
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education and Scientific Research

University of Blida1

Faculty of Sciences

Computer Science Department

By

Mr. AHMED SERIR Aymen and

 Mr. HADJ RAMDANE Said

For obtaining the Master’s degree

Field: Mathematics and Computer Sciences

Speciality: Natural Language Processing

Members of the thesis committee:

KAMECHE H University of Blida 1 President

CHERIF-ZAHAR A University of Blida 1 Examinator

MEZZI M University of Blida 1 Supervisor

Blida, September 28th, 2022

Contribution to a Transfer Learning Approach for a

Multilabel Biomedical Text Classification

Acknowledgment

I would like to thank several people for their help and support during the

production of this thesis.

I would like to express my deepest gratitude to my advisor, Mrs. Mezzi

Melyara, whose sincerity and encouragement I will never forget.

Mrs. Mezzi Melyara has been an inspiration as I hurdled through the path

of this Masters's degree. She is the true definition of an ideal teacher and the

ultimate role model. This thesis would not have been possible without her,

whose guidance from the initial step of research enabled me to develop an

understanding of the subject. I am thankful for the extraordinary experiences

she arranged for me and for providing opportunities for me to grow

professionally. It is an honour to learn from her.

Also, I greatly appreciate my research partner Aymen, for his

professional great work, excellent encouragement, rigor, and sense of

responsibility. Thanks a lot, Aymen.

I am grateful for my parents whose constant love and support keep me

motivated and confident. My accomplishments and success are because they

believed in me. My Deepest thanks to my brothers and family, who keep me

grounded, remind me of what is important in life, and are always supportive

of my adventures. Finally, I owe my deepest gratitude to my friends, I am

forever thankful for the unconditional support throughout the entire thesis

process and every day.

Said

Acknowledgment

First and foremost, I would like to recognize the invaluable assistance of

our advisor Mrs. Mezzi and thank her for her supervision and support. and

kindly express my gratitude for her effort, without her assistance this thesis

would have not seen the light of day, she was very focused on helping us

through this, and I wish her the very best in her life.

My thanks go to my research partner and new friend Said for his very

professional teamwork and his exceptional skills in planning and organizing.

I learned a lot of things from him and I hope this experience will lead to

more work together in the future.

I would also like to thank my parents for their support and

encouragement, and I wish their son made them proud.

Finally, I would like to thank my friends for sharing the best moods

during this as it was very needed and appreciated.

Aymen

Abstract

In the age of big data, textual data is more important than ever, with an ever-

increasing size and an abundant production of digital documents, particularly in the

biomedical field as a consequence of the convergence between medical computer

science and bioinformatics. In addition to the fact that these textual data are usually

expressed in an unstructured form (i.e., natural language), which makes their

automated processing more difficult. Moreover the rapid growth of the biomedical

literature, makes the manual indexing approaches more complex, time-consuming

and error-prone. Thus, automated classification is essential. Despite the many efforts,

classification complete biomedical texts according to segments specific to these

texts, such as their title and summary, remains a real challenge.

In this thesis we investigate state of the art approaches in classifying

biomedical texts so that we can compare with pre-trained models that we have tested.

After performing tests on different artificial intelligence models: BioBERT, Roberta,

XLNet, we found out that the ideal model for classifying biomedical texts is

BioBERT with an average F1 score of 85,1% which was very similar to the

roBERTa model with a score of 85% which unlike BioBERT, was not pre-trained on

biomedical texts and with XLNet performing slightly worse with a score of 83%.

Finally, we deployed the three above-mentioned models and developed an

Online User Interface on the Hugging Face Platform in order to test and show the

classification results clearly and easily.

Keywords: Automatic Text Classification, Multilabel Classification, Automatic

Medical Language Processing, Deep Learning.

 ملخص

مع مضى،أصبحت البيانات النصية أكثر أهمية من أي وقت الضخمة،في عصر البيانات

ال الطب الحيوي كنتيجة لا سيما في مج الرقمية،حجم متزايد باستمرار وإنتاج وفير للوثائق

للتقارب بين علوم الكمبيوتر الطبية والمعلوماتية الحيوية. بالإضافة إلى حقيقة أن هذه البيانات

مما يجعل معالجتها الآلية (،النصية يتم التعبير عنها عادةً في شكل غير منظم)أي لغة طبيعية

يجعل منهجيات الحيوي، فإن النمو السريع للأدب الطبي ذلك،أكثر صعوبة. علاوة على

فإن التصنيف وبالتالي،وعرضة للخطأ. طويلاً،وتستغرق وقتاً تعقيداً،الفهرسة اليدوية أكثر

إلا أن تصنيف النصوص الطبية الحيوية العديدة،الآلي ضروري. على الرغم من الجهود

 ثل تحدياً حقيقياً.لا يزال يم والملخص،مثل العنوان النصوص،الكاملة وفقاً لأجزاء خاصة بهذه

في هذه الأطروحة نتحرى عن أحدث الأساليب في تصنيف النصوص الطبية الحيوية حتى

نتمكن من المقارنة مع النماذج المدربة مسبقاً التي اختبرناها. بعد إجراء اختبارات على نماذج

اكتشفنا أن النموذج المثالي ، XLNetو ،Robertaو ،BioBERTذكاء اصطناعي مختلفة:

والتي ٪85.1يبلغ F1درجة بمتوسط BioBERTلتصنيف النصوص الطبية الحيوية هو

لم BioBERTمنها على عكس ٪85مع مجموع نقاط. roBERTaكانت مشابهة جداً لنموذج

 .٪83أسوأ قليلاً بنسبة XLNetيتم تدريبها مسبقاً على النصوص الطبية الحيوية وكان أداء

قمنا بنشر النماذج الثلاثة المذكورة أعلاه وقمنا بتطوير واجهة مستخدم عبر الإنترنت أخيرًا،

من أجل اختبار نتائج التصنيف وإظهارها بوضوح Hugging Face Platformعلى منصة

 وسهولة.

المعالجة التلقائية الملصقات،التصنيف متعدد للنص،التصنيف التلقائي الكلمات الرئيسية:

التعلم العميق الطبية،للغة .

Résumé

À l'ère du big data, les données textuelles sont plus importantes que jamais, avec

une taille toujours croissante et une production abondante de documents numériques,

notamment dans le domaine biomédical, conséquence de la convergence entre

l'informatique médicale et la bioinformatique. Outre le fait que ces données

textuelles sont généralement exprimées sous une forme non structurée (c'est-à-dire en

langage naturel), ce qui rend leur traitement automatisé plus difficile. De plus, la

croissance rapide de la littérature biomédicale rend les approches d'indexation

manuelle plus complexes, chronophages et sujettes aux erreurs. Ainsi, la

classification automatisée est essentielle. Malgré les nombreux efforts, la

classification des textes biomédicaux complets selon des segments propres à ces

textes, tels que leur titre et leur résumé, reste un véritable défi.

Dans cette thèse, nous étudions des approches de pointe en matière de

classification de textes biomédicaux afin de pouvoir les comparer avec des modèles

pré-entraînés que nous avons testés. Après avoir effectué des tests sur différents

modèles d'intelligence artificielle : BioBERT, Roberta, XLNet, nous avons découvert

que le modèle idéal pour classer les textes biomédicaux est BioBERT avec un score

F1 moyen de 85,1 %, ce qui était très similaire au modèle roBERTa avec un score de

85 % qui, contrairement à BioBERT, n'étaient pas pré-formés sur les textes

biomédicaux et avec XLNet, les performances étaient légèrement inférieures avec un

score de 83 %.

Enfin, nous avons déployé les trois modèles mentionnés ci-dessus et développé

une interface utilisateur en ligne sur la plateforme Hugging Face afin de tester et

d'afficher clairement et facilement les résultats de la classification.

Mots-clés : Classification Automatique des Textes, Classification Multi-

étiquettes, Traitement Automatique du Langage Médical, Deep Learning.

Table of Content
1 General Introduction .. 1

1.1 General Context ... 1

1.2 Research Problematic ... 1

1.3 Research Objective... 2

1.4 Thesis organization .. 2

Chapter 1: Automatic Classification .. 4

1. Introduction .. 4

2. Machine Learning in Text Classification... 4

2.1. KNN (K-nearest-neighbor) ... 5

2.2. Decision Trees .. 8

2.3. Random Forest.. 10

2.3.1. Definition .. 10

2.3.2. Bagging (Bootstrap Aggregation) ... 10

2.3.3. Difference between random forest and decision tree.................... 10

2.4. Linear Regression ... 11

2.5. Support Vector Machines ... 12

3. Statistical evaluation metrics ... 12

3.1. Definition .. 12

3.2. Classification Accuracy .. 13

3.3. Logarithmic Loss .. 13

3.4. Confusion Matrix.. 13

3.5. F1 Score .. 14

3.6. Mean Absolute Error .. 15

3.7. Mean Squared Error ... 15

3.8. Label Based Evaluation .. 16

4. Conclusion ... 16

Chapter 2: Deep learning ... 18

1. Introduction .. 18

2. Neural networks ... 18

2.1. Predictive Analytics Regressions ... 19

2.2. Neural Network Elements .. 19

2.3. Critical Concepts of Deep Neural Networks 21

3. Artificial Neural Network .. 21

3.1. Activation function ... 22

3.2. Shallow neural network .. 22

3.3. Deep neural networks ... 23

4. Convolutional Neural Networks .. 24

5. Recurrent Neural Networks ... 25

6. Transfer Learning .. 26

6.1. Word embeddings ... 27

6.2. Fine-tuning language models ... 28

7. Frameworks ... 29

7.1. Low-Level Frameworks: .. 29

7.2. High-Level Frameworks:.. 29

8. Challenges in deep learning ... 30

9. Conclusion ... 30

Chapter 3: Related Works ... 31

1. Introduction .. 31

2. Related Works.. 31

2.1. Medical Text Classification using Convolutional Neural

Networks 31

2.2. Deep Learning Classification of Biomedical Text using

Convolutional Neural Network .. 34

3.1. Improved Convolutional Neural Network for Biomedical

Text Classification ... 38

4. Comparative Study .. 40

5. Conclusion ... 41

Chapter 4: Solution Modelling .. 42

1.5 Introduction .. 42

1.6 Proposed Approach and Methodology ... 42

1.6.1 Dataset .. 43

1.6.2 Data Pre-Processing.. 45

1.6.3 Transfer Learning ... 50

1.7 Conclusion.. 55

Chapter 5: Implementation and Evaluation .. 56

1.1 Introduction .. 56

1.2 Hardware Resources... 56

1.3 Software Resources .. 56

1.3.1 Programming Language and frameworks .. 57

1.3.2 Libraries .. 58

1.4 Implementation and Results ... 62

1.4.1 Data Loading and Visualization ... 62

1.4.2 PreTrained Models Implmentation: .. 63

1.4.3 Evaluation ... 64

1.5 Comparisons and Discussion ... 65

1.6 Simulation .. 66

1.6.1 Trained dataset using the pre-trainer model 66

1.6.2 Storing the trained model ... 67

1.6.3 Call and Use of the dataset trained ... 67

1.6.4 Building the Web App in Python ... 68

1.7 Conclusion.. 70

2 General Conclusion ... 71

2.1 Conclusion.. 71

2.2 Perspectives .. 71

List of Figures

Figure 1: Entropy Graph. ... 9

Figure 2: Linear Regression. .. 11

Figure 3: Support Vector Machines. .. 12

Figure 4: Anatomy of a Neural Network [6]. ... 20

Figure 5: Artificial Neural Networks. .. 21

Figure 6: Shallow Neural Network. ... 22

Figure 7: deep neural network with two hidden layers. ... 24

Figure 8: Different mappings of RNN [10].. 26

Figure 9: Outline of the CNN model structure. ... 33

Figure 10: Classification performance. .. 34

Figure 11: Deep Learning Text Classification Model Architecture........................... 35

Figure 12: Result of the Experiment using Single Word Tokenizer with 1 Set of

Convolution and Max-Pooling Layer... 36

Figure 13: Result of the Experiment using Multiword Tokenizer with 1 Set of

Convolution and Max-Pooling Layer... 37

Figure 14: Comparison of Performance of different Classification Methods. 37

Figure 15: Flowchart of Biomedical Text Classification. .. 39

Figure 16: Classification Process using Pre-Trained Models. 42

Figure 17: Structure of Processed Dataset. .. 43

Figure 18: A graph representation of the different categories present in the dataset

with the according number of abstracts. (to be changed)... 45

Figure 19: Tokenization. .. 47

Figure 20: The Transformer network as described in the “Attention is all you need”

paper [22]. .. 49

Figure 21: BERT input representation. .. 50

file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128550
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128551
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128552
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128554
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128555
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128556
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128561
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128561
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128562
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128562
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128564
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128568
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128569
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128569
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128570

Figure 22: Illustration that shows the principle behind transfer learning [23]. 51

Figure 23: Overall pre-training procedure for BERT. ... 52

Figure 24: Model Deployment in the HuggingFace. ... 66

Figure 25: Application Interface. ... 69

Figure 26: Exemple of a classification with our application...................................... 69

file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128571
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128572
file:///C:/Users/Hp/Downloads/Thesis-SAID-AYMEN.docx%23_Toc115128575

Table of Tables

Table 1: Difference between Decision Tree and Random Forest......................... 11

Table 2: Confusion Matrix. .. 14

Table 3: List of selected categories with document numbers............................... 35

Table 4: Comparing the results using multi-word and single-word tokenizers.... 37

Table 5: Results. ... 40

Table 6: Comparison of Models by Average Precision.. 40

Table 7: Table showing dataset categories and the number of abstracts included in

each. ... 44

Table 8: List of text corpora used for BioBERT. ... 53

Table 9: Computer Specifications. ... 56

Table 10: Results comparison between proposed approach and state of the art...65

file:///C:/Users/aymen_s/Downloads/Thesis-SAID-AYMEN%20(3)%20final.docx%23_Toc117527318

 General Introduction

1

1 General Introduction

1.1 General Context

Biomedical Textual data is increasing rapidly as a consequence of the

convergence between medical computer science and bioinformatics (scientific

articles biomedical reports, medical reports, patient discharge summaries, etc..), In

addition, one problem is that these textual data are usually expressed in an

unstructured form (i.e. natural language), which makes their automated processing

increasingly difficult. Thus, effective access to useful information is difficult. To do

this, an appropriate representation of the document's texts is crucial. controlled and

hierarchically-organized vocabulary, such as the Medical Subject Heading (MeSH®)

Thesaurus that was produced by the National Library of Medicine, are widely used to

index biomedical texts to facilitate access to useful information.

The rapid growth of the biomedical literature, makes the manual indexing

approaches more complex, time-consuming and error-prone. Thus, automated

indexation is essential. Despite the many efforts, indexing complete biomedical texts

according to segments specific to these texts, such as their title and summary,

remains a real challenge. Moreover, with large amounts of data, using partial

information to annotate documents is promising. However, the classification of texts

in the medical field is difficult because of two main problems: first, it has some

orthographic and grammatical errors, and second, the medical text contains complex

medical vocabularies, medical measures, and acronyms which has problems with

high-dimensionality and data sparsity.

1.2 Research Problematic

With the advent of deep learning, such as convolutional neural networks

(CNNs) and recurrent neurons (RNN) which are nowadays widely used in

images, signals and other applications, interest in testing these techniques in

the field of medical texts manifested itself and it is precisely in this context

that we place in order to test and compare deep learning methods that would

be effective for biomedical text classification.

 General Introduction

2

1.3 Research Objective

This paper will attempt at understanding and making a comparative

research study on three state of the art automatic biomedical text

classification theses and the methods employed in them, separately we will

test three pre-trained models and compare their results, in the hopes of

studying and understanding the current progress in the field and to give a

future perspective on biomedical text classification.

1.4 Thesis organization

This document is organized as follows:

The first chapter deals with explaining automatic text classification. The chapter

begins by presenting the famous techniques and principles of automatic text

classification including: KNN, decision trees, random forests, LR and SVM, and

lastly the statistical evaluation metrics used in order to evaluate a model.

In the next chapter we explore automatic text classification using deep learning

neural networks like ANN, CNN, RNN, some deep learning applications and the

challenges faced in the field.

In the related works section we study three new research theses relevant to

solving our problem with the classification of biomedical texts, we’ll do a

comparative study of deep learning algorithms that were applied in the theses to get

an overall review of state of the art methods.

The next chapter deals with conceptualizing our approach to the problem, we will

give a clear look at the dataset used and it’s pre-processing, we will explain the

concept behind transfer learning and detail the BERT model as well as the pre-

trained models used in this thesis and the difference between them.

The next chapter deals with implementing the approach: the hardware and

software resources used, the implementation code of each model and finally

evaluating the models, later we compare the results with the approaches followed by

 General Introduction

3

the theses explored in the related works chapter, we showcase the models we’ve

trained in a user friendly interface.

And finally a conclusion that includes a summary of the whole process and our

perspective on it.

 Chapter I : Automatic Classification

4

Chapter 1: Automatic Classification

1. Introduction

Automatic classification is a process for managing text and unstructured

information by categorizing or clustering text. By labeling natural language texts

with relevant categories from a predefined set, automatic document classification

enables users to organize content quickly and efficiently.

While manual document classification may be highly detailed and accurate, it is

time-consuming and subjective. Automatic document classification is faster,

scalable, and more objective. It provides organizations with a more systematic and

consistent classification and can be useful in more complex, nuanced contexts, such

as business-specific content. Machine learning and Artificial Intelligence can boost

the speed and efficiency of automatic document classification.

In this chapter, we are dealing with defining automatic classification and briefly

explaining some basic concepts such as: Machine Learning in Text Classification,

Deep Learning, and finally evaluation Metrics.

2. Machine Learning in Text Classification

Also called a classifier, model, or hypothesis, the classification must assign a

Boolean value to each pair (𝑑𝑗, 𝑐𝑖) ∈ 𝐷 × 𝐶 where 𝐷 is a set of documents and C a

set of categories. For the learning phase, the algorithm requires examples of which

we know the choice of the expert. From the characteristics extracted from each of the

examples, it infers classification rules that are contained in the values of the

parameters of its model. The classifiers are distinguished by [1]:

- The complexity of their model (multi-layer neural networks have a high
separation capacity.

- The interpretability of their parameters (decision trees provide rules
understandable by a human).

- Their performance (the naive Bayesian classifier often gives fewer good

results).

- Their scaling up (the size of the training data limits the wide-margin separator
classifier (SVM)).

 Chapter I : Automatic Classification

5

- Their speed in the learning and classification phases (the k-nearest-neighbor

(KNN) method that queries the data is sometimes longer in the classification

but does not require learning).

- The complexity of the model must be adapted to the amount of data available
for its training. Indeed, a complex model can offer better results, but since it

is more sensitive to noise than a simpler model, its performance may collapse

due to over-fitting. In machine learning theory, the VC dimension (Vapnik

Chervonenkis) measures this complexity.

Next, we give a brief introduction of the classical classifiers in the litterature.

2.1. KNN (K-nearest-neighbor)

2.1.1. Definition

This method is based on the assumption that similar documents in the content

are classified in the same categories. Related documents or neighbors of the

document to be classified are retrieved to extract their categories.

The notion of proximity remains to be defined: For the algorithm to work best on

a particular dataset we need to choose the most appropriate distance metric

accordingly, here we will tackle some of the distance metrics available, but we are

only going to talk about a few widely used ones. Euclidean distance function is the

most popular one among all of them as it is set default in the SKlearn KNN classifier

library in python [2]. So here are some of the distances used:

2.1.2. Minkowski Distance

It is a metric intended for real-valued vector spaces. We can calculate Minkowski

distance only in a normed vector space, which means in a space where distances can

be represented as a vector that has a length and the lengths cannot be negative [3].

There are a few conditions that the distance metric must satisfy:

Non-negativity: 𝑑(𝑥, 𝑦) >= 0

Identity: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 == 𝑦

Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

Triangle Inequality: 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) >= 𝑑(𝑥, 𝑧)

(∑|𝑥𝑖 − 𝑦𝑖|
𝑃

𝑛

𝑖=1

)

1
𝑃⁄

 Chapter I : Automatic Classification

6

This above formula for Minkowski distance is a generalized form and we can

alter it to get different distance metrics.

The p value in the formula can be manipulated to give us different distances like:

- p = 1, when p is set to 1 we get Manhattan distance

- p = 2, when p is set to 2 we get Euclidean distance

2.1.3. Manhattan Distance

This distance is also known as taxicab distance or city block distance, because

of the way this distance is calculated. The distance between two points is the sum of

the absolute differences of their Cartesian coordinates.

As we know we get the formula for Manhattan distance by substituting p=1 in

the Minkowski Distance formula:

𝑑 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

This distance is preferred over the Euclidean distance when we have a case of

high dimensionality [3].

2.1.4. Euclidean Distance

This distance is the most widely used one as it is the default metric that SKlearn

library of Python uses for K-Nearest Neighbor. It is a measure of the true straight

line distance between two points in Euclidean space [3].

It can be used by setting the value of p equal to 2 in Minkowski distance metric:

 Chapter I : Automatic Classification

7

2.1.5. Cosine Distance

This distance metric is used mainly to calculate similarity between two vectors.

It is measured by the cosine of the angle between two vectors and determines

whether two vectors are pointing in the same direction. It is often used to measure

document similarity in text analysis. When used with KNN this distance gives us a

new perspective to a business problem and lets us find some hidden information in

the data which we didn’t see using the above two distance matrices.

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

It is also used in text analytics to find similarities between two documents by

the number of times a particular set of words appear in it.

The formula for Cosine distance is:

cos 𝜃 =
�⃗�. �⃗⃗�

‖�⃗�‖. ‖�⃗⃗�‖

Using this distance, we get values between 0 and 1, where 0 means the vectors

are 100% similar to each other and 1 means they are not similar at all [3].

2.1.6. Jaccard Distance

The Jaccard coefficient is a similar method of comparison to the Cosine

Similarity due to how both methods compare one type of attribute distributed among

all data. The Jaccard approach looks at the two data sets and finds the incident where

both values are equal to 1. So, the resulting value reflects how many 1 to 1 matches

occur in comparison to the total number of data points. This is also known as the

frequency that 1 to 1 match, which is what the Cosine Similarity looks for, how

frequent a certain attribute occurs. It is extremely sensitive to small sample sizes and

may give erroneous results, especially with very small data sets with missing

observations.

The formula for Jaccard index is:

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

 Chapter I : Automatic Classification

8

2.1.7. Hamming Distance

The Hamming distance is a metric for comparing two binary data strings.

While comparing two binary strings of equal length, the Hamming distance

is the number of bit positions in which the two bits are different. The

Hamming distance method looks at the whole data and finds when data

points are similar and dissimilar one to one. The Hamming distance gives

the result of how many attributes were different.

This is used mostly when you one-hot encode your data and need to find

distances between the two binary vectors.

Suppose we have two strings “ABCDE” and “AGDDF” of same length

and we want to find the hamming distance between these. We will go letter

by letter in each string and see if they are similar or in our example the first

letters of both strings are similar, then the second is not similar and so on:

ABCDE and AGDDF

When we are done doing this we will see that only two letters were similar and

three were dissimilar in the strings. Hence, the Hamming Distance here will be 3.

Note that larger the Hamming Distance between two strings, more dissimilar will be

those strings (and vice versa) [3].

2.2. Decision Trees

2.2.1. Definition

From a geometric point of view, the idea is to cut the space up to obtain regions

containing a homogeneous classification. A region is said to be pure when all the

documents contained therein are classified in the same category. For a new document

to be classified, we place it in the representation space and we look in which region it

is located.

Initially, space consists of a single region, the entropy is then maximum.

Let 𝐶𝑗, 𝑗 = 1. . . 𝑛,

 Chapter I : Automatic Classification

9

The space is sliced successively so that the entropy reduction (gain of

information) is maximum at each step. If, in the end, all the regions are pure then the

entropy is zero and the information gain is equal to the initial entropy. To avoid

obtaining regions containing too few examples, which represents a risk of over-

learning, the tree is pruned.

2.2.2. Types of Decision Trees

Types of decision trees are based on the type of target variable we have. It can be

of two types [4]:

- Categorical Variable Decision Tree: Decision Tree which has a categorical

target variable then it is called a Categorical variable decision

tree.

- Continuous Variable Decision Tree: Decision Tree has a continuous target
variable then it is called Continuous Variable Decision Tree.

- Entropy: Entropy is a measure of the randomness in the information being
processed. The higher the entropy, the harder it is to draw any conclusions

from that information. Flipping a coin is an example of an action that

provides information that is random.

From the above graph, it is quite evident that the entropy H(X) is zero when the

probability is either 0 or 1. The Entropy is maximum when the probability is 0.5

because it projects perfect randomness in the data and there is no chance of perfectly

determining the outcome.

- Information Gain: Information gain is a statistical property that measures how

well a given attribute separates the training examples according to their target

classification. Constructing a decision tree is all about finding an attribute that

returns the highest information gain and the smallest entropy.

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑋)

Where T: Current state and X: Selected attribute.

- Gini Index: the Gini index is a cost function used to evaluate splits in the

dataset. It is calculated by subtracting the sum of the squared probabilities of

 Figure 1: Entropy Graph.

 Chapter I : Automatic Classification

10

each class from one. It favors larger partitions and easy to implement whereas

information gain favors smaller partitions with distinct values.

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑃𝑖)2

𝐶

𝑖=1

2.3. Random Forest

2.3.1. Definition

Random forest is an algorithm that is used widely in Classification and

Regression problems.

The main flaw of the decision tree is that it is very sensitive to the initial data set.

Removing or adding a few examples can completely change the tree. To take this

instability into account, the random forest algorithm introduces a part of chance in its

construction. Its principle is to build a large number of decision trees by bootstrap

and to take the vote of each tree to classify. The classification therefore does not

depend on a single tree but on several trees (forest) created from the same dataset but

different from each other (random) [4].

2.3.2. Bagging (Bootstrap Aggregation)

Decision trees are very sensitive to the data they are trained on, small changes to

the training data set can result in a significantly different tree structure. The random

forest takes advantage of this by allowing each individual tree to randomly sample

from the dataset with replacement, resulting in different trees.

2.3.3. Difference between random forest and decision tree

The critical difference between the random forest algorithm and decision tree is

that decision trees are graphs that illustrate all possible outcomes of a decision using

a branching approach. In contrast, the random forest algorithm output are a set of

decision trees that work according to the output [4].

 Chapter I : Automatic Classification

11

Table 1: Difference between Decision Tree and Random Forest.

2.4. Linear Regression

Linear regression is a simple statistical regression method used for predictive

analysis and shows the relationship between the continuous variables. Linear

regression shows the linear relationship between the independent variable (X-axis)

and the dependent variable (Y-axis), consequently called linear regression. If there is

a single input variable (x), such linear regression is called simple linear regression.

And if there is more than one input variable, such linear regression is called multiple

linear regression. The linear regression model gives a sloped straight line describing

the relationship within the variables.

Decision Tree Random Forest

A decision tree is a tree-like model of

decisions along with possible outcomes in

a diagram.

A classification algorithm consisting of

many decision trees combined to get a more

accurate result as compared to a single tree.

There is always a scope for over-fitting,

caused by the presence of variance.

Random forest algorithm avoids and

prevents over-fitting by using multiple

trees.

The results are not accurate. This gives accurate and precise results.

Decision trees require low computation.

Thus, reducing time to implement and

carrying low accuracy.

This consumes more computation. The

process of generation and analyzing is time

consuming.

It is easy to visualize. The only task is to fit

the decision tree model.

This has complex visualization as it

determines the pattern behind the data.

Figure 2: Linear Regression.

 Chapter I : Automatic Classification

12

The above graph presents the linear relationship between the dependent variable

and independent variables. When the value of x (independent variable) increases, the

value of y (dependent variable) is likewise increasing. The red line is referred to as

the best fit straight line. Based on the given data points, we try to plot a line that

models the points the best.

2.5. Support Vector Machines

A Support Vector Machine (SVM) is a supervised machine learning algorithm

that can be employed for both classification and regression purposes.

SVMs are more commonly used in classification problems SVMs are based on

the idea of finding a hyperplane that best divides a dataset into two classes, as shown

in the image below.

 Support vectors are the data points nearest to the hyperplane, the points of a data

set that, if removed, would alter the position of the dividing hyperplane. Because of

this, they can be considered the critical elements of a data set [5].

3. Statistical evaluation metrics

3.1. Definition

Statistical evaluation metrics are used to measure the quality of the statistical or

machine learning model. Evaluating machine learning models or algorithms is

essential for any project. There are many different types of evaluation metrics

Figure 3: Support Vector Machines.

 Chapter I : Automatic Classification

13

available to test a model. These include classification accuracy, logarithmic loss,

confusion matrix, and others.

3.2. Classification Accuracy

Classification Accuracy is what we usually mean when we use the term accuracy.

It is the ratio of the number of correct predictions to the total number of input

samples:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒

3.3. Logarithmic Loss

Logarithmic Loss or Log Loss, works by penalizing the false classifications. It

works well for multi-class classification. When working with Log Loss, the classifier

must assign probability to each class for all the samples. Suppose, there are N

samples belonging to M classes, then the Log Loss is calculated as below:

Where: 𝑦𝑖𝑗, indicates whether sample i belongs to class j or not 𝑝𝑖𝑗, indicates the

probability of sample i belonging to class j

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐𝐿𝑜𝑠𝑠 =
−1

𝑁
∑ ∑ 𝑦𝑖𝑗 ∗ log (𝑝𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

In general, minimizing Log Loss gives greater accuracy for the classifier.

3.4. Confusion Matrix

The Confusion Matrix gives us a matrix as output and describes the complete

performance of the model.

Let’s assume we have a binary classification problem. We have some samples

belonging to two classes: True or False. Also, we have our own classifier which

predicts a class for a given input sample. On testing our model on 165 samples, we

get the following result:

 Chapter I : Automatic Classification

14

 Table 2: Confusion Matrix.

n=165 Predicted:False Predicted:True

Actual:False 50 10

Actual:True 5 100

- True Positives: Cases where we predicted True and the actual output was

also true.

- True negatives: The cases in which we predicted False and the actual

output was False.

- False Positives: Cases where we predicted True and the actual output was

False.

- False negatives: The cases in which we predicted False and the actual

output was true.

Accuracy for the matrix can be calculated by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒

3.5. F1 Score

F1 Score is the Harmonic Mean between precision and recall. The range for F1

Score is [0, 1]. It tells you how precise your classifier is (how many instances it

classifies correctly), as well as how robust it is (it does not miss a significant number

of instances). High precision but lower recall, gives you an extremely accurate, but it

then misses a large number of instances that are difficult to classify. The greater the

F1 Score, the better is the performance of our model. Mathematically, it can be

expressed as:

𝐹1 = 2 ∗
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

The F1 Score tries to find the balance between precision and recall.

Precision: It is the number of correct positive results divided by the number of

positive results predicted by the classifier.

 Chapter I : Automatic Classification

15

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐹𝑃)

Recall: It is the number of correct positive results divided by the number of all relevant

samples (all samples that should have been identified as positive).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)

3.6. Mean Absolute Error

The Mean Absolute Error is the average of the difference between the Original

Values and the Predicted Values. It gives us the measure of how far the predictions

were from the actual output. However, they don’t give us any idea of the direction of

the error i.e., whether we are under-predicting the data or over-predicting the data.

Mathematically, it is represented as:

𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑗|

𝑁

𝑗=1

3.7. Mean Squared Error

The Mean Squared Error (MSE) is quite similar to Mean Absolute Error, the only

difference being that MSE takes the average of the square of the difference between

the original values and the predicted values. The advantage of MSE being that it is

easier to compute the gradient, whereas Mean Absolute Error requires complicated

linear programming tools to compute the gradient. As we take square of the error, the

effect of larger errors become more pronounced than smaller errors; hence the model

can now focus more on the larger errors. Mathematically, it is represented as:

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑗|

𝑁

𝑗=1

 Chapter I : Automatic Classification

16

3.8. Label Based Evaluation

A classifier which has been employed for a multi label text classification

task might predict all the expected labels, a subset of them, or none of the

expected labels. Hence, those cases should be considered in order to

evaluate the classifier. The metrics for a multilabel text classification

problem are organized in two main categories which are example based and

label-based evaluation.

Example-based evaluation techniques consider a defined experiment

with P positive instances and N negative instances for some condition. The

four predicted outcomes can be classified into True Positives (TP), False

Positives (FP), True Negatives (TN) and False Negatives (FN) as seen in

some of the measures above. Label-based measures instead, evaluate each

label separately and then averages over all labels. All the measures from the

example-based evaluation can be used for label evaluation [6].

- Micro averaged measures: Any of the example-based evaluation

metrics can be computed on individual class labels first and then

averaged over all classes.

- Macro averaged measures: Any of the example-based evaluation

metrics can be computed globally over all samples and all class

labels.

- Weighted average measures: Any of the example-based evaluation

metrics can be computed on individual class labels first and then

averaged over all classes with their corresponding class weights.

These class weights are given by the distribution of the test data

4. Conclusion

In this chapter we dealt with explaining some of the most famous machine

learning algorithms for automatic classification such as KNN, Decision trees,

Random Forest, Linear Regression, and finally Support Vector Machines. We also

 Chapter I : Automatic Classification

17

explained the statistical evaluation metrics that are used to evaluate a model such as:

The Confusion Matrix, F-measure, the accuracy, Precision and Recall, and more.

In the next chapter we will explore Deep Learning and understand its relevance to

the problem we’re attempting to solve.

 Chapter II : Deep Learning

18

Chapter 2: Deep learning

1. Introduction

Deep learning is a set of learning methods attempting to model data with complex

Architectures combining different nonlinear transformations. The elementary bricks

of deep learning are the neural networks forming deep neural networks.

These techniques have enabled significant progress in sound and image

processing, including facial recognition, speech recognition, computer vision,

automated language processing, and text classification (for example, spam

recognition).

Potential applications are countless. Besides, there exist several types of

architectures for neural networks: The multilayer perceptron which are the eldest and

simplest ones. Then, The Convolutional Neural Networks (CNN), particularly

adapted for image processing. After that, the Recurrent Neural Networks (RNN)

which are used for sequential data such as text or time series.

This chapter defines deep learning and briefly explains the architectures for

neural networks used in text classification.

2. Neural networks

Neural networks are a set of algorithms modeled loosely after the human brain

designed to recognize patterns [1-2]. They interpret sensory data through machine

perception, labeling, or raw clustering input. The ways they recognize are numerical,

contained in vectors, into which all real-world data must be translated, be it images,

sound, text, or time series.

Neural networks help cluster and classify. They can be a clustering and

classification layer on top of stored and managed data. They help to group unlabeled

data and organize data. (Neural networks can extract features fed to other algorithms

for clustering and classification; it consists of deep neural networks as components of

larger machine-learning applications.).

In a classification problem, those outcomes are labels that could be applied to

data: spam or not_spam in an email filter, good guy or bad guy in fraud detection,

angry_customer or happy_customer in customer relationship management. Other

problems include anomaly detection (useful in fraud detection and predictive

 Chapter II : Deep Learning

19

maintenance of manufacturing equipment) and clustering, which is helpful in

recommendation systems that surface similarities.

For example, in classification problems, labeled data is needed. And publicly

available or possible to be created. In this example, spam emails would be marked as

spam, and the labels would enable the algorithm to map from inputs to the

classifications. It is difficult to identify a suitable dataset until the tests are done on it.

Deep learning maps inputs to outputs. It finds correlations. It is known as a

“universal approximator” because it can learn to approximate an unknown function

𝑓(𝑥) = 𝑦 between any input 𝑥 and any output 𝑦, assuming they are related at all (by

correlation or causation, for example). In the process of learning, a neural network

finds the right 𝑓, or the correct manner of transforming 𝑥 into 𝑦, whether that be

𝑓(𝑥) = 3𝑥 + 2 or 𝑓(𝑥) = 9𝑥 − 0.1.

2.1. Predictive Analytics Regressions

With classification, deep learning can establish correlations between pixels in an

image and a person's name. It might be called a static prediction. Exposed to enough

of the correct data, deep learning can establish correlations between current events

and future events. It can run regression between the past and the future. The

forthcoming event is like the label in a sense. Deep learning doesn’t necessarily care

about time or the fact that something hasn’t happened yet. Given a time series, a deep

understanding may read a string of numbers and predict the number most likely to

occur next.

2.2. Neural Network Elements

Deep learning is the name we use for “stacked neural networks”; networks are

composed of several layers.

The layers are made of nodes. A node is just a place where computation happens,

loosely patterned on a human brain neuron that fires when it encounters sufficient

stimuli. A node combines input from the data with a set of coefficients, or weights

that either amplify or dampen that input, thereby assigning significance to inputs

concerning the task the algorithm is trying to learn, e.g. which information is most

helpful in classifying data without error? These input-weight products are summed,

and then the sum is passed through a node’s so-called activation function to

 Chapter II : Deep Learning

20

determine whether and to what extent that signal should progress further through the

network to affect the outcome, say, an act of classification. If the signal passes

through, the neuron has been “activated”.

A neural network has some key components which constitute its anatomy as

figure 4 depicts. Those components are [6]:

- Layers which are combined into a network.

- Loss function which measures how far the output is from the expected value.

- Optimizer which helps the network to update itself based on the data it sees

and its loss function.

Figure 4: Anatomy of a Neural Network [6].

Initially, the weights have random values, the output is far from the expected

value and the loss score is high. The network starts processing the samples (text

input), the weights are adjusted a little in the correct direction and the loss score

decreases. A network with a minimal loss is one for which the outputs are as close as

they can be to the targets and is called trained network. For handling a text

classification task one more important key component is the last layer activation. The

activation function constrains the network’s output. For a text classification task, the

predicted values should be between 0 and 1. The most popular activation functions

for this purpose are sigmoid, relu and softmax, where the sigmoid function is the

most suitable for a multi label text classification problem.

 Chapter II : Deep Learning

21

2.3. Critical Concepts of Deep Neural Networks

Deep-learning networks are distinguished from the more commonplace single-

hidden-layer neural networks by their depth, that is, the number of node layers

through which data must pass in a multistep pattern recognition process.

Earlier versions of neural networks such as the first perceptrons were shallow,

composed of one input, one output layer, and at most one hidden layer. More than

three layers (including input and output) qualify as “deep” learning. In this regard,

deep is a strictly defined term that means more than one hidden layer.

In deep-learning networks, each layer of nodes trains on a distinct set of features

based on the previous layer’s output. The further it advances into the neural net, the

more complex the features nodes can recognize since they aggregate and recombine.

3. Artificial Neural Network

This section provides an overview of Deep Learning and Artificial Neural

Networks (ANN) architecture and discusses some key terminology.

As shown in the following figure, each perceptron is made up of the following

parts:

Calculate the weighted sum Inputs 𝑥1 through 𝑥𝑛, which a vector X. Xi can also

denote represents the ith entry from the dataset. Each entry from the data set contains

n dependent variables.

Weights w1 through wn, which can be denoted as a matrix WA bias term b, which

is a constant.

Figure 5: Artificial Neural Networks.

https://wiki.pathmind.com/multilayer-perceptron

 Chapter II : Deep Learning

22

3.1. Activation function

The output of step 1 is now passed through an activation function. The activation

function g transforms the works to a desired non-linear format before sending them

to the next layer. It maps the summation result to the selected range.

For example, a sigmoid function maps values to the range [0,1], which is helpful

if the desire of system to predict probabilities. Doing so leads to modeling complex,

non-linear decision boundaries.

3.2. Shallow neural network

In the most basic form, a neural network contains three layers: input, hidden, and

output. The following figure shows that a network with just one hidden layer is

termed an external neural network.

The computations discussed in the previous sections happen for all neurons in a

neural network, including the output layer, and one such pass is known as forwarding

propagation. After one forward pass is completed, the output layer must compare its

results to the actual ground truth labels and adjust the weights based on the

differences between the ground truth and the predicted values. This process is a

backward pass through the neural network known as back-propagation. While the

Figure 6: Shallow Neural Network.

 Chapter II : Deep Learning

23

mathematics behind back-propagation are outside the scope of this article, the basics

of the process can be outlined as follows:

The network works to minimize an objective function, for example, the error

incurred across all points in a data sample. At the output layer, the network must

calculate the total error (difference between actual and predicted values) for all data

points and take its derivative concerning weights at that layer. The product of the

error function concerning consequences is called the gradient of that layer.

The weights for that layer are then updated based on the gradient. This update can

be the gradient itself or a factor of it. This factor is known as the learning rate, and it

controls how significant the steps are taken to change the weights. The process is

then repeated for One layer before it and continues until the first layer is reached.

During this process, values of gradients from previous layers can be reused,

making the gradient computation efficient.

The result of one pass of forwarding propagation and back-propagation is a

change to the network layers' weights. It brings the system closer to modeling the

data set provided to it. Because this process uses the gradient to minimize the overall

error, converging the neural networks' parameters to the optimum is called gradient

descent.

3.3. Deep neural networks

A deep neural network is an external neural network with more than one hidden

layer. Each neuron in the hidden layer is connected to many others. Each arrow has a

weight property, which controls how much that neuron's activation affects the others

attached to it.

Selecting the number of hidden layers depends on the problem's nature and the

data set's size. The following figure shows a deep neural network with two hidden

layers [7].

 Chapter II : Deep Learning

24

4. Convolutional Neural Networks

In recent years, neural networks have covered deep learning, machine learning,

and many other areas. Neural networks mimic how the human brain solves complex

problems and finds patterns in a particular dataset.

In machine learning, a Convolutional Neural Network (CNN or ConvNet) is an

Artificial Neural Network most commonly used to analyze visual images. This is an

input from deep learning algorithms for ideas that effectively weight objects and

distinguish some photos from others. The network embeds deep neural networks

such as neural networks in images and other data.

It has existed for several decades and has proven to be very powerful when large

labeled data sets such as images, videos, and other data are used.

CNNs are complex neural networks capable of recognizing complex features in

data. They are used in everything from vision-powered robots to self-driving

vehicles. They can also be used to identify and classify images and objects such as

faces, animals, road signs, objects in a scene, and other things. The effectiveness of

coil webs in image recognition is one of the main reasons why the efficacy of deep

learning has shaken the world. Unlike image functions, which are learned with small

squares of input data, coils preserve the relationship between pixels. An image

classifier can be usefully confused in myriad ways, for example, to classify cats and

dogs or to determine whether an image of the brain contains tumors.

Convolutional Neural Networks (CNNs) create a matrix of word embeddings for

each sentence to which convolutional filters called kernels are applied with all

possible windows of words in order to extract different features [8]. After that, a max

pooling strategy is applied in order to reduce the layers’ output dimensionality and to

keep them in a fixed size. Deep convolutional networks are created by stacking

combinations of these convolutional layers. CNNs are competitive with RNNs and

can be a much faster alternative to RNNs for tasks like text classification. Therefore,

multiple studies have used CNNs for multi-label text classification. It is also suited

for large scale text classification and Multi-label Classification.

Figure 7: deep neural network with two hidden layers.

 Chapter II : Deep Learning

25

5. Recurrent Neural Networks

RNNs are a powerful and robust type of neural network and belong to the most

promising algorithms because they are the only ones with internal memory.

Like many other deep learning algorithms, recurrent neural networks are

relatively old. They were initially created in the 1980s, but we have only seen their

true potential in recent years.

Because of their internal memory, RNNs can remember important things about

the input they received, which means the model keeps memory of the previous

elements with respect to the target. This memory is crucial for RNNs since the

semantic meaning of sequences often relies on previous elements. Another important

aspect of RNNs is their availability to handle inputs of variable length, which is

something that CNNs cannot do and can have an impact on text classification tasks.

However, RNNs have the vanishing gradient problem, which means that in practice

when a RNN is run many times the gradient becomes so small that the weights of the

first layers do not update anymore, so the model forgets information that is far away

from the current feature. To solve that Long Short-Term Memory was proposed by

Hochreiter and Schmidhuber [8].

Like all other deep learning algorithms, a feed-forward neural network assigns a

weight matrix to its inputs and then produces the output. Note that RNNs apply

weights to the current and previous information. Furthermore, a recurrent neural

network will also tweak the weights for gradient descent and back-propagation over

time (BPTT). [9]

Also, while feed-forward neural networks map one input to one output, RNNs

can map one to many, many to many (translation), and many to one (classifying a

voice) [10].

 Chapter II : Deep Learning

26

 Figure 8: Different mappings of RNN [10].

Several other algorithms are pretty popular these days. Some of them are:

- LSTMS: Long Short-Term Memory Networks

- MLPs: Multilayer Perceptrons

- RBFNs: Radial Basis Function Networks

- DBNs: Deep Belief Networks

- GANs: Generative Adversarial Networks

- RBMs: Restricted Boltzmann Machines

- SOMs: Self-Organizing Maps

- Autoencoders

6. Transfer Learning

Inductive transfer learning [8] is a research problem of machine learning

that deals with how knowledge can be stored, reused and transferred from

previously trained models. Whereas transfer learning has been extensively

used in computer vision with important success, it has not been until recent

years that the NLP community has managed to successfully apply transfer

learning to text. For NLP, transfer learning refers more specifically to pre-

trained language representations — general models that are trained on large

corpora and contain a considerable amount of world-knowledge. It has

proven to be very effective to train models for specific downstream tasks on

top of these pre-trained language representations. This effectiveness seems

to be caused by that general knowledge provided by the pre-trained models

which otherwise cannot be inferred in many cases from the training set of

the task at hand. As presented, in NLP there are two main types of pre-

trained language representations [8]: feature-based and fine-tuning models.

 Chapter II : Deep Learning

27

Whereas the first are often used to initialize the first layer of a neural

network, the latter are fine-tuned as a whole model for a specific

downstream task. In the next sections, we will give an overview on pre-

trained language representations.

6.1. Word embeddings

An example of feature-based pre-trained language representations are

word embeddings, word representations in vectors that have been learned

from their context, following the hypothesis that similar words have similar

contexts. Three of the most emblematic word embeddings architectures are

Word2vec, GloVe and ELMo, which we will explain hereafter [8]:

- Word2vec: Even though there had been previous approaches to word

embeddings, it was Word2vec that mostly popularized them.

Word2vec is based on the distributional hypothesis, which refers to

the fact that the meaning of the words can be inferred by its context.

Word2vec can be trained with two model architectures in order to

obtain the word representations — Continuous Bag-of-Words

(CBOW) and Skip-gram model. The first one learns to predict a word

given a window of k words around it, where the order is not taken into

account. The second architecture learns to predict words before and

after a certain target word using a log-linear classifier with

continuous projection layer. Words that are further from the target

word are given less weight since they are usually less related to the

target word.

- GloVe: Global Vectors for Word Representation (GloVe) was

proposed by Pennington et al. (2014) as a log-bilinear regression

model that uses the occurrence counts of the words in the entire

corpus when training, instead of only using a shallow window-based

method such as that of Word2vec.

- ELMo Some of the limitations of Word2vec are that word

embeddings cannot represent a combination of two or more words

 Chapter II : Deep Learning

28

like idioms. They are also limited by the window size of their

training, and have problems representing polysemic words. To deal

with these issues, the Embeddings from Language Models (ELMo)

was introduced, deep contextualized word representations that model

both how words are used (syntax and semantics) and contextual

variances (like polysemy). The representations are learned from the

internal states of a deep bidirectional language model (biLM) trained

with a LSTM on a large corpus of 30 million sentences and instead of

returning a representation per word, they return a representation per

contextual word.

6.2. Fine-tuning language models

From 2018 to 2019 there has been a proliferation of multiple fine-tuning

pretrained language models, such as GPT (Radford et al., 2018), GPT-2

(Radford et al., 2019), Transformer-XL (Dai et al., 2019), XLNet (Yang et

al., 2019) and XLM (Lample and Conneau, 2019). In the next sections we

will introduce two of the earliest approaches — ULMFiT and BERT.

- ULMFiT: The Universal Language Model Fine-tuning (ULMFiT),

proposed by Howard and Ruder (2018), is an inductive transfer

learning method which consists of three stages — 1) train a language

model on a general domain corpus, 2) then fine-tune that model on a

more specific corpus related to the downstream task, 3) and finally

train a classifier on top of that model. This approach is very useful for

tasks with little labelled data and some unlabelled data.

- BERT: Another important pre-trained representation model, based on

the Transformer architecture introduced by Vaswani et al. (2017), is

Bidirectional Encoder Representations from Transformers (BERT) by

Devlin et al. (2018). The authors argue that the main limitation of pre-

training models is the unidirectionality, which means the

representations are only learnt from left to right, therefore missing

cataphoric references which are important for certain tasks like

question answering. They propose the Masked Language Model

 Chapter II : Deep Learning

29

(MLM) with a deep bidirectional Transformer, which randomly

masks parts of the unlabelled input so that the model learns how to

predict the masked elements from both directions. Additionally, the

model also learns how to predict the next sentence with Next

Sentence Prediction (NSP). Unlike ULMFiT, BERT has only two

steps — pre-training and fine-tuning. Multiple successful examples of

using BERT have been proposed for text classification.

In the Modeling chapter, we will speak further about the Transfer

Learning Approaches that we retained in our contribution.

7. Frameworks

The deep learning frameworks offer reusable code blocks. These reusable code

blocks provide various modules and help abstract the logical blocks. The modules are

handy and can be easily used to develop any deep learning model.

For better understanding, the frameworks can be classified into:

7.1. Low-Level Frameworks:

Low-level frameworks give the basic abstraction block. They are flexible and can

be customized as per the requirement. Some of the popular learning frameworks are:

- MxNet

- Tensor Flow

- PyTorch

7.2. High-Level Frameworks:

High-level frameworks simplify the work by aggregating the abstraction further.

Low-level frameworks are the back ends of high-level frameworks. The source is

converted into a required low-level framework before executing them. Some of the

popular learning frameworks are as follows:

- Gluon

- Keras

 Chapter II : Deep Learning

30

8. Challenges in deep learning

Though deep learning methods have gained immense popularity in the last ten

years, the idea has been around since the mid-1950s when Frank Rosenblatt invented

the perceptron on an IBM® 704 machine. It was a two-layer-based electronic device

that could detect shapes and do reasoning. Advancements in this field in recent years

are primarily because of the increase in computing power and high-performance

graphical processing units (GPUs), coupled with the significant increase in the

wealth of data these models have at their disposal for learning, as well as interest and

funding from the community for continued research. Though deep understanding has

taken off in the last few years, it comes with challenges that the community is

working hard to resolve.

9. Conclusion

Deep learning helps computers to derive meaningful links from a plethora of data

and make sense of unstructured data. Here, the mathematical algorithms are

combined with a lot of data and robust hardware to get qualified information. This

method allows information from digital data to be automatically extracted, classified

and analyzed.

In the next chapter, we will describe some related works to our Master project.

 Chapter III : Related Works

31

Chapter 3: Related Works

1. Introduction

This chapter will present related works that can give valuable insights into the

biomedical document text classification method.

We will summarize each work, problem, and objective; we will examine the

datasets and the techniques the authors have used, the proposed solutions, and the

obtained results. Furthermore, we made a comparative study of the methods to

evaluate their performance and their advantages/disadvantages.

2. Related Works

2.1. Medical Text Classification using Convolutional Neural

Networks

The goal behind this work [11] is to apply machine learning approaches to build

models that allow an automatically generated context-based and rich representation

of health-related information. Convolutional neural networks (CNNs) have

dramatically improved the approaches to many active research problems. One of the

critical differentiators between CNNs and traditional machine learning approaches is

the ability of CNNs to learn complex feature representations. A CNN-based

approach to categorizing text fragments is applied, at a sentence level, based on the

emergent semantics extracted from a corpus of medical text. The process is

compared with three other methods: Sentence Embedding, Mean Word embedding,

and Word Embeddings with BOW (bag-of-word). The results indicate that the CNN-

based approach outperforms the different techniques by at least 15% in terms of

accuracy in the task of classification.

2.1.1. Datasets

Two datasets were procured from the medical domain. This approach makes use

of the Word2vec algorithm. A dataset from PubMed1 was procured for training

Word2vec models. A collection of 15k clinical research papers was used to train it.

 Chapter III : Related Works

32

The Word2vec model described in this paper was prepared using this PubMed

collection.

For sentence-level classification, it was necessary to gather training data pre-

classified by medical professionals. Merck Manual2 dataset contains articles on

topics like Brain, Cancer, etc. Each article is classified under a parent header

representing specific medical issues and conditions. The dataset consisted of 26

medical classes, and 4000 sentences were chosen randomly for each category

extracted from the Merck articles to use as training data and to ensure balance across

all types. The validation dataset consisted of 1000 sentences from each of the

categories.

The CNN-based approach was applied to automatically learn and classify

sentences into one of the 26 categories in the evaluation dataset.

2.1.2. Techniques and Proposed Solutions

Each sentence is converted to a word-level matrix where each row in the matrix is

a sentence vector extracted from the Word2vec model. CNNs require input to have a

fixed size, and sentence lengths can vary greatly. Therefore, a max word length of 50

allowable for a sentence is chosen, which worked well. During the training phase, a

Word2vec hidden layer size of 100 is applied, thus giving the input feature a

resolution of 100×50. If a sentence contained less than 50 tokens, a particular stop

word was repeatedly appended to the end of the sentence to meet the 50-word

requirement. If a conviction had over 50 words, only the first 50 were considered to

be representative of that sentence.

During the evaluation, various CNN configurations were tested. A grid search

was applied to ascertain the optimal number of filters and filter sizes and

experimented with multiple formats of convolutional layers, including 2, 4, and 6.

From these experiments, the best-performing CNN model consisted of a

configuration of two sets of convolutional layers with each pair followed by a max

pooling layer. This model, 256 convolutional filters were used with a filter size of 5

across all convolutional layers. After the second max pooling function, a dropout

function is applied to help prevent over-fitting. In this model, a dropout rate of .5 was

used. Then append a fully connected layer with a length of 128, followed by a second

 Chapter III : Related Works

33

dropout function. This is followed by a dense layer with a size of 26 to represent the

number of classification classes, with a Softmax function determining the output.

 A visual representation of this model can be found in the figure below:

 Figure 9: Outline of the CNN model structure.

2.1.3. Evaluation

The model is compared with the following methods:

Sentence Embeddings (LogR+Doc2vec).

Mean Word Embeddings (ZeroMean/ElimMean+Word2vec).

Word Embeddings with BOW(bag-of-words) Features (BOW+LogR).

The figure below shows the accuracy (percentage of sentences classified

correctly) of each

The method in the experiments. The first three methods shown in the figure

perform worse because the initially pre-trained embeddings do not provide good

classification features. The bag-of-word method performs better - probably due to

better feature extraction based on the pre-trained word embeddings. The CNN-based

approach has the highest accuracy by a wide margin. This could be explained by the

fact that the deep learning approach can capture more complex features than the

other shallow learning approaches.

 Chapter III : Related Works

34

Figure 10: Classification performance.

2.2. Deep Learning Classification of Biomedical Text using

Convolutional Neural Network

Convolutional Neural Network is one of the deep neural networks, and it is

believed that this neural network can solve the data scarcity problem. It is

instrumental in extracting information from raw signals, ranging from computer

vision applications to speech recognition. This research [12] focus on using a

Convolutional Neural Network to classify biomedical text abstracts and to measure

the effectiveness of using Convolutional Neural networks in text classification.

2.2.1. Datasets

The dataset used in this research is the Ohsumed dataset which is the subset of

the MEDLINE database. This research has a total number of 11,566 abstracts

selected from the Ohsumed dataset.

The Ohsumed datasets might contain different levels from the first level until the

fourth level. This research will focus on only 11,566 abstracts from biomedical

journals from the first and second levels. All the categories and the number of

abstracts for each category used in this research are stated in the table below:

 Chapter III : Related Works

35

Table 3: List of selected categories with document numbers.

During the training process, the dataset is split into the training set and validation

set. In this research, the training set consists of 80% of the whole dataset, while the

validation set consists of 20% of the whole dataset.

2.2.2. Techniques and Proposed Solutions

This research consists of several components, and all of these components are

connected sequentially. For instance, the components in the architecture include the

input, biomedical abstracts, word embedding layer, deep network, which is made up

of convolutional layers and max-pooling layer, fully connected layer, and the output,

which is the classification result. The deep learning text classification model

architecture used in this research is shown in the figure below:

Figure 11: Deep Learning Text Classification Model Architecture.

The input, the biomedical abstracts, will go through the process of tokenizing

using the multi-word tokenizer instead of the single-word tokenizer.

Next, the word embedding layer must be set up before the pre-processed text

input passes. The purpose of this layer is to transform all the words in the text that

have the same or similar meaning to have an equal representation in the form of a

vector [13]. In this research, a pre-trained BioASQ word vector is used [14].

 Chapter III : Related Works

36

The sequence of embedding vectors obtained from the previous process will be

converted into a compressed representation; the stack of convolutional layers and

max-pooling layer take it as the input.

The convolutional layer consists of trainable kernels, also known as filters, which

detect any specific input features. The different convolution processes produce a set

of activation maps, which detects different features and passes to the max-pooling

layer.

The activation function used in the proposed model is the Rectified Linear Unit

(ReLU). Moreover, the max-pooling layer will take the transformed output from the

convolutional layer as input. This layer functions to reduce the computation

complexity and the spatial dimension without dumping the momentous information.

These are the significant features. Next, the fully connected layer is where the

classification is performed based on the features extracted from the stack of

convolutional layers and max-pooling layers.

In this research, a softmax function with categorical_crossentropy loss function is

used; its function is to apply a transformation to the output obtained so that the final

output can be interpreted as a probability vector for each class or class scores.

Finally, the cross-validation method is used during the model's training process to

reduce problems like model over fitting.

3. Evaluation

Figure 12: Result of the Experiment using Single Word Tokenizer

with 1 Set of Convolution and Max-Pooling Layer.

 Chapter III : Related Works

37

Table 4: Comparing the results using multi-word and single-word tokenizers.

Figure 14: Comparison of Performance of different Classification Methods.

Figure 13: Result of the Experiment using Multiword Tokenizer

with 1 Set of Convolution and Max-Pooling Layer.

 Chapter III : Related Works

38

3.1. Improved Convolutional Neural Network for Biomedical Text

Classification

Convolutional neural networks have an excellent ability to extract useful features

and so are widely used in the field of text classification. This paper proposes a novel

approach for biomedical text classification based on improved convolutional neural

networks to solve the problem that deep convolutional neural networks have a large

amount of computation and cannot perceive the relationship between levels well.

This work [15] uses the combination of deep separable convolution and void

convolution to improve the convolutional neural network. At the same time, we use

the attention mechanism to classify biomedical literature. In addition, the focusing

loss function is used to improve the imbalance of biomedical texts. Experiments

show that the classification model in this paper is adequate for biomedical texts.

3.1.1. Datasets

The experiment used two datasets publicly available on the Internet. The

MEDLINE dataset collects biomedical articles with article titles and abstracts. The

dataset contains a training set of 94936 articles and a test set of 48906. The original

data set contains more than 20,000 categories. Ten indistinguishable categories (e.g.,

neurology, gastroenterology, and oncology) were selected for categorizing

documents. The Ohsumed dataset is a subset of clinical papers from the MEDLINE

database, which contains 23 categories of cardiovascular disease. The Ohsumed

dataset has 13,929 documents, with varying numbers of documents per class and a

very irregular distribution. If a table is divided into parts, these should be labeled (a),

(b), (c), etc., but there should only be one caption for the whole table, not separate

ones for each part.

3.1.2. Techniques and Proposed Solutions

The text is preprocessed, and the word vector is represented. Then the multi-head

self-attention mechanism is used to extract keywords and capture the global

relationship. The support vector machine is used to classify the extracted text

features.

 Chapter III : Related Works

39

In the text Pre-Processing stage, abbreviation expansion, word form restoration,

and case conversion operations in addition to word segmentation and removal of stop

words. In this way, the preprocessed text can better express the text features. The

NLTK module is used to preprocess text data. For preprocessed data, for a particular

category, 0 in the first column means that it does not belong to a particular category,

and one means that it belongs to a particular category. The second column is the

processed title and content.

In the Word embedding stage, the Skip-Gram model represents the preprocessed

text data as word vectors. After word2vec word vector training, the word vector

representation of each word is obtained, and the complete information of the

document cannot be obtained.

In the improved-CNN stage, a combination of void convolution and deep

separable convolution is adopted to replace the ordinary convolution to alleviate

problems such as model parameter doubling, the large amount of calculation, bloated

model, and gradient explosion associated with enlarging the convolution kernel to

obtain deeper features.

In the Multi-attention stage, a Multi-head self-attention mechanism is used. The

purpose of the Multi-head self-attention mechanism is to capture the critical

information of the text sequence from many aspects. Mapping the query matrix (Q),

fundamental matrix (K), and value matrix (V) into several subspaces, and the

subspaces are calculated separately.

Furthermore, finally in the Focal Loss stage, In order to reduce the influence of

simple samples on the model and increase the influence of complex samples, the

influence factor was introduced into the traditional cross-entropy loss, and the weight

coefficient of balanced, complex samples were increased.

Figure 15: Flowchart of Biomedical Text Classification.

 Chapter III : Related Works

40

3.1.3. Evaluation

In order to evaluate the performance of the improved CNN method in text

classification, the traditional CNN-Softmax method was introduced, and comparative

experiments and analyses were carried out. Comparison results of the two algorithms

are shown in the Table below. The classification accuracy of the improved CNN

method proposed in this paper is better than that of the CNN-Softmax method. The

improved CNN-SVM method can obtain deep multi-scale features so that the text

classification can improve. Meanwhile, the enhanced CNN-SVM process can

alleviate the impact of data imbalance on the classification effect and improve the

overall classification effect to a certain extent.

Table 5: Results.

4. Comparative Study

Table 6: Comparison of Models by Average Precision.

After evaluating the result of the most prominent previous works related to the

subject of this thesis, the CNN model provides good results with varying degrees of

success, most importantly is how the pre-processing plays a huge part in whether a

model performs well.

In these cases, the different models were trained on different datasets, but the first

two were trained on 2 datasets comparable in size (1st model: 15,000 articles, 2nd

model: 11,566 articles) wherein the remaining model was trained on a much larger

 CNN+word2vec 1 CNN+word2vec 2 Improved CNN

Average Precision 68% 70,64% 90,88%

 Chapter III : Related Works

41

dataset (3rd model: 143842 articles) which explains the statistically better results a

difference of more than 20% in accuracy.

The improved CNN model consists of having a multi-head self-attention

mechanism which was used to extract keywords and capture the global relationship.

In addition, a support vector machine is used to classify the extracted text features.

By this we conclude that: the dataset and its pre-processing are very important in

training deep learning models especially in the biomedical domain giving that the

raw data is very precise and that modifications like the ones applied to the improved

CNN model can make a huge difference.

5. Conclusion

In this chapter, we’ve examined three prominent state of the art works that have

tested and developed different solutions for biomedical text classification using

convolutional neural networks, we compared their results and explained them.

 Chapter IV: Solution Modelling

42

Chapter 4: Solution Modelling

1.5 Introduction

This chapter will present how our approach works in detail, and a give clear look

at the process from start to finish.

It involves explaining our proposed approach and methodology, including dataset

information and how dataset preprocessing works, we will also discuss in detail the

classification models used.

1.6 Proposed Approach and Methodology

The approach is based on a comparative study using pre-trained biomedical text

classification models, and different result from the convolutional neural network with

improved pre-processing seen in Chapter 3.

For the Pre-trained models, we first begin by importing the biomedical text

dataset and splitting it into two subsets: Training set and Test set.

Then we will do the pre-processing using: BERT Tokenizer [16], RoBERTa

Tokenizer and XLNet Tokenizer Respectively for the three pre-trained models used.

Later we load the pre-trained models: BERT, RoBERTa and XLNet and do the

training phase.

And lastly, we get the classification results and apply the relevant classification

metrics to evaluate.

 Figure 16: Classification Process using Pre-Trained Models.

 Chapter IV: Solution Modelling

43

1.6.1 Dataset

Original Version of this Dataset contains 15,559,157 Articles from BioASQ Task

9A, more details about the format of the data and the task are available in the

Guidelines for Task 9A [17].

The Dataset used currently consists of 50000 collections of research from

PubMed repository.

Originally these documents are manually annotated by Biomedical Experts with

their MeSH labels and each article are described in terms of 10-15 MeSH labels. In

this Dataset we have huge numbers of labels present as a MeSH major which is

raising the issue of extremely large output space and severe label sparsity issues. To

solve this Issue Dataset has been Processed and mapped to its root as Described in

the Figure:

Figure 17: Structure of Processed Dataset.

The training set is served as a JSON string with the following format, where each

line is a JSON object that represents a single article:

{"articles": [

{"title":"title..","abstractText":"text..","meshMajor":["me

sh1",...,"meshN"], "pmid":"PMID","meshid","meshroot"},

...,

{..}

]}

This dataset has two new columns compared to the original unprocessed BioASQ

dataset:

- Meshroot is MeSH Major at depth one.

- Meshid is the MeSH Major at the last depth.

 Chapter IV: Solution Modelling

44

The Dataset has multiple Labels which includes: Anatomy, Organisms Diseases,

Chemicals and Drugs Analytical, Diagnostic and Therapeutic Techniques, and

Equipment Psychiatry and Psychology Phenomena and Processes Disciplines and

Occupations Anthropology, Education, Sociology, and Social Phenomena

Technology, Industry, and Agriculture Information Science Named Groups Health

Care, Geographicals..

Table 7: Table showing dataset categories and the number of abstracts included in each.

Category Name
Number of

Abstracts

Anatomy – A 23263

Organisms – B 46577

Diseases – C 26453

Chemicals and Drugs – D 31074

Analytical, Diagnostic and Therapeutic Techniques, and

Equipment – E

39202

Psychiatry and Psychology – F 8885

Phenomena and Processes – G 33609

Disciplines and Occupations – H 6069

Anthropology, Education ,Sociology, and Social Phenomena – I 5595

Technology, Industry, and Agriculture – J 5531

Information Science – L 7503

Named Groups – M 21363

Health Care – N 22919

Geographicals – Z 8049

 Chapter IV: Solution Modelling

45

Figure 18: A graph representation of the different categories present in the dataset with the

according number of abstracts.

During the training process, the dataset is split into the training set and validation

set. In this research, the training set consists of 80% of the whole dataset, while the

test validation set consists of 20% of the whole dataset.

1.6.2 Data Pre-Processing

Text preprocessing is used to clean up text data before feeding it to a machine-

learning model. Text data contains a variety of noise, such as emotions,

punctuation, and text in a different capitalization or in numerical or special

character forms. Because machines cannot understand words, they require

numbers. And therefore, a fast and efficient way to transform text to numbers is

needed.

1.6.2.1 Standard Procedure of Text Pre-Processing

The standard or conventional procedure of pre-processing is a bit tedious and

also a user-centric procedure. The below steps are carried out under the hood of

standard pre-processing techniques:

 Chapter IV: Solution Modelling

46

 Lower-casing the corpus

Although often overlooked, lower-casing is one of the simplest and most

effective forms of text preprocessing. It is suitable for most text mining

problems (Text Mining) and NLP and contributes significantly to the

consistency of the expected output. Capitalization consists of reducing all

letters to lowercase. It's often a good practice: this will allow instances as

"Product" at the beginning of a sentence to match the query "product", because

both have the same meaning, if they are not converted to lowercase then they

will constitute dissimilar words in the vector space model. On the other hand,

such practice could assimilate words with completely different meanings.

Many proper nouns are derived from generic nouns and are therefore only

distinguished only under specific circumstances. These words include, for

example, personal names (Rose, rose),.., etc.

 Normalization

Before proceeding with the preprocessing of the corpus it first must be

normalized. Normalization generally refers to a set of related tasks aimed at

put all the text in the same format; i.e. convert the text into a single canonic

form. Normalizing the corpus before processing it guarantees the consistency

of entry before any operation is performed. However, normalization requires

knowing the type of text to be normalized and how to treat it. In our case

study, the language used is English. Among the operations included in the

standardization process, we find:

- Elimination of duplicate white spaces.

- Removal of punctuation and special characters.

- The substitution of contractions (very common in English, for example:

"I'm" → "I am").

 Chapter IV: Solution Modelling

47

- The conversion of numbers into words to keep only the alphabetical

characters.

- Removing the stop words: In this phase we will delete all stop words

(personal pronouns, prepositions, etc.).

 Tokenizing the Corpus

Tokenization is an NLP task that consist/s of splitting a piece of text into

smaller units called “tokens”. A token is an instance of a sequence of characters in

a specific document that are combined together as a semantic entity that may be

useful for processing. Whether it's dividing a paragraph to sentences, a sentence to

words or a word to characters, these tokens are either sentences, words or

characters. So tokenization can be generally divided into three categories: the

tokenization of sentences, words and characters (n-gram characters).the relevant

tokenization here is word tokenizing, as shown in the following figure:

 Stemming and Lemmatization

- Stemming: is the process of reducing infected words to their stem; i.e.

removing the last few characters of a given word, to obtain a shorter form,

even if that form doesn’t have any meaning.

For example: History and Historical becomes Histori.

- Lemmatization: is the algorithmic process of determining the lemma of a

word based on its intended meaning. Unlike stemming, lemmatisation

depends on correctly identifying the intended part of speech and meaning

With Stop Words Without Stop

Words

/growing-up-with-hearing-

loss/

/growing-hearing-

loss/

Figure 19: Tokenization.

 Chapter IV: Solution Modelling

48

of a word in a sentence, as well as within the larger context surrounding

that sentence.

 Word Embeddings

Word embedding is a language modelling technique to represent the words or

phrases as vectors of real numbers. The words are grouped together to get similar

representation for words with similar meaning. The word embedding learns the

relationship between the words to construct the representation. This is achieved by

the various methods like co-occurrence matrix, probabilistic modelling, and neural

networks. It has become one of the basic knowledge in natural language processing.

One-hot vectors is one of the simple representations of the words. Each word can

be represented by one hot vector but as the number of words increases the

dimensionality increases. Word Embeddings reduces this dimensionality of the word

vectors by using various ways such how the words occur collectively like King ,

Queen or words which can be used alternatively like car , vehicle etc. So similar

words are represented by similar representation of vectors. This reduces

dimensionality of the vectors.

Word Embeddings are categorized into two types:

- Frequency based embeddings for example: Count Vector, Co-
occurrence vector, HashingVectorizer, TF-IDF.

- Pre-trained word embeddings for example: Word2Vec, GloVe,

BERT, fastText.

Usually while approaching any NLP problem, we tend to follow this process

and the above process does not ensure any reasonable result if our raw data

changes slightly. This means if the data is from a web page there, we need

additional work to remove HTML tags. Nowadays all these pre-processing steps

can be carried out by using transfer learning modules like BERT.

1.6.2.2 Advanced Procedure of Text Pre-Processing in BERT

Bidirectional Encoder Representations from Transformers or BERT [18] is a deep

learning framework, developed by Google that can be applied to NLP. This means

that the NLP BERT framework learns information from both the right and left side of

 Chapter IV: Solution Modelling

49

a word (or token in NLP parlance). This makes it more efficient at understanding

context.

To learn the contextual relationships between words in a text, BERT utilizes a

Transformer, an attention mechanism. A transformer is a neural network that

transduces input data into vector representations using self-attention layers with

encoder–decoder structure. The transformer’s vanilla implementation has two

mechanisms: an encoder that receives text input and a decoder that predicts the

task. Only the encoder mechanism is required because the purpose of BERT is to

construct a language model.

The Transformer encoder reads the entire sequence of words at once, unlike

directional versions that read the text input sequentially. It is classed as

bidirectional as a result of this, while the actual term is non-directional. This

feature allows the model to learn a word’s context based on its surroundings.

Figure 20: The Transformer network as described in the “Attention is all you need”

paper [22].

https://www.sciencedirect.com/topics/computer-science/neural-networks

 Chapter IV: Solution Modelling

50

The input embeddings are the sum of the token embeddings, the

segmentation embeddings and the position embeddings.

1.6.3 Transfer Learning

It is a popular approach in deep learning where pre-trained models are used as the

starting point on natural language processing tasks given the vast compute and time

resources required to develop neural network models on these problems and from the

huge jumps in skill that they provide on related problems, this is called Transform

Learning.

The basic principle of transfer learning is simple: take a model trained on a large

set of data and transfer their knowledge to a smaller dataset.

Figure 21: BERT input representation.

 Chapter IV: Solution Modelling

51

1.6.3.1 BERT Model

During the BERT training process, pairs of sentences are provided as input to

the model, and it learns to predict whether or not the second sentence in the pair is

the following sentence in the original document. Half of the inputs during training

are pairs where the second sentence is the next sentence in the original document

while the other half is a random sentence from the corpus. The underlying

assumption is that the second phrase will be unrelated to the first.

During training, as shown above, a [CLS] token is inserted at the beginning of

the first sentence and a [SEP] token is introduced at the end of each sentence, with

each token containing a sentence embedding indicating Sentence A or Sentence B.

Sentence embeddings are essentially similar to token embeddings, but with a two-

word vocabulary. Finally, each token is assigned a positional embedding that

corresponds to its place in the sequence [18].

Figure 22: Illustration that shows the principle behind transfer learning [23].

 Chapter IV: Solution Modelling

52

[CLS] is a special symbol added in front of every input example, and

[SEP] is a special separator token (e.g. separating questions/answers).

Before feeding word sequences into BERT, some part of each sequence is

replaced with a [MASK] token. The model then makes an attempt to forecast the

original value of the masked words using the context provided by the other, non-

masked phrases in the sequence. It is necessary to add a classification layer on top

of the encoder output in order to predict the output words. This is followed by

multiplying the encoder output vectors by the embedding matrix, transforming

them into the vocabulary dimension, and computing the probability of each word

in the vocabulary using softmax [18].

The BERT loss function only considers the predictions of the masked values

and ignores the predictions of the non-masked words. Consequently, the model

converges more slowly than directional models. When learning the BERT model,

Masked LM (shown in Figure 22) and Pre-training (shown in Figure 24) are

trained jointly in order to minimize the combined loss function of the two

techniques [18].

BERT currently has two variants:

- BERT Base: 12 layers, 12 attention heads, and 110 million parameters.

- BER Large: 24 layers, 16 attention heads, and 340 million parameters.

Figure 23: Overall pre-training procedure for BERT.

 Chapter IV: Solution Modelling

53

1.6.3.2 BioBERT Model

BioBERT (Bidirectional Encoder Representations from Transformers for

Biomedical Text Mining) [19], which is a domain specific language representation

model pre-trained on large-scale biomedical corpora. Based on the BERT

architecture, BioBERT effectively transfers the knowledge of large amount of

biomedical texts into biomedical text mining models. While BERT also shows

competitive performances with previous state-of-the-art models, BioBERT

significantly outperforms them on three representative biomedical text mining tasks

including biomedical named entity recognition (1.86% absolute improvement),

biomedical relation extraction (3.33% absolute improvement), and biomedical

question answering (9.61% absolute improvement) with minimal task-specific

architecture modifications [19].

1.6.3.3 RoBERTa Model:

Additionally to BioBERT, we used the RoBERTa model [20], RoBERTa builds

on BERT’s language masking strategy, and wherein the system learns to predict

intentionally hidden sections of text within otherwise unannotated language

examples. RoBERTa, which was implemented in PyTorch, modifies key hyper-

parameters in BERT, including:

- Removing the Next Sentence Prediction (NSP) objective: In the next

sentence prediction, the model is trained to predict whether the observed

document segments come from the same or distinct documents via an

auxiliary Next Sentence Prediction (NSP) loss. The authors experimented

with removing/adding of NSP loss to different versions and concluded

Table 8: List of text corpora used for BioBERT.

 Chapter IV: Solution Modelling

54

that removing the NSP loss matches or slightly improves downstream task

performance

- Training with bigger batch sizes & longer sequences: Originally BERT is

trained for 1M steps with a batch size of 256 sequences. In this paper, the

authors trained the model with 125 steps of 2K sequences and 31K steps

with 8k sequences of batch size. This has two advantages, the large

batches improves perplexity on masked language modelling objective and

as well as end-task accuracy. Large batches are also easier to parallelize

via distributed parallel training.

- Dynamically changing the masking pattern: In BERT architecture, the

masking is performed once during data preprocessing, resulting in a single

static mask. To avoid using the single static mask, training data is

duplicated and masked 10 times, each time with a different mask strategy

over 40 epochs thus having 4 epochs with the same mask. This strategy is

compared with dynamic masking in which different masking is generated

every time we pass data into the model.

- This allows RoBERTa to improve on the masked language modeling

objective compared with BERT and leads to better downstream task

performance.

1.6.3.4 XLNet Model

Another recently developed Model is XLNet, XLNet has a similar architecture to

BERT. However, the major difference comes in its approach to pre-training.

XLNet is a generalized auto-regressive (AR) language model that enables learning

bidirectional contexts using Permutation Language Modeling. XLNet borrows the

ideas from both AE and AR language model while avoiding their limitation. As per

paper, XLNet outperforms BERT on 20 tasks, often by a large margin, including

question answering, natural language inference, sentiment analysis, and document

ranking [21].

XLNet outperforms BERT for mainly two reasons:

 Chapter IV: Solution Modelling

55

- BERT is pre-trained on two unsupervised tasks: sentence reconstruction

and next sentence prediction. The reconstruction task involves randomly

masking tokens in a sentence, and reconstructing the original sentence

from the masked one. The model reconstructs the masked tokens

conditionally independently of one another. However, this is not really a

valid assumption. An example from the paper uses the sentence, “New

York is a city” where “New” and “York” are masked and reconstructed

during training. Clearly, if the first word is “New” then the next word is

more likely to be “York”, XLNet doesn’t make this assumption during

pre-training.

- BERT also uses a special [mask] token during pre-training, which creates

some discrepancy between pre-train and fine-tune stages, where a special

token such as [mask] is not used for the latter.

1.7 Conclusion

In this chapter we detailed the dataset used and explained how the pre-processing

works in both the standard procedure and the advanced, we furthermore explained

the basics behind the concept of Transfer Learning, moreover how the used pre-

trained models work including: BERT, RoBERTa and XLNet.

 Chapter V: Tests and Evaluation

56

Chapter 5: Implementation and Evaluation

1.1 Introduction

This chapter deals with implementing the method described in the previous

chapter, and gives a thorough look at the entire process.

It will include a view at the environment employed and all the libraries and APIs

used, additionally it will showcase the implementation with code detail, moreover a

presentation of the classification results, and a comparative study with previous

related works. And lastly in the simulation part, we will see the classification in

action using a user-friendly interface.

1.2 Hardware Resources

The table hereafter (Table 9) describes the specifications of the computer

that has been used for the tests.

 Table 9: Computer Specifications.

CPU I5 8265U 1.60ghz 8 cores

GPU Mesa Intel UHD graphics 620

Storage 256gb

Memory 8gb

Operating System Ubuntu 20.04.4 LTS 64bits

1.3 Software Resources

In this section we will present the software resources used during the

implementation including: the programming language, frameworks, as well as the

libraries.

 Chapter V: Tests and Evaluation

57

1.3.1 Programming Language and frameworks

Here are the programming language and Frameworks that we have used.

- Python Programming Language:

is a high-level, general-purpose programming language. Its design

philosophy emphasizes code readability with the use of significant

indentation, Python 3.9.5 is the latest, major stable release of the Python

programming language, and contains a number of new features and

optimizations, with 111 commits since version 3.9.4.

- Jupyter Notebook:

is a web-based interactive computational environment for creating

notebook documents. Jupyter Notebook1 is built using several open-source

libraries, including IPython, ZeroMQ, Tornado, jQuery, Bootstrap, and

MathJax.

- Google Collaboratory:

1 https://jupyter.org/

 Chapter V: Tests and Evaluation

58

Or “Colab” for short, is a product from Google Research. Colab2 allows

anybody to write and execute arbitrary python code through the browser,

and is especially well suited to machine learning, data analysis and

education. More technically, Colab is a hosted Jupyter notebook service

that requires no setup to use, while providing access free of charge to

computing resources including GPUs.

- Kaggle:

 A subsidiary of Google, Kaggle3 allows users to find and publish data sets,

explore and build models in a web-based data-science environment, work

with other data scientists and machine learning engineers, and enter

competitions to solve data science challenges.

- Weights & Biases:

 WandB4 is a central dashboard to keep track of your hyper-parameters,

system metrics, and predictions so you can compare models live, and share

your findings.

1.3.2 Libraries

Hereafter, we describe the libraries that have been used in our project.

2 https://colab.research.google.com/
3 https://www.kaggle.com/
4 https://wandb.ai/site

 Chapter V: Tests and Evaluation

59

- Scikit-learn (for scientific/data models)5:

 is a free software machine learning library for the Python programming

language. It features various classification, regression and clustering

algorithms including support-vector machines, random forests, gradient

boosting, k-means and DBSCAN, and is designed to interoperate with the

Python numerical and scientific libraries NumPy and SciPy.

- Pandas (for tables)6:

is a software library written for the Python programming language for data

manipulation and analysis. In particular, it offers data structures and

operations for manipulating numerical tables and time series.

- Keras (for Neural Networks)7:

is an open-source software library that provides a Python interface for

artificial neural networks. Keras acts as an interface for the TensorFlow

library.

- Tqdm:

5 https://scikit-learn.org/
6 https://pandas.pydata.org/
7 https://keras.io/

 Chapter V: Tests and Evaluation

60

tqdm8 derives from the Arabic word taqaddum (تقدّم) which can mean

"progress," and is an abbreviation for "I love you so much" in Spanish (te

quiero demasiado).

Instantly make your loops show a smart progress meter - just wrap any

iterable with tqdm(iterable), and you're done!

- Numpy (for numerical analysis)9:

is a library for the Python programming language, adding support for large,

multi-dimensional arrays and matrices, along with a large collection of high-

level mathematical functions to operate on these arrays.

- Matplotlib (for plots)10:

is a plotting library for the Python programming language and its numerical

mathematics extension NumPy.

- TensorFlow11:

is a free and open-source software library for machine learning and artificial

intelligence. It can be used across a range of tasks but has a particular focus

on training and inference of deep neural networks.

8 https://github.com/tqdm/tqdm
9 https://numpy.org/
10 https://matplotlib.org/
11 https://www.tensorflow.org/?hl=fr

 Chapter V: Tests and Evaluation

61

- PyTorch12:

is an open-source machine learning framework based on the Torch library,

used for applications such as computer vision and natural language

processing.

- Transformers13:

Transformers provides APIs and tools to easily download and train state-of-

the-art pretrained models. Using pretrained models can reduce your compute

costs, carbon footprint, and save you the time and resources required to train

a model from scratch. These models support common tasks in different

modalities, such as:

o Natural Language Processing: text classification, named entity

recognition, question answering, language modeling, summarization,

translation, multiple choice, and text generation.

o Computer Vision: image classification, object detection, and

segmentation.

o Audio: automatic speech recognition and audio classification.

o Multimodal: table question answering, optical character recognition,

information extraction from scanned documents, video classification,

and visual question answering.

12 https://pytorch.org/
13 https://huggingface.co/transformers

 Chapter V: Tests and Evaluation

62

- Gradio14:

 is an open-source python library that allows you to quickly create easy-to-

use, customizable UI components for your machine learning model. Gradio

allows you to integrate the GUI directly into your Python notebook making it

easier to use.

1.4 Implementation and Results

In this section, we will explain how the implementation was carried with lines of

code and screenshots of the results of all the architecture process.

1.4.1 Data Loading and Visualization

At first, we start by loading the dataset we’re working on and visualize it:

We display each category and count the number of abstracts in each:

14 https://gradio.app/

 Chapter V: Tests and Evaluation

63

We split the dataset into 80% (40000) for training and 20% (1000) for

testing and then use one hot labels to further visualize our data:

1.4.2 PreTrained Models Implmentation:

We take the same outputs and split the training data into 80 % (32000) for the

training and 20 % (8000) for validation, we then convert the data into torch tensors to

use it in the training of the model:

In the training we used a number of as the original authors of

the model recommend between 10 and 20.

After the Training is over we evaluate our model by calculating the accuracy

a was used.

 Chapter V: Tests and Evaluation

64

 For each Model we used the appropriate Tokenizer, for example for RoBERTa

we use the RoBERTa tokenizer.

 We used the GPU in order to perform the training.

1.4.3 Evaluation

During the training we calculate the Training Loss, F1 validation

Accuracy, and the Flat Validation Accuracy of each model, the training loss

is a metric used to assess how a deep learning model fits the training data:

After the testing is done we calculate the precision, recall, and f1-score

for each model:

BioBERT: RoBERTa:

 Chapter V: Tests and Evaluation

65

XLNet:

1.5 Comparisons and Discussion

The BioBERT and RoBERTa models gave comparable F1 accuracy

Results, with 85,1% for BioBERT and 85% for RoBERTa. XLNet

performed slightly worse with an F1 accuracy result of 83%.

BioBERT was expected to perform the best giving how it was trained on

a huge dataset of biomedical texts, interestingly the results of RoBERTa

shows the huge potential, and is evidence that it’s an improvement over the

standard BERT model.

Later we compare these results to the previous results shown in the state

of the art section:

Table 10 :Results comparison between proposed approach and state of the art.

Model CNN+word2vec 1 CNN+word2vec 2
Improved

CNN
BioBERT roBERTa XLNet

Average

Precision
68% 71% 91% 85% 85% 82%

We can see that compared to both CNN+word2vec models the pre-

Trained models gave better precisions, the improved CNN model shows that

 Chapter V: Tests and Evaluation

66

with the proper amelioration: CNN can show great results comparable to

pre-trained models.

1.6 Simulation

1.6.1 Trained dataset using the pre-trainer model

To make visualizations and logging artifacts and comparisons of different models

we have thought about integrating Weight and Bias (wandb). It helps us to quickly

track experiments, version and iterate on datasets, evaluate model performance,

reproduce models, visualizes results and spot regressions, and share findings

publicly, following these steps:

Figure 24: Model Deployment in the HuggingFace.

- We sign up and log in to the wandb account.

- We Install the wandb library on our machine in a Python 3 environment
using pip

- We then, login to the wandb library on the machine and get the

app key.

 Chapter V: Tests and Evaluation

67

- We Initialize a new run in W&B in Python script. wandb.init()

will start tracking system metrics and console logs, right out of the

box. Run our code, and we put in Our API key when prompted,

and we see the new run appear in W&B.

1.6.2 Storing the trained model

The base classes PreTrainedModel, implement the common methods for

loading/saving a model either from a local file or directory, or from a pre-

trained model configuration provided by the library (downloaded from

HuggingFace’s AWS S3 repository).

PreTrainedModel and TFPreTrainedModel also implement a few

methods which are common among all the models such as Tokenizers.

After making the train locally, we saved the pre-trained configuration,

Converting Labels to categories before uploading it to HugginFace Hub.

Finally, we Upload the model file to the Model Hub while synchronizing a

local clone of the repo in repo_path_or_name

1.6.3 Call and Use of the dataset trained

In Transformers 4.20.0, the from_pretrained() method has been reworked

to accommodate large models using Accelerate. This requires Accelerate >=

0.9.0 and PyTorch >= 1.9.0. Instead of creating the full model, then loading

the pre-trained weights inside it (which takes twice the size of the model in

https://wandb.ai/authorize

 Chapter V: Tests and Evaluation

68

RAM, one for the randomly initialized model, one for the weights), there is

an option to create the model as an empty shell, then only materialize its

parameters when the pre-trained weights are loaded.

This option can be activated with low_cpu_mem_usage=True. The

model is first created on the Meta device (with empty weights) and the state

dict is then loaded inside it (shared by shard in the case of a sharded

checkpoint). This way the maximum RAM used is the full size of the model

only.

Moreover, we can directly place the model on different devices if it does

not fully fit in RAM (only works for inference for now). With

device_map="auto", Accelerate will determine where to put each layer to

maximize the use of our fastest devices (GPUs) and offload the rest on the

CPU, or even the hard drive if we do not have enough GPU RAM (or CPU

RAM). Even if the model is split across several devices, it will run as we

would normally expect.

1.6.4 Building the Web App in Python

Gradio is an open-source Python library that is used to build data science

demos and web applications.

 With Gradio, we have created a user friendly interface around our three

models such as Bio Bert, Roberta, and XLNet, and let the users try by

dragging and dropping in their content, pasting text, and interacting with the

demo, all through the browser, using the below link:

https://huggingface.co/spaces/saidhr20/pubmed-biobert-text-classification

 Chapter V: Tests and Evaluation

69

Figure 25: Application Interface.

In order to perform a classification by writing an input text and pressing

the submit button, the classification results of that input text will be

displayed, the 6 most pertinent categories will be shown, the model used

here is BioBERT:

For example, we’ll search the content of a biomedical abstract and see

the results:

Figure 26: Exemple of a classification with our application.

 Chapter V: Tests and Evaluation

70

1.7 Conclusion

In this chapter we dealt with implementing the different models and

showing the process of training and testing and evaluation.

Furthermore, we analyzed and compared the results of the 3 models, and

later with the state-of-the-art approaches.

Lastly, we showcased the classification results in a user interface, in

order to see the results clearly and easily.

 General Conclusion

71

2 General Conclusion

2.1 Conclusion

In this thesis we explored the deep learning field of biomedical text classification

we started by understanding basic notions of automatic classification and went

further in explaining deep learning concepts, in addition we studied three state of the

art theses about biomedical text classification and compared their results which gave

us an informed overall review of the biomedical text classification field, furthermore

we have tested three pre-trained biomedical text models, and evaluated their results,

we compared their results with the ones obtained in the state of the art theses, we

found out that the BioBERT model performs best than the other two pre-trained

models, and finally we showcased the model in an interface that can be easily used

by anyone online to do a biomedical text classification on the go.

The prospective of developing a robust method to do classification is huge, the

method can take advantage of pre-trained models as they’re showing very good

results even ones that are not trained on biomedical text classification like RoBERTa.

2.2 Perspectives

The biomedical text classification field is a vast field and has huge developmental

potential, from this research the approach of developing a pre-trained model and

taking advantage of the optimizations like the ones used in RoBERTa and training it

on huge datasets of biomedical text sounds like it would make great results that can

even exceed state of the art biomedical methods developed recently, and that’s

obviously up to the test, we hope we can see such methods developed in the future.

 Bibliographic references

References

[1] C. Sebastien, «Classification automatique de textes biomédicaux,» p.

45, 2015.

[2] D. O. Thomas W.Edgar, «Machine Learning».

[3] V. B. S. Prasatha, «Effects of Distance Measure Choice on KNN

Classifier Performance - A Review,» p. 39, 2019.

[4] N. S. Chauhan, «Decision Tree Algorithm,» 2022. [En ligne]. Available:

https://www.kdnuggets.com/2020/01/decision-tree-algorithm-

explained.html.

[5] E. García-Gonzalo, «Hard-Rock Stability Analysis for Span Design in

Entry-Type Excavations with Learning Classifiers,» p. 19, 2016.

[6] S. H. K. a. K. PANISKAKI, «Text analysis for email multi label

classification,» Gothenburg, Sweden, 2020.

[7] Yann LeCun et Yoshua Bengio, «Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural

networks,» 1995.

[8] S. R. Medina, «Multi-Label Text Classification with Transfer Learning

for Policy Documents,» Uppsala, Sweden, 2019.

[9] Razvan Pascanu, , Tomas Mikolov et Yoshua Bengio, «On the difficulty

of training Recurrent Neural Networks,» p. 12, 2013.

 Bibliographic references

[10] K. Ryszard Tadeusiewcz "Sieci neuronowe", «Principles of training

multi-layer neural network using backpropagation,» 1992. [En ligne].

Available: https://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html.

[11] Mark Hughes, Irene Li, Spyros Kotoulas et Toyotaro Suzumura,

«Medical Text Classification Convolutional Neural Networks,» p. 5,

2016.

[12] Rozilawati Dollah, Chew Yi Sheng et Norhawaniah Zakaria, «Deep

Learning Classification of Biomedical Text,» p. 6, 2019.

[13] Liang-Chih Yu, Jin Wang et K. Robert Lai, «"Refining Word

Embeddings For Sentiment Analysis",» pp. 534-539, 2017.

[14] I. P. e. al., «Continious Space Word Vectors Obtained by Applying

Word2Vec to Abstracts of Biomedical Articles,» pp. 1-4, 2014.

[15] Z. Ma, «"Improved Convolutional Neural Network for Biomedical Text

Classification",» p. 7, 2021.

[16] Xinying Song,, Alex Salcianu, Yang Song et Dave Dopso, «Fast

WordPiece Tokenization,» p. 15, 2020.

[17] T. George , B. Georgios , M. Prodromos , P. Ioannis et Z. Matthias ,

«An overview of the BIOASQ large-scale biomedical semantic indexing

and question answering competition,» 2015. [En ligne]. Available:

http://participants-area.bioasq.org/datasets/.

[18] Jacob Devlin, Ming-Wei Chang et Kenton Lee, «BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,» p. 16,

2018.

 Bibliographic references

[19] Jinhyuk Lee , Wonjin Yoon, Sungdong Kim et Donghyeon, «BioBERT:

a pre-trained biomedical language representation model for biomedical

text mining,» p. 7, 2019.

[20] Yinhan Liu, Myle Ott et Naman Goyal, «RoBERTa: A Robustly

Optimized BERT Pretraining Approach,» p. 13, 2019.

[21] Zhilin Yang, Zihang Dai, Yiming Yang et Jaime Carbon, «XLNet:

Generalized Autoregressive Pretraining for Language Understanding,

Available:https://arxiv.org/pdf/1906.08237.pdf,» p. 18, 2020.

[22] Ashish Vaswani, Noam Shazeer et Niki Parmar, «Attention Is All You

Need,» p. 15, 2017.

[23] Joseph Lemley, Shabab Bazrafkan et Peter Corcoran, «Transfer

Learning of Temporal Information for Driver Action,» p. 7, 2017.

