synthèse pour professionnel désireux de se remettre à jour ou de consolider ses connaissances.

Le livre est un document de base complet sur l'électronique analogique (basses fréquences).

L'exposé part du dipôle électrique, des circuits et des théorèmes généraux. Puis il présente les quadripôles et développe les réponses d'un circuit électronique linéaire avant de traiter les diodes et les transistors. Les différents amplificateurs sont ensuite analysés (à transistors, différentiels, de puissance et opérationnels). Pour terminer sont présentées des fonctions électroniques utiles au développement de systèmes plus complexes et le livre s'achève sur l'analyse du fonctionnement interne de l'amplificateur opérationnel.

Chaque chapitre comporte également une série d'exercices d'application corrigés. Enfin, des problèmes de synthèse également corrigés complètent cette vue globale cohérente sur les fondamentaux incontournables en électronique analogique.

TABLES DES MATIERES

CHAPITRE I	
LES DIPOLES	1
1. Définitions	
1.1 Dipôle	1
1.2 Tension	
1.3 Courant	
1.4 Caractéristique électrique d'un dipôle	
1.5 Puissance électrique aux bornes d'un dipôle	
2. Sources (dipôles actifs)	
2.1 Sources idéales	
2.2 Sources réelles	
3. Récepteurs (dipôles passifs)	
3.1 Résistance	
3.2 Condensateur	
3.3 Bobine	
4. Dipôle en régime sinusoïdal permanent	
4.1 Signal sinusoïdal	
4.2 Notations complexes	
4.3 Impédances complexes. Loi d'Ohm généralisée	6
4.4 Puissance en régime sinusoïdal	
4.5 Facteur de qualité d'un dipôle	
5. Adaptation en puissance	
• •	
CHAPITRE II	
THEOREMES GENERAUX ET CIRCUITS	13
1. Associations de dipôles	
1.1 Association en série	
1.2 Association en parallèle	14
1.3 Transformation triangle-étoile (Théorème de Kennelly)	
2. Lois de Kirchhoff	
2.1 Définitions sur les circuits	
2.2 Lois des nœuds	
2.3 Loi des mailles	
2.4 Relations utiles	
3. Théorème de superposition	
4. Théorème de Millman	
5. Théorèmes de Thévenin et de Norton	
5.1 Détermination des éléments du générateur équivalent de Thévenin	
5.2 Détermination des éléments du générateur équivalent de Norton	
5.3 Equivalence Thévenin-Norton	

6. Analyses des réseaux linéaires	19
6.1 Méthode des mailles	
6.2 Méthode des nœuds	20
6.3 Choix de la méthode	21
CHAPITRE III	
LES QUADRIPOLES	23
1. Définitions	
1.1 Impédance d'entrée	23
1.2 Impédance de sortie	24
2. Représentations matricielles	24
3. Calculs des éléments de matrice	25
3.1 Paramètres admittances	25
3.2 Paramètres impédances	25
3.3 Paramètres hybrides	26
3.4 Paramètres de transfert	26
4. Schémas électriques des quadripôles linéaires	27
4.1 Représentation à partir des paramètres admittances	27
4.2 Représentation à partir des paramètres impédances	27
4.3 Représentations à partir de paramètres hybrides	27
4.4 Equivalences entre paramètres	28
5. Propriétés générales des quadripôles	28
5.1 Quadripôle passif	
5.2 Quadripôle actif	29
5.3 Modélisation la plus classique du quadripôle : l'amplificateur de tension	32
5.4 Gains de l'amplificateur unilatéral dans une chaîne quadripolaire complète.	
6. Associations de quadripôles	
6.1 Association en cascade	36
6.2 Association en série	
6.3 Association en parallèle	
6.4 Association série-parallèle	
6.5 Association parallèle-série	38
CHAPITRE IV	
REPONSE D'UN CIRCUIT ELECTRONIQUE LINEAIRE	39
1. Introduction	
2. Réponse en régime transitoire	
2.1 Circuits du 1 ^{er} ordre	
2.2 Circuit du second ordre	
3. Reponse en régime sinusoïdal permanent	
3.1 Diagrammes de Bode	
3.2 Filtres	
3.3 Filtres d'ordre 1	

3.4 Filtres d'ordre 2	56
CHAPITRE V	
DIODES ET TRANSISTORS	67
1. Diodes	67
1.1 Propriétés générales	67
1.2 Modèles électriques linéarisés	68
1.3 Point de fonctionnement	68
1.4 Claquage	69
1.5 Diode en régime dynamique	69
2. Transistors bipolaires	70
2.1 Propriétés générales	70
2.2 Transistor bipolaire en régime dynamique (sinusoïdal)	71
3. Transistors à effet de champ	73
3.1 Propriétés générales	73
3.2 Transistor à effet de champ en régime dynamique	
CHAPITRE VI	
AMPLIFICATEURS A TRANSISTORS	79
1. Introduction	
2. Amplificateurs à transistors bipolaires	
2.1 Emetteur commun avec résistance d'émetteur découplée	
2.2 Emetteur commun avec résistance d'émetteur non découplée	
2.3 Collecteur commun	
2.4 Base commune	
3. Amplificateurs à transistors à effet de champ	
3.1 Source commune	89
3.2 Source commune avec résistance de source non découplée	
3.3 Drain commun	
CHAPITRE VII	
AMPLIFICATION DIFFERENTIELLE	97
1. Amplificateur différentiel bipolaire	
1.1 Schéma électrique de base	
1.2 Polarisation	
1.3 Régime dynamique (aux basses fréquences)	
2. Amplificateur différentiel MOS	
2.1 Fonction.	
2.2 Schéma électrique de base	
2.3 Polarisation	
2.4 Régime dynamique (aux basses fréquences)	

AMPLIFICATEUR DE PUISSANCE111
1. Introduction
2. Définitions
2.1 Puissance, rendement
2.2 Classe des amplificateurs112
3. Amplificateur classe A
3.1 Montage émetteur commun112
3.2. Amélioration : amplificateur classe A à transformateur114
4. Amplificateur classe B115
4.1 Montage de base
4.2. Paire complémentaire en classe B (montage push pull)
CHAPITRE IX
L'AMPLIFICATEUR OPERATIONNEL123
1. Introduction
1.1 Présentation physique et câblages
1.2 Représentation symbolique
2. Propriétés
2.1 Amplificateur opérationnel réel
2.2 Amplificateur opérationnel parfait
2.3 Comportement en fréquence
2.4 Condition de stabilité
3. Montages en régime linéaire
3.1 Montages amplificateurs
3.2 Montages opérationnels129
3.3 Montages non linéaires
3.4 Convertisseur d'impédance négative
4. Montages en régime saturé
4.1 Comparateurs
4.2 Comparateur à hystérésis (ou Trigger)
CHAPITRE X
QUELQUES FONCTIONS DE L'ELECTRONIQUE INSTRUMENTALE137
1. Calculs analogiques
2. Convertisseurs analogique/numérique et numérique/analogique139
2.1 Convertisseurs analogique-numérique (CAN)
2.2 Convertisseur numérique-analogique (CNA)
3. Capteurs à pont de wheatstone
4. Montages astables et oscillateurs
4.1 Montage VCO (Voltage Control Oscillator)
4.2 Oscillateur sinusoïdal à pont de Wien144

CHAPITRE XI
FONCTIONS DE BASE DE L'ELECTRONIQUE INTEGREE147
1. Sources de courant
1.1 Miroir de courant à transistors bipolaires147
1.2 Source de WIDLAR à transistors bipolaires148
1.3 Source à courant à courant de base compensé149
1.4 Miroir de courant à transistors MOS150
1.5 Source de WILSON à transistors MOS151
2. Etages différentiels bipolaires
2.1. Polarisation
2.2 Etage différentiel bipolaire avec charge active154
3. Etages différentiel MOS156
3.1 Polarisation
3.2 Etage différentiel MOS avec charge active157
4. Capteurs de température intégrés158
5. Références de tension
5.1 Référence de tension à bandgap159
5.2. Référence de tension à transistors MOS160
CHAPITRE XII
EXEMPLES DE SYNTHESES:LES AMPLIFICATEURS OPERATIONNELS 163
1. Amplificateur opérationnel bipolaire : Cas µA 741163
1.1 Gain différentiel de l'amplificateur opérationnel, réponse en fréquence163
1.2 Vitesse de balayage
1.3 Architecture interne
2. Amplificateur transconductance MOS
2.1 Architecture interne
2.2 Polarisation
2.3 Gain en tension
2.4 Courant de sortie
2.5 Impédance de sortie
EXERCICES ET PROBLEMES175