Volume 15 Number 4 1990

ISSN 0079-6700

-

PROGRESSIN

POLYNER SCIENCE

An International Review Journal

Editor: **O VOGL** Polytechnic University, New York, USA

Associate Editor: **L S CORLEY**Shell Development Co.,
Houston, USA

PERGAMON PRESS Oxford New York
Beijing Frankfurt São Paulo Sydney Tokyo Toronto

LIGHT-INDUCED SYNTHESIS OF BLOCK AND GRAFT COPOLYMERS

YUSUF YAĞCI* and WOLFRAM SCHNABEL†‡

*Istanbul Technical University, Department of Chemistry, 80626 Maslak, Istanbul, Turkey †Hahn-Meitner-Institut, Bereich Strahlenchemie, Glienicker Str. 100, D-1000 Berlin 39, F.R.G.

CONTENTS

1.	Introduction		552
	1.1. On the import	tance of block and graft copolymerization	552
		he photosynthesis of block and graft copolymers	553
	1.2.1. Block of	copolymerization	553
		copolymerization	556
2.	Light-induced synthesis of block copolymers		557
	2.1. Polymerization initiated by polymers possessing photo-dissociable groups		557
	2.1.1. Polymeric initiators having photolabile groups in the main chain		557
		Polymers containing carbonyl groups	557
		Polymers containing keto oxime ester groups	559
	2.1.1.3.	Polymers containing benzoin methyl ether groups	560
		Polymers containing N-nitroso groups	562
	2.1.1.5.	Polymers containing disulfide groups	563
	2.1.2. Polymeric initiators having photolabile groups at chain ends		566
		Polymers having halogen-containing end groups	566
		Polymers having amino end groups	570
	2.1.2.3.	Iniferter systems	570
	2.1.2.4.	Polymers having terminal benzoin methyl ether end groups	573
	2.2. Bifunctional low molar mass initiators		574
	2.3. Photodimerizations		575
3.	Light-induced synthesis of graft copolymers		576
	3.1. Reactions in solution		576
	3.1.1. Direct	generation of lateral reactive sites	577
		Polymers containing carbonyl groups	577
		Polymers containing perester groups	581
		Halogen-containing polymers	583
	3.1.1.4.	Iniferter systems	584
	3.1.1.5.	Polymers containing phenyl sulfide groups	585
		Polymers containing dye groups	586
	3.1.2. Indirec	t generation of lateral reactive sites	586
	3.1.2.1.	Polymers containing amino groups	586
	3.1.2.2.	Reaction of organometallic derivatives with halogen-	
		substituted macromolecules	587

‡To whom correspondence should be sent.

in Press of		588
3.2. Su	rface modification by photografting	590
3.2	2.1. Experimental methods	590
	3.2.1.1. Immersion grafting	591
	3.2.1.2. Vapor phase grafting	592
3.2	2.2. Special aspects	592
	3.2.2.1. Grafting of hydrophilic monomers onto polydimethylsiloxane	
	3.2.2.1. Grafting of hydrophine 3.2.2.2. Grafting of methyl methacrylate onto polyamides using CT	593
	complexes or dyes as photoinitiators	594
	3.2.2.3. Immobilization of bioactive materials	595
	3.2.2.4. Immobilization of reagents and catalysts	595
3.3. Pt	ressure-sensitive adhesives by photografting	597
Dafarances		

1 INTRODUCTION

1.1. On the importance of block and graft copolymerization

In recent years, the synthesis of novel polymeric materials has become an attractive field of polymer science. Novel materials are required by engineers who are engaged in the development of "high tech" devices because no available materials have properties meeting their requirements. Generally, the need is for novel materials having specific combinations of physical properties.

Regarding polymeric materials, it has been attempted over many years to combine physical properties by copolymerizing monomers of different chemical nature. It was found that a desired combination of physical properties could often be achieved much more easily with "block" and "graft" copolymers of the general structures:

AAAAAAAAA-BBBBBBBBBBBBBBB

Block copolymer

Graft polymer

than with "random" copolymers of the general structure:

Random copolymer

At present, there are various polymeric products on the market basically consisting of random copolymers containing two or three different monomer units, generally denoted here by A, B or C. Novel polymeric materials may be synthesized from new monomers, i.e. from monomers differing in chemical nature from the "classical" ones. However, since "classical" monomers are in most