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Abstract 

 

In the age of big data, textual data is more important than ever, with an ever-

increasing size and an abundant production of digital documents, particularly in the 

biomedical field as a consequence of the convergence between medical computer 

science and bioinformatics. In addition to the fact that these textual data are usually 

expressed in an unstructured form (i.e., natural language), which makes their 

automated processing more difficult. Moreover the rapid growth of the biomedical 

literature, makes the manual indexing approaches more complex, time-consuming 

and error-prone. Thus, automated classification is essential. Despite the many efforts, 

classification complete biomedical texts according to segments specific to these 

texts, such as their title and summary, remains a real challenge. 

In this thesis we investigate state of the art approaches in classifying 

biomedical texts so that we can compare with pre-trained models that we have tested. 

After performing tests on different artificial intelligence models: BioBERT, Roberta, 

XLNet, we found out that the ideal model for classifying biomedical texts is 

BioBERT with an average F1 score of 85,1% which was very similar to the 

roBERTa model with a score of 85% which unlike BioBERT, was not pre-trained on 

biomedical texts and with XLNet performing slightly worse with a score of 83%. 

Finally, we deployed the three above-mentioned models and developed an 

Online User Interface on the Hugging Face Platform in order to test and show the 

classification results clearly and easily. 

 

Keywords: Automatic Text Classification, Multilabel Classification, Automatic 

Medical Language Processing, Deep Learning. 

 



 ملخص

 

مع  مضى،أصبحت البيانات النصية أكثر أهمية من أي وقت  الضخمة،في عصر البيانات 

ال الطب الحيوي كنتيجة لا سيما في مج الرقمية،حجم متزايد باستمرار وإنتاج وفير للوثائق 

للتقارب بين علوم الكمبيوتر الطبية والمعلوماتية الحيوية. بالإضافة إلى حقيقة أن هذه البيانات 

مما يجعل معالجتها الآلية  (،النصية يتم التعبير عنها عادةً في شكل غير منظم )أي لغة طبيعية

يجعل منهجيات  الحيوي، فإن النمو السريع للأدب الطبي ذلك،أكثر صعوبة. علاوة على 

فإن التصنيف  وبالتالي،وعرضة للخطأ.  طويلاً،وتستغرق وقتاً  تعقيداً،الفهرسة اليدوية أكثر 

إلا أن تصنيف النصوص الطبية الحيوية  العديدة،الآلي ضروري. على الرغم من الجهود 

 ثل تحدياً حقيقياً.لا يزال يم والملخص،مثل العنوان  النصوص،الكاملة وفقاً لأجزاء خاصة بهذه 

في هذه الأطروحة نتحرى عن أحدث الأساليب في تصنيف النصوص الطبية الحيوية حتى 

نتمكن من المقارنة مع النماذج المدربة مسبقاً التي اختبرناها. بعد إجراء اختبارات على نماذج 

اكتشفنا أن النموذج المثالي  ، XLNetو  ،Robertaو  ،BioBERTذكاء اصطناعي مختلفة: 

والتي  ٪85.1يبلغ  F1درجة بمتوسط  BioBERTلتصنيف النصوص الطبية الحيوية هو 

لم  BioBERTمنها على عكس  ٪85مع مجموع نقاط.  roBERTaكانت مشابهة جداً لنموذج 

 .٪83أسوأ قليلاً بنسبة  XLNetيتم تدريبها مسبقاً على النصوص الطبية الحيوية وكان أداء 

قمنا بنشر النماذج الثلاثة المذكورة أعلاه وقمنا بتطوير واجهة مستخدم عبر الإنترنت  أخيرًا،

من أجل اختبار نتائج التصنيف وإظهارها بوضوح  Hugging Face Platformعلى منصة 

 وسهولة.

المعالجة التلقائية  الملصقات،التصنيف متعدد  للنص،التصنيف التلقائي الكلمات الرئيسية: 

التعلم العميق الطبية،للغة  . 

  



Résumé 

 

À l'ère du big data, les données textuelles sont plus importantes que jamais, avec 

une taille toujours croissante et une production abondante de documents numériques, 

notamment dans le domaine biomédical, conséquence de la convergence entre 

l'informatique médicale et la bioinformatique. Outre le fait que ces données 

textuelles sont généralement exprimées sous une forme non structurée (c'est-à-dire en 

langage naturel), ce qui rend leur traitement automatisé plus difficile. De plus, la 

croissance rapide de la littérature biomédicale rend les approches d'indexation 

manuelle plus complexes, chronophages et sujettes aux erreurs. Ainsi, la 

classification automatisée est essentielle. Malgré les nombreux efforts, la 

classification des textes biomédicaux complets selon des segments propres à ces 

textes, tels que leur titre et leur résumé, reste un véritable défi. 

Dans cette thèse, nous étudions des approches de pointe en matière de 

classification de textes biomédicaux afin de pouvoir les comparer avec des modèles 

pré-entraînés que nous avons testés. Après avoir effectué des tests sur différents 

modèles d'intelligence artificielle : BioBERT, Roberta, XLNet, nous avons découvert 

que le modèle idéal pour classer les textes biomédicaux est BioBERT avec un score 

F1 moyen de 85,1 %, ce qui était très similaire au modèle roBERTa avec un score de 

85 % qui, contrairement à BioBERT, n'étaient pas pré-formés sur les textes 

biomédicaux et avec XLNet, les performances étaient légèrement inférieures avec un 

score de 83 %. 

Enfin, nous avons déployé les trois modèles mentionnés ci-dessus et développé 

une interface utilisateur en ligne sur la plateforme Hugging Face afin de tester et 

d'afficher clairement et facilement les résultats de la classification. 

Mots-clés : Classification Automatique des Textes, Classification Multi-

étiquettes, Traitement Automatique du Langage Médical, Deep Learning. 
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1 General Introduction  

1.1 General Context 

Biomedical Textual data is increasing rapidly as a consequence of the 

convergence between medical computer science and bioinformatics (scientific 

articles biomedical reports, medical reports, patient discharge summaries, etc..), In 

addition, one problem is that these textual data are usually expressed in an 

unstructured form (i.e. natural language), which makes their automated processing 

increasingly difficult. Thus, effective access to useful information is difficult. To do 

this, an appropriate representation of the document's texts is crucial. controlled and 

hierarchically-organized vocabulary, such as the Medical Subject Heading (MeSH®) 

Thesaurus that was produced by the National Library of Medicine, are widely used to 

index biomedical texts to facilitate access to useful information. 

The rapid growth of the biomedical literature, makes the manual indexing 

approaches more complex, time-consuming and error-prone. Thus, automated 

indexation is essential. Despite the many efforts, indexing complete biomedical texts 

according to segments specific to these texts, such as their title and summary, 

remains a real challenge. Moreover, with large amounts of data, using partial 

information to annotate documents is promising. However, the classification of texts 

in the medical field is difficult because of two main problems: first, it has some 

orthographic and grammatical errors, and second, the medical text contains complex 

medical vocabularies, medical measures, and acronyms which has problems with 

high-dimensionality and data sparsity. 

1.2 Research Problematic 

With the advent of deep learning, such as convolutional neural networks 

(CNNs) and recurrent neurons (RNN) which are nowadays widely used in 

images, signals and other applications, interest in testing these techniques in 

the field of medical texts manifested itself and it is precisely in this context 

that we place in order to test and compare deep learning methods that would 

be effective for biomedical text classification. 
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1.3 Research Objective 

This paper will attempt at understanding and making a comparative 

research study on three state of the art automatic biomedical text 

classification theses and the methods employed in them, separately we will 

test three pre-trained models and compare their results, in the hopes of 

studying and understanding the current progress in the field and to give a 

future perspective on biomedical text classification. 

1.4 Thesis organization 

This document is organized as follows: 

The first chapter deals with explaining automatic text classification. The chapter 

begins by presenting the famous techniques and principles of automatic text 

classification including: KNN, decision trees, random forests, LR and SVM, and 

lastly the statistical evaluation metrics used in order to evaluate a model.  

In the next chapter we explore automatic text classification using deep learning 

neural networks like ANN, CNN, RNN, some deep learning applications and the 

challenges faced in the field. 

In the related works section we study three new research theses relevant to 

solving our problem with the classification of biomedical texts, we’ll do a 

comparative study of deep learning algorithms that were applied in the theses to get 

an overall review of state of the art methods. 

The next chapter deals with conceptualizing our approach to the problem, we will 

give a clear look at the dataset used and it’s pre-processing, we will explain the 

concept behind transfer learning and detail the BERT model as well as the pre-

trained models used in this thesis and the difference between them. 

The next chapter deals with implementing the approach: the hardware and 

software resources used, the implementation code of each model and finally 

evaluating the models, later we compare the results with the approaches followed by 
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the theses explored in the related works chapter, we showcase the models we’ve 

trained in a user friendly interface. 

And finally a conclusion that includes a summary of the whole process and our 

perspective on it. 
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Chapter 1: Automatic Classification 

1. Introduction 

Automatic classification is a process for managing text and unstructured 

information by categorizing or clustering text. By labeling natural language texts 

with relevant categories from a predefined set, automatic document classification 

enables users to organize content quickly and efficiently.                                 

While manual document classification may be highly detailed and accurate, it is 

time-consuming and subjective. Automatic document classification is faster, 

scalable, and more objective. It provides organizations with a more systematic and 

consistent classification and can be useful in more complex, nuanced contexts, such 

as business-specific content. Machine learning and Artificial Intelligence can boost 

the speed and efficiency of automatic document classification. 

In this chapter, we are dealing with defining automatic classification and briefly 

explaining some basic concepts such as: Machine Learning in Text Classification, 

Deep Learning, and finally evaluation Metrics. 

2. Machine Learning in Text Classification 

Also called a classifier, model, or hypothesis, the classification must assign a 

Boolean value to each pair (𝑑𝑗, 𝑐𝑖)  ∈  𝐷 × 𝐶 where 𝐷 is a set of documents and C a 

set of categories. For the learning phase, the algorithm requires examples of which 

we know the choice of the expert. From the characteristics extracted from each of the 

examples, it infers classification rules that are contained in the values of the 

parameters of its model. The classifiers are distinguished by [1]: 

- The complexity of their model (multi-layer neural networks have a high 
separation capacity. 

- The interpretability of their parameters (decision trees provide rules 
understandable by a human). 

- Their performance (the naive Bayesian classifier often gives fewer good 

results). 

- Their scaling up (the size of the training data limits the wide-margin separator 
classifier (SVM)). 
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- Their speed in the learning and classification phases (the k-nearest-neighbor 

(KNN)   method that queries the data is sometimes longer in the classification 

but does not require learning). 

- The complexity of the model must be adapted to the amount of data available 
for its training. Indeed, a complex model can offer better results, but since it 

is more sensitive to noise than a simpler model, its performance may collapse 

due to over-fitting. In machine learning theory, the VC dimension (Vapnik 

Chervonenkis) measures this complexity. 

Next, we give a brief introduction of the classical classifiers in the litterature. 

2.1. KNN (K-nearest-neighbor) 

2.1.1. Definition 

This method is based on the assumption that similar documents in the content 

are classified in the same categories. Related documents or neighbors of the 

document to be classified are retrieved to extract their categories. 

The notion of proximity remains to be defined: For the algorithm to work best on 

a particular dataset we need to choose the most appropriate distance metric 

accordingly, here we will tackle some of the distance metrics available, but we are 

only going to talk about a few widely used ones. Euclidean distance function is the 

most popular one among all of them as it is set default in the SKlearn KNN classifier 

library in python [2]. So here are some of the distances used: 

2.1.2. Minkowski Distance 

It is a metric intended for real-valued vector spaces. We can calculate Minkowski 

distance only in a normed vector space, which means in a space where distances can 

be represented as a vector that has a length and the lengths cannot be negative [3]. 

There are a few conditions that the distance metric must satisfy: 

Non-negativity: 𝑑(𝑥, 𝑦)  >=  0 

Identity: 𝑑(𝑥, 𝑦) =  0 if and only if 𝑥 ==  𝑦 

Symmetry: 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥) 

Triangle Inequality: 𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧)  >=  𝑑(𝑥, 𝑧) 

 

(∑|𝑥𝑖 − 𝑦𝑖|
𝑃 

𝑛

𝑖=1

)

1
𝑃⁄
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This above formula for Minkowski distance is a generalized form and we can 

alter it to get different distance metrics. 

The p value in the formula can be manipulated to give us different distances like: 

- p = 1, when p is set to 1 we get Manhattan distance 

- p = 2, when p is set to 2 we get Euclidean distance 

2.1.3. Manhattan Distance 

This distance is also known as taxicab distance or city block distance, because 

of the way this distance is calculated. The distance between two points is the sum of 

the absolute differences of their Cartesian coordinates. 

 

 

 

 

 

 

As we know we get the formula for Manhattan distance by substituting p=1 in 

the Minkowski Distance formula: 

𝑑 = ∑|𝑥𝑖 − 𝑦𝑖|  

𝑛

𝑖=1

 

This distance is preferred over the Euclidean distance when we have a case of 

high dimensionality [3]. 

2.1.4. Euclidean Distance 

This distance is the most widely used one as it is the default metric that SKlearn 

library of Python uses for K-Nearest Neighbor. It is a measure of the true straight 

line distance between two points in Euclidean space [3]. 

It can be used by setting the value of p equal to 2 in Minkowski distance metric: 
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2.1.5. Cosine Distance 

This distance metric is used mainly to calculate similarity between two vectors. 

It is measured by the cosine of the angle between two vectors and determines 

whether two vectors are pointing in the same direction. It is often used to measure 

document similarity in text analysis. When used with KNN this distance gives us a 

new perspective to a business problem and lets us find some hidden information in 

the data which we didn’t see using the above two distance matrices. 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

It is also used in text analytics to find similarities between two documents by 

the   number of times a particular set of words appear in it. 

The formula for Cosine distance is: 

cos 𝜃 =
�⃗�. �⃗⃗�

‖�⃗�‖. ‖�⃗⃗�‖
 

Using this distance, we get values between 0 and 1, where 0 means the vectors 

are 100% similar to each other and 1 means they are not similar at all [3]. 

2.1.6. Jaccard Distance 

The Jaccard coefficient is a similar method of comparison to the Cosine 

Similarity due to how both methods compare one type of attribute distributed among 

all data.  The Jaccard approach looks at the two data sets and finds the incident where 

both values are equal to 1.  So, the resulting value reflects how many 1 to 1 matches 

occur in comparison to the total number of data points. This is also known as the 

frequency that 1 to 1 match, which is what the Cosine Similarity looks for, how 

frequent a certain attribute occurs. It is extremely sensitive to small sample sizes and 

may give erroneous results, especially with very small data sets with missing 

observations. 

The formula for Jaccard index is:  

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
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2.1.7. Hamming Distance 

The Hamming distance is a metric for comparing two binary data strings. 

While comparing two binary strings of equal length, the Hamming distance 

is the number of bit positions in which the two bits are different. The 

Hamming distance method looks at the whole data and finds when data 

points are similar and dissimilar one to one.  The Hamming distance gives 

the result of how many attributes were different. 

This is used mostly when you one-hot encode your data and need to find 

distances between the two binary vectors. 

Suppose we have two strings “ABCDE” and “AGDDF” of same length 

and we want to find the hamming distance between these. We will go letter 

by letter in each string and see if they are similar or in our example the first 

letters of both strings are similar, then the second is not similar and so on: 

ABCDE and AGDDF 

When we are done doing this we will see that only two letters were similar and 

three were dissimilar in the strings. Hence, the Hamming Distance here will be 3. 

Note that larger the Hamming Distance between two strings, more dissimilar will be 

those strings (and vice versa) [3]. 

2.2. Decision Trees 

2.2.1. Definition 

From a geometric point of view, the idea is to cut the space up to obtain regions 

containing a homogeneous classification. A region is said to be pure when all the 

documents contained therein are classified in the same category. For a new document 

to be classified, we place it in the representation space and we look in which region it 

is located. 

Initially, space consists of a single region, the entropy is then maximum.  

Let 𝐶𝑗, 𝑗 =  1. . . 𝑛, 
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The space is sliced successively so that the entropy reduction (gain of 

information) is maximum at each step. If, in the end, all the regions are pure then the 

entropy is zero and the information gain is equal to the initial entropy. To avoid 

obtaining regions containing too few examples, which represents a risk of over-

learning, the tree is pruned. 

2.2.2. Types of Decision Trees 

Types of decision trees are based on the type of target variable we have. It can be 

of two types [4]: 

- Categorical Variable Decision Tree: Decision Tree which has a categorical 

target variable then it is called a Categorical variable decision 

tree.                             

- Continuous Variable Decision Tree: Decision Tree has a continuous target 
variable then it is called Continuous Variable Decision Tree. 

- Entropy: Entropy is a measure of the randomness in the information being 
processed. The higher the entropy, the harder it is to draw any conclusions 

from that information. Flipping a coin is an example of an action that 

provides information that is random. 

                                            

 

 

 

 

From the above graph, it is quite evident that the entropy H(X) is zero when the 

probability is either 0 or 1. The Entropy is maximum when the probability is 0.5 

because it projects perfect randomness in the data and there is no chance of perfectly 

determining the outcome. 

- Information Gain: Information gain is a statistical property that measures how 

well a given attribute separates the training examples according to their target 

classification. Constructing a decision tree is all about finding an attribute that 

returns the highest information gain and the smallest entropy. 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑇, 𝑋)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇)  −  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑋) 

Where T: Current state and X: Selected attribute. 

- Gini Index: the Gini index is a cost function used to evaluate splits in the 

dataset. It is calculated by subtracting the sum of the squared probabilities of 

         Figure 1: Entropy Graph. 
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each class from one. It favors larger partitions and easy to implement whereas 

information gain favors smaller partitions with distinct values. 

𝐺𝑖𝑛𝑖 = 1 −  ∑(𝑃𝑖)2

𝐶

𝑖=1

 

2.3. Random Forest 

2.3.1. Definition 

Random forest is an algorithm that is used widely in Classification and 

Regression problems. 

The main flaw of the decision tree is that it is very sensitive to the initial data set. 

Removing or adding a few examples can completely change the tree. To take this 

instability into account, the random forest algorithm introduces a part of chance in its 

construction. Its principle is to build a large number of decision trees by bootstrap 

and to take the vote of each tree to classify. The classification therefore does not 

depend on a single tree but on several trees (forest) created from the same dataset but 

different from each other (random) [4]. 

2.3.2. Bagging (Bootstrap Aggregation) 

Decision trees are very sensitive to the data they are trained on, small changes to 

the training data set can result in a significantly different tree structure. The random 

forest takes advantage of this by allowing each individual tree to randomly sample 

from the dataset with replacement, resulting in different trees. 

2.3.3. Difference between random forest and decision tree 

The critical difference between the random forest algorithm and decision tree is 

that decision trees are graphs that illustrate all possible outcomes of a decision using 

a branching approach. In contrast, the random forest algorithm output are a set of 

decision trees that work according to the output [4]. 
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Table 1: Difference between Decision Tree and Random Forest. 

2.4. Linear Regression 

Linear regression is a simple statistical regression method used for predictive 

analysis and shows the relationship between the continuous variables. Linear 

regression shows the linear relationship between the independent variable (X-axis) 

and the dependent variable (Y-axis), consequently called linear regression. If there is 

a single input variable (x), such linear regression is called simple linear regression. 

And if there is more than one input variable, such linear regression is called multiple 

linear regression. The linear regression model gives a sloped straight line describing 

the relationship within the variables. 

                                                                  

Decision Tree Random Forest 

A decision tree is a tree-like model of 

decisions along with possible outcomes in 

a diagram. 

A classification algorithm consisting of 

many decision trees combined to get a more 

accurate result as compared to a single tree. 

There is always a scope for over-fitting, 

caused by the presence of variance. 

Random forest algorithm avoids and 

prevents over-fitting by using multiple 

trees. 

The results are not accurate. This gives accurate and precise results. 

Decision trees require low computation. 

Thus, reducing time to implement and 

carrying low accuracy. 

This consumes more computation. The 

process of generation and analyzing is time 

consuming. 

It is easy to visualize. The only task is to fit 

the decision tree model. 

This has complex visualization as it 

determines the pattern behind the data. 

Figure 2: Linear Regression. 



                                                        Chapter I : Automatic Classification 

12 

 

The above graph presents the linear relationship between the dependent variable 

and independent variables. When the value of x (independent variable) increases, the 

value of y (dependent variable) is likewise increasing. The red line is referred to as 

the best fit straight line. Based on the given data points, we try to plot a line that 

models the points the best. 

2.5. Support Vector Machines 

A Support Vector Machine (SVM) is a supervised machine learning algorithm 

that can be employed for both classification and regression purposes. 

SVMs are more commonly used in classification problems SVMs are based on 

the idea of finding a hyperplane that best divides a dataset into two classes, as shown 

in the image below. 

 Support vectors are the data points nearest to the hyperplane, the points of a data 

set that, if removed, would alter the position of the dividing hyperplane. Because of 

this, they can be considered the critical elements of a data set [5].  

 

3. Statistical evaluation metrics 

3.1. Definition 

Statistical evaluation metrics are used to measure the quality of the statistical or 

machine learning model. Evaluating machine learning models or algorithms is 

essential for any project. There are many different types of evaluation metrics 

Figure 3: Support Vector Machines. 
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available to test a model. These include classification accuracy, logarithmic loss, 

confusion matrix, and others. 

3.2. Classification Accuracy  

Classification Accuracy is what we usually mean when we use the term accuracy. 

It is the ratio of the number of correct predictions to the total number of input 

samples: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

3.3. Logarithmic Loss 

Logarithmic Loss or Log Loss, works by penalizing the false classifications. It 

works well for multi-class classification. When working with Log Loss, the classifier 

must assign probability to each class for all the samples. Suppose, there are N 

samples belonging to M classes, then the Log Loss is calculated as below: 

Where: 𝑦𝑖𝑗, indicates whether sample i belongs to class j or not 𝑝𝑖𝑗, indicates the 

probability of sample i belonging to class j 

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐𝐿𝑜𝑠𝑠 =  
−1

𝑁
∑ ∑ 𝑦𝑖𝑗 ∗ log (𝑝𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 

In general, minimizing Log Loss gives greater accuracy for the classifier. 

3.4. Confusion Matrix 

The Confusion Matrix gives us a matrix as output and describes the complete 

performance of the model. 

Let’s assume we have a binary classification problem. We have some samples 

belonging to two classes: True or False. Also, we have our own classifier which 

predicts a class for a given input sample. On testing our model on 165 samples, we 

get the following result: 
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        Table 2: Confusion Matrix. 

n=165 Predicted:False Predicted:True 

Actual:False 50 10 

Actual:True 5 100 

- True Positives: Cases where we predicted True and the actual output was 

also true. 

- True negatives: The cases in which we predicted False and the actual 

output was False. 

- False Positives: Cases where we predicted True and the actual output was 

False. 

- False negatives: The cases in which we predicted False and the actual 

output was true. 

 

Accuracy for the matrix can be calculated by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒
 

3.5. F1 Score 

F1 Score is the Harmonic Mean between precision and recall. The range for F1 

Score is [0, 1]. It tells you how precise your classifier is (how many instances it 

classifies correctly), as well as how robust it is (it does not miss a significant number 

of instances). High precision but lower recall, gives you an extremely accurate, but it 

then misses a large number of instances that are difficult to classify. The greater the 

F1 Score, the better is the performance of our model. Mathematically, it can be 

expressed as: 

𝐹1 = 2 ∗  
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

 

The F1 Score tries to find the balance between precision and recall. 

Precision: It is the number of correct positive results divided by the number of 

positive results predicted by the classifier. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐹𝑃)
 

 

Recall: It is the number of correct positive results divided by the number of all relevant 

samples (all samples that should have been identified as positive). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)
 

3.6. Mean Absolute Error 

The Mean Absolute Error is the average of the difference between the Original 

Values and the Predicted Values. It gives us the measure of how far the predictions 

were from the actual output. However, they don’t give us any idea of the direction of 

the error i.e., whether we are under-predicting the data or over-predicting the data. 

Mathematically, it is represented as: 

𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 =  
1

𝑁
∑ |𝑦𝑖 − �̂�𝑗|

𝑁

𝑗=1

 

3.7. Mean Squared Error 

The Mean Squared Error (MSE) is quite similar to Mean Absolute Error, the only 

difference being that MSE takes the average of the square of the difference between 

the original values and the predicted values. The advantage of MSE being that it is 

easier to compute the gradient, whereas Mean Absolute Error requires complicated 

linear programming tools to compute the gradient. As we take square of the error, the 

effect of larger errors become more pronounced than smaller errors; hence the model 

can now focus more on the larger errors.  Mathematically, it is represented as: 

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟 =  
1

𝑁
∑ |𝑦𝑖 − �̂�𝑗|

𝑁

𝑗=1
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3.8. Label Based Evaluation 

A classifier which has been employed for a multi label text classification 

task might predict all the expected labels, a subset of them, or none of the 

expected labels. Hence, those cases should be considered in order to 

evaluate the classifier. The metrics for a multilabel text classification 

problem are organized in two main categories which are example based and 

label-based evaluation.  

Example-based evaluation techniques consider a defined experiment 

with P positive instances and N negative instances for some condition. The 

four predicted outcomes can be classified into True Positives (TP), False 

Positives (FP), True Negatives (TN) and False Negatives (FN) as seen in 

some of the measures above. Label-based measures instead, evaluate each 

label separately and then averages over all labels. All the measures from the 

example-based evaluation can be used for label evaluation [6].  

- Micro averaged measures: Any of the example-based evaluation 

metrics can be computed on individual class labels first and then 

averaged over all classes. 

- Macro averaged measures: Any of the example-based evaluation 

metrics can be computed globally over all samples and all class 

labels.  

- Weighted average measures: Any of the example-based evaluation 

metrics can be computed on individual class labels first and then 

averaged over all classes with their corresponding class weights. 

These class weights are given by the distribution of the test data 

 

4. Conclusion 

In this chapter we dealt with explaining some of the most famous machine 

learning algorithms for automatic classification such as KNN, Decision trees, 

Random Forest, Linear Regression, and finally Support Vector Machines. We also 
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explained the statistical evaluation metrics that are used to evaluate a model such as: 

The Confusion Matrix, F-measure, the accuracy, Precision and Recall, and more. 

In the next chapter we will explore Deep Learning and understand its relevance to 

the problem we’re attempting to solve. 
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Chapter 2: Deep learning  

1. Introduction  

Deep learning is a set of learning methods attempting to model data with complex 

Architectures combining different nonlinear transformations. The elementary bricks 

of deep learning are the neural networks forming deep neural networks. 

These techniques have enabled significant progress in sound and image 

processing, including facial recognition, speech recognition, computer vision, 

automated language processing, and text classification (for example, spam 

recognition). 

Potential applications are countless. Besides, there exist several types of 

architectures for neural networks: The multilayer perceptron which are the eldest and 

simplest ones. Then, The Convolutional Neural Networks (CNN), particularly 

adapted for image processing. After that, the Recurrent Neural Networks (RNN) 

which are used for sequential data such as text or time series. 

This chapter defines deep learning and briefly explains the architectures for 

neural networks used in text classification. 

2. Neural networks 

Neural networks are a set of algorithms modeled loosely after the human brain 

designed to recognize patterns [1-2]. They interpret sensory data through machine 

perception, labeling, or raw clustering input. The ways they recognize are numerical, 

contained in vectors, into which all real-world data must be translated, be it images, 

sound, text, or time series. 

Neural networks help cluster and classify. They can be a clustering and 

classification layer on top of stored and managed data. They help to group unlabeled 

data and organize data. (Neural networks can extract features fed to other algorithms 

for clustering and classification; it consists of deep neural networks as components of 

larger machine-learning applications.). 

In a classification problem, those outcomes are labels that could be applied to 

data: spam or not_spam in an email filter, good guy or bad guy in fraud detection, 

angry_customer or happy_customer in customer relationship management. Other 

problems include anomaly detection (useful in fraud detection and predictive 
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maintenance of manufacturing equipment) and clustering, which is helpful in 

recommendation systems that surface similarities. 

For example, in classification problems, labeled data is needed. And publicly 

available or possible to be created. In this example, spam emails would be marked as 

spam, and the labels would enable the algorithm to map from inputs to the 

classifications. It is difficult to identify a suitable dataset until the tests are done on it. 

Deep learning maps inputs to outputs. It finds correlations. It is known as a 

“universal approximator” because it can learn to approximate an unknown function 

𝑓(𝑥) = 𝑦 between any input 𝑥 and any output 𝑦, assuming they are related at all (by 

correlation or causation, for example). In the process of learning, a neural network 

finds the right 𝑓, or the correct manner of transforming 𝑥 into 𝑦, whether that be 

𝑓(𝑥) = 3𝑥 + 2 or 𝑓(𝑥) = 9𝑥 − 0.1.  

2.1. Predictive Analytics Regressions 

With classification, deep learning can establish correlations between pixels in an 

image and a person's name. It might be called a static prediction. Exposed to enough 

of the correct data, deep learning can establish correlations between current events 

and future events. It can run regression between the past and the future. The 

forthcoming event is like the label in a sense. Deep learning doesn’t necessarily care 

about time or the fact that something hasn’t happened yet. Given a time series, a deep 

understanding may read a string of numbers and predict the number most likely to 

occur next. 

2.2. Neural Network Elements 

Deep learning is the name we use for “stacked neural networks”; networks are 

composed of several layers. 

The layers are made of nodes. A node is just a place where computation happens, 

loosely patterned on a human brain neuron that fires when it encounters sufficient 

stimuli. A node combines input from the data with a set of coefficients, or weights 

that either amplify or dampen that input, thereby assigning significance to inputs 

concerning the task the algorithm is trying to learn, e.g. which information is most 

helpful in classifying data without error? These input-weight products are summed, 

and then the sum is passed through a node’s so-called activation function to 
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determine whether and to what extent that signal should progress further through the 

network to affect the outcome, say, an act of classification. If the signal passes 

through, the neuron has been “activated”. 

A neural network has some key components which constitute its anatomy as 

figure 4 depicts. Those components are [6]:  

- Layers which are combined into a network.   

- Loss function which measures how far the output is from the expected value. 

- Optimizer which helps the network to update itself based on the data it sees 

and its loss function.  

 

Figure 4: Anatomy of a Neural Network [6]. 

Initially, the weights have random values, the output is far from the expected 

value and the loss score is high. The network starts processing the samples (text 

input), the weights are adjusted a little in the correct direction and the loss score 

decreases. A network with a minimal loss is one for which the outputs are as close as 

they can be to the targets and is called trained network. For handling a text 

classification task one more important key component is the last layer activation. The 

activation function constrains the network’s output. For a text classification task, the 

predicted values should be between 0 and 1. The most popular activation functions 

for this purpose are sigmoid, relu and softmax, where the sigmoid function is the 

most suitable for a multi label text classification problem. 
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2.3. Critical Concepts of Deep Neural Networks 

Deep-learning networks are distinguished from the more commonplace single-

hidden-layer neural networks by their depth, that is, the number of node layers 

through which data must pass in a multistep pattern recognition process. 

Earlier versions of neural networks such as the first perceptrons were shallow, 

composed of one input, one output layer, and at most one hidden layer. More than 

three layers (including input and output) qualify as “deep” learning. In this regard, 

deep is a strictly defined term that means more than one hidden layer. 

In deep-learning networks, each layer of nodes trains on a distinct set of features 

based on the previous layer’s output. The further it advances into the neural net, the 

more complex the features nodes can recognize since they aggregate and recombine. 

3. Artificial Neural Network 

This section provides an overview of Deep Learning and Artificial Neural 

Networks (ANN) architecture and discusses some key terminology. 

As shown in the following figure, each perceptron is made up of the following 

parts: 

                                                                      

Calculate the weighted sum Inputs 𝑥1 through 𝑥𝑛, which a vector X. Xi can also 

denote represents the ith entry from the dataset. Each entry from the data set contains 

n dependent variables. 

Weights w1 through wn, which can be denoted as a matrix WA bias term b, which 

is a constant. 

Figure 5: Artificial Neural Networks. 

https://wiki.pathmind.com/multilayer-perceptron
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3.1. Activation function 

The output of step 1 is now passed through an activation function. The activation 

function g transforms the works to a desired non-linear format before sending them 

to the next layer. It maps the summation result to the selected range. 

For example, a sigmoid function maps values to the range [0,1], which is helpful 

if the desire of system to predict probabilities. Doing so leads to modeling complex, 

non-linear decision boundaries. 

3.2. Shallow neural network 

In the most basic form, a neural network contains three layers: input, hidden, and 

output. The following figure shows that a network with just one hidden layer is 

termed an external neural network. 

 

 

 

The computations discussed in the previous sections happen for all neurons in a 

neural network, including the output layer, and one such pass is known as forwarding 

propagation. After one forward pass is completed, the output layer must compare its 

results to the actual ground truth labels and adjust the weights based on the 

differences between the ground truth and the predicted values. This process is a 

backward pass through the neural network known as back-propagation. While the 

Figure 6: Shallow Neural Network. 
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mathematics behind back-propagation are outside the scope of this article, the basics 

of the process can be outlined as follows: 

The network works to minimize an objective function, for example, the error 

incurred across all points in a data sample. At the output layer, the network must 

calculate the total error (difference between actual and predicted values) for all data 

points and take its derivative concerning weights at that layer. The product of the 

error function concerning consequences is called the gradient of that layer. 

The weights for that layer are then updated based on the gradient. This update can 

be the gradient itself or a factor of it. This factor is known as the learning rate, and it 

controls how significant the steps are taken to change the weights. The process is 

then repeated for One layer before it and continues until the first layer is reached. 

During this process, values of gradients from previous layers can be reused, 

making the gradient computation efficient. 

The result of one pass of forwarding propagation and back-propagation is a 

change to the network layers' weights. It brings the system closer to modeling the 

data set provided to it. Because this process uses the gradient to minimize the overall 

error, converging the neural networks' parameters to the optimum is called gradient 

descent. 

3.3. Deep neural networks 

A deep neural network is an external neural network with more than one hidden 

layer. Each neuron in the hidden layer is connected to many others. Each arrow has a 

weight property, which controls how much that neuron's activation affects the others 

attached to it. 

Selecting the number of hidden layers depends on the problem's nature and the 

data set's size. The following figure shows a deep neural network with two hidden 

layers [7]. 
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4. Convolutional Neural Networks  

In recent years, neural networks have covered deep learning, machine learning, 

and many other areas. Neural networks mimic how the human brain solves complex 

problems and finds patterns in a particular dataset. 

In machine learning, a Convolutional Neural Network (CNN or ConvNet) is an 

Artificial Neural Network most commonly used to analyze visual images. This is an 

input from deep learning algorithms for ideas that effectively weight objects and 

distinguish some photos from others. The network embeds deep neural networks 

such as neural networks in images and other data. 

It has existed for several decades and has proven to be very powerful when large 

labeled data sets such as images, videos, and other data are used. 

CNNs are complex neural networks capable of recognizing complex features in 

data. They are used in everything from vision-powered robots to self-driving 

vehicles. They can also be used to identify and classify images and objects such as 

faces, animals, road signs, objects in a scene, and other things. The effectiveness of 

coil webs in image recognition is one of the main reasons why the efficacy of deep 

learning has shaken the world. Unlike image functions, which are learned with small 

squares of input data, coils preserve the relationship between pixels. An image 

classifier can be usefully confused in myriad ways, for example, to classify cats and 

dogs or to determine whether an image of the brain contains tumors. 

Convolutional Neural Networks (CNNs) create a matrix of word embeddings for 

each sentence to which convolutional filters called kernels are applied with all 

possible windows of words in order to extract different features [8]. After that, a max 

pooling strategy is applied in order to reduce the layers’ output dimensionality and to 

keep them in a fixed size. Deep convolutional networks are created by stacking 

combinations of these convolutional layers. CNNs are competitive with RNNs and 

can be a much faster alternative to RNNs for tasks like text classification. Therefore, 

multiple studies have used CNNs for multi-label text classification. It is also suited 

for large scale text classification and Multi-label Classification. 

  

Figure 7: deep neural network with two hidden layers. 
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5. Recurrent Neural Networks 

RNNs are a powerful and robust type of neural network and belong to the most 

promising algorithms because they are the only ones with internal memory. 

Like many other deep learning algorithms, recurrent neural networks are 

relatively old. They were initially created in the 1980s, but we have only seen their 

true potential in recent years.  

Because of their internal memory, RNNs can remember important things about 

the input they received, which means the model keeps memory of the previous 

elements with respect to the target. This memory is crucial for RNNs since the 

semantic meaning of sequences often relies on previous elements. Another important 

aspect of RNNs is their availability to handle inputs of variable length, which is 

something that CNNs cannot do and can have an impact on text classification tasks. 

However, RNNs have the vanishing gradient problem, which means that in practice 

when a RNN is run many times the gradient becomes so small that the weights of the 

first layers do not update anymore, so the model forgets information that is far away 

from the current feature. To solve that Long Short-Term Memory was proposed by 

Hochreiter and Schmidhuber [8]. 

Like all other deep learning algorithms, a feed-forward neural network assigns a 

weight matrix to its inputs and then produces the output. Note that RNNs apply 

weights to the current and previous information. Furthermore, a recurrent neural 

network will also tweak the weights for gradient descent and back-propagation over 

time (BPTT). [9] 

Also, while feed-forward neural networks map one input to one output, RNNs 

can map one to many, many to many (translation), and many to one (classifying a 

voice) [10]. 
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                                                        Figure 8: Different mappings of RNN [10]. 

Several other algorithms are pretty popular these days. Some of them are: 

- LSTMS: Long Short-Term Memory Networks 

- MLPs: Multilayer Perceptrons 

- RBFNs: Radial Basis Function Networks 

- DBNs: Deep Belief Networks 

- GANs: Generative Adversarial Networks 

- RBMs: Restricted Boltzmann Machines 

- SOMs: Self-Organizing Maps 

- Autoencoders 

6. Transfer Learning 

Inductive transfer learning [8] is a research problem of machine learning 

that deals with how knowledge can be stored, reused and transferred from 

previously trained models. Whereas transfer learning has been extensively 

used in computer vision with important success, it has not been until recent 

years that the NLP community has managed to successfully apply transfer 

learning to text. For NLP, transfer learning refers more specifically to pre-

trained language representations — general models that are trained on large 

corpora and contain a considerable amount of world-knowledge. It has 

proven to be very effective to train models for specific downstream tasks on 

top of these pre-trained language representations. This effectiveness seems 

to be caused by that general knowledge provided by the pre-trained models 

which otherwise cannot be inferred in many cases from the training set of 

the task at hand. As presented, in NLP there are two main types of pre-

trained language representations [8]: feature-based and fine-tuning models. 
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Whereas the first are often used to initialize the first layer of a neural 

network, the latter are fine-tuned as a whole model for a specific 

downstream task. In the next sections, we will give an overview on pre-

trained language representations.  

6.1. Word embeddings  

An example of feature-based pre-trained language representations are 

word embeddings, word representations in vectors that have been learned 

from their context, following the hypothesis that similar words have similar 

contexts. Three of the most emblematic word embeddings architectures are 

Word2vec, GloVe and ELMo, which we will explain hereafter [8]:  

- Word2vec: Even though there had been previous approaches to word 

embeddings, it was Word2vec that mostly popularized them. 

Word2vec is based on the distributional hypothesis, which refers to 

the fact that the meaning of the words can be inferred by its context. 

Word2vec can be trained with two model architectures in order to 

obtain the word representations — Continuous Bag-of-Words 

(CBOW) and Skip-gram model. The first one learns to predict a word 

given a window of k words around it, where the order is not taken into 

account. The second architecture learns to predict words before and 

after a certain target word using a log-linear classifier with 

continuous projection layer. Words that are further from the target 

word are given less weight since they are usually less related to the 

target word.  

- GloVe: Global Vectors for Word Representation (GloVe) was 

proposed by Pennington et al. (2014) as a log-bilinear regression 

model that uses the occurrence counts of the words in the entire 

corpus when training, instead of only using a shallow window-based 

method such as that of Word2vec.  

- ELMo Some of the limitations of Word2vec are that word 

embeddings cannot represent a combination of two or more words 
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like idioms. They are also limited by the window size of their 

training, and have problems representing polysemic words. To deal 

with these issues, the Embeddings from Language Models (ELMo) 

was introduced, deep contextualized word representations that model 

both how words are used (syntax and semantics) and contextual 

variances (like polysemy). The representations are learned from the 

internal states of a deep bidirectional language model (biLM) trained 

with a LSTM on a large corpus of 30 million sentences  and instead of 

returning a representation per word, they return a representation per 

contextual word.  

6.2. Fine-tuning language models  

From 2018 to 2019 there has been a proliferation of multiple fine-tuning 

pretrained language models, such as GPT (Radford et al., 2018), GPT-2 

(Radford et al., 2019), Transformer-XL (Dai et al., 2019), XLNet (Yang et 

al., 2019) and XLM (Lample and Conneau, 2019). In the next sections we 

will introduce two of the earliest approaches — ULMFiT and BERT.  

- ULMFiT: The Universal Language Model Fine-tuning (ULMFiT), 

proposed by Howard and Ruder (2018), is an inductive transfer 

learning method which consists of three stages — 1) train a language 

model on a general domain corpus, 2) then fine-tune that model on a 

more specific corpus related to the downstream task, 3) and finally 

train a classifier on top of that model. This approach is very useful for 

tasks with little labelled data and some unlabelled data.  

- BERT: Another important pre-trained representation model, based on 

the Transformer architecture introduced by Vaswani et al. (2017), is 

Bidirectional Encoder Representations from Transformers (BERT) by 

Devlin et al. (2018). The authors argue that the main limitation of pre-

training models is the unidirectionality, which means the 

representations are only learnt from left to right, therefore missing 

cataphoric references which are important for certain tasks like 

question answering. They propose the Masked Language Model 
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(MLM) with a deep bidirectional Transformer, which randomly 

masks parts of the unlabelled input so that the model learns how to 

predict the masked elements from both directions. Additionally, the 

model also learns how to predict the next sentence with Next 

Sentence Prediction (NSP). Unlike ULMFiT, BERT has only two 

steps — pre-training and fine-tuning. Multiple successful examples of 

using BERT have been proposed for text classification.  

In the Modeling chapter, we will speak further about the Transfer 

Learning Approaches that we retained in our contribution.  

7. Frameworks 

The deep learning frameworks offer reusable code blocks. These reusable code 

blocks provide various modules and help abstract the logical blocks. The modules are 

handy and can be easily used to develop any deep learning model. 

For better understanding, the frameworks can be classified into: 

7.1. Low-Level Frameworks: 

Low-level frameworks give the basic abstraction block. They are flexible and can 

be customized as per the requirement. Some of the popular learning frameworks are: 

- MxNet 

- Tensor Flow 

- PyTorch 

7.2. High-Level Frameworks: 

High-level frameworks simplify the work by aggregating the abstraction further. 

Low-level frameworks are the back ends of high-level frameworks. The source is 

converted into a required low-level framework before executing them. Some of the 

popular learning frameworks are as follows: 

- Gluon 

- Keras 

 



                                                        Chapter II : Deep Learning  

30 

 

8. Challenges in deep learning 

Though deep learning methods have gained immense popularity in the last ten 

years, the idea has been around since the mid-1950s when Frank Rosenblatt invented 

the perceptron on an IBM® 704 machine. It was a two-layer-based electronic device 

that could detect shapes and do reasoning. Advancements in this field in recent years 

are primarily because of the increase in computing power and high-performance 

graphical processing units (GPUs), coupled with the significant increase in the 

wealth of data these models have at their disposal for learning, as well as interest and 

funding from the community for continued research. Though deep understanding has 

taken off in the last few years, it comes with challenges that the community is 

working hard to resolve. 

 

9. Conclusion  

Deep learning helps computers to derive meaningful links from a plethora of data 

and make sense of unstructured data. Here, the mathematical algorithms are 

combined with a lot of data and robust hardware to get qualified information. This 

method allows information from digital data to be automatically extracted, classified 

and analyzed. 

In the next chapter, we will describe some related works to our Master project.  
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Chapter 3: Related Works 

1. Introduction 

This chapter will present related works that can give valuable insights into the 

biomedical document text classification method. 

We will summarize each work, problem, and objective; we will examine the 

datasets and the techniques the authors have used, the proposed solutions, and the 

obtained results. Furthermore, we made a comparative study of the methods to 

evaluate their performance and their advantages/disadvantages. 

 

2. Related Works 

2.1. Medical Text Classification using Convolutional Neural 

Networks  

The goal behind this work [11] is to apply machine learning approaches to build 

models that allow an automatically generated context-based and rich representation 

of health-related information. Convolutional neural networks (CNNs) have 

dramatically improved the approaches to many active research problems. One of the 

critical differentiators between CNNs and traditional machine learning approaches is 

the ability of CNNs to learn complex feature representations. A CNN-based 

approach to categorizing text fragments is applied, at a sentence level, based on the 

emergent semantics extracted from a corpus of medical text. The process is 

compared with three other methods: Sentence Embedding, Mean Word embedding, 

and Word Embeddings with BOW (bag-of-word). The results indicate that the CNN-

based approach outperforms the different techniques by at least 15% in terms of 

accuracy in the task of classification. 

2.1.1. Datasets  

Two datasets were procured from the medical domain. This approach makes use 

of the Word2vec algorithm. A dataset from PubMed1 was procured for training 

Word2vec models. A collection of 15k clinical research papers was used to train it. 
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The Word2vec model described in this paper was prepared using this PubMed 

collection. 

For sentence-level classification, it was necessary to gather training data pre-

classified by medical professionals. Merck Manual2 dataset contains articles on 

topics like Brain, Cancer, etc. Each article is classified under a parent header 

representing specific medical issues and conditions. The dataset consisted of 26 

medical classes, and 4000 sentences were chosen randomly for each category 

extracted from the Merck articles to use as training data and to ensure balance across 

all types. The validation dataset consisted of 1000 sentences from each of the 

categories. 

The CNN-based approach was applied to automatically learn and classify 

sentences into one of the 26 categories in the evaluation dataset. 

2.1.2. Techniques and Proposed Solutions 

Each sentence is converted to a word-level matrix where each row in the matrix is 

a sentence vector extracted from the Word2vec model. CNNs require input to have a 

fixed size, and sentence lengths can vary greatly. Therefore, a max word length of 50 

allowable for a sentence is chosen, which worked well. During the training phase, a 

Word2vec hidden layer size of 100 is applied, thus giving the input feature a 

resolution of 100×50. If a sentence contained less than 50 tokens, a particular stop 

word was repeatedly appended to the end of the sentence to meet the 50-word 

requirement. If a conviction had over 50 words, only the first 50 were considered to 

be representative of that sentence. 

During the evaluation, various CNN configurations were tested. A grid search 

was applied to ascertain the optimal number of filters and filter sizes and 

experimented with multiple formats of convolutional layers, including 2, 4, and 6. 

From these experiments, the best-performing CNN model consisted of a 

configuration of two sets of convolutional layers with each pair followed by a max 

pooling layer. This model, 256 convolutional filters were used with a filter size of 5 

across all convolutional layers. After the second max pooling function, a dropout 

function is applied to help prevent over-fitting. In this model, a dropout rate of .5 was 

used. Then append a fully connected layer with a length of 128, followed by a second 
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dropout function. This is followed by a dense layer with a size of 26 to represent the 

number of classification classes, with a Softmax function determining the output. 

  

  A visual representation of this model can be found in the figure below:

 

                                            Figure 9: Outline of the CNN model structure. 

2.1.3. Evaluation 

The model is compared with the following methods: 

Sentence Embeddings (LogR+Doc2vec). 

Mean Word Embeddings (ZeroMean/ElimMean+Word2vec). 

Word Embeddings with BOW(bag-of-words) Features (BOW+LogR). 

 

The figure below shows the accuracy (percentage of sentences classified 

correctly) of each 

The method in the experiments. The first three methods shown in the figure 

perform worse because the initially pre-trained embeddings do not provide good 

classification features. The bag-of-word method performs better - probably due to 

better feature extraction based on the pre-trained word embeddings. The CNN-based 

approach has the highest accuracy by a wide margin. This could be explained by the 

fact that the deep learning approach can capture more complex features than the 

other shallow learning approaches. 
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Figure 10: Classification performance. 

2.2. Deep Learning Classification of Biomedical Text using 

Convolutional Neural Network 

Convolutional Neural Network is one of the deep neural networks, and it is 

believed that this neural network can solve the data scarcity problem. It is 

instrumental in extracting information from raw signals, ranging from computer 

vision applications to speech recognition. This research [12] focus on using a 

Convolutional Neural Network to classify biomedical text abstracts and to measure 

the effectiveness of using Convolutional Neural networks in text classification. 

2.2.1. Datasets  

The dataset used in this research is the Ohsumed dataset which is the subset of 

the MEDLINE database. This research has a total number of 11,566 abstracts 

selected from the Ohsumed dataset.  

The Ohsumed datasets might contain different levels from the first level until the 

fourth level. This research will focus on only 11,566 abstracts from biomedical 

journals from the first and second levels. All the categories and the number of 

abstracts for each category used in this research are stated in the table below: 
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Table 3: List of selected categories with document numbers. 

 

During the training process, the dataset is split into the training set and validation 

set. In this research, the training set consists of 80% of the whole dataset, while the 

validation set consists of 20% of the whole dataset. 

2.2.2. Techniques and Proposed Solutions 

This research consists of several components, and all of these components are 

connected sequentially. For instance, the components in the architecture include the 

input, biomedical abstracts, word embedding layer, deep network, which is made up 

of convolutional layers and max-pooling layer, fully connected layer, and the output, 

which is the classification result. The deep learning text classification model 

architecture used in this research is shown in the figure below: 

Figure 11: Deep Learning Text Classification Model Architecture. 

The input, the biomedical abstracts, will go through the process of tokenizing 

using the multi-word tokenizer instead of the single-word tokenizer. 

Next, the word embedding layer must be set up before the pre-processed text 

input passes. The purpose of this layer is to transform all the words in the text that 

have the same or similar meaning to have an equal representation in the form of a 

vector [13]. In this research, a pre-trained BioASQ word vector is used [14].  
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The sequence of embedding vectors obtained from the previous process will be 

converted into a compressed representation; the stack of convolutional layers and 

max-pooling layer take it as the input. 

The convolutional layer consists of trainable kernels, also known as filters, which 

detect any specific input features. The different convolution processes produce a set 

of activation maps, which detects different features and passes to the max-pooling 

layer. 

The activation function used in the proposed model is the Rectified Linear Unit 

(ReLU). Moreover, the max-pooling layer will take the transformed output from the 

convolutional layer as input. This layer functions to reduce the computation 

complexity and the spatial dimension without dumping the momentous information. 

These are the significant features. Next, the fully connected layer is where the 

classification is performed based on the features extracted from the stack of 

convolutional layers and max-pooling layers. 

In this research, a softmax function with categorical_crossentropy loss function is 

used; its function is to apply a transformation to the output obtained so that the final 

output can be interpreted as a probability vector for each class or class scores. 

Finally, the cross-validation method is used during the model's training process to 

reduce problems like model over fitting. 

3. Evaluation  

 

 

 

 

 

 

 

Figure 12: Result of the Experiment using Single Word Tokenizer 

with 1 Set of Convolution and Max-Pooling Layer. 



                                                   Chapter III : Related Works 

 

37 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

Table 4: Comparing the results using multi-word and single-word tokenizers. 

 

                 

Figure 14: Comparison of Performance of different Classification Methods. 

 

 

Figure 13: Result of the Experiment using Multiword Tokenizer 

with 1 Set of Convolution and Max-Pooling Layer. 
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3.1. Improved Convolutional Neural Network for Biomedical Text 

Classification 

Convolutional neural networks have an excellent ability to extract useful features 

and so are widely used in the field of text classification. This paper proposes a novel 

approach for biomedical text classification based on improved convolutional neural 

networks to solve the problem that deep convolutional neural networks have a large 

amount of computation and cannot perceive the relationship between levels well. 

This work [15] uses the combination of deep separable convolution and void 

convolution to improve the convolutional neural network. At the same time, we use 

the attention mechanism to classify biomedical literature. In addition, the focusing 

loss function is used to improve the imbalance of biomedical texts. Experiments 

show that the classification model in this paper is adequate for biomedical texts. 

3.1.1. Datasets 

The experiment used two datasets publicly available on the Internet. The 

MEDLINE dataset collects biomedical articles with article titles and abstracts. The 

dataset contains a training set of 94936 articles and a test set of 48906. The original 

data set contains more than 20,000 categories. Ten indistinguishable categories (e.g., 

neurology, gastroenterology, and oncology) were selected for categorizing 

documents. The Ohsumed dataset is a subset of clinical papers from the MEDLINE 

database, which contains 23 categories of cardiovascular disease. The Ohsumed 

dataset has 13,929 documents, with varying numbers of documents per class and a 

very irregular distribution. If a table is divided into parts, these should be labeled (a), 

(b), (c), etc., but there should only be one caption for the whole table, not separate 

ones for each part. 

3.1.2. Techniques and Proposed Solutions 

The text is preprocessed, and the word vector is represented. Then the multi-head 

self-attention mechanism is used to extract keywords and capture the global 

relationship. The support vector machine is used to classify the extracted text 

features. 
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In the text Pre-Processing stage, abbreviation expansion, word form restoration, 

and case conversion operations in addition to word segmentation and removal of stop 

words. In this way, the preprocessed text can better express the text features. The 

NLTK module is used to preprocess text data. For preprocessed data, for a particular 

category, 0 in the first column means that it does not belong to a particular category, 

and one means that it belongs to a particular category. The second column is the 

processed title and content. 

In the Word embedding stage, the Skip-Gram model represents the preprocessed 

text data as word vectors. After word2vec word vector training, the word vector 

representation of each word is obtained, and the complete information of the 

document cannot be obtained. 

In the improved-CNN stage, a combination of void convolution and deep 

separable convolution is adopted to replace the ordinary convolution to alleviate 

problems such as model parameter doubling, the large amount of calculation, bloated 

model, and gradient explosion associated with enlarging the convolution kernel to 

obtain deeper features. 

In the Multi-attention stage, a Multi-head self-attention mechanism is used. The 

purpose of the Multi-head self-attention mechanism is to capture the critical 

information of the text sequence from many aspects. Mapping the query matrix (Q), 

fundamental matrix (K), and value matrix (V) into several subspaces, and the 

subspaces are calculated separately. 

Furthermore, finally in the Focal Loss stage,  In order to reduce the influence of 

simple samples on the model and increase the influence of complex samples, the 

influence factor was introduced into the traditional cross-entropy loss, and the weight 

coefficient of balanced, complex samples were increased. 

 

 

Figure 15: Flowchart of Biomedical Text Classification. 
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3.1.3. Evaluation 

In order to evaluate the performance of the improved CNN method in text 

classification, the traditional CNN-Softmax method was introduced, and comparative 

experiments and analyses were carried out. Comparison results of the two algorithms 

are shown in the Table below. The classification accuracy of the improved CNN 

method proposed in this paper is better than that of the CNN-Softmax method. The 

improved CNN-SVM method can obtain deep multi-scale features so that the text 

classification can improve. Meanwhile, the enhanced CNN-SVM process can 

alleviate the impact of data imbalance on the classification effect and improve the 

overall classification effect to a certain extent.  

 

Table 5: Results. 

 

 

4. Comparative Study 

Table 6: Comparison of Models by Average Precision. 

                                           

After evaluating the result of the most prominent previous works related to the 

subject of this thesis, the CNN model provides good results with varying degrees of 

success, most importantly is how the pre-processing plays a huge part in whether a 

model performs well. 

In these cases, the different models were trained on different datasets, but the first 

two were trained on 2 datasets comparable in size (1st model: 15,000 articles, 2nd 

model: 11,566 articles) wherein the remaining model was trained on a much larger 

 CNN+word2vec 1 CNN+word2vec 2 Improved CNN 

Average Precision         68%     70,64%     90,88% 
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dataset (3rd model: 143842 articles) which explains the statistically better results a 

difference of more than 20% in accuracy. 

The improved CNN model consists of having a multi-head self-attention 

mechanism which was used to extract keywords and capture the global relationship. 

In addition, a support vector machine is used to classify the extracted text features. 

By this we conclude that: the dataset and its pre-processing are very important in 

training deep learning models especially in the biomedical domain giving that the 

raw data is very precise and that modifications like the ones applied to the improved 

CNN model can make a huge difference. 

5. Conclusion 

In this chapter, we’ve examined three prominent state of the art works that have 

tested and developed different solutions for biomedical text classification using 

convolutional neural networks, we compared their results and explained them. 
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Chapter 4: Solution Modelling 

1.5 Introduction 

This chapter will present how our approach works in detail, and a give clear look 

at the process from start to finish. 

It involves explaining our proposed approach and methodology, including dataset 

information and how dataset preprocessing works, we will also discuss in detail the 

classification models used. 

1.6 Proposed Approach and Methodology 

The approach is based on a comparative study using pre-trained biomedical text 

classification models, and different result from the convolutional neural network with 

improved pre-processing seen in Chapter 3. 

For the Pre-trained models, we first begin by importing the biomedical text 

dataset and splitting it into two subsets: Training set and Test set. 

Then we will do the pre-processing using: BERT Tokenizer [16], RoBERTa 

Tokenizer and XLNet Tokenizer Respectively for the three pre-trained models used. 

Later we load the pre-trained models: BERT, RoBERTa and XLNet and do the 

training phase. 

And lastly, we get the classification results and apply the relevant classification 

metrics to evaluate. 

 

                                      Figure 16: Classification Process using Pre-Trained Models. 
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1.6.1 Dataset 

Original Version of this Dataset contains 15,559,157 Articles from BioASQ Task 

9A, more details about the format of the data and the task are available in the 

Guidelines for Task 9A [17].  

The Dataset used currently consists of 50000 collections of research from 

PubMed repository. 

Originally these documents are manually annotated by Biomedical Experts with 

their MeSH labels and each article are described in terms of 10-15 MeSH labels. In 

this Dataset we have huge numbers of labels present as a MeSH major which is 

raising the issue of extremely large output space and severe label sparsity issues. To 

solve this Issue Dataset has been Processed and mapped to its root as Described in 

the Figure: 

Figure 17: Structure of Processed Dataset. 

The training set is served as a JSON string with the following format, where each 

line is a JSON object that represents a single article: 

{"articles": [ 

{"title":"title..","abstractText":"text..","meshMajor":["me

sh1",...,"meshN"], "pmid":"PMID","meshid","meshroot"}, 

...,   

{..} 

]} 

This dataset has two new columns compared to the original unprocessed BioASQ 

dataset:  

- Meshroot is MeSH Major at depth one. 

- Meshid is the MeSH Major at the last depth. 
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The Dataset has multiple Labels which includes: Anatomy, Organisms Diseases, 

Chemicals and Drugs Analytical, Diagnostic and Therapeutic Techniques, and 

Equipment Psychiatry and Psychology Phenomena and Processes Disciplines and 

Occupations Anthropology, Education, Sociology, and Social Phenomena 

Technology, Industry, and Agriculture Information Science Named Groups Health 

Care, Geographicals.. 

                 

Table 7: Table showing dataset categories and the number of abstracts included in each. 

Category Name 
Number of 

Abstracts 

Anatomy – A 23263 

Organisms – B 46577 

Diseases – C 26453 

Chemicals and Drugs – D 31074 

Analytical, Diagnostic and Therapeutic Techniques, and 

Equipment – E 

39202 

Psychiatry and Psychology – F 8885 

Phenomena and Processes – G 33609 

Disciplines and Occupations – H 6069 

Anthropology, Education ,Sociology, and Social Phenomena – I 5595 

Technology, Industry, and Agriculture – J 5531 

Information Science – L 7503 

Named Groups – M 21363 

Health Care – N 22919 

Geographicals – Z 8049 
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Figure 18: A graph representation of the different categories present in the dataset with the 

according number of abstracts. 

During the training process, the dataset is split into the training set and validation 

set. In this research, the training set consists of 80% of the whole dataset, while the 

test validation set consists of 20% of the whole dataset. 

1.6.2 Data Pre-Processing 

Text preprocessing is used to clean up text data before feeding it to a machine-

learning model. Text data contains a variety of noise, such as emotions, 

punctuation, and text in a different capitalization or in numerical or special 

character forms. Because machines cannot understand words, they require 

numbers. And therefore, a fast and efficient way to transform text to numbers is 

needed. 

1.6.2.1 Standard Procedure of Text Pre-Processing 

The standard or conventional procedure of pre-processing is a bit tedious and 

also a user-centric procedure. The below steps are carried out under the hood of 

standard pre-processing techniques: 
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 Lower-casing the corpus  

Although often overlooked, lower-casing is one of the simplest and most 

effective forms of text preprocessing. It is suitable for most text mining 

problems (Text Mining) and NLP and contributes significantly to the 

consistency of the expected output. Capitalization consists of reducing all 

letters to lowercase. It's often a good practice: this will allow instances as 

"Product" at the beginning of a sentence to match the query "product", because 

both have the same meaning, if they are not converted to lowercase then they 

will constitute dissimilar words in the vector space model. On the other hand, 

such practice could assimilate words with completely different meanings. 

Many proper nouns are derived from generic nouns and are therefore only 

distinguished only under specific circumstances. These words include, for 

example, personal names (Rose, rose),.., etc. 

 

 

 

 

 

 Normalization  

Before proceeding with the preprocessing of the corpus it first must be 

normalized. Normalization generally refers to a set of related tasks aimed at 

put all the text in the same format; i.e. convert the text into a single canonic 

form. Normalizing the corpus before processing it guarantees the consistency 

of entry before any operation is performed. However, normalization requires 

knowing the type of text to be normalized and how to treat it. In our case 

study, the language used is English. Among the operations included in the 

standardization process, we find: 

- Elimination of duplicate white spaces. 

- Removal of punctuation and special characters. 

- The substitution of contractions (very common in English, for example: 

"I'm" → "I am"). 
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- The conversion of numbers into words to keep only the alphabetical 

characters. 

- Removing the stop words: In this phase we will delete all stop words          

(personal pronouns, prepositions, etc.). 

  

   

 

 

 Tokenizing the Corpus  

Tokenization is an NLP task that consist/s of splitting a piece of text into 

smaller units called “tokens”. A token is an instance of a sequence of characters in 

a specific document that are combined together as a semantic entity that may be 

useful for processing. Whether it's dividing a paragraph to sentences, a sentence to 

words or a word to characters, these tokens are either sentences, words or 

characters. So tokenization can be generally divided into three categories: the 

tokenization of sentences, words and characters (n-gram characters).the relevant 

tokenization here is word tokenizing, as shown in the following figure: 

 

 

 

 

 

 

 Stemming and Lemmatization  

- Stemming: is the process of reducing infected words to their stem; i.e. 

removing the last few characters of a given word, to obtain a shorter form, 

even if that form doesn’t have any meaning. 

For example: History and Historical becomes Histori. 

- Lemmatization: is the algorithmic process of determining the lemma of a 

word based on its intended meaning. Unlike stemming, lemmatisation 

depends on correctly identifying the intended part of speech and meaning 

With Stop Words Without Stop 

Words 

/growing-up-with-hearing-

loss/ 

/growing-hearing-

loss/ 

Figure 19: Tokenization. 
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of a word in a sentence, as well as within the larger context surrounding 

that sentence. 

 Word Embeddings  

Word embedding is a language modelling technique to represent the words or 

phrases as vectors of real numbers. The words are grouped together to get similar 

representation for words with similar meaning. The word embedding learns the 

relationship between the words to construct the representation. This is achieved by 

the various methods like co-occurrence matrix, probabilistic modelling, and neural 

networks. It has become one of the basic knowledge in natural language processing. 

One-hot vectors is one of the simple representations of the words. Each word can 

be represented by one hot vector but as the number of words increases the 

dimensionality increases. Word Embeddings reduces this dimensionality of the word 

vectors by using various ways such how the words occur collectively like King , 

Queen or words which can be used alternatively like car , vehicle etc. So similar 

words are represented by similar representation of vectors. This reduces 

dimensionality of the vectors. 

Word Embeddings are categorized into two types: 

- Frequency based embeddings for example: Count Vector, Co-
occurrence vector, HashingVectorizer, TF-IDF. 

- Pre-trained word embeddings for example: Word2Vec, GloVe, 

BERT, fastText. 

Usually while approaching any NLP problem, we tend to follow this process 

and the above process does not ensure any reasonable result if our raw data 

changes slightly. This means if the data is from a web page there, we need 

additional work to remove HTML tags. Nowadays all these pre-processing steps 

can be carried out by using transfer learning modules like BERT. 

1.6.2.2 Advanced Procedure of Text Pre-Processing in BERT 

Bidirectional Encoder Representations from Transformers or BERT [18] is a deep 

learning framework, developed by Google that can be applied to NLP. This means 

that the NLP BERT framework learns information from both the right and left side of 
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a word (or token in NLP parlance). This makes it more efficient at understanding 

context. 

To learn the contextual relationships between words in a text, BERT utilizes a 

Transformer, an attention mechanism. A transformer is a neural network that 

transduces input data into vector representations using self-attention layers with 

encoder–decoder structure. The transformer’s vanilla implementation has two 

mechanisms: an encoder that receives text input and a decoder that predicts the 

task. Only the encoder mechanism is required because the purpose of BERT is to 

construct a language model.  

 

 

The Transformer encoder reads the entire sequence of words at once, unlike 

directional versions that read the text input sequentially. It is classed as 

bidirectional as a result of this, while the actual term is non-directional. This 

feature allows the model to learn a word’s context based on its surroundings.  

Figure 20: The Transformer network as described in the “Attention is all you need” 

paper [22]. 

https://www.sciencedirect.com/topics/computer-science/neural-networks
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The input embeddings are the sum of the token embeddings, the 

segmentation embeddings and the position embeddings. 

1.6.3 Transfer Learning 

It is a popular approach in deep learning where pre-trained models are used as the 

starting point on natural language processing tasks given the vast compute and time 

resources required to develop neural network models on these problems and from the 

huge jumps in skill that they provide on related problems, this is called Transform 

Learning. 

The basic principle of transfer learning is simple: take a model trained on a large 

set of data and transfer their knowledge to a smaller dataset. 

Figure 21: BERT input representation. 
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1.6.3.1 BERT Model 

During the BERT training process, pairs of sentences are provided as input to 

the model, and it learns to predict whether or not the second sentence in the pair is 

the following sentence in the original document. Half of the inputs during training 

are pairs where the second sentence is the next sentence in the original document 

while the other half is a random sentence from the corpus. The underlying 

assumption is that the second phrase will be unrelated to the first. 

During training, as shown above, a [CLS] token is inserted at the beginning of 

the first sentence and a [SEP] token is introduced at the end of each sentence, with 

each token containing a sentence embedding indicating Sentence A or Sentence B. 

Sentence embeddings are essentially similar to token embeddings, but with a two-

word vocabulary. Finally, each token is assigned a positional embedding that 

corresponds to its place in the sequence [18]. 

 

Figure 22: Illustration that shows the principle behind transfer learning [23]. 
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[CLS] is a special symbol added in front of every input example, and 

[SEP] is a special separator token (e.g. separating questions/answers). 

Before feeding word sequences into BERT, some part of each sequence is 

replaced with a [MASK] token. The model then makes an attempt to forecast the 

original value of the masked words using the context provided by the other, non-

masked phrases in the sequence. It is necessary to add a classification layer on top 

of the encoder output in order to predict the output words. This is followed by 

multiplying the encoder output vectors by the embedding matrix, transforming 

them into the vocabulary dimension, and computing the probability of each word 

in the vocabulary using softmax [18].  

The BERT loss function only considers the predictions of the masked values 

and ignores the predictions of the non-masked words. Consequently, the model 

converges more slowly than directional models. When learning the BERT model, 

Masked LM (shown in Figure 22) and Pre-training (shown in Figure 24) are 

trained jointly in order to minimize the combined loss function of the two 

techniques [18]. 

BERT currently has two variants:  

- BERT Base: 12 layers, 12 attention heads, and 110 million parameters. 

- BER Large: 24 layers, 16 attention heads, and 340 million parameters. 

Figure 23: Overall pre-training procedure for BERT. 
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1.6.3.2 BioBERT Model 

BioBERT (Bidirectional Encoder Representations from Transformers for 

Biomedical Text Mining) [19], which is a domain specific language representation 

model pre-trained on large-scale biomedical corpora. Based on the BERT 

architecture, BioBERT effectively transfers the knowledge of large amount of 

biomedical texts into biomedical text mining models. While BERT also shows 

competitive performances with previous state-of-the-art models, BioBERT 

significantly outperforms them on three representative biomedical text mining tasks 

including biomedical named entity recognition (1.86% absolute improvement), 

biomedical relation extraction (3.33% absolute improvement), and biomedical 

question answering (9.61% absolute improvement) with minimal task-specific 

architecture modifications [19]. 

 

 

   

1.6.3.3 RoBERTa Model: 

Additionally to BioBERT, we used the RoBERTa model [20], RoBERTa builds 

on BERT’s language masking strategy, and wherein the system learns to predict 

intentionally hidden sections of text within otherwise unannotated language 

examples. RoBERTa, which was implemented in PyTorch, modifies key hyper-

parameters in BERT, including: 

- Removing the Next Sentence Prediction (NSP) objective:  In the next 

sentence prediction, the model is trained to predict whether the observed 

document segments come from the same or distinct documents via an 

auxiliary Next Sentence Prediction (NSP) loss. The authors experimented 

with removing/adding of NSP loss to different versions and concluded 

Table 8: List of text corpora used for BioBERT. 
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that removing the NSP loss matches or slightly improves downstream task 

performance 

- Training with bigger batch sizes & longer sequences: Originally BERT is 

trained for 1M steps with a batch size of 256 sequences. In this paper, the 

authors trained the model with 125 steps of 2K sequences and 31K steps 

with 8k sequences of batch size. This has two advantages, the large 

batches improves perplexity on masked language modelling objective and 

as well as end-task accuracy. Large batches are also easier to parallelize 

via distributed parallel training. 

- Dynamically changing the masking pattern: In BERT architecture, the 

masking is performed once during data preprocessing, resulting in a single 

static mask. To avoid using the single static mask, training data is 

duplicated and masked 10 times, each time with a different mask strategy 

over 40 epochs thus having 4 epochs with the same mask. This strategy is 

compared with dynamic masking in which different masking is generated 

every time we pass data into the model. 

- This allows RoBERTa to improve on the masked language modeling 

objective compared with BERT and leads to better downstream task 

performance.  

1.6.3.4 XLNet Model 

Another recently developed Model is XLNet, XLNet has a similar architecture to   

BERT. However, the major difference comes in its approach to pre-training. 

XLNet is a generalized auto-regressive (AR) language model that enables learning 

bidirectional contexts using Permutation Language Modeling. XLNet borrows the 

ideas from both AE and AR language model while avoiding their limitation. As per 

paper, XLNet outperforms BERT on 20 tasks, often by a large margin, including 

question answering, natural language inference, sentiment analysis, and document 

ranking [21]. 

XLNet outperforms BERT for mainly two reasons: 
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- BERT is pre-trained on two unsupervised tasks: sentence reconstruction 

and next sentence prediction. The reconstruction task involves randomly 

masking tokens in a sentence, and reconstructing the original sentence 

from the masked one. The model reconstructs the masked tokens 

conditionally independently of one another. However, this is not really a 

valid assumption. An example from the paper uses the sentence, “New 

York is a city” where “New” and “York” are masked and reconstructed 

during training. Clearly, if the first word is “New” then the next word is 

more likely to be “York”, XLNet doesn’t make this assumption during 

pre-training.  

- BERT also uses a special [mask] token during pre-training, which creates 

some discrepancy between pre-train and fine-tune stages, where a special 

token such as [mask] is not used for the latter. 

1.7 Conclusion 

In this chapter we detailed the dataset used and explained how the pre-processing 

works in both the standard procedure and the advanced, we furthermore explained 

the basics behind the concept of Transfer Learning, moreover how the used pre-

trained models work including: BERT, RoBERTa and XLNet. 
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Chapter 5: Implementation and Evaluation 

1.1 Introduction 

This chapter deals with implementing the method described in the previous 

chapter, and gives a thorough look at the entire process. 

It will include a view at the environment employed and all the libraries and APIs 

used, additionally it will showcase the implementation with code detail, moreover a 

presentation of the classification results, and a comparative study with previous 

related works. And lastly in the simulation part, we will see the classification in 

action using a user-friendly interface. 

 

1.2 Hardware Resources 

The table hereafter (Table 9) describes the specifications of the computer 

that has been used for the tests. 

  Table 9: Computer Specifications. 

CPU I5 8265U 1.60ghz 8 cores  

GPU Mesa Intel UHD graphics 620 

Storage 256gb 

Memory       8gb 

Operating System       Ubuntu 20.04.4 LTS 64bits 

                                                                        

1.3 Software Resources 

In this section we will present the software resources used during the 

implementation including: the programming language, frameworks, as well as the 

libraries. 
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1.3.1 Programming Language and frameworks 

Here are the programming language and Frameworks that we have used. 

- Python Programming Language:  

 

 

 

 

is a high-level, general-purpose programming language. Its design 

philosophy emphasizes code readability with the use of significant 

indentation, Python 3.9.5 is the latest, major stable release of the Python 

programming language, and contains a number of new features and 

optimizations, with 111 commits since version 3.9.4.  

- Jupyter Notebook:  

 

is a web-based interactive computational environment for creating 

notebook documents. Jupyter Notebook1 is built using several open-source 

libraries, including IPython, ZeroMQ, Tornado, jQuery, Bootstrap, and 

MathJax. 

- Google Collaboratory:  

 

 

                                                 

 

1 https://jupyter.org/ 
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Or “Colab” for short, is a product from Google Research. Colab2 allows 

anybody to write and execute arbitrary python code through the browser, 

and is especially well suited to machine learning, data analysis and 

education. More technically, Colab is a hosted Jupyter notebook service 

that requires no setup to use, while providing access free of charge to 

computing resources including GPUs. 

 

- Kaggle: 

 

 A subsidiary of Google, Kaggle3 allows users to find and publish data sets, 

explore and build models in a web-based data-science environment, work 

with other data scientists and machine learning engineers, and enter 

competitions to solve data science challenges. 

- Weights & Biases: 

 

 WandB4 is a central dashboard to keep track of your hyper-parameters, 

system metrics, and predictions so you can compare models live, and share 

your findings. 

1.3.2 Libraries 

Hereafter, we describe the libraries that have been used in our project. 

 

                                                 

 

2 https://colab.research.google.com/ 
3 https://www.kaggle.com/ 
4 https://wandb.ai/site 
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- Scikit-learn (for scientific/data models)5: 

 

 is a free software machine learning library for the Python programming 

language. It features various classification, regression and clustering 

algorithms including support-vector machines, random forests, gradient 

boosting, k-means and DBSCAN, and is designed to interoperate with the 

Python numerical and scientific libraries NumPy and SciPy. 

- Pandas (for tables)6:  

 

is a software library written for the Python programming language for data 

manipulation and analysis. In particular, it offers data structures and 

operations for manipulating numerical tables and time series. 

- Keras (for Neural Networks)7:  

 

is an open-source software library that provides a Python interface for 

artificial neural networks. Keras acts as an interface for the TensorFlow 

library. 

- Tqdm:  

 

                                                 

 

5 https://scikit-learn.org/ 
6 https://pandas.pydata.org/ 
7 https://keras.io/ 
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tqdm8 derives from the Arabic word taqaddum (تقدّم) which can mean 

"progress," and is an abbreviation for "I love you so much" in Spanish (te 

quiero demasiado). 

Instantly make your loops show a smart progress meter - just wrap any 

iterable with tqdm(iterable), and you're done! 

- Numpy (for numerical analysis)9: 

 

is a library for the Python programming language, adding support for large, 

multi-dimensional arrays and matrices, along with a large collection of high-

level mathematical functions to operate on these arrays. 

- Matplotlib (for plots)10: 

 

is a plotting library for the Python programming language and its numerical 

mathematics extension NumPy. 

- TensorFlow11: 

 

is a free and open-source software library for machine learning and artificial 

intelligence. It can be used across a range of tasks but has a particular focus 

on training and inference of deep neural networks. 

                                                 

 

8 https://github.com/tqdm/tqdm 
9 https://numpy.org/ 
10 https://matplotlib.org/ 
11 https://www.tensorflow.org/?hl=fr 



                                                   Chapter V: Tests and Evaluation 

61 

 

- PyTorch12:  

 

is an open-source machine learning framework based on the Torch library, 

used for applications such as computer vision and natural language 

processing. 

- Transformers13:  

 

Transformers provides APIs and tools to easily download and train state-of-

the-art pretrained models. Using pretrained models can reduce your compute 

costs, carbon footprint, and save you the time and resources required to train 

a model from scratch. These models support common tasks in different 

modalities, such as: 

o  Natural Language Processing: text classification, named entity 

recognition, question answering, language modeling, summarization, 

translation, multiple choice, and text generation. 

o Computer Vision: image classification, object detection, and 

segmentation. 

o Audio: automatic speech recognition and audio classification. 

o  Multimodal: table question answering, optical character recognition, 

information extraction from scanned documents, video classification, 

and visual question answering. 

 

 

 

                                                 

 

12 https://pytorch.org/ 
13 https://huggingface.co/transformers 
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- Gradio14: 

 is an open-source python library that allows you to quickly create easy-to-

use, customizable UI components for your machine learning model. Gradio 

allows you to integrate the GUI directly into your Python notebook making it 

easier to use. 

1.4 Implementation and Results 

In this section, we will explain how the implementation was carried with lines of 

code and screenshots of the results of all the architecture process.  

1.4.1 Data Loading and Visualization 

At first, we start by loading the dataset we’re working on and visualize it: 

 

 

 

We display each category and count the number of abstracts in each: 

 

 

                                                 

 

14 https://gradio.app/ 
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We split the dataset into 80% (40000) for training and 20% (1000) for 

testing and then use one hot labels to further visualize our data: 

 

1.4.2 PreTrained Models Implmentation: 

We take the same outputs and split the training data into 80 % (32000) for the 

training and 20 % (8000) for validation, we then convert the data into torch tensors to 

use it in the training of the model: 

In the training we used a number of        as the original authors of 

the model recommend between 10 and 20. 

 

After the Training is over we evaluate our model by calculating the accuracy  

a                                 was used. 
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      For each Model we used the appropriate Tokenizer, for example for RoBERTa 

we use the RoBERTa tokenizer. 

      We used the GPU in order to perform the training. 

1.4.3 Evaluation  

During the training we calculate the Training Loss, F1 validation 

Accuracy, and the Flat Validation Accuracy of each model, the training loss 

is a metric used to assess how a deep learning model fits the training data: 

 

 

 

 

 

 

 

 

After the testing is done we calculate the precision, recall, and f1-score 

for each model: 

BioBERT:                                            RoBERTa: 
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XLNet: 

 

 

 

1.5 Comparisons and Discussion 

The BioBERT and RoBERTa models gave comparable F1 accuracy 

Results, with 85,1% for BioBERT and 85% for RoBERTa. XLNet 

performed slightly worse with an F1 accuracy result of 83%. 

BioBERT was expected to perform the best giving how it was trained on 

a huge dataset of biomedical texts, interestingly the results of RoBERTa 

shows the huge potential, and is evidence that it’s an improvement over the 

standard BERT model. 

Later we compare these results to the previous results shown in the state 

of the art section: 

Table 10 :Results comparison between proposed approach and state of the art. 

Model CNN+word2vec 1 CNN+word2vec 2 
Improved 

CNN 
BioBERT roBERTa XLNet 

Average 

Precision 
68% 71% 91% 85% 85% 82% 

We can see that compared to both CNN+word2vec models the pre-

Trained models gave better precisions, the improved CNN model shows that 
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with the proper amelioration: CNN can show great results comparable to 

pre-trained models. 

1.6 Simulation 

1.6.1 Trained dataset using the pre-trainer model  

To make visualizations and logging artifacts and comparisons of different models 

we have thought about integrating Weight and Bias (wandb). It helps us to quickly 

track experiments, version and iterate on datasets, evaluate model performance, 

reproduce models, visualizes results and spot regressions, and share findings 

publicly, following these steps: 

 
Figure 24: Model Deployment in the HuggingFace. 

- We sign up and log in to the wandb account. 

- We Install the wandb library on our machine in a Python 3 environment 
using pip 

 

- We then, login to the wandb library on the machine and get the 

app key. 
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- We Initialize a new run in W&B in Python script. wandb.init() 

will start tracking system metrics and console logs, right out of the 

box. Run our code, and we put in Our API key when prompted, 

and we see the new run appear in W&B. 

 

1.6.2 Storing the trained model  

 

The base classes PreTrainedModel, implement the common methods for 

loading/saving a model either from a local file or directory, or from a pre-

trained model configuration provided by the library (downloaded from 

HuggingFace’s AWS S3 repository). 

PreTrainedModel and TFPreTrainedModel also implement a few 

methods which are common among all the models such as Tokenizers. 

After making the train locally, we saved the pre-trained configuration, 

Converting Labels to categories before uploading it to HugginFace Hub. 

Finally, we Upload the model file to the Model Hub while synchronizing a 

local clone of the repo in repo_path_or_name 

 

1.6.3 Call and Use of the dataset trained  

In Transformers 4.20.0, the from_pretrained() method has been reworked 

to accommodate large models using Accelerate. This requires Accelerate >= 

0.9.0 and PyTorch >= 1.9.0. Instead of creating the full model, then loading 

the pre-trained weights inside it (which takes twice the size of the model in 

https://wandb.ai/authorize
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RAM, one for the randomly initialized model, one for the weights), there is 

an option to create the model as an empty shell, then only materialize its 

parameters when the pre-trained weights are loaded. 

This option can be activated with low_cpu_mem_usage=True. The 

model is first created on the Meta device (with empty weights) and the state 

dict is then loaded inside it (shared by shard in the case of a sharded 

checkpoint). This way the maximum RAM used is the full size of the model 

only. 

Moreover, we can directly place the model on different devices if it does 

not fully fit in RAM (only works for inference for now). With 

device_map="auto", Accelerate will determine where to put each layer to 

maximize the use of our fastest devices (GPUs) and offload the rest on the 

CPU, or even the hard drive if we do not have enough GPU RAM (or CPU 

RAM). Even if the model is split across several devices, it will run as we 

would normally expect. 

1.6.4 Building the Web App in Python 

Gradio is an open-source Python library that is used to build data science 

demos and web applications. 

 With Gradio, we have created a user friendly interface around our three 

models such as Bio Bert, Roberta, and XLNet, and let the users try by 

dragging and dropping in their content, pasting text, and interacting with the 

demo, all through the browser, using the below link: 

https://huggingface.co/spaces/saidhr20/pubmed-biobert-text-classification 
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Figure 25: Application Interface. 

In order to perform a classification by writing an input text and pressing 

the submit button, the classification results of that input text will be 

displayed, the 6 most pertinent categories will be shown, the model used 

here is BioBERT:  

 

For example, we’ll search the content of a biomedical abstract and see 

the results: 

Figure 26: Exemple of a classification with our application. 
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1.7  Conclusion 

In this chapter we dealt with implementing the different models and 

showing the process of training and testing and evaluation. 

Furthermore, we analyzed and compared the results of the 3 models, and 

later with the state-of-the-art approaches. 

Lastly, we showcased the classification results in a user interface, in 

order to see the results clearly and easily. 
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2 General Conclusion 

 

2.1 Conclusion 

In this thesis we explored the deep learning field of biomedical text classification 

we started by understanding basic notions of automatic classification and went 

further in explaining deep learning concepts, in addition we studied three state of the 

art theses about biomedical text classification and compared their results which gave 

us an informed overall review of the biomedical text classification field, furthermore 

we have tested three pre-trained biomedical text models, and evaluated their results, 

we compared their results with the ones obtained in the state of the art theses, we 

found out that the BioBERT model performs best than the other two pre-trained 

models, and finally we showcased the model in an interface that can be easily used 

by anyone online to do a biomedical text classification on the go. 

The prospective of developing a robust method to do classification is huge, the 

method can take advantage of pre-trained models as they’re showing very good 

results even ones that are not trained on biomedical text classification like RoBERTa. 

2.2 Perspectives 

The biomedical text classification field is a vast field and has huge developmental 

potential, from this research the approach of developing a pre-trained model and 

taking advantage of the optimizations like the ones used in RoBERTa and training it 

on huge datasets of biomedical text sounds like it would make great results that can 

even exceed state of the art biomedical methods developed recently, and that’s 

obviously up to the test, we hope we can see such methods developed in the future. 
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