REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SAAD DAHLEB BLIDA 1

INSTITUT D'AERONAUTIQUE ET DES ETUDES SPACIALES

EXPLOITATION AERONAUTIQUE

OPERATIONS AERIENNES

Projet de Fin d'Etudes en vue de l'obtention du Diplôme de Master en Aéronautique

EXPLOITATION DES DONNEES DE LA STATION D'ANALYSE FDM POUR LE SUIVI DES PERFORMANCES DES B737-800 ET Q400

Encadré par : Rédigé par :

M. DRIOUECHE Mouloud SI-SALAH Thinhinane

DRIDAH Soumiya

Promotion 2015

Résumé

Les performances avion se dégradent avec le temps notamment lors de l'exploitation des avions dans des conditions météorologiques difficiles, par conséquent les constructeurs mettent à la disposition des compagnies aériennes des logiciels de suivi des performances afin de connaître les performances réelles de leurs avions, cela se fait en calculant les coefficients de dégradation des performances en utilisant le BPS pour le constructeur Boeing, et en exploitant les données de la station d'analyse au sol AGS pour les constructeurs qui n'ont pas conçu ce genre de logiciel.

Mots clés: Le coefficient de dégradation des performances, BPS, AGS.

Abstract

The aircraft performances degrade in time in particular during the exploitation of aircrafts in difficult weather conditions, consequently the manufacturers put at the disposal of the airline companies the software of follow-up of the performances to know the real performances of their aircrafts, it is made by calculating coefficient of degradation of the performances by using the BPS for the manufacturer Boeing, and by exploiting the data of the analysis ground AGS for manufacturer who did not design this kind of software.

Keywords: Coefficient of degradation of the performances, BPS, AGS.

ملخص

أداء الطائرة يتدهور بمرور الوقت وخاصة أثناء تشغيل الطائرات في الظروف الجوية الصعبة، لذلك الشركات المصنعة تضع في يد شركات الطيران برامج تتبع أداء من أجل معرفة الأداء الفعلي للطائرات وهذا يتم عن طريق حساب معامل تدهور الأداء باستخدام (BPS) للمصنع BOEING و باستغلال معطيات محطة التحليل الارضية AGS بالنسبة للمصنعين الذين لم يصمموا هذا النوع من البرامج.

الكلمات المفتاحية: معامل تدهور الأداء، AGS،BPS.

Remerciement

On remercie en premier lieu notre promoteur M. DRIOUECHE Mouloud de nous avoir encadrés et dirigés vers les bons choix.

On tient ensuite à remercier M.BOUAMRANI Farid qui nous a encadrés durant le stage pratique, il nous a orienté, conseillé et aidé par la documentation qu'il nous a fourni comme par ses explications qui ont guidé ce travail vers la réussite.

On remercie M.ABDELOUAHAB Farouk pour sa disponibilité, ses conseils et son aide continue.

On remercie également M.ALILI Hichem pour tout ce qu'il a fait pour nous, et qui nous a beaucoup facilité la tâche.

On remercie toute l'équipe de la direction de l'exploitation de Tassili Airlines qui ont accepté de nous accueillir et répondre à nos questions durant notre stage.

Enfin, on adresse nos remerciements à toute personne qui a contribué de près ou de loin à l'élaboration de ce travail.

Dédicaces

Je dédie ce modeste travail à mes parents qui m'ont apporté un soutien inconditionnel. Merci pour le soutien financier et moral, si je suis ici aujourd'hui c'est grâce à vous.

À mes frères, mes sœurs et toute ma famille surtout ma tante Khalissa qui a été toujours là pour moi.

À mes amies Amel, Ferroudja, Farah, Safia, Zoulikha, Amel et Houaria qui m'ont toujours soutenu et encouragé.

À mes camarades de promotion, je les remercie pour les années passées ensemble, dans les meilleurs moments comme dans les pires.

À mon binôme Thinhinane et à toute sa famille.

Soumia

Dédicaces

Je dédis ce modeste travail en premier lieu à mes chers parents, sans eux je serais jamais arrivée là, je les remercierai jamais assez pour leurs sacrifices, leurs soutiens moral soit il ou financier.

Comme je le dédis à mes deux frères Akli et Menad,

A ma belle sœur Chafiaa,

A mes deux tantes Fahima et Malika, et toute ma famille,

A mon binôme Soumia et sa famille

A tous mes amis ainsi qu'à toute personne qui m'a aidé à réaliser ce travail.

Thinhina ne

Table des matières
Remerciement
Dédicaces
Résumé
Liste des figures
Liste des tableaux
Abréviation
Introduction générale 1
Chapitre I : Présentation de la compagnie et de sa flotte
I.1. Présentation de la compagnie
I.1.1 Définition
I.1.2. Historique
I.1.3. Destinations
I.1.4. La flotte de Tassili Airlines5
I.1.5. Les activités de Tassili Airlines
I.2. Structure de l'organisation de la compagnie
I.2.1. Organigramme d'ensemble de la compagnie aérienne Tassili Airlines
I.2.2. Organigramme général de la direction Exploitation
I.3. Les missions de la Direction Exploitation
I.4. Etude des performances de l'appareil B737-800
I.4.1. Description de l'appareil. 10
I.4.2. La fiche technique de l'appareil B737-800

I.5.1. Description de l'appareil
I.5.2. La fiche technique de l'appareil Q400
Chapitre II : Notions et définitions sur la dégradation des performances
Introduction16
II.1. Définition du suivi des performances
II.2. Les enjeux de suivi des performances
II.3. Détermination de déviation de performances
II.4. Les paramètres affectant la dégradation
II.4.1. Dégradation des moteurs
II.4.2. Dégradation des performances aérodynamiques de la cellule
II.5. Les données nécessaires pour le suivi des performances
II.6. L'utilisation des résultats de suivi des performances
II.7. Processus de suivi de performances
II.7.1. Description du système de gestion de vol FMS
II.7.1.1. Définition du système de gestion de vol FMS
II.7.1.3. Les composantes du système
II.7.1.4. Les informations exploitées par le FMS
II.7.1.5. Les informations fournies par le (FMS)
II.7.2. Enregistrement des données
II.7.2.1. Enregistrement manuel
II.7.2.2. Enregistrement automatique
II.7.3. Méthodes d'analyses

II.7.3.1. Méthode du carburant utilisé	
II.7.3.2. Méthode du carburant embarqué)
II.7.3.3. Méthode de rayon spécifique	0
II.7. 4. Comparaison entre les méthodes	3
Chapitre III : Présentation de la station d'analyse FDM	4
Introduction	
III.1. Programme d'analyse des données de vol	
III.2. Objectifs d'un programme d'analyse des données de vol	
III.3. Équipement FDA	
III.4. Les outils de l'AGS	
III.5. Le contrôle des données de vol (FOQA et MOQA)	
III.5.1.FOQA39	
III.5.2.MOQA	
III.6. Données d'entrée	
III.7. Processus analytique	1
III.7.1. Mots clés et codage	2
III.7.1.1.Informations des médias	2
III.7.1.2.Information De Vol)
III.7.1.3.Renseignements sur l'événement	,
III.4.1.4.Paramètres instantanés	
III.7.2.Quelle est la procédure générique pour le programme?	
III.7.3.Définition de l'événement - les niveaux de déclenchement	
III.7.4.Définition de paramètres supplémentaires	

III.8.Outils de sortie	45
III.8.1.Rapports statistiques.	45
III.8.1.1. Rapports d'événement statistique / Rapports de Dépassement	45
III.8.1.2. Rapports instantanés - Les rapports de mesures opérationnelles courantes	47
III.8.2.Analyse des événements Individuels.	48
III.9.Application des résultats de l'analyse.	50
Chapitre IV: Etude de cas (analyse de la dégradation des performances des B73	37-800 et
Q400)	
Introduction.	51
IV.1. Calcul du FF théorique (à partir du Jetplan)	51
IV.1.1. Exemple de calcul	51
IV.2. Calcul du FF réel (Exploitation des données de l'AGS)	52
IV.2.1. Exemple de calcul.	53
IV.3. Calcul du coefficient de dégradation des performances	55
IV.4. L'interprétation des résultats	56
IV.5. Le suivi des performances du B737-800 en utilisant l'APM	57
IV.5.1. Description de l'APM	57
IV.5.2. Les données d'entrée	58
IV.5.3. Processus de calcul dans le programme APM	60
IV.5.4. L'archivage de l'APM	63
IV.5.5. Les résultats obtenus par le BPS	63
Conclusion générale	66
Biblio graphie	

Annexes

Liste des figures

Figure(I.1) : Organigramme d'ensemble de la compagnie aérienne Tassili Airlines	8
Figure(I.2) : Organigramme général de la direction Exploitation.	9
Figure (I.3): Dimensions d'un B737-800.	11
Figure (I.4): Dimensions d'un Q400.	14
Figure (II.1): L'interface MCDU.	24
Figure (II.2): L'interface FMC.	24
Figure (III.1): Fenêtre de saisie de données montrant la queue de l'échantillon et les	
Figure (III.2) : Le processus de surveillance de données de vol.	
Figure (III.3) : Exemple des résultats donnés sous forme de rapports statistique	46
Figure (III.4): Exemple déviation de la pente de descente (Localizer) et les d'atterrissage sur une piste.	_
Figure (III.5) : Visualisation de l'événement sous forme de graphe ou de tableau	49
Figure (IV.1): Une partie d'un Jetplan.	52
Figure (IV.2): Processus de calcul dans le programme APM	60

Liste des tableaux

Tableau	(I.1): La fiche technique de l'appareil B737-800	13
Tableau	(I.2) : La fiche technique de l'appareil Q400.	15
Tableau	(II.1): Les données nécessaires pour le suivi des performances	.20
Tableau	(II.2) : Comparaison entre les méthodes d'analyse	33
Tableau	(IV.1): La consommation horaire pour chaque moteur par phase de vol	.55
Tableau	(IV.2): Les coefficients de dégradation des performances des avions B737-800	56
Tableau	(IV.3): Les coefficients de dégradation des performances des avions Q400	.56
Tableau	(IV.4): Résultats de l'APM pour le 7 T-VCA	.63
Tableau	(IV.5): Résultats de l'APM pour le 7 T-VCB	.64
Tableau	(IV.6): Résultats de l'APM pour le 7 T-VCC	.64
Tableau	(IV.7): Résultats de l'APM pour le 7 T-VCD.	.64
Tableau	(IV.8): Résultats de l'APM pour la flotte B737-800	.65

Abréviations

Abréviation	Signification en anglais	Signification en français	
A			
ACARS	Aircraft Communication	Système de communication, adressage	
	Addressing and Reporting System	et reportage de l'aéronef	
ACAS	Airborne Collision Avoidance	Système anticollision embarqué	
	System		
ACMS	Aircraft Condition Monitoring	Système de surveillance de l'état de	
	System	l'aéronef	
ADC	Air Data Computer	Centrale aérodynamique	
ADRS	Aircraft Data Recording System	Système d'enregistrement de données	
		d'aéronef	
AGL	Above Ground Level	Au-dessus du niveau du sol	
AGS	Analysis Ground Station	La station d'analyse au sol	
APM	Aircraft Performance Monitoring	Surveillance des performances d'avion	
ASR	Air Safety Reports	Rapports de la sécurité aérienne	
ATC	Air Traffic Control	Contrôle de la circulation aérienne	
В			
BPS	Boeing Performance Software	Logiciel de performance de Boeing	
С			
CADV	Auto Flight Control	Commande Automatique Du Vol	
	System (AFCS)		
CDU	Control and Display Unit	Le contrôleur d'affichage	
CG	Center of Gravity	Centre de gravité	
D			
DAR	Direct Access Recorder	Enregistreur à accès direct	
DB	Data Base	Base de données	
DME	Distance Measuring Equipment	Dispositif de mesure de distance	
DSIRF	Digital Standard Input Recording	Format de l'enregistrement d'entrée	
	Format	standard numérique	
E	1	1	
EGT	Exhaust Gas Temperature	Température des gaz d'échappement	

EPR	Engine Pressure Ratio	Taux de pression moteur
ETOPS	Extended-range Twin-engine	Les opérations d'avions bimoteurs avec
	Operation Performance Standards	distance de vol prolongée
F		
FCOM	Flight Crew Operating Manual	Manuel de fonctionnement de
		l'équipage
FDA	Flight Data Analysis	Analyse des données de vol
FDAP	Flight Data Analysis Program	Programme d'analyse des données de
		vol
FDR	Flight Data Recorder	Enregistreur des données de vol
FF	Fuel Flow	Débit carburant
FLHV	Fuel Lower Heating Value	Température basse d'échauffement du
		carburant
FM	Fuel Mileage	Consommation de carburant
FMC	Flight Management Computer	Calculateur de gestion de vol
FMS	Flight Management System	Système de gestion de vol
FOQA	Flight Operations Quality Assurance	Assurance de la qualité des opérations
		aériennes
FQ	Fuel Quantity	La quantité de carburant
FSF	Flight Safety Foundation	Fondation de la sécurité des vols
G		
GPS	Global Positioning System	Système mondial de positionnement
		Global
GPWS	Ground Proximity Warning	Dispositif avertisseur de proximité du
	System	sol
GS	Ground Speed	Vitesse au sol
Н		
HF	High Frequency	Haute Fréquence
HT	High voltage	Haute tension
I		
IATA	International Air Transport	Association internationale du transport
	Association	aérien
ILS	Instrument Landing System	Système d'atterrissage aux instruments

INS	Inertial Navigation System	Système de navigation inertielle
IOSA	IATA Operational Safety Audit	Audit de sécurité opérationnelle de
		l'IATA
IRS	Inertial Reference System	Système de référence inertiel
L	1	
LOSA	Line Operations Safety Audit	Audit de sécurité en service de ligne
M	1	
MCDU	Multipurpose Control and Display	Contrôle Polyvalent et Écran de
	Unit	visualisation
MOQA	Maintenance Operations Quality	Assurance de la qualité des opérations
	Assurance	de maintenance
MSIRF	Manuel Standard Input Recording	Format de l'enregistrement d'entrée
	Format	standard manuel
N	1	
NASA	National Aeronautics and Space	Administration nationale de
	Administration	l'aéronautique et de l'espace
NDB	Navigation Data Base	Base de données de navigation
NG	New Generation	Nouvelle génération
NVS	Noise and Vibration Suppression	Suppression de bruit et de vibration
0		
OACI	International Civil Aviation	Organisation de l'Aviation Civile
	Organization (ICAO)	Internationale
P	1	
PCMCIA	Personal Computer Memory Card	L'association internationale des cartes à
	International Association	mémoires pour ordinateurs personnels
PH	Human Pilot (HP)	Pilote Humain
PMS	Performance Management System	Système de gestion de performances
PNT	Technical flight crew	Personnel Navigant Technique
Q		
QAR	Quick Access Recorder	Enregistreur à accès rapide
QDM	Magnetic heading (zero wind)	Cap magnétique (par vent nul) ou route
		magnétique
QFU	Magnetic orientation of runway	Direction magnétique de la piste
I	ı	1

R			
RNAV	Area Navigation	Navigation de surface	
RS	Specific Range (SR)	Rayon spécifique	
S			
SDCPS	Safety Data Collection and	Système de collecte et de traitement de	
	Processing System	données sur la sécurité	
SGS	Safety management system	Système de gestion de la sécurité	
SID	Standard Instrument Departure	Départ normalisé aux instruments	
SOP	Standard Operating Procedures	Procédure d'exploitation normalisée	
STAR	Standard Arrival	Arrivée normalisée	
T			
TAS	True Air Speed	Vitesse vraie	
THT	Very high voltage	Très haute tension	
V			
VHF	Very High Frequency	Très haute fréquence	
VNAV	Vertical Navigation	Navigation verticale	
VOR	VHF Omnidirectional Range	Radiophare omnidirectionnel VHF	
X	-		
XTK	Cross Track Error	Ecart de route	
Z	1	1	
ZFW	Zero Fuel Weight	Masse sans carburant	

Introduction

Dans une compagnie aérienne, les opérations aériennes ont un rôle indispensable pour assurer la sécurité des vols tout en prenant compte de l'aspect économique, pour cela les opérations ont besoin des informations précises et diverses sur les conditions d'utilisation des avions et de leurs performances.

On sait que, malgré une certification conforme aux règlements, des aéronefs, notamment des avions de transport, peuvent rencontrer des situations qui dégradent de façon importante l'aérodynamique, sans que l'équipage en ait conscience. Une telle situation peut entraîner un effet de surprise qui peut être la cause d'une réaction non adaptée de l'équipage, et ceci d'autant plus que, lorsque la dégradation des performances aérodynamiques devient importante, les qualités de vol sont modifiées et le contrôle de l'aéronef devient beaucoup plus difficile.

Les causes de dégradation des performances, les plus connues, sont notamment les conditions météorologiques difficiles (hautes température, zones désertiques (érosion), givrage), la captation sur des bords d'attaque d'insectes, la perte d'une partie d'un bord d'attaque ou d'un panneau de la voilure.

Quand un aéronef est confronté à l'une des situations précitées engendrant une dégradation de ses performances, sa résistance à l'avancement dans l'air augmente et la traînée croît. Dans un tel cas, si la puissance n'est pas modifiée, l'aéronef perd de la vitesse lorsqu'il est en maintien d'altitude, ou le taux de montée baisse lorsqu'il est en maintien de vitesse, ce qui peut bien entendu devenir très dangereux et n'est pas acceptable.

Les compagnies aériennes sont obligées de mettre en place un programme de suivi des performances de leurs avions afin de mettre à jour leurs bases de données (plans de vol technique, et FMS) avec le coefficient de dégradation.

Les constructeurs aéronautiques mettent souvent à la disposition des exploitants des logiciels de suivi de dégradation des performances, néanmoins certains constructeurs n'ont pas des logiciels de ce genre.

Le but de notre étude est d'exploiter les données de la station d'analyse FDM de Tassili Airlines afin d'élaborer un programme de suivi des performances avions pour le B737-800 et le Q400.

Introduction générale

Ce travail est organisé comme suit :

On commence par une introduction générale.

Le premier chapitre « Présentation de la compagnie et de sa flotte ».

Le deuxième chapitre « Notions et définitions sur la dégradation des performances ».

Le troisième chapitre « Présentation de la station d'analyse FDM ».

Le quatrième chapitre « Etude de cas (analyse de la dégradation des performances des B737-800 et Q400) ».

Et on termine par une conclusion.

I.1. Présentation de la compagnie

I.1.1. Définition

Tassili Airlines (code OACI: DTH; code IATA: SH) est une compagnie aérienne algérienne filiale de la compagnie pétrolière Sonatrach. Elle assure historiquement des vols réguliers domestiques et le transport des ouvriers vers les gisements de pétrole et de gaz du Sahara algérien. Son hub principal est l'aéroport d'Alger. Depuis octobre 2011, Tassili Airlines propose une offre voyageurs pour le grand public [1].

I.1.2. Historique

- Tassili Airlines est créée le 4 mars 1998 et effectue ses premiers vols en avril 1999.
- Tassili Airlines est initialement une coentreprise entre la compagnie aérienne Air Algérie et la compagnie pétrolière Sonatrach. En 2005, elle devient une filiale à 100 % de Sonatrach après le rachat des actions que détenait Air Algérie. Sonatrach décide alors de restructurer la compagnie Tassili Airlines en un groupe aérien qui dispose de trois filiales :
 - Naftatassili Air, qui s'occupe du transport des travailleurs du secteur à partir des gisements d'hydrocarbures,
 - Tassili Airlines, qui s'occupe du transport public domestique et international, de passagers et de marchandises,
 - Tassili Travail Aérien (TTA), filiale de Tassili Airlines, qui s'occupe du travail aérien. En octobre 2010 une convention est signée avec le ministère de la santé algérien pour la fournitures d'équipages et d'avions capables d'assurer des évacuations sanitaires depuis le grand sud algérien vers les hôpitaux du nord du pays, pour la prise en charge des maladies graves (cancer, blessures graves...).
- Le 28 septembre 2011, Tassili Airlines reçoit l'autorisation du ministère des Transports algériens d'effectuer des vols grand public.
- Le 4 octobre 2011, la compagnie aérienne réceptionne son quatrième Boeing 737-800 et procède à l'inauguration de sa première agence commerciale, à l'aéroport d'Alger.
- Depuis fin novembre 2011, la compagnie aérienne a obtenu le label international de qualité IOSA, délivré par l'Association internationale du transport aérien (IATA).

- Le 28 septembre 2012, la compagnie a inauguré son premier vol international à destination de Rome.
- Le 5 juillet 2013, la compagnie a inauguré 02 vols internationaux à destination de Saint-Étienne et Grenoble en France [1].

I.1.3. Destinations

La compagnie Tassili Airlines dessert les principaux aéroports algériens, notamment ceux proches des zones pétrolifères ou de gisements de gaz naturel du Sahara algérien tels que les aéroports d'Hassi Messaoud, d'Hassi R'Mel et de Zarzaitine. En juillet 2013, elle ouvre ses premières destinations des vols réguliers nationaux au grand public :

- o Adrar- Aéroport d'Adrar Touat Cheikh Sidi Mohamed Belkebir
- o Alger Aéroport d'Alger Houari Boumediene (Base)
- o Annaba- Aéroport d'Annaba Rabah Bitat
- o Batna Aéroport de Batna Mostepha Ben Boulaid
- o Béjaia Aéroport de Béjaïa Soummam Abane Ramdane
- o Béchar- Aéroport de Béchar Boudghene Ben Ali Lotfi
- o Constantine- Aéroport de Constantine Mohamed Boudiaf
- o Djanet Aéroport de Djanet Tiska
- o El Oued-Aéroport d'El Oued Guemar
- o Ghardaïa- Aéroport de Ghardaïa Noumérat Moufdi Zakaria
- Hassi Messaoud Aéroport d'Hassi Messaoud Oued Irara Krim Belkacem
 (Base)
- Hassi R'Mel- Aéroport d'Hassi R'Mel Tilrhemt
- Illizi- Aéroport d'Illizi Takhamalt
- o In Aménas- Aéroport de Zarzaïtine In Amenas
- o Oran- Aéroport d'Oran Ahmed Ben Bella
- Sétif- Aéroport de Sétif 08 Mai 1945
- o Tamanrasset- Aéroport de Tamanrasset Aguenar Hadj Bey Akhamok
- o Tlemcen- Aéroport de Tlemcen Zenata Messali El Hadj [1].

I.1.4. La flotte de Tassili Airlines

Tassili Airlines possède aujourd'hui, en toute propriété, une flotte d'aéronefs de divers types qui lui permet de répondre, de façon adaptée, à la demande du marché aérien en Algérie [2].

La flotte de Tassili Airlines se compose de trente-et-un aéronefs :

- 4 Boeing 737-800 : 7T-VCA, 7T-VCB, 7T-VCC et 7T-VCD
- 4 Dash8-Q400
- 4 Dash8-Q200
- 3 Beechcraft 1900D
- 5 Pilatus PC-6
- 4 Cessna C208B
- 7 Bell Helicopter 206 Long Ranger [1].

I.1.5. Les activités de Tassili Airlines

Les activités principales de Tassili Airlines sont les vols Charters pour la société pétrolière Sonatrach et ses filiales, les compagnies pétrolières internationales et le travail aérien à travers sa filiale « Tassili Travail Aérien ».

Plus récemment, Tassili Airlines a étendu son réseau au service du grand public pour des vols charters internationaux et le transport régulier national et international.

> Vols réguliers

Depuis Mars 2013, Tassili Airlines s'ouvre au Grand Public. Nous proposons des destinations variées qui satisferont à votre besoin de déplacement.

> Mise à disposition

Tassili Airlines propose des contrats de mise à disposition d'appareils pour une période donnée, généralement d'une (01) année ou plus, où Tassili Airlines « Fréteur » affecte au client « Affréteur » des aéronefs contre le paiement d'un forfait mensuel représentant un

volume horaire appelé aussi « Minimum Garanti ». Le seuil horaire est fixé en commun accord entre les parties contractantes en tenant compte de deux principaux facteurs:

- Le besoin du client en matière de transport aérien (estimation de l'exploitation de l'appareil);
- Le potentiel mensuel devant être réalisé par l'aéronef.

> Navette

Depuis Avril 2009, une navette quotidienne a été mise en place par Tassili Airlines, pour assurer la liaison Alger – Hassi Messaoud et retour destinée exclusivement aux entreprises.

➤ Vol à la demande

Tassili Airlines propose une panoplie de services consistant à mettre à la disposition du client, de façon ponctuelle, des aéronefs pour assurer la réalisation de missions variées telles que:

- Le transport des délégations ;
- Les prises de vue aériennes ;
- Les levées topographiques ;
- Divers missions conjoncturelles.

> Vols charter

Tassili Airlines offre aux Agences de Tourisme, de voyage ou Tour Opérateurs la possibilité de mettre en place pour leur clientèle des vols charters internationaux suivant la période qui convient à ces agences et à des tarifs concurrentiels.

> En hydrocarbures

- Transport de la petite relève du personnel du secteur des hydrocarbures ;
- Transport de délégations du secteur des hydrocarbures (TAXI et VIP) ;
- EVASAN (Evacuation sanitaires);
- La surveillance héliportée des installations industrielles ;
- Lavage des isolateurs des lignes électriques HT et THT, la thermographie et les

inspections visuelles;

- De l'offshore héliporté.

> En agricole

- Traitement phytosanitaire par voie aérienne ;
- La lutte contre les feux de forêts.

> Autres

- Transport de passagers version TAXI et VIP;
- EVASAN (Evacuation sanitaires);
- Des levés topographiques et modélisation en 3D héliportés par satellite «laser» ;
- Du service de prises de vue aériennes, documentaires, publicités, film,.....[2].

I.2. Structure de l'organisation de la compagnie

I.2.1. Organigramme d'ensemble de la compagnie aérienne Tassili Airlines

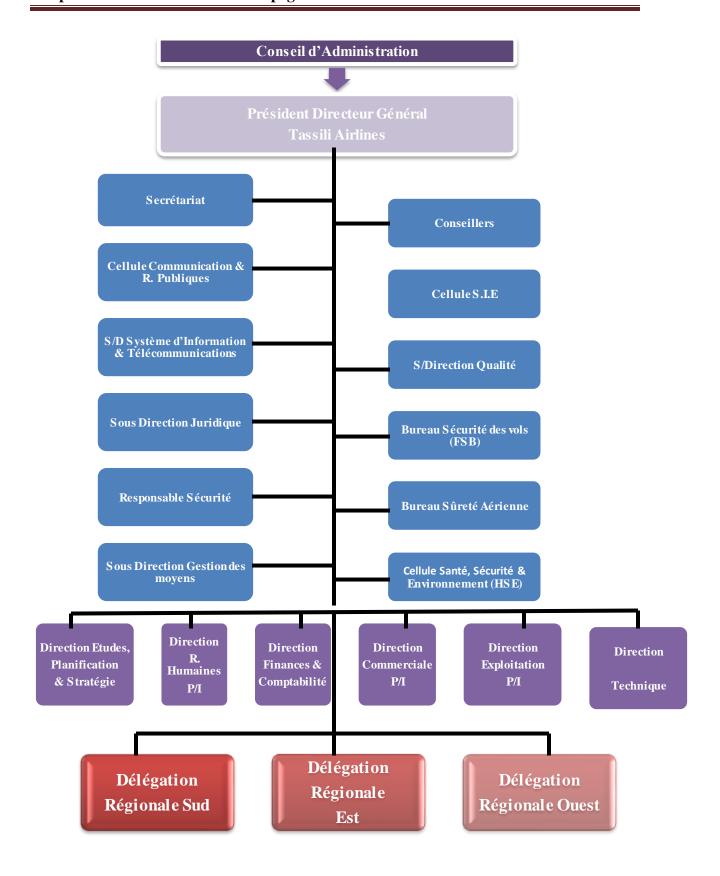


Figure (I.1): Organigramme d'ensemble de la compagnie aérienne Tassili Airlines [3].

I.2.2. Organigramme général de la direction Exploitation

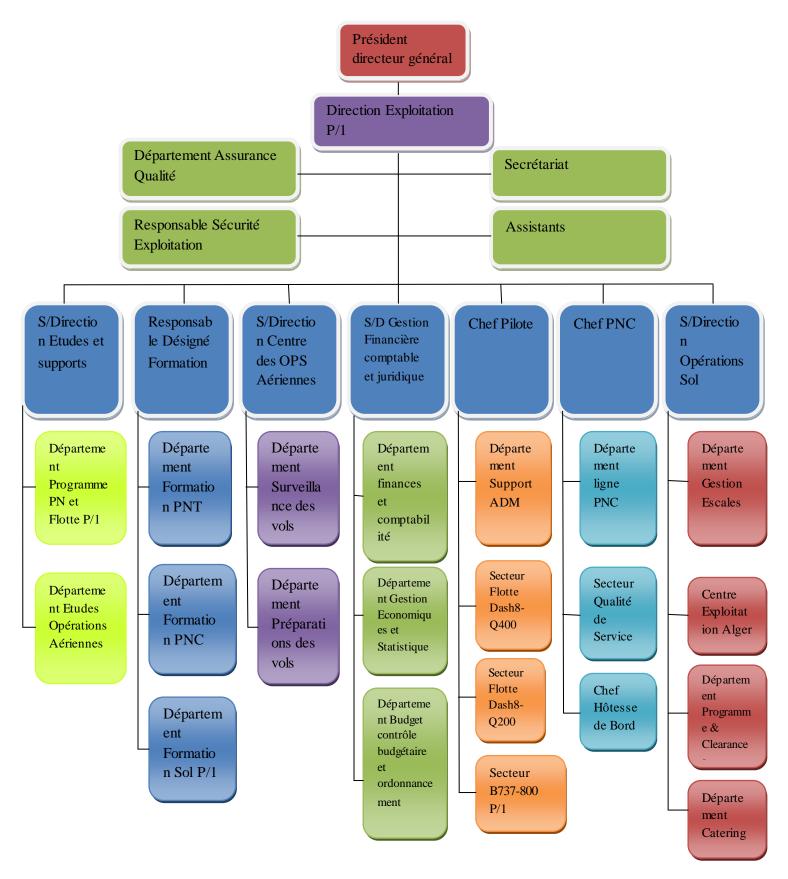


Figure (I.2): Organigramme général de la direction Exploitation [3].

I.3. Les missions de la Direction Exploitation

Le Directeur Exploitation est le responsable désigné des opérations aériennes et des opérations au sol.

Sous l'autorité du Président Directeur Général, le Directeur Exploitation a pour missions de :

- -Exécuter le programme d'exploitation arrêté par la compagnie dans des conditions de sécurité, de sûreté, de régularité, de qualité et de rentabilité économique conformément à la réglementation aéronautique nationale et internationale et aux procédures de la compagnie ;
- Mettre en œuvre, coordonner et contrôler la bonne exécution de l'ensemble des activités qui ont pour but la préparation, l'exécution, le suivi et le contrôle des vols programmés ;
- Présider la cellule de crise ;
- Participer, en qualité de membre dans le comité de sécurité et la cellule incident.

En matière de sécurité le Directeur est responsable de :

- Veiller à ce que la fonction de suivi de la sécurité soit mise en œuvre dans leur service ;
- Veiller au respect de la réglementation ;
- Veiller à l'application des procédures de gestion du risque et de gestion du changement concernant leur service ;
- Mettre à disposition les compétences et ressources nécessaires de son service pour le fonctionnement du SGS, en particulier pour la gestion des risques ;
- S'assurer que les personnels sous leur autorité ont suivi les formations adéquates ;
- Faire remonter au responsable SGS toute information pertinente nécessaire à l'accomplissement de ses tâches ;
- Mettre en œuvre les actions préventives et correctives relevant de leur service [3].

I.4. Etude des performances de l'appareil B737-800

I.4.1. Description de l'appareil

Le Boeing 737 est un avion de ligne construit par la société Boeing. Il s'agit d'un biréacteur (deux moteurs, un sous chaque aile) court à moyen-courrier. Cette version appartient à la nouvelle génération (NG) équipée d'un cockpit ultra-moderne entièrement numérique [1].

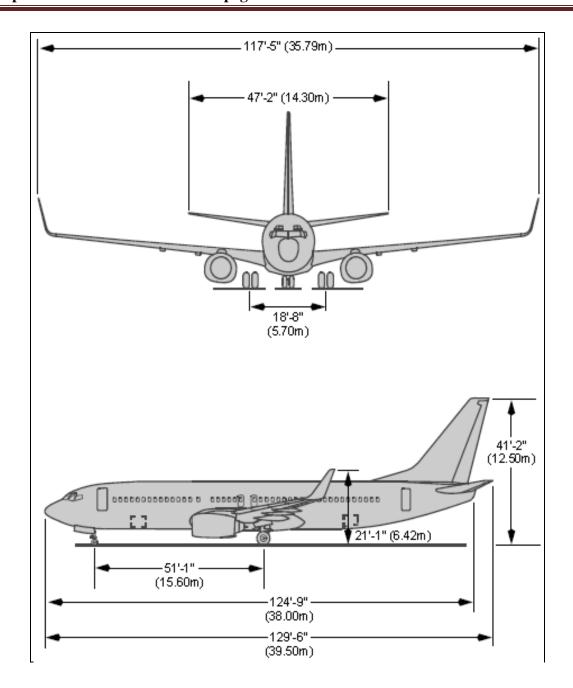


Figure (I.3): Dimensions d'un B737-800 [4].

I.4.2. La fiche technique de l'appareil B737-800

Renseignements généraux				
Nombre, forme et position de l'aile	1, flèche, aile basse			
Type d'empennage	Classique			
Train d'atterrissage	Tricycle			
Nombre d'équipages	2			
Nombre de passagers	162-189			
Motor	isation			
Nombre des moteurs	2			
Type	CFMI CFM56-7B			
Poussée	1214 KN			
Dime	nsions			
Longueur	39.5 m			
Envergure	35.79 m			
Hauteur maximale	12.5 m			
L'empattement	15.6 m			
Hauteur fuselage	6.42 m			
Ma	sses			
Masse à vide	28 650 à 44 700 Kg			
MTW	79 242 Kg			
MTOW	79 015 Kg			
MLW	65 317 Kg			
MZFW	62 731 Kg			
La charge utile	44.41 t			
Capacité réservoir	26 020 L			
Vitesses				
Vitesse de croisière	M0.78 (828 Km/h)			
VMO	876 Km/h			
Limitations opérationnelles				
Pente de la piste	+/-2%			
Vent arrière maximal au décol. Et à l'att.	10 Kts			
Altitude opérationnelle maximale	41000 ft			

Chapitre I : Présentation de la compagnie et de sa flotte

Altitude maximale de décol. et d'att.	8400 ft
Pressurisation	9.1 psi
Rayon d'action (Autonomie)	5665 Km

Tableau (I.1): La fiche technique de l'appareil B737-800 [4].

I.5. Etude des performances de l'appareil Q400

I.5.1. Description de l'appareil

Le Q400, fabriqué par Bombardier Aéronautique, est un avion destiné au transport des personnes. Appelé initialement DHC-8-400 lorsque il a été fabriqué par de Havilland Canada (DHC), il a été renommé Q400 après l'acquisition en 1992 de DHC par Bombardier.

Le Dash 8-Q400 est le plus gros appareil de la série Dash 8 (10,1 mètres plus long que le Dash 8-Q100). Il possède 2 turbopropulseurs PW150A à 6 pales, contrairement aux autres moteurs de Dash 8 qui en possèdent 4. La lettre «Q» dans Q400 est pour quiet (« silencieux »), l'utilisation de 6 pales réduisant l'émission sonore. Le Q400 possède aussi le Noise and Vibration Suppression (NVS), un système réduisant les vibrations et le bruit. Il consomme moins de carburant et émet moins de gaz polluant. Il est aussi l'un des plus rapides avions turbopropulsés avec sa vitesse de croisière moyenne de 670 km/h [1].

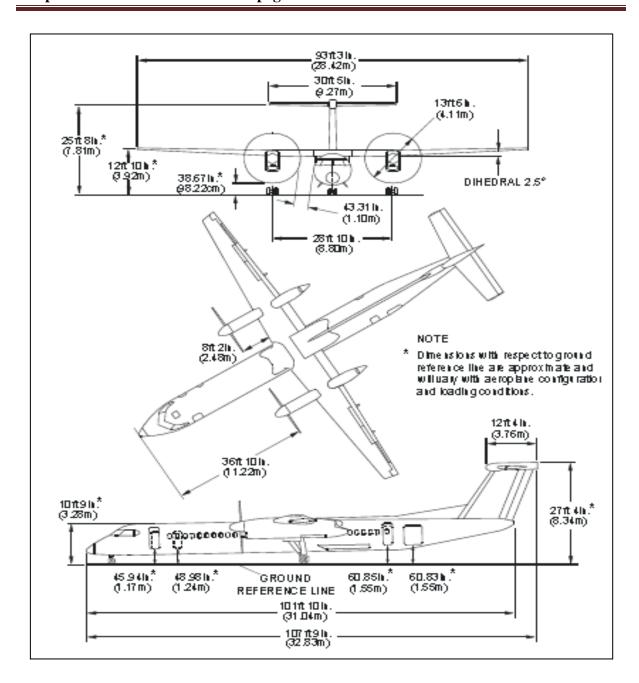


Figure (I.4): Dimensions d'un Q400 [5].

I.5.2. La fiche technique de l'appareil Q400

Renseignements généraux		
Nombre, forme et position de l'aile	1,flèche, haute	
Type d'empennage	En T	
Train d'atterrissage	Tricycle	
Nombre d'équipages	2	
Nombre de passagers	78	

Chapitre I : Présentation de la compagnie et de sa flotte

Motorisation				
Nombre des moteurs	2			
Туре	Pratt & Whitney Canada PW123A			
Puissance unitaire	3410 Kw			
Dimensions				
Longueur	32.83 m			
Envergure	28.42 m			
Hauteur maximale	8.34 m			
L'empattement	13.94 m			
Hauteur fuselage	3.28 m			
Masses				
Masse à vide	29.347 t			
MTOW	29.257 t			
MLW	28.009 t			
MZFW	25.855 t			
La charge utile	9.36 t			
Capacité réservoir	6526 L			
Vitesses				
Vitesse de croisière	670 Km/h			
VMO	242 Kt			
Limitations opérationnelles				
Pente de la piste	+/-2%			
Altitude opérationnelle maximale	7620 m			
Pressurisation	5.95 psi			
Rayon d'action (Autonomie)	2522 Km			

Tableau (I.2): La fiche technique de l'appareil Q400 [5].

Introduction

L'un des principaux soucis des compagnies aériennes est de permettre une économie de carburant, par conséquent elles cherchent à déterminer avec précision la consommation du carburant pour trouver la quantité à embarquer pour un vol donné.

La réglementation impose en plus du délestage prévu sur une étape, certaines réserves de carburant pour faire face à certaines situations. Les calculs de carburant sont effectués à partir des données de consommation fournies par le constructeur de l'avion, mais en réalité, chaque avion s'éloigne légèrement de ces performances.

Pour des raisons de sécurité, on considère que ces performances sont moins bonnes que celles annoncées, ce qui conduit à embarquer un surplus de carburant par rapport à la quantité calculée, et pour cela les compagnies cherchent à développer des programmes de suivi de dégradation des performances en calculant un paramètre qui s'appelle le coefficient de dégradation.

II.1. Définition du suivi des performances

Le suivi des performances d'avion se rapporte au processus global de :

- L'enregistrement des données de performance croisière à bord d'un avion.
- Comparaison de ces données enregistrées aux prédictions fournies par la base de données de performances (base de référence, ou livre de performance).
- Suivi des changements de ces comparaisons au fil du temps.
- Utiliser ces informations pour planifier avec plus de précision les exigences de chargement de carburant [6].

II.2. Les enjeux de suivi des performances

- Identifier le besoin d'ajuster les niveaux des performances de base.
 - o Planification des vols et prédictions de FMC
 - o Calculs des performances de manuel d'exploitation
- Etablir le niveau de performance de base pour chaque avion et suivre sa tendance à long terme.

Chapitre II : Notions et définitions sur la dégradation des performances

- Identifier la détérioration normale pour une flotte d'avions.
- Identifier les problèmes d'avions (ainsi que les bon avions)
 - O Une éventuelle action de maintenance exigée
 - O Une éventuelle restriction ou optimisation de route
- Valider une dégradation des performances pour minimiser l'allocation de détérioration de la consommation de carburant pour les ETOPS (la planification des réserves de carburant critique).
- Augmente la confiance d'équipage de conduite dans les plans de vol
 - o Le carburant à bord à l'atterrissage sera plus correspondant au plan de vol
- Minimiser la surcharge ou sous-charge de carburant
- Assez de carburant doit toujours être chargé pour garantir la sécurité des vols
- Le chargement de trop de carburant augmente la quantité totale de carburant brûlé, car l'avion doit brûler le carburant supplémentaire pour transporter le poids du carburant inutile [6].

II.3. Détermination de déviation de performances

- Enregistrement continu des données de croisière
- Calculer les performances réelles (observées) basées sur les données enregistrées
- Calculer les performances prévues pour les mêmes conditions comme les données enregistrées de croisière (le même mach, alt, poids, %N1/EPR, etc...)
- Comparer les performances réelles aux performances prévues pour déterminer des déviations pour 4 paramètres spécifiques :
 - Consommation de carburant
 - Poussée exigée (effet de la cellule)
 - Débit de carburant (effet de moteur)
 - Réglage de la puissance exigée (taux de pression moteur ou %N1)

$$\%\Delta FM = \left[\frac{FMobserv\acute{e} - FM de base}{FMde base}\right] * 100$$

$$%\Delta FN = \left[\frac{FNobserv\'{e} - FN de base}{FN de base}\right] * 100$$

%
$$\Delta FF = \left[\frac{FF \text{ observ\'ee} - FF \text{ de base}}{FF \text{ de base}}\right] * 100$$

 Δ % N1required = %N1observée - %N1 de base

$$(\%\Delta FN + \%\Delta FF = -\%\Delta FM)$$
 [6].

II.4. Les paramètres affectant la dégradation

La dégradation des performances est due à l'un de ces deux causes :

II.4.1. Dégradation des moteurs

Pour des conditions extérieures données et une valeur de N1 mesurée, la comparaison de la consommation réelle à la consommation théorique (prévue pour donner cette valeur de N1) permet de détecter une dégradation dans le fonctionnement du réacteur. Une action de maintenance peut alors être envisagée [7].

II.4.2. Dégradation des performances aérodynamiques de la cellule

Pour des conditions de vol données, la poussée et donc le N1 devrait avoir une certaine valeur théorique. La valeur réelle mesurée permet de détecter une dégradation. Cette dégradation peut être imputée à différents facteurs :

- a) La cellule qui traîne plus que prévu, si la différence est importante, une action de maintenance pourra dans ce cas également être lancée.
- b) La masse avion, une pesée de l'avion permettra de corriger éventuellement la masse de base de l'avion.

D'autre part, la masse totale est obtenue notamment en prenant en compte une masse forfaitaire pour les passagers. Suivant les lignes, cette masse peut s'avérer éloignée de la réalité (sur les lignes vers l'Asie par exemple, les passagers sont statistiquement plus légers que vers les Etats-Unis). Un traitement des relevés par destination du vol permettra de confirmer cette hypothèse [7].

II.5. Les données nécessaires pour le suivi des performances

Les données nécessaires pour analyser les performances d'un avion pour un vol donné sont les suivantes :

Paramètres	unité	commentaire
Immatriculation	(-)	
Date	JJ/MM/AA	
Case de vol ou	1-99	Nombre de données dans le
DMU(temps		même vol, s'il n'y a pas le
d'enregistrement)		programme met 1
	HH/MM	Temps dans lequel les
		performances sont prises
Numéro de série moteur	(-)	
Altitude	ft	A partir des 2 ADC
Mach	(-)	A partir des 2 ADC
TAT (température)	C°	A partir des 2 ADC
Masse avion (poids)	Kg/LB	
Centre de gravité	%	
Accélération horizontale	G	Mesuré en g
Vitesse verticale V _z	Ft/mn	Accélération verticale
Cap vrai	(°)	Optionnel utilisé uniquement
		si la correction de gravité est
		activé
Latitude	(°)	Optionnel utilisé uniquement
		si la correction de gravité est
		activé
Vitesse du vent	Kt	Optionnel utilisé uniquement
		si la correction de gravité est
		activé
Direction du vent	(°)	Optionnel utilisé uniquement
		si la correction de gravité est
		activé

Température moyenne du carburant	C°	Non activé
Densité moyenne du carburant	L/Kg	Non activé
N1- réglage puissance EPR réglage puissance	%	Dépend de type moteur EPR pour les IAE, RR, P&W N1 : pour GE, CFM
Le débit carburant (FF) actuel	Kg/h ou LB/H	Débit moteur réacteur
EGT	C°	Réglé pour chaque moteur
Température basse d'échauffement du carburant (FLHV)	BTU/LB	(-)
Le débit de prélèvement du	Kg/S ou LB/S	Moteur 1 (biréacteur)
moteur gauche		Ou 1+2 (quadriréacteur)
Le débit de prélèvement du moteur droit	Kg/S ou LB/S	Moteur 2 (biréacteur) Ou 3+4 (quadriréacteur)
Code de prélèvement	(-)	O Off
(BLEED) (facultatif		E Economique (bas)
d'ajouter le débit)		N Normal H High (max)

Tableau (II.1): Les données nécessaires pour le suivi des performances [7].

II.6. L'utilisation des résultats de suivi des performances

Les résultats de suivi des performances avions sont utilisés dans le but de :

- ✓ Ajuster le facteur performance (RS) pour :
 - Plan de vol technique (JETPLAN) ;
 - Les prédictions FMS.
- ✓ Pour contrôler les conditions périodiques de l'avion dans le but d'analyser la tendance d'un avion donné ou la flotte, et actionner les corrections :
 - au niveau de maintenance ;

- Les restrictions de routes.
- ✓ Pour démontrer le facteur performance pour ETOPS qui peut dépasser le 5% imposé par la réglementation ;
- ✓ Il permet de développer les statistiques sur la consommation du carburant de la flotte et établir une politique d'économie carburant pour la compagnie [7].

II.7. Processus de suivi de performances

II.7.1. Description du système de gestion de vol FMS

II.7.1.1. Définition du système de gestion de vol FMS

Le système de gestion de vol ou FMS (pour Flight Management System) ou encore manager de vol est un logiciel embarqué en avionique. Son but est d'assister le pilote pendant le vol en fournissant des renseignements sur le pilotage, la navigation, les estimées, la consommation de carburant, etc [1].

II.7.1.2. Fonctionnalités

Il existe différents systèmes de gestion de vol dont les capacités et les fonctionnalités peuvent fortement varier en fonction de l'appareil ciblé (hélicoptère, avion de ligne...), de son usage (civil, militaire...) et d'autres facteurs (époque de conception notamment) :

Base de données de navigation

La base de données de navigation ou NDB (pour Navigation DataBase) contient toutes les informations nécessaires à l'élaboration d'un plan de vol. Notamment :

- Voies aériennes
- Points de route (Waypoints)
- Aéroports
- Pistes
- Procédures d'approche (Standard Arrival STAR) et de départ (Standard Instrument Departure - SID)
- Données radio de navigation

Cette base de données est mise à jour régulièrement (généralement 28 jours en aviation civile), le plus souvent au sol avant le vol. Certains FMS autorisent également le pilote à

charger sa propre NDB, en supplément de la NDB officielle. Les bases de données standards sont générées par des organismes appelés « Data Source Providers » (par exemple Jeppesen, LIDO, NavTech...) qui recensent les différents procédures, et fournissent des bases de données brutes aux systémiers, afin de les intégrer dans leurs FMS.

> Plan de vol

Le pilote dispose d'une interface lui permettant avant le départ d'entrer son plan de vol. Il s'agit d'une sorte de « contrat » passé au préalable avec les autorités du contrôle aérien qui décrit la façon dont le vol va se dérouler.

> Trajectoire

À partir du plan de vol, le FMS peut calculer la trajectoire à suivre, qui sera affichée sur les écrans de visualisation et une estimation de l'ensemble des données susceptibles d'être utiles au pilote pendant le vol : heures de passage aux différents points du plan de vol, estimation de la quantité de fuel à bord, etc.

➤ Guidage

Certains managers de vol incluent un système de guidage. Une fois une trajectoire calculée, le pilote peut choisir de suivre celle-ci manuellement ou de manière automatique. Dans les deux cas, le module de guidage lui fournira les informations nécessaires (vitesses, angles, altitude, vitesse à atteindre, etc.) voire prendra en charge certaines des actions à effectuer. Cette fonctionnalité est proche du pilotage automatique.

> Localisation

En vol, l'une des charges principales d'un système de gestion de vol consiste en la détermination précise de la localisation de l'appareil. Pour ce faire, le système dispose généralement de plusieurs sources (VOR, GPS, DME et IRS).

> Le pilote automatique

Le FMS est en général couplé au pilote automatique qui a pour charge de piloter l'avion en fonction des ordres de guidage envoyés par le FMS.

> VNAV

Une fonctionnalité complémentaire est la fonctionnalité VNAV qui permet de programmer des points verticaux [1].

Note: Ces fonctionnalités peuvent être classées en :

- Fonctionnalité PMS
- Fonctionnalité RNAV [7].

II.7.1.3. Les composantes du système

- 1. CDU (control and display unit) ou MCDU (Multipurpose Control and Display Unit) c'est l'interface 'homme-machine' permettant :
- L'insertion du plan de vol E;
- La visualisation des valeurs instantanées S + alarmes.
- 2. FMC (Flight Management Computer): calculateur numérique traitant les informations E et S pour en tirer des ordres optimisés Eopt à donner CADV.
- 3. DB (Data Base) Base de données :
- Performances 'avion + moteurs';
- Navigation;
- Infrastructure [7].

a.CDU ou MCDU

Interface de commande et de contrôle assurant les fonctions suivantes :

- Insertion initiale et actualisation par un clavier multiplexé et éclairé ;
- Visualisation du 'plan de vol' et d'informations sur plusieurs pages par un écran polychrome ;
- Signalisation de messages de défaillance ;
- Affichage 'ambre' des informations de défaillance ;
- Affichage 'rouge' des informations concernant la sécurité [7].

Chaque pilote dispose d'un CDU ou MCDU généralement disposée sur le pylône central du cockpit :

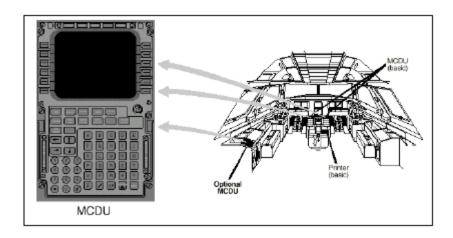


Figure (II.1): L'interface MCDU [7].

b. FMC

Calculateur numérique haute capacité effectuant les calculs de navigation et de performance ainsi que l'élaboration des ordres de guidage et de gestion de trajectoire.

Figure (II.2): L'interface FMC [7].

Le dialogue avec le FMC s'effectue via le MCDU. L'équipage peut enter des données dans le FMC en utilisant indifféremment n'importe quelle interface. Chaque pilote peut choisir de façon indépendante la page désirée sur son propre MCDU [7].

II.7.1.4. Les informations exploitées par le FMS

- (1) Les données « plan de vol » :
 - Aéroport de départ (piste (QFU)) ;
 - Aéroport d'arrivée (piste (QFU));
 - Aéroport de dégagement ;
 - Routes, altitudes;
 - Masse 'avion' sans carburant (ZFW) et carburant au bloc ;
 - Température et vent prévus ;
- (2) Les valeurs instantanées des paramètres 'avion+moteurs' fournies par les capteurs ;

Les capteurs fournissant sont :

- Pour la fonctionnalité « PMS » :
- centrale aérodynamique ADC => paramètres aérodynamiques de vol ;
- débitmètres FF (Fuel Flow) + jaugeurs éventuellement FQ (Fuel Quantity) => consommation « carburant » et masse instantanée « avion ».
- Pour la fonctionnalité « RNAV » :

```
centrale inertielle IRS ou INS;
récepteurs VOR/DME;
récepteurs ILS;
récepteurs GPS.
```

- (3a) La partie « performances 'avion+moteurs' » de la base de données
 - informations figurant habituellement dans le manuel d'utilisation de l'avion (ainsi que éventuellement des données spécifiques aux moteurs) ;
- (3b) La partie « navigation » de la base de données
 - ⇒ informations définissant l'atmosphère standard, les aides à la radionavigation (NAVAIDS), les routes aériennes (AIRWAYS), les aéroports (AIRPORTS).....

En fait, les données « plan de vol » suffisent à déterminer directement :

- Le profil de vol optimal ;
- Les informations « segments ou tronçons » (legs) dans le plan horizontal.

(3a) et surtout (3b) sont spécifiques à l'exploitant qui se doit, par sécurité, de les actualiser (Data Loading) avec une périodicité convenable.

Précisons également que (3b) comporte :

- La localisation et les caractéristiques d'émission des aides de radionavigation (balises NDB, stations VOR/DME, émetteurs ILS, indicatifs et fréquence) ;
- Les caractéristiques d'exploitation des pistes d'aéroport (QFU, longueur de pite, altitude terrain) ;
- Les cheminements de départ et d'arrivées de zone terminales d'aéroport (SID et STAR) ;
- Les contraintes ATC éventuelles (niveau de vol et vitesse) [7].

II.7.1.5. Les informations fournies par le (FMS)

Diverses fonctions sont visualisables sur l'écran du CDU ou MCDU sous la forme de 'pages' dont l'apparition est commandée à partir du clavier et qui concernent :

- La gestion « verticale »:
- ⇒ Points de fin de montée ou de début de descente en temps, distance, consommation ;
- La gestion « horizontale »:
- ⇒ Position instantanée P;
- ⇒ Temps, distance, consommation, jusqu'à ou depuis un point de report (WayPoint) du plan de vol ou un nouveau point inséré « en route » ;
- ⇒ Ecart/ route programmée => XTK;
- ⇒ Utilisation d'une route // route programmée (offset) ;
- ⇒ Utilisation d'hippodromes d'attente (holding patterns) ;
- ⇒ Temps, distance, consommation prise en compte d'un déroutement ou dégagement (alternate) ;
- Les paramètres de décollage, de vol et d'atterrissage (vitesses économiques, niveaux optimums, vitesses caractéristiques) ;
- Les données de navigation mémorisées.

La position P est déterminée par le FMC :

- En survol océanique ou désertique, à partir de l'information issue des centrales IRS ou INS, le FMS calcule une position dite 'mix IRS'.
- En portée d'une station VOR/DME, par 'recalage' de l'information IRS ou INS sur l'information DME (la position géographique de la station étant connue) ;
- En survol continental où la densité de stations est importante, par 'recalage' de l'information IRS ou INS sur 2 informations DME (les positions géographiques des stations étant connues) ;
- En hybridant l'information IRS à partir d'un récepteur GPS pour les avions les plus récents A321, A340,...

Il convient encore de savoir :

- Que le recalage volontaire de P par le PH est toujours possible « en route » en insérant dans le CDU ou MCDU une position déterminée à l'aide d'une information QDM/VOR + distance DME par exemple ;
- Que 2 vols successifs ne sont pas considérés par le FMS comme dépendants => si P indiquée à l'arrivée à l'escale ≠ P insérée par le PH pour le départ de l'étape suivante, seul un message d'alerte sera visualisé par le CDU ou MCDU;
- Que lorsque l'avion est aligné sur la piste pour décoller, le système se recale sur la position du deuil mémorisée en Data Base. P est alors comparée par le FMC avec P réelle => l'écart éventuel est pris en compte pour la détermination des P futures (erreur à l'origine ou biais).

Différents messages destinés à l'information de l'équipage ou lui proposant d'effectuer une action déterminée sont susceptibles d'apparaître sur l'écran du CDU [7].

II.7.2. Enregistrement des données

La récupération des données est le point clé du suivi des performances, la qualité et la quantité des données déterminent la rentabilité du suivi des performances, et pour cela il existe deux procédures de récupération des données :

- 1. L'enregistrement manuel des données de vol
- 2. L'enregistrement automatique basé sur les enregistreurs à bord de l'avion (ACMS)

Les procédures sont développées durant les conditions stables du vol, pour tous les types d'avions la collection des données peut être manuelle par un membre d'équipage (PNT) ou par un spécialiste chargé par la direction des opérations aériennes, par contre il est déconseillé d'utiliser cette méthode devient ennuyeuse lorsque elle devient systématique (travail de routine) et augmente la charge de travail de l'équipage, c'est pour cette raison qu'il y a une méthode simultanée et indépendante pour augmenter le niveau de fiabilité de suivi des performances [7].

II.7.2.1. Enregistrement manuel

Est utilisé lorsque l'avion n'est pas équipé de matériel nécessaire à l'enregistrement automatique (ACARS ou ACMS). L'opérateur est chargé d'introduire manuellement les paramètres provenant de la fiche performance log dans le module d'acquisition manuelle des données [7].

Les avantages :

- Aucun changement d'ACMS n'est nécessaire [6].

Les inconvénients :

- Charge de travail supplémentaire pour l'équipage
- Moins de données et peu de paramètres enregistrés
- Une plus grande probabilité d'enregistrer des données instables
- Exige d'entrée manuelle des données au format de fichier électronique [6].

II.7.2.2. Enregistrement automatique

Il est basé sur les enregistreurs à bord de l'avion (ACMS), et les fonctions du system ACARS qui assure la liaison entre l'avion et le support sol [7].

Les avantages :

- Aucun impact sur la charge de travail d'équipage ;
- Assure/ mesure les conditions de stabilité;
- Recherche continuellement des données de meilleures qualités [6].

Les inconvénients :

- exige des modifications de l'ACMS
- peut exiger un poste de traitement [6].

> L'ACARS (Aircraft Communication Addressing and Reporting System)

ACARS est un système de communications codées entre un aéronef et une station au sol. C'est un système de communication et de surveillance par radio utilisé en aviation par les exploitants d'aéronefs. Il permet le contrôle automatique de l'état de l'avion en vol, envoyé vers le centre de maintenance de la compagnie aérienne propriétaire de l'avion, mais aussi l'acheminement de communications opérationnelles et logistique. Ainsi le service de maintenance sait bien avant l'arrivée de l'avion son état, ses pannes éventuelles et donc les interventions à effectuer.

La VHF et la HF, supports de base des ACARS dans les années 1970 sont maintenant appuyées par les liaisons par satellites (SATCOM (en)) dans les zones océaniques.

Le sigle ACARS désigne le système complet qui inclut les équipements de bord, les infrastructures et équipements au sol et le fournisseur de service [1].

L'ACMS (système de surveillance de l'état de l'aéronef)

Indispensables pour établir les rapports destinés aux autorités de navigabilité, les données de bord le sont également pour améliorer la performance des avions et optimiser leur durée de vie. La particularité des systèmes d'aide à la maintenance (ACMS – Aircraft Condition Monitoring Systems –) développés par Sagem est de collecter une large gamme de données. Les ACMS vous permettent ainsi de surveiller et de contrôler l'état des systèmes et des équipements de bord, mais aussi les variations des conditions de vol et d'opération des appareils. Entièrement personnalisables, les ACMS peuvent être programmés pour anticiper les risques de défaillance des systèmes de l'avion. Disponible désormais en version Wireless, les boîtiers pour Airbus & Boeing peuvent transmettre en 3G les données de vol [8].

II.7.3. Méthodes d'analyses

Il existe principalement trois méthodes pour comparer le niveau réel des performances avion au niveau théorique donné par le constructeur celui du prototype :

- a) méthode du carburant utilisé (FUEL USED)
- b) méthode de carburant embarqué (FUEL ON BOARD)
- c) méthodes de rayon spécifique (SPECIFIC RANGE).

NB: la méthode la plus utilisée est celle de rayon spécifique (SR) [7].

II.7.3.1. Méthode du carburant utilisé

Le principe de cette méthode est de mesurer le carburant consommé dans un niveau de vol et le comparer avec les prédictions du FCOM (section flight planning) ou bien avec les calculs de logiciel des performances (hight speed performance calculator).

L'inconvénient de cette méthode c'est qu'elle fournit moins d'informations que la méthode de rayon spécifique et elle est moins précise à cause de manque de stabilité dans les données observées [7].

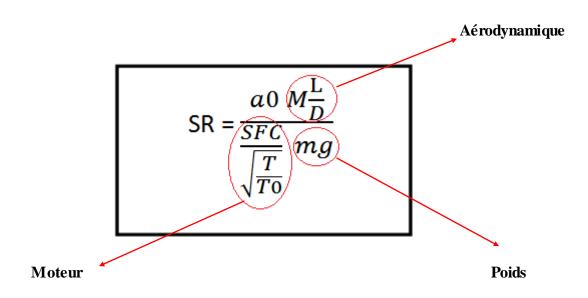
II.7.3.2. Méthode du carburant embarqué

Cette méthode compare le carburant consommé durant tout le vol avec le carburant estimé par le JETPLAN, la consommation réelle doit être corrigée en réduisant la différence entre la consommation réelle et celle prévue par le JETPLAN [7].

II.7.3.3. Méthode de rayon spécifique

a. Présentation de la méthode

Les données enregistrées dans le vol représentent l'état actuel des performances fuselage/moteur pour mesurer le rayon spécifique qui représente la consommation réelle de l'avion (KG/NM)


Cette méthode représente le niveau des performances fuselage/moteur dans des conditions stabilisées et constitue ainsi le critère principal de référence [7].

b. Définition du rayon spécifique (RS)

Le rayon spécifique (RS) est la distance parcourue par une unité du carburant consommé ; il est égale à :

RS (air) = Vitesse air (TAS) / consommation carburant par heure (FF)

Le rayon spécifique dépond des caractéristiques aérodynamiques (M, finesse, masse avion, vitesse de son au niveau de la mer).

Tel que:

SR: le rayon spécifique (NM/KG)

a₀ : vitesse du son au niveau de la mer (m/s)

M: nombre de Mach

L/D : rapport portance /traînée (finesse)

SFC: consommation spécifique

m: masse avion (kg)

T: température (Kelvin)

T₀ : c'est la température statique (Kelvin)

Donc:

c. Le principe de la méthode

Les paramètres suivants sont déterminés à base des données enregistrées dans une étape du vol stabilisé :

- RS actuel;
- ΔRS entre l'actuel et la théorie
- ΔEPR/N1 nécessaire pour maintenir les conditions de vol ;
- ΔFF (débit carburant) résultant de ΔEPR/N1 ;
- ΔFF nécessaire pour maintenir cette ΔEPR/N1 [7].

Notes:

- L'estimation de RS est obtenue grâce à l'IFP (In Flight Performance calculator program)
- APM compare entre les données enregistrées et le LEVEL BOOK ;
- Le RS estimé correspondant au LEVEL BOOK peut être obtenu du FCOM/performance chart (exemple) [7].

II.7. 4. Comparaison entre les méthodes

	Avantages	Inconvénients	Commentaires
Méthode du	-Possibilité détection	Sensible, stabilité	N'est pas adapté au
rayon spécifique	d'éventuelles	critique	calcul de coefficient
	dégradations et		de dégradation au
	l'élaboration d'actions		court/ moyen courrier
	correctives		
Méthode de	-Collecte d'information	L'impossibilité de	Adapté pour les
carburant utilisé	facile avec possibilité de	pré filtrage des	conditions
	filtrage (élimination des	données	opérationnelles de
	données non utilisable)		préparation du vol
Méthode de	-Elimination des données	Surcharge de travail	Adapté pour le calcul
carburant	non utilisables	de l'équipage pour le	de coefficient de
embarqué	(traitement des données)	rassemblement des	dégradation dans les
		données	vols court courrier

Tableau (II.2): Comparaison entre les méthodes d'analyse [7].

Introduction

Le taux de consommation de carburant, usure des freins ou des trains d'atterrissage, temps de stationnement sur les taxiways, etc, AGS mesure et analyse de larges volumes de données. Les gains de cette solution plébiscitée par près de 160 opérateurs sont importants, notamment en termes d'économie de carburant (réduction des coûts d'exploitation) et la garantie de la sécurité des vols qui sont des enjeux cruciaux pour les avionneurs et les compagnies aériennes. Grâce à AGS, les incidents techniques sont également anticipés, les situations à risques sont détectées, et est utilisé par plus de 80 clients dans le monde entier pour FOQA (Assurance de la qualité des opérations aériennes), MOQA (assurance de la qualité des opérations de maintenance) ou dans de nombreux cas, les deux programmes.

III.1. Programme d'analyse des données de vol

La FDA, parfois appelée assurance de la qualité des opérations aériennes (FOQA), offre un outil systématique permettant de détecter les dangers de manière proactive. La FDA est un complément au compte rendu de dangers et d'incidents et à l'audit de sécurité en services de ligne (LOSA).

L'Annexe 6, Partie 1, définit le terme « analyse des données de vol » comme un processus consistant à analyser les données de vol enregistrées afin d'améliorer la sécurité des vols.

Un FDAP est un programme non punitif de collecte et d'analyse systématiques des données de vol visant à mettre au point des renseignements objectifs et prédictifs pour faire progresser la sécurité, par exemple par des améliorations des performances de l'équipage de conduite, de l'efficacité de la formation, des procédures opérationnelles, de l'entretien et des services techniques et des procédures de contrôle de la circulation aérienne (ATC).

La FDA comprend les éléments suivants :

- a) Saisir et analyser les données de vol pour établir s'il y a un écart par rapport à l'enveloppe opérationnelle sûre ;
- b) Déceler les tendances ;
- c) Faciliter les suites à donner pour corriger les problèmes possibles.

Périodiquement, les données de vol sont transférées depuis les aéronefs et analysées par le système d'analyse au sol situé à un emplacement central.

Les écarts excédant certaines valeurs préétablies, appelés « dépassements », sont mis en évidence et évalués. L'équipe FDA proposera et évaluera des mesures correctives, et fera

un regroupement des dépassements avec le temps afin de voir s'il y a des tendances et de les suivre. La FDA permet également de mettre en évidence rapidement la détérioration du fonctionnement des systèmes d'aéronef et de prendre des mesures pour en faire l'entretien [9].

III.2. Objectifs d'un programme d'analyse des données de vol

- Les FDAP sont de plus en plus souvent utilisés pour faire le suivi et l'analyse des opérations aériennes et des performances techniques. Il s'agit d'un type obligatoire de système de collecte et de traitement de données sur la sécurité (SDCPS) faisant partie du SGS des exploitants d'avions dont la masse maximale au décollage certifiée excède 27 000 kg, et un élément utile pour ceux qui exploitent des avions dont la masse est inférieure à ce seuil. Des FDAP efficaces encouragent le respect des procédures d'exploitation normalisées et permettent de constater des comportements hors norme, ce qui améliore les performances en matière de sécurité. Ils peuvent détecter des tendances défavorables dans toutes les parties du régime de vol et faciliter ainsi les enquêtes sur des événements, y compris ceux qui n'ont pas eu de graves conséquences.
- L'analyse des données de vol peut servir à repérer des procédures non normalisées ou déficientes, des faiblesses du système de contrôle de la circulation aérienne (ATC) et des anomalies dans la performance des aéronefs. Elle permet de suivre les divers aspects d'un profil de vol, tels que le respect des procédures d'exploitation normalisées (SOP) prescrites pour le décollage, la montée, la croisière, la descente, l'approche et l'atterrissage. Des aspects donnés des vols peuvent être étudiés, soit rétrospectivement, pour repérer les points problématiques, ou de façon proactive avant l'instauration d'un changement opérationnel, pour ensuite confirmer l'efficacité de ce changement.
- Au cours de l'analyse d'un incident, les données de vol sur lequel l'incident s'est produit peuvent être comparées avec les données du profil de la flotte, ce qui facilite l'analyse des aspects systémiques d'un incident. Il se peut que les paramètres d'un vol avec incident ne varient que légèrement par rapport à de nombreux autres vols, ce qui indique peut-être une nécessité de modifier la technique opérationnelle ou la formation. Il serait par exemple possible de déterminer si un incident ayant entraîné un contact queue-sol à l'atterrissage est un incident isolé ou s'il est symptomatique d'un problème plus vaste de fausse manœuvre, telle qu'un arrondi trop haut au toucher des roues ou une mauvaise gestion de la poussée.
- Les données FDAP peuvent fournir aux programmes de surveillance des moteurs une analyse de tendance fiable, étant donné que les données relatives aux moteurs, qui sont codées

manuellement, sont peu précises, peu actuelles et peu fiables. Il est aussi possible de surveiller d'autres aspects de la cellule et des systèmes.

En résumé, les FDAP offrent un large spectre d'applications pour la gestion de la sécurité. De plus, ils présentent l'avantage d'améliorer l'efficacité et la rentabilité opérationnelles qui compense les investissements nécessaires. L'objectif est de :

- a) Déterminer les normes d'exploitation ;
- b) Déceler les dangers réels et potentiels dans les procédures d'exploitation, les flottes, les aéroports, les procédures ATC, etc.;
- c) Repérer les tendances ;
- d) Surveiller l'efficacité des mesures correctives prises ;
- e) Fournir des données qui serviront à mener des analyses coûts-avantages ;
- f) Optimiser les procédures de formation ;
- g) Fournir aux fins de la gestion des risques des mesures de la performance réelles plutôt que supposées.

Il est important que les FDAP soient non punitifs et comportent des garanties adéquates pour protéger les sources de données [9].

III.3. Équipement FDA

Les FDAP font généralement appel à des systèmes qui saisissent les données de vol, les transforment en un format approprié pour l'analyse, la production de rapports et la représentation visuelle, qui sont autant d'aides pour évaluer les données. Le niveau de perfectionnement des équipements est très variable. En général, toutefois, l'équipement doit répondre aux exigences suivantes pour que soit garantie l'efficacité des FDAP :

- a) Un système embarqué de saisie et d'enregistrement des données sur une vaste gamme de paramètres de vol. Ces paramètres devraient inclure, sans s'y limiter, les paramètres de vol enregistrés par l'enregistreur de données de vol (FDR) ou le système d'enregistrement de données d'aéronef (ADRS). Les performances des paramètres de vol (portée, taux d'échantillonnage, précision, résolution d'enregistrement) devraient être aussi bonnes ou meilleures que les performances prescrites pour les paramètres du FDR;
- b) Un moyen pour transférer les données enregistrées à bord de l'aéronef à une station de traitement au sol. Par le passé, ce transfert entraînait souvent le déplacement physique de l'unité de stockage du QAR. Pour réduire l'effort physique requis, des méthodes de transfert plus modernes font appel aux techniques sans fil ;

c) Un système informatique au sol (utilisant un logiciel spécialisé) pour analyser les données (de vols spécifiques et/ou les données consolidées de plusieurs vols), détecter les écarts par rapport aux performances attendues, produire des rapports afin de faciliter l'interprétation des données de sortie, etc. ;

Les données de vol sont téléchargées du système d'enregistrement de l'aéronef vers un système informatique au sol comportant un logiciel d'analyse, où elles sont conservées dans un environnement sécurisé afin de protéger ces renseignements sensibles. Ces systèmes informatiques sont disponibles sur le marché, mais la plate-forme informatique nécessitera des interfaces frontales appropriées pour traiter la diversité des données d'entrée enregistrées disponibles aujourd'hui.

Les FDAP génèrent de grandes quantités de données qui nécessitent des logiciels d'analyse spécialisés. Ces logiciels facilitent l'analyse systématique des données de vol afin de déceler des situations exigeant des mesures correctrices.

Le logiciel d'analyse vérifie les données de vol téléchargées pour y rechercher les anomalies. La détection des dépassements comprend généralement un grand nombre d'expressions logiques de déclenchement tirées d'une grande variété de sources, telles que les courbes de performances, les SOP, les données relatives à la performance fournies par le constructeur des moteurs, ainsi que la disposition de l'aérodrome et les critères d'approche. Les expressions logiques de déclenchement peuvent être de simples dépassements, tels que des valeurs critiques, mais il s'agit le plus souvent d'expressions composées qui définissent un certain régime de vol, une certaine configuration d'aéronef ou une certaine situation concernant la charge marchande. Les logiciels d'analyse peuvent aussi appliquer des ensembles de règles diffèrents en fonction de l'aérodrome ou de la géographie. Par exemple, des aéroports à mesures spéciales antibruit peuvent utiliser des pentes de descente plus élevées que la normale sur les trajectoires d'approche survolant des zones habitées. L'ensemble des expressions logiques de déclenchement est normalement défini par l'utilisateur.

Les dépassements et les mesures systématiques peuvent être affichés sur un écran d'ordinateur au sol sous divers formats. Les données de vol enregistrées sont habituellement affichées sous la forme de traces à codage en couleurs avec références techniques connexes, de simulations de poste de pilotage ou d'animations de la vue extérieure de l'aéronef.

d) un logiciel facultatif offrant une capacité d'animation des vols afin d'intégrer toutes les données et de les présenter sous la forme d'une simulation en conditions de vol, ce qui facilite la visualisation des événements réels à des fins d'analyse et de débriefing de l'équipage [9].

III.4. Les outils de l'AGS

AGS inclut tous les outils nécessaires pour effectuer des enquêtes précises :

- ➤ 3 types d'analyses :
 - Automatique
 - Statique
 - Manuelle
- > Génération de rapports prédéfinis ou personnalisés :
- Edition, publication et export automatique sous différents formats (HTML, XLS, PDF)
 - Sous forme de tableaux, courbes, graphiques et représentations visuelles
- ➤ Module 3D intégré
- ➤ Interface avec le safety management système SGS
- ➤ Utilisation de technologies primées issues de la NASA
- Accompagnement et support :
 - Stages de formation
 - Services de programmation
- AGS community: nouvelle plateforme d'échange entre tous les utilisateurs ACMS [8].

III.5. Le contrôle des données de vol (FOQA et MOQA)

Le contrôle des données de vol est le nom générique utilisé pour englober l'utilisation des données générées pendant le vol aux fins de l'assurance de la qualité des opérations aériennes FOQA, et assurance de la qualité des opérations de maintenance MOQA [10]. Ceux-ci sont décomposés et décrits individuellement ci-dessous:

III.5.1.FOQA

Le terme FOQA a été inventé par la fondation de la sécurité des vols (FSF) en 1993, qui l'a défini comme "un programme pour l'obtention et l'analyse des données enregistrées en vol pour améliorer les performances de l'équipage, programme de formation des transporteurs aériens et des procédures d'exploitation, les procédures de contrôle de la circulation aérienne, l'entretien et la conception d'aéroport, et la conception et les opérations des aéronefs".

Un programme de FOQA est donc un programme qui utilise les données générées par l'avion soit contenu dans tout dispositif de stockage embarqué ou obtenu par la transmission en ligne des avions à la base, afin de générer une compréhension de la qualité et de la normalisation des opérations de la compagnie aérienne. La plupart des programmes FOQA dépendent de logiciels complexes qui «scanne» l'information de vol pour détecter des anomalies dans les opérations comparant les données avec les niveaux de dépassement préprogrammés pour chaque type d'aéronef.

FOQA ne diffère pas beaucoup de tous les programmes existants de sécurité de vol des compagnies aériennes tels que "Rapports de la sécurité aérienne" (ASR) dans son principe, qui consiste à identifier les risques sous-jacents à l'opération et prendre les mesures appropriées pour réduire ces risques.

Où il diffère, est que, plutôt que de dépendre de la perception humaine et la déclaration des situations de risque, le programme dépend de la notion que les aéronefs génèrent des données en cours de vol, qui décrivent le comportement de cet aéronef pendant ce vol. Pour des raisons de réglementation, ces données sont stockées dans des dispositifs résistants accidents connus comme enregistreurs de données de vol (FDR), qui seront utilisés pour les enquêtes si cet aéronef devait subir un accident. Depuis que leur utilisation est rendue obligatoire, le nombre de paramètres du vol qui sont disponibles pour l'enregistrement - et le nombre qui est enregistré - a beaucoup changé. Ces données seront analysées après un vol normal, et comparées à une liste de paramètres établis en fonction des seuils de tolérance fixés par le département des opérations de vol de la compagnie aérienne, ce qui peut montrer des situations où certains paramètres dépassent ces seuils.

Ces situations sont connues comme les dépassements, et si suffisamment de vols sont analysés, générant une base de données de dépassements, ce qui permettra à la compagnie aérienne d'évaluer les risques et de proposer des moyens pour réduire ces derniers. Aujourd'hui, ces données sont disponibles le plus souvent à travers une série de différentes

formes d'enregistreurs résistants aux accidents, certains donnent une copie des enregistrements du FDR, d'autres beaucoup plus flexible avec la possibilité d'enregistrer des paramètres qui ne sont pas présents actuellement sur les enregistrements du FDR, ou à un rythme plus rapide [10].

III.5.2.MOQA

Le concept de MOQA peut être supposé semblable des programmes FOQA, mais avec une petite différence. Les programmes MOQA dépendent essentiellement des résultats conduisant à la meilleure compréhension de l'avion opérationnel à partir d'un point de vue de maintenance [10].

III.6. Données d'entrée

Initialement, les données d'entrée aux programmes de contrôle des données de vol ont été générées exclusivement par l'ancienne génération enregistreurs de données de vol (FDR), qui étaient initialement destinés à un accident ou à des enquêtes sur les incidents graves. Avec le temps, ceux-ci ont augmenté dans la capacité de l'original 6 paramètres enregistrés sur une feuille à la génération moderne stockant 50 heures valeur d'environ 1000 paramètres.

Une autre avance qui a conduit vers l'approche modem FOQA était l'introduction par les fabricants d'enregistreurs résistants aux accidents à bord des avions. Ceux-ci ont été initialement destinés à des fins de dépannage, puisque la disponibilité de certaines données de vol peut être essentielle à la compréhension des problèmes connus avec certains avions ou certains vols.

L'utilisation des données enregistrées sur des enregistreurs facilement accessibles, connus sous le nom Enregistreurs d'accès rapide (QAR) pour le but d'avoir un programme FOQA, est rapidement devenue évidente. L'efficacité de tout programme mis en œuvre dans une compagnie aérienne exploitant des avions avec QAR installé serait nettement importante. Finalement, la capacité d'enregistrement a été ajouté directement à la gestion de données ou aux unités d'acquisition de données, permettant un accès direct aux données à enregistrer, et donc un enregistrement qui était configurable par l'utilisateur, et facilement modifiable puisque ceci n'a plus été lié au signal étant envoyé au FDR, cette capacité est devenue connue comme enregistreur d'accès direct (DAR).

L'AGS est capable d'accepter des données provenant de toutes les sources FDR, QAR et DAR disponibles [10].

III.7. Processus analytique

Le processus d'entrée de données est relativement automatique, avec sa configuration variable d'une compagnie aérienne à l'autre en raison des différences dans les systèmes d'enregistrement à bord. En général, cela consiste en une tour de lecteurs capables de lire le type de médias enregistrés par l'avion, dans lequel les médias de l'avion sont placés. Si la compagnie aérienne choisit de garder la trace des numéros de série de médias pour le suivi de la qualité des médias, ceux-ci peuvent être saisies manuellement, sinon la plupart des enregistreurs sur le marché permettent l'enregistrement d'un nombre de queue ou un enregistrement d'avion que l'AGS peut détecter [10]. La fenêtre de saisie des données peut être vue dans la figure (III.1).

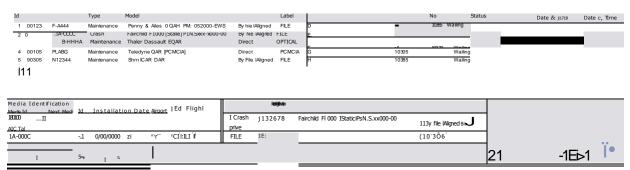


Figure (III.1) : Fenêtre de saisie de données montrant la queue de l'échantillon et les médias [10].

Pendant le processus de saisie de données, le fichier de données brutes est physiquement dépouillé de ses caractéristiques d'identification pour être choisi par le client (généralement le numéro de vol et le jour), et cette information est stockée dans un fichier séparé, relié par un mot de passe connu seulement à la personne élue s'il est nécessaire de retrouver cette information pour complément d'enquête ou de compréhension d'une anomalie détectée. Le fichier avec l'identification est généralement supprimé après une période de temps définie par le client [10].

III.7.1. Mots clés et codage

III.7.1.1.Informations des médias

Dans le cadre de l'AGS le média est défini comme étant la source des données pour l'AGS. Si une carte PCMCIA ou un disque optique est inséré avec un certain nombre de vols, il est toujours possible de rechercher uniquement pour les vols qui sont venus de ce média particulier. Autres types de médias de cours peuvent avoir un accès direct aux FDR euxmêmes, Mini ou Micro enregistreurs QAR et bandes magnétiques de QAR [10].

III.7.1.2.Information De Vol

L'AGS a la capacité d'éditer le fichier brut pour détecter les différentes phases du vol, son origine et sa destination, la durée du vol et d'autres éléments d'identification du vol. Cela permet à l'utilisateur d'effectuer une recherche dans toutes les informations saisies par toute caractéristique de l'avion, et aussi l'aéroport de destination [10].

III.7.1.3. Renseignements sur l'événement

Un des principaux objectifs de tout logiciel de contrôle des données de vol est la capacité de comparer les données existantes à un ensemble prédéfini de limitations pour un paramètre particulier ou une combinaison de paramètres. Le dépassement de cette valeur par une quantité de temps prédéterminée est connu comme un événement. La possibilité de trier les informations par des événements permet à l'utilisateur un accès rapide à l'information, et donc une plus grande facilité de visualiser l'événement lui-même afin de juger sa validité dans le contexte des données [10].

III.4.1.4.Paramètres instantanés

La capacité d'enregistrer la valeur de certains paramètres à des moments précis dans chaque vol permet à la compagnie d'avoir une meilleure compréhension de ses opérations. Ces valeurs sont connues dans l'AGS en tant que paramètres instantanés, et ce qui doit être enregistré et à quel moment est défini par l'utilisateur AGS. Des exemples de cette tendance c'est la mémorisation des paramètres spécifiques à 1000 ft au-dessus du niveau du sol à l'approche ou au toucher des roues [10].

III.7.2.Quelle est la procédure générique pour le programme?

Jour après jour le processus du contrôle des données de vol devrait être considéré comme un processus itératif. Le schéma ci-dessous illustre le processus complet de surveillance des données de vol. Les étapes dans la première section du diagramme illustrent le processus de saisie de données, bien sûr la fréquence dépendra du nombre de vols que la compagnie aérienne opère. La deuxième section du diagramme décrit la procédure quotidienne des analystes de données qui examinent chaque événement soit en forme tabulaire ou graphique. Ce processus peut conduire à une compréhension que les déclencheurs pour la détection de cet événement ne sont pas bien définis, ce qui peut conduire à une petite boucle itérative, c'est la section 3.

Enfin, la quatrième section démontre la présentation des données à la compagnie aérienne, cela peut être fait à travers deux branches, la première pour un évènement individuel qui illustre une anomalie d'opérations, à partir de laquelle tout le groupe du pilote peut apprendre, ou le département de formation peut l'exploiter pour modifier les procédures de formation, et la deuxième branche utilise un construit dans les logiciels d'exploration de données pour générer des rapports statistiques qui peuvent être utilisés pour décrire les opérations des compagnies aériennes [10].

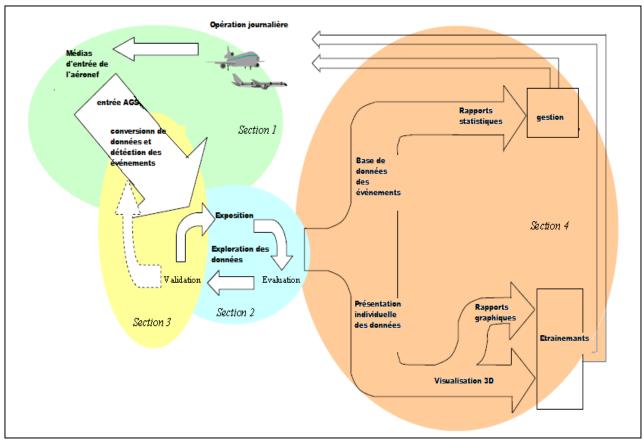


Figure (III.2): Le processus de surveillance de données de vol [10].

III.7.3.Définition de l'événement - les niveaux de déclenchement

Un des éléments les plus essentiels d'un programme de contrôle des données de vol, que ce soit pour les FOQA ou MOQA, est la possibilité de définir vos propres événements, ou niveaux de déclenchement du dépassement. L'AGS va au-delà d'avoir simplement un ensemble prédéfini d'événements pour lesquels il recherche où l'utilisateur peut modifier les seuils de déclenchement. L'utilisateur peut interagir directement par l'utilisateur du langage de programmation conviviale du logiciel pour définir toutes les données clés que l'opérateur peut souhaiter pour détecter un dépassement. Ceci est un facteur clé, surtout dans les marchés où il ya des opérations très spécifiques (approche et départs) qu'un utilisateur particulier peut souhaiter surveiller, et ne serait pas nécessairement un intérêt pour les autres utilisateurs. Des définitions complexes telles que les approches instables qui peuvent varier considérablement d'un opérateur à un autre sont également mieux détectées lorsque l'utilisateur a accès à leurs définitions [10].

III.7.4.Définition de paramètres supplémentaires

En de nombreuses occasions, l'aéronef ne sera pas programmé pour enregistrer tous les paramètres nécessaires pour une analyse adéquate des données. Ceux-ci peuvent cependant être obtenus à partir des données à portée de main. Cela a été fait traditionnellement pour les paramètres tels que la vitesse verticale, mais dans de nombreuses occasions peut atteindre à des corrections de paramètres mal enregistrés, la valeur correcte de ce qui peut être vérifié par calcul basé sur d'autres paramètres, la quantité de carburant basée sur le changement de poids brut peut être fait lorsque la quantité est peu fiable. Encore une fois cette interface est ouverte à l'utilisateur, de sorte que les corrections et les calculs au-delà de celles programmés avant la livraison peuvent être saisis par les opérateurs [10].

III.8.Outils de sortie

Les sorties de l'outil pour les AGS sont essentiellement de trois types différents, qui sont décrites ci-dessous :

III.8.1.Rapports statistiques

L'AGS génère à travers son fonctionnement standard une base de données de dépassements détectés et une base de données de valeurs de paramètres à des points spécifiques dans le temps , définies ici comme des instantanés et souvent visées sur le marché comme des mesures opérationnelles courantes. Les rapports statistiques peuvent être faits, que ce soit par période, type d'aéronef, ou même une comparaison entre deux périodes, les flottes et ainsi de suite [10]. Ces deux types de rapports ont tendance à avoir des applications différentes et sont décrites ci-dessous individuellement :

III.8.1.1. Rapports d'événement statistique / Rapports de Dépassement

De loin le résultat le plus connu et attendu de tout bon programme de surveillance des données de vol en particulier ceux visant à FOQA. Alors que l'AGS vise à évaluer toutes les fois que les paramètres ont dépassé une limite prédéfinie, c'est la partie statistique du logiciel qui permet à l'utilisateur d'avoir une image de combien de fois ça s'est passé, en faisant comprendre le niveau de risque auquel l'entreprise est exposée. Ces rapports ont tendance à travailler sur «top ten» base et être divisé en une base mensuelle, trimestrielle ou annuelle du temps, et ont tendance à être plus pertinente en permettant la comparaison entre les deux

périodes de temps, et pour certaines compagnies aériennes deux flottes. Un autre niveau d'évaluation conduit à briser graphiquement la survenance d'un événement particulier par une caractéristique différente [10]. Un exemple de ceci est dans la figure ci-dessous.

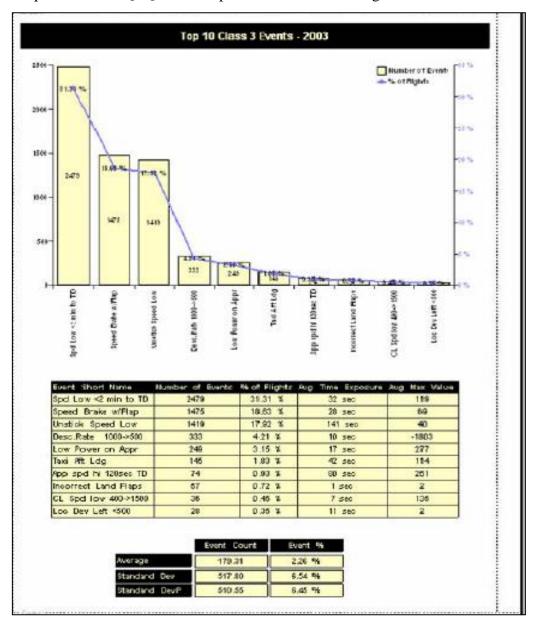


Figure (III.3): Exemple des résultats donnés sous forme de rapports statistique [10].

La détection des dépassements, tels que des écarts par rapport aux limites spécifiées dans le manuel de vol ou aux SOP, est une manière d'extraire des renseignements à partir des données de vol. Un ensemble d'événements ou de paramètres clés fixe les principaux centres d'intérêt des exploitants.

Exemples : Vitesse de rotation élevée au décollage, avertissement de décrochage, avertissement du dispositif avertisseur de proximité du sol (GPWS), dépassement de la vitesse

maximale volets sortis, approche rapide, position trop basse/élevée par rapport à la pente de descente, atterrissage brutal.

Les données sur les dépassements fournissent des renseignements factuels qui peuvent compléter les informations données dans les comptes rendus des équipages et les rapports techniques.

Exemples : Atterrissage avec volets réduits, atterrissage brutal, descente d'urgence, panne de moteur, décollage interrompu, remise des gaz, avertissement du système anticollision embarqué (ACAS) ou du GPWS, défaillances des systèmes.

Les exploitants peuvent aussi modifier l'ensemble standard d'événements clés pour tenir compte de situations exceptionnelles auxquelles ils sont confrontés régulièrement, ou des SOP qu'ils utilisent [9].

III.8.1.2. Rapports instantanés - Les rapports de mesures opérationnelles courantes

Ces rapports se fondent sur l'information qui a été entré dans la base de données sur chaque vol qui a rencontré une certaine condition, comme un touché, ou dépassement du seuil.

Plusieurs fois, ces rapports sont utilisés pour des études spécifiques d'un aspect particulier de la certification. Les quelques exemples ci-dessous montrent les points d'atterrissage sur une piste, et le Localizer / déviation de la pente de descente [10].

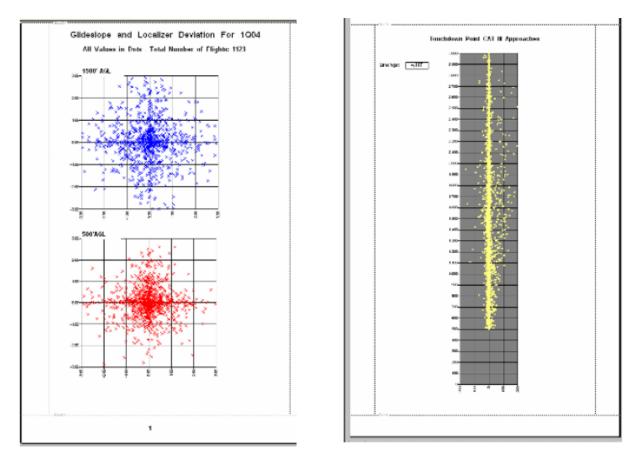


Figure (III.4) : Exemple déviation de la pente de descente (Localizer) et les points d'atterrissage sur une piste [10].

III.8.2. Analyse des événements Individuels

Bien que les rapports statistiques ci-dessus décrivent les opérations des compagnies aériennes, de nombreuses fois, il est nécessaire de comprendre un événement particulier, et dans de nombreux cas générer des rapports ou des visualisations de cet événement pour permettre aux équipages de comprendre ce qui est arrivé et d'éviter ces situations à l'avenir. L'AGS permet de le faire graphiquement ou sous forme de tableau comme montrent les captures d'écran dans la figure ci-dessous [10].

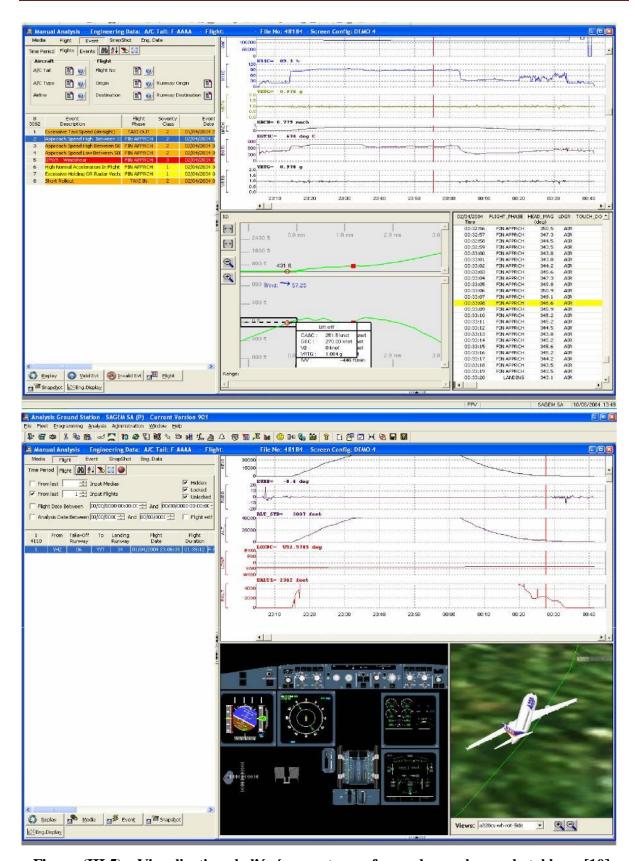


Figure (III.5): Visualisation de l'événement sous forme de graphe ou de tableau [10].

III.9. Application des résultats de l'analyse

En résumé, l'AGS est un outil de contrôle des données de vol de multiples fonctionnalités, permettant la sécurité des vols, utilisé aussi pour Entretien / Ingénierie / Dépannage que l'industrie a appelé FOQA et MOQA respectivement. La philosophie du logiciel est de permettre une flexibilité totale de l'utilisateur dans la configuration de l'outil, et un maximum de compatibilité avec les sources de données, y compris la configuration de données spécifique de la compagnie provenant des enregistreurs d'accès facile résistants aux accidents (QAR / DAR). L'AGS est conçu pour labourer à travers les données, effectuer la dépersonnalisation des données physiques si nécessaire par l'utilisateur, comparer ces données à une série de limites préétablies de temps et la valeur de génération des informations sur les conditions de vol non-standard.

Le logiciel a également la possibilité de générer des valeurs dans sa base de données de paramètres à des moments clés de la fuite, permettant une "image" statistiques des opérations de la compagnie aérienne à ce moment particulier en vol, ce qui permet des études de nombreux aspects de vol, l'un des plus typique étant l'analyse de la trajectoire de descente et la déviation d'alignement de piste à différentes hauteurs AGL [10].

Ce logiciel est utilisé aussi pour :

> Enquêtes sur les incidents

Les FDAP fournissent de précieux renseignements pour les enquêtes sur les incidents et pour le suivi de comptes rendus techniques. Des données enregistrées quantifiables ont été des compléments utiles à ajouter aux impressions et informations dont se souvenaient les équipages de conduite. Les données FDAP fournissent aussi une indication précise de l'état et de la performance des systèmes, ce qui peut constituer une aide pour déterminer des relations de cause à effet [9].

Exemples d'incidents où des données de vol enregistrées pourraient être utiles : Une charge de travail élevée dans le poste de pilotage, corroborée par les indicateurs suivants :

- a) une descente tardive;
- b) une interception tardive du radiophare d'alignement et/ou de la pente de descente ;
- c) un important changement de cap sous une hauteur spécifique ;
- d) une configuration d'atterrissage tardive ;
- e) des approches non stabilisées et précipitées, écarts par rapport à la trajectoire de descente, etc. ;

- f) des dépassements par rapport aux limites opérationnelles prescrites (telles que les vitesses maximales volets sortis, les surchauffes de moteurs) ;
- g) des rencontres de turbulences de sillage, un cisaillement du vent dans les basses couches, des rencontres de turbulences ou d'autres accélérations verticales [9].

Maintien de la navigabilité

Les mesures systématiques et les dépassements peuvent servir à soutenir la fonction de maintien de la navigabilité. Par exemple, les programmes de surveillance des moteurs tiennent compte des mesures de la performance des moteurs pour établir l'efficacité opérationnelle, prédire les pannes imminentes et aider à l'établissement des programmes d'entretien [9].

Exemples d'utilisations pour le maintien de la navigabilité : mesures du niveau de poussée du moteur et de la traînée de la cellule ; avionique et autres modes de surveillance de la performance des systèmes ; surveillance des systèmes « selon vérification de l'état » et de la détérioration des moteurs ; utilisation des freins et du train d'atterrissage [9].

Introduction

Le suivi des performances se fait par la comparaison du niveau de performance de

croisière enregistré pendant le vol avec la ligne de base enregistrée dans la base de données

moteur/fuselage. Cette comparaison se fait en calculant des coefficients de dégradations de

performances de croisière de l'avion.

Le constructeur Boeing a conçu un logiciel qui s'appelle BPS (Boeing) et qui est

fourni aux opérateurs afin de calculer ces coefficients pour leurs appareils. Mais certains

constructeurs n'ont pas des logiciels de ce genre, par conséquent, les opérateurs utilisent les

données de la station d'analyse FDM pour permettre le suivi des performances de leurs

avions.

Dans ce chapitre, on va calculer ces coefficients de dégradation pour le B737-800 en

utilisant deux méthodes (par le BPS et en exploitant les données de l'AGS), et pour le Q400,

on va utiliser uniquement la station d'analyse au sol (AGS).

IV.1. Calcul du FF théorique (à partir du Jetplan)

Un plan de vol technique ou un Jetplan comporte beaucoup de données, dans notre

projet, on s'intéresse à la consommation du carburant et le temps de vol pour chaque phase de

vol.

Pour trouver la consommation horaire FF, on applique la formule suivante :

 $d = FF * t \Longrightarrow FF = d/t$

Tel que:

d: Le délestage

FF: La consommation horaire

t : Le temps de vol.

IV.1.1. Exemple de calcul

On prend le vol LFML-DAAG (Marseille - Alger) fait par le B737-800 (immatriculé

7T-VCA) le 14/05/2015.

51

La figure ci-dessous est la partie du Jetplan à partir de laquelle on a calculé le FF en utilisant la formule précédente.

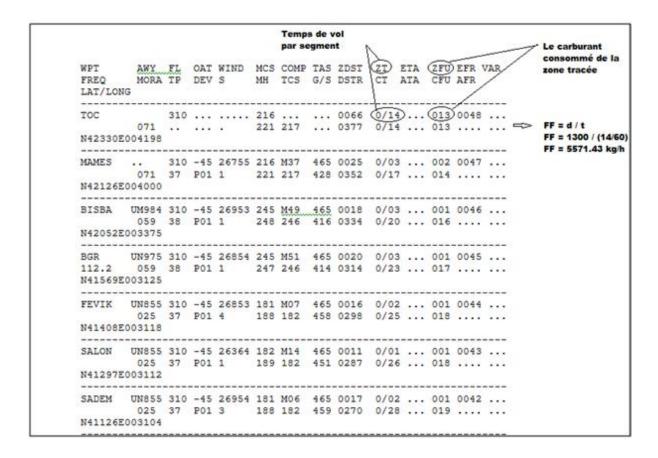


Figure (IV.1): Une partie d'un Jetplan.

Après avoir calculé le FF pour chaque phase, on calcule la moyenne pour trouver le FF pour le vol complet.

$$FF = \frac{5571.43 + 4000 + 2000 + 2000 + \dots + 631.57}{14}$$

$$FF = 3157.38 \text{ kg/h}$$

IV.2. Calcul du FF réel (Exploitation des données de l'AGS)

Comme on a expliqué dans le chapitre III, l'AGS est un système qui analyse automatiquement toutes les données de vol disponibles sur des enregistreurs des données de vol (QAR et FDR), l'annexe 2 est un exemple de ces données.

L'AGS fournit beaucoup de paramètres (FF de chaque moteur, le temps de vol, la phase de vol, la quantité de carburant consommée et la quantité restante, l'immatriculation...) dans chaque seconde et parfois chaque milli seconde.

La méthode consiste à calculer la moyenne du FF pour chaque phase de vol afin d'obtenir des résultats plus précis.

IV.2.1. Exemple de calcul

On va prendre le vol précédent, la fiche ci-dessous résume les résultats qu'on trouvé.

Informations générales					
Type d'avion		B737-800			
Immatriculation		CA			
Date		14/05/2015			
Temps de vol		1h 24mn 12se	ec		
Délestage	stage 3025 Kg				
Départ	LFML	Arrivée	DAAG		
Piste	31R	Piste	9		
Carburant à bord	7443 kg	Quantité de carburant	4418 kg		
Analyse par phase de vol					
Taxi out		Taxi in			
Time out	8mn 28sec	Time in	3mn 48sec		
FF Engine 1	426,7	FF Engine 1	338,87		
FF Engine 2	403,97	FF Engine 2	340,27		
	Décollage				
Time		28sec			
FF Engine 1		3639,88			
FF Engine 2		3527,31			
EGT 1	GT 1 751,94				
EGT 2		736,28			
Observation		Le moteur 1 consomme plus que le moteur 2			
2 Segment					
Time 1mn		1mn 52sec			
FF 1		3553,62			
FF 2		3428,77			
EGT 1		804,38			
EGT 2		784,35			

Montée				
Time	17mn 52sec			
FF Engine 1	2226,63			
FF Engine 2	2161,95			
EGT 1	752,33			
EGT 2	734,28			
Croisière				
Time	34mn 8sec			
FF Engine 1	1213,12			
FF Engine 2	1184,49			
EGT 1	623,61			
EGT 2	607,9			
	cente			
Time	18mn 50sec			
FF Engine 1	468,43			
FF Engine 2	460,6			
EGT 1	463,47			
EGT 2	450,76			
App	roche			
Time	2mn			
FF Engine 1	534,18			
FF Engine 2	529,99			
EGT 1	508,84			
EGT 2	497,98			
Observation	Pas de grande différence entre les 2			
	moteurs mais toujours le moteur 1			
	consomme plus et donc il surchauffe			
	plus			
	nale			
Time	1mn 40sec			
FF Engine 1	1180,49			
FF Engine 2	1147,68			
EGT 1	554,42			
EGT 2	541,01			
Observation	Pas de grande différence entre les 2 moteurs			

Atterrissage		
Time	1mn 16sec	
FF Engine 1	795,73	
FF Engine 2	771,17	
EGT 1	582,32	
EGT 2	567,72	
Observation	Pas de grande différence entre les 2	
	moteurs	

Tableau (IV.1): La consommation horaire pour chaque moteur par phase de vol.

A partir de ce tableau, on calcule la moyenne pour trouver le FF pour le vol complet.

On obtient:

Ensuite, on calcule la somme de la consommation des deux moteurs :

$$FF = FF 1 + FF 2$$

Donc:

$$FF_{r\acute{e}el} = 2833.39 \text{ kg/h}$$

IV.3. Calcul du coefficient de dégradation des performances

Ce coefficient est calculé en appliquant la formule suivante :

$$\% \Delta FF = \left[\frac{FFr\acute{e}el - FF th}{FF th}\right] * 100$$

<u>AN:</u>

%
$$\Delta FF = \left[\frac{2833.39 - 3157.36}{3157.36}\right] * 100$$

$$\% \Delta FF = -10.26\%$$

On fait la même chose pour plusieurs vols, on a choisi pour chaque immatriculation quelques destinations, et pour chaque destination, on a pris 3 vols, cela pour prendre en considération les conditions météorologiques et les contraintes ATC, et aussi pour avoir une idée complète et des résultats plus fiables.

Après avoir calculé le coefficient de dégradation des performances pour plusieurs vols, on calcule la moyenne pour trouver ce coefficient pour chaque avion (chaque immatriculation).

Les tableaux suivants résument les résultats obtenus :

Pour le B737-800 :

Immatriculation	7T-VCA	7T-VCB	7T-VCC	7T-VCD
Coefficient de				
dégradation des	-10.26	-3.97	1.25	0.38
perfos (%)				

Tableau (IV.2): Les coefficients de dégradation des performances des avions B737-800.

Pour le Q400 :

Immatriculation	7T-VCL	7T-VCM	7T-VCN	7T-VCO
Coefficient de				
dégradation des	0.289	-8.53	-15.81	-5.75
perfos (%)				

Tableau (IV.3): Les coefficients de dégradation des performances des avions Q400.

IV.4. L'interprétation des résultats

Dans le cas où le coefficient de dégradation des performances est positif, on dit qu'il y a une dégradation, et dans le cas contraire on dit qu'il n'y a pas de dégradation.

En analysant les résultats obtenus par notre méthode de suivi des performances, nous avons constaté ce qui suit :

Pour les avions de types B737-800:

Les deux avions immatriculés 7T-VCA et 7T-VCB n'ont pas dégradé contrairement aux avions immatriculés 7T-VCC et 7T-VCD qui ont subit des dégradations des

performances de l'ordre de 1 à 2 % qui est tolérable par rapport aux prévisions du constructeur.

Une note d'information a été envoyée au constructeur afin d'enquêter sur les raisons de cette dégradation lors des visites de types check C programmées en Septembre pour le 7T-VCC et Novembre pour 7T-VCD.

Sachant que 7T-VCB a subi un changement moteur suite à un FOD en Janvier 2015.

Pour les avions de type Q400 :

Les avions immatriculés 7T-VCM, 7T-VCN, 7T-VCO n'ont pas dégradé contrairement au 7T-VCL qui a dégradé de 0.289%.

La dégradation des performances est due au type d'exploitation des avions dans un environnement désertique (érosion de sable).

Les avions immatriculés 7T-VCM, 7T-VCO ont subi des remplacements moteurs (dépôts moteurs suite au pompage).

L'avion 7T-VCL est programmé pour une visite de type Check C, et une analyse de Boroscopie est programmée afin de déterminer la nécessité de changement de moteur même si cette dégradation est tolérable (0.3%).

Remarque:

Dans le cas où il y a une dégradation des performances, il faut voir si le problème est opérationnel vue la mauvaise exploitation par les PNT notamment dans le choix des régimes de vol, ou technique, s'il est dû au moteur ou à la cellule, et une action de maintenance sera lancée en cas de besoin.

IV.5. Le suivi des performances du B737-800 en utilisant l'APM

IV.5.1. Description de l'APM

Le programme APM est un logiciel conçu par le constructeur BOEING, il est fourni aux opérateurs afin de calculer les coefficients de dégradations de performances de leurs appareils.

L'APM permet de comparer le niveau de performance de croisière enregistré pendant le vol avec la ligne de base qui est enregistrée dans la base de données moteur/fuselage. En réalités, la comparaison se fait en calculant des coefficients de dégradations de performances de croisière de l'avion. Le calcul s'effectue sans l'utilisation des méthodes mathématiques, mais juste en utilisant les équations familières de la portance, de la traînée et de la poussée du moteur, pour des conditions de stabilité de croisière.

L'APM permet à l'utilisateur de calculer quatre types de déviations de performance, à savoir :

- La configuration moteur (power setting) en %N1 ou en EPR (taux de pression).
- La poussée requise (thrust required).
- Débit du carburant (fuel flow).
- La consommation distance du carburant (fuel mileage).

Le programme APM est fourni aux opérateurs pour la surveillance des performances de leurs avions. Les résultats du programme servent principalement à dépister les tendances à long terme des performances du fuselage/moteur et à corriger les tables de marche du jet plan.

En analysant les données de performances de croisière, le programme APM indiquera les avions pour lesquels la performance a dévié de la ligne de base applicable, cette information peut aider un opérateur en identifiant le besoin d'action possible d'entretien de fuselage ou du moteur [7].

IV.5.2. Les données d'entrée

Le programme APM reçoit 3 types d'entées :

- A- Le fichier base de données (MOTEUR/FUSELAGE).
- B- Le fichier d'entrée (MSIRF/DSIRF).
- C- Le fichier d'entrée option utilisateur APMINP [7].

A- La base de données MOTEUR/FUSELAGE

Pour chaque ensemble moteur/fuselage est associée une base de données ou sont enregistrées les caractéristiques aérodynamiques du fuselage ainsi que les caractéristiques mécaniques des moteurs présentées par des diagrammes (courbe prenant l'exemple de la polaire), sous forme numérique, indiquant l'évolution ou la régression d'un paramètre par

rapport à un autre. La valeur désirée est obtenue par un certain arrangement d'interpolation lors du calcul.

L'opérateur indiquera donc au programme APM le nom de la base de données à consulter selon le modèle de l'avion et le type de moteur. A titre d'exemple la base de données utilisée pour faire des calculs sur un 737-200 équipé de JT8-D15 n'est pas la même que pour un 737-200 équipé de JT8-D17.

Chaque base de données est constituée de plusieurs configurations, les configurations sont destinées chacune à faire face à un certain type de calcul. Dans notre cas, le cahier de charge utilisé par le programme pour le calcul des coefficients de dégradation de performances est nommé CONFIG50, il est également indiqué au programme APM par l'opérateur [7].

B- Les fichiers d'entée de données (MSIRF/DSIRF)

Les fichiers d'entrée de données contiennent les paramètres de vol de croisière utilisés par le programme APM afin de calculer les coefficients de dégradation de performance [7].

C- Les fichiers d'entrée option utilisateur APMINP

Comme son nom l'indique, l'utilisateurs crée ce fichier afin de définir au programme APM le nom de la base de données à consulter ainsi que le nom du cahier de charge de configuration, le nom du fichier d'entrée des paramètres de vol et sa nature (manuel MSIRF ou automatique DSIRF), les nom des fichiers de sortie où sont présentés les résultats, et les options d'exécution où l'opérateur précise au programme APM les corrections à effectuer lors du calcul des coefficients tel que la correction du CG, aéroélasticité, isobarique, énergie...etc.., les tolérances a appliquer sur les coefficients et enfin les unités désirées à la sortie des résultats [7].

IV.5.3. Processus de calcul dans le programme APM

La figure ci-dessous (figure IV.2) illustre le processus de calcul dans le programme APM.

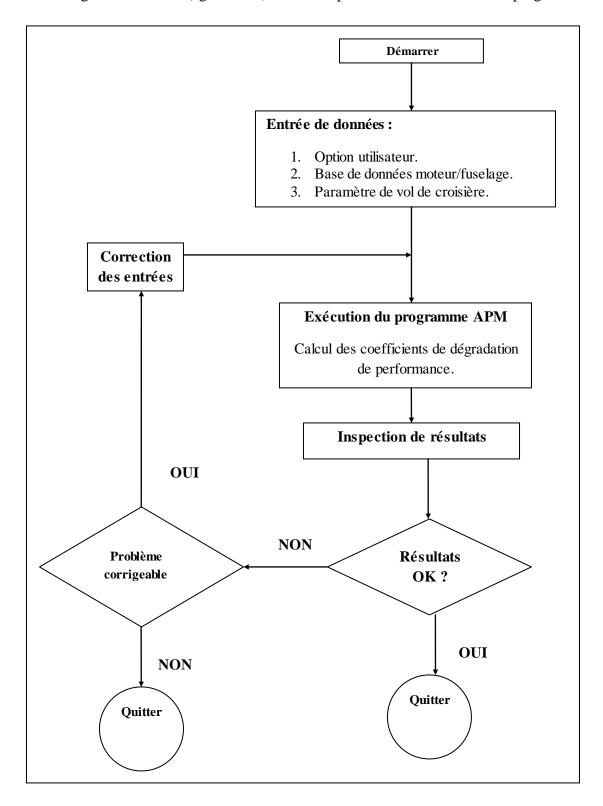
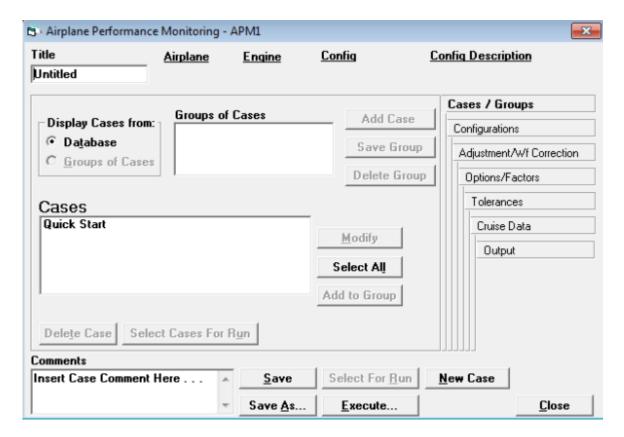


Figure (IV.2): Processus de calcul dans le programme APM [7].

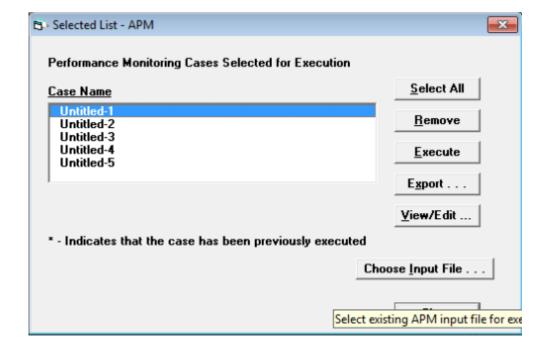
Le processus de calcul dans le programme APM se déroule d'une manière simple. Avant l'exécution du programme, l'opérateur introduit tout d'abord le fichier option utilisateur (APMINP) où est définis la base de données moteur/fuselage, le fichier d'entrée des paramètres de vol de croisière (MSIRF/DSIRF) ainsi que les options d'exécution.

A partir d'un seul fichier d'entrée APMINP, le programme APM peut effectuer plusieurs opérations de calcul. L'application du bloc /CASE suivi du mot clé APM indiquera le début d'un nouveau calcul des coefficients de dégradation de performance avec des données différentes.

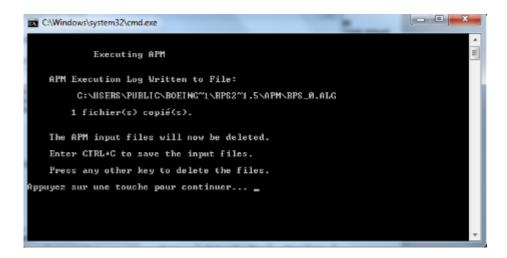
Une fois les coefficients calculés, une vérification des résultats s'impose. Si une anomalie se présente et dont le problème est corrigeable, une correction au niveau des données d'entrées est effectuée pour les réintroduire dans le programme APM, sinon un message d'erreur apparaît indiquant le type d'anomalies détectées.


Dans le cas où aucune anomalie ne se présente, mes résultats apparaissent sous forme de fichiers [7].

Le fonctionnement du BPS est comme suite :


On lance le BPS, la fenêtre suivante s'affiche :

□ · New Performance Software Session
Takeoff
All Enroute Cases
- OR -
Enroute Climb
Cruise/Holding
<u>D</u> riftdown
De <u>s</u> cent
Altitude Capability
e Capability inputs for the INFLT/REPORT Inflight
Landing
Airplane Performance Monitoring
De <u>v</u> iation Trend Tracking
<u>C</u> ancel


En cliquant sur l'onglet Airplane Performance Monitoring, la fenêtre suivante s'ouvre :

Dans cette fenêtre, on choisit l'avion et on télécharge les données de croisière en utilisant les champs Configurations et Cruise Data, puis on exécute et la fenêtre suivante apparait :

On choisit le cas puis on clique sur exécute pour avoir la fenêtre suivante :

Après la fin de l'exécution, on revient à la fenêtre précédente et on clique sur l'onglet View/Edit pour parcourir un fichier appelé APMOUT.txt qui contient les résultats.

IV.5.4. L'archivage de l'APM

L'APM est capable d'archiver les performances des avions dans une bibliothèque des données (Library) pour le suivi des performances de long terme, les inputs et les outputs sont archivés de la même façon et sous le même format ce qui permet d'identifier une éventuelle dégradation et de déterminer les actions correctives donc une meilleure exploitation de la flotte [7].

IV.5.5. Les résultats obtenus par le BPS

Le BPS calcule le coefficient de dégradation des performances pour les quatre paramètres suivants :

Paramètres Années	%N1 REQ'D	%THRST REQ'D	%FUEL FLOW	%FM
2013	-1.22	-5.2	-12.7	+5.3
2014	-1.06	-4.9	-11.2	+4.2
2015 (Janvier- Septembre)	-0.9	-3.8	-10.4	+3.9
Moyenne	-1.06	-4.63	-11.43	+4.47

Tableau (IV.4): Résultats de l'APM pour le 7 T-VCA.

Paramètres Années	%N1 REQ'D	%THRST REQ'D	%FUEL FLOW	%FM
2013	-1.01	-4.4	-6.3	+5.3
2014	-0.86	-3.2	-5.4	+4.2
2015 (Janvier- Septembre)	-0.56	-2.1	-4.2	+3.9
Moyenne	-0.81	-3.23	-5.3	+4.47

Tableau (IV.5): Résultats de l'APM pour le 7 T-VCB.

Paramètres Années	%N1 REQ'D	%THRST REQ'D	%FUEL FLOW	%FM
2013	-0.5	-4.2	-2.3	+1.5
2014	+0.1	+3.5	+2.3	+1.0
2015 (Janvier- Septembre)	+0.56	+1.9	+1.11	-1.13
Moyenne	+0.053	+0.4	+0.37	+0.46

Tableau (IV.6): Résultats de l'APM pour le 7 T-VCC.

Paramètres Années	%N1 REQ'D	%THRST REQ'D	%FUEL FLOW	%FM
2013	-0.32	-3.7	-2.1	+1.2
2014	+0.52	+2.4	+1.7	+0.85
2015 (Janvier- Septembre)	+1.1	+2.1	+0.18	-0.5
Moyenne	+0.43	+0.27	-0.07	+0.52

Tableau (IV.7): Résultats de l'APM pour le 7 T-VCD.

Paramètres Années	%N1 REQ'D	%THRST REQ'D	%FUEL FLOW	%FM
2013	-0.76	-4.38	-5.85	+3.33
2014	-0.33	-0.55	-3.15	+2.56
2015 (Janvier- Septembre)	+0.05	-0.48	-3.33	+1.54
Moyenne	-0.35	-1.8	-4.11	+2.48

Tableau (IV.8): Résultats de l'APM pour la flotte B737-800.

Pour les paramètres : N1 REQ'D, THRST REQ'D et FUEL FLOW, si on trouve la valeur positive on dit qu'il y a une dégradation sinon pas de dégradation. Contrairement au FM, si on trouve la valeur positive, on dit qu'il n'y a pas de dégradation.

Il est important de noter que la différence entre les résultats obtenus par le BPS et les résultats obtenus par le calcul manuel revient à plusieurs raisons comme :

- Dans la méthode qu'on a utilisé, on a pris un nombre limité de vols, par contre le BPS (Module APM) donne des résultats à partir de la base de données de la compagnie, donc il prend en considération tous les vols.
- ➤ Le BPS (Module APM), prends les données à partir de l'ACMS qui vérifient les conditions de stabilité des données et élimine toutes les données incohérentes et incorrectes.
- Les résultats du BPS (Module APM) sont plus précis parce qu'il est automatique, par contre notre méthode consiste à faire les calculs sur plusieurs étapes et à chaque fois il faut arrondir les résultats ce qui diminue la précision.

Conclusion

Le suivi de la dégradation des performances d'un avion est une chose indispensable qui doit avoir la même importance que le contrôle régulier effectué sur la flotte de toute compagnie aérienne.

Pour cela, tout constructeur doit concevoir des logiciels et des programmes qui calcule les coefficients de dégradation des performances de leurs appareils afin d'assurer les deux aspects basiques de toute compagnie, l'aspect sécurité, et l'aspect économie.

Cet objectif est atteint par la procédure suivie quand une dégradation des performances est produite, cette procédure consiste à régler les problèmes techniques par la maintenance des avions ce qui assure la sécurité, et régler les problèmes opérationnels ce qui assure l'économie en évitant surtout l'augmentation de la consommation du carburant, et l'un de ces aspects complète l'autre.

En cas d'absence de ce logiciel, la compagnie doit trouver une autre méthode pour faire le suivi des performances comme l'adoption d'un système d'analyse de données, où l'exploitation de ces données peut nous donner les mêmes résultats qu'un logiciel conçu pour ce but.

Enfin, on peut dire que la méthode qu'on a utilisé dans notre projet peut nous donner des résultats plus précis, en créant par exemple une application comme une base de données ou un programme informatique pour faciliter et automatiser la tâche, ou en allant plus loin par la conception d'un logiciel de suivi des performances pour les avion qui ne l'ont pas.

Bibliographie

- [1] Site internet wikipedia.org/wiki/
- [2] Site internet tassiliairlines.aero
- [3] Manuel d'exploitation partie A Généralités/Fondements, édition 01/02/2009, révision 08/05/2014.
- [4] 737-800 Flight Crew Operations Manual (FCOM) Tassili Airlines SPA, révision 27/03/2014.
- [5] Bombardier Q400 Aeroplane Operating Manuel (AOM)
- [6] Cruise Performance Analysis (Boeing) PE-201 Operational Performance and Technical Methods Feb-Mar 2013.
- [7] Mémoire « suivi des performances des avions 'APM' B737NG et A330-202 », ALILI Hichem, 2007.
- [8]http://www.sagem.com/fr/aeronautique-et-espace/avions-civils/systemes-dinformation/
- [9] Manuel sur les programmes d'analyse des données de vol (FDAP), première édition 2014.
- [10] Example Application of Analysis Ground Station (AGS), Septembre 2004.

DISPATCH BRIEFING INFO

PLAN 9407 SF3021 LFML TO DAAG 73W2 M79/F IFR 14/05/15 NONSTOP COMPUTED 1008Z FOR ETD 1445Z PROGS 1406UK 7T-VCA KGS
E.FUEL A.FUEL E.TME NM NAM FL DEST DAAG 003157 01/11 0443 0460 310 R.R. 000158 000/04 ALT DAOO 001764 00/42 0228 0245 280 HOLD 001051 00/30 XTR 000000 00/00 SIGN CDB TOF 006130 02/27 TRK MRS-ALG TAXI 000150 CORR. + / - BLOCK 006280 02/27 BLOCK FUEL
FL 310
FUEL BURN ADJUSTMENT FOR 4000 FT DECREASE IN CRZ ALTITUDE: KGS FUEL BURN ADJUSTMENT FOR 4000 FT INCREASE IN CRZ ALTITUDE: KGS FUEL BURN ADJUSTMENT FOR 1000KGS INCREASE/DECREASE IN TOW:0021KGS
ALT AIRPORT CIE NAME COST INDEX BLOCK NUMERO B/L
E. WT CORR. OP. LIMIT STRUC. REASONS FOR OP. LIMIT BASIC 043084
BLOCK OFF LANDING FOB. TO
WIND M012 MXSH 4/FEVIK
ETP LFML/DAAG 00/37 0245NM P029/M018 BURN 0023 N40006E003060
MET /
CLEARANCE /

LFML ELEV	007	70FT				ET	A 15	56Z					
WPT I	MORA	TP	DEV	WIND S	МН	TCS	G/S	DSTR	CT	ATA	CFU	AFR	
	071 4198	310		•	216 221	217		0066 0377	0/14	1	013 013	0048	
MAMES .	071 4000	310 37	-45 P01	26755 1	216 221	M37 217	465 428	0025	0/03	3 7	002	0047	
BISBA U	M984 059	310	-45	26953 1	245 248	M49 246	465 416	0018	0/03	3	016		•••
BGR UI 112.2 N41569E00	059 3125	38	P01	26854 1	245 247	M51 246	465 414	0020 0314	0/03	3	001	0045	
FEVIK U	N855 025	310 37	-45 P01		181 188	M07 182	465 458	0016 0298					
SALON UI	025	310	-45		182	M14 182	465	0011 0287					
SADEM UI	025 3104	37	P01	3	188	M06 182	465 459	0017 0270	0/28	3	019		
DUNES U	N855 025	310	-45		181	M02	465	0021	0/03	3	001	0041	
SISMO UI	017 3087	37	P01	0	187	182	463	0234	0/33	3	021		
KENAS UI	N855 017 3084	310 37	-45 P01	27344 0	181 186	M01 182	465 464	0007 0227	0/01	L 4	000 022	0040	• • •
ETP1 UI 116.4 N40006E00	N855 029 3060	310 37	-45 P01	27441 2	181 186	00 182	465 465	0029 0198	0/03	3 7	002 023	0038	
POS UI 116.4 N39556E00	N855 029 3069	310 37	-45 P01	27441 2	181 186	00 182	465 465	0005 0193	0/01	l 3	000	0038	
DOSOP UI	N855 029 3075	310 37	-45 P01	27539 2	178 183	P02 179	465 467	0032 0161	0/04	4	002 025	0036	
TALEN U	N855 029	310	-45		178	P02	465	0016	0/02	2	001	0035	

TOD								0/06 0/50			
N38216E	003090										
GENIO		DSC		1	78		0004	0/01	000	0032	
N38176E	003089							0/51			
BUYAH		DSC		1	78		0011	0/01	000	0032	
N38068E	003091							0/52			
DAAG		DSC		1	77		0085	0/19	002	0030	
N36416E	003129							1/11			
FIRS L											
LIK2 L	ECD/IJ(JZ DAF	M/IJ	3 /							
T/O ALT	ERNATE	LFMN			_		TIME 0.20				
-N0330F	120										
			MSA	'I''I'K	DIST	'I'IME	i E'l'A	FUEL			
ALTERNA	TE - 1	DAOO	083	251	0228	0.42	1639	001764			
ALTERNA	TE - 2	DABC	099	098	0186	0.32	1629	001456			
-N0392F	280 DAI	HRA A41	.1 OR.	A DCT							
CPT				MSA		DIST					
CELBA CHE	N37069	9 E002	2531	083 076		0031					
DAHRA						0045					
MOS						0072					
ORA			1393			0042					
DAOO	N3537	6 W000	367	047	068	0002					
-N0379F	270 BAI	BOR UA3	31 CS	O DCT							
CPT	LAT	LONG	;	MSA	TTK	DIST					
SMR	N3641			083	248	0010					
BNA	N36391			083	087	0027					
BABOR TAJEN	N36291 N36230			099 099	098 098	0069 0042					
CSO	N36230			089	098	0042					
DABC	N3617				360	0001					

Annexe 2 : Les résultats de l'AGS

TIME	DATE	AC_TAIL2	CITY_FROM	FLIGHT_PHASE	RUNWAY_TO	FQTY_TO	DESTINATION	RUNWAY_LD	FQTY_LD	FF1C	FF2C	EGT1C	EGT2C
						t			t	kg/h	kg/h	deg C	deg C
15:42:06	14/05/2015			TAXI OUT	31R	0.000	ALG	9	0.000	0	421	334	455
15:50:34	14/05/2015			TAXI OUT	31R	0.000	ALG	9	0.000	3041	3092	642	642
15:50:38	14/05/2015			TAKE OFF	31R	7.443	ALG	9	0.000	3309	3469	662	665
15:51:06	14/05/2015	VCA		TAKE OFF	31R	7.443	ALG	9	0.000	3672	3556	782	764
15:51:06	14/05/2015	VCA		TAKE OFF	31R	7.443	ALG	9	0.000	3672	3556	783	765
15:52:22	14/05/2015	VCA	LFML	2 SEGMENT	31R	7.443	ALG	9	0.000	3498	3360	808	788
15:52:18	14/05/2015	VCA		2 SEGMENT	31R	7.443	ALG	9	0.000	3491	3367	808	788
15:51:10	14/05/2015	VCA	LFML	2 SEGMENT	31R	7.443	ALG	9	0.000	3687	3563	784	765
15:53:02	14/05/2015	VCA		2 SEGMENT	31R	7.443	ALG	9	0.000	3469	3346	811	790
15:53:02	14/05/2015	VCA		CLIMB	31R	7.443	ALG	9	0.000	3462	3346	810	790
15:56:06	14/05/2015	VCA	LFML	CLIMB	31R	7.443	ALG	9	0.000	3215	3092	820	798
16:04:22	14/05/2015	VCA	LFML	CLIMB	31R	7.443	ALG	9	0.000	1248	1219	667	648
16:04:22	14/05/2015	VCA		CRUISE	31R	7.443	ALG	9	0.000	1248	1219	666	647
16:07:38	14/05/2015	VCA	LFML	CRUISE	31R	7.443	ALG	9	0.000	1285	1248	645	628
16:09:38	14/05/2015	VCA	LFML	CRUISE	31R	7.443	ALG	9	0.000	1706	1706	675	666
16:38:30	14/05/2015	VCA		DESCENT	31R	7.443	ALG	9	0.000	777	755	557	540
16:41:18	14/05/2015	VCA	LFML	DESCENT	31R	7.443	ALG	9	0.000	261	261	421	405
16:57:10	14/05/2015	VCA		DESCENT	31R	7.443	ALG	9	0.000	399	392	499	486
16:57:10	14/05/2015	VCA		APPROACH	31R	7.443	ALG	9	0.000	399	392	499	486
16:57:54	14/05/2015	VCA	LFML	APPROACH	31R	7.443	ALG	9	0.000	414	406	499	487
16:59:10	14/05/2015	VCA		FINAL	31R	7.443	ALG	9	0.000	929	900	522	508
17:00:50	14/05/2015	VCA		FINAL	31R	7.443	ALG	9	0.000	1437	1321	577	558
17:00:50	14/05/2015	VCA		LANDING	31R	7.443	ALG	9	0.000	1415	1314	577	559
17:02:06	14/05/2015	VCA	LFML	LANDING	31R	7.443	ALG	9	4.418	348	348	583	570
17:02:06	14/05/2015	VCA		TAXIIN	31R	7.443	ALG	9	4.418	348	348	583	570
17:05:54	14/05/2015	VCA	LFML	TAXIIN	31R	7.443	ALG	9	4.418	0	0	449	411
17:05:54	14/05/2015	VCA		ENG. STOP	31R	7.443	ALG	9	4.418	0	0	437	403

BOEING AIRPLANE PERFORMANCE MONITORING PROGRAM

REPORT TITLE IMI

PERFORMANCE ANALYSIS FOR AIRPLANE 7T-VCA

MODEL 737-800WSFP1 ENGINE CFM56-7B ENG SERIAL NUMBERS

SPEED PARAMETER TO BASE ANALYSIS - MACH

INSTRUMENTS USED FOR ANALYSIS - C

DATE FLT# FLT CAS TAT GW MACH %N1 FUEL %N1 %THRST %FUEL %FM QUAL

DD-MM-YY LVL C KG AVG FLOW REQ'D REQ'D FLOW

02-01-13 2879927 370 260 -28 64.0 .800 89.2 1248 -1.07 -4.1 -0.7 +4.7 0 03-01-13 2879930 350 265 -32 67.8 .780 87.3 1265 -1.31 -5.8 -0.9 +6.1 0 06-01-13 2879930 350 264 -32 66.8 .778 86.8 1236 -1.13 -5.0 -0.8 +5.3 0 11-02-13 2879933 370 247 -25 64.9 .765 89.2 1186 -1.02 -4.1 -0.5 +4.4 0 21-02-13 2879937 370 246 -38 63.3 .761 87.5 1168 -2.17 -8.8 -0.8 +8.6 0 03-03-13 2879940 340 267 -23 73.7 .771 89.8 1390 -1.81 -7.4 -1.0 +7.6 0 05-03-13 2879940 360 262 -29 70.9 .789 90.1 1340 -1.81 -6.5 -0.9 +7.1 0 14-04-13 2879943 340 272 -25 72.4 .785 88.8 1368 -1.35 -5.9 -0.6 +6.0 0 16-05-13 2879948 320 288 -23 66.1 .792 86.5 1360 -0.96 -4.4 -10.6 -4.5 0 19-05-13 2795139 360 266 -30 67.4 .802 89.3 1324 -1.47 -5.5 -13.8 +6.1 0 03-06-13 2795139 360 266 -30 67.0 .801 88.5 1280 -0.72 -2.9 -0.5 -3.4 0 08-06-13 2795139 350 271 -26 65.7 .798 88.3 1300 -1.02 -4.5 -12.5 +4.6 0 09-07-13 2795140 340 282 -23 67.8 .809 89.3 1410 -0.99 -4.4 -0.2 -4.3 0 11-07-13 2795140 340 281 -23 67.3 .808 89.2 1403 -1.01 -4.5 -0.5 +4.7 0 12-08-13 2795140 340 281 -23 66.8 .807 88.9 1393 -1.10 -4.9 -0.5 -5.0 0 18-08-13 2795140 340 282 -23 66.6 .810 89.0 1399 -0.89 -4.0 -0.5 +4.2 0

21-08-13 2795140 340 282 -23 66.3 .809 88.7 1381 -0.80 -3.5 -0.5 -3.7 0

05-09-13 2795140 360 264 -31 64.8 .796 88.1 1260 -1.21 -5.4 -0.5 +5.4 0
10-09-13 2795143 360 258 -29 70.1 .780 89.6 1302 -1.65 -6.1 -0.7 -6.4 0
19-10-13 2795143 360 258 -30 68.8 .780 89.0 1276 -1.47 -5.7 -0.7 +6.0 0
21-10-13 2795147 370 256 -28 62.5 .790 88.4 1192 -0.91 -4.0 -0.3 +4.0 0
18-10-13 2835686 350 272 -34 66.8 .799 87.2 1288 -0.99 -4.5 -0.4 +4.5 0
22-11-13 2835704 320 290 -29 67.6 .799 86.0 1367 -0.92 -4.3 -0.0 -3.8 0
24-12-13 2835704 320 290 -29 66.9 .799 86.1 1377 -1.21 -5.7 -0.1 +5.1 0
26-12-13 2835704 320 291 -29 66.3 .800 86.1 1375 -1.17 -5.6 -0.0 +4.9 0

AVERAGE DEVIATION FROM BOOK PERFORMANCE -1.22 -5.2 -12.7 +5.3

STANDARD DEVIATION

0.36 1.2 -0.3 1.3

* - DENOTES NOT USED IN AVERAGE CALCULATION

(ACCEPTABLE TOLERANCE RANGE BOEING AIRPLANE PERFORMANCE MONITORING PROGRAM

REPORT TITLE IMI

PERFORMANCE ANALYSIS FOR AIRPLANE 7T-VCA

MODEL 737-800WSFP1 ENGINE CFM56-7B ENG SERIAL NUMBERS

SPEED PARAMETER TO BASE ANALYSIS - MACH

INSTRUMENTS USED FOR ANALYSIS - C

DATE FLT# FLT CASTAT GW MACH %N1 FUEL %N1 %THRST %FUEL %FM QUAL DD-MM-YY LVL C KG AVG FLOW REQ'D REQ'D FLOW

05-01-14 2879927 370 260 -28 64.0 .800 89.2 1248 -1.07 -4.1 -11.7 +4.7 0

09-01-14 2879930 350 265 -32 67.8.780 87.3 1265 -1.31 -5.8 -11.9 +6.1 0

```
11-01-14 2879930 350 264 -32 66.8 .778 86.8 1236 -1.13 -5.0 -11.8 +5.3 0
21-02-14 2879933 370 247 -25 64.9 .765 89.2 1186 -1.02 -4.1 -11.5 +4.4 0
24-02-14 2879937 370 246 -38 63.3 .761 87.5 1168 -2.17 -8.8 -11.8 +8.6 0
06-04-14 2879940 340 267 -23 73.7 .771 89.8 1390 -1.81 -7.4 -10.0 -7.6 0
07-04-14 2879940 360 262 -29 70.9 .789 90.1 1340 -1.81 -6.5 -9.9 +7.1 0
19-05-14 2879943 340 272 -25 72.4 .785 88.8 1368 -1.35 -5.9 -11.6 +6.0 0
21-05-14 2879948 320 288 -23 66.1 .792 86.5 1360 -0.96 -4.4 -12.6 +4.5 0
26-07-14 2795139 360 266 -30 67.4 .802 89.3 1324 -1.47 -5.5 -8.8 +6.1 0
24-07-14 2795139 360 266 -30 67.0 .801 88.5 1280 -0.72 -2.9 -11.5 +3.4 0
29-08-14 2795139 350 271 -26 65.7 .798 88.3 1300 -1.02 -4.5 -12.5 +4.6 0
30-08-14 2795140 340 282 -23 67.8 .809 89.3 1410 -0.99 -4.4 -11.2 +4.3 0
03-09-14 2795140 340 281 -23 67.3 .808 89.2 1403 -1.01 -4.5 -12.5 -4.7 0
05-09-14 2795140 340 281 -23 66.8 .807 88.9 1393 -1.10 -4.9 -11.5 +5.0 0
07-09-14 2795140 340 282 -23 66.6 .810 89.0 1399 -0.89 -4.0 -11.5 +4.2 0
09-09-14 2795140 340 282 -23 66.3 .809 88.7 1381 -0.80 -3.5 -12.5 -3.7 0
11-10-14 2795140 360 264 -31 64.8 .796 88.1 1260 -1.21 -5.4 -12.5 +5.4 0
15-10-14 2795143 360 258 -29 70.1 .780 89.6 1302 -1.65 -6.1 -11.7 -6.4 0
18-10-13 2795143 360 258 -30 68.8 .780 89.0 1276 -1.47 -5.7 -10.7 +6.0 0
19-10-14 2795147 370 256 -28 62.5 .790 88.4 1192 -0.91 -4.0 -11.3 +4.0 0
21-11-14 2835686 350 272 -34 66.8 .799 87.2 1288 -0.99 -4.5 -10.4 +4.5 0
24-11-14 2835704 320 290 -29 67.6 .799 86.0 1367 -0.92 -4.3 -9.0 +3.8 0
28-11-14 2835704 320 290 -29 66.9 .799 86.1 1377 -1.21 -5.7 -8.1 +5.1 0
11-12-14 2835704 320 291 -29 66.3 .800 86.1 1375 -1.17 -5.6 -9.0 +4.9 0
28-12-14 2835709 360 269 -33 66.7 .810 89.8 1367 -1.69 -5.8 -10.8 +6.4 0
```

AVERAGE DEVIATION FROM BOOK PERFORMANCE -1.06 -4.9 -11.2 +4.2 STANDARD DEVIATION 0.34 1.1 -0.2 +1.2

* - DENOTES NOT USED IN AVERAGE CALCULATION

(ACCEPTABLE TOLERANCE RANGE EXCEEDED)

BOEING AIRPLANE PERFORMANCE MONITORING PROGRAM

REPORT TITLE IMI

PERFORMANCE ANALYSIS FOR AIRPLANE 7T-VCA

MODEL 737-800WSFP1 ENGINE CFM56-7B ENG SERIAL NUMBERS

SPEED PARAMETER TO BASE ANALYSIS - MACH

INSTRUMENTS USED FOR ANALYSIS - C

DATE FLT# FLT CASTAT GW MACH %N1 FUEL %N1 %THRST %FUEL %FM QUAL

DD-MM-YY LVL C KG AVG FLOW REQ'D REQ'D FLOW

11-01-15 2879927 370 260 -28 64.0 .800 89.2 1248 -1.07 -4.1 -10.7 +4.7 0

12-01-15 2879930 350 265 -32 67.8 .780 87.3 1265 -1.31 -5.8 -10.9 +4.1 0

16-01-15 2879930 350 264 -32 66.8 .778 86.8 1236 -1.13 -5.0 -10.8 +5.3 0

19-01-15 2879933 370 247 -25 64.9 .765 89.2 1186 -1.02 -4.1 -10.5 +4.4 0

21-02-15 2879937 370 246 -38 63.3 .761 87.5 1168 -2.17 -2.8 -10.8 +3.6 0

22-02-15 2879940 340 267 -23 73.7 .771 89.8 1390 -1.81 -3.4 -10.0 +4.6 0

23-02-15 2879940 360 262 -29 70.9 .789 90.1 1340 -1.81 -4.5 -10.9 +4.1 0

26-02-15 2879943 340 272 -25 72.4 .785 88.8 1368 -1.35 -2.9 -10.6 +3.0 0

28-02-15 2879948 320 288 -23 66.1 .792 86.5 1360 -0.96 -4.4 -10.6 +4.5 0

02-03-15 2795139 360 266 -30 67.4 .802 89.3 1324 -1.47 -5.5 -10.8 +6.1 0

11-03-15 2795139 360 266 -30 67.0 .801 88.5 1280 -0.72 -2.9 -10.5 +3.4 0

15-04-15 2795139 350 271 -26 65.7 .798 88.3 1300 -1.02 -4.5 -10.5 +4.6 0

16-04-15 2795140 340 282 -23 67.8 .809 89.3 1410 -0.99 -4.4 -10.2 +4.3 0

 19-04-15
 2795140
 340
 281 - 23
 67.3
 88.9
 1403 - 1.01
 -4.5
 -10.5
 +4.7
 0

 21-05-15
 2795140
 340
 281 - 23
 66.8
 88.9
 1393 - 1.10
 -4.9
 -10.5
 +2.0
 0

 11-06-15
 2795140
 340
 282 - 23
 66.6
 810
 89.0
 1399 - 0.89
 -4.0
 -10.5
 +4.2
 0

 15-06-15
 2795140
 340
 282 - 23
 66.3
 809
 88.7
 1381 - 0.80
 -3.5
 -10.5
 +3.7
 0

 18-06-15
 2795140
 360
 264 - 31
 64.8
 .796
 88.1
 1260 - 1.21
 -5.4
 -10.5
 +3.4
 0

 22-06-15
 2795143
 360
 258 - 29
 70.1
 .780
 89.6
 1302 - 1.65
 -2.1
 -10.7
 +2.4
 0

 26-06-15
 2795143
 360
 258 - 30
 68.8
 .780
 89.0
 1276 - 1.47
 -2.7
 -10.7
 +4.0
 0

 05-07-15
 2835686
 350
 272 - 34
 66.8
 .799
 87.2

AVERAGE DEVIATION FROM BOOK PERFORMANCE -0.9 -3.8 -10.4 +3.9 STANDARD DEVIATION 0.39 1.8 0.2 1.7

* - DENOTES NOT USED IN AVERAGE CALCULATION (ACCEPTABLE TOLERANCE RANGE EXCEEDED)