

UNIVERSITE SAAD DAHLEB BLIDA -1-

جامعة البليدة -1-

Faculté de Technologie كلية التكنولوجيا

Département de Génie Civil دائرة المهندسة المدنية

MEMOIRE DE fin d'étude

Option : construction métallique et mixte

ETUDE D'UN HOTEL EN charpente métallique RDC+5+sous-sol

Présenté par : TINGUALI Ichrak Selma

MANSOUR Abdelmadjid

Devant les jurys composés de :

M ^{me} . TADJER	U. saad Dahleb-Blida	President
M ^r . AZZAZ	U. saad Dahleb-Blida	Examinateur
M ^r . RAHMANI	U. saad Dahleb-Blida	Encadreur

Remercíements

On remercie dieu le tout puissant de nous avoir donné la santé et la volonté d'entamer et de terminer ce mémoire.

Nous tenons à remercier toute personne ayant contribué à la réalisation de ce travail.

Tout d'abord, ce travail ne serait pas aussi riche et n'aurait pas pu avoir le jour sans l'aide et l'encadrement de monsieur K .**RAHMANI** ,on le remercie pour la qualité de son encadrement exceptionnel, pour sa patience, sa rigueur et sa disponibilité durant notre préparation de ce mémoire.

Nous tenons à exprimer mes sincères remerciements aux membres de jury qui ont accepté d'évaluer notre travail.

Nos remerciements s'adressent à monsieur **L'INGINIEUR SADOUD (cosider)** pour son aide pratique et son soutien moral et ses encouragements.

Nos remerciements s'adressent également à tous nos professeurs pour leurs générosités et la grande patience dont ils ont su faire preuve malgré leurs charges académique et professionnelles.

En fin, merci à tous ceux qui ont rendu possible ce travail, et même s'ils ne se retrouvent pas dans cette petite liste, ils sont dans mes pensée.

إهداء

الحمدلله وكفى والصلاة والسلام على الحبيب المصطفى وأهله ومن أوفى أما بعد :

والنجاح الجهد ثمرة هذه بمذكرتنا الدراسية مسيرتنا في الخطوة هذه لتثمين وفقنا الذي الحمدلله الأبدي قلبي حبيب إلى بافتخار، الغالي أبي إلى والوقار، بالهيبة الله كلله الذي إلى مهداة تعالى بفضله لدربي نورا وأدامه الله حفظه

إلى ..عمري مدى المتفاني العطاء ينبوع إلى ...حياتي طريق بها أبصرت من إلى أهديها لا كيف الجزاء خير عني وجزاها عمرها، في الله أمد الغالية والدتي الشامخة.

والصعاب، العقبات من كثير في الأثر بالغ لهم كان من فردا فردا الصغيرة وعائلاتهم إخوتي إلى رشيد الذي كان سندي وصاحبي :بالذكر وأخص

الذي كان سندي وصاحبي

و بنصائحهم وجل عز الله بعد الفضل لهم كان ومن عماد جلال، يوسف، أصدقائي أعز إلى البحث هذا فترة خلال تشجيعاتهم

في الحقيقي السند كان لطالما الذي الروحي والأب النفسي طبيبي سميته الذي أڤنيني ياسين إلى النفسية التوجيهات من الكثير

لها يلق لم بكلمة ولو معي شارك من وكل العون يد مد في يتوانوا لم ممن الكرام، أساتذتي جميع إلى في هذا بحثي لكم أهدي نفوسنا في بالغا كان وأثر ها بالا

يبخل لم الذي التخصص نفس به جمعني الذي عربية محمد إلى المتواضع العمل هذا وأهدي الميدان هذا في خبرته بحكم المتنوعة الكثيرة أسئلتي عن الكافية بأجوبته

الدراسي مشواري خلال صادفتهم من و رفقتي كل إلى و

عبد المجيد

إهداء

إلى نور يضئ عتمتي عندما تطفئني الأيام والظروف إلى غيمة تظلني وتسقيني دون رغبة بردي لجميلها إلى الأيدي التي تمد لي العون عندما أتعثر ، وتدفعني لمقاومة كل هذه الاشياء التي تستدعي السقوط

> إلى عائلتي إلى أمي وأبي وأختاي و أخي الغالي لكم كل الحب والامتنان .

> > تنقالي اشراق سلمى

ملخص

الهندسة المدنية هي فن تصميم وبناء أنواع مختلفة من المشاريع، مثل المنازل والإدارات ومراكز التسوق والمباني الصناعية والبنية التحتية للطرق والمجمعات الرياضية. كجزء من هذا الإطار الأخير، تقدم هذه الأطروحة دراسة التصميم الزلزالي ودراسة العناصر الهيكلية لفندق فرضنا أنه يقع في ولاية تيبازة. يتكون المشروع من خمس طوابق ذات استعمال مختلف مصنوعة من الفولاذ بالإضافة إلى طابق تحت أرضي يستعمل كموقف للسيارات ذو أعمدة مختلطة (خرسانة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل للجزائر مختلطة (خرسانة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل للجزائر مختلطة (خرسانة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل للجزائر (ريامية المنابة المضادة الزلازل الجزائر مختلطة (خرسانة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة الزلازل للجزائر (ريامية المنابة المضادة الذات المنعدام مختلطة (خرسانة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة الزلازل الجزائر مختلطة (خرسانة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل المزائر (ريامة المنابة المنابة وفولاذ). يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة الزلازل الجزائر (ريامة عالية (المنطقة الما)). تم تطوير النماذج الرقمية ثلاثية الأبعاد باستخدام برنامج BTBS من أجل الحصول على تصميم يلبي كلاً من معايير الاستقرار العام للهيكل ومقاومة العناصر الهيكلية، مع الحفاظ على بنية المشروع. يتم حساب والتحقق من العناصر الهيكلية والتجمعات وأقسام التعزيز وما الهيكلية، مع الحفاظ على بنية المشروع. يتم حساب والتحقق من العناصر الهيكلية والتجمعات وأقسام التعزيز وما يلي ذلك بشكل أساسي وفقًا للقواعد المعمول بها في الجزائر (CCM97/RPA99)، بناءً على القوى المسجلة في المناذج الرقمية.

كلمات مفتاحية : هيكل فو لاذي، تصميم زلز الي، نمذجة رقمية ثلاثية الأبعاد، RPA99 معدل 2003، CCM97.

RESUME :

Le génie civil est l'art de concevoir et de construire divers types de projets, tels que des maisons, des administrations, des centres commerciaux, des bâtiments industriels, des infrastructures routières et des complexes sportifs. S'inscrivant dans ce dernier cadre, cette mémoire présente l'étude de la conception parasismique et l'étude des éléments structuraux d'un hôtel que nous avons supposé être situés dans la wilaya de TIPAZA. Le projet se compose de cinq étages d'un usage multiple en acier, en plus d'un sous-sol utilisé comme parking avec des colonnes mixtes (béton et acier) et voile périphérique en béton. Le projet est situé dans une ville classée selon les codes de construction antisismiques de l'Algérie (RPA99V2003) dans une zone sismique élevée (Zone III). Des modèles numériques 3D ont été développées à l'aide du logiciel ETBS afin d'obtenir une conception répondant à la fois aux critères de stabilité globale de la structure et de résistance des éléments structuraux, tout en préservant l'architecture du projet. Le calcul et la vérification des éléments de structure, des assemblages, des profilés de renforcement, etc. sont principalement effectués selon les règles en vigueur en Algérie (CCM97/RPA99), sur la base des efforts enregistrés dans les modèles numériques.

<u>Mots clés</u>: Structure métallique, conception sismique, modélisation numérique 3D, RPA99 modifié 2003, CCM97

ABSTRACT:

Civil engineering is the art of designing and building various types of projects, such as houses, administrations, shopping centers, industrial buildings, road infrastructure and sports complexes. As part of this last framework, this thesis presents the study of the seismic design and the study of the structural elements of a hotel that we assumed to be located in the wilaya of TIPAZA. The project consists of five floors of multiple use in steel, in addition to a basement used as a car park with mixed columns (concrete and steel) and peripheral concrete wall. The project is located in a city classified according to the anti-seismic building codes of Algeria (RPA99V2003) in a high seismic zone (Zone III). 3D digital models were developed using the ETBS software in order to obtain a design that meets both the criteria of overall stability of the structure and resistance of the structural elements, while preserving the architecture of the project. Calculation and verification of structural elements, assemblies, reinforcing profiles, etc. are mainly carried out according to the rules in force in Algeria (CCM97/RPA99), on the basis of the efforts recorded in the numerical models.

Key words: Steel structure, seismic design, 3D digital modeling, RPA99 modified 2003, CCM97

Table des matières

Remerciements	
ملخص	
RESUME :	
ABSTRACT:	
Table des matières	
Liste des figures	
Liste des tableaux	
LISTE DES SYMBOLES	
Introduction Générale	1
Chapitre I : Généralité et présentation de projet	
I .1. Présentation de l'ouvrage :	4
I.2. Caractéristiques géométriques :	4
I.3. Matériaux utilisés :	4
1.3.1. Acier :	4
I.3.2. Béton :	6
I.3.3. Acier des armatures :	7
I.4. Moyen d'assemblage :	
I.5. Les Actions prises en compte :	
I.6. Combinaisons d'action :	
I.7. Conception architectural :	9
I.8. Conception structurale :	9
I.8.1. Structure horizontale :	9
I.8.2. Structure verticale :	
I.9. Logiciels utilisés :	
Chapitre II : Evaluation des charges et surcharges	
II.1. Introduction :	
II.2. Charges permanents G	
II.2.1. Plancher terrasse :	
II.2.2. Plancher étages courants :	
II.3. Charges d'exploitation	
II.4. Action de la neige :	
II.4.1. Charge de neige :	
II.5. Effet du vent :	
II.5.1. Données relatives au site :	
II.5.2. Détermination de la pression de pointe :	
II.5.3. Coefficient d'exposition <i>Ce</i> :	
II.5.4. Conditions de la toiture isolée :	
II.5.5. Calcul des coefficients de pression extérieure :	
II.5.6. Calcul des coefficients de pression intérieur :	
II.5.7. Calcul des pressions aérodynamique du vent	
II.6. Conclusion :	
Chapitre III : Étude des éléments secondaires	
III.1. Introduction :	

III.2. Acrotère :	
III.2.1. Introduction :	
III.3. Les Sollicitations :	
III.3.1. Calcul de l'excentricité :	
III.3.2. Sollicitation au centre de gravité de l'acier tendue :	41
III.3.3. Calcul de ferraillage :	41
III.3.4. Vérification à l'ELS :	
III.4. Les escaliers :	
III.4.1. Introduction :	
III.4.2. Caractéristiques géométriques :	
III.4.3. Dimensionnement des éléments porteurs :	
III.5. Conclusion :	
Chapitre IV : Pré dimensionnement des éléments principaux	
IV.1. Introduction :	
IV.2. Etude de la plancher collaborant :	
IV.2.1. Hypothèse de calcul :	
IV.2.2. Les solives :	55
IV.3. Pré-dimensionnement de poutre secondaire :	65
IV.3.1. Pré-dimensionnement de poutres principales :	65
IV.4. Pré-dimensionnement des poteaux :	
IV.4.1. Introduction :	72
IV.4.2. Principe de calcul :	72
IV.4.3. Étapes de pré dimensionnement :	
IV.4.4. Exemple de calcule pour un poteau central :	73
IV.5. Conclusion :	
Chapitre V : Etude dynamique	
V.1. Introduction :	
V.2. Etapes de la modélisation de la structure :	
V.2.1. Description du logiciel ETABS :	
V.2.2. Modélisation des éléments structuraux :	
V.2.3. Modélisation de la masse :	
V.3. Présentation de la méthode de calcul :	
V.3.1. La méthode statique équivalente]:	
V.3.2. La méthode d'analyse dynamique par accélérogrammes :	
V.3.3. La méthode d'analyse modale spectrale :	
V.4. Choix de la méthode de calcul :	
V.5. Application de la méthode :	
V.5.1. La force sismique totale V :	
V.5.2. L'analyse modale spectrale :	
V.5.3. Résultat de l'analyse dynamique :	
V.6. Conclusion :	
Chapitre VI : Vérifications des éléments de l'ossature	
VI.1. Introduction :	
VI.2. Vérification des poteaux :	
VI.2.1. Vérification vis-à-vis du risque de flambement [1]:	

VI.2.2. Vérification vis-à-vis du risque de déversements :	115
VI.3. Vérification de la poutre principale :	117
VI.3.1. Plancher courant :	117
VI.3.2. Plancher terrasse :	118
VI.4. Vérification des palées de stabilités :	119
VI.4.1. Vérification des contreventements de sens Y :	119
VI.4.2. Vérification des contreventements de sens X :	121
VI.5. Les sections finales des éléments de la structure :	122
VI.6. Conclusion :	122
Chapitre VII : Etude d'assemblage	
VII.1. Introduction :	124
VII.2. Assemblage Solive – Poutre :	125
VII.2.1. Données de calcul :	125
VII.2.2. Dimensionnement de l'assemblage :	126
VII.2.3. Disposition constructive :	126
VII.2.4. Résistance des boulons au cisaillement (côté de la solive) :	127
VII.2.5. Resistance des boulons au cisaillement du côté de la poutre porteuse :	128
VII.2.6. Vérification de la résistance des cornières au cisaillement :	128
VII.2.7. Vérification de la pression diamétrale :	128
VII.3. Assemblage Poutre –Poteau :	129
VII.3.1. Données de calcul :	129
VII.3.2. Disposition constructive :	130
VII.3.3. Vérification des Boulons :	131
VII.3.4. Vérification de la soudure :	135
VI.4. Assemblages de contreventement en V :	138
VII.4.1. Données de calcul :	138
VII.4.2. Nombre des boulons nécessaire :	138
VII.4.3. Disposition constructive :	139
VII.4.4. Vérification de la pression diamétrale :	140
VII.5. Assemblage de pied de poteau [Annexe E]:	140
VII.6. Assemblages de continuité [Annexe]:	142
Chapitre VIII : Etudes des éléments de sous-sol	
VIII.1. Introduction :	144
VIII.2. Etude les éléments du sous-sol :	144
VIII.3. Pré dimensionnement de poteau de sous-sol :	144
VIII.3.1. Méthodes de calcul des poteaux mixtes	145
VIII.3.2. Conditions d'utilisation de la méthode simplifiée de calcul :	145
VIII.3.3. Vérification de l'application de la méthode simplifiée :	146
VIII.4. Etude de voile périphérique	151
VIII.4.1. Pré-dimensionnement :	151
VIII.4.2. Méthode de calcul	151
VIII.4.3. Calcul de la poussée de terre :	151
VIII.4.4. Ferraillage du voile périphérique :	152
Chapitre IX : Etudes des fondations	
IX.1. Introduction :	158

IX.2. Choix du type de fondation :	
IX.3. Calcul des fondations	
IX.3.1 Semelles isolées sous poteaux	
IX.3.2. Semelles filantes :	
Conclusion Générale	168
Référence bibliographique	
Annexes	

Liste des figures

Figure I. 1: Courbe contrainte déformation selon la nuance d'acier.	6
Figure I. 2: diagramme contrainte -déformation de béton.	7
Figure I. 3: Diagramme contrainte -déformation	8
Figure I. 4: Composition d'un plancher	9
Figure I. 5: Schéma d'un profil Hi bond 55-800	10
Figure I. 6: Goujons soudés	10
Figure I. 7: Escalier en charpente métallique	11
Figure I. 8: contreventement en V .	11
Figure II. 1: Schéma représentatif des zones de charges d'exploitation pour le RDC	15
Figure II. 2: Schéma représentatif des zones de charges d'exploitation pour le 1er éta	ge.
	16
Figure II. 3: Schéma représentatif des zones de charges d'exploitation pour le 2eme	
étage	16
Figure II. 4: Schéma représentatif des zones de charges d'exploitation pour le 3eme étage	17
Figure II. 5: Schéma représentatif des zones de charges d'exploitation pour le 4eme	
étage	17
Figure II. 6: Schéma representatif des zones de charges d'exploitation pour le 5eme	10
Elage.	10 o 19
Figure II. 8: Schéma représentatif des zones de charges d'exploitation pour la sous so	5.10 51.10
Figure II. 9: Direction du vent	л.19 71
Figure II 10: Hauteur de référence ze dépend de h et h	21
Figure II 11: légende pour les parois verticales	21
Figure II 12: Valeur de Cne pour les parois verticale direction V1 de vent	23
Figure II 13: légende nour les toitures plates	24
Figure II 14: légende pour la toiture -Direction V2	25
Figure II. 15: Légende pour les parois verticales	25
Figure II. 16: Valeurs de Cpe pour les parois Verticals direction V2	26
Figure II. 17: légende pour la toiture direction V2.	27
Figure II. 18: Valeurs de Cpe pour les parois verticales Direction V3	28
Figure II. 19: légende pour la toiture Direction V3.	29
Figure II. 20: Légende de Cpe pour les parois circulaires.	29
Figure II. 21: légende pour la toiture direction V4.	31
Figure II. 22: Indice de preméabilté	32
Figure II. 23: Valeur de la pression aérodynamique Wj en [N/m2] pour la direction V	/1.
	33
Figure II. 24: Valeur de la pression aérodynamique W_j en [N/m2] pour la direction V	12.
	34
Figure II. 25: Valeur de la pression aérodynamique W_j en [N/m2] pour la direction V	13.
	35

38
39
42
43
44
44
47
48
49

Figure IV. 1: représentation du plancher collaborant	54
Figure IV. 2: schéma de l'espacement entre solive.	
Figure IV. 3: schéma statique de la solive.	
Figure IV. 4: schéma de la solive (avec etaiment)	
Figure IV. 5: Schéma représentatif la largeur participante de la dalle pour une po	utre de
plancher	59
Figure IV. 6: Schéma représentatif la position de l'axe neutre	59
Figure IV. 7: Schéma d'un goujon	61
Figure IV. 8: les caractéristiques géométriques des goujons	
Figure IV. 9: Valeur de Kt max	63
Figure IV. 10: espacement entre les goujons dans la solive (demi-portée)	64
Figure IV. 11: schéma statique de la poutre principale	65
Figure IV. 12: largeur efficace de la zone comprimée	69
Figure IV. 13: poteaux en IPE et HE.	72
Figure IV. 14: la surface reprise par le poteau U-16	73
Figure IV. 15: Schéma représentatif de longueur de flambement	75
Figure V. 1: spectre de réponse	
Figure V. 2: Modèle initial de la structure en 3D.	
Figure V. 3:1er mode de vibration : translation suivant Y-Y avec un période de 2	.445
secs	
Figure V. 4: 2eme mode de vibration : rotation autour de Z-Z avec un période de	1.77
secs	89
Figure V. 5: 3eme mode de vibration : translation suivant X-X avec un période d	e 1.323
secs	90
Figure V. 6: modèle intermédiaire de la structure en 3D	93
Figure V. 7: modèle finale de la structure en 3D.	97
Figure V. 8: position de contreventement pour le modèle final de la structure	98
Figure V. 9: 1er mode vibration : translation suivant Y-Y avec un période de 0.4	91 secs.
-	101
Figure V. 10: 2eme mode de vibration : translation suivant X-X avec un période	de
0.478secs	101
Figure V. 11: 3eme mode de vibration : rotation autour de Z-Z	102

Figure VI. 1: phénomène d'instabilité	108
Figure VI. 2: facteur de distribution pour un poteau à noeud fixe	110
Figure VI. 3: Schématisation de poteau étudier	111
Figure VI. 4: Schéma statique de la poutre principale	117
Figure VI. 5: diagramme de moment de la poutre principale obtenu de logiciel ETA	ABS.
	117
Figure VI. 6: diagramme d'effort tranchant de la poutre obtenu de logiciel ETABS	118
Figure VI. 7: Contrevetment en V.	119
Figure VII. 1: Assemblage Poutre IPE450-Solive IPE200 dessin sur logiciel TEKL	A
structure	125
Figure VII. 2: Assemblage Poutre IPE450- Poteau HEB340 par logiciel TEKLA	
structure	129
Figure VII. 3: Disposition constructive des boulons par logiciel TEKLA.	130
Figure VII. 4: Distance entre les boulons et axe neutre	131
Figure VII. 5 : les longueurs utiles des cordons de soudure	135
Figure VII. 6: assemblage pied de poteau	141
Figure VII. 7: détail assemblage Pied de poteau (HEB340) par logiciel ROBOT	
structurel.	141
Figure VII. 8: assemblage poteau -poteau.	142

Figure VIII. 1:Schéma statique de poteau de sous-sol	150
Figure VIII. 2 : schéma de ferraillage du voile périphérique dans les 02 sens	156
Figure IX. 1: Schéma d'une semelle filante	159
Figure IX. 2: Ferraillage de nervurée	167
Figure IX. 3: Ferraillage de la semelle filante	167

Liste des tableaux

Tableau II. 1: charge permanent de plancher terrasse	14
Tableau II. 2: charge permanent de plancher terrasse	14
Tableau II. 3: Coefficient en fonction de la catégorie de terrain	21
Tableau II. 4: Récapitulatif des résultats pour h=17m	22
Tableau II. 5: Récapitulatif de résultats pour h=22m.	22
Tableau II. 6: Valeurs de Cpe pour les parois verticales -direction V1 du vent	24
Tableau II. 7: Valeurs de Cpe pour le Toiture _Direction V1	25
Tableau II. 8: Valeur de Cpe pour les parois verticales -Direction V2	26
Tableau II. 9: Valeur de Cpe pour la toiture _ direction V2	27
Tableau II. 10: Valeur de Cpe pour les parois verticales direction V3	28
Tableau II. 11: Valeurs de Cpe pour la toiture _ direction V3	28
Tableau II. 12: Récapitulatif de valeurs de Cpe pour la direction V4	30
Tableau II. 13: Valeur de Cpe pour la toiture _ direction V4	31
Tableau II. 14: Valeur de coefficient de pression intérieur Cpi	32
Tableau II. 15: Valeur de Wj pour les parois verticales _ direction V1	33
Tableau II. 16: Valeurs de Wj pour la toiture _ direction V1	33
Tableau II. 17: Valeur de Wj pour les parois verticales _ direction V2	34
Tableau II. 18: Valeur de Wj pour la toiture _ direction V2	34
Tableau II. 19: Valeur de Wj pour les parois verticales _ direction V3	35
Tableau II. 20: Valeur de Wj pour la toiture _ direction V3	35
Tableau III. 1: les sollicitation a ELU	40
Tableau III. 2: les sollicitations à ELS.	40
Tableau III. 3: Charges permanents des éléments porteurs	45
Tableau III. 4: Les caractéristique de la cornière L45×45×5	45
Tableau III. 5: la charge permanente G pour le limon	47
Tableau III. 6: Les caractéristique de profilé UPN220.	48
Tableau III. 7: la charge permanent de pallier.	49
Tableau III. 8: les caractéristique de profilé IPE160.	50
Tableau III. 9: Récapitulatif de section des éléments d'escalier	51
Tableau IV. 1: Dimensions et caractéristiques mécaniques du profilé IPE200	56
Tableau IV. 2: Récapitulatif pour les solives de plancher courant pour chaque zone.	64
Tableau IV. 3: Dimensions et caractéristiques mécaniques du profilé IPE360	65
Tableau IV. 4: Récapitulatif pour les poutres de plancher courant de chaque niveau.	71
Tableau IV. 5: le résultat de la surcharge Q	74
Tableau IV. 6: Résultats de poteaux choisis.	74
Tableau IV. 7: Caractéristique du profilé HEA260.	75
Tableau IV. 8: Pré dimensionnement de poteau U-16	77
Tableau IV. 9: Pré dimensionnement de poteau B-8.	77
Tableau IV. 10: Pré dimensionnement de poteau L-1.	78
Tableau IV. 11: Pré dimensionnement de poteau F-10	78

Tableau V. 1 : facteur de qualité suivants les 2 sens	
Tableau V. 2: Pourcentage de la participation massique.	
Tableau V. 3: choix de la période de calcul [11]	
Tableau V. 4: Vérification de déplacement suivant le sens X-X	91
Tableau V. 5 : Vérification de déplacement suivant Y-Y	91
Tableau V. 6vérification de la force sismique suivant les 02 sens	
Tableau V. 7: Pourcentage de participation massique pour le modèle intérimain	e 94
Tableau V. 8: Vérification de déplacement suivant X-X	96
Tableau V. 9: Vérification de déplacement suivant Y-Y	96
Tableau V. 10: Vérification de la force sismique suivant le 2 sens	
Tableau V. 11: Pourcentage de participation massique pour le modèle final	
Tableau V. 12: Vérification de déplacement suivant X-X	
Tableau V. 13Vérification de déplacement suivant Y-Y	
Tableau V. 14: Vérification de la force sismique suivant les 02 sens	
Tableau V. 15: Vérification de l'effet P-delta suivant X-X.	
Tableau V. 16: Vérification de l'effet P-delta suivant Y-Y.	
Tableau VI. 1: caractéristique de profile de poteau de RDC.	
Tableau VI. 2: Effort internes des poteaux sous N _{max} pour chaque niveau	
Tableau VI. 3: Vérification au flambement par flexion	
Tableau VI. 4: effort internes du poteau sous My,max pour chaque niveau	
Tableau VI. 5: Vérification au flambment par flexion.	
Tableau VI. 6: Effort interne sous M _{z,max} des poteaux pour chaque poteau	
Tableau VI. 7: Vérification au flambement par flexion	
Tableau VI. 8 : Vérification au risque de déversement des poteaux pour chaque	e niveau.
	116
Tableau VI. 9: Vérification de moment flechissant de poutre terrasse	
Tableau VI. 10: Vérification de Effort tranchant de poutre terrasse	
Tableau VI. 11 : Caractéristique de profilé de Contreve ntment Tub220*220*1	6 120
Tableau VI. 12: Résulta de vérification de contreventement de sens X	
Tableau VI. 13: Récapitulatif de sections finales des éléments de la structure	
Tableau VII. 1: Caractéristique des profilés assemblés	
Tableau VII. 2: disposion constructive "assemblage poutr solive "	
Tableau VII. 3: disposition constructive " assemblage poteau poutre "	
Tableau VII. 4: Caractéristique des profilés assemblés	
Tableau VIII. 1: Caractéristique de profilé HEB340.	
Tableau VIII. 2: Caractéristique des armatures de la section mixte	
Tableau VIII. 3: caractéristique de la section mixte.	
Tableau VIII. 4: résultat de calcule de la poussée de terre.	
Tableau VIII. 5: calcule de moment à l'ELU.	
Tableau VIII. 6: Ferraillage de voile périphérique.	
Tableau VIII. 7: calcule de moment à l'ELS	
Tableau VIII. 8: vérification des contraintes.	

160
160
161
161
163
163
165
166
167

LISTE DES SYMBOLES

- A:La section brute d'une section.
- A_{net}: Section nette d'une pièce.
- A_w: Section de l'âme.
- A_v: Aire de cisaillement.
- b_f:La largeur de la solive.
- C_f:Coefficient de force.
- Ct:Coefficient de topographie.
- C_r:Coefficient de rugosité.
- C_{p,net}: Coefficient de pression nette.
- Ce: Coefficient d'exposition.
- C_d: Coefficient dynamique.
- E:Moduled'élasticité longitudinale de l'acier.
- Iv(z): Intensité de la turbulence.
- K:Coefficient d'encastrement ou de rigidité Poutre-Poteau.
- K₀:Coefficient de flambement.
- K_t:Facteur de terrain.
- M_{sd}:Moment sollicitant en générale.
- M:Moment fléchissant.
- M_{rd}:Moment résistant.
- M_{pl}: Moment plastique.
- M_{cr}:Moment critique.
- M_{b, Rd:} Valeur de calcul de la résistance au déversement.
- N_{pl,Rd}: Valeur de calcul de la résistance plastique de la section transversale brute.
- N_{b,Rd}: Valeur de calcul d'un élément comprimé au flambement.
- N_{sd}:Effort normal sollicitant.
- N_{t,Sd}:Effort normal de traction.
- N_{pl}: Effort normal plastique.
- N_{c,Rd}: La résistance de calcul à la compression de la section transversale.
- n: Le coefficient d'équivalence acier/béton.
- P_k:Poids total de la structure.
- qp(ze):Pression dynamique de pointe.
- R:Coefficient de comportement de la structure.
- S:Surface.
- S:Charge de la neige.
- S_k:Charge de la neige sur le sol.
- V_{sd}:Valeur de calcul de l'effort tranchant sollicitant.
- V_{pl, Rd}:Valeur de calcul de la résistance plastique au cisaillement.
- W:Pressionaérodynamique.
- W(zj):Pression dynamique.
- W_e: Pression extérieur exercée sur la surface élémentaire de la hauteur ze.
- W_i:Pression intérieure exercée sur la surface élémentaire de la hauteur ze.
- W_{pl}: Module de résistance plastique.
- W_{el}: Module de résistance élastique.
- d:Diamètre d'une section circulaire.
- f_y: Limite d'élasticité.
- f_u:Résistance à la traction.

- f_{bu}:Contrainte admissible de compression à l'état limite ultime.
- H: Hauteur d'une pièce.
- d: Diamètre d'une section circulaire.
- r: Rayon d'une section circulaire.
- d:Diamètre d'une section circulaire.
- t:Epaisseur d'une pièce.
- t_f:Epaisseur de la semelle (poutre ,solive ,poteau).
- t_w:Epaisseur de l'âme (poutre ,solive , poteau).
- Z: Hauteur au-dessus du sol.
- Z₀:Paramètre de rugosité.
- Z_{éq}: Hauteur équivalente
- Z_{min}:Hauteur minimale.
- α : Coefficient du système statique et de la travée étudie.
- *x* : Coefficient de réduction pour le mode de flambement ou déversement approprie.
- β : Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.
- βm :Facteur de corrélation.
- *γ*: Coefficient partiel de sécurité.
- $\gamma m0$:Coefficient partiel de sécurité pour les sections de classe (1,2,3).
- γm_1 :Coefficient partiel de sécurité pour les sections de classe(4).
- $\gamma m2$:Coefficient partiel de sécurité pour les sections nettes au droit des trous.
- As: Aire d'une section d'acier.
- At: Section d'armatures transversales.
- B: Aire d'une section transversale de béton.
- ø:Diamètre des armatures, mode propre.
- Q: Charge d'exploitation.
- γs:Coefficient de sécurité de calcul d'acier.
- γb :Coefficient de sécurité de calcul de béton.
- σ s:Contrainte de traction de l'acier.
- σs : Contrainte de compression du béton.
- $\overline{\sigma}_S$:Contrainte de traction admissible de l'acier.
- $\overline{\sigma}b$:Contrainte de compression admissible du béton.
- *ru*:Contrainte ultime de cisaillement
- *r*: Contrainte tangentielle.
- G: Charge permanente.
- ξ :Déformation relative.
- V₀:Effort tranchant à la base.
- E.L.U: Etat limite ultime.
- E.L.S: Etat limite service.
- N_{ser}: Effort normal pondéré aux états limites de service.
- N_u:Effort normal pondéré aux états limites ultime.
- Tu: Effort tranchant ultime.
- T:Effort tranchant,Période.
- S_t: Espacement
- λ :Elancement.
- F:Force concentrée.
- f: Flèche.

- \overline{f} : Flèche admissible.
- L: Longueur ou portée d'un élément.
- L_f: Longueur de flambement.
- d : Hauteur utile de calcul
- F_e: Limite d'élasticité de l'acier.
- M_u:Moment à l'état limite ultime.
- M_{ser}: Moment à l'état limite de service.
- M_t:Moment en travée.
- M_a: Moment sur appuis.
- M₀:Moment en travée d'une poutre reposant sur deux appuislibres, Moment à la base.
- I:Momentd'inertie.
- f_i:Flèche duaux charges instantanées.
- f_v:Flèche duaux charges de longue durée.
- I_{fi}:Moment d'inertie fictif pour les déformations instantanées.
- I_{fv}:Moment d'inertie fictif pour les déformations différées.
- M: Moment, Masse.
- E_{ij}:Module d'élasticité instantané.
- Evj:Module d'élasticité différé.
- Es: Module d'élasticité de l'acier.
- f_{c28}:Résistance caractéristique à la compression du bétonà28 jours d'âge.
- f_{t28}:Résistance caractéristique à la traction du bétonà28 jours d'âge.
- F_{cj}:Résistance caractéristique à la compression du béton à j jours d'âge.
- δ: Rapport de l'aire d'acier à l'aire de béton.
- Y:Position de l'axe neutre.
- I0:Moment d'inertie de la section totale homogène.
- δ_{ek} :déplacement dû aux forces sismique.

Introduction Générale

Le génie civil représente le groupe des techniques de construction civile. Une très large gamme d'applications couvrant de multiples industries. Construction de bâtiments qui assurent la sécurité des vies humaines et des biens matériels. C'est la responsabilité directe de l'ingénieur civil. Prendre en compte les facteurs de conservation structurels et fonctionnels, en tenant compte de la meilleure expression.

Une étude constructive, efficiente et efficace. Des bases et des connaissances sur lesquelles un ingénieur peut compter.

Pour examiner les principaux enseignements tirés, nous avons étudié un bâtiment hôtelier qui est RDC+5+S-SOL à plusieurs usages situé dans la wilaya de TIPAZA et désigné comme zone sous réglementation algérienne antiparasitaire (RPA version 99/2003). (Troisième Région). Le bâtiment est étudié pour toutes les lois, réglementations et recommandations applicables (RPA99 V 2003, CCM97 et Eurocode).

Cette mémoire est composée de neuf chapitres :

Après la présentation et les principes de calcul par rapport à la réglementation au premier chapitre, les charges et surcharges appliquées ont été évaluées au chapitre deux. Nous avons calculé tous les éléments secondaires tels que les escaliers au chapitre trois. On a pré dimensionner les éléments de bâtiments au quatrième chapitre. Ensuite on a effectué une étude dynamique de notre structure avec la mise en place des contreventements dans le cinquième chapitre par diverses dispositions des contreventements. Une fois la bonne disposition est retenue, la structure est soumise au spectre de calcul du Règlement Parasismique Algérien (RPA99/version2003). Sa réponse va être calculée en utilisant le logiciel ETABS. Une vérification des éléments a été adoptée au sixième chapitre, Le calcul d'assemblage des éléments structuraux (poutre, solive, poteaux, contreventement) sera exposé au chapitre sept et l'étude de l'infrastructure fera l'objet de chapitre huit et enfin l'étude de fondation dans le chapitre neuf.

Enfin, Nous terminons ce mémoire par une conclusion générale.

Chapitre I :

Généralité et présentation de projet

I .1. <u>Présentation de l'ouvrage :</u>

Dans le cadre de notre projet de fin d'étude, nous sommes amenés à faire l'étude d'un hôtel de niveaux (R+5) avec un sous-sol, de forme irrégulière, en charpente métallique.

L'hôtel est supposé être implanté au niveau de la wilaya de TIPAZA, qui est une zone de forte sismicité (III) selon le règlement RPA99 V2003.

- _ Altitude par rapport au niveau de la mer 200 m
- Zone sismiqueIII
- Zone de vent I

I.2. Caractéristiques géométriques :

Dimensions en élévation :

- _ Hauteur totale du bâtiment 22 m
- Hauteur RDC 3.9 m
- _ Hauteur du sous sol3.06m
- _ Hauteur du 1er au 4eme3 m
- _ Hauteur du 5eme 5m

Dimensions en plan :

- _ Surface occupée par le bâtiment 1958.4 m2

I.3. Matériaux utilisés :

<u>1.3.1. Acier :</u>

•

a. Fabrication de l'acier :

L'acier est généralement obtenu par une opération en deux phases :

- Première phase : L'introduction et la combustion de minerai de fer, de coke et de castine dans un haut fourneau, permet d'obtenir de la fonte liquide (matériau à plus de 2 % de teneur en carbone).
- Seconde phase : Il est procédé à la conversion de cette fonte liquide en acier à une température de 1500°C environ. L'acier obtenu possède une teneur en carbone ne dépassant pas 1%.

b. <u>Classification selon la teneur en carbone :</u>

Suivant leur teneur en carbone, les métaux ferreux se subdivisent en fonte et en acier :

- La Fonte : alliage fer + carbone dont la teneur en carbone C : $2\% \le C \le 4.3$ %.
- L'acier : C ≤ 2 %. Contrairement à la fonte qui est fragile et difficilement soudable, l'acier possède un comportement élasto-plastique avec un large palier plastique et se distingue par ses hautes qualités technologiques (possibilités de soudage et d'usinage). Ainsi selon sa destination, on distingue :
- Les aciers de construction : 0.02 % ≤ C ≤ 0.85 % : cette catégorie possède une bonne plasticité (large palier plastique), une bonne soudabilité ainsi qu'une bonne ductilité (pas de ruptures brutales ou bien fragiles).
- Les aciers à outils : 0.65 % ≤ C ≤ 1.4 % ces aciers possèdent une bonne dureté mais sont plus fragiles.

c. <u>Classification selon la teneur en éléments d'alliages</u> :

Selon les quantités additionnées d'éléments, on distingue :

- _ les aciers faiblement alliés : contenant jusqu' à 2 % d'éléments d'alliage.
- les aciers moyennement alliées : de 2 à 10 % d'éléments.
- les aciers fortement alliés contenant plus de 10 %.

d. Caractéristiques des aciers de construction :

1. Propriétés physiques :

Les propriétés physiques sont caractérisées par la couleur, le poids spécifique, la température de fusion, le coefficient de dilatation thermique, la chaleur massique, la conductibilité thermique, électriques, acoustique, etc.

- _ Le poids spécifique ou volumique de l'acier est pacier = 7800 kg / m3.
- Le coefficient de dilatation thermique de l'acier $\alpha = 11.10-06$ (à 20°C).
- La température de fusion comprise entre 1300 et 1550 °C.
- _ La conductibilité thermique de l'acier k = 40 a 45 Kcal / (m h °C).
- _ La conductibilité thermique des alliages légers k = 175 Kcal / (m h °C).

2. <u>Les propriétés mécaniques :</u>

Les propriétés mécaniques de l'acier sont déterminées par les essais de résistance aux sollicitations extérieures essai de traction, essai de dureté...).

- _ Pour l'acier de nuance S275 :
- la limite élastique : $f_v = 275 \text{ MPa}$
- la contrainte limite à la rupture : $f_u = 430MPa$
- _ Le module de Young : $E = 210\ 000$ MPa
- Le coefficient de poisson : v = 0,3.
- Module de cisaillement : G = E/(2(1+v)) = 81000 MPa.

I.3.2. <u>Béton :</u>

Le béton utilisé est défini, du point de vue mécanique par :

_ La résistance à la compression à 28 jours : $f_{c28} = 25MPa$.

_ La résistance à la traction à 28 jours est déduite de celle de compression par la relation :

Pour

$$f_{t28} = 0.6 + 0.06 f_{c28}$$

 $f_{c28} = 25 MPa \rightarrow f_{t28} = 2.1 MPa$

a. Module de déformation longitudinale du béton :

Ce module est connu sous le nom de module de Young ou de module d'élasticité longitudinal ; il est défini sous l'action des contraintes normale à courte et à longue durée.

> Module de déformation instantané :

Pour un chargement d'une durée d'application inférieure à 24 heures, le module de déformation instantané E_{ij} du béton âgé de « **j** » jours est égale à :

$$E_{ii} = 11000 f_{ci}^{1/3}$$

Pour $f_{c28} = 25 MPa \rightarrow E_{ij} = 32164.195 MPa$

> Module de déformation différé :

Il est réservé spécialement pour des charges de durée d'application supérieure à 24 heures ; ce module est défini par :

$$E_{iv} = 3700 f_{cj}^{1/3}$$

Pour $f_{c28} = 25 MPa \rightarrow E_{iv} = 10818.87 MPa$

b. <u>Coefficient de poisson :</u>

Il représente la variation relative de dimension transversale d'une pièce soumise à une variation relative de dimension longitudinale.

 $v = \frac{\text{allongment relatif transversal}}{\text{allongments relatif longitudinal}}$

v = 0..... Béton fissuré à l'ELU

v = 0.2... Béton non fissuré à l'ELS.

Figure I. 2: diagramme contrainte -déformation de béton.

I.3.3. Acier des armatures :

Les aciers utilisés dans les ouvrages en béton armé en raison de leurs caractéristiques et leur utilisation sont :

Barres à haute adhérence "Fe E 400 " \rightarrow HA.

a. Module d'élasticité longitudinal :

Il est noté (Es), sa valeur est constante quelle que soit la nuance de l'acier : Es = 200000 MPa.

b. Diagramme contrainte déformation de calcul :

Dans le calcul relatif aux états limites on utilisera le diagramme simplifié suivant :

I.4. Moyen d'assemblage :

Les principaux moyens d'assemblages des systèmes structuraux, qui assurent la stabilité sont :

- _ Boulons à haute résistance (HR).
- _ Boulons ordinaires.
- Soudage dont les caractéristiques mécaniques sont au moins équivalentes à celles de la nuance d'acier utilisé dans la structure.

I.5. Les Actions prises en compte :

Une action est Une force (charge) appliquée à la structure ou une déformation imposée, déplacements d'appuis, effets thermiques.

Les actions sont classées principalement en fonction de leur variation dans le temps :

• Actions Permanentes (G) : dont l'intensité est constante ou très peu variable dans le temps, ou varie dans le même sens en tendant vers une limite, tel que :

Poids propre de la structure

• Actions variables (Q) : dont l'intensité varie fréquemment tel que :

Charges d'exploitation

Charges climatiques (neige Sn, vent W)

• Des charges accidentelles : charge sismique (E).

I.6. Combinaisons d'action :

Pour les combinaisons des actions, nous sommes référés au règlement algérien

RPA99/version 2003 et EC3, qui définit comme suit :

$\sum \text{comb1} = 1.35\text{G} + 1.5\text{Q}$	état limite ultime)	Г1 1
$-\sum \text{comb } 2 = G + Q$	état limit service∫	[1]

```
 \sum_{i=1}^{i} \operatorname{comb} 3 = G + Q + E \\ \sum_{i=1}^{i} \operatorname{comb} 4 = G + Q + 1.2 \\ \sum_{i=1}^{i} \operatorname{comb} 4 = G + 0.8E  [2]
```

I.7. <u>Conception architectural :</u>

Notre bâtiment est de forme irrégulière composé d'un rez-de-chaussée et de 5 étages avec un sous-sol, ce dernier est utilisé comme parking, quant au reste des étages, ils sont d'usage différent.

I.8. Conception structurale :

I.8.1. <u>Structure horizontale :</u>

Représenter par les planchers, Une sous-structure de plancher mixte est constituée par une poutraison métallique recouverte par une dalle en béton ainsi que des revêtements inférieur (faux-plafond) et supérieur (isolation, chape, revêtement de sol), connectée à la poutraison, le fonctionnement structural de l'ensemble répondant au schéma suivant :

- La dalle, soumise directement aux charges (charges permanentes et charges D'exploitation), les transmet aux poutres du plancher par flexion locale ;
- Les poutres, soumises aux efforts d'appui de la dalle, reportent ces efforts par flexion

Figure I. 4: Composition d'un plancher [3].

a. <u>Le bac d'acier :</u>

Pour la tôle profilée on a utilisé un bac d'acier de type Hi bond 55.800, d'une épaisseur de 0.75 mm. La tôle doit posséder une capacité portante et une rigidité suffisante pour servir de coffrage, ainsi pour garantir une bonne liaison mécanique entre l'acier et le béton.

Figure I. 5: Schéma d'un profil Hi bond 55-800 [Annexe A].

b. <u>Les connecteurs :</u>

Pour garantir la liaison acier –béton, la tôle nervurée doit pouvoir transmettre l'effort de cisaillements à l'interface entre la tôle et le béton on a utilisée des goujons de type Nelson.

Figure I. 6: Goujons soudés [4].

I.8.2. <u>Structure verticale :</u>

a. Les escaliers :

Un escalier est un ouvrage de circulation verticale composé d'une série de marches permettant d'accéder, à pied, d'un étage de bâtiment à un autre. Notre structure comporte un seul type d'escalier droit en charpente métallique à 02 volées.

Figure I. 7: Escalier en charpente métallique [4].

b. <u>Système de stabilité :</u>

Est un système statique destinée à assures la stabilité globale du bâtiment contre les effets horizontales (vent, séisme). Pour on a utilisée des palés en V.

Figure I. 8: contreventement en V [4].

c. <u>Les Fondations :</u>

Les fondations sont des éléments qui garantissent la stabilité du bâtiment, ainsi que la bonne transmission des charges et leur propagation dans le sol. Elle sera faite de béton coulé sur place.

I.9. <u>Logiciels utilisés :</u>

- _ ETABS 2016 : Logiciel d'analyse de charge structurelle qui vérifie la conformité des structures,
- _ Autodesk AutoCAD 2016 : outils de dessin (DAO),
- _ Autodesk Robot Structural Analyses Professional 2018 : pour le calcul des assemblages
- _ Tekla structure 2018 : Logiciel structurel pour la modélisation de l'information des bâtiments (BIM)
- _ RPA99V2003 (pour le calcule le spectre de réponse),
- _ Excel : tableur pour faciliter les calculs (Pré-dimensionnent, calcul sismique...)
- _ SOCOTEC : pour facilité le calcule de ferraillage.

Chapitre II :

Evaluation des charges et surcharges

II.1. Introduction :

L'évaluation des charges et des surcharges consiste dans le calcul séquentiel de chaque élément porteur de la structure, c'est –à–dire la charge qu'il provoque au niveau de chaque étage jusqu'à la fondation. Toutes les charges selon le règlement DTR B.C.22.

II.2. Charges permanents G [6] :

La charge permanente représente le poids de tous les éléments permanents d'un bâtiment, que ce soit structurel ou non.

II.2.1. <u>Plancher terrasse :</u>

Les composantes de plancher	G (kN/m ²)
Protection par gravillon (e=5cm)	0.5
Etanchéité multicouche (e=4cm)	0.24
Forme de pente (e=10cm)	2.2
Dalle en béton (e=15cm)	2.88
Bac d'acier "Hibond55 "	0.09
Faux plafond	0.25
Climatisation	0.4
	$G = 6.56 (kN/m^2)$

Tableau II. 1: charge permanent de plancher terrasse.

II.2.2. Plancher étages courants :

Tableau II. 2: charge permanent de plancher terrasse.

Les composantes de plancher	G (kN/m ²)
Revêtements de carrelage	0.8
Dalle en béton (e=15cm)	2.88
Bac d'acier "Hibond55 "	0.09
Cloison	1
Faux plafond	0.25
Climatisation	0.4
	$G = 5.42 (kN/m^2)$

II.3. Charges d'exploitation [5] :

Notre ouvrage compte des charges d'exploitation qui diffère d'un étage à un autre, et même au sur de même niveau on retrouve des charges différent (vue la nature du projet).

Afin de simplifier la détermination des valeurs de Q nous avons procédé à une division par zone de nos surfaces

- Zone 1 : ou il comprend le restaurant, le café, la cuisine ...etc. dans cette zone Q=2.5kN/m²;
- Zone 2 : est pour le hall et $Q=4kN/m^2$;
- Zone 3 : il comprend les chambres, Q=1.5kN/m² ;
- Zone 4 : pour la zone utilisée comme salle de sport, et $Q = 6kN/m^2$;
- Zone 5 : comprend le balcon et Q=3.5kN/m².

Les schémas suivants montré la répartition des zones de charges d'exploitions dans chaque étage :

Rez-de-chaussée (RDC) : comprend 2 zones :

Figure II. 1: Schéma représentatif des zones de charges d'exploitation pour le RDC.

• <u>Le 1^{er} étage</u> : on retrouve 4 zones

Figure II. 2: Schéma représentatif des zones de charges d'exploitation pour le 1er étage.

• Le 2eme étage : il y a 3 zones :

Figure II. 3: Schéma représentatif des zones de charges d'exploitation pour le 2eme étage.

• <u>**3eme étage :**</u> comprend 4 zones :

• <u>4eme étage :</u> comprend 2 zones :

Figure II. 5: Schéma représentatif des zones de charges d'exploitation pour le 4eme étage.
Le 5eme étage :

Figure II. 6: Schéma representatif des zones de charges d'exploitation pour le 5eme étage.

• <u>La terrasse inaccessible</u> : $Q = 1kN/m^2$

Figure II. 7: Schéma représentatif des zones de charges d'exploitation pour la terrasse.

<u>Le sous-sol</u>: le sous-sol destiné comme un parking donc la charge d'exploitions :
 Q= 2.5kN/m²

Figure II. 8: Schéma représentatif des zones de charges d'exploitation pour le soussol.

II.4. Action de la neige :

L'amas de neige sur la surface de la tour entraîne une surcharge qui doit être prise en compte lors de l'examen des éléments de cette structure. A cet effet, nous avons un règlement **RNV2013** applicable à toute construction en Algérie située à moins de 2000 mètres d'altitude.

II.4.1. Charge de neige :

La charge caractéristique de neige **S** par unité de surface en projection horizontale de toiture et calculer par la formule suivante :

$$S = \mu \times S_k \quad [\frac{KN}{m^2}]$$

Avec :

- Sk : charge de neige sur le sol
- μ : coefficient d'ajustement des charges, il est en fonction de la forme de la toiture.

Notre projet est implanté à wilaya de TIPAZA qui est classé en zone B selon la Classification de [6] avec une altitude d'environ 200m. Donc Sk est donnée par la formule :

$$S_k = \frac{0.04H + 10}{100}$$

$$S_k = \frac{0.04 \times 200 + 10}{100}$$
$$S_k = 0.11 \, KN/m^2$$

• Le coefficient de forme de toiture est donné par le tableau 1 chap.6.2 de [6] Pour notre cas :

$$\mu = 0.8$$

On trouve :

$$S = 0.8 \times 0.11 = 0.088 \frac{KN}{m^2}$$

II.5. Effet du vent :

Le vent est une masse d'air qui se déplace dans une direction essentiellement horizontale à partir d'une zone de haute pression vers une zone de basse pression. Les vents forts peuvent être très destructeurs, car ils génèrent une surpression sur la surface d'une structure. Les structures métalliques sont généralement affectées par le vent, une étude doit donc être menée pour déterminer les différentes actions qui leur sont dues dans toutes les directions possibles de la structure.

L'étude des charges de vent statiques est facile à mettre en œuvre pour différentes catégories Vent, mais pas possible dans les bâtiments à géométrie complexe comme notre bâtiment de ce fait, dans ce cas nous devrons faire des essais élaborés qui ne sont pas à notre disponibilité afin de calculer les charges.

Nous avons essayé de faire une étude similaire afin de calculer les charges de vent basées sur le règlement neige et vent « RNV2013 ».

Pour notre structure on considérera les directions suivantes :

Figure II. 9: Direction du vent.

II.5.1. Données relatives au site :

Le site d'implantation se trouve dans la wilaya de TIPAZA. Donc :

- ✓ Zone I
- \checkmark V_{ref} = 25 m/s
- $\checkmark \qquad q_{re}f = 375 \text{ N/m}^2.$

Tableau II. 3: Coefficient en fonction de la catégorie de terrain [6].

Catégorie	Facteur du	Le paramètre de	La hauteur	Coefficient
	terrain K _t	rugosité Z ₀ (m)	nominale Z _{min} (m)	ε
III	0.215	0.3	5	0.61

II.5.2. <u>Détermination de la pression de pointe :</u>

$$q_p(ze) = q_{ref} \times c_e(ze)$$

Hauteur de référence :

D'après [6] ze =h

Figure II. 10: Hauteur de référence ze, dépend de h et b [7].

II.5.3. Coefficient d'exposition Ce :

Le coefficient d'exposition tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol. En outre, il tient compte de la nature turbulente du vent. [6]

$$C_e(ze) = C_t (ze)^2 \times C_r (ze)^2 [1 + 7I_v(ze)]$$

II.5.3.1. Calcul du coefficient de rugosité Cr :

Le coefficient de rugosité traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent.

$$C_r(z) = K_T \times ln\left(\frac{z}{z_0}\right)$$
..... Pour $Z_{\min} \le Z \le 200m$

II.5.3.2. Coefficient topographique Ct :

Le coefficient de topographie Ct prend en compte l'accroissement de la vitesse du vent lorsque celui-ci souffle sur des obstacles tels que les collines, les dénivellements isolées ...etc. [6]. Le site d'implantation de notre structure, est un site plat ; alors Ct = 1.

II.5.3.3. Intensité de turbulence :

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent et est donnée par :

$$I_V = \frac{1}{C_t(z) \times \ln(\frac{z}{z_0})} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \text{Pour} \qquad Z_{\min} \le Z$$

➢ Pour Ze = h=17m et b = 36m :

Tableau II. 4	: Récapitulatif	des résultats	pour h=17m.
---------------	-----------------	---------------	-------------

Hauteur	Z=ze	Cr	Ct	Iv	Ce	$q_{r \acute{e} f}$	$q_p(ze)$
	[m]					[N/m²]	[N/m ²]
0-17	17	0.868	1	0.248	2.06	375	772.5

➢ Pour Ze = h=22m et b = 36m :

Tableau II. 5: Récapitulatif de résultats pour h=22m.

Hauteur	Z=ze[m]	Cr	Ct	Iv	Ce	<i>q_{réf}</i> [N/m²]	$q_p(ze)$ [N/m ²]
0-22	22	0.923	1	0.233	2.24	375	840

II.5.4. <u>Conditions de la toiture isolée :</u>

Apres avoir effectué toutes les vérifications nécessaires nous avons constaté que l'état de toiture isolée pas satisfaire, de sorte que le calcul de la pression aérodynamique se fera en termes de pression extérieure et intérieure.

II.5.5. Calcul des coefficients de pression extérieure :

Les coefficients de contraintes externes pour les surfaces chargées A de 1 m² et 10 m² sont donnés dans les tableaux pour les formations appropriées du bâtiment ; et noté Cpe1 pour les coefficients locaux, et Cpe10 pour les coefficients globaux, respectivement [6].

- $Cp_e = Cp_e 1$ $A \le 1m^2$.
- $Cp_e = Cp_e 1 + (Cp_e 10 Cp_e 1) \log 10(s)$ $1m^2 < A < 10m^2$.
- $Cp_e = Cp_e 10$ $A \ge 10m^2$.

Avec : A est la surface chargée de la paroi considérée en m2.

Figure II. 11: légende pour les parois verticales [7].

II.5.5.1. Direction de vent V1 :

a. <u>Parois verticales :</u>

 $\begin{cases} h = 22m \\ b = 73.61m \\ d = 36m \end{cases} \rightarrow e = \min(b, 2h) = 44m > d$

Avec :

- b : la dimension perpendiculaire à la direction du vent V.
- _ d : la dimension parallèle à la direction du vent V

Zone	Surface (m ²)	Cpe
А	$193.6 > 10$ donc $Cp_e = Cp_e.10$	0-1
В	$598.4 > 10$ donc $Cp_e = Cp_e.10$	-0,8
D	$1619.42 > 10$ donc $Cp_e=Cp_e.10$	+0,8
Е	$1437.7 = >10$ donc $Cp_e=Cp_e.10$	-0,3

Tableau II. 6: Valeurs de Cpe pour les parois verticales -direction V1 du vent.

Le schéma suivant montré les répartitions des valeurs de Cpe dans les parois verticales :

Figure II. 12: Valeur de Cpe pour les parois verticale _ direction V1 de vent.

b. <u>Toiture :</u>

La toiture de notre structure est un angle inferieur a 5° et d'après le [6] et est définie comme une toiture plats :

$$\begin{cases} h = 22m \\ d = 73.61m \implies e = 44m < d \\ b = 36m \end{cases}$$

Figure II. 13: légende pour les toitures plates [6].

Tableau	II. 7:	Valeurs	de	Cpe	pour le	Toiture	Direction	V1.
Labicau	II • / •	valuars	uc	Cpc	pour it	Ionuic	_Duccuon	

Zone	Surface [m]	Сре
F	48.4	-1.584
G	227.084	-0.884
Н	1001.096	-0.7
Ι	1324.98	±0.2

La figure suivante représente la répartition des zones dans la toiture :

Figure II. 14: légende pour la toiture -Direction V2.

<u>Remarque</u> : pour les Toiture touts les valeurs de Cpe et trouvée par interpolation pour touts les directions du Vent.

II.5.5.2. Direction de vent V2 :

a. Parois verticales :

$$\begin{cases} h = 17m \\ d = 73.61m \implies e = 34m < d \\ b = 36m \end{cases}$$

Figure II. 15: Légende pour les parois verticales [6].

Le tableau suivant résume les résultats obtenus :

Tableau II. 8: Valeur de Cpe pour les parois verticales -Direction V2.

Zone	Surface (m ²)	Cpe
А	$115.6 > 10$ donc $Cp_e=Cp_e.10$	-1
В	462.4 >10 donc Cpe=Cpe.10	-0,8
С	$673.37 > 10$ donc $Cp_e = Cp_e.10$	-0.5
D	$612 = >10$ donc $Cp_e = Cp_e.10$	+0.8
Е	$225 = >10$ donc $Cp_e = Cp_e.10$	-0.3

On a montré les valeurs de Cpe dans les parois verticales dans le schéma suivant :

Figure II. 16: Valeurs de Cpe pour les parois Verticals _ direction V2.

b. <u>Toiture :</u>

$$\begin{cases} h = 17m \\ d = 69.35m \implies e = 34m < d \\ b = 36m \end{cases}$$

Les résultats de Cpe obtenus sont récapitulés dans le tableau suivant :

Zone	Surface [m]	Сре
F	28.9	-1.48
G	64.6	-1.02
Н	1202.58	-0.7
Ι	662.49	±0.2

Tableau II. 9: Valeur de Cpe pour la toiture _ direction V2.

La figure suivante représente la répartition des zones dans la toiture (direction V2) :

Figure II. 17: légende pour la toiture _direction V2.

II.5.5.3. Direction V3 du vent :

a. Paroi verticale :

$$\begin{cases} h = 17m \\ b = 69.35m \implies e = 34m < d \\ d = 36m \end{cases}$$

Zone	Surface (m ²)	Cpe
А	$115.6 > 10$ donc $Cp_e=Cp_e.10$	-1
В	462.4 >10 donc Cpe=Cpe.10	-0,8
С	$34 > 10$ donc $Cp_e = Cp_e \cdot 10$	-0.5
D	$1110.95 = >10$ donc $Cp_e=Cp_e.10$	+0.8
E	$1251.37 = >10$ donc $Cp_e=Cp_e.10$	-0.3

Tableau II. 10: Valeur de Cpe pour les parois verticales direction V3.

On résume les résultats trouvés dans le tableau suivant :

Le schéma suivant montré les répartitions des valeurs de Cpe dans les parois verticales :

Figure II. 18: Valeurs de Cpe pour les parois verticales _Direction V3.

b. Toiture :

$$\begin{cases} h = 17m \\ b = 69.35m \implies e = 34m < d \\ d = 36m \end{cases}$$

Les valeurs de Cpe calculé pour la toiture résumée dans le tableau suivant :

Tableau II.	11: Va	aleurs de	Cpe pour	r la toiture <u>-</u>	_ direction	V3.

Zone	Surface [m]	Сре
F	28.9	-1.48
G	178.5	-1.02
Н	1001.096	-0.7
Ι	662.49	±0.2

La figure suivante représente la répartition des zones dans la toiture (direction V3) :

Figure II. 19: légende pour la toiture _ Direction V3.

II.5.5.4. Direction V4 du vent :

a. <u>Paroi circulaire</u>

Les coefficients Cpe des parois verticales des constructions à bas circulaire donnée par :

Figure II. 20: Légende de Cpe pour les parois circulaires [7].

> Pour $\alpha = 0^{\circ}$ (exemple de calcul 1)

On a
$$b \times \sqrt{q_p}$$
 Avec $b = \emptyset = 14.80m$ et $q_p = 640.5 N/m^2$
 $b \times \sqrt{q_p} = 374.56$

D'après la figure 5.11 chap. 5 de [6] :

$$\alpha_{\min} = 75^{\circ}$$
 $\alpha_A = 105^{\circ}$

$$\alpha \in [0^{\circ}; \alpha_{\min}]$$
 Donc $Cp_e = Cp_0$

Et d'après le tableau 5.6 de [6] $Cp_e = 1$

> Pour $\alpha = 80^{\circ}$ (exemple de calcul 2)

D'après le [RNV] $\psi_{\lambda} = 1$

On trouve :

$$Cp_e = -1.5 \times \left[1 + (1-1) \cdot \cos\left(\frac{\pi}{2} \left(\frac{80 - 75}{105 - 75}\right)\right) \right]$$
$$Cp_e = -1.5$$

 $C\rho_e = -1.5$ Pour les autres angles on a récapitulé les résultats dans le tableau suivant :

Tableau II. 12: Récapitulatif de va	leurs de Cpe	pour la direction V4
-------------------------------------	--------------	----------------------

$b \times \sqrt{q_p = 374.56}$						
α	Cp _e	α	Cp _e			
10	0.8	90	-1.35			
20	0.5	100	-1			
30	0.1	105	-0.8			
35	-0.4	110	-0.8			
40	-0.8	120	-0.8			
50	-1.2	130	-0.8			
60	-1.45	135	-0.8			
70	-1.5	140	-0.8			
75	-1.5	150	-0.8			
80	-1.5	160	-0.8			
85	-1.45	170	-0.8			
		180	-0.8			

b. <u>Toiture :</u>

$$\begin{cases} h = 22m \\ b = 14.80m \end{cases} e = 34m < d$$

Par interpolation et d'après le tableau 5.2 de [6] on trouve :

Zone	Surface [m]	Сре
F	5.476	-1.584
G	10.952	-0.884
Н	87.616	-0.7
Ι	109.52	±0.2

 Tableau II. 13: Valeur de Cpe pour la toiture _ direction V4.

Le schéma ci-dessous montrée la répartition des zone de vent pour la toiture :

Figure II. 21: légende pour la toiture _ direction V4.

II.5.6. <u>Calcul des coefficients de pression intérieur :</u>

Le coefficient de pression intérieure de pend de la dimension et de la répartition des ouvertures (ouvertures permanentes ou à considérer comme pouvant rester ouvertes en exploitation par grand vent) dans l'enveloppe du bâtiment. [7]

Dans le cas d'un bâtiment sans face dominante le coefficient de pression intérieur est calculé comme suit :

a. <u>Pour la direction V1 du vent : h = 22m, d =36mm</u> :

Figure II. 22: Indice de preméabilté [6].

 $\mu_p = 0.71$

 $0.25 < \frac{h}{d} = \frac{22}{36} = 0.61 < 1$ Donc on procède par interpolation linéaire pour déterminer la valeur de C_{pi}

- Pour $\mu_p = 0.71$ et h/d >1 $C_{pi} = -0.19$
- Pour $\mu_p = 0.71$ et h/d = 0.25 $C_{pi} = -0.1$
- Pour $\mu_p = 0.71$ et h/d = 0.35 :

$$C_{pi} = -0.19 + \frac{-0.1 + 0.19}{0.25 - 1} (0.61 - 1) = 0.02$$
$$C_{pi} = -0.14$$

Les valeurs de C_{pi} pour les autres directions sont montrées dans le tableau ci-dessous :

Tableau II. 14: Valeur de coefficient de pression intérieur Cpi.

Direction de vent	V1	V2	V3
Valeur de <i>C_{pi}</i>	-0.14	-0.1	-0.2

II.5.7. Calcul des pressions aérodynamique du vent

1. Direction V1 du vent :

$$w(zj) = q_p(ze) \times [Cp_e(ze) - Cp_i(ze)] \qquad [N/_{m^2}]$$

a. Parois verticales :

Tableau II. 15: Valeur de Wj pour les parois verticales _ direction V1.

Zone	$q_p \left(N/m^2 \right)$	Сре	Срі	Wj(N/m²)
А	840	-1	-0,14	-722.4
В	840	-0,8	-0,14	-544.4
D	840	0,8	-0,14	789.6
E	840	-0,3	-0,14	-134.4

Le schéma ci-dessous montrée la répartition des valeurs de pressions aérodynamique dans les parois verticale :

Figure II. 23: Valeur de la pression aérodynamique Wj en [N/m2] pour la direction V1.

b. <u>Toiture :</u>

Tableau II. 16: Valeurs de Wj pour la toiture _ direction V1.

Zone	$q_p \left(N/m^2 \right)$	Сре	Срі	Wj(N/m²)
F	840	-1.584	-0,14	-1212.96
G	840	-0,884	-0,14	-624.96
Н	840	-0.7	-0,14	-470.4
Ι	840	±0.2	-0,14	285.6
				-50.4

2. <u>Direction V2 du vent :</u>

a. <u>Parois verticales :</u>

Zone	$q_p(N/m^2)$	Cpe	Срі	Wj(N/m²)
Α	772.5	-1	-0,1	-695.25
В	772.5	-0,8	-0,1	-540.75
С	772.5	-0,5	-0,1	-309
D	772.5	0,8	-0,1	695.25
E	772.5	-0,3	-0,1	-154.5

Tableau II. 17: V	Valeur de Wj pour	les parois verticales _	direction V2.
-------------------	-------------------	-------------------------	---------------

Les valeurs de la pression aérodynamique sont représentées dans le schéma suivant :

Figure II. 24: Valeur de la pression aérodynamique Wj en [N/m2] pour la direction V2.

b. <u>Toiture :</u>

Zone	qp (N/m²)	Cpe	Срі	Wj(N/m²)
F	772.5	-1.48	-0,1	-1066.05
G	772.5	-1.02	-0,1	-710.7
Н	772.5	-0.7	-0,1	-463.5
Ι	772.5	±0.2	-0,1	231.75
				-77.25

Tableau II. 18: Valeur de Wj pour la toiture _ direction V2.

3. <u>Direction V3 du vent :</u>

a. <u>Parois verticales :</u>

Zone	$q_p(N/m^2)$	Сре	Срі	Wj(N/m²)
А	772.5	-1	-0,2	-618
В	772.5	-0,8	-0,2	-463.5
С	772.5	-0,5	-0,2	-231.75
D	772.5	0,8	-0,2	772.5
Е	772.5	-0,3	-0,2	-77.25

Tableau II. 19: Valeur de Wj pour les parois verticales _ direction V3.

On a montré les valeurs de la pression aérodynamique dans les parois verticales dans le schéma suivant :

Figure II. 25: Valeur de la pression aérodynamique Wj en [N/m2] pour la direction V3.

b. <u>Toiture :</u>

Tableau II	. 20:	Valeur	de	Wj pour	la toiture	_ direction `	V3.
------------	-------	--------	----	---------	------------	---------------	-----

Zone	qp (N/m²)	Сре	Срі	Wj(N/m²)
F	772.5	-1.48	-0,2	-988.8
G	772.5	-1.02	-0,2	-633.45
Η	772.5	-0.7	-0,2	-386.25
Ι	772.5	±0.2	-0,2	309
				0

II.6. Conclusion :

A travers ce chapitre, nous avons déterminé tous les charges et les surcharges appliques à la structure, en particulier l'effet du vent, et suite à la complexité de notre structure il était difficile d'appliqué le règlement RNV 2013, nous avons donc fait une étude d'estimation simplifier tout en respectant le règlement.

Chapitre III : Étude des éléments secondaires

III.1. Introduction :

Les éléments secondaires ou bien non structuraux sont ceux qui n'ont pas une fonction de portance ou de renforcement .il s'agit d'éléments de maçonnerie.

III.2. <u>Acrotère :</u>

III.2.1. Introduction :

L'acrotère est un élément non structurel contournant le bâtiment conçu pour la protection de linge conjonctif entre lui-même et la forme de pente contre l'infiltration des eaux pluviales.

Il sera calculé comme une console encastrée au niveau du plancher terrasse. Il est soumis à un effort G du à son poids propre et un effort latéral Q dû à la main courante, engendrant un moment de renversement M dans la section d'encastrement. Le ferraillage sera déterminé en flexion composée pour une bonde de 1 m de longueur.

- Géométrie :
- L'hauteur : h = 60 cm
- _ L'épaisseur : $h_0 = 10 \text{ cm}$
- Largeur : b = 100 cm

Figure III. 1: Dimension de l'acrotère.

III.2.2. Evaluation charge :

a) <u>Surface de l'acrotère :</u>

$$S = \frac{0.03 \times 0.15}{2} + (0.1 \times 0.6) + (0.07 \times 0.1) = 0.07m^2$$

Figure III. 2: Schéma statique de l'acrotère.

b) <u>Charge permanant :</u>

 $G=W_p=S\times\rho_b=0.07\times 25=1.75kN/$

c) <u>Charges d'exploitation :</u>

$$Q=1kN/m$$

D'après [2] les forces horizontales de calcul Fp agissant sur les éléments non structuraux et les équipements ancrés a la structure sont calculées suivants la formule :

$$F_p = 4 A C_p W_p$$

Avec :

- A : Coefficient d'accélération de zone $\rightarrow A = 0.30$ tableau 4.1 de [2] ;
- C_p : Facteur de force horizontales $\rightarrow C_p = 0.8$ tableau 6.1 de [2];
- W_p : Poids de l'élément $\rightarrow W_p = 1.75 kN/m$.

$$F_n = 4 \times 0.3 \times 0.8 \times 1.75 = 1.68 \, kN$$

III.3. Les Sollicitations :

• <u>E LU :</u>

Tableau III. 1: les sollicitation a ELU.

Nu	1.35W _p	2.36kN
Qu	1.5F _p	2.52 kN
Mu	hQu	1.51kN. m

• <u>ELS :</u>

Tableau III. 2: les sollicitations à ELS.

Ns	W _p	1.75kN
Qs	Fp	1.68 kN
Ms	hQs	1.008kN.m

III.3.1. Calcul de l'excentricité :

a) L'excentricité de 1^{er} ordre :

$$e_1 = \frac{Mu}{Nu} = 0.64m$$

b) L'excentricité additionnelle :

$$e_a = \max\left(0.02, \frac{l}{250}\right) = 0.02m$$

c) L'excentricité de 2eme ordre :

$$e_2 = \frac{3{l_f}^2}{10^4 h} (2 + \alpha \emptyset)$$

$$l_f = 2l = 1.2m \alpha = 10 \left(1 - \frac{Mu}{1.5Ms} \right) = 0$$

$$e_2 = 0.00072m$$

Alors :

$$e_0 = e_1 + e_2 + e_a = 0.66m$$

On a :

 $\frac{h_0}{2} - c' = 0.025 < e_0$ Donc la section partiellement comprimée

III.3.2. Sollicitation au centre de gravité de l'acier tendue :

- <u>ELU:</u>
- $e_{ua} = e_0 + (d \frac{h_0}{2})$ Avec d = 0.9h = 0.09m

 $e_{ua} = 0.68m$

 $M_{ua} = N_u \times e_{ua} = 2.36 \times 0.68 = 1.60 kN.m$

• <u>ELS:</u> $e_0 = \frac{M_s}{N_s} = 0.576m \longrightarrow e_{sa} = 0.62m$ $M_{sa} = N_s \times e_{sa} = 1.75 \times 0.62 = 1.085kN.m$

III.3.3. Calcul de ferraillage :

_ Moments réduits :

$$\mu = \frac{M_{ua}}{F_{bu} \times d^2 \times b} = \frac{1.60 \times 0.001}{14.17 \times 0.09^2} = 0.014 < \mu_R = 0.391$$

Donc pas d'acier comprime, Armateur tendus seulement.

Coefficient de la fibre neutre :

 $\alpha = 1.25 (1 - \sqrt{1 - 2\mu}) = 0.018.$

Bras de levier du couple interne :

$$Z_b = d(1 - 0.4\alpha) = 0.089m$$

Section théorique d'acier :

$$A_u = \frac{M_{ua}}{Z_b \times \sigma_s} = \frac{1.60 \times 0.001}{0.089 \times 384 \times 0.0001} = 0.47 cm^2$$

_ Condition de non fragilité :

$$A_{min} = \frac{0.23bdf_{t28}}{f_e} = \frac{0.23 \times 9 \times 2.1 \times 100}{400} = 1.087cm^2$$

- <u>Choix</u>: $4T8 \rightarrow A = 2.01 cm^2$
- Les armateurs de repartions :

$$A_r = \frac{2.01}{4} \ 0.5025 cm^2$$

III.3.4. Vérification à l'ELS :

• Vérification de l'effort tranchant :

Contrainte tangente :

$$\tau_u = \frac{V_u}{bd} = \frac{1.5Q}{bd} = 0.017MPa$$
$$- \overline{\tau_u} = \min\left(0.15\frac{f_{c28}}{\gamma_b}, 4MPa\right) = 2.5MPa$$

 $\tau_u < \overline{\tau_u}$ Conditions vérifiées.

Donc : il n'est pas nécessaire de concevoir des armateurs transversaux, les armateurs de répartition sont suffisante.

Figure III. 3: disposition des armatures dans l'acrotère.

III.4. Les escaliers :

III.4.1. Introduction :

Un escalier est un ouvrage de circulation verticale composé d'une série de marches permettant d'accéder, à pied, d'un étage de bâtiment à un autre .la figure suivante représente les composantes d'un escalier [12] :

Figure III. 4: Schéma représentatif d'un escalier [12].

- **Marche** : surface horizontale sur laquelle on se déplace.
- **Contremarche** : paroi fermant le devant d'une marche.
- Limon : élément incliné support des marches.
- Palier : plateforme horizontale à l'extrémité du limon ou entre deux volées
- **Volée** : suite ininterrompue de marches entre deux paliers
- Garde-corps : ouvrage de protection formant une barrière destinée à protéger du risque de chute les personnes stationnant ou circulant à proximité de ce dernier, sans leur interdire le passage ou l'escalade forcée ou volontaire.

Les escaliers sont constitués en charpente métallique.On utilise la formule de

 $\textbf{BLONDEL}: \quad 60cm \leq (g+2 \times h) \leq 64cm$

III.4.2. Caractéristiques géométriques :

- h : hauteur de la marche (varie de 16.5 cm à 18.5 cm) h=17cm
- _ g : giron, largeur de la marche (varie de 27 cm à 30 cm)....g=30cm
 - $\rightarrow 30 + 2 \times 17 = 64 \in [60,64] \dots \dots$ Condition vérifiée

- Nombre de contre marche : $n = \frac{H}{h} = \frac{3060}{170} = 18$ contre marcher
- Nombre de marche : m = n 1 = 18 1 = 17 marcher
- Emmarchement =2m
- La longueur de la ligne de foulée sera : $l = g \times (n 1) = 30 \times (18 1) =$ 5.10mm
- L'inclinaison de la paillasse : $\tan \alpha = \frac{1.53}{5.10} = 0.3 \rightarrow \alpha = 16,7^{\circ}$
- La longueur de la paillasse : $L = \sqrt{5.10^2 + 1.53^2} = 5.32m$

Figure III. 5: Vue en plan de l'escalier.

Figure III. 6: schéma statique de palier de sous-sol.

III.4.3. Dimensionnement des éléments porteurs :

<u>Charge permanente :</u>

Tableau III. 3: Charges permanents des éléments porteurs.

Туре	Charge permanents
Tôle striée ép= 5mm	0.60kN/m ²
Revêtement + mortier de pose	0.60kN/m ²
	G=1.2kN/m ²

• **Charge d'exploitation** : Q=2.5kN/m²

1. Pré dimensionnement des cornières :

Chaque cornière reprend la moitié de la charge de la marche plus la charge du contre marche :

a. <u>Combinaison de charge :</u>

ELU:

$$q_u = (1.35G + 1.5Q)\frac{g}{2} = (1.35 \times 1.2 + 1.5 \times 2.5) \times 0.15 = 0.81kN/ml$$

ELS:

$$q_s = (G + Q) = (1.2 + 2.5) \times 0.15 = 0.56 kN/ml$$

Par la condition de la flèche :

$$f \leq f_{adm}$$

$$f = \frac{5 \times Q_{s} \times l^{4}}{384 \times E \times I_{y}} \leq f_{adm}$$

$$Iy \geq \frac{5 \times Q_{s} \times l^{3} \times 250}{384 \times E} = \frac{5 \times 0.56 \times 2000^{3} \times 250 \times 10^{-4}}{384 \times 2.1 \times 10^{5}} \geq 6.94 \text{cm}^{2}$$

On opte pour un cornière $L45 \times 45 \times 5 \rightarrow Iy = 7.84 cm^4$

Cornière	G	h=b	t _f	r	А	$W_{ely} = W_{elz}$	Iy=Iz
	(kg/m)	(mm)	(mm)	(mm)	(mm ²)	(mm ³)	(mm ⁴)
$L45 \times 45 \times 5$	3.38	45	5	7	4.30	2.43	7.84

b. <u>Vérification en tenant compte le poids propre de la cornière :</u>

ELU:

$$q'_{u}(1.35g + qu) = (1.35 \times 0.0338 + 0.81) = 0.86$$
kN/ml

ELS:

. .

 $q'_s = (qs + g) = (0.56 + 0.0338) = 0.59 \text{kN/ml}$

<u>Moments fléchissant :</u>

. . .

$$\begin{split} M_{sd} &\leq M_{plrd} \\ M_{plrd} &= \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{2.43 \times 235 \times 10^{+3}}{1.1} \times 10^{-6} = 0.52 \text{KN. m} \\ M_{sd} &= \frac{ql^2}{8} = \frac{0.86 \times 2^2}{8} = 0.43 \text{KN. m} \\ M_{sd} &\leq M_{plrd} \dots \dots \dots \dots \text{ donc condition vérifiée} \end{split}$$

Vérification à l'effort tranchant :

$$V_{sd} \leq V_{plrd}$$
$$V_{plrd} = \frac{A_v \times f_y}{\sqrt{3} \times \gamma_{m0}} = \frac{205 \times 235 \times 10^3}{\sqrt{3} \times 1.1} \times 10^{-6} = 25.28 \text{kN}$$

Avec : $A_v = A - (a \times t) = 4.30 \times 10^2 - (45 \times 5) = 205 \text{mm}^2$

$$V_{sd} = \frac{ql}{2} = \frac{0.85 \times 2}{2} = 0.85 \text{kN}$$

 $V_{sd} \leq V_{plrd} \dots \dots \dots donc \ condition \ vérifiée$

On a: $V_{sd} < 0.5V_{plrd}$

donc pas d'interaction entre l'efforttranchant et le moment fléchissant.

Vérification de la rigidité :

$$f \le f_{adm}$$

$$f_{adm} = \frac{l}{250} = \frac{2000}{250} = 8mm$$

$$f = \frac{5 \times Q_s \times l^4}{384 \times E \times I_y} = \frac{5 \times 0.59 \times 2000^4}{384 \times 2.1 \times 10^5 \times 7.48 \times 10^4} = 7.83mm$$

 $f \le f_{adm} \dots \dots \dots \dots$ condition vérifiée

- 2. <u>Pré dimensionnement des limons :</u>
- a. <u>Evaluation des charges et surcharges pour le limon :</u>
- **Charge permanente :**

Tableau III. 5: la charge permanente G pour le limon.

Les composants	Charge permanents
Tôle striée ép= 5mm	0.60kN/m ²
Revêtement + mortier de pose	0.60kN/m ²
Garde-corps	1kN/m
Béton (ep=5cm)	1.25 kN/m^2
	3.45 kN/m

Charge d'exploitation : Q=2.5kN/m²

b. <u>Combinaison de charge :</u>

_ Pour la paillasse :

$$\begin{cases} G_1 = 2.45 \times 1 + 1 = 3.45 \text{kN/m} \\ Q_1 = 2.5 \times 1 = 2.5 \text{kN/m} \end{cases} \rightarrow q_1 = 3.45 + 2.5 = 5.95 \text{kN/m}$$

_ Pour le palier de repos :

 $\begin{cases} G_2 = 2.45 \times 1 = 2.45 \text{kN/m} \\ Q_2 = 2.5 \times 1 = 2.5 \text{kN/m} \end{cases} \rightarrow q_2 = 2.45 + 2.5 = 4.95 \text{kN/m}$

Figure III. 7: charges revenant au limon.

Avec : $l = l_{totale} = 1.23 + 5.10 = 6.33m$

$$q = max(q_1; q_2) = 5.95 kN/m$$

Par la condition de la flèche :

$$Iy \ge \frac{5 \times 5.95 \times 6330^3 \times 250 \times 10^{-4}}{384 \times 2.1 \times 10^5}$$

$Iy \geq 2339.30 \text{ cm}^4$

On opte pour un profilé UPN220 \rightarrow Iy = 2690cm⁴

Tableau III. 6: Les caractéristique de profilé UPN220.

profilé	G	Н	В	А	Av	W_{ply}	Iy
	(kg/m)	(mm)	(mm)	(mm)	(mm ²)	(mm ³)	(mm ⁴)
				$\times 10^2$	$\times 10^2$	$\times 10^3$	$\times 10^4$
UPN220	29.4	220	80	37.4	20.6	292	2690

c. <u>Vérification en tenant compte le poids propre du profilé :</u>

ELU:

 $q_u = 1.35(G + g) + 1.5Q = 1.35 \times (3.45 + 0.294) + 1.5 \times 2.5 = 8.80 kN/ml$ ELS :

 $q_s = (G + g) + Q = (3.45 + 0.294) + 2.5 = 6.244 k N/ml$

Moments fléchissant :

 $M_{sd} \leq M_{plrd}$

$$M_{sd} = \frac{ql^2}{8} = \frac{8.80 \times 6.33^2}{8} = 44.08KN.m$$

Figure III. 8: diagramme de moment du limon.

$$M_{plrd} = \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{292 \times 235 \times 10^4}{1.1} = 623.82KN.m$$

 $M_{sd} \leq M_{plrd} \dots \dots \dots donc \text{ condition vérifiée}$

$$\overline{V_{sd}} = \frac{V\text{érification à l'effort tranchant :}}{2}$$

$$V_{sd} = \frac{ql}{2} = \frac{8.80 \times 6.33}{2} = 27.852 \text{kN}$$

Figure III. 9: diagramme d'effort tranchant de la poutre palière.

$$V_{\text{plrd}} = \frac{A_v f_y}{1.1\sqrt{3}} = \frac{2060 \times 235}{1.1\sqrt{3}} = 254.09 \text{kN}$$

 $V_{sd} \leq V_{plrd}$ donc condition vérifiée

On a $V_{sd} < 0.5V_{plrd} \rightarrow donc pas d'interaction entre l'effort tranchant et le moment .$ <u>Vérification de la rigidité :</u>

$$f \leq f_{adm}$$

$$f_{adm} = \frac{l}{250} = \frac{6330}{250} = 25.32mm$$

$$f = \frac{5 \times Q_s \times l^4}{384 \times E \times I_v} = \frac{5 \times 6.244 \times 6330^4}{384 \times 2.1 \times 10^5 \times 2690 \times 10^4} = 23.11mm$$

 $f \leq f_{adm} \dots \dots \dots$ condition vérifiée

3. <u>Pré dimensionnement de la poutre palière :</u>

- a. Evaluation des charges et surcharges :
 - > Charge permanente :

Tableau III. 7: la charge permanent de pallier.

Туре	Charge permanents
Tôle striée ép= 5mm	0.60kN/m ²
Revêtement + mortier de pose	0.60kN/m ²
Béton (ep=5cm)	1.25 kN/m^2
	G=2.45 kN/m ²

Charge d'exploitation : Q=2.5kN/m²

_ Les charges revenantes sur la poutre palière :

- _ Les charges revenantes sur la poutre palier sont :
- Charge des cloisons : $2.2 \times 1.53 = 3.37 kN/m$

Charge revenant du palier : $G = 2.45 \times 0.615 = 1.51 kN/ml$ $Q = (2.5 \times 0.615) = 1.54 kN/m$

$$\rightarrow \quad Q_s = 3.37 + 1.51 + 1.54 = 6.42 k N/m$$

• <u>La condition de la flèche</u> :

$$Iy \ge \frac{5 \times 6.42 \times 4100^3 \times 250 \times 10^{-4}}{384 \times 2.1 \times 10^5} \ge 685.876 \text{cm}^4$$

Choix : On choisit : IPE160.

Tableau III. 8: les caractéristique de profilé IPE160.

profilé	G	Н	В	А	Av	W_{ply}	Iy
	(kg/m)	(mm)	(mm)	(mm)	(mm ²)	(mm ³)	(mm ⁴)
				$\times 10^2$	$ imes 10^2$	$\times 10^3$	$ imes 10^4$
<i>IPE</i> 160	15.8	160	82	20.1	9.66	124	869

b. Combinaison des charges :

• <u>ELU :</u>

$$\begin{aligned} q_u &= 1.35G + 1.5Q = 1.35 \times (3.37 + 1.51 + 0.158) + 1.5 \times (2.5 \times 0.615) \\ &= 9.11 k N / m l \end{aligned}$$

• <u>ELS :</u>

 $q_s = G + Q = 1.35G + 1.5Q = (3.37 + 1.51 + 0.158) + (2.5 \times 0.615)$ = 6.58kN/ml

Figure I.9 : Schéma statique de la poutre palière .

c. Les Vérifications :

Moments fléchissant :

 $M_{sd} \leq M_{plrd}$

$$M_{plrd} = \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{124 \times 235 \times 10^4}{1.1} = 264.909 \text{ KN. } m$$
$$M_{sd} = \frac{ql^2}{8} = \frac{9.11 \times 4.10^2}{8} = 19.14 \text{ KN. } m$$

 $M_{sd} \leq M_{plrd} \dots \dots \dots$ donc condition vérifiée

<u>Vérification à l'effort tranchant :</u>

 $V_{sd} \leq V_{plrd}$

$$V_{plrd} = \frac{A_v \times f_y}{\sqrt{3} \times \gamma_{m0}} = \frac{966 \times 235}{\sqrt{3} \times 1.1} = 119.149 kN$$
$$V_{sd} = \frac{ql}{2} = \frac{9.11 \times 4.10}{2} = 18.68 kN$$

 $V_{sd} \leq V_{plrd}$ donc condition vérifiée

On a $V_{sd} < 0.5 V_{plrd}$

donc pas d'interaction entre l'effort tranchant et le moment fléchissant.

Vérification de la rigidité :

$$f \leq f_{adm}$$

$$f_{adm} = \frac{l}{250} = \frac{4100}{250} = 16.4mm$$

$$f = \frac{5 \times Q_s \times l^4}{384 \times E \times I_y} = \frac{5 \times 6.85 \times 4100^4}{384 \times 2.1 \times 10^5 \times 869 \times 10^4} = 13.81mm$$

 $f \leq f_{adm} \dots \dots \dots$ condition vérifiée.

Tableau III. 9: Récapitulatif de section des éléments d'escalier.

L'élément	Marches	Limons	Poutre palière
Profilée	L×45×45×45	UPN220	IPE160

III.5. Conclusion :

L'étude que nous avons menée nous permis de déterminer le type de caractéristique des éléments secondaires capables résistance. La charge de ces éléments sera prise en compte lors de l'étude dynamique.

Chapitre IV : Pré dimensionnement des éléments principaux
IV.1. Introduction :

Le pré-dimensionnement a pour objet de définir les dimensions des différents éléments de la structure. Ces dimensions sont choisies en fonction des recommandations de **l'EC3**, **CCM97** et L'EC4 .les résultats obtenus ne sont pas définitifs et peuvent être augmentés à l'issue de la phase de vérification.

IV.2. Etude de la plancher collaborant :

Les éléments constituant un plancher mixte :

- Solives.
- Poutre porteuse.
- Des connecteurs.

Figure IV. 1: représentation du plancher collaborant [3].

Le calcul de plancher collaborant se fait selon la méthode prescrite dans le document CCM97 :

IV.2.1. <u>Hypothèse de calcul :</u>

a) <u>Stades de construction (Phase de construction) :</u>

Dans ce phase le profilé d'acier travail seul et soumises aux charges suivantes :

- _ Le poids propre du profilé ;
- _ Le poids propre du béton frais ;
- _ La surcharge de construction ouvrière.

b) <u>Stade définitif (Phase finale) :</u>

La vérification doivent être effectues pour la dalle mixte âpres durci cément du béton âpres enlèvement des étais. Les charges doivent être considérés sont :

- _ Le poids propre du profilé
- _ Le poids propre du béton (sec)
- _ La surcharge d'exploitation.

IV.2.2. Les solives :

Les solives sont les éléments porteurs principaux constituant l'ossature horizontale des plancher de bâtiment. Leur fonction principale est de transmettre aux poteaux les actions agissant sur la dalle.

_ Entraxe des solives :

Les entraxes entres les solives diffèrent d'une zone à l'autre, l'espacement maximale e=2.36m d'après la fiche technique de l'hi bond 55 pour une dalle de 15 cm.

La solive la plus sollicité dans le plancher terrasse est d'une longueur de 7.05m.

Figure IV. 2: schéma de l'espacement entre solive.

Figure IV. 3: schéma statique de la solive.

D'habitude Les solives sont dimensionnées sous la condition de flèche. Mais pour notre cas lorsque on a fait le calcul avec cette condition on a trouvé que les solives est sur dimensionnent donc pour des raison économique on fait calcule par tâtonnements.

Tableau IV. 1: Dimensions et caractéristiques mécaniques du profilé IPE200.

Désignation	Poids		Section			Dimensions			
	G (Kg/m)		$A(cm^2)$	h(mm)		b(mm)	t _f (mm)	t _w (mm)	
IPE 200	22.4		28.48	200		100	8.5	5.6	
			(Caractéristique					
	$I_y (cm^4)$	$I_z (cm^4)$	W _{pl, y} (c	$\mathbf{m}^{3}) \qquad \mathbf{W}_{\mathrm{pl, z}}\left(\mathrm{cm}^{3}\right)$		i _y (cm)	i _z (cm)		
	1943	142.4	220.6	5	44.51		8.26	2.24	

IV.2.2.1. Phase de construction :

Figure IV. 4: schéma de la solive (avec etaiment).

1. Les charges et les surcharges :

- Poids propre du profilé :Gp = 0.224 KN/m
- Poids propre du béton frais :Gb =2.88 KN/m²
- Poids du bac d'acier : $g = 0.09 \text{ KN/m}^2$
- Surcharge de construction : $q_c = 0.75 \text{ KN/m}^2$.

2. Les charges et les surcharges par mètre linière :

D'après la fiche technique de bac d'acier hibond55 [Annexe A] L'entraxe entre les solives maximum pour une dalle d'épaisseur de 15cm est 2.36m.

Donc on a prend : 2 m G= Gp+ (Gb+g) ×esp = $0.224+(2.88+0.09)\times 2=6.164$ kn/ml. Q=q_c×esp = $0.75\times 2=1.5$ kN/ml.

3. Combinaison de charge :

<u>ELU</u> $q_u = 1.35\text{G} + 1.5 = 1.35 \times 6.16 + 1.5 \times 1.5 = 10.57\text{KN /ml}$ <u>ELS</u>: $q_s = \text{G} + \text{Q} = 6.164 + 1.5 = 7.66\text{KN/ml}$

4. Les vérifications :

a. <u>Moment fléchissant :</u>

Le moment fléchissant M_{Sd} dans les sections transversales de classe 1 et 2 doit satisfaire à la condition suivante :

$$M_{Sd} \leq M_{plrd}$$

$$M_{plrd} = \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{220.6 \times 275 \times 10^{+3}}{1} \times 10^{-6} = 66.67 KN.m$$

$$M_{Sd} = \frac{ql^2}{8} = \frac{10.57 \times 3.525^2}{8} = 16.42KN.m$$

 $M_{Sd} \leq M_{plrd}$ donc condition vérifiée

b. Vérification au cisaillement :

Il faut vérifiée que : $V_{Sd} \leq V_{plrd}$

$$V_{plrd} = \frac{A_v \times f_y}{\sqrt{3} \times \gamma_{m0}} = \frac{14.00 \times 275 \times 10^{+2}}{\sqrt{3} \times 1} \times 10^{-3} = 222.280 kN$$
$$V_{Sd} = \frac{ql}{2} = \frac{10.57 \times 3.525}{2} = 18.63 kN$$

 $V_{Sd} \leq V_{plrd} \dots \dots \dots \dots$ donc condition vérifiée

On a $V_{sd} < 0.5 V_{plrd}$

donc pas d'interaction entrel'effort tranchant et le moment fléchissant .

c. <u>Vérification de la rigidité :</u>

 $f \leq f_{adm}$

 $f_{adm} = \frac{l}{250} = \frac{3525}{250} = 14.1mm$

$$f = \frac{5 \times Q_s \times l^4}{384 \times E \times I_y} = \frac{5 \times 7.66 \times 3525^4}{384 \times 2.1 \times 10^5 \times 1943 \times 10^4} = 3.77 \text{mm}$$

 $f \leq f_{adm} \dots \dots \dots \dots$ condition

IV.2.2.2. Phase finale

Le béton ayant durci, la section mixte (le profilé et la dalle) travaillant ensemble.

1. Les charges et les surcharges

- _ Le poids propre du profilé Ipe200 Gp=0.224kN/ml
- _ La charge permanant G = 6.72kN
- Surcharges d'exploitation Q= 1kN.

2. Les charges et les surcharges par mètre linière :

 $G = Gp + G \times eps = 0.224 + 6.72 \times 2 = 13.66 \text{kN/ml}.$

 $Q=Q \times esp = 1 \times 2=2kN/ml$

3. Combinaison des charges :

- $\begin{array}{l} & \underline{\text{ELU}:} \\ q_u = 1.35G + 1.5Q = & 1.35 \times 13.66 + 1.5 \times 2 = 21.44 \text{kN/ml} \end{array}$
- _____ELS :
- $q_s = G + Q = 13.66 + 2 = 15.66 kN/ml$

4. Détermination de la section mixte :

$$b_{eff} = \inf \begin{cases} \frac{2l}{8} \\ b \end{cases}$$
 l: longueur libre d'unpoutre simplement appuie

b: entraxe entre les poutres

$$b_{eff} = \inf \begin{cases} \frac{2l}{8} = \frac{2 \times 7.05}{8} = 1.76m \\ b = 2m \end{cases}$$

Donc $b_{eff} = 1.76m$

Figure IV. 5: Schéma représentatif la largeur participante de la dalle pour une poutre de plancher [8].

5. <u>Position de l'axe neutre plastique :</u>

a. <u>Résistance de compression de la dalle en béton :</u>

 $R_{b\acute{e}ton} = 0.57 \times b_{eff} \times h_c \times f_{ck}$

Avec :

- _ h_c = partie de béton au-dessus du bac d'acier ;
- f_{ck} = résistance caractéristique du béton ;
- $b_{eff} =$ la largeur effective.

 $R_{b\acute{e}ton} = 0.57 \times 1760 \times 95 \times 25 \times 10^{-3} = 2382.6 kN$

b. <u>Résistance de traction du profilé d'acier :</u>

 $\begin{aligned} R_{acier} &= 0.95 \times fy \times A_{acier} \\ R_{acier} &= 0.95 \times 275 \times 2848 \times 10^{-3} = 744.04 kN \end{aligned}$

 $R_{acier} < R_{b\acute{e}ton}$ Donc l'axe neutre plastique se trouve dans la dalle en béton.

6. Les vérifications :

a. <u>Moment fléchissant :</u>

 $M_{sd} \leq M_{plrd}$

Le moment résistance plastique développée par la section mixte vaut :

$$M_{plrd} = R_{acier} \left[\frac{h_a}{2} + h_c + h_p - \left(\frac{R_{acier} \times h_c}{2 \times R_{b\acute{e}ton}} \right) \right]$$

$$M_{plrd} = 744.04 \left[\frac{0.200}{2} + 0.095 + 0.055 - \left(\frac{744.04 \times 0.095}{2382.6 \times 2} \right) \right] = 174.97kN$$
$$M_{sd} = \frac{ql^2}{8} = \frac{21.44 \times 7.05^2}{8} = 133.20kN.m$$

 $M_{sd} < M_{plrd} \dots \dots \dots d$ onc condition vérifiée.

b. <u>Vérification au cisaillement :</u>

$$V_{sd} \leq V_{plrd}$$

$$V_{plrd} = 220.280kN$$

$$V_{sd} = \frac{ql}{2} = \frac{21.44 \times 7.05}{2} = 75.58kN$$

 $V_{sd} \leq V_{plrd} \dots \dots \dots$ donc conditio nvérifiée

On a $V_{sd} \leq 0.5 V_{plrd} \rightarrow$ donc pas d'interaction entre l'effort tranchant et le moment

c. <u>Vérification de la rigidité :</u>

$$f \le f_{adm}$$

 $f_{adm} = \frac{l}{250} = \frac{7050}{250} = 28.2 \text{mm}$

$$f = \frac{5 \times Q_s \times l^4}{384 \times E \times Ic}$$

Avec Ic : moments d'inertie de la section mixte exprimée eu unité d'acier.

Ic =
$$A_{acier} \times \frac{(hc + 2 \times hp + ha)^2}{4(1 + m \times v)} + \frac{beff \times hc^3}{12 \times m} + I_{acier}$$

 $m = \frac{Ea}{Eb} = 15v = \frac{Aa}{Ab} = \frac{28.48}{9.5 \times 176} = 0.017$

$$Ic = 3340 \times \frac{(95+2\times55+200)^2}{4(1+15\times0.017)} + \frac{1760\times95^3}{12\times15} + 1943 \times 10^4 = 137 \times 10^6 mm^4$$

Alors :

$$f = \frac{5 \times 15.66 \times 7050^4}{384 \times 2.1 \times 10^5 \times 137 \times 10^6} = 17.51 \text{mm}$$

$$\begin{split} f &\leq f_{adm} \dots \dots \dots condition v \acute{e}rif i \acute{e}e \\ f_{final} &= f_{max}^{inital} + f_{max}^{final} \leq f_{adm} \end{split}$$

Le profilé IPE200 est retenu pour les solives de plancher terrasse de notre structure.

d. <u>Vérification de déversement :</u>

Il n'y a pas lieu de vérifier le déversement pour les solives car on a un plancher collaborant, donc les solives sont prémunies contre ce phénomène.[10]

7. <u>Calcul des connecteurs :</u>

Le rôle des connecteurs est de transmettre en sécurité les efforts de cisaillement longitudinal entre le profilé métallique et la dalle. On a utilisée les goujons à tête qui ils sont les plus utilisés de Type Nelson.

_ d : Le diamètre du fût du goujon, avec la condition :

 $16 \text{ mm} \le d \ge 25 \text{ mm} [8]$

h: la hauteur hors tout du goujon.

Figure IV. 7: Schéma d'un goujon [8].

Dénomination du goujon à tête	h _{sc} (mm)	d fût (mm)	d1 tête (mm)	ht tête (mm)	fy (N/mm²)	fu (N/mm²)
TRW Nelson KB 5/8"-35	35	16	31.7	8	350	450
TRW Nelson KB 5/8"-50	50	16	31.7	8	350	450
TRW Nelson KB 5/8"-75	75	16	31.7	8	350	450
TRW Nelson KB 5/8"-100	100	16	31.7	8	350	450
TRW Nelson KB 5/8"-150	150	16	31.7	8	350	450
TRW Nelson KB 5/8"-175	175	16	31.7	8	350	450
TRW Nelson KB 3/4"-50	50	19	31.7	10	350	450
TRW Nelson KB 3/4"-60	60	19	31.7	10	350	450
TRW Nelson KB 3/4"-75	75	19	31.7	10	350	450
TRW Nelson KB 3/4"-80	80	19	31.7	10	350	450
TRW Nelson KB 3/4"-100	100	19	31.7	10	350	450
TRW Nelson KB 3/4"-125	125	19	31.7	10	350	450

Les caractéristique de goujon qui on a utilisée est montre dans le tableau si dessus :

Figure IV. 8: les caractéristiques géométriques des goujons [9].

On détermine *P_{Rd}*:

$$P_{Rd} = \min\left\{ (0.29 \times \propto \times d^2 \times \sqrt{\frac{F_{ck} \times E_c}{\gamma_v}}); (0.8 \times F_u \times \frac{\pi \times d^2}{4 \times \gamma_v}\right\}$$

Avec :

$$\gamma_{v} = 1.25 \qquad \text{Et } \alpha = 1 \quad \text{pour} \quad \frac{h}{d} = 5 > 4$$

$$P_{Rd} = \min\left\{ (0.29 \times 1 \times 19^{2} \times \sqrt{\frac{25 \times Ec}{\gamma_{v}}}); (0.8 \times 450 \times \frac{\pi \times 19^{2}}{4 \times 1.25}\right\}$$

Donc :

$$P_{Rd} = 73.13kN.$$

a. Influence du sens du bac d'acier :

 K_t Coefficient de réduction en fonction du sens des nervures du bac, pour un bac d'acier dont les nervures sont perpendiculaires à la solive, le coefficient de réduction pour la résistance au cisaillement est calculé par :

$$K_t = \frac{0.7}{\sqrt{N_r}} \times \frac{b_0}{h_p} \times \left[\frac{h_{sc}}{h_p} - 1\right] \le K_{t \max}$$

Avec :

- _ N_r : Nombre de goujon par nervure (on prend $N_r = 1$).
- _ $h_p = 55 \text{ mm}$ (hauteur du nervure)
- $h_c = 80 \text{ mm}$ (hauteur du connecteur)
- $b_0 = 88,5 \text{ mm}$ (Largeur moyenne de la nervure) [fiche technique].
- $_{L} K_{t max} = 0.85$

Nombre de goujons par nervure	Épaisseur de la tôle (mm)	Goujons de diamètre maximal 20mm soudés à travers la tôle	Goujons de diamètre 19 mm ou 22 mm avec tôle préperforée
n _r = 1	≤ 1,0	0,85	0,75
39 	> 1,0	1,00	0,75
n _r = 2	≤ 1,0	0,70	0,60
	> 1,0	0,80	0,60

Figure IV. 9: Valeur de Kt max [8].

Donc :

$$K_t = \frac{0.7}{\sqrt{1}} \times \frac{88.5}{55} \times \left[\frac{80}{55} - 1\right] = 0.512 < 0.85$$
$$P_{Rd} = P_{Rd} \times K_t = 73.13 \times 0.512$$
$$P_{Rd} = 37.44kN$$

b. <u>Effort tranchant repris par les goujons :</u>

Dans le cas d'une connexion total, l'effort total de cisaillement RL, auquel les connecteurs sortenus de résister entre le point de moment fléchissant positif maximal et un appui d'extrémité est calculé selon la formule suivante:

 $\begin{aligned} R_L &= \inf(R_{b\acute{e}ton}; \, R_{acier}) \\ R_L &= \inf(\, 744.04; 2382.6) = 744.04 kN \end{aligned}$

c. <u>Nombre des connecteurs par demi-portée :</u>

$$N_{\rm br} = \frac{744.04}{37.44} = 19.87$$

Soit N = 20 goujons sur la sur toute la longueur de la poutre. C'est-à-dire 10 connecteurs sur demi-longueur de la poutre.

d. <u>L'espacement minimal :</u>

 $E_{min} > 5d = 5 \times 19 = 95mm$ $E_{max} > 6h_{sc} = 6 \times 80 = 480mm$ $E_{sp} = \frac{L}{Nbr - 1} = \frac{7050}{20 - 1} = 371 mm$

 $E_{min} \leq 371 \ mm \leq E_{max} \longrightarrow E_{sp} = 37.1 \ cm$

Figure IV. 10: espacement entre les goujons dans la solive (demi-portée).

On résumé les résultats obtenus pour chaque zone dans le tableau suivant :

Tableau IV. 2: Récapitulatif pour les solives de plancher courant pour chaque	e
zone.	

Charge	Charge	L	Entre	Ef	fort	Mor	ment	La rig	jidité	Profile	r
Q	G	(m)	axe	tranc	chant	fléch	issant	[mi	n]	choisit	
(KN/m²)	(KN/m²)		(m)	[KN]		[KN] [KN.m]					
				V_{sd}	V_{plrd}	M_{sd}	Mplrd	F _{max}	Fadm		
2,5		7.05	2	79,1	222,3	139,42	175,1	21,86	28,2	IPE20	0.79
										0	
3,5	5,42	6	1,5	57,19	153,4	85,8	114,27	18,62	24	IPE18	0.75
										0	
4		7.05	2	94,98	222,3	153,37	175,1	27,92	28,2	IPE20	0.87
1,5										0	
6		6	1,63	56,52	222,3	144,13	175,1	15,85	24		0.82

IV.3. Pré-dimensionnement de poutre secondaire :

Les poutres secondaires ce calcul avec la même méthode est donne les mêmes profilés que les solives (IPE200)

IV.3.1. <u>Pré-dimensionnement de poutres principales :</u>

Les poutres principales sont des éléments structuraux, qui permettent de supporter les charges des planchers et les transmettent aux poteaux. Elles sont sollicitées principalement par unmoment de flexion.

Dans ce qui suit exemple de calcul pour poutre principale de plancher terrasse :

Figure IV. 11: schéma statique de la poutre principale.

• <u>La condition de la flèche</u>

$$\begin{array}{l} \frac{L}{25} < h < \frac{L}{15} \\ \frac{8000}{25} < h < \frac{8000}{15} \ \rightarrow \ 320m < h < 533.333 \ m \end{array}$$

Choix : On choisit : IPE360.

Tableau IV. 3:	Dimensions et	caractéristiques	mécaniques	du profilé IPE360.
----------------	----------------------	------------------	------------	--------------------

Désignation	Poids	Section	Dimensions					
Abrégée	G	(cm ²)	h (mm)	b(mm)	t _f (mm)	t _w (mm)		
	(Kg/m)							
IPE 360	57.1	72.73	360	170	12.7	8		
	Caractéristiques							
	$I_y (cm^4)$	$I_z (cm^4)$	$W_{pl,y}$ (cm ³)	$W_{pl,z}$ (cm ³)	i _y (cm)	i _z (cm)		
	16270	1043	1019	191.1	14.95	3.79		

IV.3.1.1. Phase de construction

1. <u>Les charges et les surcharges :</u>

- _ Poids propre du profilé :Gp = 0.571 KN/m
- Poids propre du béton frais :Gb =2.88 KN/m²
- Poids du bac d'acier : $g = 0.09 \text{ KN/m}^2$
- Surcharge de construction : $qc = 0.75 \text{ KN/m}^2$

2. Les charges et les surcharges par mètre linière :

- _ G= G_p+ (Gb+g) ×b = 0.571+ (2.88+0.09) ×0.17=1.0759kn/ml.
- _ Q=q_c×b = $0.75 \times 0.17 = 0.1275$ kN/ml.

3. <u>Combinaison de charge :</u>

ELU

$$q_u = 1.35G + 1.5Q = 1.35 \times 1.0759 + 1.5 \times 0.1275 = 1.64 KN \ /ml$$

<u>ELS</u> :

 $q_s = G + Q = 1.0759 + 0.1275 = 1.20 \text{KN/ml}$

4. <u>Calcul des réactions des solives :</u>

On calcul les réactions des solives pour chaque phase (phase de construction et phase finale),on utilise la formule suivante :

$$R = \frac{q \times L_{solive}}{2}$$

 $\begin{cases} qu = 10.57kN/ml \\ qs = 7.66kN/ml \end{cases}$ (Solive)

• <u>ELU :</u>

$$R_u = \frac{10.57 \times 6}{2} + \frac{10.57 \times 3}{2} = 47.56kN$$

• <u>ELS :</u>

$$R_s = \frac{7.66 \times 6}{2} + \frac{7.66 \times 3}{2} = 34.47kN$$

5. <u>Les vérifications :</u>

a. <u>Moment fléchissant :</u>

Le moment fléchissant M_{sd} dans les sections transversales de classe 1 et 2 doit satisfaire à la condition suivante :

 $M_{Sd} \leq M_{plrd}$

$$M_{plrd} = \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{1019 \times 275 \times 10^{+3}}{1} = 280.225 KN.m$$

$$M_{Sd} = \frac{ql^2}{8} + \frac{R_u \times l}{2} = \frac{1.64 \times 8^2}{8} + \frac{47,56 \times 8}{2} = 203.41 \text{KN.m}$$

 $M_{Sd} < M_{plrd} \dots \dots \dots$ donc condition vérifiée

b. Vérification au cisaillement :

On doit vérifiée que : $V_{sd} \leq V_{plrd}$

$$V_{plrd} = \frac{A_v \times f_y}{\sqrt{3} \times \gamma_{m0}} = \frac{3514 \times 275 \times 10^{-3}}{\sqrt{3} \times 1} = 557.922kN$$

$$V_{sd} = \frac{ql}{2} + \frac{3R_u}{2} = \frac{1.64 \times 8}{2} + \frac{3 \times 47.56}{2} = 77,92kN$$

 $V_{sd} \leq V_{plrd} \dots \dots \dots$ donc condition vérifiée

On a
$$V_{sd} < 0.5 V_{plrd}$$

donc pas d'interaction entre l'effort tranchant et le moment fléchissant.

c. Vérification de la rigidité :

On doit vérifiée que :
$$f \le f_{adm}$$

 $f_{adm} = \frac{l}{250} = \frac{8000}{250} = 32mm$
 $f = f_1 + f_2$
 $f_1 = \frac{5 \times Q_s \times l^4}{384 \times E \times I_y} = \frac{5 \times 1.20 \times 8000^4}{384 \times 2.10 \times 10^5 \times 16270 \times 10^4} = 1,873 \text{ mm}$
 $f_2 = \frac{19 \times R_s \times l^3}{384 \times E \times I_y} = \frac{19 \times 34.47 \times 8000^3 \times 10^3}{384 \times 2.10 \times 10^5 \times 16270 \times 10^4} = 25,56 \text{ mm}$
 $f = f_1 + f_2 = 27,43 \text{ mm}$

 $f \leq f_{adm} \dots \dots \dots$ condition vérifiée

d. Vérification de déversement :

Le maintien latéral de la semelle comprimée de la poutre par le plancher collaborant rend cette dernière peu sensible au déversement ; du fait qu'il constitue un blocage de la

mm

rotation et qu'il réduit la longueur de déversement. Donc la vérification de déversement n'est pas, nécessaire [10].

IV.3.1.2. Phase finale :

Le béton ayant durci, la section mixte (le profilé et la dalle) travaillant ensemble.

1. Les charges et les surcharges :

- _ Le poids propre du profilé Ipe360 Gp=0.571kN/ml
- _ La charge permanant G = 6.56kN
- _ surcharges d'exploitationQ= 1kN

2. Les charges et les surcharges par mètre linière :

 $G = Gp + G \times b = 0.571 + 6.72 \times 0.17 = 1.71 \text{ kN/ml}.$

 $Q=Q \times b = 1 \times 0.17=0.17$ kN/ml

3. <u>Combinaison des charges :</u>

• <u>ELU :</u>

 $q_u = 1.35G + 1.5Q = \ 1.35 \times 1.71 + 1.5 \times 0.17 = 2.56 kN/ml$

• <u>ELS :</u>

$$q_s = G + Q = 1.71 + 0.17 = 1.88 \frac{kN}{ml}$$

4. <u>Calcul des réactions des solives :</u>

$$R = \frac{q \times L_{solive}}{2}$$

 $\begin{cases} qu = 21.44kN/ml \\ qs = 15.66kN/ml \end{cases}$ (Solive) $ELU: R_u = \frac{21.44 \times 6}{2} + \frac{21.44 \times 3}{2} = 96.48kN$

 \succ <u>ELS</u>:

$$R_s = \frac{15.66 \times 6}{2} + \frac{15.66 \times 3}{2} = 70.47kN$$

5. <u>Détermination de la section mixte :</u>

$$b_{eff} = \inf \begin{cases} \frac{2l}{8} \\ b \end{cases}$$
 l: longueur libre d'un poutre simplement appuie

b: entraxe entre les poutres

$$b_{eff} = \inf \begin{cases} \frac{2l}{8} = \frac{2 \times 8}{8} = 2m\\ b = 6m \end{cases}$$

Donc: $b_{eff} = 2m$

Figure IV. 12: largeur efficace de la zone comprimée.

6. <u>Position de l'axe neutre plastique :</u>

a. <u>Résistance de compression de la dalle en béton :</u>

$$R_{b\acute{e}ton} = 0.57 \times b_{eff} \times h_c \times f_{ck}$$

Avec :

- _ h_c = partie de béton au-dessus du bac d'acier ;
- $_{ck}$ = résistance caractéristique du béton ;

 b_{eff} = la largeur effective.

 $R_{b\acute{e}ton} = 0.57 \times 2000 \times 95 \times 25 \times 10^{-3} = 2707.5 kN$

b. <u>Résistance de traction du profilé d'acier :</u>

 $R_{acier} = 0.95 \times fy \times A_{acier}$

 $R_{acier} = 0.95 \times 275 \times 7273 \times 10^{-3} = 1900.07kN$

 $R_{acier} < R_{b\acute{e}ton}$ Donc l'axe neutre plastique se trouve dans la dalle en béton.

7. Les vérifications :

a. <u>Moment fléchissant :</u>

$$M_{sd} \leq M_{plrd}$$

Le moment résistance plastique développée par la section mixte vaut :

$$M_{plrd} = R_{acier} \left[\frac{h_a}{2} + h_c + h_p - \left(\frac{R_{acier} \times h_c}{2 \times R_{b\acute{e}ton}} \right) \right]$$
[0.360 (1900.07 × 0)

$$\begin{split} M_{plrd} &= 1900.07 \left[\frac{0.360}{2} + 0.095 + 0.055 - \left(\frac{1900.07 \times 0.095}{2707.5 \times 2} \right) \right] = 563.68 k N. m \\ M_{sd} &= \frac{q l^2}{8} + \frac{R_u \times l}{2} = \frac{2.56 \times 8^2}{8} + \frac{96.48 \times 8}{2} = 406.4 k N. m \end{split}$$

 $M_{sd} \leq M_{plrd} \dots \dots \dots$ donc condition vérifiée

b. <u>Vérification au cisaillement :</u>

$$\begin{split} V_{sd} &\leq V_{plrd} \\ V_{plrd} &= 557.922 kN \\ V_{sd} &= \frac{ql}{2} + \frac{3R_u}{2} = \frac{2.56 \times 8}{2} + \frac{3 \times 96.48}{2} = 154.96 kN \\ V_{sd} &\leq V_{plrd} \dots \dots \dots \text{ donc condition vérifiée} \end{split}$$

On a $V_{sd} < 0.5 V_{plrd} \rightarrow$ pas d'interaction entre le moment et l'effort tranchant.

c. Vérification de la rigidité :

$$f \le f_{adm}$$

$$f_{adm} = \frac{l}{250} = \frac{8000}{250} = 32mm$$

$$f = \frac{5 \times Q_s \times l^4}{384 \times E \times Ic}$$

Avec Ic : moments d'inertie de la section mixte exprimée eu unité d'acier

$$Ic = A_{acier} \times \frac{(hc + 2 \times hp + ha)^2}{4(1 + m \times v)} + \frac{beff \times hc^3}{12 \times m} + I_{acier}$$
$$m = \frac{Ea}{Eb} = 15v = \frac{Aa}{Ab} = \frac{72.73}{9.5 \times 200} = 0.038$$

 $Ic = 7273 \times \frac{(95+2\times55+360)^2}{4(1+15\times0.038)} + \frac{200\times95^3}{12\times15} + 16270 \times 10^4 = 533.353 \times 10^6 mm^4$

Alors :

$$f_{1} = \frac{5 \times 1.88 \times 8000^{4}}{384 \times 2.1 \times 10^{5} \times 533.353 \times 10^{6}} = 0.90 \text{mm}$$

$$f_{2} = \frac{19 \times \text{R}_{\text{s}} \times \text{l}^{3}}{384 \times \text{E} \times \text{I}_{\text{y}}} = \frac{19 \times 70.47 \times 8000^{3} \times 10^{3}}{384 \times 2.10 \times 10^{5} \times 533.353 \times 10^{6}} = 15.93 \text{ mm}$$

 $f = f_1 + f_2 = 16.84$ mm

 $f \leq f_{adm} \dots \dots \dots$ condition vérifiée .

$$f_{final} = f_{max}^{inital} + f_{max}^{final} \le f_{adm}$$

> Le profilé IPE360 est retenu pour le plancher terrasse de notre structure

Tableau IV. 4: Récapitu	latif pour les pou	itres de plancher cour	ant de chaque niveau.
-------------------------	--------------------	------------------------	-----------------------

Niveau	Q	Langur	Profile	M _{sd}	M _{plrd}	V _{sd}	$V_{plrd}(kN)$	Flache	Flache finale
	(kN/m^2)	(m)		(kN)	(kN)	(kN)		Admi-	
								ssible	
terrasse	1	8	IPE360	203,41	280,225	42,249	557,922	32	30,42414
5em étage	1,5		IPE360					32	
4em étage	1,5	8	IPE450	512,1026	851,197	104,964	807,35	32	25,11
	4								
3em étage	3,5	3	IPE300	174,336	329,28	87,8	407,72	12	8,94
	2,5	7,11	IPE450	592,83	836,56	132,06	807,35	28,44	23,27
	1,5	8	IPE450	512,1026	851,197	104,964	807,35	32	25,11
	4								
2em étage	1,5	8	IPE450	512,1026	851,197	104,964	807,35	32	25,11
	4								
	2,5	7,11	IPE450	592,83	836,56	132,06	807,35	28,44	23,27
1er étage	6	6	IPE400	500,72	658,39	132,36	693,67	24	19,90
	1,5	8	IPE450	512,102	851,197	104,964	807,35	32	25,11
	4			6					
RDC	2,5	8	IPE450	592,83	836,56	132,06	807,35	28,44	23,27

IV.4. <u>Pré-dimensionnement des poteaux :</u>

IV.4.1. Introduction :

Les poteaux sont des éléments verticaux des ossatures de bâtiments sont soumis à la compression et parfois ils peuvent être comprimés et fléchis (selon le système statique adopté). Son rôle est de transmette les efforts aux fondations.

Les poteaux sont réalisée habituellement à partir de profilée laminées en **I** ou **H** (sont les plus utilisée) ou en profiles reconstitues soudes, tubulaire.

Pour notre structure possède des poteaux en profilé HEA

Figure IV. 13: poteaux en IPE et HE.

IV.4.2. Principe de calcul :

Les poteaux sont pré-dimensionnés en compression simple

IV.4.3. Étapes de pré dimensionnement :

- _ Calcul de la surface reprise par chaque poteau.
- Évaluation de l'effort normal ultime de la compression à chaque niveau d'après la descente des charges.
- _ La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau $N_{sd} = 1,35G + 1,5Q$

<u>Remarque</u>: nous avons choisi le poteau la plus sollicité dans chaque zone et on fait la pré-dimensionnent.

IV.4.4. Exemple de calcule pour un poteau central : (poteau U-16)

- <u>Plancher terrasse :</u>
- _ La section : $S = 35,52m^2$
- _ Charge permanant : G=6.72kN/m²
- _ Charge d'exploitation : Q=1kN/m²

Figure IV. 14: la surface reprise par le poteau U-16.

IV.4.4.1. Charge permanente :

_	Poids propre du plancher terrasse :	238.69KN
_	Poids propre de la poutre porteuse IPE360 :	4.568KN
_	Poids propre de la poutre non porteuse IPE200 :	0.995KN
_	Poids propre des solives IPE200 :	2.98KN

 \rightarrow Gt=247.233kN

IV.4.4.2. Charge d'exploitation :

 $Q=1 \times S= 35,52 \text{ KN}$

Alors :

$$N_{sd} = 1.35G + 1.5Q$$

 $N_{sd} = 1.35 \times 247.233 + 1.5 \times 35,52 = 387.0445 kN$

IV.4.4.3. Pré dimensionnement :

$$N_{sd} \le N_{crd} = \frac{A.f_y}{\gamma_{m0}}$$

 $A \ge \frac{N_{sd} \times \gamma_{m0}}{f_y} = \frac{387.0445 \times 10^3 \times 1}{275} = 1407,43mm^2$

✓ On choisit un HEA120

La charge d'exploitation de chaque étage d'après la loi de dégression dans le tableau cidessous :

Niveau	La	\sum surcharge (kN/m ²)
	charge	
Terrasse	Q 0	1
4 ^{eme}	Q ₁	Q ₀ +4=5
3 ^{eme}	Q ₂	$Q_0+0.95 \times (4 \times 2)=8.6$
2 ^{eme}	Q3	$Q_0+0.90 \times (4 \times 3) = 11.8$
1 ^{er}	Q4	$Q_0+0.85 \times (4 \times 4) = 14,6$

Tableau IV. 5: le résultat de la surcharge Q.

Les résultats des poteaux sont regroupés dans les tableaux suivants :

Tableau IV. 6: Résultats de poteaux choisis.

Niveau	G [kN]	Q[kN]	Nsd [kN]	A[mm ²]	Profilé choisi
Terrasse	247,241	35,52	387,054864	1407,472233	HEA120
4 ^{eme}	448,305	177,6	871,612128	3169,498647	HEA160
3 ^{eme}	649,37	305,472	1334,857392	4854,02688	HEA200
2 ^{eme}	850,435	419,136	1776,790656	6461,056931	HEA240
1 ^{er}	1051,5	518,592	2197,41192	7990,5888	HEA260

IV.4.4.4. Vérification de la résistance au flambement :

On doit vérifier que :

$$N_{sd} \le N_{brd} = \frac{\chi \times \beta_A \times A \times f_y}{\gamma_{m0}}$$

– Pour le niveau 1^{er} étage (L=3,9m) :

Tableau IV. 7	: Caractéristic	ue du profilé	HEA260.
			• • • •

Profilé	h	b	t_f [mm]	tw[m	A[cm ²]	iy	Iz
	[mm]	[mm]		m]		[cm]	[cm]
HEA260	250	260	12.5	7.5	86.82	10.97	6.50

- $\beta_A = 1$ (classe 1)
- $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.9244$
- $\lambda_1 = 93.91\varepsilon = 86.812$
- La longueur de flambement :

 $L_{fy} = L_{fz} = 0.5L = 1.95m$ (Encastré –Encastré).

Figure IV. 15: Schéma représentatif de longueur de flambement

• Elancement maximal :

$$\lambda_y = \frac{L_{fy}}{i_y} = \frac{1.95 \times 10^3}{10.97 \times 10} = 17.775$$

$$\lambda_z = \frac{L_{fz}}{i_z} = \frac{1.95 \times 10^3}{6.5 \times 10} = 30$$

$$\lambda_y < \lambda_z \rightarrow le \ plan \ de \ flambement \ XOZ \ et \ L'axe \ y - y$$

• Elancement réduit :

$$\overline{\lambda} = \frac{\lambda_z}{\lambda_1} \times \sqrt{\beta_a} = \frac{30}{86.81} = 0.3456 > 0.2 \rightarrow \text{ donc risque de flambement}$$

- Vérification du flambement :

On a
$$\frac{h}{b} = \frac{250}{260} = 0.96 < 1.2$$
 et $tf = 12.5mm < 100mm$
 \rightarrow courbe de flambement : courbe c ($\alpha = 0.49$)

✓
$$φ = 0.5 \times (1 + α(λ - 0.2) + λ^2)$$

✓ $φ = 0.5 \times (1 + 0.49(0.3456 - 0.2) + 0.3456^2)$
✓ $φ = 0.595$

Alors :

$$\chi = \frac{1}{\phi + (\phi^2 - \overline{\lambda}^2)^{0.5}} = \frac{1}{0.55 + (0.55^2 - 0.27^2)^{0.5}} = 0.,925752334$$

Donc :

$$Nbrd = \frac{0.926 \times 1 \times 86.812 \times 10^2 \times 275}{1.1} \times 0.001 = 2009.69 kN$$

 $N_{sd} = 2197,41192kN < N_{brd} = 2009.69kN \dots$ Condition pas vérifiée Alors on augmente la section et revérifier le flambement

Remarque : tant que la même procédure de calcule répéter dans les autres poteaux on a récapitulé les résultats dans les tableaux suivante :

> Poteaux centraux (U-16) :

Niveau	Surface	H(m)	N _{sd} (kN)	Profile	N _{brd}	Vérification	Ration
	(m ²)			choisie	(kN)		
terrasse		3	387,054864	HEA240	1835,08		0,211
4em		3					
étage	35,52		871,612128	HEA240	1835,08		0,475
3eme		3					
étage			1334,857392	HEA280	2373,57	oui	0,562
2eme		3					
étage			1776,790656	HEA300	2768,56		0,642
1er		3,9					
étage			2197,41192	HEA300	2669,62		0,823

Tableau IV. 8: Pré dimensionnement de poteau U-16.

> <u>Poteaux de rive (B-8) :</u>

Tableau IV. 9: Pré dimensionnement de poteau B-8.

Niveau	Surface (m ²)	H(m)	N _{sd} (kN)	Profile choisie	N _{brd} (kN)	Vérification	Ration
terrasse		3	101,423475	HEA120	507,917		0,2
4em		3	103 237875	HEA120	507 917		0 203
étage		5	103,237073	112/1120	507,917		0,203
3eme		3	217,392525	HEA140	666,162		0,326
étage			, 			Oui	,
2eme	9						
étage		6.9	320.087025	HEA160	524,156		0.611
1er		0,5	020,007020				0,011
étage							

> Poteaux de rive (L-1) :

Niveau	Surface	H(m)	$N_{sd}(kN)$	Profile	N _{brd}	Vérification	Ration
	(m ²)			choisie	(kN)		
terrasse		3	137,19015	HEA120	507,917		0,27
4em étage		3	311,27175	HEA120	507,917		0,613
3eme étage	12	3	478,15335	HEA160	852,073	Oui	0,561
2eme étage		6,9	637,83495	HEA200	892,759		0,714
1er étage							

Tableau IV. 10: Pré dimensionnement de poteau L-1.

> <u>Poteaux centraux (F-10)</u> :

Niveau	Surface (m ²)	H(m)	N _{sd} (kN)	Profile choisie	N _{brd} (kN)	Vérification	Ration
terrasse			395 6848425	HEA240	1535 9		0.258
4em étage		6	555,0010125	112/12/10	1000,9		0,230
3eme étage	36,3	3	803,283345	HEA280	2373,57	Oui	0,338
2eme étage		3	1197,269348	HEA300	2768,56		0,432
1er étage		3,9	1740,554528	HEA300	2669,62		0,652

Tableau IV. 11: Pré dimensionnement de poteau F-10.

IV.5. Conclusion :

Les différentes règles nous permis de pré dimensionner tous les éléments structuraux de notre ouvrage (poteaux, poutres). Mais les résultats trouvés ne sont pas définitifs car ils peuvent être modifié après l'étude dynamique. Ces résultats nous serviront de base dans la suite.

Apres avoir effectué les calculs nécessaires, nous avons conclu que les plancher de notre structure sont des dalle mixte d'une épaisseur de 15 cm posée sur une tôle nervurée HI-BOND 55 d'une épaisseur de 0.75 mm, le tout soutenu par des solives IPE200.

Chapitre V : Etude dynamique

V.1. Introduction :

Un tremblement de terre est une libération soudaine de l'énergie potentielle accumulée dans les roches par le mouvement relatif de différentes régions de la croûte terrestre. Lorsque les contraintes dépassent un certain seuil, il se produit une rupture d'équilibre qui conduit à l'apparition d'ondes sismiques qui se propagent dans toutes les directions jusqu'à la surface de la Terre. Ces glissements de terrain soulèvent les structures en déplaçant leurs arcs et gonflent quelque peu la structure. Le degré d'amplification dépend avant tout de la durée de construction et de la nature du sol.

Pour cela, étudier le comportement dynamique des ouvrages est important pour mieux comprendre et prédire la réponse sismique des ouvrages de génie civil. Il permet de calculer les efforts et déplacements maximaux lors d'un séisme.

L'analyse est effectuée à l'aide du modèle d'éléments finis du bâtiment qui a été généré à partir des plans de construction à l'aide du logiciel ETABS. Ce qui permet de simplifier suffisamment l'étude, souvent complexe.

V.2. <u>Etapes de la modélisation de la structure :</u>

V.2.1. Description du logiciel ETABS :

ETABS est un logiciel de calcul exclusivement dédié au calcul de bâtiments. Avec une interface graphique unique, il est facile et rapide de modéliser tous types de bâtiments. Il propose une large gamme de possibilités pour l'analyse statique et dynamique. L'ETABS Permet de prendre en considération les propriétés non linéaires des matériaux ainsi que le calcul et le dimensionnement des éléments structurels selon différents règlements en vigueur mondialement (Eurocode, UBC, ACI...etc.).

En outre, comme point de départ pour le calcul des bâtiments, ETABS offre un avantage certain sur les codes de calcul les plus répandus. En effet, grâce à ces différentes fonctions il permet un chargement automatique et rapide décent, un calcul automatique du centre de masse et de rigidité,

Du plus, ce logiciel utilise une terminologie spécifique au domaine de construction (plancher, dalle, linteau, etc.). ETABS permet également le transfert de données vers d'autres logiciels (SAP par exemple).

V.2.2. Modélisation des éléments structuraux :

- Les éléments en portique (poutres-poteaux) ont été modélisés par des éléments finis de type « frame » à deux nœuds.
- Les solives, les poutres secondaires et les contreventements sont aussi modélisés par des éléments type frame à deux nœuds relâchés.
- Les planchers sont simulés par des diaphragmes rigides
- Les dalles sont modélisées par des éléments dalles qui négligent les efforts membranaires.

V.2.3. Modélisation de la masse :

On calcule la masse de plancher de façon à inclure la quantité βQ [2] (dans ce cas

 $(\beta = 0,3)$ correspondent à la surcharge d'exploitation.

La masse des éléments concentrés non structuraux, a été répartie sur les poutres concernées.

V.3. Présentation de la méthode de calcul :

Le calcul des forces sismiques peut être mène suivant trois méthodes [2] :

- Par la méthode statique équivalente
- Par la méthode d'analyse dynamique par accélérogrammes.
- Par la méthode d'analyse modale spectrale

V.3.1. La méthode statique équivalente]:

C'est une méthode simple qui traite seulement du 1^{er} mode de vibration et elle néglige les autres modes. Elle fait remplacer l'effort dynamique par une autre statique équivalente fictive. La méthode statique équivalente peut être utilisée dans les conditions suivantes :

- Le bâtiment du bloc étudié, satisfait la régularité en plan et en élévation avec une hauteur au plus égale à 30m en zone III et IIb ,65m en zone IIa.
- Le bâtiment ou bloc étudié présent une configuration irrégulière tout en respectant outre les conditions précédentes, les conditions complémentaires suivantes :
- Zone I : tous groupes
- o Zone II :

- groupe d'usage 3 groupe d'usage 2, si la hauteur est inférieure ou égale à 7 niveaux ou 23m.
- _ groupe d'usage 1B, si la hauteur est inférieure ou égale à 5 niveaux ou 17m.
- _ groupe d'usage 1A, si la hauteur est inférieure ou égale à 3 niveaux ou 10m.
- Zone III :
 - _ groupes d'usage 3 et 2, si hauteur est inférieure ou égale à 5 niveaux ou 17m.
 - _ groupe d'usage 1B, si la hauteur est inférieure ou égale à 3 niveaux ou 10m.
 - _ groupe d'usage 1A, si la hauteur est inférieure ou égale à 2 niveaux ou 08m.82

V.3.2. La méthode d'analyse dynamique par accélérogrammes :

L'analyse par accélérogrammes est la méthode la plus précise pour prévoir les forces et les contraintes des différents composants structurels. Cependant, son utilisation reste limitée car la réponse dynamique est très sensible à la modélisation et au mouvement du sol, elle nécessite une bonne modélisation des relations effort-déformation sous chargement cyclique qui tiennent en compte des modifications du comportement des composants. Plusieurs accélérogrammes sont nécessaires pour éviter de biaiser certains aspects du contenu fréquentiel du spectre de réponse reconnu comme la référence de l'action sismique de la zone.

V.3.3. La méthode d'analyse modale spectrale :

La méthode spectrale, il est applicable à tous type de bâtiments est utilisée pour n'importe quel type de structure elle est basée sur un calcul élastique-linéaire, nécessite une analyse modale préalable elle est utilisable pour n'importe quelle action dynamique.

Le principe de la méthode spectrale repose sur la base modale dans l'objectif d'obtenir la réponse sismique de la structure (déplacement). Elle prend en compte tous les modes de vibration contribuant de manière significative à la réponse globale de la structure.

V.4. Choix de la méthode de calcul :

Pour choisir la méthode à utiliser, il convient de vérifier un certain nombre de conditions conformément les Règles parasismiques algériennes (RPA99/version 2003).

Si les conditions d'application de la méthode statique équivalente ne sont pas tous satisfaits. On doit donc utiliser la méthode dynamique modale spectrale en utilisant le spectre de réponse défini dans le RPA 99.

Notre cas, Tipaza est classée dans une zone de sismicité élevée ZONE III, ainsi que notre ouvrage étant un bâtiment classé en Groupe 1B. Le calcul sismique sera effectué par la méthode dynamique spectrale car notre bâtiment ne répond pas aux critères (4.1.2.a) requis par RPA99V2003, lorsque la méthode statique équivalente est appliquée.

V.5. Application de la méthode :

V.5.1. La force sismique totale V :

La force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A.D.Q}{R}W$$

Avec :

• A : coefficient d'accélération de zone, donné par le tableau 4.1 de [2] suivant la zone sismique et le groupe d'usage du bâtiment.

$$\rightarrow \begin{cases} \text{zone sismique III} \\ \text{groupe Ib} \end{cases} \rightarrow A = 0.3$$

D : facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/T)^{\frac{2}{3}} (3.0/T)^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$

T2 : période caractéristique, associée à la catégorie du site et donnée par le tableau
4.7 de RPA.

$$\rightarrow \begin{cases} T_1 = 0.15s \\ T_2 = 0.50s \end{cases} \rightarrow (catégorie S3)$$

 η : facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/(2+\xi)}$$

• où ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

$$\rightarrow \xi = 4 \ (Acier \ léger)$$

Alor:
$$\eta = \sqrt{\frac{7}{2+4}} = 1.08$$

✓ Estimation de la période fondamentale de la structure :

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques données par [2]:

$$T = \min(C_T h_N^{3/4}; 0.09 h_N / \sqrt{D})$$

Avec :

- *h_N*: Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (N). → *h_N* = 22*m*
- C_T : Coefficient, fonction du système de contreventement, du type de remplissage et donné par le tableau 4.6.

$$C_T \rightarrow = 0.050$$

- D : est la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.
- Suivant XX: D = 73.61m $T = \min(0.050 \times 22^{3/4}; 0.09 \times 22/\sqrt{73.61}) \rightarrow T = 0.23s$
- > Suivant YY : D = 36m

$$T = \min(0.050 \times 22^{3/4}; 0.09 \times 22/\sqrt{36}) \rightarrow T = 0.33s$$

R : coefficient de comportement global de la structure :

L'objet de la classification des systèmes structuraux se traduit, dans les règles et les méthodes de calcul, par l'attribution pour chacune des catégories de cette classification, d'un coefficient de comportement R qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement. Sa valeur unique est donnée par le tableau (4.3) de [2].

 $\rightarrow R = 3 \begin{cases} la structure est métallique est contreventé par un système \\ de palées traingulaire en V \end{cases}$

• Q : facteur de qualité :

Le facteur de qualité de la structure est fonction de :

- _ la redondance et de la géométrie des éléments qui la constituent
- _ la régularité en plan et en élévation
- _ la qualité du contrôle de la construction

La valeur de Q est déterminée par la formule : $Q = 1 + \sum_{1}^{6} P_{q}$

Pq est la pénalité à retenir selon que le critère de qualité q " est satisfait o non". Sa valeur est donnée au tableau 4.4 de [2].

	P_q					
		uivant YY				
Critère q	Observé	N. observé	Observé	N. observé		
1. Conditions minimales sur les files de Contreventement	0		0			
2. Redondance en plan	0		0			
3. Régularité en plan		0.05		0.05		
4. Régularité en élévation		0.05		0.05		
5. Contrôle de la qualité des matériaux		0.05		0.05		
6. Contrôle de la qualité de l'exécution		0.10		0.10		
Totale	0.2	0.25		0.25		

$$\rightarrow \begin{cases} Q_x = 1 + 0.15 = 1.25 \\ Q_y = 1 + 0.15 = 1.25 \end{cases}$$

• W : poids total de la structure,

W est égal à la somme des poids Wi, calculés à chaque niveau (i) :

$$W = \sum_{i=1}^{n} W_i$$

Avec $W_i = W_{Gi} + \beta W_{Oi}$

- W_{Gi} : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires de la structure.
- W_{Qi} : Charges d'exploitation
- _ β: Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation et donné par le tableau 4.5 de [2] (pour notre cas $\beta = 0.30$)

V.5.2. L'analyse modale spectrale :

L'analyse modale spectrale permet se cherche pour chaque mode de vibration, le maximum des effets générés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. On combine ensuite ces effets afin d'obtenir la réponse de la structure :

$$\frac{S_a}{g} = \begin{cases} 1.25A \left(1 + \frac{T}{T_1} \left(2.5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_1 \\ 2.5\eta (1.25A) \left(\frac{Q}{R} \right) & T_1 \le T \le T_2 \\ 2.5\eta (1.25A) \left(\frac{Q}{R} \right) (\frac{T_2}{T})^{2/3} & T_2 \le T \le 3.0s \\ 2.5\eta (1.25A) \left(\frac{Q}{R} \right) (\frac{T_2}{3})^{2/3} (\frac{3}{T})^{5/3} & T > 3.0s \end{cases}$$

Pour cette étude, le spectre est fourni par le logiciel (spectre RPA99) et comprend les données suivantes :

Figure V. 1: spectre de réponse.

Nombre de mode à considérer :

Pour les structures représentées par des modèles plans dans deux directions orthogonales, le nombre des modes de vibrations devant être retenue dans chacune des deux directions d'excitation doit être telle que :

_ la somme des masses modales effectives pour les modes retenus soit égale à 90 % au moins de la masse totale de la structure.

_ Lorsque tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum de modes à retenir est de trois (03) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3\sqrt{N}$$
 et $T_k \le 0.20sec$

Avec :

- _ N: est le nombre de niveau au dessus du sol
- _ T_k : la période du mode K.

V.5.3. <u>Résultat de l'analyse dynamique :</u>

V.5.3.1. Modèle initiale :

Les dimensions des éléments utilisées :

- $Les poteaux : \begin{cases} le RDC et 1^{er} & \text{étage} : HEA300 \\ le reste des & \text{étages} : HEA280 \end{cases}$
 - Les poutres principales : IPE450 pour les étages courants et IPE360 pour la terrasse
- _ Les solives et les poutres secondaires : IPE200
- _ Le modèle initial est sans les palées de stabilités.

Remarque : Pour faciliter la modélisation et éviter les problèmes, nous avons inséré le cinquième étage (5^{eme}) sous la forme d'une force concentrée sur les poteaux. (il y aura un déséquilibre du centre de rigidité).

Figure V. 2: Modèle initial de la structure en 3D.

V.5.3.1.1. Période et	narticination	du model :
	pai ncipation	uu mouci .

Case	Mode	Period	UX	UY	Sum	Sum
		sec			UX	UY
Modal	1	2,445	0,0043	0,8565	0,0043	0,8565
Modal	2	1,77	0,0044	0,0029	0,0087	0,8594
Modal	3	1,308	0,8807	0,0056	0,8893	0,865
Modal	4	0,903	0,0015	0,0879	0,8908	0,953
Modal	5	0,626	0,0008	0,0082	0,8916	0,9611
Modal	6	0,485	0,0787	0,0029	0,9703	0,9641
Modal	7	0,459	0,0034	0,0246	0,9737	0,9887
Modal	8	0,338	0,0001	0,001	0,9738	0,9897
Modal	9	0,321	0,00001425	0,0054	0,9739	0,9951
Modal	10	0,312	5,912E-07	0,0001	0,9739	0,9952
Modal	11	0,301	6,951E-07	6,704E-07	0,9739	0,9952
Modal	12	0,287	0,000001738	0	0,9739	0,9952
Modal	13	0,282	0	0	0,9739	0,9952
Modal	14	0,276	0	0	0,9739	0,9952
Modal	15	0,273	0,0194	0,0001	0,9932	0,9953

Tableau V. 2: Pourcentage de la participation massique.

- A partir de ce tableau, on remarque que le taux de participation de la masse dépasse le seuil de 90% à partir de mode 6eme, ce qui fait, que ce nombre de mode est suffisant pour représenter un bon comportement de la structure.
- _ Une période fondamentale : T =2.445 sec.

Résultat obtenu :

- Modes de vibration obtenue :
- **Premier mode de vibration** : une translation suivant Y-Y :

Figure V. 3:1er mode de vibration : translation suivant Y-Y avec un période de 2.445 secs.

Deuxième mode de vibration : une rotation autour de Z-Z

Figure V. 4: 2eme mode de vibration : rotation autour de Z-Z avec un période de 1.77 secs.

Troisième mode de vibration : une translation suivant X-X :

V.5.3.1.2. Choix de la période T utilisée pour le calcule :

Les valeurs de T, calculées à partir des formules de Rayleigh ou de méthodes numérique ne doivent pas dépasser calles estimées des formule empiriques appropriées de plus de 30%. [10]

Fableau	V.	3:	choix	de	la	période	de	calcul	[11]	
----------------	----	----	-------	----	----	---------	----	--------	------	--

Si :	La période choisie pour le calcul de facteur D est
$T_{analytique} \leq T_{empérique}$	$T = T_{analytique}$
T _{empérique} < T _{analytique} < 1.3T _{empérique}	$T = T_{empérique}$
T _{analytique} > 1.3T _{empérique}	$T = 1.3T_{empérique}$

> Suivant XX :

 $\begin{cases} T_{emp\acute{e}rique} = 0.23s \\ T_{analytique} = 1.323s \end{cases} \rightarrow T_{analytique} > 1.3T_{emp\acute{e}rique} = 0.299s$

> Suivant YY :

$$T_{empérique} = 0.33s$$

 $T_{analytique} = 2.467s \rightarrow T_{analytique} > 1.3T_{empérique} = 0.429s$

D'après les résultats on note que la structure est souple.

V.5.3.1.3. Vérification du déplacement inter étage :

D'après l'article (Art 5.10) du [2], les déformations relatives latérales d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1% de la hauteur d'étage.

Le déplacement horizontal à chaque niveau "k" de la structure est calculé comme

suit : $\delta_k = R \delta_{ek}$

Avec :

- o δ_{ek} : Déplacement dû aux forces sismiques Fi (y compris l'effet de torsion)
- *R*: Coefficient de comportement.
- Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égal à :

$$\Delta_k = \delta_{k-1} \delta_{k-1}$$

> Suivant XX :

Tableau V. 4: Vérification de déplacement suivant le sens X-X.

étage	Niveau (m)	δ _{ex} (mm)	Δ _{ex} (mm)	Δ _x (mm)	0,01H (mm)	Observation
RDC	3,90	41,15	123,45	123,45	39,00	Non Vérifiée
1	3,00	66,49	199,48	76,03	30,00	Non Vérifiée
2	3,00	87,53	262,60	63,12	30,00	Non Vérifiée
3	3,00	105,56	316,68	54,08	30,00	Non Vérifiée
4	3,00	111,87	335,61	18,93	30,00	Non Vérifiée

> Suivant YY :

Tableau V. 5 : Vérification de déplacement suivant Y-Y.

étage	Niveau	$\delta_{ ext{ey}}$	$\Delta_{ t ey}$	$\Delta_{ ext{y}}$	0,01H	Observation
	(m)	(mm)	(mm)	(mm)	(mm)	
RDC	3,90	83,46	250,37	250,37	39,00	Non Vérifiée
1	3,00	141,62	424,86	174,49	30,00	Non Vérifiée
2	3,00	190,62	571,86	147,00	30,00	Non Vérifiée
3	3,00	267,12	801,36	229,50	30,00	Non Vérifiée
4	3,00	243,62	730,87	-70,49	30,00	Non Vérifiée

D'après les résultats obtenus on remarque que ce modale n'est pas vérifié, donc il faut l'améliorer.

V.5.3.1.4. <u>Résultante des forces sismiques de calcul :</u>

Le résultat des efforts sismiques à la base V_t obtenue par la combinaison des valeurs modales ne peuvent être inférieures à 80 des forces sismiques résultantes calculées par la méthode de l'équivalent statique V pour une valeur de la période fondamentale donnée par la formule empirique adéquate. Si $V_t < 0.8V$, il sera nécessaire d'augmenter tous les paramètres de la réponse (forces, déplacements, moments,...) dans le rapport $0.8V/V_t$.

D'après les résultats du logiciel " ETABS " les réactions à la base est comme suit : $\begin{cases}
E_x = 16832.40kN \\
E_y = 10969.50kN
\end{cases}$

La méthode statique équivalente donne les résultats suivants :

$$W = 85562.11 \rightarrow \begin{cases} V_x = 23072.62kN \\ V_y = 13142.79kN \end{cases}$$

Tableau V. 6vérification de la force sismique suivant les 02 sens.

	V _{t,dyn}	V	0.8V	r	$V_t < 0.8V$
Le sens XX	16832.40	15096.57	12077.26	0.72	vérifiée
Le sens YY	10969.50	9964.26	7971.91	0.73	vérifiée

$$r = \frac{0.8V}{V_{t\,dyn}}$$

V.5.3.2. Modèle intermédiaire :

Pour arriver au modèle final avec un bon comportement, nous a vous passé par plusieurs configurations. Voici dans ce qui suit un model intermédiaire parmi les modèles par lesquelles nous sommes passés.

On a ajouté des contreventements V pour libérer les fenêtres à l'extérieur et les portes au milieu dans les deux sens. Tous les contreventements de la structure sont du même profilé tubulaire Tub220*220*16.

Figure V. 6: modèle intermédiaire de la structure en 3D.

V.5.3.2.1. Période et participation du model :

Case	Mode	Period	UX	UY	Sum	Sum
		sec			UX	UY
Modal	1	0,611	0,0518	0,7284	0,0518	0,7284
Modal	2	0,472	0,4866	0,0358	0,5384	0,7642
Modal	3	0,469	0,033	0,0021	0,5714	0,7663
Modal	4	0,453	0,2322	0,0163	0,8036	0,7826
Modal	5	0,291	0,000001013	0	0,8036	0,7826
Modal	6	0,276	0,00003047	0,0001	0,8036	0,7827
Modal	7	0,274	0,00000117	0,000001704	0,8036	0,7827
Modal	8	0,265	0,00002833	0,00001663	0,8036	0,7827
Modal	9	0,264	0,00006568	0,00000193	0,8036	0,7827
Modal	10	0,257	0,00001811	0,00001634	0,8036	0,7828
Modal	11	0,25	0,00004095	0,0001	0,8037	0,7829
Modal	12	0,249	0	0,0001	0,8037	0,783
Modal	13	0,247	0	0,0015	0,8037	0,7844
Modal	14	0,247	0,00003346	0,00003461	0,8037	0,7845
Modal	15	0,244	0,00009641	0,0002	0,8037	0,7846
Modal	16	0,243	0	0,00006009	0,8037	0,7846
Modal	17	0,242	0,0001	0,0016	0,8037	0,7863
Modal	18	0,241	0	0,00001232	0,8037	0,7863
Modal	19	0,239	0,006	0,0673	0,8097	0,8536
Modal	20	0,235	0,001	0,0103	0,8107	0,8639
Modal	21	0,233	0,0021	0,0635	0,8127	0,9274
Modal	22	0,231	0,00002329	0,0001	0,8128	0,9275
Modal	23	0,229	0,0001	0,00002442	0,8128	0,9275
Modal	24	0,228	0,0009	0,0055	0,8137	0,933
Modal	25	0,228	0,0003	0,0012	0,8141	0,9342
Modal	26	0,227	0	0,00001478	0,8141	0,9342
Modal	27	0,224	0,0007	0,0082	0,8147	0,9424
Modal	28	0,222	0,0001	0,000004609	0,8148	0,9424
Modal	29	0,22	0,0002	0,00004165	0,815	0,9425
Modal	30	0,218	0,00004411	0	0,8151	0,9425
Modal	31	0,217	0,0001	0,00002326	0,8152	0,9425
Modal	32	0,211	0,0001	0	0,8152	0,9425
Modal	33	0,208	0,0001	0,0008	0,8153	0,9433
Modal	34	0,206	0,0002	0,0001	0,8155	0,9434
Modal	35	0,205	0	0,00001398	0,8155	0,9434
Modal	36	0,204	0	0,000009511	0,8155	0,9434
Modal	37	0,202	0	0,00002372	0,8155	0,9434
Modal	38	0,201	0,000008531	0,0001	0,8155	0,9435
Modal	39	0,201	0,00001011	0,0001	0,8155	0,9436

Tableau V. 7: Pourcentage de participation massique pour le modèle intérimaire.

Modal	40	0,2	0,0005	0,0001	0,8161	0,9437
Modal	41	0,199	0,0001	0,00008762	0,8162	0,9437
Modal	42	0,198	0,0002	0,00003683	0,8164	0,9437
Modal	43	0,198	0,0011	0,00003228	0,8176	0,9437
Modal	44	0,197	0,000004317	0,000001159	0,8176	0,9437
Modal	45	0,196	0,0002	0,00006875	0,8178	0,9437
Modal	46	0,195	0,000004981	0,00003717	0,8178	0,9437
Modal	47	0,195	0,00000811	0	0,8178	0,9437
Modal	48	0,194	0,00002931	0,00001361	0,8178	0,9437
Modal	49	0,194	0,0003	0,00001703	0,8181	0,9438
Modal	50	0,193	0,000001017	0,0000156	0,8181	0,9438
Modal	51	0,192	0,000004712	0,000001986	0,8181	0,9438
Modal	52	0,191	0	0,000005144	0,8181	0,9438
Modal	53	0,191	0,0001	0,00004567	0,8182	0,9438
Modal	54	0,19	0,0002	0,0001	0,8184	0,9439
Modal	55	0,189	0,0012	0,000004747	0,8196	0,9439
Modal	56	0,189	0,00001017	0	0,8196	0,9439
Modal	57	0,188	0,0001	0,00001948	0,8197	0,9439
Modal	58	0,186	0,00002224	0,00002591	0,8197	0,9439
Modal	59	0,186	0,00001687	0	0,8197	0,9439
Modal	60	0,185	0,00003136	0	0,8198	0,9439
Modal	61	0,184	0,0004	0,0001	0,8202	0,944
Modal	62	0,183	0,0002	0,00003512	0,8204	0,9441
Modal	63	0,182	0,0014	0,00001529	0,8218	0,9441
Modal	64	0,182	0,00002634	0,00001879	0,8218	0,9441
Modal	65	0,18	0,00001319	0,00002264	0,8218	0,9441
Modal	66	0,178	0,0008	0	0,8227	0,9441
Modal	67	0,178	0,0013	0,0000349	0,824	0,9441
Modal	68	0,178	0,0018	0,0001	0,8258	0,9442
Modal	69	0,177	0,0992	0,0017	0,925	0,9459
Modal	70	0,176	0,0006	0,00006384	0,9256	0,9459
Modal	71	0,176	0,0031	0,00002844	0,9287	0,9459
Modal	72	0,175	0,000001492	0,000009189	0,9287	0,9459
Modal	73	0,174	0,0001	0,0000293	0,9288	0,9459
Modal	74	0,172	0,0001	0,0001	0,9289	0,946
Modal	75	0,171	0,0011	0,0002	0,93	0,9462

Modes de vibration obtenue :

- Premier mode de vibration : une translation suivant Y-Y
- _ Deuxième mode de vibration : une translation suivant X-X
- Troisième mode de vibration : une rotation autour de Z-Z

V.5.3.2.2. Choix de la période T utilisée pour le calcule :

> Suivant XX :

 $\begin{cases} T_{empérique} = 0.23s \\ T_{analytique} = 0.472s \end{cases} \rightarrow T_{analytique} > 1.3T_{empérique} = 0.299s \quad \rightarrow T = 1.3T_{empérique}$

> Suivant YY :

 $\begin{cases} T_{empérique} = 0.33s \\ T_{analytique} = 0.611s \end{cases} \rightarrow T_{analytique} > 1.3T_{empérique} = 0.429s \rightarrow T = 1.3T_{empérique}$

V.5.3.2.3. Vérification du déplacement inter étage :

> Suivant XX :

étage	Niveau	δ_{ex}	Δ_{ex}	$\Delta_{\mathbf{x}}$	0,01H	Observation
	(m)	(mm)	(mm)	(mm)	(mm)	
RDC	3,90	6,41	19,22	19,22	39,00	Vérifiée
1	3,00	12,46	37,37	18,16	30,00	Vérifiée
2	3,00	18,35	55,04	17,67	30,00	Vérifiée
3	3,00	24,20	72,59	17,54	30,00	Vérifiée
4	3,00	29,79	89,37	16,79	30,00	Vérifiée

Tableau V. 8: Vérification de déplacement suivant X-X.

> Suivant YY :

Tableau V. 9: Vérification de déplacement suivant Y-Y

étage	Niveau	δεΥ	Δ_{ey}	Δ_{y}	0,01H	Observation
	(m)	(mm)	(mm)	(mm)	(mm)	
RDC	3,90	7,90	23,70	23,70	39,00	Vérifiée
1	3,00	16,08	48,25	24,55	30,00	Vérifiée
2	3,00	24,86	74,57	26,33	30,00	Vérifiée
3	3,00	34,00	102,01	27,44	30,00	Vérifiée
4	3,00	42,09	126,27	24,26	30,00	Vérifiée

D'après le tableau on remarque que les déplacements au sens Y-Y vérifié à la limite.

V.5.3.2.4. Résultante des forces sismiques de calcul :

> D'après les résultats du logiciel "ETABS " les réactions à la base est comme

suit : $\begin{cases} E_x = 27223.39kN \\ E_y = 24362.01kN \end{cases}$

La méthode statique équivalente donne les résultats suivants :

$$W = 86940.24kN \rightarrow \begin{cases} V_x = 29345.69kN \\ V_y = 25674.19kN \end{cases}$$

Tableau V. 10: Vérification de la force sismique suivant le 2 sens.

	V _{t,dyn}	V	0.8V	r	$V_t < 0.8V$
Le sens YY	24362.01	25674.19	20539.35	0.84	vérifiée
Le sens XX	27223.39	29345.69	23476.55	0.86	vérifiée

V.5.3.3. Modèle finale :

Le modèle suivant est le modèle qui vérifiée touts les conditions :

- la participation massique
- La réponse modale de la structure
- L'effort tranchant a la base
- Le déplacement inter étage
- L'effet p- Δ .

Figure V. 7: modèle finale de la structure en 3D.

La figure suivante montré la position des contreventements qui on ajouté dans notre structure :

Figure V. 8: position de contreventement pour le modèle final de la structure.

L'analyse dynamique de la structure a conduit à :

- _ Une période fondamentale : T =0.491 sec
- _ La participation massique dépasse le seuil des 90% à partir du mode 59

V.5.3.3.1. Période et participation du model :

Case	Mode	Period	UX	UY	Sum	Sum
		sec			UX	UY
Modal	1	0,491	0,7864	0,0201	0,7864	0,0201
Modal	2	0,478	0,0188	0,7666	0,8052	0,7867
Modal	3	0,36	0,0008	0,0028	0,806	0,7895
Modal	4	0,283	0	0	0,806	0,7895
Modal	5	0,269	0,0001	0,0001	0,8061	0,7895
Modal	6	0,261	0,00002438	7,688E-07	0,8061	0,7895
Modal	7	0,259	0,00003834	0	0,8061	0,7895
Modal	8	0,251	0,00001106	0,000004929	0,8061	0,7895
Modal	9	0,248	0,00001901	0,00001247	0,8061	0,7895
Modal	10	0,245	0,0001	0,0002	0,8063	0,7897
Modal	11	0,242	0,00004328	0,00006455	0,8063	0,7897
Modal	12	0,241	0	0,00002237	0,8063	0,7897
Modal	13	0,239	0,000001446	0	0,8063	0,7897
Modal	14	0,237	9,045E-07	0	0,8063	0,7897
Modal	15	0,235	0,0001	0,0002	0,8064	0,7899
Modal	16	0,235	0,0003	0,0003	0,8067	0,7902
Modal	17	0,234	0,0001	0,00003816	0,8068	0,7902
Modal	18	0,232	0,0003	0,0001	0,807	0,7903
Modal	19	0,232	0,00000191	0	0,807	0,7903
Modal	20	0,227	0,00003234	5,896E-07	0,8071	0,7903
Modal	21	0,227	0,0002	0,0005	0,8073	0,7908
Modal	22	0,226	0,0000784	0,00001389	0,8073	0,7908
Modal	23	0,223	0,0001	0,0013	0,8074	0,7921
Modal	24	0,223	0,00002985	0,00001046	0,8074	0,7921
Modal	25	0,221	0,00001323	0,00001912	0,8074	0,7921
Modal	26	0,22	0,0001	0,0001	0,8075	0,7922
Modal	27	0,218	0,0001	0,0001	0,8077	0,7923
Modal	28	0,214	0,0001	0,00003714	0,8077	0,7924
Modal	29	0,211	0,0002	0,0004	0,8079	0,7927
Modal	30	0,207	0,0001	0,0021	0,8081	0,7948
Modal	31	0,204	0,0015	0,0032	0,8096	0,798
Modal	32	0,201	0,000001281	0,0001	0,8096	0,798
Modal	33	0,201	0,00004497	0,00009793	0,8096	0,798
Modal	34	0,197	0,00001115	0,0001	0,8096	0,7981
Modal	35	0,197	0,0028	0,0026	0,8124	0,8008
Modal	36	0,197	0,0005	0,00004034	0,813	0,8008
Modal	37	0,196	0,00002817	0,0003	0,813	0,8011
Modal	38	0,195	0,00003859	0,0001	0,8131	0,8012
Modal	39	0,195	0	0,0002	0,8131	0,8014

 Tableau V. 11: Pourcentage de participation massique pour le modèle final.

Modal	40	0,194	0,0001	0,0014	0,8131	0,8028
Modal	41	0,193	0,0003	0,0002	0,8134	0,803
Modal	42	0,192	0,0002	0,0041	0,8136	0,807
Modal	43	0,192	0,0005	0,0043	0,8141	0,8113
Modal	44	0,191	0,0001	0,0057	0,8142	0,8171
Modal	45	0,19	0,0038	0,0269	0,818	0,844
Modal	46	0,189	0,00001927	0,00009432	0,818	0,844
Modal	47	0,188	0	0,0163	0,818	0,8603
Modal	48	0,188	0,0008	0,0148	0,8188	0,8751
Modal	49	0,187	0,00004924	0,0002	0,8189	0,8753
Modal	50	0,187	0,00007591	0,0011	0,8189	0,8763
Modal	51	0,187	0	0,0003	0,8189	0,8766
Modal	52	0,186	0	0,001	0,8189	0,8776
Modal	53	0,185	0,0000102	0,0314	0,8189	0,909
Modal	54	0,185	0,0001	0,0297	0,819	0,9387
Modal	55	0,183	0,0008	0,0036	0,8198	0,9423
Modal	56	0,183	0,0019	0,0043	0,8217	0,9466
Modal	57	0,182	0,0007	0,0015	0,8224	0,9481
Modal	58	0,181	0,0231	0,0001	0,8455	0,9482
Modal	59	0,18	0,0659	0,0038	0,9114	0,952
Modal	60	0,18	0,0444	0,0001	0,9557	0,9521
Modal	61	0,18	0,0039	0	0,9596	0,9521
Modal	62	0,178	0,0002	0,00006045	0,9597	0,9521
Modal	63	0,177	0,0004	0,00004261	0,9602	0,9521
Modal	64	0,175	8,617E-07	0,00001881	0,9602	0,9521
Modal	65	0,175	0,0001	7,515E-07	0,9603	0,9521
Modal	66	0,173	0,00002234	0,0002	0,9603	0,9524
Modal	67	0,173	0,00002865	0,0003	0,9604	0,9526
Modal	68	0,171	0,00002415	0,00001176	0,9604	0,9526
Modal	69	0,169	0,000007978	0,0001	0,9604	0,9527
Modal	70	0,168	0,0062	0,0006	0,9666	0,9532
Modal	71	0,168	0,00004823	0,00008646	0,9666	0,9532
Modal	72	0,167	0,00003941	0,000002418	0,9666	0,9532
Modal	73	0,166	0,0001	0,00001057	0,9667	0,9532
Modal	74	0,165	0,00002827	0,000005178	0,9667	0,9532
Modal	75	0,165	0,00003444	0,00008998	0,9667	0,9533

• Modes de vibration obtenue :

Premier mode de vibration : une translation suivant X-X :

Figure V. 9: 1er mode vibration : translation suivant Y-Y avec un période de 0.491 secs.

Deuxième mode de vibration : une translation suivant Y-Y :

Figure V. 10: 2eme mode de vibration : translation suivant X-X avec un période de 0.478secs

Troisième mode de vibration : une rotation autour de Z-Z

V.5.3.3.2. Choix de la période T utilisée pour le calcule :

> Suivant XX :

 $\begin{cases} T_{empérique} = 0.23s \\ T_{analytique} = 0.491s \end{cases} \rightarrow T_{analytique} > 1.3T_{empérique} = 0.299s \quad \rightarrow T = 1.3T_{empérique}$

> Suivant YY :

 $\begin{cases} T_{emp\acute{e}rique} = 0.33s \\ T_{analytique} = 0.478s \end{cases} \rightarrow T_{analytique} > 1.3T_{emp\acute{e}rique} = 0.429s \rightarrow T = 1.3T_{emp\acute{e}rique}$

V.5.3.3.3. Vérification du déplacement inter étage :

> Suivant XX :

Etage	Niveau (m)	δ _{ex} (mm)	Δ _{ex} (mm)	Δ _x (mm)	0,01H (mm)	Observation
RDC	3,90	5.932	17,80	17,80	39,00	Vérifiée
1	3,00	11.414	34,24	16,45	30,00	Vérifiée
2	3,00	17.312	51,94	17,69	30,00	Vérifiée
3	3,00	23.361	70,08	18,15	30,00	Vérifiée
4	3,00	28.743	86,23	16,15	30,00	Vérifiée

Tableau V. 12:	Vérification	de déplacement	suivant X-X.

> Suivant YY :

Etage	Niveau (m)	δ _{eY} (mm)	Δ _{ey} (mm)	Δ _y (mm)	0,01H (mm)	Observation
RDC	3,90	7.471	22,41	22,41	39,00	Vérifiée
1	3,00	14.125	42,38	19,96	30,00	Vérifiée
2	3,00	21.254	63,76	21,39	30,00	Vérifiée
3	3,00	28.247	84,74	20,98	30,00	Vérifiée
4	3,00	34.221	102,66	17,92	30,00	Vérifiée

Tableau V. 13Vérification de déplacement suivant Y-Y.

V.5.3.3.4. Résultante des forces sismiques de calcul :

> D'après les résultats du logiciel " ETABS " les réactions à la base est comme suit :

 $\begin{cases} E_x = 29779.6005kN \\ E_y = 29448.1805kN \end{cases}$

La méthode statique équivalente est donne les résultats suivants :

 $W = 87949.4583 kN \rightarrow \begin{cases} V_x = 29686.34 kN \\ V_y = 29686.34 kN \end{cases}$

Tableau V. 14: Vérification de la force sismique suivant les 02 sens.

	V _{t,dyn}	V	0.8V	r	$V_t < 0.8V$
Le sens YY	29448.1805	29686.34	23749.07	0.81	vérifiée
Le sens XX	29779.6005	29686.34	23749.07	0.80	vérifiée

V.5.3.4. Justification vis à vis de l'effet P-∆.

Il s'agit du moment supplémentaire en raison du produit d'une contrainte normale dans une colonne au niveau d'une structure par le déplacement horizontal du nœud considéré. Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition Suivante est satisfaite à tous les niveaux :

$$\theta = P_k \Delta_k / V_k h_K \le 0.10$$

Avec :

 P_k : Poids total de la structure et des charges d'exploitation associées au dessus du niveau «k »

$$\sum_{i=1}^n (W_{Gi} + \beta W_{Qi})$$

- _ V_k : effort tranchant d'étage au niveau "k" $V_k = \sum_{i=1}^n F_i$
- Δ_k : déplacement relatif du niveau « k » par rapport au niveau « k-1 »
- h_K : hauteur de l'étage « k ».
- Si θ . < 0,1 : les effets de 2éme ordre sont négligés
- Si $0, 1 < \theta$. < 0, 2: il faut augmenter l'effet de l'action sismique calculés par un facteur égale a : $1/1 \theta$.
- Si θ . > 0,2 : la structure est potentiellement instable et doit être redimensionnée.
- > Suivant XX :

Niveau	$P_k(KN)$	$\Delta_k(\mathbf{m})$	$V_k(KN)$	$h_k(m)$	θ	Observation
4	17862,5507	0,02	10587	3	0,01	Vérifiée
3	30590,2419	0,02	16323	3	0,011	Vérifiée
2	49996,8704	0,02	22724	3	0,013	Vérifiée
1	69434,8509	0,02	27270	3	0,014	Vérifiée
RDC	87949,4583	0,02	29780	3,9	0,013	Vérifiée

Tableau V. 15: Vérification de l'effet P-delta suivant X-X.

Suivant Y-Y :

Tableau V. 16: Vérification de l'effet P-delta suivant Y-Y.

Niveau	P _k (KN)	$\Delta_k(\mathbf{cm})$	$V_k(KN)$	$h_k(m)$	θ	Observation
4	17862,5507	0,02	10822	3	0,01	Vérifiée
3	30590,2419	0,02	16361	3	0,013	Vérifiée
2	49996,8704	0,02	2254	3	0,158	Vérifiée
1	69434,8509	0,02	26985	3	0,017	Vérifiée
RDC	87949,4583	0,02	29448	3,9	0,017	Vérifiée

V.5.3.5. Vérification des conditions du Coefficient de comportement :

Le facteur de comportement est un facteur introduit dans le règlement parasismique pour réduire les forces élastique obtenues d'une analyse élastique linéaire .pour tenir compte de la dissipation d'énergie au tremblement de terre. Ce coefficient de comportement tient en compte globalement de la capacité dissipative hystérétique de la structure, permettant de ramener son dimensionnement à un niveau de comportement élastique avec l'introduction de forces sismique équivalentes d'intensité réduite. Suivant la section 3.4.9 de [2], Pour les structures soutenues par des barres en V, la structure complète prend en charge toutes les charges verticales et les barres en V prennent en charge toutes les charges horizontales et nos palés respects la condition.

• Effort normale :

 $\begin{cases} N_{total} = 103622.2128 \text{kN} \\ N_{stabilit\acute{e}} = 3481.5247 \text{kN} \\ \end{array} \rightarrow \frac{3481.5247}{103622.2128} = 3.71\% < 20\% \end{cases}$

• Effort tranchant :

Suivant XX

 $\begin{cases} E_{x_{total}} = 29779.6005 \text{kN} \\ E_{x_{stabilit\acute{e}}} = 25996.0302 \text{kN} \end{cases} \rightarrow \frac{25996.0302}{29779.6005} = 87.29\%$

Suivant YY :

$$\begin{cases}
E_{y_{total}} = 29448.1805 \text{kN} \\
E_{y_{stabilite}} = 28196.1385 \text{ kN} \rightarrow \frac{28196.1385}{29448.1805} = 95.75\%
\end{cases}$$

V.5.3.6. <u>Récapitulatif :</u>

Les sections finales des éléments sont comme suite :

Etage	Poteau	Poutre principales	Poutre secondaire	Solive	Palées de stabilité
Terrasse	HEB280	IPE360	HEA200	IPE200	Tub220*220*16
4eme	HEB280	IPE450	HEA200	IPE200	Tub220*220*16
3eme	HEB280	IPE450	HEA200	IPE200	Tub220*220*16
2eme	HEB280	IPE450	HEA200	IPE200	Tub220*220*16
1 ^{er}	HEB340	IPE450	HEA200	IPE200	Tub220*220*16
RDC	HEB340	IPE450	HEA200	IPE200	Tub220*220*16

Tableau V. 17: Récapitulatif des sections finales

V.6. Conclusion :

En comparant les résultats obtenus à partir des modèles que nous avons passés, nous avons vu l'effet de la force sismique sur les structures. Le suivi des différents résultats a également montré l'importance de respecter les différentes règles de construction évité les dommages.

Les résultats obtenus par le modèle renforcé sont vérifiés est satisfaisant pour l'exigence de l'RPA version 2003 :

- _ Vérification des modes de translation
- _ Vérifications des déplacements inter étage
- _ Vérification de l'effet P- Δ

Chapitre VI : Vérifications des éléments de l'ossature

VI.1. Introduction :

Pour sécuriser le bâtiment, il est nécessaire de vérifier les éléments de notre structure qui se compose généralement d'élément fléchis, comprimée ou comprimé et fléchis a la fois. Les contraintes dans les éléments se développent pour provoquer les actions de leur soumis, génèrent des contraintes dans le matériau et des déformations de l'élément. Et pour cela on doit vérifier deux types de phénomènes d'instabilité qui sont :

Le flambement : phénomène très dangereux, il affecte les poteaux simplement comprimés ainsi que les poteaux comprimés fléchis

Le déversement : moins dangereux, il affecte les semelles comprimées des poutres fléchies.

Le voilement : de moindre importance, il affecte les âmes des poutres fléchies.

Figure VI. 1: phénomène d'instabilité.

VI.2. Vérification des poteaux :

VI.2.1. Vérification vis-à-vis du risque de flambement [1]:

Lorsque leurs liaisons sont rigides aux extrémités, le poteau subit alors une combinaison de flexion et de compression. Cette souplesse accentue davantage le risque de flambage. Par la suite, la vérification doit être plus restrictive et ce, en tenant compte non seulement de l'intensité des efforts appliqués mais aussi de la distribution (au bien de l'allure) des moments fléchissant la longe de ce poteau.

Les différentes sollicitations doivent être combinées dans les cas les plus défavorables, qui sont :

- _ Cas 1 : N_{sd}^{max} ; M_{sd_v} et M_{sd_z} correspondent;
- _ Cas 2 : $M_{sd_v}^{max}$; N_{sd} et M_{sd_z} correspondent;

Cas 3 : $M_{sd_z}^{max}$; N_{sd} et M_{sd_y} correspondant.

Pour les éléments comportant des sections de classe 01 et 02, la vérification consiste à s'assurer que :

$$\frac{N_{sd}}{\chi_{min}Af_y/\gamma_{m1}} + \frac{K_y M_{sd,y}}{W_{pl,y}f_y/\gamma_{m1}} + \frac{K_z M_{sd,z}}{W_{pl,z}f_y/\gamma_{m1}} \le 1$$

Où

 $\chi_{min} = \min(\chi_z; \chi_y)$ représente le facteur de réduction pour le flambement des poteaux,

 K_y et K_z représentent des facteurs de modification :

$$\begin{cases} K_{y} = 1 - \frac{\mu_{y} \cdot N_{sd}}{\chi_{y} A f_{y}} & \text{mais } K_{y} \leq 1.5 \text{ et } \mu_{y} = \overline{\lambda}_{y} (2\beta_{My} - 4) + \frac{W_{pl,y} - W_{el,y}}{W_{el,y}} & (\mu_{y} \leq 0.90) \\ K_{z} = 1 - \frac{\mu_{z} \cdot N_{sd}}{\chi_{z} A f_{y}} & \text{mais } K_{z} \leq 1.5 \text{ et } \mu_{y} = \overline{\lambda}_{z} (2\beta_{Mz} - 4) + \frac{W_{pl,z} - W_{el,z}}{W_{el,z}} & (\mu_{z} \leq 0.90) \end{cases}$$

Avec :

 β_{My} Et β_{Mz} représentent des facteurs de moments uniformes équivalents prenant en compte le non uniformité du diagramme des moments.

VI.2.1.1. Cas 1 : N^{max}; M_{sd}, et M_{sd}, correspondant :

> Exemple de calcule :

Nos calculs vont être sur le poteau (E-10) du RDC d'un profilé HEB340 d'une hauteur de 3.9m

Profile	А	$\mathbf{I}_{\mathbf{y}}$	$\mathbf{I}_{\mathbf{z}}$	W _{pl,y}	$W_{\text{pl},z}$	W _{el,y}	W _{el,y}	$\mathbf{i}_{\mathbf{y}}$	iz
	(cm^2)	(cm ⁴)	(cm ⁴)	(cm ³)	(cm^3)	(cm^3)	(cm)	(cm)	(cm)
HEB340	170.9	36660	9690	2408	985.7	2156	646	14.65	7.53

Tableau VI. 1: caractéristique de profile de poteau de RDC.

Les efforts internes tirés du logiciel :

$$N_{sd}^{max} = -1222.906 \text{kN}$$

 $M_{sdy} = 105.2568 \text{ kN. m}$
 $M_{sdz} = -0.19 \text{kN. m}$

• Suivant l'axe Y-Y :

On a
$$\bar{\lambda}_{y} = \left[\frac{\lambda_{y}}{\lambda}\right]$$

$$\begin{cases} \lambda = 93.9 \times \varepsilon = \sqrt{\frac{235}{fy}} = 93.9 \times \sqrt{\frac{235}{275}} = 86.80\\\\ \lambda_{y} = \frac{L_{fy}}{i_{y}} \end{cases}$$

Avec :

$$\eta_1 = \frac{K_c + K_{c_1}}{K_c + K_{c_1} + K_{b_{11}} + K_{b_{12}}}$$

$$\eta_2 = \frac{K_c + K_{c_2}}{K_c + K_{c_2} + K_{b_{21}} + K_{b_{22}}}$$

$$(\eta_1 \text{ et } \eta_2 : \text{facteurs de distrubution de rigidité })$$

 $\rightarrow \begin{cases} K_c: \text{la rigidité du poteau étudié (} K_c = \frac{I}{L}) \\ K_{c_1} \text{ et } K_{c_2}: \text{la rigidité des poteaux adjacents} \\ K_{b_{11}} \text{et } K_{b_{12}}: \text{la rigidité des poutrs j aboutissant à l'éxtrémité i} \end{cases}$

Figure VI. 2: facteur de distribution pour un poteau à noeud fixe.

 $K_{c} = \frac{I_{y_{HEB340}}}{L_{c}} = \frac{36660 \times 10^{4}}{3.9 \times 10^{3}} = 94000 mm^{3}$ $K_{c_{1}} = \frac{I_{y_{HEB340}}}{L_{c_{1}}} = \frac{36660 \times 10^{4}}{3.0 \times 10^{3}} = 122200 mm^{3}$ $K_{c_{2}} = 0 \text{ car le poteau est encastée à la base}$

$$K_{b_{11}} = K_{b_{21}} = \frac{I_{y_{Ipe450}}}{L_{b11}} = \frac{33740 \times 10^4}{6 \times 10^3} = 56233.33 mm^3$$
$$K_{b_{12}} = K_{b_{22}} = \frac{I_{y_{Ipe450}}}{L_{b12}} = \frac{33740 \times 10^4}{6.01 \times 10^3} = 56139.77 mm^3$$

Figure VI. 3: Schématisation de poteau étudier

Donc :

 $\begin{cases} \eta_1 = 0.7 \\ \eta_2 = 0 (\text{ le poteau est encastée a la base }) \\ \rightarrow L_{f_y} = \frac{1 + 0.145\eta_1}{2 - 0.364\eta_1} \times H_c = \frac{1 + 0.145 \times 0.7}{2 - 0.364 \times 0.7} \times 3.9 = 2.50\text{m} \\ \text{On trouve}: \quad \bar{\lambda}_y = \frac{(2.50 \times 10^3/14.65 \times 10)}{86.81} = 0.196 < 0.196 \end{cases}$

0.2 il n'y pas de risque de flambement

• Choix de la courbe de flambement :

$$\begin{cases} \frac{h}{b} = \frac{340}{300} = 1.13 < 1.2\\ t_f = 21.5mm < 100\\ axe Y - Y \end{cases} \rightarrow courbe \ de \ flambement \ b \ (\alpha = 0.34) \end{cases}$$

$$\begin{aligned} \phi_{y} &= 0.5 \left[1 + \alpha_{y} (\overline{\lambda_{y}} - 0.2) + \overline{\lambda_{y}}^{2} \right] = 0.5 [1 + 0.34(0.196 - 0.2) + 0.196^{2}] \\ &= 0.52 \end{aligned}$$

Alors:
$$\chi_y = \frac{1}{\varphi_y + \left[\varphi_y^2 - \overline{\lambda_y}^2\right]^{0.5}} = \frac{1}{0.52 + \left[0.52^2 - 0.196^2\right]^{0.5}} = 0.99$$

$$\beta_{My} = 1.8 - 0.7 \times \psi = 2.39 \text{ avec } \psi = -0.85$$

$$\mu_y = 0.196(2 \times 2.39 - 4) + \frac{2408 - 2156}{2156} = 0.18 < 0.90$$

$$\rightarrow \quad K_y = 1 - \frac{(0.18) \times (1222.906) \times 10^3}{0.99 \times 170.9 \times 10^2 \times 275} = 0.95 < 1.5$$

• Suivant l'axe z-z :

$$K_{c} = \frac{l_{z_{HEB340}}}{L_{c}} = \frac{9690 \times 10^{4}}{3.9 \times 10^{3}} = 24846.15mm^{3}$$

$$K_{c_{1}} = \frac{9690 \times 10^{4}}{3 \times 10^{3}} = 32300mm^{3}$$

$$K_{c_{2}} = 0$$

$$K_{b_{11}} = K_{b_{21}} = \frac{l_{z_{Ipe450}}}{L_{b11}} = \frac{1676 \times 10^{4}}{6 \times 10^{3}} = 2793.33mm^{3}$$

$$K_{b_{12}} = K_{b_{22}} = \frac{1676 \times 10^{4}}{6.01 \times 10^{3}} = 2788.68mm^{3}$$
Donc : $\begin{cases} \eta_{1} = 0.91 \\ \eta_{2} = 0 \end{cases}$

$$\rightarrow L_{f_{z}} = \frac{1 + 0.145 \times 0.91}{2 - 0.364 \times 0.91} \times 3.9 = 2.645m \end{cases}$$

On trouve :

$$\bar{\lambda}_z = \frac{(2.645 \times 10^3 / 7.53 \times 10)}{86.81} = 0.40 > 0.2$$
 il y a de risque de flambement

• Choix de la courbe de flambement :

$$\begin{cases} \frac{h}{b} = \frac{340}{300} = 1.13 < 1.2\\ t_f = 21.5mm < 100\\ axe\ Z - Z \end{cases} \rightarrow courbe\ de\ flambement\ c\ (\ \alpha = 0.49) \end{cases}$$

$$\varphi_{\rm z} = 0.5[1 + 0.49(0.4 - 0.2) + 0.4^2] = 0.63$$

Alors :

$$\chi_z = \frac{1}{0.63 + [0.63^2 - 0.40]^{0.5}} = 0.90$$

 $\beta_{Mz} = 2.47$ avec $\psi = -0.9$

$$\mu_z = 0.4(2 \times 2.47 - 4) + \frac{985.7 - 646.0}{646.0} = 0.90 \le 0.90$$

$$\rightarrow \quad K_z = 1 - \frac{(0.90) \times (1222.2568) \times 10^3}{0.90 \times 170.9 \times 10^2 \times 275} = 0.74 < 1.5$$

Finalement on trouve : $(\chi_{min} = 0.90)$

$$\frac{1222.906 \times 10^{3}}{0.90 \times 170.9 \times 10^{2} \times 275/1.1} + \frac{0.93 \times 105.2568 \times 10^{6}}{2408 \times 10^{3} \times 275/1.1} + \frac{0.74 \times (0.19) \times 10^{6}}{985.7 \times 10^{3} \times 275/1.1} = 0.48$$

 $0.48 \leq 1 \dots \dots \dots \dots$... Condition vérifiée .

Tableau VI. 2: Effort internes des poteaux sous N_{max} pour chaque niveau.

Niveau	Combinaison	N _{sd} ^{max} [kN]	M _{sdy} [kN.m]	<i>M_{sdz}</i> [kN.m]
4 (double	$G+Q+E_x$	-316.377	47.7316	3.3356
hauteur)				
2	$G+Q+E_x$	-657.3429	14.4344	4.1149
1	$G+Q+E_x$	-941.5799	73.693	-15.2759
RDC	$G+Q+E_x$	-1222.906	105.2568	-0.19

Les résultats de vérification au flambement sous N_{max} pour chaque niveau résumé dans le tableau suivant :

Etage	profilé	Lor	ngueur	Les coefficients			La	Condition
			de				valeur finale	≤1
		flamb	ement					
		L_{f_y}	L_{f_z}	Xmin	Ky	Kz		
4(Double	HEB280	3.786	4.10	0.75	0.96	1.04	0.27	
hauteur)								
2	HEB280	1.91	2.10	0.93	0.95	0.83	0.26	Condition
1	HEB340	1.97	2.122	0.94	0.96	0.98	0.41	vennee
RDC	HEB340	2.573	2.664	0.90	0.93	0.74	0.48	

Tableau VI. 3: Vérification au flambement par flexion.

VI.2.1.2.	Cas	2:	M ^{max}	;	Nsd	et M _{sd}	correspondant:
-			July			Z	

Niveau	Combinaison	$M_{sd_y}^{max}$ [kN.m]	N _{sd} [kN]	<i>M_{sdz}</i> [kN.m]
4 (double	$G+Q+E_x$	93.0093	-310.69	-10.3131
hauteur)				
2	$G+Q+E_x$	92.7372	-657.3429	-9.0763
1	$G+Q+E_x$	79.9870	-938.2235	10.3977
RDC	$G+Q+E_x$	105.2568	-1222.906	-0.19

Tableau VI. 4: effort internes du poteau sous My,max pour chaque niveau.

Les résultats de vérification au flambement sous M_{y,max} pour chaque niveau résumé dans le tableau suivants :

Etage	profilé	Longueur		Les coefficients		La	Condition	
		de flambement					valeur finale	<u>≤1</u>
		L_{f_y}	L_{f_z}	Xmin	Ky	Kz		
4(Double	HEB280	3.786	4.10	0.75	0.96	1.04	0.42	
hauteur)								Condition
2	HEB280	1.91	2.10	0.93	0.47	0.83	0.37	vérifiée
1	HEB340	1.97	2.122	0.94	0.62	0.89	0.35	
RDC	HEB340	2.573	2.664	0.90	0.93	0.74	0.48	

Tableau VI. 5: Vérification au flambment par flexion.

VI.2.1.3. Cas 3 : M^{max} ; N_{sd} et M_{sd} correspondant :

Tableau VI. 6: Effort interne sous M_{z,max} des poteaux pour chaque poteau.

Niveau	Combinaison	$M_{sd_z}^{max}$ [kN]	N _{sd} [kN.m]	M _{sdy} [kN.m]
4 (double	$G+Q+E_x$	-10.3131	-310.69	93.0093
hauteur)				
2	$G+Q+E_x$	14.3251	-654.7716	76.1168
1	$G+Q+E_x$	-15.2759	-941.5799	73.693
RDC	G+Q+E _y	9.9192	-1218.365	73.3156

Le tableau suivants montré les résultats obtenus de la vérification au flambement sous M_{z,max} pour chaque étages :

Etage	profilé	Lor	ngueur	Les coefficients			La	Condition
			de				valeur finale	≤1
		flamb	ement					
		L_{f_y}	L_{f_z}	Xmin	Ky	Kz		
4(Double	HEB280	3.786	4.10	0.75	0.96	1.04	0.42	
hauteur)								Condition
2	HEB280	1.91	2.10	0.93	0.95	0.83	0.47	vérifiée
1	HEB340	1.97	2.122	0.94	0.96	0.98	0.41	
RDC	HEB340	2.573	2.664	0.90	0.95	1.25	0.48	

Tableau VI. 7: Vérification au flambement par flexion.

VI.2.2. Vérification vis-à-vis du risque de déversements :

Les poutres fléchies selon l'axe de forte inertie peuvent présenter une ruine par instabilité dans le plan de faible inertie. Cette forme d'instabilité implique à la fois une flèche latérale de la partie de la poutre en compression et une rotation de torsion des sections - le déversement. Le moment appliqué atteint lorsqu'une poutre flambe par déversement, est appelé moment critique élastique de déversement.

Eléments comportant des sections de classe et soumis à une combinaison d'effort de compression et de moments de flexion doivent satisfaire à la condition suivante :

$$\frac{N_{sd}}{\chi_z A f_y / \gamma_{m1}} + \frac{K_{Lt} M_{sd,y}}{\chi_{Lt} W_{pl,y} f_y / \gamma_{m1}} + \frac{K_z M_{sd,z}}{W_{pl,z} f_y / \gamma_{m1}} \le 1$$

Ou :

$$K_{Lt} = 1 - \frac{\mu_{Lt} \cdot N_{sd}}{\chi_z A f_y} \le 1 \quad et \qquad \mu_{Lt} = 0.15 \times \overline{\lambda}_z \times \beta_{MLt} - 0.15 \qquad (\mu_{Lt} \le 0.90)$$

Avec β_{MLt} : est un facteur de moment uniforme équivalent pour le déversement.

$$- \chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}}$$
$$- \overline{\lambda}_{Lt} = \left[\frac{\lambda_{Lt}}{\lambda}\right] \longrightarrow \lambda_{LT} = \frac{kL/i_z}{C_1^{0.5} + \left[\frac{k}{k_W} + \frac{1}{20}\left(\frac{kL/i_z}{h/e_s}\right)^2\right]^{0.25}}$$

si $~\overline{\lambda}_{Lt}~\leq 0.4~\text{pas}$ risque de déversement

On a :

$$\begin{cases} C_1 = 2.092 \\ k = k_w = 2.092 \\ \beta_{MLt} = 1 \end{cases}$$

Les résultats de calculs sont résumés dans le tableau suivant :

Tableau VI. 8 : Vérification au risque de déversement des poteaux pour cha	que
niveau.	

Etage	Profilé	λ_{LT}	Condition	Observation
			$\overline{\lambda}_{Lt} \leq 0.4$	
4 (double	HEB280	0.53	Non vérifiée	Risque de
hauteur)				déversement
2	HEB280	0.31	Vérifiée	Pas risque de
1	HEB340	0.3		déversement
RDC	HEB340	0.33		

Nous allons donc vérifier le déversement dans le poteau qui a double hauteur :

$$\begin{array}{l} \alpha_{LT} = 0.21 \mbox{ (section laminée)} \\ \rightarrow \phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda_{LT}}^2 \right] = 0.68 \end{array}$$

Alors :

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}} = \frac{1}{0.68 + (0.68^2 - 0.53^2)^{0.5}} = 0.90$$

$$\mu_{Lt} = 0.15 \times 0.66 \times 1 - 0.15 = -0.05 < 0.90$$

$$\rightarrow K_{Lt} = 1 - \frac{(-0.05) \times 310.69 \times 10^3}{0.75 \times 131.4 \times 10^2 \times 275} = 1$$

$$\frac{310.69 \times 10^3}{0.75 \times 131.4 \times 10^2 \times \frac{275}{1.1}} + \frac{1 \times 93.0093 \times 10^6}{0.90 \times 1534 \times 10^3 \times \frac{275}{1.1}} + \frac{1.04 \times 10.3131 \times 10^6}{717.6 \times 10^3 \times \frac{275}{1.1}} = 0.46$$

0.46 < 1 donc la stabilité est vérifiée

• Les sections finales des poteaux de la structure sont comme suite :

le RDC et 1^{er} étage : HEB340

(le reste des étages : HEB280

VI.3. Vérification de la poutre principale :

Les poutres principales à chaque étage du bâtiment sont bi-encastrées aux poteaux et ils sont soumis à une flexion simple accompagnée d'un effort tranchant.

VI.3.1. Plancher courant :

Les calculs serons fait sur une poutre principale du 1^{er} étage de profilé IPE450 et longueur L=8m.

Figure VI. 4: Schéma statique de la poutre principale.

a. <u>Moment fléchissant :</u>

Nous allons vérifier la condition suivante :

 $M_{sd} \leq M_{plrd}$

Figure VI. 5: diagramme de moment de la poutre principale obtenu de logiciel ETABS.

 $M_{sd}^{max} = 318.6315kN.m$ $M_{plrd} = \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{1702 \times 275 \times 10^{+3}}{1.1} \times 10^{-6} = 425.5KN.m$ $r = \frac{M_{sd}^{max}}{M_{plrd}} = \frac{318.6315}{425.5} = 0.75$

b. <u>Vérification à l'effort tranchant :</u>

Figure VI. 6: diagramme d'effort tranchant de la poutre obtenu de logiciel ETABS.

$$V_{sd}^{max} = 203.871kN$$

$$V_{plrd} = \frac{A_v \times f_y}{\sqrt{3} \times \gamma_{m0}} = \frac{50.85 \times 275 \times 10^{+2}}{\sqrt{3} \times 1.1} \times 10^{-3} = 733.956kN$$

 $V_{sd}^{max} < V_{plrd} \dots \dots \dots$ donc condition vérifiée

 $V_{sd}^{max} < 0.5 V_{plrd} \dots$ Pas d'interaction entre le moment et l'effort tranchant

c. <u>Vérification de Voilement :</u>

Une âme d'un élément doit faire l'objet d'une vérification du voilement si :

 $-\frac{d}{t_w} > 69. \varepsilon \dots$ pour des ames sans raidisseurs

$$\frac{d}{t_w} > 30. \epsilon. \sqrt{k_t}$$
 ... pour des ames comportant raidisseurs

Les profilés laminés sont conçus de telles à ce qu'ils vérifient $\frac{d}{t_w} < 69.\varepsilon$ donc la vérification de voilement n'est pas nécessaire.

d. <u>Vérification de déversements :</u>

Le maintien latéral de la semelle comprimée de la poutre par le plancher collaborant rend cette dernière peu sensible au déversement ; du fait qu'il constitue un blocage de la rotation et qu'il réduit la longueur de déversement. Donc la vérification de déversement n'est pas, nécessaire. [11]

VI.3.2. Plancher terrasse :

Tant que la même procédure de calcule répéter dans les poutres de plancher terrasse on a récapitulé les résultats dans le tableau suivant :

Poutre	Longueur	M_{sd}^{max} [kN.m]	M_{plrd} [kN.m]	$M_{sd}^{max} < M_{plrd}$
IPE360	8m	220.222	254.750	Vérifiée

Tableau VI. 9: Vérification de moment flechissant de poutre terrasse.

Tableau VI. 10: Vérification de Effort tranchant de poutre terrasse.

Poutre	Longueur	<i>V_{sd}^{max}</i> [kN]	<i>V_{plrd}</i> [kN]	$V_{sd}^{max} < V_{plrd}$
IPE360	8m	143.8933	507.222	Vérifiée

VI.4. Vérification des palées de stabilités :

Les types des palées triangulées utilisées dans cette étude et qui sont autorisés par [2] sont en V (pour les 02 sens).

Dans ce type de palée, point d'intersection des diagonales se trouve sur la barre horizontale. La résistance à l'action sismique est fournie par la participation conjointe des barres tendues et des barres comprimées. [2]

VI.4.1. Vérification des contreventements de sens Y :

Les contreventements sont tubulaires Tub220×220×16.

Figure VI. 7: Contreventement en V.

Le contreventement est d'une longueur L=4.9204m et des caractéristiques décrits dans le tableau suivant :

Profilé	A[cm ²]	t [mm]	$I_y [cm^4]$	W _{ply} [cm ³]	I _y [mm]
Tub220×220×16	128	16	8749	969	82.7

Tableau VI. 11 : Caractéristique de profilé de Contreventement Tub220*220*16

a. <u>Vérification à la traction :</u>

D'après le logiciel ETABS la combinaison des charges la plus défavorable est

G+Q+1.5Ey avec $N_{sd} = 2419.6062kN$

On doit vérifiée que $N_{sd} < N_{t.Rd}$

$$N_{plrd} = \frac{A.f_y}{\gamma_{m_1}} \rightarrow N_{plrd} = \frac{128 \times 10^2 \times 275}{1.1} \times 10^{-3} = 3200 kN$$

 $N_{sd} = 2419.6062kN < N_{t.Rd} = N_{plrd} = 3200kN$

→ condition vérifiée

b. <u>Vérification à la compression :</u>

On doit vérifier que : $N_{sd} < N_{plrd} = \chi \cdot \frac{\beta_{a} \cdot A \cdot f_{y}}{\gamma_{m_{1}}}$

Classification de la section :

Classification de l'âme : $\frac{d}{t} \le 33\varepsilon \rightarrow \frac{156}{16} = 9.75 \le 30.36 \quad (33\varepsilon = 30.36 \text{ avec } \varepsilon = 0.92)$

 \rightarrow l'ame est de classe 1

Classification de la semelle :

$$\frac{c}{t} \le 10\varepsilon \rightarrow \frac{156}{16} = 9.75 > 9.2 \quad (10\varepsilon = 9.2)$$

$$\frac{c}{t} < 11\varepsilon = 10.12 \rightarrow \text{la semelle est de classe 2}$$

 \rightarrow Donc le profilé est de classe 2

 $\succ \qquad \text{Calcul du coefficient de réduction } \chi$

$$\overline{\lambda_{y}} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] [\beta_{A}]^{0.5} = \frac{59.5}{86.81} \times 1^{0.1} = 0.69 > 0.2 \rightarrow \text{risque de flamebment}$$

$$\text{Avec} \begin{cases} \beta_{A} = 1 \text{ (section de classe 2)} \\ l_{f} = l_{0} = 4920.4 \\ \lambda_{y} = \frac{L_{f}}{iy} = \frac{4920.4}{82.7} = 59.5 \\ \lambda_{1} = 93.91\epsilon = 93.91 \times \sqrt{\frac{235}{275}} = 86.81 \end{cases}$$

Choix de la courbe de flambement :

D'après le Tableau 55.3 du [1], pour une section creuse et quel qu'il soit la courbe de flambement, on prend la courbe a ($\alpha = 21$).

$$\varphi_{\rm y} = 0.5 \left[1 + \alpha \left(\overline{\lambda_{\rm y}} - 0.2 \right) + \overline{\lambda_{\rm y}}^2 \right] = 0.5 \left[1 + 0.21(0.69 - 0.2) + 0.69^2 \right] = 0.79$$

$$\chi_{y} = \frac{1}{\phi_{y} + \left[\phi_{y}^{2} - \overline{\lambda_{y}}^{2}\right]^{0.5}} = \frac{1}{0.79 + (0.79^{2} - 0.91^{2})^{0.5}} = 0.91$$

Donc

$$\begin{split} N_{plrd} &= 0.91 \times 1 \times \frac{128 \times 10^2 \times 275}{1.1} = 2912 kN \\ N_{plrd} &= 2912 kN > N_{sd} = 2419.60062 kN \end{split}$$

VI.4.2. Vérification des contreventements de sens X :

Ces contreventements sont également tubulaires Tub220×220×16 , d'après le logiciel ETABS, la combinaison de charges la plus défavorables est G+Q+1. $5E_x$

Tant que la même procédure de calcule répéter dans les contreventements de sens X on a récapitulé les résultats dans le tableau suivante :

Tableau VI. 12: Résulta de vérification de contreventement de sens X

		Vérification à la traction			Vérification à la		
					с	ompressi	ion
Profilé	L[m]	N _{sd} N _{t.Rd} N _{sd}		N _{sd}	N _{plrd}	N _{sd}	
		[kN]	[kN]	$< N_{t.Rd}$			$< N_{plrd}$
Tub220×220×16	4.9510	2577.3	3200	Vérifiée	2577.3	2912	Vérifiée

VI.5. Les sections finales des éléments de la structure :

Etage	Poteau	Poteau Poutre	
4eme	HEB280	IPE360	Tub220×220×16
3eme	HEB280	IPE450	Tub220×220×16
2eme	HEB280	IPE450	Tub220×220×16
1 ^{er}	HEB340	IPE450	Tub220×220×16
RDC	HEB340	IPE450	Tub220×220×16

Tableau VI. 13: Récapitulatif de sections finales des éléments de la structure.

VI.6. Conclusion :

A travers toutes les vérifications qui ont été menées et résultats obtenus, nous pouvons dire que la structure est sécurisée.

Chapitre VII : Etude d'assemblage

VII.1. Introduction :

Un assemblages est un dispositif de liaison qui permet de regrouper et d'assembler plusieurs pièces entre eux en assurant la transmission et la répartition des différentes contraintes (N_{sd} , M_{sd} , V_{sd})entre les éléments assemblés sans générer de sollicitation parasites.

Deux possibilités se présentent pour les assemblages :

<u>Assemblages articulés</u> : Les assemblages articulés ne transmettent souvent qu'un effort tranchant, plus rarement un effort normal.

<u>Assemblages rigides</u>: Les assemblages rigides servent à transmettre des moments de flexion.

- Les principaux moyens d'assemblage sont :
- _ les rivets (RIVETAGE),
- _____ les boulons ordinaires et les boulons à haute résistance (BOULONNAGE),
- les cordons de soudure (SOUDAGE).
- Choix du type d'assemblage : Le choix d'assemblage est fait en fonction du :
- _ Critère structurel : résistance, comportement
- _ Critère de fabrication : faisabilité
- Critère propre au montage sur site : possibilité de réglages, faisabilité
- _ Critère économique

Pour notre projet on a utilisée 02 types d'assemblages :

- _ Assemblages soudés.
- _ Assemblage par boulons (ordinaires et H-R).

Les assemblages qui nous a vous traité sont :

- (Assemblage poutre solive
- $\begin{cases} Assemblage poteau poutre \rightarrow manuellement \\ Assemblage contreventment \end{cases}$
 - (Assemblage poteau poteau
- $\begin{cases} \rightarrow \text{ par logiciel} \\ \text{Assemblage pied de poteau} \end{cases}$

VII.2. <u>Assemblage Solive – Poutre : [13]</u>

L'assemblage est articulé .et dans ce cas, les solives sont isostatiques et l'assemblage doit transmettre la réaction d'appui de la solive dans la poutre. Est réalisé avec deux cornières à l'extrémité de la solive et l'âme de la poutre.

Figure VII. 1: Assemblage Poutre IPE450-Solive IPE200 dessin sur logiciel TEKLA structure

Les caractéristiques des profilés sont regroupées dans le tableau suivant :

Profilé	h (mm)	b (mm)	$t_{f}(mm)$	t _w (mm)	A(cm ²)
IPE450	450	190	14.6	9.4	98.82
IPE200	197	100	5.6	8.5	28.48

Tableau VII. 1: Caractéristique des profilés assemblés.

VII.2.1. Données de calcul :

L'assemblage ci-dessous est sollicité par : Un effort tranchant ; $V_{Sd} = 75.58 \text{ kN}$ (trié du chapitre 3 'effort a ELU')

Ks = 1; trous nominaux, $\gamma_{mb} = 1.25$

L'assemblage est assuré par une cornière L100×10 entre une poutre IPE450 et une solive IPE200.
VII.2.2. Dimensionnement de l'assemblage :

Pour le pré dimensionnement des boulons on a :

$$F_{v,Rd} \ge F_{v,Sd}$$

Avec :

$$F_{v,Rd} = \frac{0.6 \times f_{ub} \times A_s}{\gamma_{mb}} \qquad et \qquad \qquad F_{v,Sd} = \frac{V_{Sd}}{n}$$

- $F_{v,Rd}$: résistance de calcul au cisaillement par boulon
- $_{-}$ f_{ub} : résistance ultime du boulon
- _ *A_s*: de la partie non filetée du boulon
- $F_{\nu,Sd}$: effort de cisaillement de calcul par boulon
- V_{Sd} : effort tranchant
- _ n: nombre de boulon

$$F_{\nu,Sd} = \frac{V_{Sd}}{n} = \frac{75.58}{4} = 18.90 kN$$

$$\rightarrow \quad A_s = \frac{\gamma_{mb} \times F_{v,Rd}}{0.6 \times f_{ub}} = \frac{18.90 \times 10^3 \times 1.25}{0.6 \times 600} = 65.63 mm^2$$

On opte pour des boulons M16 de classe 6.8 et de section $A_s = 157mm^2$

VII.2.3. Disposition constructive :

La disposition des boulons dans une pièce est réglementée par l'Eurocode 3 est calculer comme suite :

La	La méthode de calcul	Le calcule	Choix
disposition			[mm]
<i>e</i> ₁	$1.2d_0 \le e_1 \le \max(12t, 150mm)$	$21.6 \le e_1 \le 259.2$	35
<i>P</i> ₁	$2.2d_0 \le P_1 \le \max(14t, 200mm)$	$39.6 \le P_1 \le 140$	60
<i>e</i> ₂	$1.5d_0 \le e_2 \le \max(12t, 150mm)$	$27 \le e_2 \le 259.2$	40
<i>P</i> ₂	$3d_0 \le P_2 \le \max(14t, 200mm)$	$54 \le P_1 \le 140$	65

Tableau VII. 2: disposions constructive "assemblage poutre solive ".

Avec :

- d_0 : diamètre de trou , $d_0 = d + 2 = 18mm$
- _ t:épaisseur de la cornière , t=10mm

VII.2.4. Résistance des boulons au cisaillement (côté de la solive) :

Les boulons travaillant au double cisaillement, donc on doit vérifier que :

$$F_{r, sd} \leq 2F_{v, rd}$$

Avec :

$$F_{r,Sd} = \sqrt{F_{v,Sd}^2 + F_{h,Sd}^2}$$

- $F_{r,Sd}$: l'effort maximal résultant repris par chaque boulon.
- $F_{h,Sd}$: effort de cisaillement horizontal par boulon du au moment local d'excentrement.

Où :

$$F_{v,Sd} = \frac{V_{sd}}{n} = \frac{75.58}{2} = 37.79kN$$
$$F_{h,Sd} = \frac{M_e}{d} = \frac{V_{sd} \times e_2}{d}$$

- d : distance séparant les rangées extrêmes des boulons ; d=65mm
- _ e_2 :Distance entre l'axe d'un trou et l'âme de la poutre ; $e_2 = 40$ mm
- _____n: nombre de boulon du côté de la solive ; n = 2

$$\to F_{h,Sd} = \frac{75.58 \times 40}{60} = 50.38kN$$

Alors :

$$F_{r,Sd} = \sqrt{37.79^2 + 44.08^2} = 58.06 \ kN$$

$$F_{\nu,Rd} = \frac{0.6 \times 600 \times 157}{1.25} = 45.22kN$$

On a :

$$2F_{v,Rd} = 90.44 \ kN \ > F_{r,Sd} = 58.06 \dots \dots condition \ vérifiée$$

VII.2.5. Resistance des boulons au cisaillement du côté de la poutre porteuse :

Condition à vérifier :
$$F_{v,sd} \le F_{v,rd}$$

On a : $F_{v,Sd} = \frac{V_{sd}}{n} = \frac{75.58}{4} = 18.89kN$
Et $F_{v,Rd} = 45.22kN$
 $F_{v,Rd} = 45.22kN > F_{v,Sd} = 18.86...$ condition vérifiée

VII.2.6. Vérification de la résistance des cornières au cisaillement :

On doit vérifier que : $V_{pl,Rd} \ge V_{Sd}/2$

Avec :

$$V_{pl,Rd} = \frac{f_y \times A_v}{\gamma_{m0}} = \frac{50.58 \times 10^2 \times 275}{1.1 \times \sqrt{3}} = 730.06kN$$
$$\frac{V_{Sd}}{2} = \frac{75.58}{2} = 37.39kN < F_{v,Rd} = 180.86kN \dots \dots Condition véridiée$$

VII.2.7. Vérification de la pression diamétrale :

La vérification à la pression diamétrale tient compte des dimensions géométriques des pièces assemblées aux voisinages du boulon : $F_{b,Rd} \ge V_{Sd}$

$$F_{b,Rd} = \frac{2.5 \times \alpha \times f_u \times d \times t}{\gamma_{mb}}$$

ec:
$$\alpha = mini(\frac{e_1}{3d_0}; \frac{P_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1)$$

Avec

- d = diamètre du boulon, d = 16mm
- _ d_0 : diamètre de trou , $d_0 = 18$ mm
- _ t: épaisseur de la piece , t = 10mm
- _ e_1 : pince longitudinale , $e_1 = 35$
- _ P_1 : entraxe des boulon , $P_1 = 65$
- _ f_{ub} : résistance à la traction des boulons , $f_{ub} = 600$ MPa
- f_u : résistance à la tracction de la pièce , $f_u = 430$ MPa

on trouve $\alpha = 0.65$

Donc :

VII.3. <u>Assemblage Poutre – Poteau :</u>

Les assemblages rigides servent à transmettre des moments de flexion entre la poutre et le poteau. Ils doivent garantir qu'aucune rotation ne se produise entre les éléments assemblés.

La poutre est muni à son extrémité d'une platine soudé et à sa partie inférieure d'un gousset appelé jarret, soudé également sur la platine .l'ensemble est en liaison complète le montant à l'aide des boulons.

Figure VII. 2: Assemblage Poutre IPE450- Poteau HEB340 par logiciel TEKLA structure.

VII.3.1. Données de calcul :

Les données sont tirées du logiciel ETABS. L'assemblage ci-dessous sont sollicité par :

- Un moment fléchissant $M_{sd} = 312.58 \text{ KN} \cdot m$
- Un effort tranchant $V_{sd} = 198.38 \ KN$
- Choix de jarret :

Pour le jarret on prendra un profile IPE 450 découpé est soudé

• Dimensions de la platine :

On choisit une platine de $(570 \times 300 \times 20)$.

• Choix de nombre des boulons :

On choisit 10 boulons HR de diamètre 24mm (M24) de classe 10.9

VII.3.2. <u>Disposition constructive :</u>

La	La méthode de calcul	Le calcule	Choix
disposition			[mm]
e ₁	$1.2d_0 \le e_1 \le \max(12t, 150mm)$	$31.2 \le e_1 \le 240$	35
P ₁	$2.2d_0 \le P_1 \le \max(14t, 200mm)$	$57.2 \le P_1 \le 200$	60
e ₂	$1.5d_0 \le e_2 \le max(12t, 150mm)$	$39 \le e_2 \le 240$	40
P ₂	$3d_0 \le P_2 \le max(14t, 200mm)$	$78 \le P_1 \le 200$	65

Tableau VII. 3: disposition constructive " assemblage poteau poutre " .

Avec :

 $_d_0$: diamètre de trou , $d_0 = d + 2 = 26mm$

Figure VII. 3: Disposition constructive des boulons par logiciel TEKLA.

VII.3.3. Vérification des Boulons : [13]

VII.3.3.1. Détermination des efforts dans les Boulons :

$$N_i = \frac{M_{Sd} \times d_i}{\sum d_i^2}$$

Figure VII. 4: Distance entre les boulons et axe neutre.

Nous considérons uniquement les boulons tendus :

$$\begin{cases} d_1 = 92.7 \text{mm} \\ d_2 = 192.7 \text{mm} \\ d_3 = 292.7 \text{mm} \\ d_4 = 392.7 \text{mm} \end{cases}$$

$$\sum d_i^2 = 92.7^2 + 192.7^2 + 292.7^2 + 392.7^2 = 285613.16 \text{ mm}^2$$

Donc :

$$N_{1} = \frac{312.58 \times 10^{3} \times 92.7}{285613.16} = 101.45kN$$

$$N_{2} = \frac{312.58 \times 10^{3} \times 192.7}{285613.16} = 210.88 kN$$

$$N_{3} = \frac{312.58 \times 10^{3} \times 292.7}{285613.16} = 320.32kN$$

$$N_{4} = \frac{312.58 \times 10^{3} \times 392.7}{285613.16} = 429.76kN$$

$$N_4 = \frac{312.58 \times 10^3 \times 392.7}{285613.16} = 429.76kN$$

Il faut que :

$$N_4 \le nF_p$$
 et $F_p = 0.7. f_{ub}. A_s$

Avec :

- $_{\rm -}~f_{ub}$: résistance à la traction des boulons , f_{ub} = 1000MPa
- _ n: nombre de boulons par rangée , n = 2
- _ A_s : section résistance de boulon .

$$F_n = 0.7 \times 1000 \times 353 = 247.100 \, kN$$

Alors :

$$N_4 \leq nF_p \rightarrow 429.76 < 494.2kN \dots \dots \dots \dots condition vérifiée$$

VII.3.3.2. Vérification de l'assemblage sous l'effort tranchant :

Par boulon :

$$V = \frac{V_{sd}}{n}$$

Il faut vérifiée que :

$$V \leq F_s \longrightarrow F_s = k_s \cdot m \cdot \mu \cdot F_p / \gamma_{mb}$$

Avec :

- V_{Sd} : effort tranchant , $V_{Sd} = 198.38$ kN
- _ n: nombre de boulon , n = 10
- μ : coefficient de frottement , $\mu = 0.3$
- $_{-}$ γ_{mb} : coefficient partiel de sécurité , γ_{mb} = 1.25
- _ F_p : l'effortprécontrainte autorisé dans le boulon , $F_p = 247.1$ kN

On trouve :

$$F_s = 0.3 \times \frac{247.1}{1.25} = 59.304 kN$$
 Et $V = \frac{198.38}{10} = 19.838 kN$
 $V \le F_s \dots \dots \dots \dots$ condition vérifiée

VII.3.3.3. <u>Résistance de l'âme du poteau dans la zone tendu (en traction) :</u>

 $F_t > F_v$

On doit vérifier que :

$$F_t = f_y \cdot t_{wc} \cdot b_{eff} / \gamma_{m0}$$
 Et $F_v = \frac{M}{h - t_f}$

Où :

- $_{\rm b_{eff}}$: entraxe rangées boulons , b_{eff} = 140 mm
- _ t_{wc} : épaisseur ame poteau , t_{wc} = 12 mm
- _ t_{fb} : épaisseur semelle poutre , t_{fb} = 14.6 mm
- _ h = 450mm
- $_{-}$ $\gamma_{m0} = 1.1$
- _ $f_y = 275 MPa$
- M = 312.58 kN.m

Donc: $F_t = 275 \times 12 \times \frac{145}{1.1} = 435 \ kN$ $F_v = \frac{312.58}{0.45 - 0.0146} = 717.91 \ kN$

On a $F_{\nu} > F_t \dots \dots \dots$ pas vérifiée

La condition n'est pas vérifiée d'où il est nécessaire d'ajouter un raidisseur

 \rightarrow Soit un raidisseur d'épaisseur t = 10 mm.

→
$$F_t = 275 \times (12 + 10) \times \frac{145}{1.1} = 797.5 \ kN > F_v \dots \dots \dots \text{ condition vérifiée}$$

VII.3.3.4. Résistance de l'âme du poteau dans la zone comprimée (en compression) :

Il faut vérifiée que : $F_c \leq F_{c.Rd}$

Avec :

$$F_{c.Rd} = f_y \cdot t_{wc} \cdot \left(1.25 - 0.5 \cdot \gamma_{m0} \cdot \frac{\sigma_n}{f_y}\right) \cdot \frac{b_{eff}}{\gamma_{m0}} \qquad \text{Et} \qquad F_c = \frac{M_{Sd}}{h - t_f}$$

$$b_{eff} = t_{fb} + 2t_p + 5(t_{fc} + r_c)$$

- _ t_{fc} : épaisseur semelle poteau , t_{fc} = 21.5mm
- _ t_p : épaisseur platine extremité , $t_p = 20 \text{ mm}$
- $_{\rm c}$: rayon de raccordement ame , semelle du poteau , r_c = 27mm

 σ_n : Contrainte normale de compression dans l'âme du poteau à l'effort de compression et au moment fléchissant.

$$\sigma_n = \frac{V_{Sd}}{A} + \frac{M_{Sd}}{W_{elly}}$$

 $\begin{cases} V_{\rm Sd} = 198.38 \text{ kN} \\ M_{\rm Sd} = 312.58 \text{ kN} \\ W_{\rm elly} = 2156 \text{ cm}^3 \rightarrow \\ A = 170.9 \text{ cm}^2 \end{cases} \sigma_n = 156.58 MPa < f_y = 275 MPa$

$$\rightarrow b_{eff} = 14.6 + 2 \times 20 + 5(21.5 + 27) = 297.1 mm$$

Alors :

$$F_{c.Rd} = 275 \times 12 \times \left(1.25 - 0.5 \times 1.1 \times \frac{156.58}{275}\right) \times \frac{297.1}{1.1} = 835 \ kN$$

 $F_{c.Rd} = 835 \ kN \ > F_c = 717.91 \ kN \dots \dots$ condition vérifiée

VII.3.3.5. Résistance de l'âme du poteau au cisaillement :

Il faut que : $V_R > F_v$

$$V_R = 0.58 \times f_y \times h \times t_{wc} / \gamma_{m0}$$

_ h: hauteur de profilé de poteau , h = 340 mm

$$V_R = 0.58 \times 275 \times 340 \times \frac{21.5}{1.1} = 1059.950 kN$$

 $F_v = 717.91 kN$

$$V_R > F_v \dots \dots \dots \dots \dots$$
 condition vérifiée

VII.3.4. Vérification de la soudure : [14]

VII.3.4.1. les longueurs utiles des cordons de soudure :

 $\begin{cases} L_1 = b = 190mm \\ L_2 = \frac{b - t_w}{2} = 90.3mm \\ L_3 = h - 2t_f = 420.8mm \end{cases}$

Figure VII. 5 : les longueurs utiles des cordons de soudure.

VII.3.4.2. Calcul de l'épaisseur du cordon de la soudure :

Pour notre assemblage on a deux (02) types des cordons :

- _ un cordon latéral (âme)
- _ un cordon frontal (semelle).

On a :

$$\begin{cases} \sigma_{eq} \leq \frac{f_u}{\beta_w \times \gamma_{m2}} \\ \sigma_{eq} = \sqrt{\sigma_{\perp}^2 + 3(\tau_{\perp}^2 + \tau_{\parallel}^2)} \end{cases} \text{ Et } \qquad \sigma_{\perp} \leq \frac{f_u}{\beta_w \times \gamma_{m2}} \end{cases}$$

Avec :

- σ_{\perp} : Contrainte normale perpendiculaire à la gorge.
- σ_{\parallel} : Contrainte normale parallèle à l'axe de la soudure
- $_{\perp}$ τ_{\perp} :Contrainte tangentiel (dans le plan de la gorge) perpendiculaire à l'axe de la soudure
- β_w : Facteur de corrélation approprié, $\beta_w = 0.85$
- Le cordon de la semelle : est un cordon frontal ($\sigma_{\parallel} = 0$)

On a :

$$\sigma_{\perp} = \tau_{\perp} = \frac{\sqrt{2} \times F}{2 \times a_1 \times l_1} \qquad \quad Et \qquad \quad F = \frac{M_{Sd}}{h}$$

Où :

- _ l_1 : longueur utile de cordon de la semelle , $l_1 = 190 \text{ mm}$
- _ a₁ : l'épaisseurde la soudure sur la semelle
- _ h : hauteur du profilé , h = 450mm
- $M_{Sd} = 312.58$ kN.m

Pour trouver a_1 , on suppose que :

$$\frac{f_{u}}{\beta_{w} \times \gamma_{m2}} = \frac{\sqrt{2} \times F}{2 \times a_{1} \times l_{1}}$$

Alors :

$$a_{1} = \frac{\beta_{w} \times \gamma_{m2} \times \sqrt{2} \times M_{Sd}}{f_{u} \times l_{1} \times h}$$

$$a_1 = \frac{0.85 \times 1.25 \times \sqrt{2} \times 312.58 \times 10^6}{430 \times 190 \times 450} = 12.77 \text{ mm}$$

On prend :

$$a_1 = a_2 = 14 \text{ mm}$$

- Le cordon de l'âme : est un cordon latéral
 - On a : $F = \frac{V_{Sd}}{2}$ $\rightarrow a_3 = \frac{\beta_w \times \gamma_{m2} \times \sqrt{3} \times V_{Sd}}{f_u \times l_3 \times 2}$ $\rightarrow a_3 = \frac{0.85 \times 1.25 \times \sqrt{3} \times 198.38 \times 10^3}{430 \times 420.8 \times 2} = 1.01 \, mm$

On choisit :

$$a_3 = 6 mm$$

La résistance de la soudure est suffisante si la condition suivante est vérifiée :

$$\sqrt{\sigma_{\perp}^2 + 3(\tau_{\perp}^2 + \sigma_{\parallel}^2)} \leq \frac{f_u}{\beta_w \times \gamma_{m_2}}$$

On suppose que les cordons fronteaux repris uniquement le moment M et les cordons latéral repris l'effort V :

$$F_{\perp} = \frac{M}{h}$$
 Et $F_{\parallel} = V$

$$- \text{Pour les cordons fronteaux} : \begin{cases} \tau_{\parallel M} = 0\\ \sigma_{\perp} = \tau_{\perp} = \frac{F_{\perp}}{\sqrt{2} \times a \times (l_1 + 2l_2)} \end{cases}$$
$$- \text{Pour les cordons latéraux} : \begin{cases} \tau_{\parallel V} = \frac{F_{\parallel}}{a \times l_3 \times 2}\\ \sigma_{\perp V} = \tau_{\perp V} = 0 \end{cases}$$

Alors :

$$\begin{cases} F_{\perp} = \frac{312.58 \times 10^6}{450} = 694.622 kN \\ F_{\parallel} = 198.38 \ kN \end{cases}$$

Et on trouve :

Sur les cordons frontaux : $\sigma_{\perp} = \tau_{\perp} = \frac{694.622}{\sqrt{2} \times 14 \times (190 + 2 \times 90.3)} = 94.67 MPa$ Sur les cordons latéraux : $\tau_{\parallel V} = \frac{198.38}{6 \times 420.8 \times 2} = 39.29 MPa$ Donc :

VI.4. Assemblages de contreventement en V :

Les caractéristiques des profilés sont regroupées dans le tableau suivant :

Tableau VII. 4: Caractéristique des profilés assemblés.

Profilé	h (mm)	b (mm)	t _f (mm)	t _w (mm)	A(cm ²)
HEB340	340	300	16.5	9.5	170.9
Tub220×220×16	200	200	16	16	128

VII.4.1. Données de calcul :

L'assemblage ci-dessous est sollicité par : Un effort tranchant ; $V_{Sd} = 2405.67$ kN (tiré du chapitre 3 'effort a ELU')

Ks = 1; trous nominaux, $\gamma ms = 1.25$

L'assemblage est assuré par des boulons HR de diamètre 24 mm (M24) de classe 10.9

VII.4.2. Nombre des boulons nécessaire :

Pour calculer le nombre des boulons on a :

$$F_{s,Rd} \ge F_{v,Sd}$$

Avec :

$$F_{vsd} = rac{V}{n_b} et$$
 $F_{srd} = rac{Ks \times n \times \mu \times F_p}{\gamma_{Ms}}$

- $F_{s,Rd}$ résistance de calcul au cisaillement par boulon
- _ A_s: de la partie non filetée du boulon
- $_{-}$ $F_{v,Sd}$: effort de cisaillement de calcul par boulon
- V_{Sd} : effort tranchant
- _ *n_b*: nombre de boulon

- μ : coefficient de frottement classe C, μ =0.3
- $\gamma_{Ms} = 1.1$ (Trou nominal a)
- _ K_S=1 (trou nominal a)
- _ $Fp = 0.7 \times fub \times As \times 10^{-3} = 247.1Kn$

On a deux plans de cisaillement, n =2

$$F_{srd} = \frac{1 \times 2 \times 0.3 \times 247.1}{1.1} = 134.8kN$$

$$V_{Sd} = \frac{2405.67}{2} = 1202.83$$

$$F_{v,Sd} = \frac{V_{Sd}}{n} \to n = \frac{1202.83}{134.8} = 8.92$$

On opte pour 10 boulons de M24 de classe 10.9 et de section $A_s = 353mm^2$

VII.4.3. Disposition constructive :

La disposition des boulons dans une pièce est réglementée par l'Eurocode 3 est calculer comme suite :

La	La méthode de calcul	Le calcule	Choix
disposition			[mm]
<i>e</i> ₁	$1.2d_0 \le e_1 \le \max(12t, 150mm)$	$31.2 \le e_1 \le 180$	50
<i>P</i> ₁	$2.2d_0 \le P_1 \le \max(14t, 200mm)$	$57.2 \le P_1 \le 200$	80
<i>e</i> ₂	$1.5d_0 \le e_2 \le \max(12t, 150mm)$	$39 \le e_2 \le 180$	40
P ₂	$3d_0 \le P_2 \le \max(14t, 200mm)$	$78 \le P_1 \le 200$	100

Avec :

- _ d_0 : diamètre de trou , $d_0 = d + 2 = 26mm$
- _ t : épaisseur de la cornière , t = 15mm

VII.4.4. Vérification de la pression diamétrale :

La vérification à la pression diamétrale tient compte des dimensions géométriques des pièces assemblées aux voisinages du boulon : $F_{b,Rd} \ge V_{Sd}$

$$F_{b,Rd} = \frac{2.5 \times \alpha \times f_u \times d \times t}{\gamma_{mb}}$$

Avec :

$$\alpha = mini(\frac{e_1}{3d_0}; \frac{P_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1)$$

- _ d = diamètre du boulon , d = 24mm
- _ d_0 : diamètre de trou , $d_0 = 26$ mm
- _ t: épaisseur de la piece , t = 15mm
- e_1 : pince longitudinale, $e_1 = 50$ mm
- _ P_1 : entraxe des boulon , $P_1 = 80$ mm
- _ f_{ub} : résistance à la traction des boulons , $f_{ub} = 1000$ MPa
- _ f_u : résistance à la tracction de la pièce , $f_u = 430$ MPa

on trouve
$$\alpha = 0.64$$

Donc :

$$F_{b,Rd} = \frac{2.5 \times 0.64 \times 430 \times 26 \times 15}{1.25} = 214.656 \, kN$$
$$F_{v,Sd} = \frac{V_{Sd}}{n} = \frac{1202.84}{10} = 120.284 kN$$

 $F_{b,Rd} = 143.104 > V_{Sd} = 214.656 kN \ \dots \dots \dots \dots \dots$ Condition vérifiée

VII.5. Assemblage de pied de poteau [Annexe E]:

Ce type d'assemblages est utilisé pour relier la structure en acier à l'infrastructure en béton. La base du poteau est soudée à une platine, boulonnée au noyau en du béton à l'aide d'ancrage.

L'assemblage de pied poteau est calculé à l'aide du logiciel de ROBOT structurel sur la base des résultats obtenus à partir d'ETABS.

Figure VII. 6: assemblage pied de poteau.

Figure VII. 7: détail assemblage Pied de poteau (HEB340) par logiciel ROBOT structurel.

Assemblage satisfaisant vis à vis de la Norme avec un ratio 0,61

VII.6. Assemblages de continuité [Annexe]:

L'assemblage de continuité est calculé à l'aide du logiciel de ROBOT structurel sur la base des résultats obtenus à partir d'ETABS.

Figure VII. 8: assemblage poteau -poteau.

Assemblage satisfaisant vis à vis de la Norme avec un ratio 0,43

Chapitre VIII : Etudes des éléments de sous-sol

VIII.1. Introduction :

Nous appelons sous-sol toute pièce ou tout étage situé sous le "rez-de-chaussée" d'un bâtiment, et donc il se trouve principalement ou entièrement sous la surface du sol. Dans ce chapitre, nous allons déterminer les dimensions des éléments du sous-sol tout en s'assurant qu'ils sont sécuritaires.

VIII.2. Etude les éléments du sous-sol :

Dans notre cas on a 1sous-sol, nous devons faire un pré dimensionnement des éléments résistants en respectant les règles et les normes en vigueur données par le RPA99 (version 2003).

- Les planchers : on a choisi d'utiliser des planchers mixtes comme dans les étages courants en gardant les mêmes dimensions et charges.
- **Les poutres** : les mêmes profilés que celles des étages courants.
- _ Les poteaux : on va choisir des poteaux mixtes.
- **Voile périphérique** : le voile est calculé comme une dalle supposée uniformément charger par la poussée de terre.

VIII.3. Pré dimensionnement de poteau de sous-sol :

Les poteaux de sous-sol sont généralement en béton ou bien mixte, pour notre projet on a choisi du réalisé des poteaux mixtes enrobée. Un poteau mixte enrobée est un élément porteur verticale et ponctuel constitue d'un profile métallique entoure de béton ou d'une tube métallique rempli de béton

- Les types de poteaux mixtes : ses deux types
- Les poteaux partiellement ou totalement enrobent de béton
- _ Les poteaux en profilent creux rempli de béton
- Les avantages des poteaux mixtes
- _ Petite section à résistance élevé
- _ Gain de tempe et de cout appréciable lors de montage
- L'acier en confinant le béton assure un rôle de frettage qui provoque une

VIII.3.1. <u>Méthodes de calcul des poteaux mixtes</u>

L'Eurocode 4 présente 02 méthodes de dimensionnement :

La méthode générale : qui impose de prendre en compte les effets du second ordre au niveau local de l'élément et les imperfections. Cette méthode peut s'appliquer à des sections de poteaux qui ne sont pas symétriques et a deux poteaux de section variable sur leur hauteur. Elle nécessite l'emploi de méthodes de calcul numérique et peut être appliquée avec l'utilisation de programme informatique.

La méthode simplifiée : utilisant les courbes de flambement européennes des poteaux en acier tenant compte implicitement des imperfections qui affectent ces poteaux.

Cette méthode est limitée au calcul des poteaux mixtes de section uniforme sur toute la hauteur et de sections doublement symétriques.

On développera ici la méthode simplifiée de [10] qui peut s'appliquer à la majorité des cas.

VIII.3.2. <u>Conditions d'utilisation de la méthode simplifiée de calcul :</u>

L'application de la méthode simplifiée comporte les limitations suivantes :

- La section transversale du poteau est constante et présente une double symétrie sur toute la hauteur du poteau et est telle que le rapport de sa hauteur à sa largeur soit compris entre 0,2 et 5,0.
- La contribution relative de la section en acier à la résistance de calcul de la section complète savoir :

$$0.2 < \delta = \left(\frac{\text{Aa} \times f_y}{\gamma_a}\right) \times \frac{1}{N_{plr}} < 0.9$$

- L'élancement réduit λ du poteau mixte, ne dépasse pas la valeur de 2,0 ;
- Pour les sections totalement enrobées, l'aire des armatures doit au moins être égale à 0,3% de l'aire de béton et les armatures présentent des épaisseurs d'enrobage de béton satisfaisant les conditions suivantes :
 - _ dans le sens y : 40 mm <c_y< 0,4 b_c ;
 - dans le sens z : 40 mm $< c_z < 0,3 h_c$

VIII.3.3. Vérification de l'application de la méthode simplifiée :

• Exemple de calcul :

Nos calculs vont être sur le poteau (E-10) d'un profilé HEB340 d'une hauteur de 3.06m :

|--|

Profilé	$A_a [cm^2]$	E _a [MPa]	Nuance	F _y [MPa]	Yma
HEB340	170.9	2.1×10^{5}	S275	275	1.1

VIII.3.3.1. Pré -dimensionnement de la section en béton

a) <u>Béton C25/30</u>

On $a : h_c = b_c = 800 \text{ mm}$

On doit vérifier la Section transversale :

$$0,2 < \frac{h}{b} < 5 \rightarrow \frac{800}{800} = 1 \in [1;5] \dots \dots$$
 Condition vérifiée

b) <u>Enrobage :</u>

On a :

 $\begin{cases} 40 \ mm < c_y < 0.4 h_c \\ 40 \ mm < c_z < 0.3 h_c \end{cases} \rightarrow \begin{cases} 40 \ mm < c_y < 320 \ mm \\ 40 \ mm < c_z < 240 \ mm \end{cases}$

On prend $c_v = c_z = 60 mm$

c) <u>Section des armatures :</u>

 $A_s = 0.50\% A_{c net}$

 $A_s = 0.50\% \left[(800 \times 800) - 17090 = 31.2145 cm^2 \right.$

 \rightarrow Le choix : 8T25 As = 39.27 cm²

Tableau VIII. 2: Caractéristique des armatures de la section mixte

Choix	Acier	$c_y = c_z [\mathrm{mm}]$	f _{sk} [MPa]	$A_s[cm^2]$	$E_s[MPa]$
8T25	S400	60	400	39.27	2.1×10^{5}

VIII.3.3.2. Vérification de la résistance du poteau :

Le poteau mixte présente une résistance suffisante au flambement si , pour les deux axes :

$$N_{Sd} \leq \chi N_{pl,Rd}$$

Où :

- χ : *es*t le coefficient de réductction .
- _ N_{pl,Rd} : résistance de la section transeversale à la charges axiale .
- _ N_{Sd} = 2562.725kN (tirés du logiciel ETABS)

1. <u>Résistance de la section transversale :</u>

$$N_{pl,Rd} = A_a \cdot \frac{f_y}{\gamma_{ma}} + A_c \cdot \frac{0.85f_{ck}}{\gamma_c} + A_s \cdot \frac{f_{sk}}{\gamma_s}$$

Avec :

 $A_a, A_c et A_s$ Sont les aires des sections transversales de l'acier de construction, du béton et de l'armature.

$$A_c = A_{gross} - A_{acier} - A_{armature}$$

 $A_c = (800 \times 800) - 17090 - 3927 = 618985 mm^2$
Alor :

$$N_{pl,Rd} = 17090 \times \frac{275}{1.1} + 618985 \times \frac{0.85 \times 25}{1.5} + 3927 \times \frac{400}{1.15} = 14407.367 kN$$

Coefficient de participation de l'acier δ :

$$\delta = \frac{\frac{A_a.f_y}{\gamma_a}}{N_{pl,Rd}} = \frac{4272500}{14407.367 \times 10^3} = 0.3 \ \epsilon[0.2; 0.9] \dots \dots condition \ vérifiée$$

2. La charge critique élastique de flambement :

$$N_{cr} = \frac{\pi^2 \times (EI)}{l_f^2}$$

Avec :

- EI: la rigidité du poteau mixte
- $_{\rm l_f}$: est la longeur de flambement du poteau mixte

- <u>Caractéristique de la section mixte :</u>
- a) Les armatures 8T25 :
- _ La section :

$$A_s = 8 \times \frac{\pi \times d^2}{4} = 8 \times \frac{\pi \times 25^2}{4}$$

 $A_s = 3927 \ mm^2$

_ Le moment d'inertie :

On a une section carré donc: $I_{sy} = I_{sz} = 296.9 \times 10^6 mm^4$

Le module de plasticity :

 $W_{pl,Y}=W_{pl,Z}=A_{barre}\times d=935.107\times 10^3 mm^3$

b) Le béton (800*800) :

_ La section

 $A_{c} = b \times h - (A_{a} + A_{s}) = 618985 mm^{2}$

Le moment d'inertie

$$I_{c} = \frac{bh^{3}}{12} - (I_{a} + I_{s}) \rightarrow \begin{cases} I_{cy} = 3.35 \times 10^{10} mm^{4} \\ I_{cz} = 3.37 \times 10^{10} mm^{4} \end{cases}$$

_ Le module de plasticité

$$W_{\rm plc} = \frac{bh^2}{4} - (W_{\rm pla} + W_{\rm pls}) \rightarrow \begin{cases} W_{plc,y} = 124,66 \times 10^6 mm^3 \\ W_{plc,z} = 126,08 \times 10^6 mm^3 \end{cases}$$

Fableau	u VIII.	3:	caractéristique	de	la	section	mixte.
---------	---------	----	-----------------	----	----	---------	--------

	Acier	Béton	Armature
<i>A</i> [<i>mm</i> ²]	17090	618985	3927
$I_y[mm^4]$	36660×10 ⁴	3.35×10 ¹⁰	296.9×10 ⁶
$I_z[mm^4]$	9690×10 ⁴	3.37×10^{10}	296.9×10 ⁶
$W_{pl,y}[mm^2]$	2408×10 ³	124.66×10^{6}	935.107×10 ³
$W_{pl,z}[mm^3]$	985,7×10 ³	126.08×10 ⁶	935.107×10 ³

\rightarrow La rigidité élastique (EI) :

 $EI = E_a \times I_a + 0,6E_{cd} \times I_c + E_s \times I_s$

Avec :

 $E_{cd} = \frac{E_{cm}}{\gamma_{Mc}}$ $\begin{cases} E_{cm} = 3200MPa \\ \gamma_{mc} = 1.35 \end{cases} \rightarrow E_{cd} = 23703.70MPa$ Alors : $\begin{cases} EI_y = 6.16 \times 10^{14} N.mm^2 \\ EI_z = 5.62 \times 10^{14} N.mm^2 \end{cases}$

 $l_f=0.5l$ (bi – encastrée) = 1.53m

On trouve :

$$N_{cr,y} = 2.597 \times 10^6 \, kN$$

 $N_{cr,z} = 2.369 \times 10^6 \, kN$

3. La résistance plastique en compression :

 $N_{pl,R} = A_a \times f_y + 0.85 \times A_c \times f_{ck} + A_s \times F_{sk}$

On trouve :

$$N_{pl,R} = 19424kN$$

a. <u>L'élancement réduit $\overline{\lambda}$:</u>

$$\bar{\lambda} = \sqrt{\frac{N_{pl.R}}{N_{cr}}} \rightarrow \begin{cases} \overline{\lambda_y} = 0.10\\ \overline{\lambda_z} = 0.10 \end{cases} \rightarrow \text{ pas risque de flambmenet} \end{cases}$$

b. <u>Calcule de Ø:</u>

$$\emptyset = 0.5 \times \left[1 + \alpha \times (\bar{\lambda} - 0.2) + \bar{\lambda}^2\right]$$

<u>Choix de la courbe de flambement :</u>

D'après [10] et pour les profilés en I totalement ou partiellement enrobés de béton on a :

 $\begin{cases} \alpha_y = 0.34 \\ \alpha_z = 0.49 \end{cases}$

Alors :
$$\begin{cases} \phi_y = 0.50\\ \phi_z = 0.48 \end{cases}$$

c. <u>Calcule de χ </u>:

On trouve :

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 + \bar{\lambda}^2}}$$
$$\begin{cases} \chi_y = 0.99\\ \chi_z = 1 \end{cases}$$

Nous avons enfin :

 $N_{Sd} \leq \chi N_{pl,Rd}$

<u>suivant Y-Y :</u>

 $0.99 \times 14407.3367 = 14263.26 kN > N_{Sd} = 2562.725 kN \dots c. vérifiée$ suivant Z-Z

 $1\times 14407.3367 = 14407.3367 k N > N_{Sd} = 2562.725 \; k \ldots c$. vérifiée

Figure VIII. 1:Schéma statique de poteau de sous-sol.

VIII.4. <u>Etude de voile périphérique</u>

Notre structure a un mur périphérique qui monte du niveau de la fondation à celui du sous-sol. Il se compose par sa grande rigidité qu'il crée à la base un caisson rigide et non-déformable avec le sous-sol et les fondations.

VIII.4.1. Pré-dimensionnement :

D'après [2] le voile périphérique doit avoir les caractéristiques minimales suivantes :

_ Epaisseur > 15 cm.

_ Les armatures sont constituées de deux nappes.

_ Le pourcentage minimum des armatures est 0,10% dans les deux sens

(horizontal et vertical).

_ Un recouvrement de 40ϕ pour les renforcements des angles.

L'épaisseur d'un voile périphérique est déterminée en fonction de la hauteur d'étage libre h_e , telle que :

$$e = \max(\frac{h_e}{20}; 15 \ cm)$$

 $h_e = 3.06m \rightarrow e = \max(15.3; 15 \ cm)$

Donc on adopte pour les voiles périphériques une épaisseur de 20cm

VIII.4.2. Méthode de calcul

On considère le voile comme une dalle pleine reposant sur 4 appuis et qui supporte les charges horizontales dues aux poussées de terre, on considère le tronçon le plus défavorable pour une bande de 1m.

Les caractéristiques de voile la plus sollicitée sont :

$$\begin{cases} L_x = 3.06 \quad m \\ L_Y = 8 \ m \end{cases}$$

VIII.4.3. Calcul de la poussée de terre :

C'est la force du massif de sol s'exerçant sur la face amont du mur et qui a tendance soit à renverser le mur, soit à le déplacer horizontalement. La poussée de terres est calculée par la formule suivante [15]:

$$P = k_a \times \gamma \times h_e$$

Avec :

- P : la contrainte sur une bonde de 1m.
- _ k_a : Le coefficient de poussée de terre $(k_a = \text{tg2}(\frac{\pi}{4} \frac{\varphi}{2}))$
- _ h_e : hauteur de voile (h_e = 3,06 m).

On a :

- γ : poids spécifique de terre ($\gamma = 18 \text{ kN/m}^3$).
- ϕ : Angle frottement ($\phi = 30^{\circ}$).

N.b. par manque d'information sur les caractéristiques de notre remblai, on a supposé les donnés ci-dessus.

Tableau VIII. 4: résultat de calcule de la poussée de terre.

$h_e[m]$	φ	$\gamma [kN/m^3]$	k _a	P (ELS)	1,35×P
				$[kN/m^2]$	(ELU) $[kN/m^2]$
3.06	30	18	0.33	18.18	24.58

VIII.4.4. Ferraillage du voile périphérique :

Le ferraillage de voile se calcul comme un panneau d'une delle pleine, le calcul se fait pour une band de b=1m et h=0,2 m (l'épaisseur du voile)

$$\alpha = \frac{Lx}{Ly} = \frac{3.06}{7.11} = 0.43 > 0.4$$

donc le panneau travaille dans deux sens.

A. Détermination des sollicitations (les moments) :

$$\begin{cases} M_X = \mu_x \times P_u \times L_x^2 \\ M_Y = \mu_y \times M_X \end{cases}$$

<u>En travée :</u>

$$\begin{cases} M_x^t = 0.75 M_x \\ M_y^t = 0.75 M_y \end{cases}$$

<u>En appuis :</u>

$$\begin{cases} M_x^a = 0.5 M_x \\ M_y^a = 0.5 M_y \end{cases}$$

	μ	M [kN.m]	$M_t[kN.m]$	$M_a[kN.m]$
Le sens X-X	0.1062	24.44	18.33	12.22
Le sens Y-Y	0.2500	6.11	4.58	3.055

Tableau VIII. 5: calcule de moment à l'ELU.

Le ferraillage est calculé pour une bande de 1 m en flexion simple avec une section $(b \times e)$ tel que : b=1 m ; e= 0,2m ; d = 18cm

	Sens	М	Ш	Α.'	α	Z	Acal	Choix	Aadn	Esp
	Dens	111	μ	1 15	ů.	2	1 Kcai	CHOIX	1 Laup	Цэр
		KN.m		(cm^2)		(cm)	(cm^2)		(cm^2)	(cm)
	X-X	18.33	0.031	0	0.039	17.72	2.97	5T10	3.14	20
Travée										
	Y-Y	4.58	0.008	0	0.010	17.93	0.73	5T10	3.14	20
Appuis	X-X	12.22	0020	0	0.026	17.81	1.97	5T10	3.14	20
	Y-Y	3.055	0.005	0	0.006	17.95	0.49	5T10	3.14	20

 Tableau VIII. 6: Ferraillage de voile périphérique.

B. <u>Condition exige par [2] :</u>

Suivant [2] Le pourcentage minimum est de 0,1% de la section dans les deux sens en disposé en deux nappes.

 $A_t = 0.1\% \times b \times h = 0.1\% \times 100 \times 20 = 2cm^2.$

 $A_t = 0.1\% \times b \times h = 0.1\% \times 100 \times 20 = 2cm^2$.

C. <u>Condition de non fragilité :</u>

Pour les dalles travaillant dans les deux sens, avec épaisseur compté entre 12 et 30 cm :

$$\begin{cases} A_x \ge A_x^{min} \quad ; \ A_x^{min} = \rho_0 [3 - \frac{L_x}{L_y}] \frac{bh}{2} \\ A_y \ge A_y^{min} \qquad ; \ A_y^{min} = \rho_0 bh \end{cases}$$

Avec : $\rho_0 = 0,0008$ (pour les barres de FeE400)

• <u>En travée</u> :

• <u>Sur appuis</u> :

D. Vérification de l'effort tranchant :

On doit vérifier que : $\overline{\tau_u} = \frac{T_u}{bh} < \tau_u = 0.05 f_{c28}$

Avec :

$$T_u = max(T_x; T_y)$$

$$\begin{cases} T_x = \frac{q_u \times l_x \times l_y}{2l_x + l_y} = \frac{24.58 \times 3.06 \times 7.11}{2 \times 3.06 + 7.11} = 40.42kN \\ T_y = \frac{q_u \times l_x}{3} = \frac{24.58 \times 3.06}{3} = 25.07kN \end{cases}$$

Alors :
$$T_u = 40.42kN$$

$$\tau_u = 0.05 \times 25 = 1.25 MPa$$

$$\overline{\tau_u} = \frac{40.42}{1 \times 0.2} = 0.202 \, MPa$$

 $\overline{\tau_u} = 0.202 MPa < \tau_u = 1.25 MPa \dots \dots \dots$ condition vérifiée

E. <u>Vérification à ELS</u>

• Evaluation des sollicitations à ELS :

$$M_X = \mu_x \times P_s \times L_x^2$$

 $M_Y = \mu_y \times M_X$
Avec :
 $\begin{cases} \mu_x = 0.1087 \\ \mu_y = 0.3077 \end{cases}$

$$\left(P_{s}=18.18\ kN\right)$$

En travée :

$$\begin{cases} M_x^t = 0.75 M_x \\ M_y^t = 0.75 M_y \end{cases}$$

<u>En appuis :</u>

$$\begin{cases} M_x^a = 0.5 M_x \\ M_y^a = 0.5 M_y \end{cases}$$

Tableau VIII. 7: calcule de moment à l'ELS.

	μ	M [kN.m]	$M_t[kN.m]$	$M_a[kN.m]$
Le sens X-X	0.1087	18.50	13.875	9.25
Le sens Y-Y	0.3077	5.69	3.435	2.845

• <u>Vérification des contraintes :</u>

La fissuration est considérée préjudiciable

Il faut vérifier que : $\begin{cases} \sigma_{bc} < \overline{\sigma_{bc}} \\ \sigma_{s} < \overline{\sigma_{s}} \end{cases}$

Avec :

- $\overline{\sigma_{bc}}$: la contrainte limite de service de béton ; $\overline{\sigma_{bc}} = 0.6 f_{c28}$
- σ_{bc} : la contrainte de service de béton ; $\sigma_{bc} = \frac{M_{ser}}{I} y$
- _ $\overline{\sigma_s}$: contrainte limite de l'acier ; $\overline{\sigma_s} = \min(\frac{2}{3}f_e , \max(240mpa; \sqrt{110\eta})$
- σ_s : contrainte de l'acier; $\sigma_s = 15 \frac{M_{ser}}{I} (y d)$

Où :

- M_{ser} : moment de service
- _ *I* : moment d'inertie par rapport à l'axe neutre
- y : ordonnée du point de calcule de la contrainte
- f_e :contrainte limite élastique, $f_e = 400MPa$
- γ_s : coefficient de sécurité de l'acier $\gamma_s = 1$ (*situation accidentalles*)
- f_{c28} : Résistance à la compression à 28 jours, $f_{c28} = 25MPa$.

Les contraintes calculées par le SOCOTEC.

	Sens	M _{ser} KN.m	A _s (cm ²)	σ _{bc} [MPa]	σ _{bc} [MPa]	σ _s [MPa]	σ _s [MPa]	Condition
Travée	X-X	13.875	3.14	15	4.28	240	30.9	Vérifiée
	Y-Y	3.435	3.14	15	1.04	240	9.61	Vérifiée
Appui	X-X	9.25	3.14	15	2.85	240	21.7	Vérifiée
	Y-Y	2.845	3.14	15	0.84	240	8.24	Vérifiée

Tableau VIII. 8: vérification des contraintes.

Figure VIII. 2 : schéma de ferraillage du voile périphérique dans les 02 sens.

Chapitre IX : Etudes des fondations

IX.1. Introduction :

Toute structure a besoin d'une bonne base pour ne pas s'effondrer. C'est pour cela qu'une fondation fait office de relais entre la structure et le sol. Elle est comprise dans l'élément architectural d'un bâtiment et a pour rôle de s'opposer au tassement et aux infiltrations des eaux, tout en assurant la transmission des charges et la répartition de ces dernières dans le sol.

On peut retrouver trois principaux types de fondation qui sont :

- _ La fondation superficielle
- _ La fondation profonde.
- _ La fondation spéciale.

IX.2. Choix du type de fondation :

Afin de satisfaire la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage

nous devons prendre en considération :

- La charge que représente l'ouvrage
- _ La portance du sol
- L'ancrage et les différentes données du rapport de sol.

D'après le rapport de sol nous avons une contrainte admissible du terrain égale à 1.6 bars. Pour le choix du type de fondation ; on vérifie dans l'ordre suivant : les semelles isolées ; les semelles filantes et le radier général et enfin on opte pour le choix qui convient.

IX.3. Calcul des fondations

IX.3.1 Semelles isolées sous poteaux

Les poteaux étant de sections carrées ; on choisit des semelles carrées.

La vérification à faire est : $\frac{N_{ser}}{S} \le \bar{\sigma}_{sol}$

Pour cette vérification on prend la semelle sous le poteau le plus sollicitée avec :

- S : surface d'appui de la semelle.
- $\bar{\sigma}_{sol}$:Contrainte admissible du sol, $\bar{\sigma}_{sol} = 160 bar$
- _ N_{ser} : Effort normal appliqué sur la fondation, (l'obtenu par le logiciel ETABS à

L'ELS + la charge de sous-sol).

 $N_{ser} = 2729.93$

$$\frac{N_{ser}}{S} \le \bar{\sigma}_{sol} \to s = \frac{N_{ser}}{\bar{\sigma}_{sol}} = \frac{2729.93}{160} = 17.061m^2$$

 $S = B \times B \rightarrow B = \sqrt{S} = 4.13m$

Pour vérifier l'interférence entre deux semelles il faut vérifier que : $L_{min} > 1.5B$ Tel que :

_ *L_{min}* : est l'entraxe minimum entre les poteaux

 $l_{min} = 1.95m < 1.5 \times 4.13 = 6.19m$

D'après ces résultats, on remarque qu'il y a chevauchement des semelles, d'autant plus que notre ouvrage représente une charge importante, alors on va opter pour des semelles filantes.

IX.3.2. <u>Semelles filantes :</u>

Qui sont les fondations des murs, surtout les murs en parpaings et les voiles. Les semelles filantes servent à répartir les charges sur une plus grande surface afin que l'ouvrage ne s'enfonce pas dans le sol.

Figure IX. 1: Schéma d'une semelle filante.

On doit vérifier que : $\frac{N_{ser}}{S} \leq \bar{\sigma}_{sol}$ Tel que : $_{-}$ $N_{ser} = \sum N_i$ de chaque fil de poteaux

 $S = B \times L$, B est largeur de la semelle et L : longeur du fil considéré.

$$\rightarrow B \geq \frac{N_{ser}}{\bar{\sigma}_{sol} \times L}$$

Les résultats sont résumés sur le tableau qui suit :

• <u>Sens Y-Y :</u>

files	N(kN)	L(m)	B(m)	<i>B^{choisie}</i> (m)	S _S (m ²)
А	2773.32	36	0.48	1.5	54
В	4994.45	36	0.86	1.5	54
С	9943.11	36	1.72	2	72
Е	11175.01	36	1.8	2	72
G	12849.54	36	2.2	2.5	90
Ι	13367.87	36	2.3	2.5	90
J	2709.28	9	1.80	2	72
				$\sum S_s$	504

Tableau IX. 1: surface des semelles fillants -sens Y-Y.

• <u>Sens X-X :</u>

Tableau IX. 2: surface des semelles filante - sens X-X.

files	N(kN)	L(m)	B(m)	B ^{choisie} (m)	S _S (m ²)	
1	2898.28	25.65	0.7	1	25.65	
2	6294.03	25.65	1.5	2	51.3	
3	854.14	3	1.7	2	6	
4	9955.37	29.95	2	2	51.3	
6	8902.67	29.95	1.8	2	51.3	
8	9481.49	29.95	1.9	2	51.3	
10	8437	25.65	2	2	51.3	
12	6584.79	25.65	1.6	2	51.3	
13	2015.90	25.65	0.5	1	25.65	
			<u>.</u>	$\sum S_s$	313.8	

Le sens incliné :

files	N(kN)	L(m)	B(m)	B ^{choisie} (m)	S _S (m ²)		
U	3045.73	35	0.54	0.54 1			
W	15269.33	35	2.5	2.5	87.5		
Х	10632	35	1.8	2	70		
				$\sum S_s$	192.5		

Tableau IX. 3: surfaces des semelles filantes - sens incliné .

1. Vérification :

Il faut vérifier que : $\frac{S_s}{S_h} \le 50\%$

Le rapport entre la surface du bâtiment et la surface totale des semelles vaut : On a surface $S_b = 2023.8m^2$

Sens-Y :

 $\frac{504}{2023.8} = 0.30 < 50\% \dots \dots \dots$ condition vérifiée

Sens-X :

$$\frac{313.8}{2023.8} = 0.22 < 50\% \dots \dots \dots$$
 condition vérifiée

La partie inclinée :
$$\frac{192.5}{2023.8} = 0.10 < 50\% \dots \dots \dots \dots \text{ condition vérifiée}$$

La surface totale de la semelle ne dépasse pas 50% de la surface d'emprise de la structure donc on va opter pour des semelles filantes continues comme type de fondation. le calcule se fait pour le file de poteaux la plus sollicité (file E)

2. <u>Dimensionnement des semelles et nervures :</u>

Гableau IX. 4	:	caractéristique de	la	semelle d	e	file E.
---------------	---	--------------------	----	-----------	---	---------

N (kN)	L(m)	B(m)	S _S (m ²)
11175.01	36	2	72
a. La hauteur h_{sf}:

La hauteur de la semelle est donnée par la relation : $h_{sf} = d + 0.05$

D'où :
$$d \ge \frac{B-b}{4}$$

- _____ d : hauteur utile.
- b : Cotés du poteau (en m), b = 0.8m

Donc: $h_{sf} \ge \frac{B-b}{4} + 0.05 \to h_{sf} \ge 0.35m \to h_{sf} = 0.75m$

b. <u>Largeur des nervures</u> b_n :

Par la condition de coffrage on a : $b_n \ge \frac{L_{max}}{10} = \frac{6}{10} = 0.6m$ on opte pour $b_n = 80cm$

c. <u>Hauteur de nervures :</u>

<u>Condition forfaitaire :</u>

$$\frac{L_{max}}{8} \le h \le \frac{L_{max}}{5}$$

 $0.75 \le h \le 1.2$ On prend $h_n = 100 cm$

d. Vérification de la longueur élastique :

Il faut vérifier que : $L_{max} \le \frac{\pi}{2}L_e$ et $L_e = \sqrt[4]{\frac{4EI}{bk}}$

Avec :

- _ k : coefficient de raideur du sol, on prend $k = 320 \text{ kN/m}^2$
- *E*: module d'élasticité du béton , $E = 3.16 \times 10^7 \text{kN/m}^2$
- _ *I*: moment d'inertie de la semelle, $I = bh^3/12 = 0.070m^4$
- b: largeur de la semelle ; b = 2m

On trouve : $L_e = 10.48m$

Les résultats des vérifications et des dimensionnements des semelles continues sont représentés dans les tableaux suivants :

semelle	Nu (KN)	L (m)	B (m)	h (m)	$\frac{\pi}{2}L_e$ (m)	L_{max} (m)	Reaction linear
S _{FE}	13324.05	36	2	0.75	16.46	6	Verifier

 Tableau IX. 5: Vérifications de la semelle filante.

e. <u>Vérification au non poinçonnement :</u>

Sous l'action des forces localisées, il y a lieu de vérifier la résistance des semelles filantesau poinçonnement par l'effort tranchant

Il faut vérifier que :

$$\tau = \frac{p}{2h_t} \left[1 - (b + \frac{5h_t}{3})/B\right] \le \tau_{lim}$$

Avec :

- P: l'effort normal au niveau de poteau le plus sollicite de chaque semelle
- $_{\rm lim}$: représente la valeur limite de la contrainte de cisaillement, $\tau_{lim} = 0.045 f_{c28} / \gamma_b$

semelle	Р	В	Н	b	h	τ	$ au_{lim}$ MPa	Condition
	(KN)	(m)	(m)	(m)	(m)	MPa		
SFE	1914.38	2	0.5	0.8	0.75	-0.58	750	Verifier

Tableau IX. 6: vérification au non poinconnemnt.

f. <u>Le ferraillage :</u>

• Calcul des armatures principales :

Le ferraillage se calcul par la méthode des bielles à l'ELS. Nous avons :

$$A_s = \frac{P_u(B-b)}{8(h-0.05)\sigma_s}$$

Répartition du poids totale le long de la semelle :

La répartition des charges le long de la semelle est donnée par la formule suivante :

$$q_u = \frac{N_t}{L}$$

Avec :

- L: longeur totale de la semelle
- _ $N_t : l'$ effortnormale total ; $N_t = P_{ts} + N$
- Calcul des poids des terres + semelle (PTS) :

Le poids des terres est donné par la formule suivante :

$$P_{ts} = s \times \gamma \times D$$

Avec :

- _ s: Surface de la semelle ; $s = 72m^2$
- _ γ : poids spécifique (terre + semelle), $\gamma = 18 kN/m^3$
- D : ancrage de la semelle ; D = 4.5m

Alors :

$$P_{ts} = 72 \times 18 \times 4.5 = 5832kN$$

Donc :

 $N_t = 13324.045 + 5832 = 19156.05kN$

On trouve :

$$q_{ser} = \frac{19156.05}{36} = 532.11kN$$

$$A_s = \frac{532.11(2 - 0.8)}{8(0.75 - 0.05) \times 348 \times 10^3} = 3.28 \, cm^2 / ml$$

Nous choisissons **5T** $12/ml = 5.65 \text{ cm}^2/ml$ avec un espacement de **20cm**.

<u>Armatures de répartition</u> : $A_r = \frac{A_s}{4} = 1.41 cm^2 \rightarrow on \ opte \ pour \ 5T10, A_r = 3.93 cm^2$

Ferraillage max en travée et sur appuis de la nervure :

On a :
$$q = P = 532.11 \, kN$$

• Ferraillage longitudinale :

$$M_0 = \frac{q \times l^2}{8} = \frac{532.11 \times 6^2}{8} = 2394.50 kN.m$$

<u>En travée</u>: $M_t = 0.75M_0$

<u>En appuis</u> : $M_a = 0.5 M_0$

a. <u>En travée :</u>

Moments réduits :

 $\mu = \frac{M_{ut}}{F_{bu} \times d^2 \times b} = \frac{1795.88 \times 10^6}{14.7 \times 900^2 \times 800} = 0.18 < \mu_R = 0.391$

Donc pas d'acier comprime, Armateur tendus seulement.

_ Coefficient de la fibre neutre :

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu}) = 0.25$$

_ Bras de levier du couple interne :

$$Z_b = d(1 - 0.4\alpha) = 81.0cm$$

_ Section théorique d'acier :

$$A_u = \frac{M_{ut}}{Z_b \times \sigma_s} = \frac{1795.88 \times 10^6}{810 \times 384} = 57.73 cm^2$$

_ Condition de non fragilité :

$$A_{min} = \frac{0.23bdf_{t28}}{f_e} = \frac{0.23 \times 80 \times 2.1 \times 90}{400} = 8.694cm^2$$

• **<u>Choix</u>**: $12T25 \rightarrow A = 58.91cm^2$

b. <u>Sur appuis :</u>

La méthode de calcul précédente étant la même, nous résumerons les résultats dans le tableau suivant :

Tableau IX. 7: ferraillage sur appuis.

μ	α	$\boldsymbol{Z}_{\boldsymbol{b}}(\mathrm{cm})$	$A_u(cm^2)$	$A_{min}(cm^2)$	Choix :
0.12	0.16	84.24	37.01	8.694	8T25
					A=39.27 <i>cm</i> ²

• <u>Vérification des contraintes :</u>

La fissuration est considérée préjudiciable

Il faut vérifier que :

$$\begin{cases} \sigma_{bc} < \overline{\sigma_{bc}} \\ \sigma_s < \overline{\sigma_s} \end{cases}$$

	M _{ser} KN.m	A _s (cm ²)	σ _{bc} [MPa]	σ _{bc} [MPa]	σ _s [MPa]	σ _s [MPa]	Conditi on
Travée	1594.40	58.91	15	9.23	400	130.3	vérifiée
Appui	1062.94	39.27	15	7.85	400	110.3	Vérifiée

Tableau IX. 8: vérification des contraintes.

• <u>Vérification de la contrainte tangentielle du béton :</u>

On doit vérifier que :

$$\tau_u < \overline{\tau}_u$$

Avec :

•
$$\tau_u = \frac{T_u}{bd}$$
 et $T_u = \frac{q_u L}{2} = 1596.33 \rightarrow \tau_u = \frac{1596.33 \times 10^3}{800 \times 900} = 2.2 MPa$

• $\bar{\tau}_u = \min(0.1 f_{c28}, 4MPa) \rightarrow \bar{\tau}_u = 2.5MPa$

On a $\tau_u < \bar{\tau}_u$ Condition vérifiée

- Armatures transversales :
- **D'après** [15] :

$$\frac{A_t}{b_0 S_t} \geq \frac{\tau_u - 0.3 f_{tj} k}{0.8 f_e}$$

Avec :

- _ k =1 (pas de reprise de bétonnage)
- $S_t \leq \min(0.9d, 40cm)$

$$\frac{A_t}{b_0 S_t} \geq \max\left(\frac{\tau_u}{2}; 0.4MPa\right) = 0.4MPa$$

$$- \frac{A_t}{s_t} = 0.003b_0$$

$$S_t \le \min\left(\frac{h}{4}, 12\phi_l\right) \dots \dots zone \text{ nodale}$$

 $S_t \leq \frac{h}{2}$ zone courante

		S _t (cm) BAEL	S_t^{adpt}	(cm)	A_t (cm^2)	choix
$T_u(kN)$	$\tau_u(MPa)$		z.N	z.C		4T12
1596.33	2.2	40	15	30	4.13	$A_t(cm^2) = 4.52$

Tableau IX. 9: ferraillage des armatures transversales.

- Armatures de peau :

Les armatures dénommées « armatures de peau » sont réparties sur les parements des poutres de grande hauteur, leur section est au moins 3 cm^2 /ml par mètre de longueur de paroi mesuré perpendiculairement à leur direction.

$$A_p = 2.25 cm^2$$

On prend : 2T12=2.26*cm*²

Figure IX. 2: Ferraillage de nervurée.

Figure IX. 3: Ferraillage de la semelle filante.

Conclusion Générale

Cette mémoire nous offre une transition entre la vie universitaire et la vie professionnelle, durant la période de cette thèse nous avons l'opportunité d'appliquer les connaissances déjà acquises et de nouvelles enveloppes.

Le début de ce projet dans lequel nous avons appris les premières étapes du démarrage de tout projet et les informations dont nous avons besoin.

Les multiples usages du bâtiment et la différence de charge qui en résulte nous ont permis de comparer les résultats et la différence entre un bâtiment à forte et moyenne charge et un à faible charge.

Nous avons eu l'occasion d'étudier l'effet du vent sur un bâtiment de forme géométrique irrégulière. Dans ce cas, nous avons dû réaliser plusieurs expériences, qui ne nous étaient malheureusement pas disponibles, mais avec cela nous avons fait une étude approximative et estimée par les règles de base (DTR C.2-4.7 Régulation de la neige et du vent 99).

La modélisation et l'étude sismique n'ont pas été faciles pour nous, pour arriver au modèle final qui satisfait aux critères (RPA99V2003_DTRBC2.48), nous avons dû passer par de nombreux modèles. Grâce à cette étude, nous avons compris les effets sismiques sur les bâtiments et leur signification, et avons également appris à travailler sur le modèle ETABs.

Il suffit de mentionner dans cette étude que l'objectif de la résistance a été atteint et que nous avons pu obtenir un bâtiment sûr.

La Fin, en Espère et ce travail, qui est la Résultante de Toutes ces Années d'étude Nous servira comme Expérience pour Notre-Carrière Professionnel et qu'il Servira aux Prochains étudiants.

Référence bibliographique

[1] Règles de conception et de calcul des structures en acier « CCM97 » ; (Document technique réglementaire D.T.R-B.C.2.44)

[2] Règles parasismique Algérienne RPA99 version 2003 ; (Document technique réglementaire

[3] MICHEL CRISINEL, conception et calcul des dalle mixte acier -béton

[4] SITE WEB

[5] Charges permanente et charge d'exploitation DTR D.C.2.2 charges et surcharges

[6 Document technique réglementaire Algérienne D.T.R-C2-47 ; REGLEMENT NEIGE ET VENT « RNV99 » version 2003.

[7] Eurocode 1, Actions sur les structures, partie 1-1, Action générales -Actions du vent

[8]JEAN-MARIE ARIBERTI, construction mixte acier- béton, calcul des poutres mixtes

[9] RAMADHAN RAMADANE, chapitre1, dalle mixte avec tôle profilées en acier

[10] Eurocode 4 : conception et dimensionnement des structure mixte acier -béton,Partie1.1 : Règles générales et règles pour les bâtiments

[11] RAFIK TALEB, calcul sismique des structures selon RPA99 version 2003, SEMINAIRE JPOGC : journée portes ouvertes sur le génie civil, juin 2008

[12] Règles de l'art generelle environnement 2012, guide escaliers métallique rapportés, conception et mise œuvre

[13] Jean Morel, Calcul des structures métallique selon l'Eurocode 3,[14] BARAKA ABDELHAK, Cours en charpente métallique selon le règlement algérien CCM97

[15] Le BAEL99, D.T.U, Béton armé aux états limites91, modifié 99.

Annexes

ANNEXE A : fiche technique de l'HI BOND 55

Epaisseur t Epaisseur Aire d'acier en Position fibre neutre Mt d'inertie Modules de résistance en mm acier en mm cm²/m v, en cm i en cm* i.v. v, en cm i/v. 0.75 17,45 0.71 10.49 3.32 2.58 57.93 22,45 0,88 0,84 12,41 3,32 2,58 68,53 20,64 26,56 1.00 0,96 14,18 3.32 2,58 78,32 23,59 30,36 1,20 1,16 17,13 3,32 2.58 94.64 28,51 36,68

PORTÉES ADMISSIBLES AU COULAGE EN MÈTRES

Distances maximales franchissables par la tôle HI-BOND, telles que mesurées selon la figure de la colonne de gauche, admissibles sans étaiement, pour chaque épaisseur de plancher, en fonction de l'épaisseur nominale t de la tôle et du nombre de travées couvertes par la tôle, pour une déformation admissible du coffrage de 1/180 ème de la portée. Les colonnes de droite indiquent la distance maximale de part et d'autre d'une file d'étais éventuelle.

Portée de	Epaissour		t = 0,	75 mm			t = 0,8	38 mm			1 = 1,0	mm 00			1 = 1,3	20 mm	
coulage	h (cm)	TT	tare eta	TATE	alsei	**	Sarti êta	****	TOSS Y	-	sars éla	-	6tais	**	taris éla	****	dais T T
	10	2,60			3,32	2,94			3,60	3,07			3,84	3,25			4,20
⊥ (acier) ⊥	11	2,68	3,33	3,32	3,06	2,83	3,56	3,49	3,44	2,95	3,75	3,64	3,67	3,12	4,02	3,86	4,02
Portée =	12	2,59	3,24	3,20	2,83	2,73	3,46	3,38	3,30	2,84	3,64	3,52	3,52	3,02	3,92	3,73	3,85
clair + 5 cm	13	2,51	3,55	3,10	2,82	2,64	3,36	3,27	3,07	2,76	3,54	3,41	3,39	2,92	3,82	3,62	3,71
	14	2,43	3,06	3,01	2,45	2,56	3,28	3,17	2,88	2,68	3,48	3,31	3,24	2,84	3,72	3,51	3,58
(béton)	15	2,36	2,99	2,83	2,30	2,49	3,20	3,09	2,69	2,60	3,37	3,22	3,04	2,76	3,64	3,42	3,46
Tan T	16	2,30	2,92	2,85	2,17	2,43	3,13	3,02	2,53	2,54	3,30	3,15	2,86	2,69	3,56	3,34	3,36
Portée = :	17	2,25	2,85	2,79	2,05	2,37	3,06	2,94	2,39	2,48	3,23	3,08	2,71	2,63	3,49	3,26	3,22
Citar + O Citi	18	2,21	2,79	2,74	1,97	2,32	3,00	2,88	2,27	2,42	3,16	3,00	2,57	2,58	3,42	3,20	3,06
(bois)	19	2,15	2,74	2,67	1,92	2,28	2,94	2,83	2,16	2,37	3,10	2,94	2,44	2,52	3,35	3,13	2,91
(0003)	20	2,12	2,68	2,63	1,87	2,23	2,88	2,77	2,06	2,33	3,04	2,89	2,33	2,47	3,29	3,07	2,77
Portée =	22	2.04	2.63	2.52	1.78	215	2.77	2.67	1 99	2.25	2.93	2 70	2.12	2.38	3.17	2.06	2.59

HI-BOND 55.800

UTILISATION

Epaisseur h en cm	Litrage I/m ³	Masse en kg/m²
10	64	163
11	74	187
12	84	211
13	94	235
14	104	259
15	114	283
16	124	307
17	134	331
18	144	355
19	154	379
20	164	403
22	184	451
24	204	499

Planchers d'épaisseur h de 10 cm à 24 cm

* Il est tenu compte ici de la présence d'une chape de 6 mm.

Le poids propre du plancher n'est pas à déduire des valeurs de charges admissibles données dans les tableaux.

CHARGES ADMISSIBLES SUR LE PLANCHER EN daN/m²

h										7		τ.							_	-
cm	2,00	2,20	2,40	2,50	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,03	4,20	4,40	4.60	4,80	5.00	5,20	5,40	6.60
10	608	548	499	478	459	320	291	265	177				1		1	-				
11	701	634	578	553	531	372	338	305	282	259	0.02	-	15.8	125	10.10	N HA		A	TA	
12	797	720	657	629	469	424	385	352	322	298	258				1.27		İ	1000	100	
13	893	807	736	705	527	477	433	396	362	330	282	240	192		1.2.5	-	The Group	12.00	100 100	10.00
14	990	894	816	616	585	828	481	440	403	359	306	263	222	185	107	1	14.95	in the second	1 Sealt	U.S.S.
15	1087	982	715	678	643	582	530	484	444	387	330	201	239	203	171	138	121101	a state of	10 (5)	1.142
16	1184	1070	780	740	702	636	578	529	485	415	354	302	257	217	TAC	147	117	115	872.7	
18	1379	1247	S11	864	821	743	676	678	554	472	403	321	268	245	200	165	133	101	141	615
20	1575	1187	1643	989	940	851	775	708	622	530	472	1160	327	275	221	583	Sis	115	THE	- 145
22	1773	1315	1176	1115	1069	960	874	799	690	518	465	416	362	302	203	202	160	122	- 8100	107
24	1651	1464	1309	1242	1180	1060	974	-890	758	520	523	468	303	550	279	.990	170	100	110	-

ANNEXE C : pré dimensionnement des éléments :

					- -	·	predi	mansi	onem	ent de	os no	teaux	1		· · ·	
Gterasse	erasse Gcourant Sens Y-Y													sens Y-Y		
													<u>A</u>	<u>7684</u>	<u>A</u>	<u>7684</u>
rmtr 💌	Colonn 💌	Colonn 💌	Colonn 💌		prmtr 💌	valeurs 🛛 🝸	Colonne3	Colonn 🔻					H	<u>6</u>	<u>H</u>	<u>6</u>
pL	6,72	243,936			GpL	5,42	196,746						Lf	3000	Lf	3000
	36,3				S	36,3							iy	109,7	iz	60
pp	0,571	3,45455			Gpp	0,663	4,01115						λγ	27,34731085	λz	50
L	6,05				L1	6,05							λ1	86,81	λ1	86,81
ps	0,224	1,344			Gps	0,224	1,344						λbarre	0,315024892	λbarre	0,57597051
	6				L2	6							VRAI	risque de flmb	VRAI	risque de flmb
olive	0,224	4,032			Gsolive	0,224	4,032						h	270	h	270
	6				L3	6							b	280	b	280
totale		252,767			Gtotale		206,13315						h/b	0,964285714	h/b	0,964285714
	6	2,5											tf	13	tf	13
veu 💌	sorface 💌	G(kn.m 💌	Q(kn.n 💌	∑G(kn. 💌	∑Q(kn. 💌	Nsd 💌	Anec(mm2) 🔽	profile 💌	A(mmi 💌	NPLRd 💌	Colonn 🔽	ratio 💌	α	0,34	α	0,49
rasse	36,3	252,767	36,3	252,767	36,3	395,6848425	1438,853973	HEA240	7684	1535,9	VRAI	0,2576	фу	0,569174573	φz	0,757983789
em etage	36,3			252,767	36,3	395,6848425	1438,853973	HEA240	7684	1535,9	VRAI	0,2576	Ху	0,958570633	Xz	0,799534001
eme etag	36,3	206,133	90,75	458,9	122,513	803,283345	2921,030345	HEA280	7684	2373,57	VRAI	0,3384	Xy <xz< td=""><td>FAUX</td><td>Xz<xy< td=""><td>VRAI</td></xy<></td></xz<>	FAUX	Xz <xy< td=""><td>VRAI</td></xy<>	VRAI
eme etar	36,3	206,133	90,75	665,033	199,65	1197,269348	4353,706718	HEA300	8682	2768,56	VRAI	0,4325	NPLRD		NPLRD	1535,904817
er etage	36.3	206.817	217.8	871.85	375.705	1740,554528	6329,289191	HEA300	8682	2669.62	VRAI	0.652	βA	1		
DC	/-		,0	2. 2,00	2.2,.00		,			2000,02		-,		-		
												- 1				

predimansionement des poutres

POUTRE	IPE	360									
	les do	onners									
	profile	IPE360	PH	ASE INITIEL	LE		PHASE	FINALE			
	Fy	275	R1u	31,71		R1u	80,58				
	G	5,42	R2u	31,71		R2u	80,58				
	Q	6	Ru	63,42		Ru	161,16				
	Gp	0,663	R1s	22,98		R1s	57,192				
	Gb	2,88	R2s	22,98		R2s	57,192				
	Gbac	0,09	Rs	45,96		Rs	114,384				
	Qouv	0,75	qu	1,81926		qu	3,83211				
	b(profile	e 0,18	qs	1,3326		qs	2,7186				
	ls	23130	Msd	198,447	VRAL	beff	1,5				
	w ply	1307	Mplrd	359,425		Rb	2030,625				
	L(poutre	e 6	Vsd	100,588	VRAL	Ra	2206,5175				
	avz	4369	Vplrd	693,672		Mpird	658,39295	VBAL			
	L1	6	0,5° vplre	346,836	VRAL	Msd	500,7245	Rf	\odot	0,761	
	L2	6	Fadm	24	VRAL	Fadm	24				
	fc28	25	F1	0,46297		m	15				
	Aa	8446	F2	10,1126		v.	0,0593				
	ha	400	fmax	10,5755		ic	3E+08				
						F1	0,8473				
						f2	22,579				
						Fmax	23,426				
						Ffinale	34,002	FAUX			
						vsd	132,37				

Annexes

						predi	mansione	ment	des	solives	5	_	
							LES DONNES	<u>s</u>	PHASE FI	NALE			
							L	7,05 🔹 💌	beff	1,7625			
<u>SOLIVE</u>	IPE	200					Qs	19,064	Rb	2385984			
	PHASE IN	ITIELLE					Qu	26,86	Ra	744562,5			
L	× 3,525 ×		Fcns	3,774087			ls	19430000	Msd	166,8761	VRAI		
Qs	7,66		Msd	16,41736	VRAI		Wply	0,2206	Mpl	175,1042	Rf	0,953010503	
Qu	10,57		Mpl	60,665			Avy	1400	Vpl	222,2799	VRAI		
ls	19430000		Vpl	174,6485	VRAI		\$275	275	Vsd	94,6815			
Wply	0,2206		Vsd	18,62963			e	2	lc	1,21E+08			
Avy	1100						hc	95	Fmax	24,14795			
\$275	275						Aa	2850	Ffinale	27,92204	VRAI		
							ha	200	fad	28,2			
							hp	55					
							hb	150					
							RaHc/2Rb	14,8227					
							v	0,017021					

ANNEX D :

• Coefficient relative aux résistances :

2. COEFFICIENTS RELATIFS AUX RESISTANCES

	Tableau 3 - Valeurs o	des coefficie	nts partiels de sécurité γ_M	sur les résistanc	es
Référence	Résistance	Symbole	Domaine	Val	eurs
dans PEC3	concernée	utilisé	d'application	ENV 1993-1-1	EC3-DAN
			- Résistance des sections		
	Résistance	γ_{M0}	. de Classe 1, 2 ou 3	1,1	1,0 ou 1,1
5.1.1(2)	des sections	γ_{M1}	. de Classe 4	1,1	1,1
		γ_{M2}	 Résistance de section nette au droit des trous de boulons 	1,25	1,25
5.1.1(2)	Résistance des éléments	γ_{M1}	- Résistance aux instabilités	1,1	1,1
		Υмь	- Assemblages boulonnés		
6.1.1(2)		. 140	. résistance au cisaillement	1,25	1,25
			. résistance à la traction	1,25	1,50
	Résistance des assemblages	γ_{Mr}	- Assemblages rivés	1,25	1,25
	ascinolagos	γ_{Mp}	- Résistance des axes d'articulation	1,25	1,25
		Υ _{Mw}	 Assemblages soudés acier Fe 360 acier Fe 430 acier Fe 510 	1,25 1,25 1,25	1,25 1,30 1,35
K.1		Υ _{Mj}	- Assemblages tubulaires	$\gamma_{M1}/1,1$	1,0
		$\gamma_{Ms,ult}$	- aux ELU	1,25	1,10
6.5.8.1(3)	Résistance des boulons HR au glissement	Υ _{Ms,ult}	 aux ELU, avec trous surdi- mensionnés et trous oblongs 	1,40	1,25
		$\gamma_{Ms,scr}$	- aux ELS	1,10	1,20
0.2.4(4)	Résistance à la fatieur		- Eléments "redondants"	1,00 à 1,15	1,00 à 1,15
9.3.4(4)	Resistance a la ratigue	γ_{Mf}	- Eléments "non redondants"	1,25 à 1,35	1,25 à 1,35
			- Poids propre	1,00	1,00
Y.4.1(3)	Coefficient pour charge d'essai de réception	-	- Autres charges permanentes	1,15	1,00
			- Charges variables	1,25	1,00

Classification des éléments :

Tableau 5.3.1 (Feuille 2)			Rapports largeur-épaisseur maximaux pour parois comprimées					
	(b) parois	internes o	le seme	les: (pa	rois inter	nes parallèles à l'a	axe de flexion)	
Axe de -	<u>ь</u>		·	+ + 	÷ † tr			
Classe	Type		5	Section fle	échie	Section	comprimée	
Distribution o et sur la (compression	Distribution de contraintes dans la paroi et sur la hauteur de la section (compression positive)					+		
	Sections creuses I	aminées	(b-3t _f)/t _f ≤ 33 ε			(b - 3t _f)/	t _f ≤ 42 ε	
1	Autres		$b/t_{f} \leq 33 \epsilon$		b/t _f	b/t _f ≤ 42 ε		
2	Sections creuses laminées			- 3t _f)/t _f	≤ 38 ε	(b - 3t _f)/	$(b - 3t_f)/t_f \le 42 \varepsilon$	
	Autres		D/t _f ≤ 38 ε D/t _f			≤ 42 ε		
Distribution de contraintes dans la paroi et sur la hauteur de la section (compression positive)			+			+	- +	
	Sections creuses laminées			$(b - 3t_f)/t_f \le 42 \varepsilon$		(b - 3t _f)/	t _f ≤ 42ε	
3	Autres		b/	ŧ	≤ 42 ε	b/t _f	≤ 42 ℓ	
		f _y (N/r	nm²)	23	35	275	355	
ε =	√235/fy	ε		1	I	0,92	0,81	

Tableau 5.3.1 Rapport				s largeur-épaisseur maximaux			
<u> </u>	(c) Parois de semelles	en console :	r par	ois comprin	leea		
(c) <u>raiois de senielles en console</u> .				Sections	soudées aroi en flexi	on con	nposée
				bord cor	mprimé		bord tendu
Distributio dans la po (compres	on de contraintes aroi sion positive)	e)					
1	laminées soudées	C/t _f ≤ 10 ε C/t _f ≤ 9 ε		$c/t_{\rm f} \le \frac{10 \varepsilon}{\alpha}$ $c/t_{\rm f} \le \frac{9 \varepsilon}{\alpha}$			$c/t_f \le \frac{10 \varepsilon}{\alpha \sqrt{\alpha}}$ $c/t_f \le \frac{9 \varepsilon}{\alpha \sqrt{\alpha}}$
2	laminées soudées	C/t _f ≤ 11 ε C/t _f ≤ 10 ε		$c/t_{\rm f} \le \frac{11 \varepsilon}{\alpha}$ $c/t_{\rm f} \le \frac{10 \varepsilon}{\alpha}$			$c/t_f \le \frac{11 \varepsilon}{a \sqrt{a}}$ $c/t_f \le \frac{10 \varepsilon}{a \sqrt{a}}$
Distributio dans la pa (compres	Distribution de contraintes dans la paroi (compression positive)		+ -				
3	laminées soudées	c/t _f ≤ 15 ε c/t _f ≤ 14 ε		c/t _f ≤ 23 $\varepsilon \sqrt{k_{\sigma}}$ c/t _f ≤ 21 $\varepsilon \sqrt{k_{\sigma}}$ Pour k _a voir tableau 5.3.3		ko ko	
		f _v (N/mm ²)		235	275		355
	$\varepsilon = \sqrt{235/f_y}$ ε		1	0,92		0,81	

Type de Section	limites	axe de flambement	courbe de flambement
Sections en I laminées			
***	h / b > 1,2 :		
4	t _f ≤ 40 mm	y - y	а
		z - z	ь
T T T	10 1 1 100	V - V	Sh.
	40 mm < ų ≤ 100 mm	z-z	c
" ' <u></u> ,			
	h/b≤1,2:		
	t _f ≤ 100 mm	y - y	b
- b -		z-z	c
	t _f > 100 mm	v - v	d
		z-z	d
Sections en I soudées			
	- t∈ ≤ 40 mm	V-V	ь
	5	z-z	c
,,	-y t ₄ > 40 mm	y - y	с
4 4	0.000000	z-z	d
Sections creuses	laminées à chaud	quel qu'il soit	а
$O \square \square$	formées à froid - en utilisant f _{yb} *)	quei qu'il soit	ь
	formées à froid - en utilisant f _{va} *)	quel qu'il soit	c
Caissons soudés	d'une manière générale (sauf ci-dessous)	quel qu'il soit	Ъ
	Soudures épaisses et		
	b/t _i < 30	y - y	c
" y y	h/t. < 30	Z - Z	c
Sections en U, L, T et sections pleines	3		
	=⊈▲	quel qu'il soit	c

• Choix de courbe de flambement :

Facteur de moment uniforme équivalent :

• Coefficient C1 C2 :

Tableau F.1.1	Tableau F.1.1 Coefficients C ₁ , C ₂ et C ₃ pour différentes valeurs de k,							
	dans le cas de moments	d'extrémité:	8					
Chargement et	Diagramme de	Valeur de		Coefficients				
conditions d'appuis	moment de flexion	k	C1	C2	C3			
	¥ = • 1	1,0	1,000		1,000			
	r	0,7	1,000		1,113			
		0,5	1,000	-	1,144			
	¥ =+ 3/4	1.0	1,141		0.998			
		0.7	1,270		1,565			
		0.5	1,305	-	2,283			
	¥ = + 1/2	1.0	1.323		0.992			
		0,7	1,473		1,556			
		0.5	1,514	-	2,271			
	¥ = + 1/4	1.0	1,563		0.977			
		0,7	1,739		1,531			
		0,5	1,788	-	2,235			
M #M	¥ =	1,0	1,879		0,939			
		0,7	2,092		1,473			
		0,5	2,150	-	2,150			
	₽ = - 1/4	1,0	2,281		0,855			
		0,7	2,538		1,340			
		0,5	2,609	-	1,957			
	1							
	\$ = - 1/2	1,0	2,704		0,676			
		0,7	3,009		1,059			
		0,5	3,093	-	1,546			
	Ø = - 3/4	10	2 027		0.266			
		0.7	3,927		0,300			
		0,7	3 348	-	0,875			
		0,0	0,040	-	0,007			
	-							
	¥ = -1	1,0	2,752		0,000			
		0,7	3,063		0,000			
		0,5	3,149	-	0,000			

Tableau F.1.2	Coefficients C ₁ , C ₂ et C dans le cas de charges	3, pour différ transversales	rentes valeu ;	rs de k,		
Chargement et	Diagramme de	Valeur de	Coefficients			
conditions d'appuis	moment de flexion	k	C1	C ₂	C ₃	
**************************************		1,0	1,132	0,459	0,525	
		0,5	0,972	0,304	0,980	
W	L	1,0	1,285	1,562	0,753	
		0,5	0,712	0,652	1,070	
F		1,0	1,365	0,553	1,730	
ч т Т		0,5	1,070	0,432	3,050	
at ↓ ⊳		1,0	1,565	1,267	2,640	
și te	-	0,5	0,938	0,715	4,800	
£		1,0	1,046	0,430	1,120	
		0,5	1,010	0,410	1,890	
**						

• Coeficient de reduction :

	Tableau 5.5.2	Coefficients de réduction χ						
		Courbe de flambement						
x	а	b	c	d				
0,2	1,0000	1,0000	1,0000	1,0000				
0,3	0,9775	0,9641	0,9491	0,9235				
0,4	0,9528	0,9261	0,8973	0,8504				
0,5	0,9243	0,8842	0,8430	0,7793				
0,6	0,8900	0,8371	0,7854	0,7100				
0,7	08477	0,7837	0,7247	0,6431				
0,8	0,7957	0,7245	0,6622	0,5797				
0,9	0,7339	0,6612	0,5998	0,5208				
1,0	0,6656	0,5970	0,5399	0,4671				
1,1	0,5960	0,5352	0,4842	0,4189				
1,2	0,5300	0,4781	0,4338	0,3762				
1,3	0,4703	0,4269	0,3888	0,3385				
1,4	0,4179	0,3817	0,3492	0,3055				
1,5	0,3724	0,3422	0,3145	0,2766				
1,6	0,3332	0,3079	0,2842	0,2512				
1,7	0,2994	0,2781	0,2577	0,2289				
1,8	0,2702	0,2521	0,2345	0,2093				
1,9	0,2449	0,2294	0,2141	0,1920				
2,0	0,2229	0,2095	0,1962	0,1766				
2,1	0,2036	0,1920	0,1803	0,1630				
2,2	0,1867	0,1765	0,1662	0,1508				
2,3	0,1717	0,1628	0,1537	0,1399				
2,4	0,1585	0,1506	0,1425	0,1302				
2,5	0,1467	0,1397	0,1325	0,1214				
2,6	0,1362	0,1299	0,1234	0,1134				
2,7	0,1267	0,1211	0,1153	0,1062				
2,8	0,1182	0,1132	0,1079	0,0997				
2,9	0,1105	0,1060	0,1012	0,0937				
3,0	0,1036	0,0994	0,0951	0,0882				

• Effort tranchant V :

• Effort axial de compression :

– Figure 112 –

• Flexion composee seule (M+N) :

• Organigrame de calcule de ferrallaige :

ORGANIGRAMME -1-SECTION RECTANGULAIRE A L'E.L.U EN FLEXION SIMPLE

1

Coefficient μ :

ENPC

è

4

Béton armé'et précontraint 1

Extrait d'un formulaire de résustance des matériaux Moments fléchissants

4	ELU v	- 0	ELS v = 0,3		
- <u>ī</u> ,	μ,	¥4	μ.	Hy .	
0,40 0,41 0,42 0,43 0,44 0,45	0.1101 0.1088 0.1075 0.1062 0.1049 0.1036	0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500	0,1121 0,1110 0,1098 0,1087 0,1075 0,1063	0.2854 0.2924 0.3000 0.3077 0.3155 0.3234	
0.46	0,1022	0,2500	0.1051	0.3319	
0.47	0,1008	0,2500	0.1038	0.3402	
0.48	0,0994	0,2500	0.1026	0.3491	
0.49	0,0980	0,2500	0.1013	0.3580	
0.50	0,0966	0,2500	0.1000	0.3671	
0,51	0.0951	0,2500	0.0987	0.3758	
0,52	0.0937	0,2500	0.0974	0.3853	
0,53	0.0922	0,2500	0.0951	0.3949	
0,54	0.0908	0,2500	0.0948	0.4050	
0,55	0.0894	0,2500	0.0936	0.4150	
0,56	0,0380	0,2500	0.0923	0.4254	
0,57	0,0865	0,2582	0.0910	0.4357	
0,58	0,0851	0,2703	0.0897	0.4462	
0,59	0,0836	0,2822	0.0884	0.4565	
0,60	0,0822	0,2948	0.0870	0.4672	
0,61	0,0808	0.3075	0,0857	0.4781	
0,62	- 0,0794	0.3205	0,0844	0.4892	
0,63	0,0779	0.3338	0,0831	0.5004	
0,64	0,0765	0.3472	0,0819	0.5117	
0,65	0,0751	0.3613	0,0805	0.5235	
0,66	0,0737	0.3753	0,0792	0.5351	
0,67	0,0723	0.3895	0,0780	0.5469	
0,68	0,0710	0.4034	0,0767	0.5584	
0,69	0,0697	0.4181	0,0755	0.5704	
0,70	0,0684	0.4320	0,0743	0.5817	
0.71 0.73 0.73 0.74 0.75	0,0671 0,0653 0,0633 0,0621 \	0,4471 0,4634 0,4780 0,4938 0,5105	0,0731 0,0719 0,0708 0,0696 0,0684	0.5940 0.6063 0.6188 0.6315 0.6447	
0,76	0,0508	0,5274	0.0672	0.6580	
0,77	0,0596	0,5440	0.0551	0.6710	
0,78	0,0584	0,5608	0.0550	0.6841	
0,79	0,0573	0,5786	0.0639	0.6978	
0,80	0,0561	0,5959	0.0628	0.7111	
0,81	0.0550	0.6135	0,0617	0.7246	
0,82	0.0539	0.6313	0,0607	0.7381	
0,83	0.0528	0.6494	0,0596	0.7518	
0,84	0.0517	0.6678	0,0586	0.7653	
0,85	0.0506	0.6864	0,0576	0.7794	
0,86	0,0496	0.7052	0,0566	0.7933	
0,87	0,0486	0.7244	0,0556	0.8074	
0,88	0,0476	0.7438	0,0546	0.8216	
0,89	0,0456	0.7635	0,0537	0.8355	
0,90	0,0456	0.7834	0,0528	0.850	
0.91	0.0447	0.8036	0.0518	0,864	
0.92	0.0437	0.8251	0.0509	0.879	
0.93	0.0428	0.8450	0.0500	0,893	
0.94	0.0419	0.8661	0.0491	0,908	
0.95	0.0410	0.8875	0.0483	0,923	
0.96 0.97 0.98 0.99 1.00	0.0401 0.0392 0.0384 0.0376 0.0368	0.9092 0.9322 0.9545 0.9771	0,0474 0,0465 0,0457 0,0449	0,938	

Application - Dalle sur 4 appuis

cs Scanné avec CamScanner

and the second

Ratio 0,43

Annexe E : études d'assemblages :

Autodesk Robot Structural Analysis Professional 2018 Calcul du raccordement de l'épissure de

poteau à poteau

NF EN 1993-1-8:2005/NA:2007/AC:2009

GENERAL

2 Assemblage N°: Nom de l'assemblage : Epissure du poteau

POTEAU INFERIEUR

Profilé:	HEB 340		
h _{c1} =	340	[mm]	Hauteur de la section de la poutre
b _{fc1} =	300	[mm]	Largeur de la section de la poutre
t _{wc1} =	12	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fc1} =	22	[mm]	Epaisseur de l'aile de la section de la poutre
r _{c1} =	27	[mm]	Rayon de congé de la section de la poutre
$A_{c1} =$	17090 , 00	[mm ²]	Aire de la section de la poutre
I _{yc1} =	366564000,00	[mm ⁴]	Moment d'inertie de la poutre
Matériau:	ACIER		
f _{yc1} =	235000,00	[kPa] F	Résistance
f _{uc1} =	365000,00	[kPa]	

POTEAU SUPERIEUR

HEB 340

Profilé:				HEB 340
h _{c2} =		340	[mm]	Hauteur de la section de la poutre
$b_{fc2} =$		300	[mm]	Largeur de la section de la poutre
t _{wc2} =		12	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fc2} =		22	[mm]	Epaisseur de l'aile de la section de la poutre
r _{c2} =		27	[mm]	Rayon de congé de la section de la poutre
A _{c2} =	170	90,00	[mm ²]	Aire de la section de la poutre
I _{yc2} =	3665640	00,00	[mm ⁴]	Moment d'inertie de la poutre
Matéria	au: ACIER			
f _{yc2} =	235000,00	[kPa]	Résist	ance
$f_{uc2} =$	365000,00	[kPa]		

ÉCLISSE D'AME

Type: 0	de	deux	côté	s		
I _{pw} =				600	[mm]	Longueur de la platine
h _{pw} =				180	[mm]	Hauteur de la platine
t _{pw} =				15	[mm]	Épaisseur de la platine
Matériau	J:	A	CIER	E28		
f _{ypw} =		2	7500	0,00	[kPa]	Résistance de calcul
f _{upw} =		4	0500	0,00	[kPa]	Résistance à la traction

PLATINE EXTERNE DROITE

I _{pe} =	600	[mm]	Longueur de la platine
h _{pe} =	280	[mm]	Hauteur de la platine

PLATINE EXTERNE DROITE

I _{pe} =	600	[mm]	Longueur de la platine
t _{pe} =	12	[mm]	Épaisseur de la platine
Matériau:	AC	CIER E2	28
f _{ype} =	27	75000,0	00 [kPa] Résistance de calcul
f _{upe} =	40)5000 , (00 [kPa] Résistance à la traction

PLATINE INTERNE DROITE

I _{pi} =	600	[mm]	Longueur de la platine
h _{pi} =	120	[mm]	Hauteur de la platine
t _{pi} =	12	[mm]	Épaisseur de la platine
Matériau:	AC	ier e2	8
f _{ypi} =	27	5000,0	0 [kPa] Résistance de calcul
f _{upi} =	40	5000,0	0 [kPa] Résistance à la traction

PLATINE EXTERNE GAUCHE

I _{pe} =	600	[mm]	Longueur de la platine
h _{pe} =	280	[mm]	Hauteur de la platine
t _{pe} =	12	[mm]	Épaisseur de la platine
Matériau:	AC	CIER E2	28
f _{ype} =	27	75000,0	00 [kPa] Résistance de calcul
f _{upe} =	4()5000,0	00 [kPa] Résistance à la traction

PLATINE INTERNE GAUCHE

I _{pi} =	600	[mm]	Longueur de la platine
h _{pi} =	120	[mm]	Hauteur de la platine
t _{pi} =	12	[mm]	Épaisseur de la platine
Matériau:	AC	IER E28	3
f _{ypi} =	27	5000,00	[kPa] Résistance de calcul
f _{upi} =	40	5000,00	[kPa] Résistance à la traction

PAROI INFERIEURE

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

Le plan de cisaillement passe par la partie FILETÉE du boulon OUT:Catégorie d'assemblage A

Classe =	HR	8.8		Classe du boulon
d =		18	[mm]	Diamètre du boulon
$d_0 =$		20	[mm]	Diamètre du trou de boulon
As =	192	2,00	[mm ²]	Aire de la section efficace du boulon
A _v =	254	1,47	[mm ²]	Aire de la section du boulon
f _{yb} =	640000	0,00	[kPa]	Limite de plasticité du boulon
f _{ub} =	900000	0,00	[kPa]	Résistance du boulon à la traction
n _h =		3		Nombre de colonnes des boulons
n _v =		2		Nombre de rangéss des boulons
e1 =		55	[mm]	Niveau du premier boulon
p2 =		80	[mm]	Ecartement
p1 =		70	[mm]	Entraxe

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE DROITE DU POTEAU

Le plan de cisaillement passe par la partie FILETÉE du boulon OUT:Catégorie d'assemblage A Classe = HR 8.8 Classe du boulon

Classe =	HR 8.8		Classe du boulon
d =	18	[mm]	Diamètre du boulon
$d_0 =$	20	[mm]	Diamètre du trou de boulon
A _s =	192,00	[mm ²]	Aire de la section efficace du boulon
A _v =	254,47	[mm ²]	Aire de la section du boulon
f _{yb} =	640000,00	[kPa]	Limite de plasticité du boulon
$f_{ub} =$	900000,00	[kPa]	Résistance du boulon à la traction
n _h =	1		Nombre de colonnes des boulons
n _v =	3		Nombre de rangéss des boulons
e1 =	65	[mm]	Niveau du premier boulon
p1 =	80	[mm]	Entraxe

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE GAUCHE DU POTEAU

Le plan de cisaillement passe par la partie FILETÉE du boulon OUT:Catégorie d'assemblage A

Classe =	HR	8.8		Classe du boulon
d =		18	[mm]	Diamètre du boulon
$d_0 =$		20	[mm]	Diamètre du trou de boulon
As =	192	2,00	[mm ²]	Aire de la section efficace du boulon
A _v =	254	1,47	[mm ²]	Aire de la section du boulon
f _{yb} =	640000),00	[kPa]	Limite de plasticité du boulon
f _{ub} =	900000),00	[kPa]	Résistance du boulon à la traction
n _h =		1		Nombre de colonnes des boulons
n _v =		3		Nombre de rangéss des boulons
e1 =		65	[mm]	Niveau du premier boulon
p1 =		80	[mm]	Entraxe

PAROI SUPERIEURE

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

Le plan de cisaillement passe par la partie FILETÉE du boulon OUT:Catégorie d'assemblage A

Classe =	HR	8.8		Classe du boulon
d =		18	[mm]	Diamètre du boulon
$d_0 =$		20	[mm]	Diamètre du trou de boulon
As =	192	2,00	[mm ²]	Aire de la section efficace du boulon
A _v =	254	1,47	[mm ²]	Aire de la section du boulon
f _{yb} =	640000	0,00	[kPa]	Limite de plasticité du boulon
f _{ub} =	900000	0,00	[kPa]	Résistance du boulon à la traction
n _h =		3		Nombre de colonnes des boulons
n _v =		2		Nombre de rangéss des boulons
e ₁ =		55	[mm]	Niveau du premier boulon
p2 =		80	[mm]	Ecartement
p ₁ =		70	[mm]	Entraxe

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE DROITE DU POTEAU

Le plan de cisaillement passe par la partie FILETÉE du boulon OUT:Catégorie d'assemblage A

Classe =	HR 8.8		Classe du boulon
d =	18	[mm]	Diamètre du boulon
d ₀ =	20	[mm]	Diamètre du trou de boulon
As =	192,00	[mm ²]	Aire de la section efficace du boulon
A _v =	254,47	[mm ²]	Aire de la section du boulon
f _{yb} =	640000,00	[kPa]	Limite de plasticité du boulon
f _{ub} =	900000,00	[kPa]	Résistance du boulon à la traction

Classe =	HR 8.8		Classe du boulon
n _h =	1		Nombre de colonnes des boulons
n _v =	3		Nombre de rangéss des boulons
e ₁ =	65	[mm]	Niveau du premier boulon
p1 =	80	[mm]	Entraxe

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE GAUCHE DU POTEAU

Le plan de cisaillement passe par la partie FILETÉE du boulon OUT:Catégorie d'assemblage A

001.0a	eyone u asse	mblage	; A
Classe =	HR 8.8		Classe du boulon
d =	18	[mm]	Diamètre du boulon
$d_0 =$	20	[mm]	Diamètre du trou de boulon
A _s =	192,00	[mm ²]	Aire de la section efficace du boulon
A _v =	254,47	[mm ²]	Aire de la section du boulon
f _{yb} =	640000,00	[kPa]	Limite de plasticité du boulon
f _{ub} =	900000,00	[kPa]	Résistance du boulon à la traction
n _h =	1		Nombre de colonnes des boulons
n _v =	3		Nombre de rangéss des boulons
e1 =	65	[mm]	Niveau du premier boulon
p1 =	80	[mm]	Entraxe

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel	[2.2]
γм2 =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas: Calculs manuels

ETAT LIMITE: ULTIME

N _{Ed1} =	-869,99	[kN]	Effort axial
$V_{y,Ed1} =$	66,42	[kN]	Effort tranchant
V _{z,Ed1} =	30,00	[kN]	Effort tranchant
$M_{y,Ed1} =$	93,00	[kN*m]	Moment fléchissant
$M_{Vz,Ed1} =$	50,00	[kN*m]	Moment fléchissant
$N_{Ed2} =$	-869,00	[kN]	Effort axial
$V_{y,Ed2} =$	0,00	[kN]	Effort tranchant
$V_{z,Ed2} =$	0,00	[kN]	Effort tranchant
$M_{y,Ed2} =$	0,00	[kN*m]	Moment fléchissant
$M_{Vz,Ed2} =$	0,00	[kN*m]	Moment fléchissant

RESULTATS

PAROI INFERIEURE

Effort axial							
Platine	A _i [mm2]	EFFORTS EQUIVALENTS Ni [kN]	EFFORTS EQUIVALENTS Ni(My,Ed) [kN]	Force résultante N _{Ed,i} [kN]			
	A _{pw} = 5400,00	-262,75	-	N _{Ed,pw} = -262,75			
D EL	A _{pfue} = 3360,00	-163,49	161,89	N _{Ed,pfue} = -1,60			
	A _{pfui} = 2880,00	-140,13	112,37	N _{Ed,pfui} = -27,76			

Platine	A _i [mm2] EFFOR		S EQUIVALENTS EFFORTS EQU Ni [kN] Ni(M _{y,Ed})		VALENTS [kN]	Force résultante N _{Ed,i} [kN]	
	A _{pfli} = 2880,00	-140,13		-112,37		N _{Ed,pfli} = -252,50	
H	A _{pfle} = 3360,00 -163,49		-161,89			N _{Ed,pfle} = -325,38	
Ni=(NEd*A	vi)/(2*Awp+Apfue+2*Apfu	ii+2*A _{pfli} +A _p	ofle)				
$N_{Ed,i} = N_i +$	-Ni(M _{y,Ed})						
Effort tra	nchant Z						
Platine		A _i [mm2]			V _{zEd,i} [k	N]	
	A _{z,pw} = 5400,00		V _{z,Ed,pw} = 30,00				
Effort tra	nchant Y						
Platine	A _{y,i} [mm2]		V _{y,Ed,i}	[kN]			
Ay	A _{y,fupe} = 3360,00		V _{y,Ed,fupe} = 17,88				
Ay	Ay,fupi= 2880,00		V _{y,Ed,fupi} = 15,33				
Ay	_{y,flpi} = 2880,00		V _{y,Ed,flpi} = 15,33				

 $V_{y,i} = (V_{y,Ed} A_{y,i})/(A_{pfue} + 2A_{pfui} + 2A_{pfli} + A_{pfle})$

A_{y,flpe}= 3360,00

Moment fléchissant Y

Platine	l _{y,i} [mm4]	EFFORTS EQUIVALENTS M _{y,i} [kN*m]	Force résultante M _{y,Ed,i} [kN*m]
	I _{y,pw} = 14580000,00	3,99	M _{y,Ed,pw} = 3,99
DER	I _{y,pfue} = 104119680,00	28,49	-
	I _{y,pfui} = 58516560,00	16,01	-
	I _{y,pfli} = 58516560,00	16,01	-
DCH	I _{y,pfle} = 104119680,00	28,49	-

V_{y,Ed,flpe}= 17,88

 $M_{y,i} = (M_{y,Ed}*I_{y,i})/(2*I_{pw}+I_{pfue}+2*I_{pfui}+2*I_{pfli}+I_{pfle})$

Moment fléchissant Z

Platine	I _{z,i} [mm4]	M _{z,i} [kN*m]
D ER	I _{z,pfue} = 21952000,00	M _{z,Ed,pfue} = 11,26
DO	I _{z,pfui} = 26784000,00	M _{z,Ed,pful} = 13,74
	I _{z,pfli} = 26784000,00	M _{z,Ed,pfli} = 13,74
DOD	I _{z,pfle} = 21952000,00	M _{z,Ed,pfle} = 11,26

 $M_{i}=(M_{z,Ed}*I_{z,i})/(I_{z,pfue}+I_{z,pfui}+2*I_{z,pfli}+I_{z,pfle})$

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

RESISTANCE DES BOULONS

F _{v,Rd} 165,8 [kN = 9] Pression du boul	Résistance du boulon au cisaillement dans boulon on sur l'âme du poteau	$\lapartie filetée d'un \qquad F_{v,Rd} = \\ 0.6^* f_{ub} * A_s * m/\gamma_{M2}$
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de Ebra	$k_{1x} = \min[2.8^{*}(e_{1}/d_{0})-1.7, 1.4^{*}(p_{1}/d_{0})-1.7, 2.5]$
$k_{1x} > 0.0$	2,50 > 0,00 vérifié	
$\alpha_{\rm bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₂ /(3*d ₀), p ₂ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00 vérifié	
$F_{b,Rd1x} = 157,68$	[kN] Résistance d'un boulon en pression d	liamétrale $F_{b,Rd1x} = k_{1x}^* \alpha_{bx}^* f_u^* d^* \sum t_i / \gamma_{M2}$
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de Fb.Rd	k _{1z} =min[2.8*(e ₂ /d ₀)-1.7, 1.4*(p ₂ /d ₀)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 0, 92$	Coefficient pour le calcul de Fb,Rd	α _{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0,92 > 0,00 vérifié	
$F_{b,Rd1z} = 144, 54$	[kN] Résistance d'un boulon en pression d	$f_{b,Rd1z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* \sum_{i/\gamma_{M2}} t_{i/\gamma_{M2}}$
Pression du boul	on sur la plaquette	
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de Fb,Rd	k _{1x} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₂ /(3*d ₀), p ₂ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié
$F_{b,Rd2x} = 437, 40$ [k	N]Résistance d'un boulon en pression diar	nétrale $F_{b,Rd2x}=k_{1x}^{*}\alpha_{bx}^{*}f_{u}^{*}d^{*}\Sigma_{ti}^{'}\gamma_{M2}$
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1z}=min[2.8^{*}(e_{2}/d_{0})-1.7, 1.4^{*}(p_{2}/d_{0})-1.7, 2.5]$
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 0, 92$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0,92 > 0,00 vérifié	
$F_{b,Rd2z} = 400,95$	[kN] Résistance d'un boulon en pression o	$\lamétrale F_{b,Rd2z}=k_{1z}^{*}\alpha_{bz}^{*}f_{u}^{*}d^{*}\Sigma_{ti}^{'}\gamma_{M2}$

ETAT LIMITE: ULTIME

cisaillement des boulons

e0 =	150 [m	^{n]} Excentrement de l'effort tranchant par rapport au centre de gravité d'un groupe de boulons	$e_0 = e_{2b} + 0.5^* (s_1 + (c - 1)^* p_2)$
My =	^{8,49} [kl m	N [*]] Moment fléchissant réel	My=My,Ed,pw+Vz,Ed,p w*e0
F _{x,N} =	⁴³ ′ ⁷ ₉ [k	N] Force résultante dans le boulon due à l'influence de la force longitudinale sur la direction x	$F_{x,N} = N_{Ed,pw} /n_b$
F _{z,Vz}	5,00 [k	N] Force résultante dans le boulon due à l'influence de l'effort tranchant Vz sur la direction z	$F_{z,Vz} = V_{z,Ed,pw} /n_b$
F _{x,My}	9,02 [k	N Force résultante dans le boulon due à l'influence du moment My sur direction x	a $F_{x,My} = M_y ^* z_i / \sum_{z_i^2} (x_i^2 + z_i^2)$
F _{z,My}	^{20,6} 1 [k	N Force résultante dans le boulon due à l'influence du moment My sur direction z	a $F_{z,My} = M_y ^* x_i / \sum (x_i^2 + z_i^2)$
F _{x,Ed}	^{52,8} [k	N] Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{x,N} + F_{x,My}$
F _{z,Ed}	^{25,6} [k	N] Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{z,Vz} + F_{z,My}$
F _{Ed}	⁵⁸ , ⁶ ₉ [k	N] Effort tranchant résultant dans le boulon	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rd,x}	¹⁵⁷ , [k	N] Résistance résultante de calcul du boulon sur la direction x	F _{Rdx} =min(F _{bRd1,x} , F _{bRd2,x})
F _{Rd,z}	¹⁴⁴ , [k	N] Résistance résultante de calcul du boulon sur la direction z	F _{Rdz} =min(F _{bRd1,z} , F _{bRd2,z})
F _{x,Ed}	≤ F _{Rd,x}	52,81 < 157,68 vén	if (0,33)
F _{z,Ed}	$\leq F_{Rd,z}$	25,61 < 144,54 vén ié	if (0,18)

e ₀ =	150 [mm]	Excentrement de l'effort tranchant par rapport au centre de gravité d'un groupe de boulons	$e_0 = e_{2b} + 0.5^*(s_1 + (c - 1)^*p_2)$
F _{Ed} ≤ F	v,Rd	58,69 < 165,89 vérif ié	(0,35)

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE DROITE DU POTEAU

RESISTANCE DES BOULONS

F _{v,Rd} = 165,89 [kN]	Résistance de la tige d'un boulon au	cisaillement	$F_{v,Rd}=0.6^*f_{ub}^*A_s^*m/\gamma_{M2}$
Pression du boulon s	sur l'aile du poteau		
Direction x			
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}		k _{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00	vérifié	
$\alpha_{\rm bx} = 1,00$ (Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00 vérifié	•	
$F_{b,Rd1x} = 282,51$ [kN]	Résistance d'un boulon en pression	diamétrale	F _{b,Rd1x} =k1x*α _{bx} *fu*d*∑ti/γ _{M2}
Direction y			
k _{1y} = 2,50	Coefficient pour le calcul de F _{b,Rd}	$k_{1y} = min[2.8]$	B*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1y} > 0.0	2,50 > 0,00	vérifié	
$\alpha_{by} = 1,00$	Coefficient pour le calcul de F _{b,Rd}		α _{by} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{by} > 0.0	1,00 > 0,00	vérifié	
$F_{b,Rd1y} = 282, 51 [kN] F$	Résistance d'un boulon en pression dia	amétrale	F _{b,Rd1y} =k _{1y} *α _{by} *f _u *d*∑ti/γ _{M2}
Pression du boulon s	sur la plaquette		
Direction x			
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}		k _{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00	vérifié	
$\alpha_{\rm bx} = 1,00$ (Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00 vérifié	•	
$F_{b,Rd2x} = 349,92$ [kN]	Résistance d'un boulon en pression	diamétrale	F _{b,Rd2x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction y			
$k_{1y} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1y} =min[2.8	B*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1y} > 0.0	2,50 > 0,00	vérifié	
α _{by} = 0,83	Coefficient pour le calcul de F _{b,Rd}		α _{by} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{by} > 0.0	0,83 > 0,00	vérifié	
$F_{b,Rd2y} = 291, 60 [kN] F$	Résistance d'un boulon en pression dia	amétrale	F _{b,Rd2y} =k _{1y} *α _{by} *f _u *d*∑t _i /γ _{M2}

ETAT LIMITE: ULTIME

cisaillement des boulons

e ₀ =	145	[mm]	Excentrement de l'effort tranchant par rapport au centre de gravité d'un groupe de boulons	$e_0 = e_{1b} + 0.5^*(r - 1)^* p_1$
M _z =	29,8 2	[kN* m]	Moment fléchissant réel	$M_z = M_{z, Ed, pf} + V_{y, Ed, pf}^*$
F _{x,N}	- 6,97	[kN]	Force résultante dans le boulon due à l'influence de la force longitudinale sur la direction x	$F_{x,N} = N_{Ed,pf} /n_b$
F _{y,∨y} =	5,54	[kN]	Force résultante dans le boulon due à l'influence de l'effort tranchant Vy sur la direction y	$F_{y,Vy} = V_{y,Ed,pf} /n_b$
F _{x,Mz}	37,2 7	[kN]	Force résultante dans le boulon due à l'influence du moment Mz sur la direction x	$F_{x,Mz} = M_z ^* y_i / \sum (x_i^2 + y_i^2)$
F _{y,Mz}	37,2 7	[kN]	Force résultante dans le boulon due à l'influence du moment Mz sur la direction y	$F_{y,Mz} = M_z ^* x_i / \sum (x_i^2 + y_i^2)$
F _{x,Ed}	30,3 0	[kN]	Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{x,N} + F_{x,Mz}$
F _{y,Ed}	42,8 0	[kN]	Effort de calcul total dans le boulon sur la direction y	$F_{y,Mz}=F_{y,\forall y}\textbf{+}F_{y,Mz}$
F_{Ed}	52 , 4	[kN]	Effort tranchant résultant dans le boulon	$F_{Ed} = \sqrt{F_{x,Ed}^2 + $
cisaillement des boulons

e ₀ =	145 [mm]	Excentrement de l'effort tranchant par rapport au centre de gravité d'un groupe de boulons	e ₀ = e _{1b} +0.5*(r- 1)*p ₁
=	4		F _{y,Ed} ²)
F _{x,Rd}	²⁸² , [kN]	Résistance résultante de calcul du boulon sur la direction x	F _{x,Rd} =min(F _{x,bRd1} , F _{x,bRd2})
F _{y,Rd} =	²⁸² , [kN]	Résistance résultante de calcul du boulon sur la direction y	F _{y,Rd} =min(F _{y,bRd1} , F _{y,bRd2})
F _{x,Ed}	≤ F _{x,Rd}	30,30 < 282,51 vérifié	(0,11)
$ F_{y,Ed} $	≤ F _{y,Rd}	42,80 < 282,51 vérifié	(0,15)
FEd≤	Fv Rd	52,44 < 165,89 vérifié	(0,32)

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE GAUCHE DU POTEAU

RESISTANCE DES BOULONS

$F_{v,Rd} = 165,89$ [k]	N] Résistance de la tige d'un boulon au c	saillement	$F_{v,Rd} = 0.6^* f_{ub}^* A_s^* m / \gamma_{M2}$
Pression du boulo	n sur l'aile du poteau		
Direction x			
k _{1x} = 2,50	Coefficient pour le calcul de Fb,Rd	ŀ	x _{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de Fb,Rd	α _{bx} =min[e ₁ /(3*	*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié	
F _{b,Rd1x} = 282, 51 [k]	N] Résistance d'un boulon en pression diar	nétrale	F _{b,Rd1x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction y			
$k_{1y} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1y} = min[2.8^{*}(e_{1}/e_{1})]$	d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1y} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{by} = 1,00$	Coefficient pour le calcul de F _{b,Rd}		$\alpha_{by}=min[e_2/(3^*d_0), f_{ub}/f_u, 1]$
α _{by} > 0.0	1,00 > 0,00	vérifié	
$F_{b,Rd1y} = 282, 51$ [kN] Résistance d'un boulon en pression o	liamétrale	$F_{b,Rd1y} = k_{1y}^* \alpha_{by}^* f_u^* d^* \sum t_i / \gamma_{M2}$
Pression du boulo	n sur la plaquette		
Direction x			
k _{1x} = 2,50	Coefficient pour le calcul de F _{b,Rd}	ł	<pre>k1x=min[2.8*(e2/d0)-1.7, 2.5]</pre>
k _{1x} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{\rm bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₁ /(3 [*]	[*] d ₀), p ₁ /(3 [*] d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié	
F _{b,Rd2x} = 349, 92 [k]	N] Résistance d'un boulon en pression diar	nétrale	F _{b,Rd2x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction v			
$k_{1y} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1v} =min[2.8*(e ₁ /	d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1y} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{by} = 0,83$	Coefficient pour le calcul de F _{b,Rd}		α _{by} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{by} > 0.0	0,83 > 0,00	vérifié	
F _{b,Rd2y} = 291,60 [kN] Résistance d'un boulon en pression o	liamétrale	F _{b,Rd2y} =k _{1y} *α _{by} *f _u *d*∑t _i /γ _{M2}

ETAT LIMITE: ULTIME

cisaillement des boulons

e ₀ =	145 [mm]	Excentrement de l'effort tranchant par rapport au centre de gravité d'un groupe de boulons	e ₀ = e _{1b} +0.5*(r- 1)*p ₁
M _z =	29,8 [kN* 2 m]	Moment fléchissant réel	$\underset{\substack{M_z=M_{z,Ed,pf}+V_{y,Ed,pf}}{M_z=M_{z,Ed,pf}+V_{y,Ed,pf}}$
F _{x,N}	94,2 [kN]	Force résultante dans le boulon due à l'influence de la force longitudinale sur la direction x	$F_{x,N} = N_{Ed,pf} /n_b$
F _{y,Vy}	5,54 [kN]	Force résultante dans le boulon due à l'influence de l'effort tranchant Vy sur la direction y	$F_{y, \forall y} = V_{y, Ed, pf} / n_b$
F _{x,Mz}	³⁷ ′ ² ₇ [kN]	Force résultante dans le boulon due à l'influence du moment Mz sur la direction \boldsymbol{x}	$F_{x,Mz} = M_z ^* y_i / \sum_{x_i^2} (x_i^2 + y_i^2)$

e ₀ = F _{y,Mz} =	¹⁴⁵ [mm	Excentrement de l'effort d'un groupe de boulons Force résultante dans le direction y	tranchant par rapport au centre boulon due à l'influence du mo	de gravité ment Mz sur la	$\begin{split} e_0 &= e_{1b} + 0.5^* (r - 1)^* p_1 \\ &\qquad F_{y,Mz} = \\ & M_z ^* x_i / \sum (x_i^2 + y_i^2) \end{split}$
F _{x,Ed} =	- 56,9 [kN 7	Effort de calcul total dans	s le boulon sur la direction x		$F_{x,\text{Ed}} = F_{x,\text{N}} + F_{x,\text{Mz}}$
F _{y,Ed}	⁴² , ⁸ ₀ [kN	Effort de calcul total dans	s le boulon sur la direction y		$F_{y,Mz}=F_{y,\vee y}\textbf{+}F_{y,Mz}$
F _{Ed}	⁷¹ , ² ₆ [kN	Effort tranchant résultant	t dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{y,Ed}^2)}$
F _{x,Rd}	²⁸² , [kN	Résistance résultante de	e calcul du boulon sur la directio	on x	F _{x,Rd} =min(F _{x,bRd1} , F _{x,bRd2})
F _{y,Rd}	²⁸² , [kN	Résistance résultante de	e calcul du boulon sur la directio	on y	F _{y,Rd} =min(F _{y,bRd1} , F _{y,bRd2})
F _{x,Ed}	≤ F _{x,Rd}	l	-56,97 < 282,51	vérif ié	(0,20)
F _{y,Ed}	$\leq F_{y,Rd}$		42,80 < 282,51	vérif ié	(0,15)
F _{Ed} ≤	$F_{v,Rd}$	-	71,26 < 165,89	vérif ié	(0,43)

VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC - [3.10]

POTEAU

Nr	Modèle	Anv [mm2]	Ant [mm2]	V₀ [kN]	V _{eff,Rd} [kN]	V0//Veff,Rd	Etat
1		2100,00	2160,00	30,00 (*1)	600,28 (*)	0,05	vérifié

 $(*1) V_0 = V_{zEd1}$

(*) $V_{effRd} = 0.5^{+}f_{u}^{+}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{+}f_{y}^{+}A_{nv}/\gamma_{M0}$

ÉCLISSE D'AME

Nr	Modèle	A _{nv} [mm2]	A _{nt} [mm2]	V ₀ [kN]	V _{eff,Rd} [kN]	V0//Veff,Rd	Etat
1		1425,00	2700,00	15,00 (*1)	663,65 (*)	0,02	vérifié

(*1) $V_0 = V_{zEd1}$

(*) $V_{effRd} = 0.5^{+}f_{u}^{+}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{+}f_{y}^{+}A_{nv}/\gamma_{M0}$

PLATINE EXTERNE DROITE

Nr	Modèle	Anv [mm2]	Ant [mm2]	V ₀ [kN]	V _{eff,Rd} [kN]	V0//Veff,Rd	Etat
1		1560 , 00	2220,00	33,21 (*1)	607,32 (*)	0,05	vérifié

(*1) $V_0 = 0.5^* V_{yEd1}$

(*) $V_{effRd} = 0.5^{*}f_{u}^{*}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{*}f_{y}^{*}A_{nv}/\gamma_{M0}$

PLATINE EXTERNE GAUCHE

Nr	Modèle	Anv [mm2]	A _{nt} [mm2]	V₀ [kN]	V _{eff,Rd} [kN]	V ₀ /V _{eff,Rd}	Etat
1		1560,00	2220,00	33,21 (*1)	607,32 (*)	0,05	vérifié

(*1) $V_0 = 0.5^* V_{yEd1}$

(*) $V_{effRd} = 0.5^{+}f_{u}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{+}f_{y}A_{nv}/\gamma_{M0}$

VERIFICATION DES SECTIONS AFFAIBLIES PAR LES TROUS - [5.4]

POTEAU

$A_t = 6762,89$ [mm ² $A_{t,net} = 5422,89$ [mm ²	 ²] Aire de la zone tendue de la sectionu brutte ²] Aire nette de la zone de la section en traction 	
$0.9^*(A_{t,net}/A_t) \ge (f_y^*\gamma_{M2})/(f_u^*\gamma_{M2})$	Mo) 0,72 < 0,80	
W = 2156258,82 [n	nm ³] Facteur élastique de la section	
$W_{net} = 2156258, 82$ [n	nm ³] Facteur élastique de la section	
$M_{c,Rdnet} = 506,72$ [k]	N*m] Résistance de calcul de la section à la flexion	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$	93,00 < 506,72 vérifié	(0,18)
$A_v = 4080,00 \text{ [mm^2] A}$	ire de la section efficace en cisaillement	$A_v = h_p * t_p$
$A_{v,net} = 3600, 00 \text{ [mm2]} A$	ire de la section efficace nette en cisaillement	A _{vnet} =A _v -n _v *d ₀ *t _p
$V_{pl,Rd} = 553, 56 [kN] Résista$	ance plastique de calcul pour le cisaillement	V _{pl,Rd} =(A _v *f _{yp})/(√3*γ _{M0})
$ V_0 \leq V_{pl,Rd}$	30,00 < 553,56 vérifié	(0,05)

ÉCLISSE D'AME

At =	96 , 57	[mm²]	Aire de la zone te	endue de la	sectionu l	brutte		
A _{t,net} =	96 , 57	[mm²]	Aire nette de la z	one de la s	ection en t	tractior	า	
0.9*(A _t ,	$net/A_t) \ge ($	f _y *үм2)/(fu*	умо)	0,90 > 0	,85			
W =	81000,	00 [mm³]	Facteur élastique	e de la secti	ion			
$M_{c,Rd} =$	22,2	28 [kN*m]	Résistance de ca	alcul de la s	ection à la	flexior	า	$M_{c,Rd} = W^* f_{yp} / \gamma_{M0}$
$ M_0 \leq N$	Ac,Rd			4,24 <	22,28		vérifié	(0,19)
A _v =	2700,00	[mm ²]	Aire de la section	i efficace er	n cisailleme	ent		$A_v = h_p * t_p$
A _{v,net} =	2100,00) [mm²]	Aire de la section	efficace ne	ette en cisa	ailleme	nt	A _{vnet} =A _v -n _v *d ₀ *t _p
$V_{pl,Rd} =$	428,68	[kN] Ré	sistance plastique	e de calcul p	oour le cisa	ailleme	nt	V _{pl,Rd} =(A _v *f _{yp})/(√3*γ _{M0})
$ V_0 \leq V$	pl,Rd			15,00	< 428,68	3 V	vérifié	(0,03)

PLATINE EXTERNE DROITE

$A_t = 1668, 85 \text{ [mm2]} \text{ Air}$	e de la zone tendue de la sectionu b	rutte	
$A_{t,net} = 1428,85$ [mm ²] Air	e nette de la zone de la section en tr	action	
$0.9^*(A_{t,net}/A_t) \ge (f_y^*\gamma_{M2})/(f_u^*\gamma_{M0})$	0,77 < 0,85		
W = 156800,00 [mm ³] Fa	cteur élastique de la section		
Wnet = 151590,80 [mm ³] Fa	cteur élastique de la section		
$M_{c,Rdnet} = 41,69 [kN*m] Ré$	esistance de calcul de la section à la	flexion M _{c,Rc}	$I_{net} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$	11,26 < 41,69	vérifié	(0,27)
$A_v = 3360, 00 \text{ [mm^2]}$ Aire de la	a section efficace en cisaillement		$A_v = h_p^* t_p$
$A_{v,net} = 2880, 00$ [mm ²] Aire de la	a section efficace nette en cisailleme	ent	A _{vnet} =A _v -n _v *d ₀ *t _p
V _{pl,Rd} = 533, 47 [kN] Résistance pl	astique de calcul pour le cisaillemen	t V _{pl,Rd} =	=(A _v *f _{yp})/(√3*γ _{M0})
$ V_0 \leq V_{pl,Rd}$	17,88 < 533,47	vérifié	(0,03)

PLATINE INTERNE DROITE

$A_t = 1574, 51 \text{ [mm^2]} A$ $A_{t,net} = 1334, 51 \text{ [mm^2]} A$	ire de la zone tendue de la sectionu brutte ire nette de la zone de la section en tractio	n
$0.9^*(A_{t,net}/A_t) \ge (f_y^*\gamma_{M2})/(f_u^*\gamma_M)$	0,76 < 0,85	
W = 178560,00 [mm ³]] Facteur élastique de la section	
$W_{net} = 175862, 42 \text{ [mm}^3$] Facteur élastique de la section	
$M_{c,Rdnet} = 48, 36 [kN*m]$	 Résistance de calcul de la section à la fle 	xion $M_{c,Rdnet} = W_{net} f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$	13,74 < 48,36	vérifié (0,28)
$A_v = 1440,00 \text{ [mm^2] Air}$	re de la section efficace en cisaillement	$A_v = h_p^* t_p$
$A_{v,net} = 960,00 \text{ [mm^2] Air}$	re de la section efficace nette en cisailleme	nt $A_{vnet}=A_v-n_v*d_0*t_p$
V _{pl,Rd} = 152, 42 [kN] Résis	tance plastique de calcul pour le cisailleme	ent $V_{pl,Rd} = (A_{v,net} f_{yp})/(\sqrt{3} \gamma_{M0})$
$ V_0 \leq V_{pl,Rd}$	15,33 < 152,42 V	vérifié (0,10)

PLATINE INTERNE GAUCHE

$A_t =$	2880,00	[mm²]	Aire de la zone tendue de la sectionu brutte
A _{t,net} =	2640,00	[mm ²]	Aire nette de la zone de la section en traction
0.9*(A _{t,ne}	$_{et}/A_t) \ge (f_V * \gamma_M)$	2)/(f _u *γ _{M0})	0,82 < 0,85

W = W _{net} =	178560,00 175862,42	[mm ³] [mm ³]	Facteur élastique de la section Facteur élastique de la section		
Mc,Rdnet =	48,36	[kN*m]	Résistance de calcul de la section à	la flexion	$M_{c,Rdnet} = W_{net} f_{yp} / \gamma_{M0}$
$ M_0 \leq M_0$	c,Rdnet		13,74 < 48,36	vérifié	(0,28)
$A_v = 1$ $A_{v,net} = 1$	440,00 [mm 960,00 [mm	²] Aire o ²] Aire o	de la section efficace en cisaillement de la section efficace nette en cisaille	ment	$A_v = h_p^* t_p$ $A_{vnet} = A_v - n_v^* d_0^* t_p$
$V_{\text{pl,Rd}} = 1$	52,42[kN]Ré	ésistance	e plastique de calcul pour le cisaillem	ent	V _{pl,Rd} =(A _{v,net} *f _{yp})/(√3*γ _{M0})
$ V_0 \leq V_{pl}$,Rd		15,33 < 152,42	vérifié	(0,10)

PLATINE EXTERNE GAUCHE

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Aire de la zone tendue de la sectionu brutte Aire nette de la zone de la section en tracti	e on	
$0.9^*(A_{t,net}/A_t) \ge (f_y^*\gamma_{M2})/(f_u^*\gamma_{M2})$	мо) 0,77 < 0,85		
W = 156800,00 [mm	³] Facteur élastique de la section		
$W_{net} = 134742,86$ [mm	1 ³] Facteur élastique de la section		
$M_{c,Rdnet} = 37,05 [kN^*]$	m]Résistance de calcul de la section à la f	lexion	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$	11,26 < 37,05	vérifié	(0,30)
$A_v = 3360,00 \text{ [mm^2]} A$	vire de la section efficace en cisaillement		$A_v = h_p^* t_p$
$A_{v,net} = 2880, 00 \text{ [mm2]} A$	vire de la section efficace nette en cisaillem	ent	Avnet=Av-nv*d0*tp
$V_{pl,Rd} = 533, 47$ [kN] Rés	istance plastique de calcul pour le cisaillem	ient	V _{pl,Rd} =(A _v *f _{yp})/(√3*γ _{M0})
$ V_0 \leq V_{pl,Rd}$	17,88 < 533,47	vérifié	(0,03)

PAROI SUPERIEURE

Effort axial						
Platine	A _i [mm2]	EFFORTS EQUIVALENTS Ni [kN]	EFFORTS EQUIVALENTS Ni(My,Ed) [kN]	Force résultante N _{Ed,i} [kN]		
	A _{pw} = 5400,00	-262,45	-	N _{Ed,pw} = -262,45		
H	A _{pfue} = 3360,00	-163,30	0,00	N _{Ed,pfue} = -163,30		
	A _{pfui} = 2880,00	-139,97	0,00	N _{Ed,pfui} = -139,97		
	A _{pfli} = 2880,00	-139,97	0,00	N _{Ed,pfli} = -139,97		
DER	A _{pfle} = 3360,00	-163,30	0,00	N _{Ed,pfle} = -163,30		

 $N_i = (N_{Ed} * A_i) / (2 * A_{wp} + A_{pfue} + 2 * A_{pfui} + 2 * A_{pfli} + A_{pfle})$

 $N_{Ed,i} = N_i + N_i(M_{y,Ed})$ Effort tranchant Z

Platine	A _i [mm2]	V _{zEd,i} [kN]		
	A _{z,pw} = 5400,00	V _{z,Ed,pw} = 0,00		

Effort tranchant Y

Platine	A _{y,i} [mm2]	V _{y,Ed,i} [kN]				
D	A _{y,fupe} = 3360,00	V _{y,Ed,fupe} = 0,00				
	A _{y,fupi} = 2880,00	V _{y,Ed,fupi} = 0,00				
	A _{y,fipi} = 2880,00	$V_{y,Ed,flpi} = 0,00$				
H	A _{y,flpe} = 3360,00	$V_{y,Ed,fipe} = 0,00$				

 $V_{y,i} = (V_{y,Ed} * A_{y,i}) / (A_{pfue} + 2^* A_{pfui} + 2^* A_{pfli} + A_{pfle})$

Moment fléchissant Y

Platine	l _{y,i} [mm4]	EFFORTS EQUIVALENTS M _{y,i} [kN*m]	Force résultante M _{y,Ed,i} [kN*m]
	I _{y,pw} = 14580000,00	0,00	M _{y,Ed,pw} = 0,00
	I _{y,pfue} = 104119680,00	0,00	-
DE	I _{y,pfui} = 58516560,00	0,00	-
	I _{y,pfli} = 58516560,00	0,00	-
H	I _{y,pfle} = 104119680,00	0,00	-

 $M_{y,i} = (M_{y,Ed} * I_{y,i}) / (2 * I_{pw} + I_{pfue} + 2 * I_{pfui} + 2 * I_{pfli} + I_{pfle})$

Moment fléchissant Z

Platine	I _{z,i} [mm4]	M _{z,i} [kN*m]
PER	I _{z,pfue} = 21952000,00	M _{z,Ed,pfue} = 0,00
	I _{z,pfui} = 26784000,00	M _{z,Ed,pfui} = 0,00
	I _{z,pfli} = 26784000,00	M _{z,Ed,pfli} = 0,00
	I _{z,pfle} = 21952000,00	M _{z,Ed,pfle} = 0,00

 $M_i = (M_{z,Ed} * I_{z,i}) / (I_{z,pfue} + I_{z,pfui} + 2^* I_{z,pfli} + I_{z,pfle})$

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

RESISTANCE DES BOULONS

F _{v,Rd} 165,8 [kN = 9]	Résistance du boulon au cisaillement dans boulon	la partie filetée d'un $$F_{\nu,\text{Rd}}$=0.6*f_{ub}*A_s*m/\gamma_{M2}$$
Pression du bou	on sur l'âme du poteau	
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1x} = min[2.8^{*}(e_{1}/d_{0})-1.7, 1.4^{*}(p_{1}/d_{0})-1.7, 2.5]$
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₂ /(3*d ₀), p ₂ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié
$F_{b,Rd1x} = 157, 68$	kN]Résistance d'un boulon en pression diar	nétrale $F_{b,Rd1x}=k_{1x}^{*}\alpha_{bx}^{*}f_{u}^{*}d^{*}\Sigma_{ti}/\gamma_{M2}$
Direction z		
k _{1z} = 2,50	Coefficient pour le calcul de F _{b,Rd}	k1z=min[2.8*(e2/d0)-1.7, 1.4*(p2/d0)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 0, 92$	Coefficient pour le calcul de F _{b,Rd}	α _{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0,92 > 0,00	vérifié
$F_{b,Rd1z} = 144, 54$	kN]Résistance d'un boulon en pression diar	métrale $F_{b,Rd1z}=k_{1z}^{\alpha}\alpha_{bz}^{\beta}f_{u}^{\dagger}d^{\dagger}\Sigma t_{i}/\gamma_{M2}$
Pression du boul	on sur la plaquette	
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1x} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₂ /(3*d ₀), p ₂ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00 vérifié	
$F_{b,Rd2x} = 437, 40$	[kN] Résistance d'un boulon en pression d	diamétrale $F_{b,Rd2x}=k_{1x}^*\alpha_{bx}^*f_u^*d^*\Sigma_ti/\gamma_{M2}$
Direction z		
k _{1z} = 2,50	Coefficient pour le calcul de Fb,Rd	k1z=min[2.8*(e2/d0)-1.7, 1.4*(p2/d0)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	

α _{bz} =	0,92	Coefficient pour le calcul de F _{b,Rd}	α _{bz} =min[e₁/(3*	^t d ₀), p ₁ /(3 [*] d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{bz} > 0$	0.0	0,92 > 0,00	vérifié	
F _{b,Rd2z}	z = 400,95	[kN] Résistance d'un boulon en pression dia	nétrale	F _{b,Rd2z} =k _{1z} *α _{bz} *f _u *d*∑t _i /γ _{M2}
ΕΤΑΤ	LIMITE: U	JLTIME		
cisail	lement des	s boulons		
F _{x,N}	43,7 [k F 4 N] k	Force résultante dans le boulon due à l'influer ongitudinale sur la direction x	nce de la force	$F_{x,N} = N_{Ed,pw} /n_b$
F _{x,Ed}	^{43,7} [k 4 N] E	ffort de calcul total dans le boulon sur la dire	ection x	$F_{x,Ed}=F_{x,N}$
F _{z,Ed}	0,00 <mark>[k</mark> N] E	ffort de calcul total dans le boulon sur la dire	ection z	
F _{Ed}	^{43,7} [k 4 N] E	ffort tranchant résultant dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rd,x}	¹⁵⁷ , [k 68 N] F	Résistance résultante de calcul du boulon sur	la direction x	F _{Rdx} =min(F _{bRd1,x} , F _{bRd2,x})
F _{Rd,z}	¹⁴⁴ , [k 54 N] F	Résistance résultante de calcul du boulon sur	la direction z	F _{Rdz} =min(F _{bRd1,z} , F _{bRd2,z})
$\left F_{x,Ed}\right $	≤ F _{Rd,x}	43 , 74 < 157,	68 vérifié	(0,28)
$ F_{z,Ed} $	$\leq F_{Rd,z}$	0,00 < 144,5	54 vérifié	(0,00)
F _{Ed} ≤	F _{v,Rd}	43,74 < 165,89	vérifié	(0,26)

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE DROITE DU POTEAU

RESISTANCE DES BOULONS

$F_{v,Rd} = 165,89$ [kN	N] Résistance de la tige d'un boulon au c	saillement	$F_{v,Rd}\text{=}~0.6^{*}f_{ub}\text{*}A_{s}\text{*}m/\gamma_{M2}$
Pression du boulo	n sur l'aile du poteau		
Direction x			
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k	1x=min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{\rm bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₁ /(3*	d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié	
$F_{b,Rd1x} = 282, 51$ [kN	N]Résistance d'un boulon en pression diar	nétrale	F _{b,Rd1x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction y			
$k_{1y} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1y} = min[2.8^{*}(e_{1}/e_{1})]$	d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1y} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{by} = 1,00$	Coefficient pour le calcul de Fb,Rd		$\alpha_{by}=min[e_2/(3^*d_0), f_{ub}/f_u, 1]$
α _{by} > 0.0	1,00 > 0,00	vérifié	
$F_{b,Rd1y} = 282, 51$ [4	(N] Résistance d'un boulon en pression of the second se	liamétrale	$F_{b,Rd1y} = k_{1y}^* \alpha_{by}^* f_u^* d^* \sum t_i / \gamma_{M2}$
Pression du boulo	n sur la plaquette		
Direction x			
k _{1x} = 2, 50	Coefficient pour le calcul de F _{b,Rd}	k	_{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{\rm bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₁ /(3*	d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié	
$F_{b,Rd2x} = 349, 92$ [kN	I] Résistance d'un boulon en pression diar	nétrale	F _{b,Rd2x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction y			
$k_{1y} = 2,50$	Coefficient pour le calcul de Fb,Rd	k1y=min[2.8*(e1/0	do)-1.7, 1.4*(p1/d0)-1.7, 2.5]
k _{1y} > 0.0	2,50 > 0,00 vérifié		
$\alpha_{\rm by} = 0,83$	Coefficient pour le calcul de F _{b,Rd}		α _{by} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{by} > 0.0	0,83 > 0,00	vérifié	
$F_{b,Rd2y} = 291, 60$ [4	N] Résistance d'un boulon en pression o	liamétrale	$F_{b,Rd2y} = k_{1y}^* \alpha_{by}^* f_u^* d^* \sum t_i / \gamma_{M2}$

ETAT LIMITE: ULTIME

cisaillement des boulons

F _{x,N} =	50,5 [k 5 N]	Force résultante dans le boulon due à l'influence de la force longitudinale sur la direction x		$F_{x,N} = N_{Ed,pf} /n_b$
F _{x,Ed} =	⁻ [k 50, ⁵ [k 5 N]	Effort de calcul total dans le boulon sur la direction x		$F_{x,Ed}=F_{x,N}$
F _{y,Ed}	0,00 [k N]	Effort de calcul total dans le boulon sur la direction y		
F _{Ed}	50,5 [k 5 N]	Effort tranchant résultant dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{y,Ed}^2)}$
F _{x,Rd}	282, [k 51 N]	Résistance résultante de calcul du boulon sur la direction x		F _{x,Rd} =min(F _{x,bRd1} , F _{x,bRd2})
F _{y,Rd}	282, [k 51 N]	Résistance résultante de calcul du boulon sur la direction y		F _{y,Rd} =min(F _{y,bRd1} , F _{y,bRd2})
F _{x,Ed}	≤ F _{x,Rd}	-50,55 < 282,51	vérif ié	(0,18)
F _{y,Ed}	≤ F _{y,Rd}	0,00 < 282,51	vérif ié	(0,00)
F _{Ed} ≤	F _{v,Rd}	50,55 < 165,89	vérif ié	(0,30)

BOULONS RACCORDANT UNE ECLISSE D'AILE A L'AILE GAUCHE DU POTEAU

RESISTANCE DES BOULONS

$F_{v,Rd} = 1$	65,89	[kN]	Résistance de la tige d'un boulon au	cisaillement	F _{v,Rd} = 0.6*f _{ub} *A _s *m/γ _{M2}			
Pressio	Pression du boulon sur l'aile du poteau							
Directior	пх							
k _{1x} =	2,50		Coefficient pour le calcul de F _{b,Rd}		k _{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]			
k _{1x} > 0.0			2,50 > 0,00	vérifié				
$\alpha_{bx} = 1$,00	С	oefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e1/(3*d0), p1/(3*d0)-0.25, fub/fu, 1]			
$\alpha_{bx} > 0.0$	1		1,00 > 0,00 vérifié	E. C.				
$F_{b,Rd1x} =$	282,51	[kN]	Résistance d'un boulon en pression	diamétrale	F _{b,Rd1x} =k _{1x} *α _{bx} *f _u *d*∑ti/γ _{M2}			
Directior	пy							
k _{1y} =	2,50		Coefficient pour le calcul de F _{b,Rd}	$k_{1y} = min[2.8]$	8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]			
k _{1y} > 0.0			2,50 > 0,00	vérifié				
$\alpha_{by} =$	1,00		Coefficient pour le calcul de F _{b,Rd}		$\alpha_{by}=min[e_2/(3^*d_0), f_{ub}/f_u, 1]$			
$\alpha_{by} > 0.0$	1		1,00 > 0,00	vérifié				
$F_{b,Rd1y} =$	282,51	[kN]R	ésistance d'un boulon en pression dia	amétrale	F _{b,Rd1y} =k _{1y} *α _{by} *f _u *d*∑ti/γ _{M2}			
Pressio	n du bo	ulon s	ur la plaquette					
Directior	пх							
k _{1x} =	2,50		Coefficient pour le calcul de F _{b,Rd}		k _{1x} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]			
k _{1x} > 0.0			2,50 > 0,00	vérifié				
$\alpha_{bx} = 1$,00	С	oefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e1/(3*d0), p1/(3*d0)-0.25, fub/fu, 1]			
$\alpha_{bx} > 0.0$			1,00 > 0,00 vérifié	l.				
$F_{b,Rd2x} =$	349 , 92	[kN]	Résistance d'un boulon en pression	diamétrale	F _{b,Rd2x} =k1x*α _{bx} *fu*d*∑ti/γ _{M2}			
Directior	пy							
k _{1y} =	2,50		Coefficient pour le calcul de F _{b,Rd}	k _{1y} =min[2.8	^{3*} (e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]			
k _{1y} > 0.0			2,50 > 0,00	vérifié				
$\alpha_{by} =$	0,83		Coefficient pour le calcul de F _{b,Rd}		α _{by} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]			
$\alpha_{by} > 0.0$	1		0,83 > 0,00	vérifié				
$F_{b,Rd2y} =$	291,60	[kN]R	ésistance d'un boulon en pression dia	amétrale	F _{b,Rd2y} =k _{1y} *α _{by} *f _u *d*∑t _i /γ _{M2}			

ETAT LIMITE: ULTIME

cisaillement des boulons

F _{x,N}	50 5 [k Force résultante dans le boulon due à l'influence de la force
=	5075 N] longitudinale sur la direction x

 $F_{x,N} = |N_{Ed,pf}|/n_b$

cisaillement des boulons

F _{x,N} =	⁵⁰ , ⁵ ₅ [k	Force résultante dans le be longitudinale sur la direction	oulon due à l'influence de la on x	a force	$F_{x,N}= N_{Ed,pf} /n_b$
F _{x,Ed} =	⁵⁰ , ⁵ ₅ [k	Effort de calcul total dans l	e boulon sur la direction x		$F_{x,Ed}=F_{x,N}$
F _{y,Ed}	0,00 [k N]	Effort de calcul total dans l	e boulon sur la direction y		
F _{Ed} =	50,5 [k 5 N]	Effort tranchant résultant d	lans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{y,Ed}^2)}$
F _{x,Rd}	282, [k 51 N]	Résistance résultante de c	alcul du boulon sur la direc	ction x	F _{x,Rd} =min(F _{x,bRd1} , F _{x,bRd2})
F _{y,Rd}	282, [k 51 N]	Résistance résultante de c	alcul du boulon sur la direc	ction y	F _{y,Rd} =min(F _{y,bRd1} , F _{y,bRd2})
F _{x,Ed}	≤ F _{x,Rd}		-50,55 < 282,51	vérifié	(0,18)
$ F_{y,Ed} $	≤ F _{y,Rd}		0,00 < 282,51	vérifié	(0,00)
F _{Ed} ≤ I	F _{v,Rd}		50,55 < 165,89	vérifié	(0,30)

VERIFICATION DES SECTIONS AFFAIBLIES PAR LES TROUS - [5.4]

POTEAU

A =	17090,00	A=h _{pi} *t _{pi}			
A _{net} =	14890,00	[mm ²]	Aire de la section nette		A _{net} =A-n _v *d ₀ *t _{pi}
$N_{pl,Rd} =$	4016 , 15	[kN]	Résistance de calcul plastique de la section brute		N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} =$	3913,09	[kN]	Résistance ultime de la section nette à un effort normal		$N_{u,Rd}=0.9*A_{net}*f_u/\gamma_{M2}$
$F_{Ed} =$	-869,00	[kN]			A=h _{pi} *t _{pi}
$ F_{Ed} \leq$	N _{u,Rd}		-869,00 < 3913,09 vé	érifié	(0,22)
$ F_{Ed} \leq$	N _{pl,Rd}		-869,00 < 4016,15 vé	érifié	(0,22)

ÉCLISSE D'AME

A =	2700,00	[mm ²]	Aire de la zone tendue de la sectionu brutte	A=h _{pi} *t _{pi}
Anet =	2100,00	[mm ²]	Aire de la section nette	Anet=A-nv*d0*tpi
$N_{pl,Rd} =$	742,50	[kN]	Résistance de calcul plastique de la section brute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} =$	612 , 36	[kN]	Résistance ultime de la section nette à un effort normal	N _{u,Rd} =0.9*A _{net} *f _u /γ _{M2}
$F_{Ed} =$	-131,22	[kN]		$F_{Ed} = N_{Ed,pw}$
$ F_{Ed} \leq$	N _{u,Rd}		-131,22 < 612,36 vérifié	(0,21)
$ F_{Ed} \leq$	N _{pl,Rd}		-131,22 < 742,50 vérifié	(0,18)

PLATINE EXTERNE DROITE

A =	3360,00[[mm ²]	Aire de la zone tendue de la s	ectio	nu brutte		A=h _{pi} *t _{pi}
A _{net} =	2880,00[[mm ²]	Aire de la section nette				A _{net} =A-n _v *d ₀ *t _{pi}
$N_{\text{pl,Rd}} =$	924,00	[kN]	Résistance de calcul plastique	e de l	a section br	ute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} =$	839,81	[kN]	Résistance ultime de la sectio	n ne	tte à un effo	rt normal	$N_{u,Rd}=0.9*A_{net}*f_u/\gamma_{M2}$
F _{Ed} =	-163,30	[kN]					$F_{Ed} = N_{Ed,pfue}$
F _{Ed} ≤	N _{u,Rd}		-163,30) <	839,81	vérifié	(0,19)
F _{Ed} ≤	N _{pl,Rd}		-163,30) <	924,00	vérifié	(0,18)

PLATINE INTERNE DROITE

A = 2880,00	[mm ²]	Aire de la zone tendue de la sectionu brutte	A=2*h _{pi} *t _{pi}
$A_{net} = 2400, 00$	[mm ²]	Aire de la section nette	A _{net} =A-n _v *d ₀ *t _{pi}
$N_{pl,Rd} = 792,00$	[kN]	Résistance de calcul plastique de la section brute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} = 699,84$	[kN]	Résistance ultime de la section nette à un effort normal	Nu,Rd=0.9*Anet*fu/γM2
$F_{Ed} = -139,97$	[kN]		$F_{Ed} = N_{Ed,pfui}$
$ F_{Ed} \le N_{u,Rd}$		-139,97 < 699,84 vérifié	(0,20)
$ F_{Ed} \le N_{pl,Rd}$		-139,97 < 792,00 vérifié	(0,18)

PLATINE INTERNE GAUCHE

A = 2880,00	[mm ²]	Aire de la zone tendue de la sectionu brutte	A=2*h _{pi} *t _{pi}
$A_{net} = 2400, 00$	[mm ²]	Aire de la section nette	Anet=A-nv*d0*tpi
$N_{pl,Rd} = 792,00$	[kN]	Résistance de calcul plastique de la section brute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} = 699, 84$	[kN]	Résistance ultime de la section nette à un effort normal	N _{u,Rd} =0.9*A _{net} *f _u /γ _{M2}
$F_{Ed} = -139,97$	[kN]		$F_{Ed} = N_{Ed,pfle}$
F _{Ed} ≤ N _{u,Rd}		-139,97 < 699,84 vérifié	(0,20)
$ F_{Ed} \leq N_{pl,Rd}$		-139,97 < 792,00 vérifié	(0,18)

PLATINE EXTERNE GAUCHE

A =	3360,00	[mm ²]	Aire de la zone tendue de la sectionu brutte	A=h _{pi} *t _{pi}
A _{net} =	2880,00	[mm ²]	Aire de la section nette	Anet=A-nv*d0*tpi
$N_{\text{pl,Rd}} =$	924,00	[kN]	Résistance de calcul plastique de la section brute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} =$	839,81	[kN]	Résistance ultime de la section nette à un effort normal	N _{u,Rd} =0.9*A _{net} *f _u /γ _{M2}
$F_{Ed} =$	-163,30	[kN]		$F_{Ed} = N_{Ed,pfli}$
F _{Ed} ≤	N _{u,Rd}		-163,30 < 839,81 vérifié	(0,19)
$ F_{Ed} \leq$	N _{pl,Rd}		-163,30 < 924,00 vérifié	(0,18)

Assemblage satisfaisant vis à vis de la Norme Ratio 0,43

Autodesk Robot Structural Analysis Professional 2018

Calcul du Pied de Poteau encastré Eurocode 3: NF EN 1993-1-8:2005/NA:2007/AC:2009 + CEB Design Guide: Design of fastenings in concrete

GENERAL

Assemblage N°: 1 Nom de l'assemblage : Pied de poteau encastré

GEOMETRIE

POTEAU

Profilé:			HEB 340
L _c =	3,06	[m]	Longueur du poteau
α =	0,0	[Deg]	Angle d'inclinaison
hc =	340	[mm]	Hauteur de la section du poteau
b _{fc} =	300	[mm]	Largeur de la section du poteau
t _{wc} =	12	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc} =	22	[mm]	Epaisseur de l'aile de la section du poteau
r _c =	27	[mm]	Rayon de congé de la section du poteau
A _c =	170 , 90	[cm ²]	Aire de la section du poteau
I _{yc} =	36656,40	[cm4]	Moment d'inertie de la section du poteau
Matéria	u: ACIER	E28	
f _{yc} =	275,00 [N	1Pa] R	ésistance
f _{uc} =	405,00 [N	1Pa] R	ésistance ultime du matériau

PLATINE DE PRESCELLEMENT

I _{pd} =	700	[mm]	Longueur
b _{pd} =	700	[mm]	Largeur
t _{pd} =	25	[mm]	Epaisseur
Matériau:	AC	CIER E2	28
f _{ypd} =		275,0	00 [MPa] Résistance

Matériau: ACIER E28 f_{ypd} = 275,00 [MPa] Résistance $f_{upd} =$ 405,00 [MPa] Résistance ultime du matériau

ANCRAGE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon Classe = HR 10.9 Classe de tiges d'ancrage f_{vb} = 900,00 [MPa] Limite de plasticité du matériau du boulon 1200,00 [MPa] Résistance du matériau du boulon à la traction f_{ub} = 22 [mm] Diamètre du boulon d = A_s = 3,03 [cm²] Aire de la section efficace du boulon 3,80 [cm²] Aire de la section du boulon $A_v =$ 4 Nombre de colonnes des boulons n_н = 4 Nombre de rangéss des boulons nv = Ecartement eHi = 170;170 [mm] 170;170 [mm] Entraxe $e_{Vi} =$ Dimensions des tiges d'ancrage 70 [mm] L1 = 700 L2 = [mm] 120 [mm] L3 = Plaque d'ancrage 120 [mm] lp = Longueur 120 [mm] b_p = Largeur 15 [mm] Epaisseur t_p = Matériau: ACIER E28 275,00 [MPa] Résistance $f_y =$ Platine 50 Longueur [mm] l_{wd} = 60 Largeur b_{wd} = [mm] t_{wd} = 15 [mm] Epaisseur BECHE Drofiló.

f _{yw} = 2	75,00	[MPa]	Résistance
Matériau:	ACIER	E28	
t _w =	15	[mm]	Epaisseur
b _w =	400	[mm]	Largeur
l _w =	150	[mm]	Longueur
FIUME.			

RAIDISSEUR

ls =	700	[mm]	Longueur
Ws =	700	[mm]	Largeur
h _s =	700	[mm]	Hauteur
ts =	25	[mm]	Epaisseur
d ₁ =	25	[mm]	Grugeage
d2 =	25	[mm]	Grugeage

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel
γм2 =	1,25	Coefficient de sécurité partiel
γc =	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	800	[mm]	Longueur de la semelle
-		[]	_englie an ale la eennene

Х

SEMELLE ISOLEE

L = B =	800 800	[mm] [mm]	Longueur de la semelle Largeur de la semelle
H =	1200	[mm]	Hauteur de la semelle
Béton			
Classe	BETON2()	
f _{ck} =	20,00	[MPa]	Résistance caractéristique à la compression
Mortier	de calage	•	
t _g =	30 [m i	n] Epais	sseur du mortier de calage
$f_{ck,g} = 2$	5,00 [MF	a] Rési	stance caractéristique à la compression
$C_{f,d} =$	0,30	Coef	. de frottement entre la plaque d'assise et le béton
•			

Soudures

a _p =	8	[mm]	Plaque principale du pied de poteau
a _w =	8	[mm]	Bêche
a _s =	6	[mm]	Raidisseurs

EFFORTS

Cas:		Cal	culs manuels
N _{j,Ed} = -	1632,56	[kN]	Effort axial
$V_{j,Ed,y} =$	2,61	[kN]	Effort tranchant
$V_{j,Ed,z} =$	85 , 55	[kN]	Effort tranchant
$M_{j,Ed,y} =$	175 , 50	[kN*m]	Moment fléchissant
$M_{j,Ed,z} =$	6,39	[kN*m]	Moment fléchissant

RESULTATS

ZONE COMPRIMEE

COMPRESSION DU BETON

f _{cd} = 13,33 [MPa] Rési	stance de calcul à la compression	EN 1992-1:[3.1.6.(1)]
f _j = 10,16 [MPa] Résis	stance de calcul du matériau du joint sous la plaque d'ass	sise [6.2.5.(7)]
$c = t_p \sqrt{(f_{yp}/(3^*f_j^*\gamma_{M0}))}$		
c = 75 [mm] L	argeur de l'appui additionnelle	[6.2.5.(4)]
beff = 172 [mm] L	argeur efficace de la semelle de tronçon T	[6.2.5.(3)]
leff = 450 [mm] L	ongueur efficace de la semelle de tronçon en T	[6.2.5.(3)]
$A_{c0} = 772,96 \text{ [cm^2] Z}$	one de contact de la plaque d'assise avec la fondation	EN 1992-1:[6.7.(3)]
$A_{c1} = 3852,00 \text{ [cm2]} A$	vire de calcul maximale de la répartition de la charge	EN 1992-1:[6.7.(3)]
$F_{rdu} = A_{c0}^* f_{cd}^* \sqrt{(A_{c1}/A_{c0})} \leq$	3*Ac0*fcd	
F _{rdu} = 2300,71 [kN]	Résistance du béton à l'appui rigide	EN 1992-1:[6.7.(3)]
$\beta_j = 0, 67$	Coefficient réducteur pour la compression	[6.2.5.(7)]
$f_{jd} = \beta_j * F_{rdu} / (b_{eff} * I_{eff})$		
f _{jd} = 19,84 [MPa]	Résistance de calcul du matériau du joint	[6.2.5.(7)]
$A_{c,n} = 4487, 79$ [cm ²] Aire de compression efficace	[6.2.8.2.(1)]
$A_{c,y} = 1737,08$ [cm ²] Aire de flexion My	[6.2.8.3.(1)]
$A_{c,z} = 1719,58$ [cm ²] Aire de flexion Mz	[6.2.8.3.(1)]
$F_{c,Rd,i} = A_{C,i} * f_{jd}$		
F _{c,Rd,n} = 8905,21 [kN]	Résistance du béton à la compression	[6.2.8.2.(1)]
$F_{c,Rd,y} = 3446, 92$ [kN]	Résistance du béton à la flexion My	[6.2.8.3.(1)]
$F_{c,Rd,z} = 3412, 19$ [kN]	Résistance du béton à la flexion Mz	[6.2.8.3.(1)]
AILE ET AME DU POTE	AU EN COMPRESSION	
CL = 1,00	Classe de la section	EN 1993-1-1:[5.5.2]
W _{pl,y} = 13684,05 [cm	³] Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]

CL = M _{c,Rd,y} = h _{f,y} =	1,00 3763,11 402	[kN*m] [mm]	Classe de la section Résistance de calcul de la section à la flexion Distance entre les centres de gravité des ailes	EN 1993-1-1:[5.5.2] EN1993-1-1:[6.2.5] [6.2.6.7.(1)]
$F_{c,fc,Rd,y} =$	Mc,Rd,y / hf	у		
$F_{c,fc,Rd,y} =$	9367,93	[kN]	Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
$W_{pl,z} = 2$	12963,84	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,z} =$	3565,06	[kN*m]	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
h _{f,z} =	404	[mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
F _{c,fc,Rd,z} =	Mc,Rd,z / hf	z		
$F_{c,fc,Rd,z} =$	8826,50	[kN]	Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
RESISTA	ANCE DE L	A SEM	ELLE DANS LA ZONE COMPRIMEE	
$N_{j,Rd} = F_c$,Rd,n			
N _{j,Rd} = 8	3905 , 21	[kN]	Résistance de la semelle à l'effort axial	[6.2.8.2.(1)]
$F_{C,Rd,y} = I$	min(F _{c,Rd,y} ,F	c,fc,Rd,y)		
$F_{C,Rd,y} = 3$	3446,92 	[kN] Ré	sistance de la semelle dans la zone comprimée	[6.2.8.3]
$F_{C,Rd,z} = I$	min(F _{c,Rd,z} ,F	c,fc,Rd,z)		
$F_{C,Rd,z} = 3$	3412,19	[kN] Ré	sistance de la semelle dans la zone comprimée	[6.2.8.3]

CONTROLE DE LA RESISTANCE DE L'ASSEMBLAGE

Nj,Ed / Nj,Rd	≤ 1,0 (6	6.24)	0,18 < 1,00	vérifié	(0,18)
e _y =	107	[mm]	Excentricité de l'effort axial		[6.2.8.3]
Zc,y =	201	[mm]	Bras de levier F _{C,Rd,y}		[6.2.8.1.(2)]
$Z_{t,y} =$	255	[mm]	Bras de levier F _{T,Rd,y}		[6.2.8.1.(3)]
$M_{j,Rd,y} = 48$	32,72	[kN*m]	Résistance de l'assemblage à la flexion		[6.2.8.3]
Mj,Ed,y / Mj,F	$Rd,y \leq 1,0$	0 (6.23)	0,36 < 1,00	vérifié	(0,36)
e _z =	4	[mm]	Excentricité de l'effort axial		[6.2.8.3]
Z _{c,z} =	202	[mm]	Bras de levier Fold		[0 0 0 4 (0)]
		[IIIIII]	DIAS UE IEVIEI I C,Ra,Z		[0.2.8.1.(2)]
Z _{t,z} =	255	[mm]	Bras de levier F _{T,Rd,z}		[6.2.8.1.(2)] [6.2.8.1.(3)]
$Z_{t,z} = M_{j,Rd,z} = 2$	255 26,20	[mm] [kN*m]	Bras de levier $T_{T,Rd,z}$ Bras de levier $F_{T,Rd,z}$ Résistance de l'assemblage à la flexion		[6.2.8.1.(2)] [6.2.8.1.(3)] [6.2.8.3]
$Z_{t,z} =$ $M_{j,Rd,z} =$ $M_{j,Ed,z} / M_{j,F}$	255 26,20 Rd,z ≤ 1 ,0	[mm] [kN*m] 0 (6.23)	Bras de levier $T_{C,Rd,z}$ Bras de levier $F_{T,Rd,z}$ Résistance de l'assemblage à la flexion 0,24 < 1,00	vérifié	[6.2.8.1.(2)] [6.2.8.1.(3)] [6.2.8.3] (0,24)

CISAILLEMENT

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE

Cisaillement par l'effort $V_{j,\text{Ed},y}$

α _{d,y}	$\frac{1}{2}$ Coef. d'emplacement des boulons en direction du cisaillement	[Tableau 3.4]
α _{b,y}	¹ , ⁰ ₀ Coef. pour les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
k _{1,y} =	 2, 5 Coef. d'emplacement des boulons perpendiculairement à la direction du 0 cisaillement 	[Tableau 3.4]
F1,vb,R	$d_{y} = k_{1,y}^* \alpha_{b,y}^* f_{up}^* d^* t_p / \gamma_{M2}$	
F1,vb,R	d,y = 445, 50 [kN] Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
Cisail	lement par l'effort V _{j,Ed,z}	
α _{d,z}	$1, \frac{3}{2}$ Coef. d'emplacement des boulons en direction du cisaillement	[Tableau 3.4]
α _{b,z}	1 , $^{0}_{0}$ Coef. pour les calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
k 1,z =	 2, 5 Coef. d'emplacement des boulons perpendiculairement à la direction du 0 cisaillement 	[Tableau 3.4]
F1,vb,R	$d_{z} = k_{1,z} \alpha_{b,z} f_{up} d^{t}t_{p} / \gamma_{M2}$	
F1,vb,R	$d_{d,z} = 445, 50$ [kN] Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
CISAI	LLEMENT DU BOULON D'ANCRAGE	
α _b = A _{vb} =	0,25 Coef. pour les calculs de la résistance F _{2,vb,Rd} 3,80 [cm ²] Aire de la section du boulon	[6.2.2.(7)] [6.2.2.(7)]

$\alpha_{\rm b} = 0,25$	Coef. pour les calculs de la résistance F _{2,vb.Rd}	[6.2.2.(7)]
fub = 1200,00 [MPa] Résistance du matériau du boulon à la traction	[6.2.2.(7)]
γm2 = 1,25	Coefficient de sécurité partiel	[6.2.2.(7)]
$F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{vb} /	ΥM2	
$F_{2,vb,Rd} = 90,50$ [k	N] Résistance du boulon au cisaillement - sans bras de levier	[6.2.2.(7)]
$\alpha_{\rm M} = 2,00$	Coef. dépendant de l'ancrage du boulon dans la fondation	CEB [9.3.2.2]
$M_{Rk,s} = \pm 4 \pm [KN^*]$	m] Resistance caracteristique de l'ancrage a la flexion	CEB [9.3.2.2]
$I_{SM} = 34$ [1111	Coefficient de sécurité partiel	CEB [9.3.2.2]
$F_{\rm V} {\rm Rd} {\rm sm} = \alpha {\rm M}^* M_{\rm Rk} {\rm s}/($		020[0.2.0.2]
$F_{v,Rd,sm} = 43,96$ [k	(N) Résistance du boulon au cisaillement - avec bras de levier	CEB [9.3.1]
RUPTURE DU BET	TON PAR EFFET DE LEVIER	
NRk,c = 38,25	[kN] Résistance de calc. pour le soulèvement	CEB [9.2.4]
$k_3 = 2,00$	Coef. dépendant de la longueur de l'ancrage	CEB [9.3.3]
$\gamma_{Mc} = 2, 16$	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,cp} = K_3^* N_{Rk,c} / \gamma_N$	lo IIINI Décistores du bétan à llaffat de la vier	
$F_{v,Rd,cp} = 35,42$		CEB [9.3.1]
Cisaillement par l		
V _{Rk.c.v} ⁰ 141,6 [kN		CEB
= 3]	Resistance caracteristique du bouion d'ancrage	[9.3.4.(a)]
$\psi_{A,V,y} = 0, 67$	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]
$\psi_{h,V,y} = 1,00$	Coef. dépendant de l'épaisseur de la fondation	CEB [9.3.4.(c)]
$\psi_{s,V,y} = 0,90$	Coef. d'influence des bords parallèles à l'effort de cisaillement	CEB [9.3.4.(d)]
$\psi_{ec,V,y} = 1,00$	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon d'ancrage	CEB [9.3.4.(e)]
$\psi_{\alpha,V,y} = 1,00$	Coef. dépendant de l'angle d'action de l'effort tranchant	CEB [9.3.4.(f)]
Ψucr,V,y 1,00	Coef. dépendant du mode de ferraillage du bord de la fondation	CEB [9.3.4.(g)]
γMc = 2,16	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,c,y} = V_{Rk,c,y}{}^{0*}\psiA$	$(V,V,y^*\Psi h,V,y^*\Psi s,V,y^*\Psi ec,V,y^*\Psi \alpha,V,y^*\Psi ucr,V,y/\gamma Mc$	
$F_{v,Rd,c,y} = 39, 34$ [kN] Résistance du béton pour l'écrasement du bord	CEB [9.3.1]
Cisaillement par l'	effort V _{j,Ed,z}	
$V_{Rk,c,z} = 3$	Résistance caractéristique du boulon d'ancrage	[9.3.4.(a)]
$\psi_{A,V,z} = 0, 67$	Coef. dépendant de l'entraxe et de la pince des boulons d'ancrage	CEB [9.3.4]
1 - 1 = 0	Coef dépendant de l'énaisseur de la fondation	CEB
ψn,v,z – ±, 00		[9.3.4.(c)]
$\psi_{s,V,z} = 0,90$	Coef. d'influence des bords parallèles à l'effort de cisaillement	(d)1
1 00	Coef. d'irrégularité de la répartition de l'effort tranchant sur le boulon	CEB
$\psi_{ec,V,z} = \pm,00$	d'ancrage	[9.3.4.(e)]
$W_{\alpha}V_{z} = 1,00$	Coef, dépendant de l'angle d'action de l'effort tranchant	CEB
φα, τ, 2		[9.3.4.(t)]
$ \underbrace{ \psi_{ucr,V,z}}_{=} 1,00 $	Coef. dépendant du mode de ferraillage du bord de la fondation	[9.3.4.(g)]
γMc = 2,16	Coefficient de sécurité partiel	CEB [3.2.3.1]
$F_{v,Rd,c,z} = V_{Rk,c,z} \psi_{A}$	x,V,z*Ψh,V,z*Ψs,V,z*Ψec,V,z*Ψα,V,z*Ψucr,V,z/γMc	
$F_{v,Rd,c,z} = 39,34$ [KINJ RESISTANCE DU DETON POUR l'ecrasement du bord	CEB [9.3.1]
	LA SEIVIELLE Coof, do frottomont ontro la plaque d'assiss et la héter	[6 2 2 (6)]
$V_{r,d} = 0,30$ No Eq = 1632,56	kN1 Effort de compression	[0.2.2.(0)] [6.2.2 (6)]
$F_{f,Rd} = C_{f,d} N_{c,Ed}$		[0.2.2.(0)]
$F_{f,Rd} = 489,77$	[kN] Résistance au glissement	[6.2.2.(6)]
CONTACT DE LA	CALE D'ARRET AVEC BETON	

$F_{v,Rd,wg,y} = 1.4^* I_w^* b_{wy}^* f_{ck} / \gamma_c$			
$F_{v,Rd,wg,y} = 1120,00$ [kN] Résistance au	i contact de la cale d'arrêt	avec béton	
$F_{v,Rd,wg,z} = 1.4^* I_w^* b_{wz}^* f_{ck} / \gamma_c$			
$F_{v,Rd,wg,z} = 1120,00$ [kN] Résistance au	contact de la cale d'arrêt	avec béton	
CONTROLE DU CISAILLEMENT			
$V_{j,Rd,y} = n_b^* min(F_{1,vb,Rd,y}, F_{2,vb,Rd}, F_{v,Rd,sm}, F_{v$	$(R_{v,Rd,cp}, F_{v,Rd,c,y}) + F_{v,Rd,wg,y} +$	F _{f,Rd}	
$V_{j,Rd,y} = 2034, 81$ [kN] Résistance de	l'assemblage au cisailleme	ent CEB [9.3.	1]
$V_{j,Ed,y} / V_{j,Rd,y} \leq 1,0$	0,00 < 1,00	vérifié (0,00)
$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_{2,vb,Rd}, F_{v,Rd,sm}, F_{v$	$v_{,Rd,cp}$, $F_{v,Rd,c,z}$) + $F_{v,Rd,wg,z}$ +	F _{f,Rd}	
$V_{j,Rd,z} = 2034, 81$ [kN] Résistance de	l'assemblage au cisailleme	ent CEB [9.3.	1]
$V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$	0,04 < 1,00	vérifié (0,04)

CONTROLE DES RAIDISSEURS

Raidi	sseur paral	lèle à	l'âme (sur le prolongement de l'âme du poteau)		
M₁ =	22,15	[kN*m]	Moment fléchissant du raidisseur		
Q1 =	246,15	[kN]	Effort tranchant du raidisseur		
Zs =	307	[mm]	Position de l'axe neutre (à partir de la base de la plaq	ue)	
ls =	114805,4	[cm4]	Moment d'inertie du raidisseur		
$\sigma_d =$	5,44	[MPa]	Contrainte normale au contact du raidisseur et de la c	lalle	EN 1993-1- 1:[6.2.1.(5)]
σg =	8,07	[MPa]	Contrainte normale dans les fibres supérieures		1:[6.2.1.(5)]
τ =	14,07	[MPa]	Contrainte tengentielle dans le raidisseur		EN 1993-1- 1:[6.2.1.(5)]
σz =	24,96	[MPa]	Contrainte équivalente au contact du raidisseur et de dalle	la	EN 1993-1- 1:[6.2.1.(5)]
max (σg, τ / (0.58)), σ _z) /	$(f_{yp}/\gamma_{M0}) \le 1.0 (6.1) 0,09 < 1,00$	vérifi é	(0,09)
Plaqu	ue trapézoïo	dale pa	arallèle à l'âme du poteau		
M₁ =	23,88	[kN*m]	Moment fléchissant du raidisseur		
Q1 =	265 , 38	[kN]	Effort tranchant du raidisseur		
z _s =	273	[mm]	Position de l'axe neutre (à partir de la base de la plaq	ue)	
ls =	136354,9 2	[cm4]	Moment d'inertie du raidisseur		
σd =	4,34	[MPa]	Contrainte normale au contact du raidisseur et de la c	lalle	EN 1993-1- 1:[6.2.1.(5)]
σg =	7,92	[MPa]	Contrainte normale dans les fibres supérieures		EN 1993-1- 1:[6.2.1.(5)]
τ =	15,16	[MPa]	Contrainte tengentielle dans le raidisseur		EN 1993-1- 1:[6.2.1.(5)]
σz =	26,62	[MPa]	Contrainte équivalente au contact du raidisseur et de dalle	la	EN 1993-1- 1:[6.2.1.(5)]
max (σg, τ / (0.58)), σ _z) /	$(f_{yp}/\gamma_{MO}) \le 1.0 (6.1) 0, 10 < 1,00$	vérifi é	(0,10)
Raidi	sseur perp	endicı	ılaire à l'âme (au milieu de l'âme du poteau)		
M₁ =	20,30	[kN*m]	Moment fléchissant du raidisseur		
Q ₁ =	231,95	[kN]	Effort tranchant du raidisseur	ue)	
2s – Is =	113716,5	[rm1]	Moment d'inertie du raidisseur		
-	6	· 1			EN 1002 1
σ_d =	5,06	[MPa]	Contrainte normale au contact du raidisseur et de la c	lalle	1:[6.2.1.(5)]
σg =	7,43	[MPa]	Contrainte normale dans les fibres supérieures		EN 1993-1-

M1 =	20,30 [kN	^{*m} Moment fléchissant du raidisseur		
τ =	13,25 [MF	a] Contrainte tengentielle dans le raidisseu	r disseur et de la	1:[6.2.1.(5)] EN 1993-1- 1:[6.2.1.(5)] EN 1993-1-
σz =	23,51 [MF	a] dalle		1:[6.2.1.(5)]
max (σ _g , τ / (0.58), σ _z)/(f_{yp}/γ_{M0}) \leq 1.0 (6.1) 0,09 < 1,00	vérifi é	(0,09)
Raidi	sseur perpend	iculaire à l'âme (sur le prolongement des	ailes du poteau)	
M1 =	22,58 [kN]	^{*m} Moment fléchissant du raidisseur		
Q1 =	258,01 [k	J] Effort tranchant du raidisseur		
Zs =	257 [m r	n] Position de l'axe neutre (à partir de la ba	se de la plaque)	
l _s =	¹⁴⁶³⁰⁸ , ⁸ ₅ [cm	⁴] Moment d'inertie du raidisseur		
$\sigma_d =$	3,58 [MF	a] Contrainte normale au contact du raidiss	eur et de la dalle	EN 1993-1- 1:[6.2.1.(5)]
σg =	7,22 [MF	Pa] Contrainte normale dans les fibres supér	rieures	EN 1993-1- 1:[6.2.1.(5)]
τ =	14,74 [MF	a] Contrainte tengentielle dans le raidisseu	r	EN 1993-1- 1:[6.2.1.(5)]
σz =	25,79 [MF	a] Contrainte équivalente au contact du raio dalle	disseur et de la	EN 1993-1- 1:[6.2.1.(5)]
max (σ _g , τ / (0.58), σ _z)/(fyp/γM0)≤1.0(6.1)0,09 < 1,00	vérifi	(0,09)

SOUDURES ENTRE LE POTEAU ET LA PLAQUE D'ASSISE

σ⊥ =	31,32	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]		
$\tau_\perp =$	31,32	[MPa]	Contrainte tengentielle perpendiculaire	Contrainte tengentielle perpendiculaire			
τ _y II =	0,10	[MPa]	Contrainte tengentielle parallèle à V _{j,Ed,y}		[4.5.3.(7)]		
$\tau_{zII} =$	3,31	[MPa]	Contrainte tengentielle parallèle à V _{j,Ed,z}		[4.5.3.(7)]		
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]		
σ_{\perp} / (0.9	*f _u /γ _{M2})) ≤	1.0 (4.1)	0,11 < 1,00	vérifié	(0,11)		
$\sqrt{(\sigma_{\perp}^2 + 3)}$	B.0 (τ _{yll} ² +	τ⊥²)) / (fu	/(βw*γм2))) ≤ 1.0 (4.1)0,16 < 1,00	vérifié	(0,16)		
$\sqrt{(\sigma_{\perp}^2 + 3)}$	$3.0 (\tau_{zII}^2 +$	τ⊥²)) / (fu	/(βw*γм2))) ≤ 1.0 (4.1)0,15 < 1,00	vérifié	(0,15)		

SOUDURES VERTICALES DES RAIDISSEURS

Raidiss	eur parall	èle à l'âi	me (sur le prolongement de l'âme du po	teau)	
σ ⊥ =	15,98	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$\tau_\perp =$	15,98	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τιι =	29,30	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σz =	59,98	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ_{\perp} ,	, τιι * √3, σ	_{5z}) / (f _u /(β	w [*] γM2))≤1.0(4.1)0,16 < 1,00	vérifié	(0,16)
Plaque	trapézoïd	ale para	llèle à l'âme du poteau		
σ⊥ =	0,00	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$\tau_\perp =$	0,00	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τιι =	61,43	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σz =	0,00	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ_{\perp} ,	, τιι * √3, σ	5z) / (fu/(β	w [*] γM2)) ≤ 1.0 (4.1)0,28 < 1,00	vérifié	(0,28)
Raidiss	eur perpe	endiculai	re à l'âme (au milieu de l'âme du poteau	ı)	
σ⊥ =	14,64	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$\tau_\perp =$	14,64	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τιι =	27,61	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]

Raidiss	eur perpe	ndiculai	re à l'âme (au milieu de l'âme du poteau)	
σ⊥ =	14,64	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$\sigma_z =$	56,08	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
ßw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σι	. τιι * √3. σ	;_) / (fu/(B)	$(N^*\gamma_{M_2})) \leq 1.0 (4.1) 0.15 < 1.00$	vérifié	(0,15)
Raidiss	eur perpe	ndiculai	re à l'âme (sur le prolongement des ailes	s du poteau)	
σ =	16,29	[MPa]	Contrainte normale dans la soudure	,	[4.5.3.(7)]
$\tau_{\perp} =$	16,29	[MPa]	Contrainte tengentielle perpendiculaire		[453(7)]
$\tau_{\perp} =$	30,72	[MPa]	Contrainte tengentielle parallèle		[453(7)]
σ- =	62,38	[MPa]	Contrainte totale équivalente		[453(7)]
62 - Bw =	0,85	լոուզյ	Coefficient dépendant de la résistance		[453(7)]
max (σ	τ*√3.σ	-) / (f/(ß.	$(x^*(x_0)) \le 10 (41)0.16 \le 1.00$	vérifié	(0,16)
a x (01	<u>, ((0, 0</u>	2) / (10/())	(iii), i (ii		(-, -,
<u>Soud</u>	URES H	ORIZOI	NTALES DES RAIDISSEURS		
Raidiss	eur parall	èle à l'âr	ne (sur le prolongement de l'âme du pot	eau)	
σ⊥ =	80,58	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$\tau_\perp =$	80,58	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τιι =	21,45	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σz =	165,39	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ⊥	<u>,</u> τ⊪ * √3, σ	;z) / (f _u /(βι	_N *γ _{M2})) ≤ 1.0 (4.1)0,43 < 1,00	vérifié	(0,43)
Plaque	trapézoïd	ale para	llèle à l'âme du poteau		
σ⊥ =	86,88	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	86,88	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τιι =	29,12	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σ_z =	180,92	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ⊥	_, τιι * √3, σ	z) / (fu/(β\	ν*γm2))≤1.0(4.1)0,47 < 1,00	vérifié	(0,47)
Raidiss	eur perpe	ndiculai	re à l'âme (au milieu de l'âme du poteau)		
σ ⊥ =	78 , 10	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	78 , 10	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τ _{II} =	23,11	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σz =	161,25	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ⊥	<u>,</u> τ _{II} * √3, σ	z) / (f _u /(βι	N [*] γM2)) ≤ 1.0 (4.1)0,42 < 1,00	vérifié	(0,42)
Raidiss	eur perpe	ndiculai	re à l'âme (sur le prolongement des ailes	s du poteau)	
σ ⊥ =	86,88	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	86,88	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τII =	33,63	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σz =	183,26	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ⊥	_, τ _{II} * √3, σ	z) / (f _u /(βι	$N^*\gamma_{M2}) \le 1.0 (4.1) 0,48 < 1,00$	vérifié	(0,48)
<u>Rigid</u>	ITE DE L	ASSE	MBLAGE		
Momen	t fléchiss:	ant Mira	v		
b _{eff} =	172 In	nm] Lar	deur efficace de la semelle de troncon T		[6.2.5.(3)]
l _{eff} =	450 [m	nm] Lon	queur efficace de la semelle de troncon en	т	[6.2.5.(3)]
k _{13.v} = E	c*√(beff*leff)	/(1.275*F	E)		[(2)]
k _{13,y} =	31	[mm]	, Coef. de rigidité du béton comprimé		[Tableau 6.11]

$k_{16,y} = 1.6^* A_b / L_b$	
k _{16,y} = 2 [mm] Coef. de rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,y} = 0, 24$ Elancement du poteau	[5.2.2.5.(2)]
S _{j,ini,y} = 527797, 84 [kN*m] Rigidité en rotation initiale	[Tableau 6.12]
$\lambda_{0,y} \leq 0.5 \text{ RIGIDE}$	[5.2.2.5.(2)]
Moment fléchissant M _{j,Ed,z}	
$k_{13,z} = E_c^* \sqrt{(A_{c,z})/(1.275^*E)}$	
k _{13,z} = 46 [mm] Coef. de rigidité du béton comprimé	[Tableau 6.11]
leff = 386 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 70 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
$k_{15,z} = 0.425 * l_{eff} * t_p^3 / (m^3)$	
$k_{15,z} = 7$ [mm] Coef. de rigidité de la plaque d'assise en traction	[Tableau 6.11]
L _b = 257 [mm] Longueur efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,z} = 1.6^*A_b/L_b$	
$k_{16,z}$ = 2 [mm] Coef. de rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,z} = 0, 47$ Elancement du poteau	[5.2.2.5.(2)]
S _{j,ini,z} = 795881,95 [kN*m] Rigidité en rotation initiale	[6.3.1.(4)]
$\lambda_{0,z} \leq 0.5 \text{ RIGIDE}$	[5.2.2.5.(2)]

COMPOSANT LE PLUS FAIBLE:

FONDATION EN PRESSION DIAMETRALE

Assemblage satisfaisant vis à vis de la Norme	Ratio 0,61
---	------------

Etude geotechnique pour réalisation d'un tribune et un mûr de clôture au niveau de l'AMCHB-Che rchell

CHAPTEREE: Généralite

1-1-Introduction

Le Département des Études Architecturales (atelier CFT) du CMIDI/I°RM a sollicité, par note interne N°343/2019/2-4-DI /CMIDI/I°RM du 27.05.2019, notre Département pour la réalisation de l'étude géotechnique de Tribune et mui de clôture de l'A.M.C (ex: A.M.I.A)/CHERCHELL/I°RM

CHAPITRE II : Geologie et Hydrogéologie

II. 1/ Aperçu géologique

D'après la carte géologique de Cherchell Nº 39 au 1/50.000, les formations susceptibles d'être rencontrés sont d'âge quaternaire « q5 », plate forme d'abrasion.

Le quaternaire est constitué par des argiles jaunâtres et rougeâtres concrétionnées, des grés à galets.

MIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03

Page 3

Scanné avec CamScanner

Etude géotechnique pour réalisation d'un tribune et un mûr de clôture au niveau de l'AMCHB-Cherchell

11.2/Aperçu hydrogéologique :

D'après la carte Hydrogéologique à l'échelle 1/200 000éme, la région de Cherchell est-constituée Par la succession des formations suivantes :

- Formation à prédominance argileuse, d'âge Quaternaire avec une très mauvaise perméabilité;
- Marne, d'âge Miocène supérieur, à perméabilité très faible ;
- Schiste, d'âge Crétacé Moyen, à perméabilité très faible.

Nos moyens d'investigation n'ont pas décelé la présence d'eau aux profondeurs atteintes. (Essais in situ réalisés mois de juillet).

Etude géotechnique pour realisation d'un tribuné et un mûr de cloture au niveau de l'AMCIIB-Cherchell

Fig.2 : Extrait de la carte hydrogéologique de la zone d'étude (1/200 000)

11.3/ Programme géotechnique et moyens d'investigations

L'intervention sur site a consisté en la réalisation :

- Deux(02) essais pressiométriques à l'aide de l'appareil Menard; v
- Un (01) sondage à la Tarière à l'aide de la sondeuse SN°50; v
- Cinq (05) points de Pénétration ~

II.4/ Lithologie de site

D'après la description visuelle des échantillons récupérés par les sondages, la nature des sols rencontré et comme suit:

Sondage à la tarière N°01:

- De 0m à 4.5m : remblai; .
- De 4.0m à 6.0m : Sable Argileux plus aux moins compact.

Sondage pressiométrique N°01:

- 0.0m à 4.5m : remblai;
- 4.5m à 9.0m: Argile grisâtre finement plus au moine induré;

Sondage pressiométrique N°02:

- 0.0m à 1.0m : remblai; .
- 1.0m à 7.0m : Argile plastique de couleur verdâtre; ٠ 7.0 m à 9.0m : Argile plastique rougeâtre finement sableux.

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03

Page 6

11.5/ Classification sismique du site :

Du point de vue sismique, la région d'étude fait partie d'une région caractérisé par une sismicité élevée classée en Zone (III) d'après le zonage sismique d'Algèrie et selon la classification du RPA99 (version 2003).

Fig.4: Carte de zonage sismique de l'Algérie

CHAPITRE III : Étude Géotechnique

III.1/Interprétation des essais

III.1.1/ Essais in-situ « Essais de PDL»

Cinque (05) essais de PDL au moyen du Pénétromètre Lourd ont été réalisés, ils ont été répartis comme e indiqué sur le plan d'implantation des essais en annexe.

L'examen des courbes de pénétration dynamique pdl01 pdl02 pdl03 (tribune) met en évidence un sol dont la résistance à la pointe est assez bonne et dépasse les 35 bars après les quatre premiers mètres (épaisseur de remblai) avant d'atteindre les refus de 10 à 10.2m de profondeur; Ainsi que L'examen des courbes de pénétration dynamique pdl04 pdl05 (Mur de clôture) met en évidence un sol dont la résistance à la pointe est assez bon et dépasse les 40 bars après les deux premiers mètres avant d'atteindre les refus de 6 à 6.8m de profondeur

III.1.2/ Essais in situ (Essais au Pressiomètre Menard)

L'essai consiste à mesurer la déformation radiale moyenne d'un forage en fonction de la pression d'eau.

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03

Page 7

Etude géotechnique pour réalisation d'un trabune et un mûr de clôture au niveau de l'AMCHB Chercchell

Dans des sols fins (de perméabilité faible) sous nappe , cette essai peut être considéré comme un essai non drainé (le phénomène de consolidation n'entre pas en compte).

Principe

L'essai se réalise à une profondeur déterminée avec des paliers de charge de durées constantes égales 60 (ou 120) secondes.

-Une mesure intermédiaire est faite à 30 (ou 60) sec. Le volume total d'eau injecté dans la sonde est donc mesuré après 30 et 60 sec; il est noté V30 et V60 ou (V60 et V120).

On réalise au minimum 8 paliers de charge.

Conditions limites d'essai :

- Pression de 50 bars a été atteinte

Volume injecté est d'au moins 450 ou 600cm³ (selon type de sonde)

Deux (02) essais au pressiomètre ont été réalisés au niveau du site. Ils sont répartis comme indiqué sur plan de masse en annexe.

THR .

Etude géotechnique pour réalisation d'un tribune et un mir de clóture au niveau de l'AMCHB-Cherschell

Essais PRS01:

Paramètres mesurés. Prof.(m)	E (Bar)	PI (Bar)	Pf
01.50	31.80	8.00	8.00
03.00	19.10	3.81	3.68
04.50	204.75	8.59	3.83
4 1006 436 00	45.10	8.10	8.10
07.50	15.60	4.10	4.10
07.50	56.17	8.70	6.43
09.00	50.17		

Tableau récapitulatif des résultats de l'essai au pressiomètre

Essais PRS02:

Paramètres mesurés. Prof.(m)	E (Bar)	Pl (Bar)	Pf
01.50	41.93	2.52	1.35
03.00	91.40	12.03	8.42
04.50	653.70	12.06	3.74
06.00	96.64	12.41	7.84
07.50	34.34	10.07	8.93
09.00	51.02	10.73	5.01

Tableau récapitulatif des résultats de l'essai au pressiomètre

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03 Page 9

Scanné avec CamScanner

En fonction des valeurs obtenues pour le module pressiométrique (E), la pression lunite (PI) et le rapport E/PL on peut classer le sol comme suit (référence tableau extrait du livre « Sols et fondations » de G. Sanglérat):

- Sol sous consolidé pour 5<E/Pl<8 bars,
- Sol normalement consolidé pour 8<Pl<15 bars,
- Sol sur consolidé E/PI>15

Il permet ainsi et outre les valeurs de vitesses d'ondes de cisaillement de classer, selon le RPA2003, notre sol suivant les valeurs harmoniques des résultats de l'essai pressiomètrique réalisé au niveau du site objet de la présente étude :

$$\frac{1}{Pl} = \frac{\sum_{i=1}^{n} hi}{\sum_{i=1}^{n} \frac{hi}{pli}}$$
 Pli pression limite moyenne à travers la couche i d'épaisseur hi

 $\overline{Ep} = \frac{\sum_{i=1}^{n} hi}{\sum_{i=1}^{n} \frac{hi}{Epi}}$ Epi module pressiométrique moyen à travers la couche i d'épaisseur hi

D'après les valeurs obtenues pour les <u>Pl</u> et les <u>Ep</u>, et suivant le tableau de classification des sites selon le RPA99 Version 2003, le sol est classé S4.

Epaisseur de la couche	Ep (Mpa)	Pl (Mpa)	Classification RPA99 (Version 2003)
Prs01	0.9	0.17	Site très meuble (S4)
Prs02	1.69	0.273	Site très meuble (S4)

.

Etade géotechnique pour realisation d'un tribune et un inur de clôture au niveau de l'AMCHB-Cherchiell

III.2/ESSALDE LABORATOIRE

111.2.1/ Essais d'identification physique

Analyse granulométrique (Selon la Norme -NF P 94-056-)

C'est un essai qui a pour objet de déterminer la répartition des grains suivant leur dimension ou grosseur. Les résultats de l'analyse granulométrique sont donnés sous forme d'une courbe dite courbe granulométrique et construite sur un graphique, cette

analyse se fait en général par :

 Tarnisage pour les éléments de dimensions supérieures ou égales à 80 mm.

Sédimentomètrie pour les éléments de dimensions inférieures à 80 mm.

Principe d'essai

L'essai consiste à fractionner au moyen d'une série de tamis et passoires reposants sur un fond de tamis un matériau en plusieurs classes de tailles décroissantes

But de l'essai C'est un essai qui a pour objet la détermination en poids des

- Analyse sédimentomètrique (Selon la Norme -NF P 94-057-)
- Limites d'ATTERBERG (Selon la Norme -NF P 94-051-)

Principe de l'essai:

Pour déterminer la limite de liquidité, on étend sur une coupelle une couche du matériau dans laquelle on trace une rainure au moyen d'un instrument en forme de V. On imprime à la coupelle des chocs semblables en comptant le nombre de chocs nécessaires pour fermer la rainure sur 1 cm, on mesure alors la teneur en eau de la pâte.

Limite de plasticité (W) et limite de liquidité (WL), sont des limites conventionnelles qui séparent les trois états de consistance du sol :

WP sépare l'état solide de l'état plastique et WL sépare l'état plastique de l'état liquide ; les sols qui représentent

Ils dénotent ainsi et ce d'après ATTERBERG un sol de classe argile très plastique, peu plastique et sable argileux. (voir courbe en annexe.

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03

Page 11

Scanné avec CamScanner

Etude géotechnique pour réalisation d'un tribune et un mûr de clôture au niveau de l'AMCHB-Cherchell

Des essais d'Analyse Chimique ont été réalisés sur des échantillons de sol prélevés par différents sondages à différents profondeurs; ces derniers (essais ACS) présentent un taux faible err chlorures (<0.65%) et des traces en sulfates.

Conformément à la norme en vigueur NA 16002, les sols analysés <u>ne sont pas agressifs vis-à-vis</u> <u>le béton hydraulique armé et non armé.</u>

Selon la norme NA16201, ce sol n'est pas organique (Cmo<3%), et peu calcareux sauf pour le sondage St01 entre 5 et 6m où il est moyennement calcareux.

Les valeurs au bleu de méthylène (VBS) obtenues sont comprises:

entre 0.2 et 2.5 pour 100g de sol prélevé entre 5 et 6m dans le ST01 où il est limonéux;

entre 2.5 et 6 pour l'échantillon prélevé entre 5 et 6m (PRS01) où il est de classe limono-argileux;

entre 6 et 7 pour les autres échantillons où ils sont de classe Argileux.

						PPSº02	PRS°02
1			St01	PRs01	PRS-02	11002	
Flements	Symbole	U.	Prof 5-6m	Prof 5-6m	Prof 2-3m	Prof 4-5m	Prof 7-8m
Insolubles	/	%	71.03	80	69.56	77.01	80.35
Oxyde de fer et alum	Fe2O3 et Ai2O3	%	9.65	10	12.01	9.75	10.367
Sulfates	SO4 2-	%	Traces	Traces	Traces	Traces	Traces
Chlorures	Cl-	%	0.17	0.19	0.20	0.17	0.17
Carbonates	CaCo3	%	50	25.01	20.11	22.15	23.20
Gaz carbo.	Co2	%	22	11	8.85	9.75	10.21
La perte au feu	/	%	30.4	19.15	15.1	17.35	16.8
T.M.O	/	%	1.25	1.67	0.78	1.76	0.89
V.B.S	/	g	1.5	3.15	7.35	7.15	7.35
	Flements Insolubles Oxyde de fer et alum Sulfates Chlorures Carbonates Gaz carbo. La perte au feu T.M.O	HomentsSymboleInsolubles/Oxyde de fer et alumFe2O3 et Ai2O3SulfatesSO4 2-ChloruresCl-CarbonatesCaCo3Gaz carbo.Co2La perte au feu/T.M.O/V.B.S/	HomentsSymboleU.Insolubles/%Oxyde de fer et alumFe2O3 et Ai2O3%SulfatesSO4 2-%ChloruresCl-%CarbonatesCaCo3%Gaz carbo.Co2%La perte au feu/%T.M.O/%V.B.S/8	SymboleU.St01 Prof 5-6mInsolubles/%71.03Oxyde de fer et alumFe2O3 et Ai2O3 SO4 2-%9.65SulfatesSO4 2-%TracesChloruresCl-%0.17CarbonatesCaCo3%50Gaz carbo.Co2%22La perte au feu/%30.4T.M.O/%1.25V.B.S/81.5	SymboleU.St01PRs01Insolubles/%71.0380Oxyde de fer et alumFe2O3 et Ai2O3%9.6510SulfatesSO4 2-%TracesTracesChloruresCl-%0.170.19Gaz carbo.Co2%2211La perte au feu/%30.419.15T.M.O/%1.251.67V.B.S/81.53.15	Symbole U. St01 PRs01 PRS°02 Insolubles / % 71.03 80 69.56 Oxyde de fer et alum Fe2O3 et Ai2O3 % 9.65 10 12.01 Sulfates SO4 2- % Traces Traces Traces Chlorures CI- % 0.17 0.19 0.20 Gaz carbo. Co2 % 22 11 8.85 La perte au feu / % 30.4 19.15 15.1 V.B.5 / 8 1.5 3.15 7.35	SymboleU.St01PRs01PRS°02PRS°02PRS°02Insolubles/ χ Prof 5-6mProf 5-6mProf 2-3mProf 4-5mInsolubles/ χ 71.038069.5677.01Oxyde de fer et alumFe2O3 et Ai2O3 χ 9.651012.019.75SulfatesSO4 2- χ TracesTracesTracesTracesChloruresCl- χ 0.170.190.200.17Gaz carbo.Co2 χ 22118.859.75La perte au feu/ χ 30.419.1515.117.35T.M.O/81.53.157.357.15

Tableau n°03 : Récapitulatif des résultats des essais d'analyse chimique sommaire

IV/ CALCUL DE LA CONTRAINTE ADMISSIBLE

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03 Page 12

Scanné avec CamScanner

Etude géotechnique pour réalisation d'un tribune et un mur de clóture au niveau de l'AMCHB-Cher chell

IV.1/ à partir des résultats des essais de PDL d'après le DTR

La contrainte admissible du sol est donnée comme suit :

$$\sigma_{--} = \frac{R_{-}}{C_{+}} \quad \text{et} \quad \left[\begin{array}{ccc} R_{-} & N_{-} & \left(H_{-} & M_{-}^{+} \right) \\ e_{-} & e_{-}^{-} & 1 + \left(M_{-} + P_{+} \right) \end{array} \right]$$

R_p : Résistance à la pointe minimale ;

Cr : Cœfficient réducteur tenant compte de la nature du sol ;

Pour la tribune

o_{adm}= 1.6 bars pour un ancrage à partir de 4.5 m par rapport au terrain Naturel. Cr =21

Pour mur de clôture

O_{adm}= 1.4 bars pour un ancrage à partir de 1.5m par rapport au terrain Naturel. Cr =21

IV.1.3-à partir des résultats des essais de laboratoire au pressiomètre

4 A partir des résultats de l'essai SPR01

Pour une semelle carrée

Profendeur d'ancrage : 4.50 mètres à partir de terrain naturel

Largeur de la semelle B : 1.5 mètres

1/ Pression limite équivalente <Ple> = 8,59 bars

2/ Contrainte horizontale au niveau de la fondation avant travaux <Po> = 0,427 bars 3/ Encastrement équivalent <He> = 2,81 mètres 4/ Coefficient de portance <K> = 1,17 5/ Contrainte verticale au niveau de la fondation après travaux <qo> = 0,854 bars 6/ Coefficient de pression des terres au repos <ko> = 0,5 7/ Contrainte admissible du sol <Qadm> : Qadm = qo + K/3 (Ple - Po) = 4,053 bars 8/ Contrainte limite du sol <Ql> : $Ql = qo + K^* Ple = 10,95 bars$ Pour une semelle filante Profondeur d'ancrage : 4.50 mètres à partir de terrain naturel Largeur de la semelle B : 1.2 mètres 1/ Pression limite équivalente <Ple> = 8,37 bars 2/ Contrainte horizontale au niveau de la fondation avant travaux <Po> = 0,427 bars 3/ Encastrement équivalent <He> = 2,88 mètres 4/ Coefficient de portance <K> = 1,09 5/ Contrainte verticale au niveau de la fondation après travaux <qo> = 0,854 bars 6/ Coefficient de pression des terres au repos <ko> = 0,5 7/ Contrainte admissible du sol <Qadm> : Qadm = qo + K/3 (Ple - Po) = 3,743 bars 8/ Contrainte limite du sol <Ql> : $Ql = qo + K^* Ple = 9,98$ bars

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03

Etude géotechaique pour réalisation d'un tribune et un mûr de clôture au niveau de l'AMCHB-CherChen

A partir des résultats de l'essai SPR02 Pour une semelle carrée

Profondeur d'ancrage : 1.5 mètres Largeur de la semelle B : 1.5mètres 2/ Contrainte horizontale au niveau de la fondation avant travaux $\langle Po \rangle = 0,135$ bars 3/ Encastrement équivalent <He> = 0,21 mètres 5/ Contrainte verticale au niveau de la fondation après travaux $\langle qo \rangle = 0,27$ bars 6/ Coefficient de pression des terres au repos <ko> = 0,5 7/ Contrainte admissible du sol <Qadm> : Qadm = qo + K/3 (Ple - Po) = 2,68 bars

8/ Contrainte limite du sol <Ql> :

$$Ql = qo + K^* Ple = 7,61 bars$$

Pour une semelle filante

Profondeur d'ancrage : 1.5mètres Largeur de la semelle B : 1.2mètres 1/ Pression limite équivalente <Ple> = 8,06 bars 2/ Contrainte horizontale au niveau de la fondation avant travaux <Po> = 0,135 bars 3/ Encastrement équivalent <He> = 0,23 mètres 4/ Coefficient de portance <K> = 0,82 5/ Contrainte verticale au niveau de la fondation après travaux <qo> = 0,27 bars 6/ Coefficient de pression des terres au repos <ko> = 0,5 7/ Contrainte admissible du sol <Qadm> :

 $r_{0} + K/3 (Ple - Po) = 2,447$ bars

$$Qadm = q0 + K/3 (110 - 10) = ----$$

8/ Contrainte limite du sol <Ql> :

$$Ol = qo + K^* Ple = 6,91 bars$$

Récapitulatif des résultats de calcul de la contrainte de service

	SPR01 A perage D=4 5 00m	SPR02 Ancrage D=1.5m
(B=1.5m)	4.05bars	2.68Bars
Semelle filante (B=1.2)	3.74Bars	2.47bars

Calcul des tassements

IV.2.2/ à partir des essais au pressiomètre

A partir des résultats de l'essai SPR01 +

Pour une semelle carrée

Profondeur d'ancrage : 4.50 mètres à partir de terrain naturel

Largeur de la semelle : 1.5 mètres

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03

Etude géotechnique pour réalisation d'un tribune et un mur de clothre an invention de comme an invention d'un tribune et un mur de clothre an invention de comme Contrainte de service prise égale à L6bars

Moyennes harmoniques des modules pressionnétriques de chaque tranche : E1 = 204,75 bars E2 = 85.01 bars E 3/4/5 = 23.18 bars E 6/7/8 = 56,17 bars Module préssiométrique équivalent correspondant à la zone D'influence sphérique: Es = 204,75 bars Module préssiométrique équivalent correspondant à la zone D'influence déviatorique: Ed = 52,18 bars COEFFICIENTS DE FORME : L2 = 1.1L3 = 1.12Avec L/2R = 1COEFFICIENT DE STRUCTURE : alpha = 0,5

TASSEMENTS CALCULES : Terme sphérique du tassement (Ws) = 0,07 cm Terme déviatorique du tassement (Wd) = 0,68 cm Tassement total (Wt) = 0,75 cm

Pour une semelle filante

RESULTATS OBTENUS:

Profondeur d'ancrage : 4.50 mètres à partir de terrain naturel Largeur de la semelle : 1.2 mètres Contrainte de service prise égale à 1.6bars

RESULTATS OBTENUS:

Moyennes harmoniques des modules pressiomètriques de chaque tranche : E1 = 204,75 bars E2 = 108,95 bars E 3/4/5 = 23,18 bars Module préssiométrique équivalent correspondant à la zone D'influence sphérique:

Es = 204,75 bars

Module préssiométrique équivalent correspondant à la zone D'influence déviatorique: Ed = 47,87 bars

```
COEFFICIENTS DE FORME :
L2 = 1,5
L3 = 2,65
Avec L/2R = 1
COEFFICIENT DE STRUCTURE :
```

```
alpha = 0,5
```

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03 Page 15

Etude geotechnique pour réalisation d'un tribune et un mur de clôture au niveau de l'AMCTHE Cherchen

TASSEMENTS CALCULES Terme sphérique du lassement (Ws) = 0,07 cm Terme déviatorique du tassement (Wd) = 1.02 cm Tassement total (Wt) = 1,1 cm

A partir des résultats de l'essai SPR02 Pour une semelle carrée

Profondeur d'ancrage : 1.5 mètres Largeur de la semelle : 1.5 mètres Contrainte de service prise égale à 1.4bars

RESULTATS OBTENUS:

Moyennes harmoniques des modules pressiomètriques de chaque tranche : E1 = 41,93 bars E2 = 79,03 bars E3/4/5 = 160,37 bars E 6/7/8 = 96,63 bars E9/16 = 41,05 bars

Module préssiométrique équivalent correspondant à la zone D'influence sphérique: Es = 41,93 bars

Module préssiométrique équivalent correspondant à la zone D'influence déviatorique: Ed = 67,96 bars

COEFFICIENTS DE FORME :

L2 = 1.1L3 = 1,12Avec L/2R = 1

```
COEFFICIENT DE STRUCTURE :
alpha = 0,5
```

TASSEMENTS CALCULES : Terme sphérique du tassement (Ws) = 0,3 cm Terme déviatorique du tassement (Wd) = 0,45 cm Tassement total (Wt) = 0,76 cm

```
Pour une semelle Filante
Profondeur d'ancrage : 1.5 mètres
Largeur de la semelle <B> : 1.5 mètres
Contrainte de service prise égale à 1.4bars
```

```
RESULTATS OBTENUS:
```

Moyennes harmoniques des modules pressiomètriques de chaque tranche : E1 = 41,93 bars E2 = 71,61 bars

CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05 Fax: 021 77 86 03 Page 16 Etude géotechnique pour réalisation d'un tribune et un mûr de clôture au niveau de l'AMCHB-Cher-chell

E 3/4/5 = 160,37 bars E 6/7/8 = 168,38 bars E 9/16 = 41,05 bars

Module préssiométrique équivalent correspondant à la zone D'influence sphérique: Es = 41,93 bars

Module préssiométrique équivalent correspondant à la zone D'influence déviatorique: Ed = 68,22 bars

COEFFICIENTS DE FORME : L2 = 1,5 L3 = 2,65Avec L / 2R = 1

```
COEFFICIENT DE STRUCTURE :
alpha = 0,5
```

TASSEMENTS CALCULES : Terme sphérique du tassement (Ws) = 0,33 cm Terme déviatorique du tassement (Wd) = 0,62 cm Tassement total (Wt) = 0,96 cm

Récapitulatif des résultats de cal	lcul des tassements
------------------------------------	---------------------

	SPR01 Ancrage D=4.5.00m et σ=1.6bars	SPR02 Ancrage D=1.5m et σ=1.4bars	
Semelle carrée (B=1.5m)	0.75 Cm	0.76Cm	
Semelle filante (B=1.2)	1.1 Cm	0.96Cm	

Chapitre IV: CONCLUSION ET RECOMMANDATIONS

A) De point de vue lithologie:

Les sondages réalisés aux niveaux du site d'implantation des futurs ouvrages mettent en évidence une lithologie pratiquement homogène partout. En effet ils ont mis en évidence un sol constitué :

Des remblais dont l'épaisseur atteint les 4.5m au niveau de l'assiette réservée pour la tribune et 1.5m dans la zone de mur de clôture ;

D'argile plastique;

De sable argileux.

De par la nature lithologique rencontrée au moyen des sondages et d'après le DTR B.E -1.2, le terrain objet de la présente étude «Étude Tribune et mur de clôture de l'A.M.C ex: A.M.I.A/CHERCHELL/1°RM Est de classe:

- ✓ terrain non compact: pour les remblais;
- ✓ terrain moyennement à peu compact : pour les argiles plastique et les sables argileux.

CMIDI; 106 Rue Boudjamaa Mognin BP426 H.Dey Alger Tel: 021 77 86 05 Fax: 021 77 86 03 Page 1	CMIDI; 106 Rue Boudjamaa Moghni BP426 H.Dey Alger Tél: 021 77 86 05	Fax: 021 77 86 03	Page 17
--	---	-------------------	---------

Scanné avec CamScanner

Selon la classification du RPA90 version 2003, le site est classe en ZONEIII, ce qui c'orrespond a une sismicité élevée:

B) De point de vue résistance à la pointe:

L'examen des combes de penetration dynamique (pdl01 pdl02 pdl03 (triburne) met en évidence un sol dont la résistance à la pointe est assez bonne et dépasse les 35 bars après les quatre premiers mètres (épaisseur de remblai) avant d'atteindre les refus de 10 à 10.2m de proforideur; Ainsi que L'examen des combes de penetration dynamique pdl04 pdl05 (Mur de clôture) met en évidence un sol dont la résistance à la pointe est assez bon et dépasse les 40 bars après les deux premiers mètres avant d'atteindre les refus de 6 à 6.8m de profondeur

De point de vue analyse chimique:

Les essais ACS, TMO et VIS montrent que le sol est non organique, peu à moyennement calcareux et il est non egressif vis-à-vis le béton hydraulique armé et non armé.

Sur ce il est recommandé: Tribune

 Des fondations superficielles ancrées à partir de 4.5m de terrain naturel et une contrainte admissible de l'ordre de 1.6 bars.

Mur de clôture Des fondations superficielles ancrées à partir de 1.5m de terrain naturel et une contrainte admissible de l'ordre de 1.4 bars

Scanne avec CamScanner