

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SAAD DAHLAB DE BLIDA 1

FACULTE DE TECHNOLOGIE

DEPARTEMENT DE MECANIQUE

Mémoire une vue de l'obtention du diplôme de Master

Spécialité : Génie des matériaux

Sur le thème :

Etude microstructure et tribologique de l'oxydation isotherme de composite de phase MAX Ti3SiC2/SiC

Présente par :

- **4** Bouchelilet Ayoub
- 4 Ounnas Mohamed Mounir

Encadré par :

- Dr. Adel Haddad

Année universitaire : 2021/2022

Remercîment

Cette thèse a été effectuée au laboratoire de science des l'université blida matériaux, niveau de de 1, je tiens à au remercier la responsable du laboratoire SDM Mm Hnifa de m'avoir accueilli au sein du laboratoire.

Au terme de notre travail, nous tenons à remercie sincèrement nos promotors **Dr. ADEL HADDAD** pour tous les conseil, support et l'aide qui nous ont apporté, afin de mener à bien ce travail dans les délais répartis

Nous remercions aussi tous les enseignants du département Génie mécaniques et particulièrement le grand professeur M. HADJI et DR. NEMRI YACINE Dr. Y HADJI et Dr. CHIKER et Dr. BENAMOUR pour tous leur aides et soutien qui ont servi à la réalisation de ce modeste travail.

Merci à toute mes familles qui ne soutient qui me motive je à persévérer dans mon travail

Un grand merci également à tous ceux qui ont contribué de près ou de loin à la réalisation

Dédicace

Je tiens c'est avec grande plaisir que je dédie ce modeste travail :

A l'être le plus cher de mes vies mes mères

A celui qui m'a fait de nous un homme, mes pères

A mes chers frères

Mes chères sœurs

A tous mes amis de promotion de 2^{-ème} année Master génie des matériaux ET particulièrement

R. Sihem et M. AMEL et G. IMAD EDDINE

B. ABDERZAK ... B. FETEHALLAH...A. YOUCEF

TOUTE PERSONNE QUI OCCUPE UNE PLACE DANS MON CŒUR

A TOUS MES CHERS AMIS JE DEDIE CE MODESTE TRAVAIL

Tables Des Matières

Introduction générale	3
Chapitre 01 : Recherches bibliographiques sur les phases MAX	
1.introduction	4
I.2 Historique	5
I3 Structure des phases MAX	6
I.3.1 Familles des phase MAX	9
I.3.2 liaison des phases MAX	10
I.3.2.a liaison covalente	10
I.3.2.b liaison ionique	11
I.3.2.c liaison métallique	11
I.3.3 Microstructure	11
I.4. Propriétés des phases MAX	12
I.4.1 propriétés électrique	13
I.4.2 propriétés mécanique	13
I.4.3 propriétés chimique	14
I.5. Synthèse des phases Max	14
I.5.1 Le Frittage	14
I.5.2 les procédés des Frittage	15
I.5.2.1 frittage en phase solide	15
I.5.2.2frittages en phase liquide	16
I.5.2.3 frottage réactif	17

I.5.2.4 frittages sous pression mécanique	17
I.5.2.4- a technique du pressage à chaude unidirectionnel	17
I.5.2.4- b technique du pressage isostatique à chaude	17
I.5.2.4- c technique du Spark plasma Sintering	18
I.6 conclusion	19
Chapitre II Etat de L'art	
II.1 L'oxydation	21
II.2 structures et caractéristique des couches d'oxydes formées	21
II.3 L'oxydation de Ti3SiC2	21
II.4 synthèses de tribologie	25
II.4.1 introductions	25
II.4.2 tribologies	25
II.4.3 système tribologique	26
II.4.4 les principaux modes d'usure	27
II.4.4.1 l'usure par abrasion	27
II.4.4.2 l'usure par adhésion ou grippage	27
II.4.4.3 l'usure par fatigue	28
II.4.4.4 l'usure par réactions tribochimique	29

II.4.5 tribologies des céramiques	29
II.4.6 frottement et usure des céramiques	29
II.4.7 tribologies des matériaux lamellaires	29
II.4.8 comportement tribologique des matériaux lamellaires	30
Chapitre III : partie expérimentale	
III.1 introduction	32
III.2Matériaux étudie	32
III.2.1 matériaux utilisée	32
III.3péssée	33
III.4oxydations	33
III.4.1 caractérisations du four utilisé	34
III.4.2oxydations des échantillons	35
III.5la tribologie	36
III.6le polissage	37
III.7 Microstructure optique	39.40
Chapitre VI : Interprétation	
VI-1 introduction	41
VI-2 observation microscopique	41
VI-3 traitement d'oxydation800°	42
VI-4 traitement d'oxydation à 900°	42
VI-5 traitement d'oxydation à1000°	43
VI-6 traitement d'oxydation à 1100°	44

VI-7 évolution de l'épaisseur de sa couche en fonction T	45
VI.8 grains de masse	45
VI.9 les diagrammes de tribologie	47
V.I.9.1Diagramme tribologique d'échantillon de traitement 800°C	47
VI.9.2Diagramme tribologique d'échantillon de traitement 900°C	48
Conclusion générale	54

Liste des figures :

Chapitre I

Figure I.1 : Tableau périodique représente les différents éléments pouvant constituer les phases max

Figure I.2 : Les trois mailles élémentaires (211, 312 et 413) des phases MAX

Figure I.3 : Enchainements des plans pour la structure 211, 312 et 413 orientées suivant l'axe (1120). Une maille [élémentaire est dessinée dans chaque schéma 3]

Figure I.4 : structure nano lamellaire du Ti_3SiC_2 la face fracturée(a). (b) ce principe de déformation se rapproche de celui d'un jeu de carte sollicité parallèlement aux plans de cartes

Figure I.5 : Empreinte de micro-dureté à 500 g montrant la structure lamellaire du Ti₃Si₂

Figure I.6 : variations de la résistivité électrique en fonction de la température des phases MAX

Figure I.7 : courbes déformation-contrainte de Ti_3Si_2 à déférence température pour déférentes tailles de grains

Figure I.8 : le principe de frittage en phase solide

Figure I.9 : déférentes stade d'évolution de la microstructure au cours du frittage

Figure I.10 : Schéma des contributions respectives des trois grandes étapes de cette frittage

Figure I.11 : La technique SPS « Spark plasma sintering »

Chapitre II

Figure II.1 : Observations MEB en électrons rétrodiffusées au même grandissement d'échantillon de Ti_2SiC_2 oxydés à 1125 C pendant 9h sous air comportant – sous forme d'inclusion noire dans Ti_3Si_2 - b) du Tic dans Ti_3SiC_2 d'après (BARSOUM et AL,2003)

Figure II.2 : Couches d'oxydes généralement formées en surface de Ti_3SiC_2 après oxydation sous air a) entre 500 et 800°C, b) à 900 et 1000°C, c) à 1100 et 1200°C

Figure II.3 : Synoptique générale d'un système tribologique

Figure II.4 : schéma des quatre modes d'usure abrasive

Figure II.5 : illustration de l'usure par fatigue

Figure II.6 : illustration de l'usure par fatigue

Les figures Chapitre III

Figure III.1 : les échantillons e phase Ti₃SiC₂

Figure III.2 : balance de précision 10⁻⁴ (g)

Figure III.3 : four électrique à moufle

Figure III.4 : les échantillons après le traitement

Figure III.5 : représente les cycles de traitement thermique en fonction de la température

Figure III.6 : polisseuse mécanique

Figure III.7 : les moyennes utilisées

Figure III.8 : les échantillons dans le moule

Figure III.9 : pin-on-disc tribomètre

Figure III.10 : microscope optique

CHAPITRE IV

Figure VI.1 : microstructure d'échantillons à Témoin

Figure VI.2 : microstructure d'échantillons à T=800°C

Figure VI.3 : microstructure d'échantillons à T=900°C

Figure VI.4 : microstructure d'échantillons à T=1000°

Figure VI.5 : microstructure d'échantillons à T=1100°C

Figure VI.6 : évolution de l'épaisseur de la couche en fonction de la température d'oxydation

Figure VI.7 : grain de masse en fonction de la température de traitement

Figure VI.8 : diagramme de tribologique Ti3SiC2 à T= 800°C

Figure VI.9 : diagramme de tribologique TI3SiC2 à T= 900°C

Liste des tableaux

Tableau I.1 : valeurs des paramètres de maille de quelques phases MAX

Tableau I.2 : les différences catégories des phases MAX synthétisées

Tableau I.3 : conclusion sur les propriétés générale

Tableau II.1 : coefficient de dilatation thermique (CDT) des phases max étudiées des oxydes formés

Tableau III.2 : les paramètres des tests tribologiques

Tableau VI.1 : représente les masses des échantillons avant et après traitement d'oxydation

Introduction générale :

Les phases MAX sont des matériaux céramiques qui constituent une nouvelle classe de matériaux nanolumellare qui ont été longtemps négligés mais depuis une dizaine d'année elles étaient largement cellulaires étudiées à cause de mette leurs in protéomes in celle auxiliaires. Pour leurs propriétés thermiques, chimiques et électriques ils ont de nombreux points communs avec les carburateurs et les nitrures telle qu'un module de Young élevé cependant ils n'ont pas leurs fragilités moinsis ils sont leurre du-il s particulière de deux types de liaison dans leurs structures nanolamillaires. Le Ti₃SiC₂, est la phase MAX la mieux caractérisée à ce jour, bien que de nombreuses questions subsistant sur les différentes facettes de son comportement

Une résistance à l'oxydation est nécessaire pour un matériau susceptible ' être utilisé l'air a haute température Tes matériaux les plus résistants à l'oxydation sont les oxydes mais ils présentent le désavantage d'être sensibles aux chocs thermiques. La résistance d'un matériau à l'oxydation dépend des capacités créer en surface une couche protectrice d'oxyde imperméable. Peu d'éléments forment des couches d'oxyde suffisamment protectrices pour être appliquées comme barrière d'oxydation à des températures supérieures à 1000 ° C. Les oxydes les plus connus ayant ces propriétés sont l'aluminium le silicium, le chrome . Les superalliages utilisés aujourd'hui dans les moteurs d'avions sont des alliages à base de nickel mais ils contiennent suffisamment de chrome pour les rendre résistants à l'oxydation En présence d'oxygénais se forment à leur surface une couche mince d'oxyde de chrome (C12031, protectrice et suffisamment adhérente, jusqu'a 1000 ° C. Soulignons que c'est en ajoutant du chrême a sera que celui - er devient inoxydable

Le but de cette recherche est de comprendre le travail qui consiste a faire une étude microstructure de l'oxydation isotherme d'un composite phase MAX ce dernier qui classée parmi à famille des céramiques mais il a un comportement intermédiaire entre métaux et le céramique et voir le comportement tribologique de se composite après une oxydation isotherme et voir la couche formée ses propriétés tribologique.

Ce mémoire est organisé selon quatre chapitres :

- Le première chapitre c'est la recherche bibliographie et résume aussi les connaissances actuelles concernant les phases MAX, il dresse les principales propriétés des phases MAX et leurs différentes techniques pour les élaborer.
- Le deuxième chapitre présente sur état de l'art qui contient l'oxydation de phase MAX et leur comportement tribologique.
- Le troisième chapitre portera sur le protocole expérimental ainsi que sur les différentes techniques utilisant : le four, la machine de découpage, la polisseuse et la technique de la pesée, la tribologie et dernièrement la microscopie optique.
- Le quatrième chapitre pour objectif de présenter les résultats expérimentaux et Interprétation.

On termine cette étude, par une conclusion générale.

Introduction :

La famille des phases dites MAX est constituée de céramiques nano lamellaires découvertes à l'origine par Jeitschko.W et Nowotny dans les années soixante, on peut étudiées depuis leur redécouverte il y aquelque année, notamment par l'équipe du professeur Barsoum de l'université drexel de Philadelphie, a amorcé leur étude intensive. Ces céramiques possèdent des propriétés intéressantes, intermédiaires entre les métaux et les céramiques.

La particularité des phases MAX réside dans leurs propriétés exceptionnelles qui résultent de leur structure nano lamellaire et peuvent être résumées comme la combinaison des propriétés des métaux et des céramiques. Les phases MAX sont généralement rigides, faible densité, habitude a la déformation plastique à haute température, stable chimiquement, sont une très bonne résistance contre L'oxydation, sont de bons conducteurs électrique et thermiques et sont résistantes à la corrosion et à l'usure.

Souvent étudies pour d'éventuelles application à haute température, les phases MAX ont fait l'objet de nombreux travaux afin d'évaluer leur résistance à l'oxydation. S'il est communément admis que cette classe de matériaux présente des propriétés en oxydation prometteuses, des divergences ont néanmoins pu être constatées quant à la nature et à la teneur des produits d'oxydation, mais également au niveau des cinétiques d'oxydation. Les microstructures des échantillons ou encore la nature de l'atmosphère employée lors des essais d'oxydation sont susceptibles d'affecter les processus mis en jeu au cours de l'oxydation.

I.2. Historique :

Pour la première fois, dans les années 1960-1970Nowotny et son équipe ont synthétisé des phases de type H, de composition chimique M_2AX où :

M est un métal de transition appartenant aux groupes 3 (sc), 4(Ti, Zr, Hf), 5 (V, Nb, Ta) ou 6 (Cr, Mo).

A un élément des groupe A2 (Cd),13(AL, Ga, In, Ti),14(Si, Ge, Sn, Pb),15 (P,As) ou 16 (s)

X du carbone Cou l'azote N

Après la découverte d'autres ternaire en savoir le Ti_2SiC_2 et Ti_3AlC_2 la formule chimique devient alors $M_{n+1}AX_n$. L'indice n varie de 1 à3 par valeurs entiers et les structures M_2AX , M_2AX_2 ET M_2AX_3 sont nommées respectivement 211,312 et 413, plus récemment, une étude mentionne l'existence de la famille 615 par l'analyse du $Ta_6AlC_{5.[1]}$

Ce n'est pas qu'en 1996, que la phase MAX Ti_3SiC_2 a été synthétisée et étudiée dans le cadre d'un programme de recherche mené par le professeur M. W. Bar soum, grâce à la technique de compression isostatique à haute température (HIP), depuis, les chercheurs ont confirmé que les propriétés des phases MAX sont voisines de celles des céramique (dureté élevée, très haute température de décomposition, rigidité a température élevée). Tout en ayant les caractéristiques des métaux (bonne conductivité électrique et thermique, usinabilité, ductilité et tolérance à l'endommagement) [1]4

Les phases MAX tiennent leur nom de leur composition chimique $Mn_{+1}AX_nou$ L'indice n varie de 1 à 3 et les structures M_2AX , M_3AX_2 ET M_4AX_3 correspondent sont nommées respectivement phase Max ;211,312 et 413.

Figure I.1. Tableau périodique représente les différents éléments pouvant constituer les phases max. [6]

1.3. Structure des phases max

Les phases max présentent une structure à maille hexagonale dont le groupe d'espace est P63/mmc. Leur maille est schématisée sur la figure 2.2. La notation cristallographique utiliséest celle de bravais-Miller, la maille élémentaire peut être simplement décrit par des empilements succédé couches d'octaèdres M6X et d'une couche d'élément.

Sur la figure 2.2 les trois structures se déférent par leur nombre de couches d'octaèdres séparant les couches A : on compte 1 octaèdre (2 couches de M) pour la 211, 2 octaèdres (3 couches M) pour 312 et 3 octaèdres (4 couches de M) pour la 413. [2]

Figure.I.2. Les trois mailles élémentaires (211, 312 et 413) des phases MAX. [3]

Figure I.3.Enchainements des plans pour les structures 211, 312 et 413 orientées suivant l'axe (1120). Une maille élémentaire est dessinée dans chaque schéma.[3]

Les paramètres de maille mesuré par déférence méthode une anisotropie cristalline très important (c/a >3). Tableau 1..1. La combinaison de cette dernière avec l'aspect lamellaire lié aux différents types des liaison inter-planaires, suggère que les mécanismes de déformation des phases Max sont proches de ceux des matériaux lamellaires comme le graphite [4]. Ces mécanismes sont détaillés plus loin.

Phase	Paramètre a (A)	Paramètre c (A)	Rapport a/c
Ti ₂ AIN	2,99	13,61	4,55
Ti ₂ AIC	3,04	13,60	4,47
Cr ₂ AIC	2,86	12,80	4,47
Ti_2SC	3,22	11,20	3,47
Ti_3SlC_2	3,07	17,67	5,75
Ti_3AlC_2	3,08	18,58	6,03
Ti_3SnC_2	3,14	18,65	5,93
$(V_{0.5}Cr_{0.5})_3AlC_2$	2,89	17,73	6,13
$Ta_3Al_{0.6}Sn_{0.4}C_2$	3,09	19,13	6,19
Ti_4AlN_3	2,99	23,37	7,78
Ti_4SlC_3	3,05	22,67	7,43
Ti_4GaC_3	3,05	23,37	7,66
Ti_4GeC_3	3,08	22,85	7,41
Alpha Ta ₄ AlC ₃	3,11	24,12	7,75
Bêta - Ta_4AlC_3	3,09	23,70	7,66
Nb ₄ AlC ₃	3,13	24,12	7,70

Fableau I.1. Valeurs des	paramètres de maille de d	quelques phases MAX
---------------------------------	---------------------------	---------------------

1.3.1. Familles des phases Max :

En somme. À ce jour, le nombre de phases MAX répertorié et stables thermodynamiquement dépasse (60). Et à l'heure actuelle, les pôles d'intérêt s'orientent vers la synthèse de nouvelles phases MAX du fait que beaucoup d'élément peuvent être combinés entre eux.

Catégorie 211	Catégorie 312	Catégorie 413
$Ti_2CdC, Sc_2InC,$	$Ti_3 AlC_2$	Ti_3AlN_2
Ti2AlC, Ti ₂ GaC,	Ti_3GaC_2 ,	V_4AlC_3
Ti_2InC, Ti_2TIC	$Ti_3 lnC_2$	
V_2AIC, V_2GaC ,	V_3AlC_2	Ti_4GaC_3
Ti_2AIN , Ti_2GaN ,	Ti_3SiC_2	Ti_4SiC_3
$Ti_2InN V_2GaN$,	Ti_3GeC_2	
Cr_2GaN, Ti_2GeC ,	Ti_3SnC_2	Ti_4GeC_3
Ti_2SnC , $Ti2_2PbC$	Ta_3AlC_2	
, V_2GeC , Cr_2AIC	Zr_3AlC_2	IND4AIC3
, C/2 GeC , V2I C , V2ASC , Ti2SC ,		Ta_4AlC_3
Zr_2InC , Zr_2TIC ,		
Nb ₂ AIC , Nb ₂ GaC		
, Nb_2InC ,		
Mo_2GaC , Zr_2InN		
, Zr_2TIN ,		

Tableau I.2. Les différance catégories des phases MAX synthétisées

1.3.2. Les liaisons des phases Max :

Tous comme les phases MAX correspondants aux phases MAX, on peut trouver les trois types de liaison interatomique dans ces dernières ; métalliques, ionique et covalentes.

Liaison covalente :

Elle se manifeste dans les phases MAX par la liaison entre les atomes M et X, c'est la liaison le plus forte dans la structure des phases MAX

Liaison ionique :

Il est clair que les liason dans les blocs MX ont un caractére covalent vu la faible différence d'électronégativité deltax entre les élément M et X (liaison covalente prédominante pour $\Delta X < 1,7$),[5] par contre, on ne trouve jamais une céramique avec un caractére covalente 100%. Donc il ya des liaison ioniques dans le système M-X

Liaison métalique :

Cette liaison est represente dans la structure des phases MAX ,cette derniere liaison est genéralement la responable de la bonne conductivité électrique de type métalique affiché par les phases MAX.

1.3.3.Microstructure :

Ont étudie les structure finales obtenues lors de la synthése du Ti3SlC2 par pressage isostatique à chaud. Ils ont obtenu trois type de microstuctures différents en faisant varie la températeur et le temps de maintien :

- Une microstructure à grains fins (autour du micron, notée FG).
- Une microstructure à gros grains (entre quelque dizaines et quelques centaines de microns, notée CG).
- Une microstructure intermédiaire avec de gros grains dans une matrice de grains fins. Le passage entre ces différentes microstructures semble
- Se faire de façon continue, et plus on augmente le temps et la température, plus les grains obtenus

Les études sur les propriétés mécanique de ce matériau tiennent souvent compte de la distinction entre les structures à gros grains et à grains fins en étudiantes deux cas. La porosité peut être réduite de façon importante dans ce matériau, qui a par ailleurs une grande résistance à la présence des défauts comme on le verra dans la suite. Aucune étude à notre connaissance à ce jour n'a montré la présence de microfissure dans la structure.

Les phases max sont des céramiques nano lamellaires. La figure 1.7.amontré une image de cette structure sur une surface fracturée de Ti3SiC2. Cette image présente

la structure lamelles flexibles de ce matériau et montre sa propension à se dé laminer. Cette structure peut être comparée à celle d'un jeu de carte déformée comme celui schématisé sur la figure.l.6. B chaque lamelle visible dans la structure étant elle-même composé de feuillets [7]

Figure 1.4. Structure nano lamellaire du Ti₃SiC₂ la face fracturée(a), (b) ce principe de déformation se rapproche de celui d'un jeu de carte sollicité parallèlement aux plans des cartes.[8]

Dans la Figure 1.6 qui est ci-dessous montre empreinte de micro-dureté Vickers effectuée en appliquant une charge de 500 g, pendant 10 s sur un grain de Ti3Sic2

Figure1.5 : Empreinte de micro-dureté à 500 g montrant la structure la mellaire du Ti_3SiC_2 [8]

1.4 propriétés des phases MAX :

Ces carbures et nitrures possèdent une combinaison inhabituelle des propriétés chimiques, électrique et mécaniques...etc.

La particularité des phases Max est qu'elles combinent les propriétés caractéristiques des céramiques et certaines propriétés usuelles des métaux. Les propriétés d'une phases $M_{n+1}A X_n$ présentent également souvent des similitudes avec la phase MAX correspondante.

1.4.1 propriétés électriques :

Les céramique MAX sont des bons conducteurs électriques : comme Ti_3SiC_2 et Ti_3AlC_2 , sont meilleurs conducteurs que le métal de Ti lui-même. La résistivité électrique des phases MAX (\dot{p}) ressemble à celles des M et des MX, elle est comme les conducteurs métalliques la résistivité augmente linéairement avec l'augmentation de la température, on remarque sur la (figure 1 .6) que la résistivité du Ti_3SiC_2 présente une meilleure conductivité électrique par rapport au Ti_3AlC_2 , ces derniers sont de bons conducteurs électriques par rapport Titane (Ti).

A l'exception de Ti_4AlN_3 , les résistivités des composés contenant du Ti sont moins élevées que celles du titane par et de Tic

Figure 1. 6 : variation de la résistivité électrique en fonction de la température des phases MAX.

1.4.2 Les propriétés mécaniques :

Les propriétés mécaniques des phases MAX sont étonnantes. La majorité des études effectuées sur la phase Ti_3SiC_2 . Comme la plupart des matériaux, les propriétés mécaniques de Ti_3SiC_2 dépendent de la taille des grains. Dans les prochains paragraphes, on fera a deux types microstructure déférentes : microstructure à petites grains (FG : Fine grains) et gros grains (CG : Coarse grains).

Les courbes déformation-contrainte typiques à la phases Ti_3SiC_2 (déformation par compression) à déférentes températures sont reproduites sur la (figure 1 .9).20 A température ambiante et pour une vitesse de déformation 5,10-3 s-1, le rupture est fragile la contrainte à la rupture est fonction de la taille de grains : pour microstructure à petites grains elle a lieu à environ 1 Gpa et pour celles à gros grains à environ 700 Mpa. A 1200 C il apparait une zone non linière dans la courbes déformation-contrainte en compression, présent trois étapes, dénotées

Respectivement A, B, C dans (figure 1.9) (A) un régime élastique (B) une étape de déformation

Inélastique, ou régime de durcissement apparent, et (C), un adoucissement avant rupture. A plus Élevées températures, l'étendue du régime d'adoucissement est plus importante que celui du régime de durcissement. Les allongements à la rupture sont alors supérieurs à 15 %.

Figure 1.7 : courbes déformations-contrainte de Ti_3SiC_2 à déférentes températures pour déférentes tailles de grains.[9]

On remarquera ici l'apparition de 3 régimes en compression.

1.4.3. Les propriétés chimiques :

La résistance à l'oxydation est indispensable pour un matériau destiné à des application sous air et haute température. Cette propriété est connue chez les oxydes, dans une moindre mesure, les céramiques (carbures, nitrures) mais, qui présentent de faible résistance aux chocs thermique aussi, la capacité du matériau à développer une couche d'oxyde protectrice, telle que l'alumine Al₂O₃ et la chromite Cr₂O₃, qui sert de barrière contre la diffusion de l'oxygène. Ainsi, les phases MAX, celles contenant de l'Al et du Cr (système Ti-Al-C, Cr-Al-C, V-Al-C) présentent une bonne résistance à l'oxydation dans les gammes de température 500-1300 C, et une bonne tenue à la corrosion dans des milieux acides et basiques est

Également révélée. Contrairement aux matériaux métalliques et céramiques, le nombre d'études menées sur la résistance de ces matériaux à la corrosion en milieu aqueux, du moins celles dont nous avons connaissance est relativement faible

1.5. Synthèse des phases MAX :

Différentes techniques de synthèse utilisée classiquement par les céramistes sont mises en ouvrages pour fabriquer les phases max.

La plupart des céramiques techniques ne sont pas si facilement mises en forme : cette étape s fait donc en même temps que la synthèse du matériau dense basée sur le principe de frittage

1.5.1 le Frittage :

Le frittage est un procédé de fabrication des pièces consistant à chauffer une poudre sans la mener jusqu'à la fusion. Sous l'effet de la chaleur, les grains se soudent entre eux, ce qui forme la cohésion de la pièce

Et aussi on dit que :

Le frittage est la consolidation par action de la chaleur d'un agglomérat granulaire plus ou moins compact, avec ou sons fusion d'un ou de plusieurs de ses constituants.[10]

A la lecture des différentes définitions, on remarque que deux types de frittage existent :

- > Le frittage en phase solide (si tous les constituants restent en phase solide).
- Le frittage en phase liquide (si au moins l'un des constituants est en phase liquide et l'un au moins reste en phase solide).

I.5.2 les procédés de frittage

I.5.2.1Le frittage en phase solide :

La poudre est chauffée à haute température mais aucun des constituants ne fond. Les liaisons entre les particules se font principalement par déplacement d'atomes, on parle de diffusion de matière à l'état solide.la force motrice de ce processus spontané, active par la température, est la réduction de la grande énergie de surface présente dans le matériau au début du frittage.

Figure 1.8 : le principe de frittage en phase solide

Cette réduction est opérée par différentes mécanisme de transfert de matière, selon le système en question. On parle de frittage actif lorsque l'atmosphère du frittage interagit avec le matériau[]

D'une manière générale, au cours du frittage, deux phénomènes sont en compétition **la densification** et **la croissance des grains**. Trois stades sont généralement distingués au cours du frittage :

- \Rightarrow Le stade initial
- ⇒ Le stade intermédiaire
- \Rightarrow Le stade final

Et nous pouvons l'expliquer à travers la figure 1.10

Figure 1.9 : déférentes stade d'évolution de la microstructure au cours du frittage

1.5.2.2. Frittage en phase liquide

Procédé d'élaboration des matériaux à partir d'une poudre ayant au moins deux constituants. La température de fusion de l'un des deux doit être inférieure à la température de frittage. Dans le but de permettre l'apparition de la phase liquide qui densifiera le comprime. Les mécanisme mis en jeu font intervenir des phénomènes de fusion, De mise en solution, de diffusion, d'écoulement liquide par capillarité, de réarrangement des particules solides et l'élimination de la porosité.

Lors de frittage en présence d'une phase liquide, on distingue trois étapes principales correspondant successivement au réarrangement, à la dissolution-précipitation et à la coalescence des grains [12]

Figure 1.10.Schéma des contributions respectives des trois grandes étapes du cette frittage

1.5.2.3. Frittage réactif :

Ce type de frittage se réalise en provoquant une réaction chimique entre les différentes poudres d'un mélange à hautes température. Il est aussi possible de produire un frittage réactif entre la poudre et un liquide ou un gaz, c'est un produit exothermique il consiste à obtenir après traitement thermique un produit fritté de structure chimique différente.

1.5.2.4Le frittage sous pression mécanique :

Le frittage sous contraintes est effectué quand on veut obtenir une densification plus complétée on utiliser une température plus basse. Pour appliquer la pression on peut mettre en œuvre la compaction en matrice ou la compaction isostatique. Les contraintes appliquées activent la diffusion aux contacts particulaire à des température relativement basses par rapport au frittage conventionnel et peuvent, pour les métaux, entrainer une déformation plastique. Les dislocations ainsi créées accélèrent encore les phénomènes de diffusion.

1.5.2.4.a Technique du pressage à chaude unidirectionnel {HP} :

Le pressage a chaude unidirectionnel (Hot Presse – HP) peut également être utilisé est moins lourd à mettre en œuvre. La poudre, avoir été mélangée est préalablement pressée à froid afin de former un solide plus facile à manipuler ce solide est placé dans un moule rectangulaire fermé par un piston. Comme dans le cas du pressage isostatique, la montée en température se fait à une vitesse définie par l'opérateur. La charge de pressage est appliquée mécaniquement

Sur le piston à une vitesse et jusqu'à une valeur choisie. Elle est maintenue le temps voulu, Puis enlevée à une certaine vitesse. Le refroidissement après enlèvement de la charge se fait naturellement [13]

1.5.2.4.b technique du pressage isostatique à chaude {HIP} :

La compression isostatique à chaude (C.IC.) ou high isostatique (H.I.P.) est utilisée pour densifier des poudres pulvérulentes ou préalablement compactées. Permet d'appliquer la même pression dans toutes les directions pour le frittage de la céramique. Cette technique est abondamment utilisée pour le frittage réactif de phases MAX. la poudre initiale est constituée d'un mélange des différentes poudres des éléments de départ (par exemple Ti, SI et C, ou bien

TI, Sic et C) dans les proportions stœchiométriquesdu matériau final. Ces poudres sont mélangées pendant quelques heures à l'aide de billes d'alumine dans un mélangeur rotatif [14]

1.5.2.4 c. Technique du Spark plasma Sintering « SPS » :

Lors de SPS, l'échauffement ne vient pas de l'extérieur comme HP, maisestplutôt causé par l'effet joule sur l'ensemble "filière-piston-échantillon". Selon l'intensité du courant pulsé, des cycles thermiques très courts de l'ordre de quelques minutes sont possibles.de plus, l'application d'une pression pouvant atteindre 100 MPA permet de réduire le cycle thermique

Du frittage, ce qui peut réduire le phénomène de croissance des particules et maintenir la taille des nano grains. A noter qu'il existe d'autres types de synthèse de dépôt, comme CVD "Chemical vapor deposition", le PVD "physical vapor deposition" et le PLD "Pulsed laser deposition"[15].

Figure 1.11 la technique SPS « Spark plasma sintering »

I.6Conclusion sur les propriétés générales :

Les phases MAX sont des matériaux de structure nano-lamellaire à maile cristallographique hexagonal des aux propriétés physiques, chimique et mécanique remarquablement exceptionnelles, Cela dit leurs propriétés peuvent être résumées comme était une forte combinaison des propriétés mérite donc qu'on leur porte attention

Propriétés métalliques	Propriétés céramique
- Excellents conducteurs électrique et	- Bonne résistance à l'oxydation
thermique	- Bonne résistance aux acides et aux bases
- très résistants aux chocs thermiques	- Bonne résistance à la fatigue
- Tolérants à l'endommagement	- Réfractaires à haute température (<1300°C).
- facilement usinables	-Conservation de l'essentiel des propriétés mécanique à haute température
- faible dureté	- Grande rigidité et faible densité
- ténacité élevée	

Tableau I.3 : conclusion sur les propriétés générale

II.1 Oxydation :

Souvent étudiées pour de possibles applications à des températures élevées, les phases MAX ont fait l'objet de nombreuses études pour évaluer leur résistance à l'oxydation. S'il est reconnu que cette classe de matériaux présente des propriétés prometteuses en termes d'oxydation, alors il n'y a pas de désaccord sur la nature et la teneur en produits iso-oxydants, mais plus. La microstructure de l'échantillon et même la nature de l'atmosphère utilisée lors des tests d'oxydation peuvent affecter les processus impliqués dans le processus d'oxydation [16]

II.2 Structures et caractéristiques des couches d'oxydes formées :

Les nombreux travaux réalisés afin de déterminer la résistance à l'oxydation sous air des phases MAX échouées dans cette étude bibliographique mettent évidence le une oxydation compétitive éléments max. Celle-ci se produit par diffusion internet d'anions o²⁻ et par une diffusion externe de cations métalliques (Cr^{3+} , Ti^{4+} , Al^{3+} , Si^{4+}) Ainsi, à haute température, l'oxydation sous air de Ti3Sic2 conduit à l'obtention de couches denses ou poreuses de TiO₂, mais aussi de couches de SiO2, tandis que l'oxydation de Ti2AlC et Ti3AlC2, conduit à la formation de couches d'Al₂O₃en surface des échantillons. En revanche, dans le cas de la phase MAX Cr₂AIC, l'aluminium est souvent mis en évidence en comme élément unique susceptible de s'oxyder, la chromine Cr2O3, n'étant présente que sous forme d'inclusions ponctuelles' au sein d'une dense couche [16].

III. 3 L'oxydation de Ti 3 Sic 2 :

Pour des températures intermédiaires (jusqu'à 800°C), l'oxydation de Ti_3SiC_2 conduit à une couche d'oxyde de surface contenant des cristaux de TiO_2 et SiO_2Le TiO_2 se présente sous forme de rutile et d'anatase. Bien que le rapport anatase/rutile soit relativement élevé à 500°C, celui-ci tend à diminuer avec le temps d'exposition et/ou la température. Les travaux de Zhang et al. Des tests d'émission acoustique de particules subissant des périodes d'oxydation et de refroidissement isothermes ont indiqué que des microfissures se sont formées pendant le plateau isotherme à des températures d'oxydation.

Élevées. Entre 500 et 800°C et la propagation de ces fissures de refroidissement. Celles-ci sont dues à la contrainte créée au sein de la couche d'oxyde composée de TiO2 et SiO2 ; la contrainte créée par la transition rutile-anatase entre 500 et 800 °C peut être induite par la dilatation thermique entre les deux allotropes TIO Différences de coefficients à expliquer

(Tableau 2-1). Par conséquent, le nombre d'événements acoustiques diminue avec l'augmentation de la température, et il n'y a pas fissuration a été observée à 900°C uniquement en l'absence d'anatase.

A ces températures, contrairement à TiO_2 , SiO_2 n'est pas détectable par diffraction des rayons X observée au sein de la couche de TiO_2 formée. En fait, Pang et al. Il a été démontré que le SiO_2 existe sous une forme amorphe.[16]

	TiO	TiO	Si	γ –	α-	AL2Ti	Cr2	Ti3Si	Cr2Al	Ti2Al	Ti3Al
	2	2	0	Al2	Al2	05	03	C2	С	С	C2
	Ana	Rut	2	03	03						
	ta	il									
	se	е									
CDT(X10	3.8-	7.1-	12.	12.6-	7.9-	-2.7-	7.5	9.1	12-13	7.1	9.0
⁶ K ⁻¹)	20.4	9.2	3	38.9	8.8	20.5					

 Tableau II-1 coefficient de dilatation thermique (CDT) des phases max étudiées des oxydes formés,

 les plages de valeurs étendues renseignées étant liées à l'anisotropie de ces matériaux

Oxydation du Ti₃SIC₂ à haute température (T > 800°C) : conduit toujours à la formation de couches contenant SiO₂ et TiO₂ dans l'air : au contact du MAX, mais aussi formation de couche externe TiO2 rutile.La troisième couche riche en SiO₂ est parfois mise en évidence à l'interface entre la couche externe de TiO₂ et la couche interne TiO₂ + SIO₂, Les échantillons ont été observés comme amorphes en surface Forme existe (S.L YOUNG ET AL.2003) La nature et l'épaisseur de la couche d'oxyde sont indépendantes de la taille des grains de la phase MAX [GARSCUM ET AL.2003]. D'autre part, comme le montrent les travaux de Barsoum et *AL*., la nature et le taux de la deuxième phase présente dans la phase MAX affectent de manière significative l'épaisseur de la couche d'oxyde formée. Les observations de Ti₃SiC₂ avec TIC ou SIC sont présentées dans (les figures 2-1). A noter la surprenante différence d'épaisseur des oxydes formés en surface dans les mêmes conditions d'oxydation

Figure II.1: observations MEB en électrons rétrodiffusés au même grandissement d'échantillon deTi2SiC2 oxydés à 1125 C pendent 9h sous air comportant – sous forme d'inclusions noire dans Ti3Si2- b) du Tic dans Ti3SiC2 d'après (BARSOUM et AL.,2003)

Ainsi, la phase MAX riche TIC favorise la formation de TiO2 un oxyde plus favorable à la diffusion de l'oxygène que SiO2, tandis que la phase MAX riche en SIC favorise la formation de la couche positive. Dense et plus protecteur au SiO2, l'étude du mécanisme d'oxydation à l'aide de marqueurs de surface a permis de mettre en évidence en externe la diffusion [16]

Du titane (à l'origine de la formation de la couche de TiO₂) et la diffusion de l'oxygène (à l'origine de la couche comprenant TiO₂ et SiO₂ Ce mécanisme de diffusion a été confirmé par de nombreuses études

Une hypothèse sur la morphologie des couches consiste à prendre en compte le gradient d'oxygène lors du processus d'oxydation. Par conséquent, dans la première étape d'oxydation,

Il n'y a pas de gradient, permettant ainsi la Co-formation d'îlots de TiO2 et SiO2 fur et à mesure que la couche s'épaissit, la diffusion externe du titane est

Facilitée par la présence d'ions titane interstitiels, qui est le point de départ de la formation de la couche externe de TiO2. Dans le même temps, la pression partielle d'oxygène tend à diminuer à l'interface oxyde/phase MAX, favorisant la formation de SiO2 gazeux plutôt que l'additif Sio2. Lors de la diffusion de SiO2 à travers la couche d'oxyde, la pression partielle d'oxygène augmente, permettant la formation d'inclusions de SiO2 au niveau de la couche interne, compris des niveaux élevés de TiO2, et à l'intérieur de la couche interface/col, où la teneur en TiO2 est réduite, De plus, de nombreux pores se forment au sein de la couche interne, qui sont générés par la diffusion externe et interne des ions et la formation d'espèces gazeuses telles que CO, CO2 et SiO.2 Un résumé des différentes structures de

couches d'oxyde généralement rencontrées sur les surfaces Ti3 SiC2 (Figure II.2) . Les 3 types de flèches indiquées sur cette figure (flèches pleines, tirets épais et tirets fins) mettent en évidence

Les différentes vitesses de diffusion des ions au sein de la couche d'oxyde. A la diffusion couramment rencontrée aux joints de grains (diffusion rapide - flèches pointillées épaisses) et en volume de grains (diffusion plus lente - flèches pointillées fines), s'ajoute la forte diffusion des micro-oxydes ciselé paris (flèches pleines). Et les chemins de diffusion préférentiels favorisent l'apparition de l'interface entre l'élément A et les matériaux oxydes [16]

Figure II.2. : couches d'oxydes généralement formées en surface de Ti3SiC2 après oxydation sous air a) entre 500 et 800°C, b) à 900 et 1000°C, c) à 1100 et 1200°C

Les trois types de flèches utilisé indiquent une oxydation favorisée par la présence de joints de grain ou de fissures à travers la couche d'oxydes- on notera la présence de pores au sein des couches d'oxydes illustrée en b) et c).

II.4 Synthèses de tribologie

II.4.1 Introduction :

Les études tribologiques concernent essentiellement l'étude des surfaces en contact ont pour Objet la compréhension des phénomènes irréversibles générés dans les contacts dynamiques afin D'augmenter la durée de vie des mécanismes, des outils et des dispositifs tribologiques, par une Conception et un choix convenable des matériaux.

II.4.2 Tribologie :

Étymologiquement, le mot tribologie vient du grec $\tau \rho (\beta \circ \zeta \lambda \circ \gamma \circ \zeta qui signifie science du frottement. La tribologie est donc une discipline regroupant sciences et technologies s'intéressant aux interactions entre surfaces en contact [17]. Elle traite des problèmes de contact, de frottement, d'usure et de lubrification.$

II.4.3 Système tribologique :

Un système tribologique se définit comme un système mécanique, formé de deux matériaux antagonistes en contact, animés de mouvements relatifs. Ces deux solides évoluent dans un milieu ambiant et peuvent être séparés par un film intercalaire appelé troisième corps. Sur le plan tribologique, le troisième corps est un opérateur qui transmet la charge (ou portance) d'un premier corps sur l'autre et accommode en s'écoulant (débit) d'une façon dissipative (frottement) l'essentiel de la différence de vitesse entre deux corps.

Les troisièmes corps séparent partiellement ou entièrement les premières compils sont introduits dans le contact ou bien par entraînement cinématique (lubrifiants solides ou liquides) (Figure II.4).

L'interface d'un tel système devient alors le siège de phénomènes dissipatifs d'énergie, regroupés Soule terme générique de frottement.

La quantification de ces énergies est d'un intérêt capital car elles conditionnent les échauffements à l'interface, elles modifient la micro et la macro-géométrie du contact (dégradations par usure conduisant à la détérioration du système).

Figure II.3: synoptique générale d'un système tribologique [31]

II.4.4 Les pricipaux mode d'usure :

L'usure est un processus complexe, qui correspond à l'endommagement des surfaces en contact. Elle peut être une détérioration physique, une attaque chimique selonl'environnement dans lequel le matériau se trouve et dépend aussi de ses propriétés. Elle peut être générée par plusieurs mécanismes physiques, chimiques ou mécaniques indépendants ou non. Quatre modes d''usure différents sont couramment proposés [18, 19, 20].

II.4.4.1 L'usure par abrasion :

Initialement, il est a pensé que l'usure par abrasion par grains ayant été détachés de l'une des deuxsurfaces ou aspérités dures, ressemblait au procssus de coupe sur les machines-outils. Toutefois,l'examen microscopique a révélé que cette aspérité peut dégrader la surface du solide selon différentsmécanismes présentés sur la figure II.5

La sévérité du contact dépend des propriétés et de la géométriedes matériaux en contact [21].

La nature de l'usure abrasive est précisée par le mode d'acheminement de l'aspérité dans le contact : soitl'aspérité est fixée à l'une des surfaces, et l'on parle alors d'abrasion à deux corps, soit l'aspérité estmobile par rapport aux deux surfaces, et l'on parle alors d'abrasion à trois corps.

II.4.4.2 L'usure par adhésion ou grippage :

Elle se caractérise par la formation des micros-jonctions (microsoudures) au niveau des contacts entre les surfaces frottantes. Dans le cas de jonctions faibles, le cisaillement se produit à l'interface (Figure II-4). Lorsque les jonctions sont fortes, la rupture se produit au sein du matériau le plus mou qui est transféré sur le matériau le plus dur.

Figure II.5 : Illustration de l'usure par fatigue [29]

II.4.4.3 L'usure par fatigue :

Elle est liée à l'action d'un mouvement cyclique et à la capacité des matériaux à absorber les énergies de déformation et les contraintes thermiques générées par frottement. L'usure par fatigue se manifeste par des fissures, des écailles et des changements de la structure métallurgique.

Figure II.6: Illustration de l'usure par fatigue [29]

II.4.4.4 L'usure par réactions tribochimiques [22] :

C'est un système à trois composantes, où interviennent la réactivité chimique entre les surfaces, la réactivité chimique avec le milieu environnant (lubrifiant...) et la réactivité physico-chimique avec les réactivités chimique avec le milieu environnant (lubrifiant...) et la réactivité physico-chimique avec les débris. Dans de nombreux cas de réactions tribochimiques, un film protecteur (tribofilm) est généré sur les surfaces frottantes.

C'est par exemple le cas des additifs anti-usure comme le dithiophosphate de zinc (ZDDP) [23,24]. Un film protecteur constitué de phosphates se forme sur les surfaces par réactionstribochimiques entre l'oxyde de fer natif et les éléments de décomposition de l'additif [25]

II.4.5 Tribologie des céramiques :

Les céramiques sont une classe spéciale de matériaux qui comprennent un grand nombre de composés inorganiques réfractaires dures, qui sont formés par chauffage du matériau de base sous forme de poudre à une température élevée lors du frittage où la réaction à l'état solide se produit. Le résultat de ce processus est un matériau qui possède une grande dureté, bonne résistance chimique et une grande résistance à l'usure plus importante que celle de la plupart des métaux [26].

II.4.6 Frottement et usure des céramiques :

La structure des céramiques leur confère souvent une dureté élevée, une bonne résistance à l'oxydation et parfois une résistance à l'usure bien supérieure à celle de la plupart des métaux. Le Si3N4 est par exemple utilisé avantageusement dans certains roulements à billes à la place de l'acier, non seulement pour ses propriétés intrinsèques de tenue en température, mais également pour ses propriétés de réduction d'usure. La caractérisation tribologique des céramiques est complexe. Elle dépend, comme pour tous les matériaux, de leurs compositions et propriétés, des conditions de glissement (vitesse, charge, température), de l'environnement et du type d'antagoniste [26].

II.4.7 Tribologie des matériaux lamellaires

Les phases MAX ont une structure nano lamellaire, Un certain nombre de céramiques ont une telle structure (graphite, mica, MoS₂, etc.), et certaines ; de ces

Céramiques ont des propriétés lubrifiantes intéressantes. Cette partie s'intéresse aux mécanismes mis en jeu lors du frottement de ces matériaux lamellaires [26].

II.4.8 Comportement tribologique de matériaux lamellaires :

En l'absence de lubrification, la plupart des contacts solides entraînent une adhésion qui peut être importante entre les surfaces. Cette adhésion induit presque toujours de fortes valeurs du coefficient de frottement, puisque la majorité des matériaux résiste au cisaillement parallèlement à leur surface aussi efficacement qu'à la compression perpendiculairement à cette surface.

Les matériaux lamellaires présentent des caractéristiques mécaniques anisotropes du fait de leur structure en feuillets : cette anisotropie peut induire l'existence de plans de cisaillement faiblement résistants, permettant le mouvement relatif des feuillets les uns par rapport aux autres à des contraintes de cisaillement relativement faibles. Cette propriété assure alors une faible valeur du coefficient de frottement [27]. Pourtant, très peu de matériaux lamellaires présentent des propriétés lubrifiantes intéressantes. Un matériau lamellaire peut être considéré comme un lubrifiant solide s'il présente les trois caractéristiques suivantes :

- la structure lamellaire se déforme à des niveaux de contrainte de cisaillement relativement Faibles,

- le matériau adhère fortement à la surface antagoniste,

- aucune décomposition ou dégradation chimique n'intervient à la température et sous L'environnement de travail.

Dans le cas du mica, les forces entre les feuillets sont des forces électrostatiques fortes qui rendent plus difficile un cisaillement entre eux. Le talc, quant à lui, n'adhère que très peu Aux surfaces qu'il sépare, il peut donc être facilement évacué du contact lors du glissement :

Ce phénomène expliquerait ses moins bonnes caractéristiques en frottement par rapport au graphite, qui forme un _lm de transfert très adhérent sur les surfaces en contact [28]. Ces Raisons justifient le fatigue le talc et le mica n'entrent pas dans la liste des lubrifiants Solides utilisables.

III.1 Introduction :

Cette section se concentrera sur les techniques expérimentales et l'équipement utilisé pour le développement, dirigée par le docteur Adel Haddad.

Le travail consiste à faire une étude microstructure de l'oxydation isotherme d'une composite phase max ce dernier qui classé parmi à famille des céramiques mais il a un comportement intermédiaire entres métaux et la ceramiques et voir le comportement tribologique de se composite après une oxydation isotherme et voir la couche formée ses propriétés tribologique

III.2 Matériau étudie

Le matériau étudie est la phase MAX Ti₃SiC₂

Figure III.1 : les échantillons de phase Ti₃SiC₂

III.2.1 matériau utilisé :

Le matériau utilisé pour notre étude est un composite de Ti3SiC2/SiC reçu de la part de MAX/Mxene resache group Drexel Université USA de la part de Pr M.W Barsoum ce matériau a été synthetisé par procédé HP au final l'échantillon contient 70 % de phase MAX Ti_3SiC_2 et 30% de la phase secondaire SiC

III.3 la pesée :

Après les découpages, les échantillons ont été pesées à l'aide d'une balance de précision de 10⁻⁴ (g) au niveau de laboratoire études et recherches en technologie industrielles (LERTI) au sein de l'université Blida 1

Figure III.2 : balance de précision 10^{-4} (g)

III.4. Oxydation

Pour l'oxydation des échantillons on a utilisé un four a moufle au niveau **de laboratoire pédagogique de département de génie mécanique de Science des Matériaux SDM de l'université de Blida I**

Figure III.3 : four électrique à moufle

III.4.1 Caractéristique du four utilisé :

- Température maximum 1100°C
- Arrêt automatique à l'ouverture de la porte
- Résistance à l'usure, sans poussière, moufle en céramique
- Cloison doublée pour garder les parois extérieures froides
- Choix du contrôleur de température
- 4 capacités disponible

Ces fours sont faits de moufles en céramiques enveloppés extérieurement par l'élément chauffant L'intérieure de la chambre de chauffé reste totalement libre, sous l'encombrement des résistances. Cela éviter d'endommager les éléments chauffants en chargement les échantillons, mais cela les protège également de la corrosion par l'évaporation éventuelle de produits provenant des échantillons.

Cette méthode permet aussi d'avoir une parfaite stabilité de température à l'intérieure de la chambre.

III.4.2 Oxydation des échantillons :

Le traitement de l'oxydation a été accompli sur 4 échantillons de Ti3SiC2 (la 5 échantillon c'est un témoin) a des températures différentes :

- 1 ère échantillon a température 800°C
- 2 -ème échantillon a température 900°C
- 3 -ème échantillon a température 1000°C
- 4 -ème échantillon a température 1100°C

Cette expérience ça a duré 10 heures pour chaque échantillon de la phase MAX Ti_3SiC_2 Puis laisser refroidir au four

Les échantillons après le traitement thermiques :

Figure III.4 : les échantillons après le traitement

Après le traitement d'oxydation, nous avons également pesée ces échantillons à l'aide aussi une balance de précision 10^{-4} (g)

Figure III.5 : représente les cycles de traitement thermique en fonction de la température

III.5. La tribologie :

Notre étude consiste à passer des tests tribologiques sur différents échantillons en utilisant des billes d'aciers dans les mêmes conditions. Ces échantillons sont soumis à déplacement linéaire avec les billes pour une distance de 100 mètres.

Figure III.9 :pin-on-disc tribomètre

Les essais tribologiques ont été passée en configuration pion-plan à l'aide d'un tribomètre de Marque -TRB3 ANTON PAAR et d'un logiciel d'acquisition sur pc au niveau de labo de recherche ERTI.

Et le Tableau III.2 sont résumées les conditions des essais et les paramètres

Chapitre III : Technique expérimentale

Paramètres	Valeur
Vitesse de glissement (cm/s)	
Charges normal (N)	3
Distances de glissement (m)	100

Tableau III.1 : les paramètres des essais tribologiques

III.6. Préparation métallographique

III.6.1Polissage :

Après traitement thermique on a mis chaque échantillon dans une résine à froid et vont subi des opérations de polissage avec une polisseuse mécanique rotative avec des papiers d'abrasif de la granulométrie de 400 à 4000 et lubrification à l'eau qui permettant de limiter l'échauffement de l'échantillon, au niveau de laboratoire SDM (université blida 1) pour l'obtention d'un très bon état de latéral d'échantillon

Figure III.6 : polisseuse mécanique

Cette expérience nécessite d'abord de se concentrer, puis sur les matériaux qui sont les suivants :

Figure III.7 : les moyennes utilisées

Et la figure suivante est expliqué plus sur le résultat et la forme des moules de cette Expérience

Figure III.8 : les échantillons dans le moule

III.7 microscope optique :

Microscope est une technique utilisée pour pouvoir des objets qu'on ne peut pas la voir avec loeuil, on a utilisé un microscope optique équipé d'une caméra connectée à un ordinateur et permettant d'enregistrer la micrographie observée au niveau de laboratoire de recherche ERTI (université de blida 1)

Figure III.9 : microscope optique

IV-1 : Introduction :

Dans cette partie on va entamer les résultats obtenus après les traitements d'oxydation isotherme du composite Ti3SiC2/Sic dans différents températures 800, 900,1000 et 1100°C avec un temps de maintien de 10h puis refroidi dans four fermé.

IV-2 : Observation Microscopique

L'observation au microscope optique de_l'échantillon témoin à révéler la présence de deux contrastes un contrat clair et des zones avec un contrat gris et des formes arrondies, Ce derniers correspond d'âpres la littérature a la phase Carbure de Silicium (Sic) et l'autre phase a la phase MAX Ti_3SiC_2

Figure VI.1 : microstructure d'échantillon de témoin

IV-3 : Traitement d'oxydation à 800°C :

La figure 2 représente une micrographie de l'échantillon Ti3SiC2/Sic après traitement d'oxydation de 800°C et un temps de maintien de 10h ou on remarque la formation d'une couche superficielle a la surface de l'échantillon qui est probablement l'oxyde de titane (TiO2), d'après le logiciel du microscope (ND élément) l'épaisseur de cette couche est de l'ordre de 18.92µm.

Figure.VI.2 : microstructure d'échantillon de 800

VI-4 : Traitement d'oxydation à 900°C :

L'observation au microscope optique de l'échantillon Ti3SiC2/Sic après traitement d'oxydation de 900°C est représentée dans la figure VI.3, ou on constate la présence d'une couche, après mesure de cette couche avait une valeur de 26.09.

Figure VI.3 : microstructure d'échantillon de 900°C

IV-5 : Traitement d'oxydation à 1000°C :

L'observation au microscope optique (Figure 4) montre la formation d'une couche superficielle de $63.30\mu m$, cette valeur est approximative car nous avons rencontré des difficultés lors de la préparation métallographique de et échantillon

Figure. VI .4 microstructure d'échantillon de 1000°C

IV-6 : Traitement d'oxydation à 1100°C :

La Figure (5) représente la microstructure du composite Ti3SiC2/Sic après traitement d'oxydation isotherme à 1100°C pendant 1h, ou on remarque la formation d'une couche a l'extrémité de l'échantillon cette dernière a deux contraste un contraste clair et un contraste sombre, et d'après la littérature bibliographique la couche superficielle est l'oxyde de titane Rutile (TiO2) et la deuxièmes couche est un mélange d'oxyde de titane (TiO2) e l'oxyde de silicium (SiO2), l'épaisseur de cette couche été aux alentours de 98µm.

Les résultats obtenus concernant la couche formée après traitement d'oxydation doivent être confirmé par d'autres tests comme la diffraction des rayons X et par analyses chimiques ponctuelle au microscope électronique à balayage (MEB/EDS).

FigureVI.5 : microstructure d'échantillon de 1100°

VI.7 : EVOLUTION DE L'EPAISSURE DE CA COUCHE EN FONCTION T :

Figure VI.6 : évolution de l'épaisseur de la couche en fonction de la température d'oxydation

La figure VI.6 représente l'évolution de l'épaisseur de la couche obtenus après traitement d'oxydation isotherme de 10 h sous différents température $800,900,1000,1100^{\circ}$ C respectivement ou l'épaisseur de la couche obtenus par le logiciel du microscope optique (ND élément) lors de traitement de 800° C été 18.92μ m, 900° C a une couche de l'ordre de 26.09μ m, 1000° 63.3μ m et 1100° C la couche été aux alentours de 98μ m, les résultats obtenus sont en concordance avec la littérature bibliographique et cette croissance suit la loi de diffusion qui est la loi de FICK.

IV-8 : Gain de masse :

Tableau 4.1 reprenant les masses des échantillons avant et après traitement d'oxydation isotherme de 10 h. On remarque une augmentation de la masse dès l'enchantions avec l'augmentations de la T de traitement d'oxydation des résultat suivant l'hypothèse bibliographique concernant la loi de FICK, le

Échantillons	$M_{avant traitement}(g)$	M _{après traitement} (g)	$\Delta m(g)$
800	0.4864	0.4872	0.0008
900	0.2072	0.2089	0.0017
100	0.2277	0.2309	0.0032
1100	0.2441	0.2515	0.0074

Tableau VI.1 : représente les masses des échantillons avant et après traitement d'oxydation

Figure VI.7 : gain de masse en fonction de la température de traitement

V.I.9 Les Diagrammes de Tribologie :

Figure VI.8 : diagramme De Ti3SiC2 à 800°C

Figure VI.9 : diagramme de Ti3SiC2 à 900°C

Conclusion générale

L'objectif de ce travail consiste à faire une étude microstructurale sur le composite phase maxTI3SIC2 /SIC en faisant un traitement d'oxydation isotherme avec un temps de maintien de 10 h sous déférant températures 800, 900, 1000 ,1100

L'observation au microscope optique indique la formation d'une nouvelle couche superficielle Sur tous les échantillons traite, cette couche augmente avec l'augmentation de la température ou l'épaisseur de la couche varie de (18.92μ) jusqu'à (97.56μ) .

La couche formée est probablement un l'oxyde de titane (TIO2) et l'oxyde de silicium (SIO2)

Les échantillons ont en un gain de masse après le traitent d'oxydation ou ce grain de masse varie de (0.0008 g) jusqu'à (0.0074g)

Perspective :

- Une analyse par diffraction des rayons X DRX
- Observation par MEB et analyse chimique EDS

Bibliographie

[1] N. Serkhane - Ouabadi, Synthèse, Caractérisation Microstructurale Et Propriétés Mécaniques De Composés Nano lamellaires De Type MAX De L'université De Tizi Ouzou ,2014

[2] N. Serkhane - Ouabadi, Synthèse, Caractérisation Microstructurale Et Propriétés Mécaniques De Composés Nano lamellaires De Type MAX De L'université De Tizi Ouzou ,2014

[3] V. Ivchenko, M. Lesnaya, V. Nemchencko, T. Y. K. some physical propretés of ternary compound in the system Ti - Al - C. Powder Metall. Met. Ceram. 5, 367-369 (1976). [4]
[Bandes M.W.Barsoum .A.Muruga, T.R.Z., et Y.Z. .Gogotsi .Kink , élasticité non linéaire et non indentation dans le graphite .carbone 42 (8-9), 1435-1445 (2004)

[5] Barsoum. Fondamentaux de la céramique. Mc Graw Hill, 1997.

[6] MW Barsoum, T. El-Raghy. Les phases MAX : de nouveaux matériaux uniques en carbure et nitrure La céramique ternaire s'avère étonnamment douce et usinable, mais aussi résistante à la chaleur, solide et légère. Un m . Scientifique, 89 (2001) 334-343.

[7] Alexandra SOUCHET. Thèse de doctorat : Comportement tribologique d'une phase MAX
 Transition et effets d'échelle sur différents Ti3SiC₂, 2004. Encyclopædia Britannica. Inc
 1997

[8] . Alexandra Souchet. Concours tribologique d'une phase MAX. Ecole centrale de Lyon (2004) 180 p.

[9] JT. El-Raghy, M. W. Barsoum, A.Zavaliangos and S Lalidinidi. Processing and Mechanicus Properties of Ti3SiC2, Part II : Effect of Grain Size and Déformation Température. J. Amer. Cer. Soc., 82 :2855–2859, 1999.

[10] Didier Bernache – Assollant et Jean – pierre Bonnet : Frittage : Aspects physico – chimiques : Partie 2 : Frittage en phase liquide . AF6621. Techniques de l'ingénieur

[11] . Alexandra Souchet. Concours tribologique d'une phase MAX. Ecole centrale de Lyon(2004)

[12] P. Gravereau , Introduction à la pratique de la diffraction desnal des rayons X par les poudres, Université Bordeaux 1 , HAL Id : cel - 00671294 , 2012 .

[13] M. Beckers, F. Eriksson, J. Lauridsen, C. Baehtz, J. Jensen et L. Hultman.Formation de films de Ti2AIN à texture fibreuse plane basale sur des substrats amorphes. Physica Status Solidi Rapid Research Letters 4 (5-6), 121-123 (2010). 107

[14] V. Dolique. Elaboration et caractérisation structurale de films minces et revêtements de Ti2AIN. Thèse de Doctorat, Université de Poitiers (2007). 107, 114

[15] R. Grieseler, T. Kups, M. Wilke, M. Hopfeld et P. Schaaf. Formation de films nanolaminés Ti2AIN par dépôt multicouche et recuit thermique rapide ultérieur. Lettres de matériaux 82, 74-77 (2012). 107

[16] These pour obtenir le garde de docteur de l'université de Poitiers présenter par elodie drouelle

[17] J. Denape, J.Y.P., P. Stempflé, Tribologie dans les transports, de l'analyse à l'échelle du contact à la fiabilité des systèmes mécanique. 2006 : Presse Polytechnique et Universitaires de Romandes.

[18] J.Denape, J.Y.P., P. Stempflé, Tribologie dans les transports, de l'analyse à l'échelle du contact à la fiabilité des systèmes mécanique. 2006 : Presse Polytechnique et Universitaires Romandes.

[19] Ayel, J., Lubrifiants pour moteurs thermiques . Techniques de l'ingénieur BM 2750.

[20] Martin, J.-M., Étude du mécanisme d'action d'un additif anti - usure en régime lubrification limite. Aspects chimiques dans le cas des organodithiophosphates métalliques.
1978, Thèse de l'Université Claude Bernard - Lyon I : Lyon

[21] G. W. Stachowiak , A. W. Batchelor , Engineering Tribology . BH (Butterworth Heinemann) . 2001 .

Bibliographie

[22] Sheasby , 1.S .. T.A. Caughlin , and J.J. Habeeb , Observation of the antiwear activity ofzine dialkyldithiophosphate additives . Wear , 1991. 150 (1-2); p. 247-257 .

[23] Spikes, H. The History and Mechanisms of ZDDP . Tribology Letters , 2004. 17 (3) : p.469-489

[24] Rowe , J.J.De.CN The thermal decomposition of metal O. Odialkylphosphorodithioates . Journal of Organical Chemistry , 1967. 32 : p . 647-653

[25]] H. Spedding and R.C. Watkins . The antiwear mechanisms of ZDDP's Part 1 and Part II. Tribology International , 1982 : p . 9-15 .

[26] Source : Tribologie des céramiques , Techniques d'ingénieur .

[27] G.W. Stachowiak and A.W. Batchelor . Engineering Tribology (Second Edition) . Butterworth Heinemann , 2001 .

[28]] R.F. Deacon and J.F. Goodman , Lubrication by lamellar solids . Proc . Roy . Soc . London Series A. 243 : 464 482 , 1958

[29] Khorramian , B.A. , et al . , Review of antiwear additives for crankcase oils . Wear , 1993.169 (1)

[30]] Source : Engineering tribology . G. W. Stachowiak , A. W. Batchelor , Butterworth Heinemann , 2001 .

[31] Source : Tribologie des céramiques , Techniques d'ingénieur .