WATER STRUCTURE IN POLYMER MEMBRANES

PHILIPPA M. WIGGINS

Department of Medicine, University of Auckland School of Medicine, Private Bag, Auckland, New Zealand

CONTENTS

1.	Introduction: the predictive value of biochemical processes	2 2
	1.1. The Na ⁺ /K ⁺ paradox	
	1.2. Other cation pumps	5
	1.3. Enzymes that perform chemical work	5
	1.4. Reactivity of water in a closed enzyme cleft	6
	1.5. Summary of predicted properties of water in small hydrophobic domains	7
2.	The microenvironment of enzyme binding cavities and of microporous synthetic	
	polymer membranes	8
	2.1. Wetting a hydrophobic surface	9
	2.2. Hydration of mixed hydrophilic/hydrophobic surfaces	11
3.	Mobile water clusters	13
	3.1. Infrared and Raman spectroscopy	14
	3.2. Reverse osmosis	15
	3.3. The useful life of reverse osmosis membranes	16
	3.4. Solvent properties of mobile clusters	16
	3.5. Differential scanning calorimetry	17
	3.6. Summary of the properties of mobile clusters	17
4.		18
	4.1. Stretched water	18
	4.1.1. The hydrophobic force	20
	4.1.2. Hydrophobicity and solvent uptake	21
	4.1.3. Drost-Hansen's paradoxical effect	22
	4.1.4. The patchiness of boundary water at real surfaces	22
	4.1.5. Mechanism and functional significance of partial closure of enzyme	
	binding cavities	23
	4.1.6. Solvent properties of stretched water	23
	4.1.7. Infrared spectrum of stretched water	24
	4.1.8. Effects of solutes upon the infrared spectrum of stretched water	25
	4.1.9. Enthalpy-entropy compensation	26
	4.1.10. Structure-makers and structure-breakers	27
	4.2. Vapour-like water	27
	4.2.1. Reactivity of vapour-like water	27
	4.2.2. The biochemical significance of reactive water	28
	4.2.3. The Na ⁺ /K ⁺ paradox resolved	29

This work was carried out during the tenure of a Career Fellowship of the Medical Research Council of New Zealand.

1988

PROGRESS IN

POLYMER SCIENCE

An International Review Journal

Editor: **O VOGL**Polytechnic University,
New York, USA

Associate Editor: L S CORLEY

Shell Development Co.,

Houston, USA

